JP2003249223A - Lithium ion secondary battery and its manufacturing method - Google Patents

Lithium ion secondary battery and its manufacturing method

Info

Publication number
JP2003249223A
JP2003249223A JP2002049917A JP2002049917A JP2003249223A JP 2003249223 A JP2003249223 A JP 2003249223A JP 2002049917 A JP2002049917 A JP 2002049917A JP 2002049917 A JP2002049917 A JP 2002049917A JP 2003249223 A JP2003249223 A JP 2003249223A
Authority
JP
Japan
Prior art keywords
current collector
secondary battery
ion secondary
material layer
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002049917A
Other languages
Japanese (ja)
Inventor
Toshiro Kume
俊郎 久米
Seigo Shiraishi
誠吾 白石
Emiko Igaki
恵美子 井垣
Shoichiro Watanabe
庄一郎 渡邊
Masakazu Tanahashi
正和 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002049917A priority Critical patent/JP2003249223A/en
Publication of JP2003249223A publication Critical patent/JP2003249223A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery which has superior cycle characteristics of a charge-discharge and a high energy efficiency, and provide its manufacturing method. <P>SOLUTION: This is the lithium ion secondary battery using a positive plate wherein an electrode material layer 14 is formed on a collector 11. An electroconductive agent 13 and a lithium salt 12 are contained in the electrode material layer 14, and electroconductive particles 16 are scattered on the surface of the collector 11. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池、およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a lithium ion secondary battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、一般に高電
圧、高エネルギー密度で自己放電が比較的少ない等の優
れた特徴を有することから、特に高エネルギー密度が要
求されるポータブル機器、例えば、携帯電話、カメラ一
体型VTR、ノートパソコン等の電源として広く使用さ
れている。
2. Description of the Related Art Lithium-ion secondary batteries generally have excellent characteristics such as high voltage and high energy density and relatively little self-discharge, and therefore, portable equipment such as portable equipment, which requires particularly high energy density. It is widely used as a power source for telephones, VTRs with built-in cameras, and notebook computers.

【0003】図3に、従来のリチウムイオン二次電池に
用いられる正極板10の概略構造を示す。このように、
正極板10の集電体11の表面に、リチウム塩からなる
活物質12と導電剤13と含む電極材料層14が形成さ
れている。集電体11は、表面に酸化膜を有するアルミ
ニウム箔である。
FIG. 3 shows a schematic structure of a positive electrode plate 10 used in a conventional lithium ion secondary battery. in this way,
An electrode material layer 14 containing an active material 12 made of a lithium salt and a conductive agent 13 is formed on the surface of the current collector 11 of the positive electrode plate 10. The current collector 11 is an aluminum foil having an oxide film on its surface.

【0004】このようなリチウムイオン二次電池では、
電極材料層14と集電体11との界面に酸化膜が形成さ
れているため、界面の抵抗値が上昇して、電池のエネル
ギー効率が低下することがあった。
In such a lithium ion secondary battery,
Since the oxide film is formed at the interface between the electrode material layer 14 and the current collector 11, the resistance value at the interface may increase and the energy efficiency of the battery may decrease.

【0005】これに対して、従来は、正極板10に大き
な圧力を付与したプレスをすることによって集電体11
と電極材料層14の密着性を向上させていた。即ち、こ
のプレスによって、電極材料層14中の導電剤13によ
り界面の酸化膜が破壊され、導電剤13の一部を集電体
11の内部に進入させることで、集電体11と電極材料
層14との電気的な接触面積を増加させていた。しか
し、この技術では、電極材料層14の空隙率が減少し、
電極材料層14中を移動するリチウムイオン種のイオン
移動抵抗が上昇して、電池のエネルギー効率が低下する
問題があった。
On the other hand, conventionally, the current collector 11 is obtained by pressing the positive electrode plate 10 with a large pressure.
And the adhesion of the electrode material layer 14 was improved. That is, by this pressing, the oxide film at the interface is destroyed by the conductive agent 13 in the electrode material layer 14, and a part of the conductive agent 13 enters the inside of the current collector 11, so that the current collector 11 and the electrode material are The area of electrical contact with layer 14 was increased. However, with this technique, the porosity of the electrode material layer 14 decreases,
There is a problem in that the ion transfer resistance of the lithium ion species moving in the electrode material layer 14 increases and the energy efficiency of the battery decreases.

【0006】そこで、図4(a)に示すように、集電体
11と電極材料層14との間に電気伝導率の高い中間層
15aを設けることにより、正極板10にプレスをせず
に、界面の電気伝導率を向上させる技術が、特開平5−
47385号公報、特公平7−70328号公報、およ
び特開平9−97625号公報に開示されている。ま
た、これと同等な技術として、図4(b)に示すよう
に、界面の領域において、電極材料層14に含まれる導
電剤13の濃度を高めることで、中間層15bの機能を
もたせる技術も、特開平9−265976号公報に開示
されている。
Therefore, as shown in FIG. 4 (a), by providing an intermediate layer 15a having a high electric conductivity between the current collector 11 and the electrode material layer 14, the positive electrode plate 10 is not pressed. , A technique for improving the electrical conductivity of an interface is disclosed in Japanese Patent Application Laid-Open No.
It is disclosed in Japanese Patent No. 47385, Japanese Patent Publication No. 7-70328, and Japanese Patent Laid-Open No. 9-97625. As a technique equivalent to this, as shown in FIG. 4B, there is also a technique of increasing the concentration of the conductive agent 13 contained in the electrode material layer 14 in the region of the interface so as to have the function of the intermediate layer 15b. , Japanese Patent Laid-Open No. 9-265976.

