WO2013061890A1 - Electrode material, electrode, secondary cell, and method for producing electrode material - Google Patents

Electrode material, electrode, secondary cell, and method for producing electrode material Download PDF

Info

Publication number
WO2013061890A1
WO2013061890A1 PCT/JP2012/077128 JP2012077128W WO2013061890A1 WO 2013061890 A1 WO2013061890 A1 WO 2013061890A1 JP 2012077128 W JP2012077128 W JP 2012077128W WO 2013061890 A1 WO2013061890 A1 WO 2013061890A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive material
base material
conductive
current collector
Prior art date
Application number
PCT/JP2012/077128
Other languages
French (fr)
Japanese (ja)
Inventor
高田 悟
翔生 桂
護 細川
佐藤 俊樹
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2013061890A1 publication Critical patent/WO2013061890A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode material used for an electrode of a secondary battery, an electrode using the electrode material, a secondary battery using the electrode, and a method for manufacturing the electrode material.
  • Patent Document 1 and Patent Document 2 describe a current collector in which a film made of carbon fine particles as a conductive material and a film-forming compound is formed on the surface of a base material such as an aluminum foil or a copper foil.
  • Patent Document 3 describes a current collector in which a conductive layer made of carbon powder (conductive material) and a binder is provided between an active material.
  • Patent Document 4 describes a current collector in which a conductive coating layer using carbon as a conductive agent (conductive substance) is provided on the surface.
  • FIG. 5 is a schematic cross-sectional view for explaining the configuration of the current collector in the prior art.
  • a conductive material layer 3b is uniformly formed on the surface of a base material 3a made of a metal foil. That is, the entire surface of the base material 3a is covered with the conductive material layer 3b.
  • the current collector 3 on which such a conductive material layer 3b is formed becomes thick as a whole. For this reason, when an electrode formed by laminating an active material layer (not shown) on the current collector 3 is used for a battery, the active material layer (not shown) formed on the current collector 3 accommodated in a battery of the same volume is used. There is a problem that the thickness of the figure is limited.
  • the present invention was devised in view of the above-described problems, has excellent tab weldability, enables the electrode material (current collector) to be thinned, and lowers the contact resistance with the active material layer. It is an object of the present invention to provide an electrode material that can reduce the internal resistance of a battery, an electrode that uses the electrode material, a secondary battery that uses the electrode, and a method for manufacturing the electrode material.
  • an electrode material according to the present invention is an electrode material comprising a base material including a metal foil, and a conductive substance disposed on at least one surface of the base material,
  • the surface of the substrate is composed of a flat portion and a plurality of depressions, and the average depth of the depressions is 0.3 ⁇ m or more and 3.0 ⁇ m or less, the conductive material is disposed in the depressions, and the flat portions are When exposed in a 300 ⁇ m square field of view, the conductive material is arranged in an island shape on the surface of the substrate, and the coverage of the surface of the substrate by the conductive material is 1 to 80%. It is characterized by being.
  • the coverage of the surface of the base material including the metal foil with the conductive material is 80% or less, a portion exceeding 20% of the surface of the base material is not covered with the conductive material and is a flat metal.
  • the base of the will be exposed.
  • this electrode material is used as, for example, a current collector of an electrode of a lithium ion secondary battery, and when welding a metal tab for connecting the current collector and the battery terminal, The metal tab is well welded to the exposed metal substrate.
  • the coverage of the surface of the base material with the conductive material is 1% or more, when this electrode material is used as, for example, a current collector of an electrode of a lithium ion secondary battery, a current collector and a current collector Contact resistance with the active material layer laminated on the body is reduced.
  • the contact area between the base material and the conductive material is increased by placing the conductive material in a recess with a predetermined average depth formed on the surface of the base material, thus improving the adhesion of the conductive material to the base material. And the contact resistance can be further reduced.
  • the electrode material can be made thinner than in the case where the conductive material is formed in layers on the substrate surface.
  • the metal foil is preferably made of aluminum, an aluminum alloy, copper, or a copper alloy.
  • the conductive material preferably contains a carbon-based material.
  • the electrode material can be suitably applied as an electrode of a lithium ion secondary battery.
  • the electrode according to the present invention is an electrode including the electrode material, and an active material layer is provided on a surface of the electrode material.
  • the contact resistance between the electrode material that is the current collector and the active material layer is reduced by the conductive material disposed in the plurality of depressions on the surface of the base material.
  • the tab weldability can be improved and the film thickness can be reduced.
  • the secondary battery according to the present invention is a secondary battery including a positive electrode and a negative electrode, and at least one of the positive electrode and the negative electrode is the electrode.
  • the secondary battery since the contact resistance between the electrode material that is the current collector and the active material layer is reduced, the secondary battery has an internal resistance that is low as the secondary battery. It becomes. In addition, the tab weldability can be improved and the film thickness can be reduced.
  • the method for producing an electrode material according to the present invention is a method for producing the electrode material, the step of forming a plurality of depressions on the surface of the base material, and the conductive material in the formed depressions. And a conductive material disposing step of disposing a conductive material.
  • a plurality of depressions can be formed on the surface of the substrate by the depression formation step, and the conductive substance can be arranged in the depression formed on the surface of the substrate by the conductive substance arrangement step. it can.
  • the electrode material as described above can be manufactured.
  • the depression forming step forms a plurality of depressions on the surface of the substrate by pressing a transfer body having a plurality of convex portions against the substrate. It is preferable that it is a process.
  • the electrode material as described above can be manufactured.
  • the electrode material manufacturing method according to the present invention is a pressure bonding method in which the conductive material is pressed into the depression by pressing the base material on which the conductive substance is arranged in the depression after the conductive substance arranging step. It is preferable to further include a step.
  • the adhesion of the conductive material to the substrate can be further improved and the contact resistance can be further reduced by performing a crimping step of crimping the conductive material to the recess after the conductive material arranging step. it can.
  • the depression forming step is a step of forming a plurality of depressions on a surface of the base material by roughening a surface of the base material, It is preferable that the method further includes a rolling step of forming the flat portion by rolling the base material on which the conductive material is placed in the depression after the conductive material placement step.
  • this manufacturing method by roughening the surface of the base material, a plurality of depressions are formed on the surface of the base material, and the conductive material is disposed in the depressions. Then, by performing a rolling process, it is possible to improve the tab weldability by forming a flat portion to which the conductive material is not attached on the surface of the base material, and improve the adhesion of the conductive material to the base material. And contact resistance can be reduced.
  • the conductive material is arranged in an island shape on the surface of the metal foil as a base material, and the coverage of the conductive material is limited to partially expose the metal foil substrate on the surface of the electrode material. By doing so, it is possible to ensure tab weldability and reduce the contact resistance of the electrode material.
  • the conductive material in the depression formed on the surface of the base material, the contact area between the base material and the conductive material can be increased, and as a result, the adhesion of the conductive material to the base material can be improved. In addition to the improvement, the contact resistance of the electrode material can be further reduced.
  • the electrode material can be made thinner compared to the case where the conductive material is formed in layers on the surface of the substrate, and as a result, The amount of the active material layer per unit volume is not greatly limited, and a reduction in battery capacity can be avoided.
  • the contact resistance between the electrode material and the active material layer can be reduced, the internal resistance of the battery can be reduced, and the tab It is possible to improve the weldability and reduce the thickness.
  • the conductive material can be arranged in an island shape on the surface of the base material.
  • an electrode material having excellent tab weldability can be produced.
  • the contact resistance is further increased because the adhesion between the base material and the conductive material is improved by arranging the conductive material in the plurality of depressions formed on the surface of the base material.
  • An electrode material that can be reduced and made thinner can be manufactured.
  • the tab weldability can be improved by rolling the base material after the conductive material arranging step to form a flat portion to which no conductive material is adhered.
  • the adhesion of the conductive material to the substrate can be improved, and the contact resistance can be reduced.
  • FIG. 1A and 1B are schematic cross-sectional views for explaining the structure of a current collector according to the present invention
  • FIG. FIG. 1B is a schematic cross-sectional view of a current collector manufactured without application
  • FIG. 1B is a current collector manufactured by applying a crimping process in the current collector manufacturing process A, or a current collector manufactured in current collector manufacturing process B It is a typical sectional view of an electric body.
  • FIG. 2 is a schematic cross-sectional view for explaining the structure of an electrode using the current collector according to the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining the structure of a secondary battery using the electrode according to the present invention.
  • FIG. 4 (a) and 4 (b) are flowcharts showing a method for manufacturing a current collector according to the present invention
  • FIG. 4 (a) is a flowchart showing a method A for manufacturing a current collector
  • FIG. 4 (b) are flowcharts which show the manufacturing method B of an electrical power collector.
  • FIG. 5 is a schematic cross-sectional view for explaining the structure of a current collector according to the prior art.
  • the current collector 1 includes a base material 1a made of a metal foil and a conductive material 1b arranged in an island shape on the surface of the base material 1a. Moreover, the conductive material 1b may be arrange
  • the current collector 1 When the current collector 1 is used as an electrode of a battery, the current collector 1 has a structure in which the conductive material 1b is arranged in an island shape on the surface of the base 1a when observed in a 300 ⁇ m square field of view.
  • the tab weldability when welding a metal tab (not shown) that electrically connects the current collector 1 and the battery terminal can be improved.
  • the contact resistance between the current collector 1 and the active material layer (see FIG. 2) laminated on the surface of the current collector 1 is reduced by the conductive material 1b arranged in an island shape on the surface of the substrate 1a. Can be reduced.
  • island shape refers to a state in which the conductive material 1b is arranged such that at least a part of the surface of the substrate 1a is exposed without being covered with the conductive material 1b.
  • conductive materials 1b filled in a plurality of depressions may be arranged isolated from each other, and aggregates are joined and arranged in a mesh shape. It may be.
  • the substrate 1 a has a flat surface and a plurality of depressions.
  • the average depth of the depression is 0.3 to 3.0 ⁇ m (preferably 0.4 to 2.7 ⁇ m, more preferably 0.5 to 2.3 ⁇ m).
  • the adhesion of the conductive material 1b to the base material 1a can be ensured even when the later-described press-bonding step A4 is not performed.
  • the average depth of the depressions to 3.0 ⁇ m or less, it is possible to prevent the strength of the base material 1a (metal foil) from being lowered and to avoid breakage of the base material 1a at the stage of manufacturing the electrode. Because it can.
  • a plurality of depressions are provided when observed in a 300 ⁇ m square field of view so that the conductive material 1b disposed in the depression has the above-described island shape.
  • the base material 1a can use metals, such as aluminum (Al) and copper (Cu), which are generally used as electrode materials for secondary batteries.
  • the substrate 1a is generally used in the form of a foil having a thickness of about 5 to 50 ⁇ m.
  • the substrate 1a is not limited to Al or Cu having a specific composition, and when used for an electrode, various pure metals and alloys thereof suitable for the use environment of the electrode can be used. Preferable examples include aluminum, aluminum alloy, copper, and copper alloy.
  • the conductive material 1b reduces the contact resistance between the current collector 1 and the active material layer 2 (see FIG. 2). As shown in FIGS. 1 (a) and 1 (b), the conductive material 1b It arrange
  • the state in which the conductive material 1b is disposed in the depression of the base material 1a is a state in which the depression is filled with the conductive substance 1b as shown in FIGS. 1 (a) and 1 (b).
  • the substance 1b may protrude from the depression (see FIG. 1A), and the conductive substance 1b may be flush with the flat surface of the substrate 1a by performing rolling or pressure bonding (FIG. 1).
  • the conductive material 1b is basically not disposed on the flat portion of the surface of the substrate 1a, and the flat portion of the substrate 1a is exposed. However, it is not necessary that the entire area of the flat portion is completely exposed, and the conductive material 1b may be disposed in a part of the flat portion as long as the coverage described later is satisfied.
  • the conductive material 1b can increase the contact area of the conductive material 1b with respect to the base material 1a by being disposed in the depression of the base material 1a, it improves the adhesion of the conductive material 1b to the base material 1a and is in contact with the base material 1a. Resistance can be reduced. Further, since the conductive material 1b is positively filled in the recess of the base material 1a, the amount of the conductive material 1b protruding from the surface of the base material 1a can be suppressed, and the current collector 1 is prevented from becoming thick. can do.
  • the coverage of the surface of the substrate 1a with the conductive material 1b is 1 to 80% (covered area / observed visual field area ⁇ 100) when observed in a substantially square field of view of 300 ⁇ m square, that is, 300 ⁇ m on a side.
  • the coverage by the conductive material 1b is 1% or more, when used as an electrode of a secondary battery, the current collector 1 and the current collector 1 are compared with those of only an Al foil in which the conductive material 1b is not disposed.
  • the contact resistance with the active material layer 2 (see FIG. 2) laminated on the surface of the substrate can be reduced.
  • favorable tab weldability is securable by making the coverage with the electroconductive substance 1b on the surface of the base material 1a 80% or less.
  • the coverage is preferably 7 to 70%, more preferably 15 to 60%.
  • the conductive material 1b is evenly arranged on the surface of the substrate 1a at least in the unit of the observation area described above. Since the conductive material 1b is arranged in an island shape within a sufficiently small area, practically uniform contact resistance and tab weldability can be obtained.