【0007】[0007]

【発明が解決しようとする課題】しかし、これら技術に
よっては、集電体11と電極材料層11間の界面の抵抗
は低減するものの、新たに中間層15a、15bを設け
ることにより、活物質12の密度が電極材料層14中で
全体として減少し、電池容量の確保が困難となることが
あった。
However, although the resistance of the interface between the current collector 11 and the electrode material layer 11 is reduced by these techniques, by providing the intermediate layers 15a and 15b newly, the active material 12 is formed. In some cases, the density of the battery was reduced in the electrode material layer 14 as a whole, and it was difficult to secure the battery capacity.

【0008】本発明の目的は、このような従来技術にお
ける問題点を解決し、充放電のサイクル特性が良好で高
エネルギー効率を有するリチウムイオン二次電池、およ
びその製造方法を提供することにある。
An object of the present invention is to solve the above problems in the prior art and to provide a lithium ion secondary battery having good charge / discharge cycle characteristics and high energy efficiency, and a method for manufacturing the same. .

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明のリチウムイオン二次電池においては、集電
体上に電極材料層が形成された正極板を用いる。この電
極材料層には、導電剤とリチウム塩とが含まれ、集電体
の表面には導電性材料からなる粒子が点在している。
To achieve the above object, in the lithium ion secondary battery of the present invention, a positive electrode plate having an electrode material layer formed on a current collector is used. This electrode material layer contains a conductive agent and a lithium salt, and particles made of a conductive material are scattered on the surface of the current collector.

【0010】この構成によれば、粒子状の導電性材料に
よって集電体と電極材料との電気的な接触面積が増大し
て界面における電気伝導率が高められ、その一方で、電
極材料層における活物質12の密度が維持され、電池容
量も確保される。また、正極板に大きな圧力を付与して
プレスをする必要がないことから、電極材料層の空隙率
が低下せず、イオン移動抵抗の上昇も抑えられる。この
結果、充放電時の発熱量の少ない、高エネルギー効率を
有するリチウムイオン二次電池が得られる。
According to this structure, the particulate electrically conductive material increases the electrical contact area between the current collector and the electrode material to increase the electrical conductivity at the interface, while at the same time, in the electrode material layer. The density of the active material 12 is maintained and the battery capacity is secured. Further, since it is not necessary to apply a large pressure to the positive electrode plate for pressing, the porosity of the electrode material layer does not decrease, and the increase in ion transfer resistance can be suppressed. As a result, it is possible to obtain a lithium ion secondary battery that has a small amount of heat generation during charging and discharging and has high energy efficiency.

【0011】また、集電体の表面には、化学エッチン
グ、電解エッチング、圧痕、サンドブラスト、またはメ
タリコンによる凹凸形状が形成されていることが好まし
い。
Further, it is preferable that the surface of the current collector has an uneven shape formed by chemical etching, electrolytic etching, indentation, sandblasting, or metallikon.

【0012】これによって、電極材料層と集電体との界
面の電気伝導率がさらに高められ、同時に集電体と電極
材料層との密着強度も向上する。
As a result, the electrical conductivity at the interface between the electrode material layer and the current collector is further increased, and at the same time, the adhesion strength between the current collector and the electrode material layer is also improved.

【0013】また、上記目的を達成するため、本発明の
リチウムイオン二次電池の製造方法においては、集電体
上に炭素材料をスパッタリングするか、炭素材料を溶媒
中に分散させ、当該溶媒に前記集電体を浸潰させること
により集電体の表面に導電性材料を点在させるか、もし
くは、炭素材料を含むペースト剤を塗布することにより
集電体の表面に導電性材料を点在させた後、その表面に
炭素材料とリチウム塩を含むペースト剤を塗布して集電
体上に電極材料層を形成する。
In order to achieve the above object, in the method for producing a lithium ion secondary battery of the present invention, a carbon material is sputtered on a current collector, or the carbon material is dispersed in a solvent and the solvent is added to the solvent. A conductive material is scattered on the surface of the current collector by immersing the current collector, or a conductive material is scattered on the surface of the current collector by applying a paste containing a carbon material. After that, a paste agent containing a carbon material and a lithium salt is applied on the surface to form an electrode material layer on the current collector.

【0014】これらの製造方法によれば、集電体上に容
易に均一に導電性粉末を点在させることができる。
According to these manufacturing methods, the conductive powder can be easily and uniformly scattered on the current collector.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施の形態1)図1に、本実施の形態に
よるリチウムイオン二次電池の正極板の断面図を示す。
導電性粒子16が集電体11上に点在した状態となって
おり、集電体11上には電極材料層14が形成されてい
る。
(Embodiment 1) FIG. 1 shows a sectional view of a positive electrode plate of a lithium ion secondary battery according to the present embodiment.
The conductive particles 16 are scattered on the current collector 11, and the electrode material layer 14 is formed on the current collector 11.

【0017】集電体11は、表面に酸化膜を有する、い
わゆる弁金属からなり、そのベースとなる金属材料に
は、アルミニウムの他、チタン、タンタル、ニオブ等が
使用できる。集電体11は、その表面が化学エッチン
グ、電解エッチング、圧痕、サンドブラスト、メタリコ
ン等によって処理され、凹凸形状を有していることが好
ましい。これによって、電極材料層と集電体との界面の
電気伝導率がさらに高められ、同時に集電体と電極材料
層との密着強度も向上する。
The current collector 11 is made of a so-called valve metal having an oxide film on its surface. As a metal material for its base, titanium, tantalum, niobium or the like can be used in addition to aluminum. The surface of the current collector 11 is preferably processed by chemical etching, electrolytic etching, indentation, sandblasting, metallikon, or the like to have an uneven shape. As a result, the electrical conductivity of the interface between the electrode material layer and the current collector is further increased, and at the same time, the adhesion strength between the current collector and the electrode material layer is also improved.

【0018】電極材料層14には、活物質12と導電剤
13が含まれる。活物質12は、コバルト、マンガン、
またはニッケルを主成分とするリチウム塩であり、例え
ば、LiCoO2、LiMn24、LiNiO2等であ
る。導電剤13は、炭素材料であることが好ましく、例
えば、グラファイト、アセチレンブラック、カーボンブ
ラック、およびケッチェンブラックからなる群から選ば
れる少なくとも1種であることが良い。
The electrode material layer 14 contains the active material 12 and the conductive agent 13. The active material 12 is cobalt, manganese,
Alternatively, it is a lithium salt containing nickel as a main component, and examples thereof include LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 . The conductive agent 13 is preferably a carbon material, for example, at least one selected from the group consisting of graphite, acetylene black, carbon black, and Ketjen black.

【0019】導電性粒子16の電気伝導率σ1(Ω・
m)は、電極材料層14の電気伝導率σ2(Ω・m)よ
りも高い(σ2<σ1)ことが好ましい。このため、導電
性粒子16は、例えば、グラファイト、アセチレンブラ
ック、カーボンブラック、およびケッチェンブラックか
らなる群から選ばれる少なくとも1種の炭素材料からな
ることが良い。導電性粒子16を構成する炭素材料の平
均粒径は0.01〜2μmの範囲であることが好まし
い。なお、導電性粒子16には、その電気伝導率σ1
阻害しない程度に炭素材料以外に微量の夾雑物が含まれ
ていても良い。
The electric conductivity σ 1 (Ω ·
m) is preferably higher than the electric conductivity σ 2 (Ω · m) of the electrode material layer 14 (σ 21 ). Therefore, the conductive particles 16 are preferably made of at least one carbon material selected from the group consisting of graphite, acetylene black, carbon black, and Ketjen black. The average particle diameter of the carbon material forming the conductive particles 16 is preferably in the range of 0.01 to 2 μm. The conductive particles 16 may contain a trace amount of impurities other than the carbon material to the extent that the electric conductivity σ 1 is not hindered.

【0020】このような構成、特に、導電性粒子16が
集電体11上に点在した状態となっていることによっ
て、導電性粒子16と、電極材料層14中の導電剤13
との電気的な接触面積が増加し、一方、導電性粒子16
と集電体11は一体的となっているため、集電体11と
電極材料14との界面の抵抗値が著しく低減する。ま
た、界面に中間層を設けないことから、電極材料層にお
ける活物質12の密度が維持されるため、電池容量も確
保される。また、正極板10に大きな圧力を付与したプ
レスをする必要がないことから、電極材料層14の空隙
率が低下せず、電極材料14中を移動するリチウムイオ
ン種のイオン移動抵抗の上昇が効果的に抑えられる。さ
らに、電極材料層14中の導電剤13の量を減らすこと
が可能となり、電極材料層14の空隙率を高めることが
でき、イオン移動抵抗をさらに低減することも可能とな
る。
With such a structure, in particular, since the conductive particles 16 are scattered on the current collector 11, the conductive particles 16 and the conductive agent 13 in the electrode material layer 14 are formed.
The electric contact area with the conductive particles 16 increases.
Since the current collector 11 and the current collector 11 are integrated, the resistance value at the interface between the current collector 11 and the electrode material 14 is significantly reduced. Further, since the intermediate layer is not provided at the interface, the density of the active material 12 in the electrode material layer is maintained, so that the battery capacity is secured. Further, since it is not necessary to press the positive electrode plate 10 with a large pressure, the porosity of the electrode material layer 14 does not decrease, and the increase of the ion transfer resistance of the lithium ion species moving in the electrode material 14 is effective. Can be suppressed. Furthermore, the amount of the conductive agent 13 in the electrode material layer 14 can be reduced, the porosity of the electrode material layer 14 can be increased, and the ion transfer resistance can be further reduced.

【0021】(実施の形態2)図2に、本実施の形態に
よるリチウムイオン二次電池用正極板の製造方法を表わ
す工程断面図を示す。
(Embodiment 2) FIG. 2 is a process sectional view showing a method for manufacturing a positive electrode plate for a lithium ion secondary battery according to the present embodiment.

【0022】まず、図2(a)に示すように、集電体1
1の表面に、導電性粒子16となる炭素材料をスパッタ
リングすることにより、導電性粒子16を点在させる。
First, as shown in FIG. 2A, the current collector 1
The conductive material 16 is scattered on the surface of No. 1 by sputtering a carbon material to be the conductive particle 16.

【0023】集電体11には、いわゆる圧延箔を用いる
ことができるが、化学エッチング、電解エッチング、圧
痕、サンドブラスト、またはメタリコンのいずれかの処
理を施し、表面に凹凸形状を形成することが好ましい。
これによって、集電体11と電極材料層14との接触面
積が広くなり、集電体と電極材料層との密着強度が向上
するようになる。
A so-called rolled foil can be used as the current collector 11, but it is preferable to perform a chemical etching process, an electrolytic etching process, an indentation process, a sandblast process, or a metallikon process to form an uneven surface. .
As a result, the contact area between the current collector 11 and the electrode material layer 14 is increased, and the adhesion strength between the current collector and the electrode material layer is improved.

【0024】前記したスパッタリングに代えて、炭素材
料を、バインダーの溶解した有機溶媒や水中に分散さ
せ、当該溶媒に前記集電体を浸潰させることにより導電
性粒子16を点在させることもできる。あるいは、炭素
材料とポリフッ化ビニリデン、セルロース樹脂(CM
C)等のバインダーを混練後ペースト状にして集電体1
1の表面に塗布し、その後乾燥することによって、導電
性粒子16を点在させても良い。
Instead of the above-described sputtering, the carbon material may be dispersed in an organic solvent or water in which a binder is dissolved, and the current collector may be immersed in the solvent so that the conductive particles 16 are scattered. . Alternatively, carbon material and polyvinylidene fluoride, cellulose resin (CM
Current collector 1 is made into a paste after kneading a binder such as C)
The conductive particles 16 may be scattered by applying it to the surface of No. 1 and then drying.