  • the coverage of the surface of the base material 1a with the conductive material 1b is obtained by, for example, photographing the surface of the prepared sample using an SEM (scanning electron microscope) and conducting the carbon or the like contained in the photographed field of view.
  • the area of the substrate surface covered with the substance 1b can be calculated and obtained by image processing.
  • the conductive material 1b a material including a carbon-based material can be used.
  • the carbon-based conductive material carbon-based material
  • natural or artificial crystalline graphite, expanded graphite, artificial graphite, pyrolytic graphite, various carbon blacks, or a mixture thereof can be used.
  • carbon black include acetylene black, ketjen black, and carbon nanotube.
  • the average particle size of the conductive material 1b is 0.01 to 20 ⁇ m, preferably 0.01 to 1 ⁇ m.
  • the conductive material 1b is preferably composed of a carbon-based material, but may be configured to include 10% by mass or more of the carbon-based material. In the conductive material arranging steps A2 and B2 described later, The binder used may be included.
  • Electrode Next, with reference to FIG. 2, the structure of the electrode of the lithium ion secondary battery using the current collector 1 according to this embodiment will be described.
  • An electrode 10 shown in FIG. 2 includes a current collector 1 according to this embodiment and an active material layer 2 laminated on the surface of the current collector 1.
  • the active material layer 2 is laminated only on one side of the current collector 1, but the active material layer 2 is laminated on both sides of the current collector 1 in which the conductive material 1b is arranged on both sides of the base material 1a. You may let them.
  • a metal such as Al or an Al alloy can be used as the base material 1a of the current collector 1.
  • the positive electrode active material a known material, for example, it can be used LiCoO 2, LiNiO 2, lithium-containing oxides such as LiMn 2 O 4.
  • the method for producing the positive electrode active material layer 2 is not particularly limited, and a known method, for example, a powdery lithium-containing oxide is added with a conductive material, a solvent, etc., if necessary, in addition to a binder. Then, after sufficiently kneaded, it can be applied to the current collector 1, dried and pressed.
  • the base material 1a of the current collector 1 can be a metal such as Cu, Cu alloy, nickel (Ni), Ni alloy, and stainless steel.
  • a negative electrode active material a graphite-type carbon material can be used, for example, and it can manufacture like the manufacturing method of the active material layer 2 of a positive electrode.
  • a lithium ion secondary battery (secondary battery) 20 shown in FIG. 3 includes a positive electrode 11 and a negative electrode 12, which are electrodes 10 using the current collector 1 according to the present embodiment, a separator 13, and an electrolytic solution 14. It is comprised including. The positive electrode 11 and the negative electrode 12 are separated by a separator 13, and the electrolyte solution 14 is filled between the positive electrode 11 and the negative electrode 12 and the separator 13. Further, the entire lithium ion secondary battery 20 is housed in a container (not shown), and the positive electrode 11 and the negative electrode 12 are each welded with a metal tab (not shown) to be electrically connected to an electrode terminal (not shown). Connected.
  • the active material layer 2 containing the above-mentioned positive electrode active material and negative electrode active material is formed on the surface of the current collector 1 according to this embodiment, respectively.
  • the separator 13 and the electrolyte solution 14 can each be comprised using a well-known material.
  • the separator 13 for example, a polyethylene microporous film having a thickness of 20 to 30 ⁇ m can be used.
  • the electrolytic solution 14 for example, a non-aqueous electrolytic solution in which an electrolyte such as LiPF 6 or LiBF 4 is dissolved in an organic solvent such as propylene carbonate or ethylene carbonate can be used.
  • ⁇ Current collector manufacturing method A a plurality of indentations are provided on the surface of a base material made of metal foil (indentation forming step A1), and a conductive material is disposed by applying a solution containing an electrically conductive material in the indentations (conductivity).
  • This is a method of manufacturing a current collector by drying the solution (substance placement step A2) (drying step A3) (see FIG. 4A).
  • crimping step A4 it is possible to further improve the adhesion and reduce the contact resistance.
  • the dent forming step A1 is a step of forming a dent on the surface of the substrate.
  • a transfer body having a plurality of projections prepared in advance is pressed against the surface of the substrate ( This is a step of forming a plurality of depressions on the surface of the base material.
  • a flat part other than the convex part exists on the surface of the transfer body, so that a flat part can be left (formed) on the surface of the base material, and tab weldability is ensured by the presence of the flat part. Can do.
  • the detailed dent formation method in dent formation process A1 is a method of forming a plurality of dents on the substrate surface by, for example, pressing a plate-like or sheet-like transfer body on which a convex portion is formed together with the substrate. .
  • a known press machine may be used.
  • the method of pressing a base material with a roll press machine provided with the roll (roll-shaped transfer body) which formed the convex part on the roll surface, and a rolling mill may be used.
  • the structure of the transfer body used in the dent forming step A1 is not particularly limited as long as it has a plurality of convex portions, but the particle size as the convex portions on the above-described plate-shaped, sheet-shaped, cylindrical (roll) -shaped objects. Any structure may be used as long as the powder is controlled.
  • the material of the transfer body is not particularly limited, but metal, plastic, paper, and ceramic may be used.
  • each convex portion of the transfer body, the density (number / unit area) of the convex portions, the arrangement pattern of the convex portions, and the like can be appropriately designed and determined.
  • the size (height) of the protrusions corresponds to the average depth of the depressions described above, so that the average depth of the depressions is a predetermined value (0.3 to 3.0 ⁇ m). What is necessary is just to determine a size (height).
  • the size of the protrusions (the area of the protrusions) and the density of the protrusions (number / unit area) correspond to the coverage of the surface of the base material with the above-described conductive material, so the coverage is a predetermined value.
  • the size of the protrusions (the area of the protrusions) and the density of the protrusions (number / unit area) may be determined so as to be (1 to 80%).
  • the dent forming step A1 in the manufacturing method A of the current collector in addition to the above method, after forming the dent by roughening by a physical method such as sandpaper or a chemical method such as etching.
  • a physical method such as sandpaper or a chemical method such as etching.
  • etching a chemical method such as etching.
  • both a depression and a flat part are formed by providing a flat part on the surface of the substrate by performing a slight rolling (light rolling).
  • positioning process A2 is a process of arrange
  • the detailed conductive material arrangement method in the conductive material arrangement step A2 is, for example, a method in which a conductive material is filled in a depression on the surface of the substrate by applying a solution containing the conductive material to the surface of the substrate.
  • a solution containing the conductive material to the surface of the substrate.
  • generally used coating methods such as a bar coater, a roll coater, a gravure coater, a dip coater, and a spray coater can be used. Then, the solution applied other than the depression provided in the substrate immediately after the application is removed.
  • the coating thickness should be as thin as possible, and a sheet-like material made of a material softer than the metal foil immediately after application (preferably polypropylene) (Plastic such as polyethylene, PET, Teflon (registered trademark)) is pressed against the substrate (attached to the apparatus) to remove excess solution.
  • the conductive material contained therein has an average particle diameter of 0.01 to 1 ⁇ m and a conductive material concentration of 0.1 to 10% by mass.
  • the reason why the average particle diameter of the conductive material is set to 1 ⁇ m or less is that the conductive material can be appropriately introduced into the depression formed on the surface of the base material.
  • the average particle size of the conductive material is set to 0.01 ⁇ m or more because if the particle size is too small, the bulk density becomes large, and it becomes difficult to mix the conductive material with the solvent, and it takes too much time to formulate. This is for sex.
  • the average particle size of the conductive material is more preferably 0.05 to 0.6 ⁇ m, and further preferably 0.1 to 0.3 ⁇ m.
  • the concentration of the conductive material is set to 10% by mass or less because it is necessary to remove the excess coating solution adhering to the flat portion of the base material after coating the solution. This is because the area covered with the conductive material can be minimized even if the solution remains in a flat portion other than the depression.
  • the reason why the concentration of the conductive material is 0.1% by mass or more is to ensure the effect of reducing the contact resistance.
  • the concentration of the conductive material is more preferably 0.5 to 8% by mass, and further preferably 1 to 6% by mass.
  • a carbon-based material can be used as the conductive substance used in the conductive substance arranging step A2.
  • natural or artificial crystalline graphite, expanded graphite, artificial graphite, pyrolytic graphite and various carbon blacks can be used. More preferred are various carbon blacks such as acetylene black, ketjen black, and carbon nanotube.
  • various water-based and organic solvent-based solvents such as water, alcohols such as toluene, N-methylpyrrolidone, MEK, and IPA can be used.
  • resins such as a thickener and a fluorine resin generally used as a binder, for example, carboxymethylcellulose, a polyvinylidene fluoride, a styrene butadiene rubber, a polypropylene, polyethylene.
  • the drying step A3 is a step for evaporating the solvent after the coating step.
  • drying may be performed at room temperature, or heat drying using a heat treatment furnace or the like may be performed as necessary.
  • the heating temperature is preferably 100 to 170 ° C., which is a temperature at which the solvent easily evaporates (lower limit reason) and does not decrease the strength of the metal foil (upper limit reason).
  • the drying step A3 may not be provided if the current collector is allowed to stand for a certain period of time after the conductive material disposing step A2 so that the solvent spontaneously evaporates.
  • the drying step A3 or conductive material placement step A2
  • the current collector is pressed (crimping step A4) to improve the adhesion between the conductive material and the substrate, and to improve the contact resistance. Can be reduced.
  • the conductive material remaining in a portion (flat portion) other than the depression on the surface of the base material can be pressure-bonded to the base material.
  • various rolling mills and roll press machines can be used as the crimping method.
  • “crimping” refers to applying a reduction in which the reduction ratio of the base material is substantially 0%, unlike “rolling” in the current collector manufacturing method B described later.
  • the manufacturing method B of the current collector is provided with a recess for introducing a solution containing a conductive material by roughening the surface of a substrate made of a metal foil (depression forming step B1), and the solution containing the conductive material in the recess
  • This is a method of manufacturing a current collector by applying conductive material (conductive material arranging step B2), drying the solution (drying step B3), and rolling (rolling step B4) (FIG. 4). (See (b)).
  • the dent forming step B1 is a step of roughening a base material made of metal foil and forming a dent for introducing a coating solution containing a conductive material.
  • a roughening method in the depression forming step B1 there are a mechanical method and a chemical method.
  • a mechanical method a surface of a base material is roughened using sandpaper, a grindstone, an abrasive, and the like, and a roughened plate or a roughened cylinder (roll) is pressed against a metal foil.
  • the former can be performed manually, and the latter method can be performed by a press, a crimping machine, a rolling mill, or the like.
  • the surface of the substrate can be roughened by etching with a chemical such as NaOH, KOH, or ammonium fluoride.
  • the conductive material arrangement method in the conductive material arrangement step B2 may be performed by applying the solution to the entire surface of the substrate with various coaters such as a bar coater, a roll coater, a gravure coater, a dip coater, and a spray coater. It is not essential to remove excess solution adhering to the surface.
  • the solution used in the conductive material arranging step B2 does not need to be controlled as strictly as the solution used in the conductive material arranging step A2 of the manufacturing method A.
  • the average particle size of the conductive material contained in the solution may be 0.01 to 20 ⁇ m. That's fine.
  • a carbon-based material can be used as the conductive substance used in the conductive substance arranging step B2.
  • natural or artificial crystalline graphite, expanded graphite, artificial graphite, pyrolytic graphite and various carbon blacks can be used.
  • various carbon blacks such as acetylene black, ketjen black, and carbon nanotubes may be mixed with graphite made of natural or artificial crystalline graphite, expanded graphite, artificial graphite, or pyrolytic graphite.
  • the same solvent as that used in the conductive material arrangement step A2 may be used.
  • drying process What is necessary is just to perform drying process B3 by the same method as drying process A3 of the manufacturing method A of an electrical power collector.
  • the current collector is rolled (rolling step B4), so that no conductive material is arranged (or hardly arranged) on the surface of the substrate. A flat surface will be formed. As a result, a current collector is obtained in which the conductive material is coated in an island shape on the substrate surface.
  • the tab weldability can be improved, the adhesion between the conductive material and the base material is improved, and the contact resistance Can be reduced.
  • a known rolling mill may be used for rolling. “Rolling” refers to plastic working in which the base material is deformed by, for example, crushing the convex portions of the base material having irregularities by pressing the base material with a pair of rolls.
  • the conductive material 1b is not layered on the surface of the base material.
  • the entire current collector 1 can be thinned.
  • the thickness of the active material layer 2 laminated on the surface of the current collector 1 is not restricted, and the battery The capacity is not reduced.
  • a sample was prepared by the following method.
  • (Base material) When an Al foil was used as the substrate, a 1000 series Al alloy was used. Moreover, when using Cu foil as a base material, 99.9% or more pure Cu foil was used. Note that a 15 ⁇ m thick Al foil or Cu foil was used for a sample that was not rolled and a sample that was lightly pressed (pressed). In addition, as the sample subjected to rolling, Al foil or Cu foil having different thicknesses was appropriately used so that the thickness after rolling was 15 ⁇ m.
  • Carbon black having an average particle size of 0.03 ⁇ m Carbon black having an average particle size of 0.03 ⁇ m
  • expanded graphite having an average particle size of 6 ⁇ m SEC carbon SNE-6G expanded graphite
  • Sample No. In No. 7 a # 800 sandpaper was affixed to a roller ( ⁇ 75 mm), and the roller was pressed against Cu foil, thereby forming recesses having an average depth shown in Table 1.
  • Sample No. In No. 8 the surface of the Cu foil was roughened by sanding with a # 800 sandpaper.
  • Sample No. In No. 9 the surface of the Cu foil was roughened by sanding with # 800 sandpaper.
  • ⁇ Evaluation method> evaluation of dent depth
  • the depth of the depression formed on the surface of the Al foil or Cu foil is determined by the electric field emission made by Hitachi after processing the sample cross section using a cross section processing apparatus (Cross Section Polisher (CP) SM-09010 made by JEOL).
  • CP Cross Section Polisher
  • FE-SEM scanning electron microscope
  • the coverage of the conductive material (carbon) was determined by photographing the surface of a sample produced using a field emission scanning electron microscope (FE-SEM) SU-70 manufactured by Hitachi, Ltd. at a magnification of 300 times ( The area of the substrate surface covered with the conductive material contained in the 300 ⁇ m square area) was calculated by image processing.
  • FE-SEM field emission scanning electron microscope
  • the Al foil or Cu foil was cut into a size of 15 mm ⁇ 250 mm, and the tensile strength was determined by performing a test at a speed of 5 mm / min with a tensile tester according to JIS B 7721. Since the untreated Al foil had a tensile strength of 200 N / mm 2 , 175 N / mm 2 or more, which is 87.5% or more of the tensile strength, was judged as good ( ⁇ ), and a case where it was smaller than that was judged as poor (x).
  • the tensile strength was calculated from the maximum tensile force and the cross-sectional area of the foil.
  • a battery cell was manufactured using an HS flat cell manufactured by Hosen. This battery cell was subjected to a conditioning charge / discharge treatment for 3 cycles at a current of charge / discharge rate of 0.2C, and then a discharge test was performed at a plurality of current values of 0.2C to 10C. In the discharge curve of each current value obtained by the discharge test, the relationship between the current value and the voltage value when discharging a capacity of 1 mAh was plotted, and the internal resistance was calculated based on the slope of the straight line obtained by plotting. .
  • the same measurement was performed using only the base material, and it was determined that there was an effect of reducing the contact resistance when the contact resistance was reduced compared to the case of only the base material.
  • the contact resistance in the case of only Cu foil which did not perform any surface treatment was 98 m ⁇ ⁇ cm 2 .
  • Evaluation of weldability to Cu foil is made by stacking 10 samples with conductive material (carbon) on both sides of a 15 ⁇ m thick Cu foil, welding under a constant pressure, and welding 8 or more sheets. The test piece was judged as good ( ⁇ ), and the case where only 7 or less pieces were welded was judged as bad (x). For welding, Yokodai. Using a spot welder HSW-02A manufactured by jp, welding was performed at a voltage of 25 V and an energization time of 500 ⁇ sec.
  • Table 1 shows a list of production conditions and characteristic evaluation results of the produced samples.
  • Table 1 numerical values outside the range defined by the present invention and numerical values whose characteristic evaluation does not satisfy the acceptance criteria are underlined.
  • the conductive material was arranged in an island shape on the surface of the Al foil or Cu foil when observed in a 300 ⁇ m square field of view.
  • Sample No. 5 is roughened with a relatively rough sandpaper, but the rolling reduction after the roughening was not sufficient, the average depth of the dent becomes deeper than the average depth defined by the present invention, sufficient The foil strength could not be obtained.
  • the conductive material is arranged in an island shape on the surface of the metal foil as a base material, and the coverage of the conductive material is limited to partially expose the metal foil substrate on the surface of the electrode material. By doing so, it is possible to ensure tab weldability and reduce the contact resistance of the electrode material.
  • the conductive material in the depression formed on the surface of the base material, the contact area between the base material and the conductive material can be increased, and as a result, the adhesion of the conductive material to the base material can be improved. In addition to the improvement, the contact resistance of the electrode material can be further reduced.
  • the electrode material can be made thinner compared to the case where the conductive material is formed in layers on the substrate surface.
  • the amount of the active material layer per unit volume is not greatly limited, and a reduction in battery capacity can be avoided.
  • the electrode and the secondary battery of the present invention by providing the predetermined electrode material, the contact resistance between the electrode material and the active material layer can be reduced, the internal resistance of the battery can be reduced, and the tab It is possible to improve the weldability and reduce the thickness.
  • the method for manufacturing an electrode material according to the present invention by forming a plurality of depressions on the surface of the base material and arranging the conductive material in the depressions, the conductive material can be arranged in an island shape on the surface of the base material. In addition to reducing contact resistance, an electrode material having excellent tab weldability can be produced. According to the method for producing an electrode material according to the present invention, the contact resistance is further increased because the adhesion between the base material and the conductive material is improved by arranging the conductive material in the plurality of depressions formed on the surface of the base material. An electrode material that can be reduced and made thinner can be manufactured.
  • the tab weldability can be improved by rolling the base material after the conductive material arranging step to form a flat portion to which no conductive material is adhered.
  • the adhesion of the conductive material to the substrate can be improved, and the contact resistance can be reduced.
  • Electrode 11 Positive electrode (electrode) 12 Negative electrode (electrode) 13 Separator 14 Electrolyte 20 Lithium ion secondary battery (secondary battery)

Abstract

Provided is an electrode material of excellent tab weldability, and capable of forming thin films of the electrode material, and with which low internal resistance of the cell may be achieved. The electrode material (1) is equipped with a base material (1a) including metal foil, and a conductive substance (1b). The surface of the base material (1a) is constituted by an exposed flat portion and a plurality of depressions (average depth: 0.3 µm-3.0 µm inclusive). The conductive substance (1b), which is disposed in the depressions, is disposed in a staggered pattern on the surface of the base material (1a), and the coverage of the base material (1a) surface by the conductive substance (1b) is 1-80%.

Description

電極材料、電極、二次電池、および電極材料の製造方法Electrode material, electrode, secondary battery, and method for producing electrode material
 本発明は、二次電池の電極に用いられる電極材料、その電極材料を用いた電極、その電極を用いた二次電池、および電極材料の製造方法に関する。 The present invention relates to an electrode material used for an electrode of a secondary battery, an electrode using the electrode material, a secondary battery using the electrode, and a method for manufacturing the electrode material.
 二次電池用電極の基材として用いられるアルミニウム箔や銅箔などの金属箔上に炭素系導電物質を塗布した集電体に関する研究は、これまでも様々な研究機関で行われている。また、特許出願も多数なされており、例えば、特許文献1~特許文献4を挙げることができる。 Research on current collectors in which a carbon-based conductive material is coated on a metal foil such as an aluminum foil or a copper foil used as a base material for secondary battery electrodes has been conducted in various research institutions. Many patent applications have been filed, and examples thereof include Patent Documents 1 to 4.
 特許文献1および特許文献2には、アルミニウム箔や銅箔などの基材の表面に導電物質である炭素微粒子と皮膜形成用化合物とからなる皮膜を形成した集電体が記載されている。また、特許文献3には、炭素粉末(導電物質)と結着剤とからなる導電層を活物質との間に設けた集電体が記載されている。また、特許文献4には、カーボンを導電剤(導電物質)とする導電性塗料層を表面に設けた集電体が記載されている。これらは、集電体とその上に形成される活物質層との間の接触抵抗を低減することで、これらの集電体を用いた電池の内部抵抗を低減し、電池の高速充放電特性、サイクル特性の向上を図ったものである。 Patent Document 1 and Patent Document 2 describe a current collector in which a film made of carbon fine particles as a conductive material and a film-forming compound is formed on the surface of a base material such as an aluminum foil or a copper foil. Patent Document 3 describes a current collector in which a conductive layer made of carbon powder (conductive material) and a binder is provided between an active material. Patent Document 4 describes a current collector in which a conductive coating layer using carbon as a conductive agent (conductive substance) is provided on the surface. By reducing the contact resistance between the current collector and the active material layer formed thereon, the internal resistance of the battery using these current collectors is reduced, and the high-speed charge / discharge characteristics of the battery This is intended to improve the cycle characteristics.
日本国特開2007-226969号公報Japanese Unexamined Patent Publication No. 2007-226969 日本国特開2010-135338号公報Japanese Unexamined Patent Publication No. 2010-135338 日本国特開平9-97625号公報Japanese Unexamined Patent Publication No. 9-97625 日本国特開2001-351612号公報Japanese Unexamined Patent Publication No. 2001-351612
 ここで、図5を参照して、特許文献1~特許文献4に記載された、従来技術における集電体の構成について、まとめて説明する。なお、図5は、従来技術における集電体の構成を説明するための模式的断面図である。図5に示すように、従来技術における集電体3は、金属箔からなる基材3aの表面に導電物質層3bが均一に形成される。すなわち、基材3aの表面全体が導電物質層3bによって被覆されている。 Here, with reference to FIG. 5, the configuration of the current collector in the prior art described in Patent Documents 1 to 4 will be described together. FIG. 5 is a schematic cross-sectional view for explaining the configuration of the current collector in the prior art. As shown in FIG. 5, in the current collector 3 in the prior art, a conductive material layer 3b is uniformly formed on the surface of a base material 3a made of a metal foil. That is, the entire surface of the base material 3a is covered with the conductive material layer 3b.
 図5に示すように、基材3aの表面に導電物質層3bが均一に形成されると、集電体3を用いて電池を作製するために、集電体3と電池の端子とを電気的に接続するための金属製のタブ(不図示)などを集電体3の表面に溶接する際に、導電物質層3bが溶接の障害となって溶接性が悪化するという問題があった。 As shown in FIG. 5, when the conductive material layer 3b is uniformly formed on the surface of the substrate 3a, the current collector 3 and the battery terminals are electrically connected to produce a battery using the current collector 3. When a metal tab (not shown) or the like for connecting to the current collector 3 is welded to the surface of the current collector 3, there is a problem that the conductive material layer 3b becomes an obstacle to welding and weldability deteriorates.
 さらには、基材3aの表面に均一に形成された導電物質層3bは一定の厚みを有するため、このような導電物質層3bを形成された集電体3は全体が厚くなってしまう。このため、集電体3上に活物質層(不図示)を積層してなる電極を電池に用いる場合、同じ体積の電池に収納される集電体3上に形成される活物質層(不図示)の厚さが制限されるという問題があった。 Furthermore, since the conductive material layer 3b uniformly formed on the surface of the substrate 3a has a certain thickness, the current collector 3 on which such a conductive material layer 3b is formed becomes thick as a whole. For this reason, when an electrode formed by laminating an active material layer (not shown) on the current collector 3 is used for a battery, the active material layer (not shown) formed on the current collector 3 accommodated in a battery of the same volume is used. There is a problem that the thickness of the figure is limited.
 本発明は前記した問題に鑑み創案されたものであり、タブ溶接性に優れ、電極材料(集電体)の薄膜化が可能であるとともに、活物質層との間の接触抵抗を下げることで電池の内部抵抗の低抵抗化を実現する電極材料、その電極材料を用いた電極、その電極を用いた二次電池、および電極材料の製造方法を提供することを課題とする。 The present invention was devised in view of the above-described problems, has excellent tab weldability, enables the electrode material (current collector) to be thinned, and lowers the contact resistance with the active material layer. It is an object of the present invention to provide an electrode material that can reduce the internal resistance of a battery, an electrode that uses the electrode material, a secondary battery that uses the electrode, and a method for manufacturing the electrode material.
 前記した課題を解決するために、本発明に係る電極材料は、金属箔を含む基材と、この基材の少なくとも一方の表面に配置された導電物質と、を備える電極材料であって、前記基材の表面は、平坦部と複数の窪みとから構成され、前記窪みの平均深さが0.3μm以上3.0μm以下であり、前記窪みには前記導電物質が配置され、前記平坦部は露出し、300μm四方の視野にて観察した際に、前記導電物質が前記基材の表面に島状に配置されているとともに、前記導電物質による前記基材の表面の被覆率が1~80%であることを特徴とする。 In order to solve the above-described problems, an electrode material according to the present invention is an electrode material comprising a base material including a metal foil, and a conductive substance disposed on at least one surface of the base material, The surface of the substrate is composed of a flat portion and a plurality of depressions, and the average depth of the depressions is 0.3 μm or more and 3.0 μm or less, the conductive material is disposed in the depressions, and the flat portions are When exposed in a 300 μm square field of view, the conductive material is arranged in an island shape on the surface of the substrate, and the coverage of the surface of the substrate by the conductive material is 1 to 80%. It is characterized by being.