【0025】ここで、炭素材料には、例えば、グラファ
イト、アセチレンブラック、カーボンブラック、および
ケッチェンブラックからなる群から選ばれる少なくとも
1種の炭素材料を使用することが好ましい。
Here, it is preferable to use at least one carbon material selected from the group consisting of graphite, acetylene black, carbon black, and Ketjen black as the carbon material.

【0026】なお、導電性粒子16を集電体11上に点
在させた後、集電体11にロールプレス等により圧力を
付与することが好ましい。これにより、集電体と電極材
料との電気的な接触面積が増大して界面における電気伝
導率がさらに高められる。
It is preferable that the conductive particles 16 are scattered on the current collector 11 and then pressure is applied to the current collector 11 by a roll press or the like. As a result, the electrical contact area between the current collector and the electrode material is increased, and the electrical conductivity at the interface is further increased.

【0027】次に、図2(b)に示すように、集電体1
1上に、活物質12、即ち、LiCoO2、LiMn2
4、LiNiO2等からなるリチウム塩と、導電剤13、
即ち、グラファイト、アセチレンブラック、カーボンブ
ラック、およびケッチェンブラックからなる群から選ば
れる少なくとも1種の炭素材料、並びにバインダーを混
練してペースト状にしたものを塗布し、その後乾燥し
て、集電体11上に、電極材料層14を形成する。な
お、この後、電極材料層の空隙率を低下させない程度に
正極板10に圧力を付与しても良い。この後、得られた
正極板を用い、従来法に従ってリチウムイオン二次電池
を完成させる。
Next, as shown in FIG. 2B, the current collector 1
1 on the active material 12, that is, LiCoO 2 , LiMn 2 O
4 , a lithium salt such as LiNiO 2 and a conductive agent 13,
That is, at least one carbon material selected from the group consisting of graphite, acetylene black, carbon black, and Ketjen black, and a binder that is kneaded into a paste form are applied, and then dried to obtain a current collector. An electrode material layer 14 is formed on the electrode 11. After that, pressure may be applied to the positive electrode plate 10 to the extent that the porosity of the electrode material layer is not reduced. After that, the obtained positive electrode plate is used to complete a lithium ion secondary battery according to a conventional method.

【0028】[0028]

【実施例】以下、実施例により、本発明をさらに具体的
に説明する。ここでは、集電体11と電極材料層14の
界面の抵抗は、いわゆる消去法によって測定した。即
ち、集電体11がアルミニウムの場合、アルミニウムの
電気伝導率は、2.65×10‐10Ω・mと高いことか
ら、それ自体の電子抵抗(Ω/cm2)は無視できる。
よって、界面の抵抗(Ω/cm2)は、正極板全体の電
子抵抗(Ω/cm2)と電極材料層の電子抵抗(Ω/c
2)をそれぞれ測定した後、正極板全体の電子電子
(Ω/cm2)から電極材料層の電子抵抗(Ω/cm2
を差し引くことによって求められる。
EXAMPLES The present invention will be described in more detail below with reference to examples. Here, the resistance at the interface between the current collector 11 and the electrode material layer 14 was measured by the so-called erasing method. That is, when the current collector 11 of aluminum, the electrical conductivity of aluminum, since high as 2.65 × 10- 10 Ω · m, the electronic resistance of itself (Ω / cm 2) can be ignored.
Therefore, the interface resistance (Ω / cm 2 ) is the electronic resistance (Ω / cm 2 ) of the entire positive electrode plate and the electronic resistance (Ω / c 2 ) of the electrode material layer.
m 2 ), the electron resistance (Ω / cm 2 ) of the electrode material layer is calculated from the electron and electron (Ω / cm 2 ) of the whole positive electrode plate.
Is calculated by subtracting.

【0029】ここで、正極板全体の電子抵抗(Ω/cm
2)は、電極材料層上に金スパッタリングを施した後、
2枚の電極材料層の金スパッタリングを施した表面を互
いに接触させ、軽く圧力をかけて密着させた状態で、両
面の集電体を取り出し端子として、4端子測定法にて測
定する。また、電極材料層の電子抵抗(Ω/cm2
は、正極板から電極材料層のみを削り出し、JIS K
7197記載の抵抗測定法に準じて、粉体抵抗測定にて
測定する。
Here, the electronic resistance of the entire positive electrode plate (Ω / cm
2 ) is, after performing gold sputtering on the electrode material layer,
The gold-sputtered surfaces of the two electrode material layers are brought into contact with each other, and light pressure is applied to bring them into close contact with each other, and the current collectors on both surfaces are taken out as terminals to be measured by the four-terminal measuring method. The electronic resistance of the electrode material layer (Ω / cm 2 )
Cuts out only the electrode material layer from the positive electrode plate, and
According to the resistance measurement method described in 7197, it is measured by powder resistance measurement.

【0030】(実施例1)n-メチルピロリドン、ポリ
フッ化ビニリデン、アセチレンブラックをそれぞれ重量
比1000:1:0.1で配合したものを良く混練し、
ペースト状の塗料を作製した。次に、この塗料中に厚さ
15μmのアルミニウム箔を浸漬させた後、140℃で
乾燥し、アルミニウム箔の表面にアセチレンプラツクの
粒子を点在させた。次いで、n-メチルピロリドン、コ
バルト酸リチウム、アセチレンプラツク、ポリフツ化ビ
ニリデンをそれぞれ重量比25:100:3:3で配合
したものを良く混線し、ペースト状の塗料を作製し、こ
の塗料をアルミニウム箔上にダイコ一夕ー法にて200
μmの膜厚に10mm/secにて塗布し、140℃に
て乾燥した。さらに、形成された電極材料層の空隙率が
18%になるまでアルミニウム箔をロールプレスした。
この後、得られた正極板を用い、従来法に従ってリチウ
ムイオン二次電池を完成させた。
Example 1 A mixture of n-methylpyrrolidone, polyvinylidene fluoride and acetylene black in a weight ratio of 1000: 1: 0.1 was well kneaded.
A paste-like paint was prepared. Next, an aluminum foil having a thickness of 15 μm was dipped in this coating material and then dried at 140 ° C. to scatter acetylene plaque particles on the surface of the aluminum foil. Next, a mixture of n-methylpyrrolidone, lithium cobalt oxide, acetylene plaque, and polyvinylidene fluoride at a weight ratio of 25: 100: 3: 3 was mixed well, and a paste-like paint was prepared. 200 on the foil by DAIKO overnight method
It was applied at a film thickness of μm at 10 mm / sec and dried at 140 ° C. Further, the aluminum foil was roll-pressed until the porosity of the formed electrode material layer became 18%.
Then, using the obtained positive electrode plate, a lithium ion secondary battery was completed according to a conventional method.