 かかる構成によれば、導電物質による金属箔を含む基材の表面の被覆率は80%以下であるため、基材表面の20%を超える部分は導電物質によって被覆されておらず、平坦な金属の素地が露出することとなる。このため、この電極材料を、例えば、リチウムイオン二次電池の電極の集電体として用いる場合であって、集電体と電池の端子と接続するための金属製のタブを溶接する際に、露出した金属の素地に金属製のタブが良好に溶接される。また、導電物質による基材の表面の被覆率を1%以上としたことにより、この電極材料を、例えば、リチウムイオン二次電池の電極の集電体として用いる場合、集電体と、集電体上に積層される活物質層との間の接触抵抗が低減される。
 加えて、基材表面に形成された所定の平均深さの窪みに導電物質を配置することにより、基材と導電物質との接触面積が増大するため、基材に対する導電物質の密着性を向上させるとともに、接触抵抗をさらに低減させることができる。
 さらに、基材表面に形成した窪みに導電物質を配置していることにより、導電物質を基材表面に層状に形成する場合と比較し、電極材料を薄膜化することができる。
According to such a configuration, since the coverage of the surface of the base material including the metal foil with the conductive material is 80% or less, a portion exceeding 20% of the surface of the base material is not covered with the conductive material and is a flat metal. The base of the will be exposed. For this reason, when this electrode material is used as, for example, a current collector of an electrode of a lithium ion secondary battery, and when welding a metal tab for connecting the current collector and the battery terminal, The metal tab is well welded to the exposed metal substrate. Moreover, when the coverage of the surface of the base material with the conductive material is 1% or more, when this electrode material is used as, for example, a current collector of an electrode of a lithium ion secondary battery, a current collector and a current collector Contact resistance with the active material layer laminated on the body is reduced.
In addition, the contact area between the base material and the conductive material is increased by placing the conductive material in a recess with a predetermined average depth formed on the surface of the base material, thus improving the adhesion of the conductive material to the base material. And the contact resistance can be further reduced.
Furthermore, by arranging the conductive material in the depression formed on the substrate surface, the electrode material can be made thinner than in the case where the conductive material is formed in layers on the substrate surface.
 また、本発明に係る電極材料は、前記金属箔が、アルミニウム、アルミニウム合金、銅、または銅合金からなることが好ましい。さらに、本発明に係る電極材料は、前記導電物質が、炭素系材料を含んでいることが好ましい。 In the electrode material according to the present invention, the metal foil is preferably made of aluminum, an aluminum alloy, copper, or a copper alloy. Furthermore, in the electrode material according to the present invention, the conductive material preferably contains a carbon-based material.
 かかる構成によれば、電極材料の金属箔および導電物質が所定の材質から構成されていることから、当該電極材料をリチウムイオン二次電池の電極として好適に適用することができる。 According to such a configuration, since the metal foil and conductive material of the electrode material are made of a predetermined material, the electrode material can be suitably applied as an electrode of a lithium ion secondary battery.
 また、本発明に係る電極は、前記電極材料を備える電極であって、前記電極材料の表面に活物質層が設けられていることを特徴とする。 The electrode according to the present invention is an electrode including the electrode material, and an active material layer is provided on a surface of the electrode material.
 かかる構成によれば、基材表面の複数の窪みに配置された導電物質により、集電体である電極材料と活物質層との間の接触抵抗が低抵抗化される。また、タブ溶接性を向上させ、薄膜化することが可能となる。 According to such a configuration, the contact resistance between the electrode material that is the current collector and the active material layer is reduced by the conductive material disposed in the plurality of depressions on the surface of the base material. In addition, the tab weldability can be improved and the film thickness can be reduced.
 また、本発明に係る二次電池は、正電極と負電極とを備える二次電池であって、前記正電極および前記負電極のうち少なくとも一方が、前記電極であることを特徴とする。 The secondary battery according to the present invention is a secondary battery including a positive electrode and a negative electrode, and at least one of the positive electrode and the negative electrode is the electrode.
 かかる構成によれば、二次電池の電極は、集電体である電極材料と活物質層との間の接触抵抗が低抵抗化されているため、二次電池として、その内部抵抗が低抵抗化される。また、タブ溶接性を向上させ、薄膜化することが可能となる。 According to such a configuration, since the contact resistance between the electrode material that is the current collector and the active material layer is reduced, the secondary battery has an internal resistance that is low as the secondary battery. It becomes. In addition, the tab weldability can be improved and the film thickness can be reduced.
 また、本発明に係る電極材料の製造方法は、前記電極材料の製造方法であって、前記基材の表面に複数の前記窪みを形成する窪み形成工程と、形成された前記窪みに前記導電物質を配置する導電物質配置工程と、を含むことを特徴とする。 The method for producing an electrode material according to the present invention is a method for producing the electrode material, the step of forming a plurality of depressions on the surface of the base material, and the conductive material in the formed depressions. And a conductive material disposing step of disposing a conductive material.
 かかる製造方法によれば、窪み形成工程により、基材の表面に複数の窪みを形成させることができ、導電物質配置工程により、基材の表面に形成させた窪みに導電物質を配置することができる。その結果、前記のような電極材料を製造することができる。 According to this manufacturing method, a plurality of depressions can be formed on the surface of the substrate by the depression formation step, and the conductive substance can be arranged in the depression formed on the surface of the substrate by the conductive substance arrangement step. it can. As a result, the electrode material as described above can be manufactured.
 また、本発明に係る電極材料の製造方法は、前記窪み形成工程が、複数の凸部を有する転写体を前記基材に押し当てることによって、前記基材の表面に複数の前記窪みを形成する工程であることが好ましい。 Further, in the method for producing an electrode material according to the present invention, the depression forming step forms a plurality of depressions on the surface of the substrate by pressing a transfer body having a plurality of convex portions against the substrate. It is preferable that it is a process.
 かかる製造方法によれば、複数の凸部を有する転写体を前記基材に押し当てることによって、前記基材の表面に複数の前記窪みを適切に形成し、当該窪みに導電物質を配置させることにより、前記のような電極材料を製造することができる。 According to this manufacturing method, by pressing a transfer body having a plurality of convex portions against the substrate, the plurality of depressions are appropriately formed on the surface of the substrate, and a conductive material is disposed in the depressions. Thus, the electrode material as described above can be manufactured.
 また、本発明に係る電極材料の製造方法は、前記導電物質配置工程の後に、前記窪みに前記導電物質が配置された前記基材をプレスすることにより、前記導電物質を前記窪みに圧着させる圧着工程を、さらに含むことが好ましい。 Further, the electrode material manufacturing method according to the present invention is a pressure bonding method in which the conductive material is pressed into the depression by pressing the base material on which the conductive substance is arranged in the depression after the conductive substance arranging step. It is preferable to further include a step.
 かかる製造方法によれば、導電物質配置工程の後に、導電物質を窪みに圧着させる圧着工程を施すことにより、基材に対する導電物質の密着性をさらに向上させるとともに、接触抵抗をさらに低減させることができる。 According to such a manufacturing method, the adhesion of the conductive material to the substrate can be further improved and the contact resistance can be further reduced by performing a crimping step of crimping the conductive material to the recess after the conductive material arranging step. it can.
 また、本発明に係る電極材料の製造方法は、前記窪み形成工程が、前記基材の表面を粗面化することによって、前記基材の表面に複数の前記窪みを形成する工程であり、前記導電物質配置工程の後に、前記窪みに前記導電物質が配置された前記基材を圧延することにより前記平坦部を形成する圧延工程を、さらに含むことが好ましい。 Further, in the method for producing an electrode material according to the present invention, the depression forming step is a step of forming a plurality of depressions on a surface of the base material by roughening a surface of the base material, It is preferable that the method further includes a rolling step of forming the flat portion by rolling the base material on which the conductive material is placed in the depression after the conductive material placement step.
 かかる製造方法によれば、基材の表面を粗面化することによって、基材の表面に複数の窪みを形成させ、当該窪みに導電物質を配置させる。その後、圧延工程を施すことにより、基材表面に、導電物質の付着していない平坦部を形成することで、タブ溶接性を向上させることができるとともに、基材に対する導電物質の密着性を向上させ、接触抵抗を低減させることができる。 According to this manufacturing method, by roughening the surface of the base material, a plurality of depressions are formed on the surface of the base material, and the conductive material is disposed in the depressions. Then, by performing a rolling process, it is possible to improve the tab weldability by forming a flat portion to which the conductive material is not attached on the surface of the base material, and improve the adhesion of the conductive material to the base material. And contact resistance can be reduced.
 本発明に係る電極材料によれば、導電物質を基材である金属箔の表面に島状に配置し、導電物質の被覆率を制限して金属箔の素地を電極材料の表面に一部露出させたことにより、タブ溶接性の確保、電極材料の接触抵抗の低減を図ることができる。
 加えて、基材表面に形成した窪みに導電物質を配置していることにより、基材と導電物質との接触面積の増大を図ることができ、その結果、基材に対する導電物質の密着性を向上させるとともに電極材料の接触抵抗をさらに低減させることができる。
According to the electrode material according to the present invention, the conductive material is arranged in an island shape on the surface of the metal foil as a base material, and the coverage of the conductive material is limited to partially expose the metal foil substrate on the surface of the electrode material. By doing so, it is possible to ensure tab weldability and reduce the contact resistance of the electrode material.
In addition, by arranging the conductive material in the depression formed on the surface of the base material, the contact area between the base material and the conductive material can be increased, and as a result, the adhesion of the conductive material to the base material can be improved. In addition to the improvement, the contact resistance of the electrode material can be further reduced.
 さらに、基材表面に形成した窪みに導電物質を配置していることにより、導電物質を基材表面に層状に形成する場合と比較し、電極材料の薄膜化を図ることができ、その結果、単位体積あたりの活物質層の量が大きく制限されず、電池の容量の低下を回避することができる。 Furthermore, by arranging the conductive material in the recess formed on the surface of the substrate, the electrode material can be made thinner compared to the case where the conductive material is formed in layers on the surface of the substrate, and as a result, The amount of the active material layer per unit volume is not greatly limited, and a reduction in battery capacity can be avoided.
 本発明に係る電極および二次電池によれば、所定の電極材料を備えることにより、電極材料と活物質層との間の接触抵抗を低減、電池の内部抵抗を低減することができるとともに、タブ溶接性を向上させ、薄膜化することが可能となる。 According to the electrode and the secondary battery of the present invention, by providing the predetermined electrode material, the contact resistance between the electrode material and the active material layer can be reduced, the internal resistance of the battery can be reduced, and the tab It is possible to improve the weldability and reduce the thickness.
 本発明に係る電極材料の製造方法によれば、基材表面に複数の窪みを形成し、当該窪みに導電物質を配置することで、基材表面に導電物質を島状に配置することができ、接触抵抗が低減するとともに、タブ溶接性に優れた電極材料を製造することができる。 According to the method for manufacturing an electrode material according to the present invention, by forming a plurality of depressions on the surface of the base material and arranging the conductive material in the depressions, the conductive material can be arranged in an island shape on the surface of the base material. In addition to reducing contact resistance, an electrode material having excellent tab weldability can be produced.
 本発明に係る電極材料の製造方法によれば、基材表面に形成された複数の窪みに導電物質を配置することより、基材と導電物質との密着性が向上するため、接触抵抗がさらに低減するとともに薄膜化が可能な電極材料を製造することができる。 According to the method for producing an electrode material according to the present invention, the contact resistance is further increased because the adhesion between the base material and the conductive material is improved by arranging the conductive material in the plurality of depressions formed on the surface of the base material. An electrode material that can be reduced and made thinner can be manufactured.
 本発明に係る電極材料の製造方法によれば、導電物質配置工程の後に基材を圧延することにより、導電物質の付着していない平坦部を形成することで、タブ溶接性を向上させることができるとともに、基材に対する導電物質の密着性が向上し、接触抵抗を低減させることができる。 According to the method for producing an electrode material according to the present invention, the tab weldability can be improved by rolling the base material after the conductive material arranging step to form a flat portion to which no conductive material is adhered. In addition, the adhesion of the conductive material to the substrate can be improved, and the contact resistance can be reduced.
図1(a)及び(b)は、本発明に係る集電体の構造を説明するための模式的断面図であって、図1(a)は集電体の製造方法Aで圧着工程を施さずに製造した集電体の模式的断面図、図1(b)は集電体の製造工程Aで圧着工程を施し製造した集電体、または集電体の製造工程Bで製造した集電体の模式的断面図である。1A and 1B are schematic cross-sectional views for explaining the structure of a current collector according to the present invention, and FIG. FIG. 1B is a schematic cross-sectional view of a current collector manufactured without application, and FIG. 1B is a current collector manufactured by applying a crimping process in the current collector manufacturing process A, or a current collector manufactured in current collector manufacturing process B It is a typical sectional view of an electric body. 図2は、本発明に係る集電体を用いた電極の構造を説明するための模式的断面図である。FIG. 2 is a schematic cross-sectional view for explaining the structure of an electrode using the current collector according to the present invention. 図3は、本発明に係る電極を用いた二次電池の構造を説明するための模式的断面図である。FIG. 3 is a schematic cross-sectional view for explaining the structure of a secondary battery using the electrode according to the present invention. 図4(a)及び(b)は、本発明に係る集電体の製造方法を示すフローチャートであって、図4(a)は集電体の製造方法Aを示すフローチャート、図4(b)は集電体の製造方法Bを示すフローチャートである。4 (a) and 4 (b) are flowcharts showing a method for manufacturing a current collector according to the present invention, FIG. 4 (a) is a flowchart showing a method A for manufacturing a current collector, and FIG. 4 (b). These are the flowcharts which show the manufacturing method B of an electrical power collector. 図5は、従来技術に係る集電体の構造を説明するための模式的断面図である。FIG. 5 is a schematic cross-sectional view for explaining the structure of a current collector according to the prior art.