【0031】この正極板において、電極材料層の電子抵
抗は0.193Ω/cm2であり、集電材と電極材料層
の界面の抵抗は0.182Ω/cm2であった。
In this positive electrode plate, the electron resistance of the electrode material layer was 0.193 Ω / cm 2 , and the resistance at the interface between the current collector and the electrode material layer was 0.182 Ω / cm 2 .

【0032】(実施例2)n-メチルピロリドン、ポリ
フッ化ビニリデン、アセチレンブラックをそれぞれ重量
比1000:1:0.1で配合したものを十分に混練
し、ペースト状の塗料を作製した。次に、この塗料中に
電解エッチングにより表面を粗化した厚さ15μmのア
ルミニウム箔を浸漬させた後、140℃で乾燥し、アル
ミニウム箔の表面にアセチレンプラツクの粒子を点在さ
せた。次いで、n-メチルピロリドン、コバルト酸リチ
ウム、アセチレンプラツク、ポリフツ化ビニリデンをそ
れぞれ重量比25:100:3:3で配合したものを十
分に混線し、ペースト状の塗料を作製し、この塗料をア
ルミニウム箔上にダイコ一夕ー法にて200μmの膜厚
に10mm/secにて塗布し、140℃にて乾燥し
た。さらに、形成された電極材料層の空隙率が18%に
なるまでアルミニウム箔をロールプレスした。この後、
得られた正極板を用い、従来法に従ってリチウムイオン
二次電池を完成させた。
Example 2 A paste-like coating material was prepared by thoroughly kneading n-methylpyrrolidone, polyvinylidene fluoride and acetylene black in a weight ratio of 1000: 1: 0.1. Next, an aluminum foil having a thickness of 15 μm, the surface of which was roughened by electrolytic etching, was immersed in this coating material and then dried at 140 ° C., and acetylene plaque particles were scattered on the surface of the aluminum foil. Next, n-methylpyrrolidone, lithium cobalt oxide, acetylene plaque, and polyvinylidene fluoride mixed in a weight ratio of 25: 100: 3: 3 were mixed thoroughly, and a paste-like paint was prepared. It was applied on an aluminum foil at a film thickness of 200 μm at 10 mm / sec by the Dieko overnight method, and dried at 140 ° C. Further, the aluminum foil was roll-pressed until the porosity of the formed electrode material layer became 18%. After this,
Using the obtained positive electrode plate, a lithium ion secondary battery was completed according to a conventional method.

【0033】この正極板において、電極材料層の電子抵
抗は0.193Ω/cm2であり、集電材と電極材料層
の界面の抵抗は0.123Ω/cm2であった。
In this positive electrode plate, the electrode material layer had an electronic resistance of 0.193 Ω / cm 2 , and the interface between the current collector and the electrode material layer had a resistance of 0.123 Ω / cm 2 .

【0034】(実施例3)厚さ15μmのアルミニウム
箔の表面に、カーポンコ一夕ー装置を用い、カーボンブ
ラックを斑状に分布させ、点在させた。次に、n-メチ
ルピロリドン、コバルト酸リチウム、アセチレンプラツ
ク、ポリフツ化ビニリデンをそれぞれ重量比25:10
0:3:3で配合したものを十分に混線し、ペースト状
の塗料を作製し、この塗料をアルミニウム箔上にダイコ
一夕ー法にて200μmの膜厚に10mm/secにて
塗布し、140℃にて乾燥した。さらに、形成された電
極材料層の空隙率が18%になるまでアルミニウム箔を
ロールプレスした。この後、得られた正極板を用い、従
来法に従ってリチウムイオン二次電池を完成させた。
Example 3 Carbon black was spotted on a surface of an aluminum foil having a thickness of 15 μm by using a Carponco device. Next, n-methylpyrrolidone, lithium cobalt oxide, acetylene plaque and polyvinylidene fluoride are used in a weight ratio of 25:10, respectively.
The mixture blended at 0: 3: 3 was thoroughly mixed to prepare a paste-like paint, and this paint was applied on an aluminum foil at a film thickness of 200 μm at a rate of 10 mm / sec by a Dieko overnight method. It was dried at 140 ° C. Further, the aluminum foil was roll-pressed until the porosity of the formed electrode material layer became 18%. Then, using the obtained positive electrode plate, a lithium ion secondary battery was completed according to a conventional method.

【0035】この正極板において、電極材料層の電子抵
抗は0.193Ω/cm2であり、集電材と電極材料層
の界面の抵抗は0.195Ω/cm2であった。
In this positive electrode plate, the electrode material layer had an electronic resistance of 0.193 Ω / cm 2 , and the interface between the current collector and the electrode material layer had a resistance of 0.195 Ω / cm 2 .

【0036】(比較例1)n-メチルピロリドン、コバ
ルト酸リチウム、アセチレンプラツク、ポリフツ化ビニ
リデンをそれぞれ重量比25:100:3:3で配合し
たものを十分に混線し、ペースト状の塗料を作製し、こ
の塗料を厚さ15μmのアルミニウム箔上にダイコ一夕
ー法にて200μmの膜厚に10mm/secにて塗布
し、140℃にて乾燥した。さらに、形成された電極材
料層の空隙率が18%になるまでアルミニウム箔をロー
ルプレスした。この後、得られた正極板を用い、従来法
に従ってリチウムイオン二次電池を完成させた。
(Comparative Example 1) A mixture of n-methylpyrrolidone, lithium cobalt oxide, acetylene plaque and polyvinylidene fluoride in a weight ratio of 25: 100: 3: 3 was thoroughly mixed and a paste-like paint was prepared. This coating composition was applied onto an aluminum foil having a thickness of 15 μm at a film thickness of 200 μm at 10 mm / sec by a Dieko overnight method, and dried at 140 ° C. Further, the aluminum foil was roll-pressed until the porosity of the formed electrode material layer became 18%. Then, using the obtained positive electrode plate, a lithium ion secondary battery was completed according to a conventional method.

【0037】この正極板において、電極材料層の電子抵
抗は0.193Ω/cm2であり、集電材と電極材料層
の界面の抵抗は0.221Ω/cm2であった。
In this positive electrode plate, the electrode material layer had an electronic resistance of 0.193 Ω / cm 2 , and the interface between the current collector and the electrode material layer had a resistance of 0.221 Ω / cm 2 .

【0038】(比較例2)n-メチルピロリドン、コバ
ルト酸リチウム、アセチレンプラツク、ポリフツ化ビニ
リデンをそれぞれ重量比25:100:3:3で配合し
たものを十分に混線し、ペースト状の塗料を作製し、こ
の塗料を厚さ15μmのアルミニウム箔上にダイコ一夕
ー法にて300μmの膜厚に10mm/secにて塗布
し、140℃にて乾燥した。さらに、形成された電極材
料層の空隙率が18%になるまでアルミニウム箔をロー
ルプレスした。
(Comparative Example 2) A mixture of n-methylpyrrolidone, lithium cobalt oxide, acetylene plaque and polyvinylidene fluoride in a weight ratio of 25: 100: 3: 3 was thoroughly mixed and a paste-like paint was prepared. This coating material was applied onto an aluminum foil having a thickness of 15 μm by a Dieko overnight method at a film thickness of 300 μm at 10 mm / sec, and dried at 140 ° C. Further, the aluminum foil was roll-pressed until the porosity of the formed electrode material layer became 18%.

【0039】この正極板において、電極材料層の電子抵
抗は0.193Ω/cm2であり、集電材と電極材料層
の界面の抵抗は0.199Ω/cm2であった。
In this positive electrode plate, the electron resistance of the electrode material layer was 0.193 Ω / cm 2 , and the resistance of the interface between the current collector and the electrode material layer was 0.199 Ω / cm 2 .

【0040】[0040]

【発明の効果】本発明によれば、導電性粒子が集電体上
に点在した状態となっていることによって、導電性粒子
と電極材料層との電気的な接触面積が増加し、集電体と
電極材料との界面の電気伝導率が大きく向上する。ま
た、界面に中間層を設けないことから、電池容量も確保
される。また、正極板に大きな圧力を付与したプレスを
行わないことから、電極材料層の空隙率が低下せず、イ
オン移動抵抗の上昇が効果的に抑えられる。
According to the present invention, since the conductive particles are scattered on the current collector, the electrical contact area between the conductive particles and the electrode material layer is increased, The electric conductivity at the interface between the electric body and the electrode material is greatly improved. Further, since the intermediate layer is not provided at the interface, the battery capacity can be secured. Moreover, since the positive electrode plate is not pressed with a large pressure, the porosity of the electrode material layer does not decrease, and the increase in ion transfer resistance can be effectively suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態1における二次電池用正極板の断面
FIG. 1 is a sectional view of a positive electrode plate for a secondary battery according to a first embodiment.

【図2】実施の形態2による二次電池用正極板の製造工
程の工程断面図
FIG. 2 is a process sectional view of a manufacturing process of a positive electrode plate for a secondary battery according to a second embodiment.

【図3】従来技術による二次電池用正極板の断面図FIG. 3 is a cross-sectional view of a positive electrode plate for a secondary battery according to the related art.

【図4】従来技術による二次電池用正極板の別の断面図FIG. 4 is another cross-sectional view of a positive electrode plate for a secondary battery according to the related art.

【符号の説明】[Explanation of symbols]

10 正極板 11 集電体 12 活物質 13 導電剤(炭素材料) 14 電極材料層 15a、15b 中間層 16 導電性粒子 10 Positive plate 11 Current collector 12 Active material 13 Conductive agent (carbon material) 14 Electrode material layer 15a, 15b Intermediate layer 16 conductive particles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井垣 恵美子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡邊 庄一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 棚橋 正和 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H017 AA03 AS10 BB14 BB16 CC03 DD01 EE05 HH10 5H029 AJ06 AK03 CJ11 CJ13 CJ22 CJ24 CJ25 DJ07 EJ03 EJ04 EJ12 HJ05 HJ20 5H050 AA12 BA17 CA08 CA09 DA04 DA10 EA09 EA10 EA11 EA24 FA17 GA11 GA22 GA24 GA25 HA05 HA17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Emiko Igaki             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Shoichiro Watanabe             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Masakazu Tanahashi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5H017 AA03 AS10 BB14 BB16 CC03                       DD01 EE05 HH10                 5H029 AJ06 AK03 CJ11 CJ13 CJ22                       CJ24 CJ25 DJ07 EJ03 EJ04                       EJ12 HJ05 HJ20                 5H050 AA12 BA17 CA08 CA09 DA04                       DA10 EA09 EA10 EA11 EA24                       FA17 GA11 GA22 GA24 GA25                       HA05 HA17