 以下、本発明に係る電極材料(以下、適宜、集電体という)の実施の形態について、詳細に説明する。
 [集電体の構造]
 本実施形態に係る集電体の構造について、図1を参照して説明する。
 本実施形態に係る集電体1は、金属箔からなる基材1aと、基材1aの表面に島状に配置された導電物質1bとからなる。また、導電物質1bは、図1に示すように片面のみに配置されていてもよいし、基材1aの両面に配置されていてもよい。
 なお、本実施形態に係る集電体1は、例えば、リチウムイオン二次電池の電極の集電体として好適に用いることができる。集電体1を用いた電極および二次電池については、後記する。
Hereinafter, embodiments of an electrode material according to the present invention (hereinafter, appropriately referred to as a current collector) will be described in detail.
[Current collector structure]
The structure of the current collector according to this embodiment will be described with reference to FIG.
The current collector 1 according to this embodiment includes a base material 1a made of a metal foil and a conductive material 1b arranged in an island shape on the surface of the base material 1a. Moreover, the conductive material 1b may be arrange | positioned only on one side, as shown in FIG. 1, and may be arrange | positioned on both surfaces of the base material 1a.
Note that the current collector 1 according to the present embodiment can be suitably used as, for example, a current collector of an electrode of a lithium ion secondary battery. The electrode and the secondary battery using the current collector 1 will be described later.
 集電体1は、300μm四方の視野で観察した際に、基材1aの表面に導電物質1bが島状に配置された構造とすることで、集電体1を電池の電極として用いる場合に、集電体1と電池の端子とを電気的に接続する金属製のタブ(不図示)を溶接する際の、タブ溶接性を向上させることができる。また、基材1aの表面に島状に配置された導電物質1bにより、集電体1と、集電体1の表面に積層される活物質層(図2参照)との間の接触抵抗を低減させることができる。
 なお、本願明細書において、「島状」とは、基材1aの表面の少なくとも一部が導電物質1bによって被覆されずに露出するように導電物質1bが配置されている状態をいう。例えば、図1(a)、(b)に示すように、複数の窪みに充填された導電物質1bが互いに孤立して配置されてもよく、凝集体同士が接合して網目状に配置されていてもよいものとする。
When the current collector 1 is used as an electrode of a battery, the current collector 1 has a structure in which the conductive material 1b is arranged in an island shape on the surface of the base 1a when observed in a 300 μm square field of view. The tab weldability when welding a metal tab (not shown) that electrically connects the current collector 1 and the battery terminal can be improved. Further, the contact resistance between the current collector 1 and the active material layer (see FIG. 2) laminated on the surface of the current collector 1 is reduced by the conductive material 1b arranged in an island shape on the surface of the substrate 1a. Can be reduced.
In the present specification, “island shape” refers to a state in which the conductive material 1b is arranged such that at least a part of the surface of the substrate 1a is exposed without being covered with the conductive material 1b. For example, as shown in FIGS. 1 (a) and 1 (b), conductive materials 1b filled in a plurality of depressions may be arranged isolated from each other, and aggregates are joined and arranged in a mesh shape. It may be.
 (基材)
 基材1aは、図1に示すように、表面が平坦部と複数の窪みとから構成される。
 そして、この窪みの平均深さは、0.3~3.0μm(好ましくは0.4~2.7μm、より好ましくは0.5~2.3μm)である。窪みの平均深さを0.3μm以上とすることで、後記の圧着工程A4を行わない場合であっても、基材1aに対する導電物質1bの密着性を確保することができる。一方、窪みの平均深さを3.0μm以下とすることで、基材1a(金属箔)の強度の低下を防止し、電極を製造する段階での基材1aの破断等を回避することができるからである。
 また、窪みに配置される導電物質1bが上述した島状となるように、窪みは、300μm四方の視野で観察した際に、複数設けられた構成となっている。
(Base material)
As shown in FIG. 1, the substrate 1 a has a flat surface and a plurality of depressions.
The average depth of the depression is 0.3 to 3.0 μm (preferably 0.4 to 2.7 μm, more preferably 0.5 to 2.3 μm). By setting the average depth of the recesses to 0.3 μm or more, the adhesion of the conductive material 1b to the base material 1a can be ensured even when the later-described press-bonding step A4 is not performed. On the other hand, by setting the average depth of the depressions to 3.0 μm or less, it is possible to prevent the strength of the base material 1a (metal foil) from being lowered and to avoid breakage of the base material 1a at the stage of manufacturing the electrode. Because it can.
Further, a plurality of depressions are provided when observed in a 300 μm square field of view so that the conductive material 1b disposed in the depression has the above-described island shape.
 基材1aは、二次電池用の電極材料として一般的に用いられるアルミニウム(Al)や銅(Cu)などの金属を用いることができる。
 基材1aを二次電池用電極材料として使用する際は、基材1aは一般的に厚さが5~50μm程度の箔状で使用される。なお、本実施形態に係る集電体の製造方法において、後記の圧延工程B4を実施する場合は、当該圧延工程B4の圧下率を考慮した厚さの基材1aを用いればよい。
 基材1aは特定の組成のAlやCuなどに限定されるものではなく、電極に用いられる場合に、その電極の使用環境に適した各種の純金属やその合金を用いることができる。好ましい例としては、アルミニウム、アルミニウム合金、銅、銅合金が挙げられる。
The base material 1a can use metals, such as aluminum (Al) and copper (Cu), which are generally used as electrode materials for secondary batteries.
When the substrate 1a is used as a secondary battery electrode material, the substrate 1a is generally used in the form of a foil having a thickness of about 5 to 50 μm. In addition, in the manufacturing method of the electrical power collector which concerns on this embodiment, what is necessary is just to use the base material 1a of the thickness which considered the rolling reduction ratio of the said rolling process B4 when implementing the rolling process B4 mentioned later.
The substrate 1a is not limited to Al or Cu having a specific composition, and when used for an electrode, various pure metals and alloys thereof suitable for the use environment of the electrode can be used. Preferable examples include aluminum, aluminum alloy, copper, and copper alloy.
 (導電物質)
 導電物質1bは、集電体1と活物質層2(図2参照)との間の接触抵抗を低減させるものであり、図1(a)、(b)に示すように、基材1aの表面に形成される窪みに配置されているとともに、基材1aの表面に島状に配置される。
 ここで、導電物質1bが基材1aの窪みに配置されている状態とは、図1(a)、(b)に示すように、導電物質1bが窪みに充填されている状態であり、導電物質1bが窪みから突出していてもよく(図1(a)参照)、圧延や圧着を施すことで、導電物質1bが基材1aの平坦面に対し面一になっていてもよい(図1(b)参照)。
 なお、導電物質1bは、基本的に基材1aの表面の平坦部に配置されておらず、基材1aの平坦部は露出している。ただし、平坦部は全領域が完全に露出している必要はなく、後記の被覆率を満たす範囲で導電物質1bが平坦部の一部に配置されていてもよい。
(Conductive material)
The conductive material 1b reduces the contact resistance between the current collector 1 and the active material layer 2 (see FIG. 2). As shown in FIGS. 1 (a) and 1 (b), the conductive material 1b It arrange | positions at the hollow formed in the surface, and is arrange | positioned at the surface of the base material 1a at island shape.
Here, the state in which the conductive material 1b is disposed in the depression of the base material 1a is a state in which the depression is filled with the conductive substance 1b as shown in FIGS. 1 (a) and 1 (b). The substance 1b may protrude from the depression (see FIG. 1A), and the conductive substance 1b may be flush with the flat surface of the substrate 1a by performing rolling or pressure bonding (FIG. 1). (See (b)).
Note that the conductive material 1b is basically not disposed on the flat portion of the surface of the substrate 1a, and the flat portion of the substrate 1a is exposed. However, it is not necessary that the entire area of the flat portion is completely exposed, and the conductive material 1b may be disposed in a part of the flat portion as long as the coverage described later is satisfied.
 導電物質1bは、基材1aの窪みに配置されることにより、基材1aに対する導電物質1bの接触面積を増大させることができるため、基材1aに対する導電物質1bの密着性を向上させるとともに接触抵抗を低減させることができる。また、導電物質1bは、基材1aの窪みに積極的に充填されているので、導電物質1bが基材1a表面から突出する量を抑えることができ、集電体1が厚くなるのを回避することができる。 Since the conductive material 1b can increase the contact area of the conductive material 1b with respect to the base material 1a by being disposed in the depression of the base material 1a, it improves the adhesion of the conductive material 1b to the base material 1a and is in contact with the base material 1a. Resistance can be reduced. Further, since the conductive material 1b is positively filled in the recess of the base material 1a, the amount of the conductive material 1b protruding from the surface of the base material 1a can be suppressed, and the current collector 1 is prevented from becoming thick. can do.
 導電物質1bによる基材1aの表面の被覆率は、300μm四方、すなわち1辺300μmの略正方形の視野で観察した際に、1~80%(被覆面積/観察視野面積×100)である。
 導電物質1bによる被覆率が1%以上であると、二次電池の電極として用いる場合において、導電物質1bが配置されないAl箔のみのものと比較して、集電体1と、集電体1の表面に積層される活物質層2(図2参照)との間の接触抵抗を低減することができる。また、基材1aの表面の導電物質1bによる被覆率を80%以下とすることで、良好なタブ溶接性を確保することができる。上記被覆率は、7~70%であることが好ましく、15~60%であることがより好ましい。
The coverage of the surface of the substrate 1a with the conductive material 1b is 1 to 80% (covered area / observed visual field area × 100) when observed in a substantially square field of view of 300 μm square, that is, 300 μm on a side.
When the coverage by the conductive material 1b is 1% or more, when used as an electrode of a secondary battery, the current collector 1 and the current collector 1 are compared with those of only an Al foil in which the conductive material 1b is not disposed. The contact resistance with the active material layer 2 (see FIG. 2) laminated on the surface of the substrate can be reduced. Moreover, favorable tab weldability is securable by making the coverage with the electroconductive substance 1b on the surface of the base material 1a 80% or less. The coverage is preferably 7 to 70%, more preferably 15 to 60%.
 導電物質1bは、少なくとも前記した観察面積の単位で均等に基材1aの表面に配置されることが好ましい。十分小さい面積の領域内で導電物質1bが島状となるように配置したため、実用上均一な接触抵抗およびタブ溶接性が得られる。 It is preferable that the conductive material 1b is evenly arranged on the surface of the substrate 1a at least in the unit of the observation area described above. Since the conductive material 1b is arranged in an island shape within a sufficiently small area, practically uniform contact resistance and tab weldability can be obtained.
 ここで、基材1aの導電物質1bによる表面の被覆率は、例えば、SEM(走査型電子顕微鏡)を用いて、作製した試料の表面を撮影し、撮影した視野中に含まれる炭素等の導電物質1bによる基材表面の被覆面積を画像処理により算出して求めることができる。 Here, the coverage of the surface of the base material 1a with the conductive material 1b is obtained by, for example, photographing the surface of the prepared sample using an SEM (scanning electron microscope) and conducting the carbon or the like contained in the photographed field of view. The area of the substrate surface covered with the substance 1b can be calculated and obtained by image processing.
 導電物質1bとしては、炭素系材料を含んで構成されるものを用いることができる。炭素系の導電材料(炭素系材料)としては、天然または人造の結晶性グラファイト、膨張化黒鉛、人造黒鉛、熱分解黒鉛または各種のカーボンブラック或いはこれらの混合物を用いることができる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ等が挙げられる。そして、導電物質1bの平均粒径は、0.01~20μm、好ましくは、0.01~1μmである。
 なお、導電物質1bとしては、炭素系材料から構成されるものであることが好ましいが、炭素系材料を10質量%以上含んで構成されていればよく、後記する導電物質配置工程A2、B2で用いるバインダーが含まれてもよい。
As the conductive material 1b, a material including a carbon-based material can be used. As the carbon-based conductive material (carbon-based material), natural or artificial crystalline graphite, expanded graphite, artificial graphite, pyrolytic graphite, various carbon blacks, or a mixture thereof can be used. Examples of carbon black include acetylene black, ketjen black, and carbon nanotube. The average particle size of the conductive material 1b is 0.01 to 20 μm, preferably 0.01 to 1 μm.
The conductive material 1b is preferably composed of a carbon-based material, but may be configured to include 10% by mass or more of the carbon-based material. In the conductive material arranging steps A2 and B2 described later, The binder used may be included.
 [電極]
 次に、図2を参照して、本実施形態に係る集電体1を用いたリチウムイオン二次電池の電極の構成について説明する。
[electrode]
Next, with reference to FIG. 2, the structure of the electrode of the lithium ion secondary battery using the current collector 1 according to this embodiment will be described.
 図2に示した電極10は、本実施形態に係る集電体1と、集電体1の表面に積層された活物質層2とから構成される。なお、図2では、集電体1の片面にのみ活物質層2を積層させているが、基材1aの両面に導電物質1bを配置した集電体1の両面に活物質層2を積層させてもよい。
 リチウムイオン二次電池の正電極を構成する場合は、集電体1の基材1aとしては、AlやAl合金等の金属を用いることができる。また、正極活物質としては、公知の材料、例えば、LiCoO、LiNiO、LiMn等のリチウム含有酸化物を使用することができる。正極の活物質層2の製造方法も特に限定されるものではなく、公知の方法、例えば、粉末状の前記したリチウム含有酸化物に、バインダーの他、必要に応じて導電材、溶剤等を添加して十分混練した後、集電体1に塗布し、乾燥し、プレスして製造することができる。
An electrode 10 shown in FIG. 2 includes a current collector 1 according to this embodiment and an active material layer 2 laminated on the surface of the current collector 1. In FIG. 2, the active material layer 2 is laminated only on one side of the current collector 1, but the active material layer 2 is laminated on both sides of the current collector 1 in which the conductive material 1b is arranged on both sides of the base material 1a. You may let them.