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 集電体上に電極材料層が形成された正極
板を用いるリチウムイオン二次電池であって、前記電極
材料層には、導電剤とリチウム塩とが含まれ、前記集電
体の表面には導電性材料からなる粒子が点在しているこ
とを特徴とするリチウムイオン二次電池。
1. A lithium ion secondary battery using a positive electrode plate in which an electrode material layer is formed on a current collector, wherein the electrode material layer contains a conductive agent and a lithium salt. A lithium ion secondary battery characterized in that particles made of a conductive material are scattered on the surface of the body.
【請求項2】 前記導電剤が、グラファイト、アセチレ
ンブラック、カーボンブラック、およびケッチェンブラ
ックからなる群から選ばれる少なくとも1種の炭素材料
であることを特徴とする請求項1に記載のリチウムイオ
ン二次電池。
2. The lithium ion ion according to claim 1, wherein the conductive agent is at least one carbon material selected from the group consisting of graphite, acetylene black, carbon black, and Ketjen black. Next battery.
【請求項3】 前記導電性材料の電気伝導度σ1(Ω・
m)が、前記電極材料層の電気伝導度σ2(Ω・m)
と、σ2<σ1の関係を満たすことを特徴とする請求項1
または2に記載のリチウムイオン二次電池。
3. The electric conductivity σ 1 (Ω ·
m) is the electrical conductivity of the electrode material layer σ 2 (Ω · m)
And σ 21 are satisfied.
Alternatively, the lithium ion secondary battery described in 2.
【請求項4】 前記導電性材料が、グラファイト、アセ
チレンブラック、カーボンブラック、およびケッチェン
ブラックからなる群から選ばれる少なくとも1種の炭素
材料であることを特徴とする請求項1〜3のいずれかに
記載のリチウムイオン二次電池。
4. The conductive material is at least one kind of carbon material selected from the group consisting of graphite, acetylene black, carbon black, and Ketjen black. The lithium-ion secondary battery according to 1.
【請求項5】 前記導電性材料の平均粒径が、0.01
〜2μmであることを特徴とする請求項1〜4のいずれ
かに記載のリチウムイオン二次電池。
5. The average particle diameter of the conductive material is 0.01
It is -2 micrometers, The lithium ion secondary battery in any one of Claims 1-4 characterized by the above-mentioned.
【請求項6】 前記集電体の表面には、化学エッチン
グ、電解エッチング、圧痕、サンドブラスト、またはメ
タリコンのいずれかの処理による凹凸形状が形成されて
いることを特徴とする請求項1〜5のいずれかに記載の
リチウムイオン二次電池。
6. The concavo-convex shape formed on the surface of the current collector by any one of chemical etching, electrolytic etching, indentation, sandblasting, and metallikon treatment. The lithium-ion secondary battery according to any of the above.
【請求項7】 集電体上に炭素材料をスパッタリングす
るか、または、炭素材料を溶媒中に分散させ、当該溶媒
に前記集電体を浸潰させることにより前記集電体の表面
に導電性材料を点在させるか、もしくは、炭素材料を含
むペースト剤を塗布することにより前記集電体の表面に
導電性材料を点在させた後、当該表面に炭素材料とリチ
ウム塩を含むペースト剤を塗布して集電体上に電極材料
層を形成することを特徴とするリチウムイオン二次電池
用正極板の製造方法。
7. A conductive material is provided on the surface of the current collector by sputtering a carbon material on the current collector or by dispersing the carbon material in a solvent and immersing the current collector in the solvent. A material is scattered, or a conductive material is scattered on the surface of the current collector by applying a paste containing a carbon material, and then a paste containing a carbon material and a lithium salt is formed on the surface. A method for producing a positive electrode plate for a lithium ion secondary battery, which comprises applying the material to form an electrode material layer on the current collector.
【請求項8】 前記溶媒は、バインダーが溶解している
ものであることを特徴とする請求項7に記載のリチウム
イオン二次電池用正極板の製造方法。
8. The method for producing a positive electrode plate for a lithium ion secondary battery according to claim 7, wherein the solvent is a binder dissolved therein.
JP2002049917A 2002-02-26 2002-02-26 Lithium ion secondary battery and its manufacturing method Withdrawn JP2003249223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049917A JP2003249223A (en) 2002-02-26 2002-02-26 Lithium ion secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049917A JP2003249223A (en) 2002-02-26 2002-02-26 Lithium ion secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003249223A true JP2003249223A (en) 2003-09-05

Family

ID=28662309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049917A Withdrawn JP2003249223A (en) 2002-02-26 2002-02-26 Lithium ion secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003249223A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301895A (en) * 2008-06-13 2009-12-24 Denso Corp Collector, electrode, and electrical storage device
JP2010061825A (en) * 2008-09-01 2010-03-18 Toyota Motor Corp Current collector foil for battery and method of manufacturing the same, as well as battery
WO2011059023A1 (en) * 2009-11-11 2011-05-19 日立金属株式会社 Aluminum foil which supports carbonaceous particles scattered thereon
JP2012059418A (en) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd Current collector for secondary battery
WO2012127653A1 (en) * 2011-03-23 2012-09-27 トヨタ自動車株式会社 Electrode assembly, cell, and method for producing electrode assembly
US8420263B2 (en) 2008-04-03 2013-04-16 Toyota Jidosha Kabushiki Kaisha Electrode collector manufacturing method and manufacturing apparatus, and battery provided with said collector
WO2013061890A1 (en) * 2011-10-26 2013-05-02 株式会社神戸製鋼所 Electrode material, electrode, secondary cell, and method for producing electrode material
CN103620838A (en) * 2011-06-16 2014-03-05 株式会社神户制钢所 Electrode material and manufacturing method thereof
US20140287319A1 (en) * 2011-10-25 2014-09-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Electrode material, electrode material manufacturing method, electrode, and secondary battery
JP2014207208A (en) * 2013-04-16 2014-10-30 株式会社豊田自動織機 Method for manufacturing electrode
KR101519587B1 (en) 2009-09-28 2015-05-13 주식회사 엘지화학 Electrode for secondary battery and secondary battery comprising the same
KR20150089828A (en) * 2014-01-28 2015-08-05 삼성에스디아이 주식회사 Cathode, lithium battery containing cathode, and preparation method thereof
CN107978732A (en) * 2014-06-20 2018-05-01 东莞新能源科技有限公司 Pole piece and battery
JP2018073645A (en) * 2016-10-31 2018-05-10 トヨタ自動車株式会社 Method of manufacturing electrode for lithium ion secondary battery
JP2023502184A (en) * 2020-10-15 2023-01-23 寧徳新能源科技有限公司 electrochemical and electronic devices