When the positive electrode of the lithium ion secondary battery is configured, a metal such as Al or an Al alloy can be used as the base material 1a of the current collector 1. As the positive electrode active material, a known material, for example, it can be used LiCoO 2, LiNiO 2, lithium-containing oxides such as LiMn 2 O 4. The method for producing the positive electrode active material layer 2 is not particularly limited, and a known method, for example, a powdery lithium-containing oxide is added with a conductive material, a solvent, etc., if necessary, in addition to a binder. Then, after sufficiently kneaded, it can be applied to the current collector 1, dried and pressed.
 また、リチウムイオン二次電池の負電極を構成する場合は、集電体1の基材1aとしては、Cu、Cu合金、ニッケル(Ni)、Ni合金、ステンレス等の金属を用いることができる。また、負極活物質としては、例えば、黒鉛系炭素材料を用いることができ、正電極の活物質層2の製造方法と同様にして、製造することができる。 Further, when constituting the negative electrode of the lithium ion secondary battery, the base material 1a of the current collector 1 can be a metal such as Cu, Cu alloy, nickel (Ni), Ni alloy, and stainless steel. Moreover, as a negative electrode active material, a graphite-type carbon material can be used, for example, and it can manufacture like the manufacturing method of the active material layer 2 of a positive electrode.
 [二次電池]
 次に、図3を参照(適宜図2参照)して、本実施形態に係る集電体1を備えた電極10を用いたリチウムイオン二次電池20の構成について説明する。
[Secondary battery]
Next, the configuration of the lithium ion secondary battery 20 using the electrode 10 provided with the current collector 1 according to this embodiment will be described with reference to FIG.
 図3に示したリチウムイオン二次電池(二次電池)20は、本実施形態に係る集電体1を使用した電極10である正電極11および負電極12と、セパレータ13と、電解液14とを含んで構成される。正電極11と負電極12とは、セパレータ13によって分離されており、正電極11および負電極12とセパレータ13との間は、電解液14が充填されている。また、リチウムイオン二次電池20の全体は容器(不図示)に収納され、正電極11および負電極12は、それぞれ金属製のタブ(不図示)が溶接され、電極端子(不図示)と電気的に接続される。 A lithium ion secondary battery (secondary battery) 20 shown in FIG. 3 includes a positive electrode 11 and a negative electrode 12, which are electrodes 10 using the current collector 1 according to the present embodiment, a separator 13, and an electrolytic solution 14. It is comprised including. The positive electrode 11 and the negative electrode 12 are separated by a separator 13, and the electrolyte solution 14 is filled between the positive electrode 11 and the negative electrode 12 and the separator 13. Further, the entire lithium ion secondary battery 20 is housed in a container (not shown), and the positive electrode 11 and the negative electrode 12 are each welded with a metal tab (not shown) to be electrically connected to an electrode terminal (not shown). Connected.
 正電極11および負電極12は、本実施形態に係る集電体1の表面に、それぞれ前記した正極活物質および負極活物質を含む活物質層2が形成されている。
 また、セパレータ13および電解液14は、それぞれ公知の材料を用いて構成することができる。セパレータ13としては、例えば、厚さ20~30μmのポリエチレン系のマイクロポーラスフィルムを用いることができる。また、電解液14としては、例えば、プロピレンカーボネート、エチレンカーボネートなどの有機溶剤にLiPF、LiBFなどの電解質を溶かした非水系電解液を用いることができる。
As for the positive electrode 11 and the negative electrode 12, the active material layer 2 containing the above-mentioned positive electrode active material and negative electrode active material is formed on the surface of the current collector 1 according to this embodiment, respectively.
Moreover, the separator 13 and the electrolyte solution 14 can each be comprised using a well-known material. As the separator 13, for example, a polyethylene microporous film having a thickness of 20 to 30 μm can be used. In addition, as the electrolytic solution 14, for example, a non-aqueous electrolytic solution in which an electrolyte such as LiPF 6 or LiBF 4 is dissolved in an organic solvent such as propylene carbonate or ethylene carbonate can be used.
 次に、本実施形態に係る集電体の製造方法について説明する。
 [製造方法]
 金属箔からなる基材の表面に、導電物質が島状に配置された構造の集電体を作製するには、いくつかの製造方法を挙げることができる。これらの製造方法について、図4(a)~(b)を参照して、順に説明する。
Next, a method for manufacturing a current collector according to this embodiment will be described.
[Production method]
In order to produce a current collector having a structure in which conductive materials are arranged in an island shape on the surface of a base material made of metal foil, several production methods can be mentioned. These manufacturing methods will be described in order with reference to FIGS. 4 (a) to 4 (b).
 <集電体の製造方法A>
 集電体の製造方法Aは、金属箔からなる基材の表面に複数の窪みを設け(窪み形成工程A1)、その窪みに導電物質を含む溶液を塗布することで導電物質を配置し(導電物質配置工程A2)、溶液を乾燥すること(乾燥工程A3)により集電体を製造する方法である(図4(a)参照)。
 また、必要に応じて集電体に圧着を行うことで(圧着工程A4)、さらなる密着性の向上や接触抵抗の低減を図ることができる。
<Current collector manufacturing method A>
In the current collector manufacturing method A, a plurality of indentations are provided on the surface of a base material made of metal foil (indentation forming step A1), and a conductive material is disposed by applying a solution containing an electrically conductive material in the indentations (conductivity). This is a method of manufacturing a current collector by drying the solution (substance placement step A2) (drying step A3) (see FIG. 4A).
Moreover, by further crimping the current collector as necessary (crimping step A4), it is possible to further improve the adhesion and reduce the contact resistance.
 (窪み形成工程)
 窪み形成工程A1とは、基材の表面に窪みを形成する工程であり、集電体の製造方法Aの場合、あらかじめ用意した複数の凸部を有する転写体を基材の表面に押し当てる(転写する)ことで、基材の表面に複数の窪みを形成する工程である。
 なお、転写体の表面には凸部以外に平坦な部分が存在することにより、基材表面に平坦部を残す(形成する)ことができ、この平坦部の存在によりタブ溶接性を確保することができる。
(Dent formation process)
The dent forming step A1 is a step of forming a dent on the surface of the substrate. In the case of the current collector manufacturing method A, a transfer body having a plurality of projections prepared in advance is pressed against the surface of the substrate ( This is a step of forming a plurality of depressions on the surface of the base material.
In addition, a flat part other than the convex part exists on the surface of the transfer body, so that a flat part can be left (formed) on the surface of the base material, and tab weldability is ensured by the presence of the flat part. Can do.
 窪み形成工程A1における詳細な窪み形成方法は、例えば、凸部を形成した板状またはシート状の転写体を基材とともにプレスすることにより、基材表面に複数の窪みを形成するという方法である。ここでのプレスについては、公知のプレス機を用いればよい。
 また、ロール表面に凸部を形成したロール(ロール状の転写体)を備えるロールプレス機や圧延機により基材をプレスするといった方法でもよい。
The detailed dent formation method in dent formation process A1 is a method of forming a plurality of dents on the substrate surface by, for example, pressing a plate-like or sheet-like transfer body on which a convex portion is formed together with the substrate. . About the press here, a known press machine may be used.
Moreover, the method of pressing a base material with a roll press machine provided with the roll (roll-shaped transfer body) which formed the convex part on the roll surface, and a rolling mill may be used.
 窪み形成工程A1において用いる転写体の構造については、複数の凸部を有するものであれば特に限定されないが、前記した板形状、シート形状、円柱(ロール)形状の物体に、凸部として粒径を制御した粉体を固着させた構造であればよい。そして、転写体の材質についても、特に限定されないが、金属、プラスチック、紙、セラミックを用いればよい。 The structure of the transfer body used in the dent forming step A1 is not particularly limited as long as it has a plurality of convex portions, but the particle size as the convex portions on the above-described plate-shaped, sheet-shaped, cylindrical (roll) -shaped objects. Any structure may be used as long as the powder is controlled. The material of the transfer body is not particularly limited, but metal, plastic, paper, and ceramic may be used.
 転写体の各凸部のサイズ、凸部の密度(個数/単位面積)、凸部の配置パターン等は適宜設計し決定することができる。
 なお、凸部のサイズ(高さ)については、前記した窪みの平均深さと対応することから、窪みの平均深さが所定値(0.3~3.0μm)となるように、凸部のサイズ(高さ)を決定すればよい。また、凸部のサイズ(凸部の面積)、および凸部の密度(個数/単位面積)については、前記した導電物質による基材の表面の被覆率と対応することから、被覆率が所定値(1~80%)となるように、凸部のサイズ(凸部の面積)、および凸部の密度(個数/単位面積)を決定すればよい。
The size of each convex portion of the transfer body, the density (number / unit area) of the convex portions, the arrangement pattern of the convex portions, and the like can be appropriately designed and determined.
Note that the size (height) of the protrusions corresponds to the average depth of the depressions described above, so that the average depth of the depressions is a predetermined value (0.3 to 3.0 μm). What is necessary is just to determine a size (height). Further, the size of the protrusions (the area of the protrusions) and the density of the protrusions (number / unit area) correspond to the coverage of the surface of the base material with the above-described conductive material, so the coverage is a predetermined value. The size of the protrusions (the area of the protrusions) and the density of the protrusions (number / unit area) may be determined so as to be (1 to 80%).
 集電体の製造方法Aにおける窪み形成工程A1としては、前記方法以外にも、サンドペーパーなどの物理的方法、或いはエッチングなどの化学的で方法で粗面化することにより窪みを形成させた後、若干の圧延(軽圧下圧延)を施すことにより基材表面に平坦部を設けることで、窪みと平坦部との両方を形成させるという方法も存在する。 As the dent forming step A1 in the manufacturing method A of the current collector, in addition to the above method, after forming the dent by roughening by a physical method such as sandpaper or a chemical method such as etching. There is also a method in which both a depression and a flat part are formed by providing a flat part on the surface of the substrate by performing a slight rolling (light rolling).
 (導電物質配置工程)
 導電物質配置工程A2は、窪み形成工程A1において形成した基材の表面の窪みに、導電物質を配置する工程である。
(Conductive substance placement process)
Conductive substance arrangement | positioning process A2 is a process of arrange | positioning a conductive substance in the hollow of the surface of the base material formed in hollow formation process A1.
 導電物質配置工程A2における詳細な導電物質配置方法は、例えば、導電物質を含む溶液を基材表面に塗布することにより、基材の表面の窪みに導電物質を充填するという方法である。
 ここで、導電物質を含む溶液の基材表面への塗布には、一般に用いられているバーコーター、ロールコーター、グラビアコーター、ディップコーター、スプレーコーターなど各種コータによる塗布方法を用いることができる。そして、塗布直後に基材に設けた窪み以外に塗布された溶液を取り除く。例えば、バーコーターで溶液を塗布した場合は、塗布直後に鏡面仕上げした金属棒(SUS等)を用い、再度バーコーターをおこなう要領で、余分な溶液を取り除く。また、グラビアコーターなどのロールtoロール設備を用いて溶液を塗付する場合は、塗布厚をできるだけ薄くするとともに、塗布直後に金属箔より硬度が柔らかい材料でできたシート状の材料(好ましくはポリプロピレン、ポリエチレン、PET、テフロン(登録商標)等のプラスチック)を、基材に押し当て(装置に取り付けて)、余分な溶液を取り除く。
The detailed conductive material arrangement method in the conductive material arrangement step A2 is, for example, a method in which a conductive material is filled in a depression on the surface of the substrate by applying a solution containing the conductive material to the surface of the substrate.
Here, in order to apply the solution containing the conductive material to the surface of the substrate, generally used coating methods such as a bar coater, a roll coater, a gravure coater, a dip coater, and a spray coater can be used. Then, the solution applied other than the depression provided in the substrate immediately after the application is removed. For example, when the solution is applied with a bar coater, a mirror-finished metal rod (SUS or the like) is used immediately after the application, and the excess solution is removed in the manner of performing the bar coater again. When applying the solution using a roll-to-roll facility such as a gravure coater, the coating thickness should be as thin as possible, and a sheet-like material made of a material softer than the metal foil immediately after application (preferably polypropylene) (Plastic such as polyethylene, PET, Teflon (registered trademark)) is pressed against the substrate (attached to the apparatus) to remove excess solution.
 導電物質配置工程A2で用いる溶液において、含有される導電物質の平均粒径が0.01~1μmであるとともに、導電物質の濃度が0.1~10質量%であることが好ましい。
 導電物質の平均粒径を1μm以下としたのは、基材表面に形成された窪みに適切に導電物質を導入することができるからである。また、導電物質の平均粒径を0.01μm以上としたのは、粒径が小さすぎるとかさ密度が大きくなり、溶媒に導電物質を混合するのが難しくなり、調合に時間が掛かりすぎ、生産性にかけるためである。上記導電物質の平均粒径は、0.05~0.6μmであることがより好ましく、0.1~0.3μmであることがさらに好ましい。
 そして、導電物質の濃度を10質量%以下としたのは、溶液を塗布した後、基材の平坦部に付着した余分な塗布溶液を取り除く必要があるが、固形分が少ないほうが当該塗布溶液を取り除きやすく、仮に窪み以外の平坦部に溶液が残ったとしても、導電物質で被覆される面積を最小化できるためでる。また、導電物質の濃度を0.1質量%以上としたのは、接触抵抗の低下の効果を確保するためである。上記導電物質の濃度は、0.5~8質量%であることがより好ましく、1~6質量%であることがさらに好ましい。
In the solution used in the conductive material arranging step A2, it is preferable that the conductive material contained therein has an average particle diameter of 0.01 to 1 μm and a conductive material concentration of 0.1 to 10% by mass.
The reason why the average particle diameter of the conductive material is set to 1 μm or less is that the conductive material can be appropriately introduced into the depression formed on the surface of the base material. In addition, the average particle size of the conductive material is set to 0.01 μm or more because if the particle size is too small, the bulk density becomes large, and it becomes difficult to mix the conductive material with the solvent, and it takes too much time to formulate. This is for sex. The average particle size of the conductive material is more preferably 0.05 to 0.6 μm, and further preferably 0.1 to 0.3 μm.
And, the concentration of the conductive material is set to 10% by mass or less because it is necessary to remove the excess coating solution adhering to the flat portion of the base material after coating the solution. This is because the area covered with the conductive material can be minimized even if the solution remains in a flat portion other than the depression. The reason why the concentration of the conductive material is 0.1% by mass or more is to ensure the effect of reducing the contact resistance. The concentration of the conductive material is more preferably 0.5 to 8% by mass, and further preferably 1 to 6% by mass.
 導電物質配置工程A2で用いる導電物質としては、炭素系材料を用いることができる。具体的には、天然または人造の結晶性グラファイト、膨張化黒鉛、人造黒鉛、熱分解黒鉛や各種のカーボンブラックを用いることができる。より好ましくはアセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの各種カーボンブラックである。 As the conductive substance used in the conductive substance arranging step A2, a carbon-based material can be used. Specifically, natural or artificial crystalline graphite, expanded graphite, artificial graphite, pyrolytic graphite and various carbon blacks can be used. More preferred are various carbon blacks such as acetylene black, ketjen black, and carbon nanotube.
 導電物質配置工程A2で用いる溶媒としては、例えば、水、トルエン、N-メチルピロリドン、MEK、IPAなどのアルコール類、など、水系、有機溶媒系の各種溶媒を用いることができる。また、バインダーとして一般的に用いられている増粘剤やフッ素系樹脂など、例えば、カルボキシメチルセルロース、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリプロピレン、ポリエチレンなどの各種樹脂を添加してもよい。 As the solvent used in the conductive substance arranging step A2, various water-based and organic solvent-based solvents such as water, alcohols such as toluene, N-methylpyrrolidone, MEK, and IPA can be used. Moreover, you may add various resins, such as a thickener and a fluorine resin generally used as a binder, for example, carboxymethylcellulose, a polyvinylidene fluoride, a styrene butadiene rubber, a polypropylene, polyethylene.
 (乾燥工程)
 乾燥工程A3は、塗布工程の後に、溶媒を蒸散させるための工程である。乾燥工程は、室温にて乾燥させるようにしてもよいし、必要に応じて熱処理炉などを用いた加熱乾燥を行うようにしてもよい。加熱乾燥を行う場合、加熱温度は、溶媒が蒸発しやすく(下限理由)、また金属箔強度を下げない温度(上限理由)である100~170℃が好ましい。
 なお、集電体を導電物質配置工程A2後に一定時間放置することで、溶媒が自然に蒸散する等の場合は、乾燥工程A3を設けなくてもよい。
(Drying process)
The drying step A3 is a step for evaporating the solvent after the coating step. In the drying step, drying may be performed at room temperature, or heat drying using a heat treatment furnace or the like may be performed as necessary. In the case of performing heat drying, the heating temperature is preferably 100 to 170 ° C., which is a temperature at which the solvent easily evaporates (lower limit reason) and does not decrease the strength of the metal foil (upper limit reason).
Note that the drying step A3 may not be provided if the current collector is allowed to stand for a certain period of time after the conductive material disposing step A2 so that the solvent spontaneously evaporates.
 (圧着工程)
 必要に応じて、乾燥工程A3(または、導電物質配置工程A2)後に、集電体をプレスする(圧着工程A4)ことにより、導電物質と基材との密着性を向上させるとともに、接触抵抗を低減させることができる。さらに基材表面の窪み以外の部分(平坦部)に残った導電物質を基材に圧着させることができる。ここで、圧着の方法としては、各種圧延機やロールプレス機を用いることができる。
 なお、本実施形態において、「圧着」とは、後記の集電体の製造方法Bにおける「圧延」とは異なり、基材の圧下率が実質的に0%である圧下を施すことをいう。
(Crimping process)
If necessary, after the drying step A3 (or conductive material placement step A2), the current collector is pressed (crimping step A4) to improve the adhesion between the conductive material and the substrate, and to improve the contact resistance. Can be reduced. Furthermore, the conductive material remaining in a portion (flat portion) other than the depression on the surface of the base material can be pressure-bonded to the base material. Here, various rolling mills and roll press machines can be used as the crimping method.
In the present embodiment, “crimping” refers to applying a reduction in which the reduction ratio of the base material is substantially 0%, unlike “rolling” in the current collector manufacturing method B described later.
 <集電体の製造工程B>
 次に、集電体の製造方法Bについて、集電体の製造方法Aと異なる部分を中心に説明する。
 集電体の製造方法Bは、金属箔からなる基材の表面を粗面化することで導電物質を含む溶液を導入する窪みを設け(窪み形成工程B1)、その窪みに導電物質を含む溶液を塗布することで導電物質を配置し(導電物質配置工程B2)、溶液を乾燥後(乾燥工程B3)、圧延を行うこと(圧延工程B4)により集電体を製造する方法である(図4(b)参照)。
<Manufacturing process B of current collector>
Next, the current collector manufacturing method B will be described with a focus on the differences from the current collector manufacturing method A.
The manufacturing method B of the current collector is provided with a recess for introducing a solution containing a conductive material by roughening the surface of a substrate made of a metal foil (depression forming step B1), and the solution containing the conductive material in the recess This is a method of manufacturing a current collector by applying conductive material (conductive material arranging step B2), drying the solution (drying step B3), and rolling (rolling step B4) (FIG. 4). (See (b)).
 (窪み形成工程)
 窪み形成工程B1とは、集電体の製造方法Bの場合、金属箔からなる基材を粗面化し、導電物質を含む塗布溶液を導入する窪みを形成する工程である。
 このように基材を粗面化し、複数の窪みを形成することで、基材と導電物質との接触面積を増やすことができ、接触抵抗のさらなる低減が可能となる。
(Dent formation process)
In the manufacturing method B of a current collector, the dent forming step B1 is a step of roughening a base material made of metal foil and forming a dent for introducing a coating solution containing a conductive material.
Thus, by roughening the base material and forming a plurality of depressions, the contact area between the base material and the conductive material can be increased, and the contact resistance can be further reduced.
 窪み形成工程B1における粗面化の方法としては、機械的な方法、および化学的な方法がある。
 機械的な方法としては、サンドペーパー、砥石、研磨剤等を用いて基材表面を粗面化する方法と、粗面化した板、或いは粗面化した円柱(ロール)を金属箔に押し当てることで、その粗面を金属箔に転写する方法がある。前者は手動で行うことができ、後者の方法はプレス機、圧着機、圧延機などで行えばよい。
 化学的な方法としては、NaOH、KOH、フッ化アンモニウム等の化学薬品によるエッチングで基材表面を粗面化することができる。
As a roughening method in the depression forming step B1, there are a mechanical method and a chemical method.
As a mechanical method, a surface of a base material is roughened using sandpaper, a grindstone, an abrasive, and the like, and a roughened plate or a roughened cylinder (roll) is pressed against a metal foil. Thus, there is a method of transferring the rough surface to a metal foil. The former can be performed manually, and the latter method can be performed by a press, a crimping machine, a rolling mill, or the like.
As a chemical method, the surface of the substrate can be roughened by etching with a chemical such as NaOH, KOH, or ammonium fluoride.
 (導電物質配置工程)
 前記した窪み形成工程B1において、基材表面に窪みは形成されているが、平坦部は形成されていないか、もしくは部分的にしか形成されていない。したがって、導電物質配置工程B2における導電物質配置方法は、バーコーター、ロールコーター、グラビアコーター、ディップコーター、スプレーコーターなど各種コータによって、基材の全面に溶液を塗布すればよく、塗布後における平坦部に付着した余分な溶液を取り除く作業は必須ではない。
(Conductive material placement process)
In the recess formation step B1 described above, a recess is formed on the surface of the base material, but the flat portion is not formed or only partially formed. Therefore, the conductive material arrangement method in the conductive material arrangement step B2 may be performed by applying the solution to the entire surface of the substrate with various coaters such as a bar coater, a roll coater, a gravure coater, a dip coater, and a spray coater. It is not essential to remove excess solution adhering to the surface.
 導電物質配置工程B2で用いる溶液については、製造方法Aの導電物質配置工程A2で用いる溶液ほど厳格に制御する必要はなく、溶液に含まれる導電物質の平均粒径は0.01~20μmであればよい。 The solution used in the conductive material arranging step B2 does not need to be controlled as strictly as the solution used in the conductive material arranging step A2 of the manufacturing method A. The average particle size of the conductive material contained in the solution may be 0.01 to 20 μm. That's fine.
 導電物質配置工程B2で用いる導電物質としては、炭素系材料を用いることができる。具体的には、天然または人造の結晶性グラファイト、膨張化黒鉛、人造黒鉛、熱分解黒鉛や各種のカーボンブラックを用いることができる。また、アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの各種カーボンブラックと天然または人造の結晶性グラファイト、膨張化黒鉛、人造黒鉛、熱分解黒鉛からなる黒鉛を混合して使用することもできる。 As the conductive substance used in the conductive substance arranging step B2, a carbon-based material can be used. Specifically, natural or artificial crystalline graphite, expanded graphite, artificial graphite, pyrolytic graphite and various carbon blacks can be used. In addition, various carbon blacks such as acetylene black, ketjen black, and carbon nanotubes may be mixed with graphite made of natural or artificial crystalline graphite, expanded graphite, artificial graphite, or pyrolytic graphite.
 導電物質配置工程B2で用いる溶媒としては、導電物質配置工程A2で用いる溶媒と同じものを用いればよい。 As the solvent used in the conductive material arrangement step B2, the same solvent as that used in the conductive material arrangement step A2 may be used.
 (乾燥工程)
 乾燥工程B3は、集電体の製造方法Aの乾燥工程A3と同じ方法で行えばよい。
(Drying process)
What is necessary is just to perform drying process B3 by the same method as drying process A3 of the manufacturing method A of an electrical power collector.
 (圧延工程)
 乾燥工程B3(または、導電物質配置工程B2)の後に、集電体に圧延を施す(圧延工程B4)ことにより、基材表面に導電物質が配置されていない(または、ほとんど配置されていない)平坦な面が形成されることとなる。その結果、導電物質が基材表面に島状に被覆された集電体となる。
(Rolling process)
After the drying step B3 (or conductive material arranging step B2), the current collector is rolled (rolling step B4), so that no conductive material is arranged (or hardly arranged) on the surface of the substrate. A flat surface will be formed. As a result, a current collector is obtained in which the conductive material is coated in an island shape on the substrate surface.
 この圧延工程B4により、基材表面に導電物質の付着していない平坦部を形成することで、タブ溶接性を向上させることができるとともに、導電物質と基材の密着性が向上し、接触抵抗を低減することができる。
 なお、圧延には公知の圧延機を使用すればよい。
 なお、「圧延」とは、基材を1対のロールで押圧することにより、凹凸を有する基材の凸部を潰すなどして基材を変形させる塑性加工を指す。
By forming a flat portion on which the conductive material is not attached to the surface of the base material by this rolling step B4, the tab weldability can be improved, the adhesion between the conductive material and the base material is improved, and the contact resistance Can be reduced.
A known rolling mill may be used for rolling.
“Rolling” refers to plastic working in which the base material is deformed by, for example, crushing the convex portions of the base material having irregularities by pressing the base material with a pair of rolls.
 前記のような製造方法により製造した集電体を、例えば、図2に示すようなリチウムイオン二次電池の電極10の集電体1として用いる場合、導電物質1bを基材表面に層状ではなく窪み部分に島状に形成することにより、集電体1全体を薄膜化することができ、その結果、集電体1の表面に積層される活物質層2の厚みが制約されず、電池の容量を低下させることがない。 When the current collector manufactured by the above manufacturing method is used, for example, as the current collector 1 of the electrode 10 of the lithium ion secondary battery as shown in FIG. 2, the conductive material 1b is not layered on the surface of the base material. By forming an island shape in the depression, the entire current collector 1 can be thinned. As a result, the thickness of the active material layer 2 laminated on the surface of the current collector 1 is not restricted, and the battery The capacity is not reduced.