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420263B2 (en) 2008-04-03 2013-04-16 Toyota Jidosha Kabushiki Kaisha Electrode collector manufacturing method and manufacturing apparatus, and battery provided with said collector
JP2009301895A (en) * 2008-06-13 2009-12-24 Denso Corp Collector, electrode, and electrical storage device
US20110151331A1 (en) * 2008-09-01 2011-06-23 Takayasu Sato Battery current collector foil, method of manufacturing battery current collector foil, and battery
JP2010061825A (en) * 2008-09-01 2010-03-18 Toyota Motor Corp Current collector foil for battery and method of manufacturing the same, as well as battery
US9153821B2 (en) * 2008-09-01 2015-10-06 Toyota Jidosha Kabushiki Kaisha Battery current collector foil, method of manufacturing battery current collector foil, and battery
KR101519587B1 (en) 2009-09-28 2015-05-13 주식회사 엘지화학 Electrode for secondary battery and secondary battery comprising the same
CN102668199A (en) * 2009-11-11 2012-09-12 日立金属株式会社 Aluminum foil which supports carbonaceous particles scattered thereon
WO2011059023A1 (en) * 2009-11-11 2011-05-19 日立金属株式会社 Aluminum foil which supports carbonaceous particles scattered thereon
US9514887B2 (en) 2009-11-11 2016-12-06 Hitachi Metals, Ltd. Aluminum foil with carbonaceous particles dispersed and supported therein
JP2012059418A (en) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd Current collector for secondary battery
WO2012127653A1 (en) * 2011-03-23 2012-09-27 トヨタ自動車株式会社 Electrode assembly, cell, and method for producing electrode assembly
US9871254B2 (en) 2011-06-16 2018-01-16 Kobe Steel, Ltd. Electrode material and manufacturing method thereof
CN103620838A (en) * 2011-06-16 2014-03-05 株式会社神户制钢所 Electrode material and manufacturing method thereof
US9685662B2 (en) 2011-10-25 2017-06-20 Kobe Steel, Ltd. Electrode material, electrode material manufacturing method, electrode, and secondary battery
US20140287319A1 (en) * 2011-10-25 2014-09-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Electrode material, electrode material manufacturing method, electrode, and secondary battery
TWI514658B (en) * 2011-10-26 2015-12-21 Kobe Steel Ltd A current collector, an electrode, a secondary battery, and a current collector
JP2013110100A (en) * 2011-10-26 2013-06-06 Kobe Steel Ltd Collector, electrode, secondary battery, and method for manufacturing secondary battery
WO2013061890A1 (en) * 2011-10-26 2013-05-02 株式会社神戸製鋼所 Electrode material, electrode, secondary cell, and method for producing electrode material
JP2014207208A (en) * 2013-04-16 2014-10-30 株式会社豊田自動織機 Method for manufacturing electrode
KR20150089828A (en) * 2014-01-28 2015-08-05 삼성에스디아이 주식회사 Cathode, lithium battery containing cathode, and preparation method thereof
KR102209822B1 (en) 2014-01-28 2021-01-29 삼성에스디아이 주식회사 Cathode, lithium battery containing cathode, and preparation method thereof
CN107978732A (en) * 2014-06-20 2018-05-01 东莞新能源科技有限公司 Pole piece and battery
JP2018073645A (en) * 2016-10-31 2018-05-10 トヨタ自動車株式会社 Method of manufacturing electrode for lithium ion secondary battery
JP2023502184A (en) * 2020-10-15 2023-01-23 寧徳新能源科技有限公司 electrochemical and electronic devices
JP7335332B2 (en) 2020-10-15 2023-08-29 寧徳新能源科技有限公司 electrochemical and electronic devices

Similar Documents

Publication Publication Date Title
JP3482443B2 (en) Electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2003249223A (en) Lithium ion secondary battery and its manufacturing method
CN109904523B (en) Method for manufacturing sulfide solid-state battery
TW201324929A (en) Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2009252396A (en) Lithium secondary battery cathode and method for manufacturing the same
JP6959010B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP3496188B1 (en) Method for producing sulfide solid-state battery
JP3157079B2 (en) Manufacturing method of lithium secondary battery
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
JP2002170556A (en) Method for manufacturing electrode plate of secondary battery
JP2003031224A (en) Light-weight current collector for secondary battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP2013073928A (en) Method for manufacturing negative electrode for lithium ion secondary battery, and negative electrode for lithium ion secondary battery
JP2000294250A (en) COPPER MATERIAL FOR NEGATIVE ELECTRODE CURRENT COLLECTOR OF Li ION BATTERY AND Li ION BATTERY
JPH11162453A (en) Manufacture of battery electrode
JP5325326B2 (en) Current collector, electrode, secondary battery, and method of manufacturing secondary battery
JPH1167277A (en) Lithium secondary battery
JPH11126600A (en) Lithium ion secondary battery
JP4649696B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP3329161B2 (en) Non-aqueous electrolyte secondary battery
JP6954032B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP3406984B2 (en) Electrode for Li battery and Li battery using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510