 次に、本実施形態の集電体について、本発明の要件を満たす実施例と、本発明の要件を満たさない比較例とを比較して説明する。 Next, the current collector of this embodiment will be described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
 以下の方法により、試料を作製した。
 (基材)
 基材として、Al箔を用いる場合は、1000系のAl合金を使用した。また、基材として、Cu箔を用いる場合は、99.9%以上の純Cu箔を使用した。
 なお、圧延を施していない試料および軽圧下(圧着)した試料は、厚さ15μmのAl箔、またはCu箔を用いた。また、圧延を施した試料は、圧延後の厚さが15μmとなるように、適宜、厚さの異なるAl箔、またはCu箔を用いた。
A sample was prepared by the following method.
(Base material)
When an Al foil was used as the substrate, a 1000 series Al alloy was used. Moreover, when using Cu foil as a base material, 99.9% or more pure Cu foil was used.
Note that a 15 μm thick Al foil or Cu foil was used for a sample that was not rolled and a sample that was lightly pressed (pressed). In addition, as the sample subjected to rolling, Al foil or Cu foil having different thicknesses was appropriately used so that the thickness after rolling was 15 μm.
 (導電物質)
 導電物質として、平均粒径0.03μmのカーボンブラック(東海カーボン トーカブラック#5500)、および平均粒径6μm膨張化黒鉛(SECカーボン SNE-6G膨張化黒鉛)を用いた。なお、スラリー全体に占める導電物質の濃度は表1のとおりである。
(Conductive material)
Carbon black having an average particle size of 0.03 μm (Tokai Carbon Talker Black # 5500) and expanded graphite having an average particle size of 6 μm (SEC carbon SNE-6G expanded graphite) were used as the conductive material. The concentration of the conductive material in the entire slurry is as shown in Table 1.
 (窪み形成工程)
 試料No.1は、#800番のサンドペーパーをローラ(φ75mm)に貼り付け、そのローラをAl箔に押し付けることで、表1に示す平均深さの窪みを形成させた。
 試料No.2は、#2400番のサンドペーパーをローラ(φ75mm)に貼り付け、そのローラをAl箔に押し付けることで、表1に示す平均深さの窪みを形成させた。
 試料No.3は、Al箔を#400番のサンドペーパーで、サンディングすることで、表面を粗面化させた。
 試料No.4は、Al箔に窪み形成工程を行わなかった。
 試料No.5は、Al箔を#400番のサンドペーパーで、サンディングすることで、表面を粗面化させた。
 試料No.6は、Al箔を#800番のサンドペーパーで、サンディングすることで、表面を粗面化させた。
 試料No.7は、#800番のサンドペーパーをローラ(φ75mm)に貼り付け、そのローラをCu箔に押し付けることで、表1に示す平均深さの窪みを形成させた。
 試料No.8は、Cu箔を#800番のサンドペーパーで、サンディングすることで、表面を粗面化させた。
 試料No.9は、Cu箔を#800番のサンドペーパーで、サンディングすることで、表面を粗面化させた。
(Dent formation process)
Sample No. In No. 1, a # 800 sandpaper was affixed to a roller (φ75 mm), and the roller was pressed against an Al foil to form recesses having an average depth shown in Table 1.
Sample No. In No. 2, a # 2400 sandpaper was affixed to a roller (φ75 mm), and the roller was pressed against an Al foil to form a recess having an average depth shown in Table 1.
Sample No. In No. 3, the surface of the Al foil was roughened by sanding with # 400 sandpaper.
Sample No. No. 4 did not perform the dent formation process in Al foil.
Sample No. In No. 5, the surface of the Al foil was roughened by sanding with # 400 sandpaper.
Sample No. In No. 6, the Al foil was sanded with # 800 sandpaper to roughen the surface.
Sample No. In No. 7, a # 800 sandpaper was affixed to a roller (φ75 mm), and the roller was pressed against Cu foil, thereby forming recesses having an average depth shown in Table 1.
Sample No. In No. 8, the surface of the Cu foil was roughened by sanding with a # 800 sandpaper.
Sample No. In No. 9, the surface of the Cu foil was roughened by sanding with # 800 sandpaper.
 (導電物質配置工程:塗布工程)
 塗布工程においては、導電物質を含む溶液(スラリー)の溶媒として水を用い、CMCナトリウム塩(カルボキシメチルセルロースナトリウム塩)を1質量%の濃度で添加した。また、溶液の塗布は、バーコーター(番手No.5)を用いてAl箔、またはCu箔の表面に塗布した。なお、溶接性評価用の試料には、Al箔、またはCu箔の両面に前記溶液を塗布し、他の項目評価用の試料には、Al箔、またはCu箔の片面に前記溶液を塗布した。
 そして、試料No.1、2及び7については、塗布直後に、鏡面仕上げした径7mmのバーでAl箔、またはCu箔上の余分なスラリーを取り除いた。
(Conducting substance placement process: coating process)
In the coating step, water was used as a solvent for the solution (slurry) containing the conductive material, and CMC sodium salt (carboxymethylcellulose sodium salt) was added at a concentration of 1% by mass. Moreover, the application | coating of the solution was apply | coated to the surface of Al foil or Cu foil using the bar coater (counter No. 5). In addition, the solution was applied to both surfaces of an Al foil or Cu foil for a sample for weldability evaluation, and the solution was applied to one surface of an Al foil or Cu foil for samples for other item evaluations. .
And sample no. For 1, 2 and 7, the excess slurry on the Al foil or Cu foil was removed immediately after application with a 7 mm diameter mirror-finished bar.
 (乾燥工程)
 導電物質を含む溶液をAl箔、またはCu箔の表面に塗布した後、オーブンにて110℃×2分の条件でAl箔、またはCu箔を保持して乾燥を行った。
(Drying process)
A solution containing a conductive material was applied to the surface of the Al foil or Cu foil, and then dried by holding the Al foil or Cu foil in an oven at 110 ° C. for 2 minutes.
 (圧着工程、圧延工程)
 試料No.3、5、6、8及び9については、圧延を施した。圧延は、ロール径φ100mmのスキンパスロールを用いて行った。
 試料No.2、7については、圧着を施した。圧着は、前記した圧延と同じ装置を用いて行った。圧着の場合は、圧下率を0%(基材の厚さが変化しない)とした。
 なお、圧下率は、圧延前および圧延後の試料(箔+導電物質)の厚みをマイクロメータを用いて測定し、式(1)により算出した。
(Crimping process, rolling process)
Sample No. About 3, 5, 6, 8, and 9, it rolled. Rolling was performed using a skin pass roll having a roll diameter of φ100 mm.
Sample No. 2 and 7 were subjected to pressure bonding. The crimping was performed using the same apparatus as the rolling described above. In the case of pressure bonding, the rolling reduction was set to 0% (the thickness of the base material did not change).
The rolling reduction was calculated by the equation (1) by measuring the thickness of the sample (foil + conductive material) before and after rolling using a micrometer.
 (圧下率の算出)
 圧下率は、圧延前の試料の厚さをt0、圧延後の試料の厚さをt1とすると、
 (圧下率)=(t0-t1)/t0 × 100 (%)・・・式(1)
により算出した。
(Calculation of rolling reduction)
The rolling reduction is as follows: the thickness of the sample before rolling is t0, and the thickness of the sample after rolling is t1.
(Rolling ratio) = (t0−t1) / t0 × 100 (%) (1)
Calculated by
 <評価方法>
 (窪みの深さの評価)
 Al箔、またはCu箔表面に形成された窪みの深さは、断面加工装置(日本電子製のクロスセクションポリッシャ(CP)SM-09010)を用いて試料断面を加工後、日立製作所製の電界放射型走査電子顕微鏡(FE-SEM)SU-70を用いて試料断面方向より倍率2000倍にて5視野観察し、撮影した視野中に含まれる全ての窪み(基準面は金属箔の平坦な部分)の窪み深さを求めた。
 窪みが不明瞭の場合はその部分を最大3万倍まで拡大し、窪み深さを求めた。その時の最小深さ分解能は0.1μm程度であった。また各窪みの最大深さをその窪みの深さとし、得られた深さの平均を窪みの平均深さとした。
<Evaluation method>
(Evaluation of dent depth)
The depth of the depression formed on the surface of the Al foil or Cu foil is determined by the electric field emission made by Hitachi after processing the sample cross section using a cross section processing apparatus (Cross Section Polisher (CP) SM-09010 made by JEOL). Using a scanning electron microscope (FE-SEM) SU-70, observe five fields of view at a magnification of 2000 times from the sample cross-section direction, and all the depressions included in the photographed field of view (the reference surface is a flat part of the metal foil) The depth of the depression was determined.
When the dent was unclear, the portion was enlarged up to 30,000 times to obtain the dent depth. The minimum depth resolution at that time was about 0.1 μm. Moreover, the maximum depth of each hollow was made into the depth of the hollow, and the average of the obtained depth was made into the average depth of a hollow.
 (被覆率の評価)
 導電物質(炭素)の被覆率は、日立製作所製の電界放射型走査電子顕微鏡(FE-SEM)SU-70を用いて作製した試料の表面を倍率300倍にて撮影し、撮影した視野中(300μm四方の領域)に含まれる導電物質による基材表面の被覆面積を画像処理により算出して求めた。
(Evaluation of coverage)
The coverage of the conductive material (carbon) was determined by photographing the surface of a sample produced using a field emission scanning electron microscope (FE-SEM) SU-70 manufactured by Hitachi, Ltd. at a magnification of 300 times ( The area of the substrate surface covered with the conductive material contained in the 300 μm square area) was calculated by image processing.
 (箔強度)
 Al箔、またはCu箔を15mm×250mmの大きさにカットし、JIS B 7721に則った引っ張り試験機で、5mm/分の速度で試験を行い、引張強度を求めた。未処理Al箔の引張強度は200N/mmであったため、当該引張強度の87.5%以上となる175N/mm以上を良好(○)、それより小さい場合を不良(×)とした。また、未処理Cu箔の引張強度は411N/mmであったため、当該引張強度の87.5%以上となる360N/mm以上を良好(○)、それより小さい場合を不良(×)とした。なお、引張強度は最大引っ張り力と箔の断面積より算出した。
(Foil strength)
The Al foil or Cu foil was cut into a size of 15 mm × 250 mm, and the tensile strength was determined by performing a test at a speed of 5 mm / min with a tensile tester according to JIS B 7721. Since the untreated Al foil had a tensile strength of 200 N / mm 2 , 175 N / mm 2 or more, which is 87.5% or more of the tensile strength, was judged as good (◯), and a case where it was smaller than that was judged as poor (x). The tensile strength of the untreated Cu foil because it was through 411N / mm 2, the tensile 87.5% or more of strength 360N / mm 2 or more good (○), the smaller than bad (×) did. The tensile strength was calculated from the maximum tensile force and the cross-sectional area of the foil.
 (密着性評価)
 粘着力が1N/20mm(40mm幅×120mm長×0.08mm厚)のテープを貼り付けたローラ(径90mm、長さ50mm、質量700g)を、各条件で作製したAl箔、またはCu箔上を10cmころがし、その後、剥離した面積を見積もった(目算した)。剥離が全く無いときを極めて良好(○)、2割以下の剥離が観察されたときを良好(△)、それ以上の剥離が観察されたときを不良(×)とした。
(Adhesion evaluation)
On Al foil or Cu foil prepared by applying a roller (diameter: 90 mm, length: 50 mm, mass: 700 g) with an adhesive strength of 1 N / 20 mm (40 mm width x 120 mm length x 0.08 mm thickness) Was rolled 10 cm, and then the peeled area was estimated (estimated). When there was no peeling at all, it was judged as very good (◯), when 20% or less peeling was observed (Δ), and when more peeling was observed, it was judged as bad (x).
 (電池評価から求められる内部抵抗)
 基材としてAl箔を用いた場合には、Al箔を集電体として用いた電池セルを作製し、その内部抵抗を測定することによって評価を行った。
 導電物質(炭素)が配置された試料の表面(片面)に、コバルト酸リチウム、アセチレンブラックおよびPVdF(ポリフッ化ビニリデン)を混合したスラリーを厚さ25μmで塗工し、正極材を作製した。また、負極材として、Al箔の片面にグラファイトを厚み35μmにて塗工したものを用いた。
(Internal resistance required from battery evaluation)
When an Al foil was used as the substrate, a battery cell using the Al foil as a current collector was prepared, and evaluation was performed by measuring its internal resistance.
A slurry in which lithium cobaltate, acetylene black, and PVdF (polyvinylidene fluoride) were mixed was applied to a surface (one side) of a sample on which a conductive material (carbon) was disposed to a thickness of 25 μm to produce a positive electrode material. Moreover, as a negative electrode material, what coated graphite with the thickness of 35 micrometers on the single side | surface of Al foil was used.
 これらの正電極、負電極を用いて、宝泉社製のHSフラットセルを用いて電池セルを作製した。この電池セルについて、充放電レートが0.2Cの電流で、3サイクルのコンディショニング充放電処理を行った後に、0.2C~10Cの複数の電流値にて放電試験を実施した。放電試験によって得られた各電流値の放電曲線において、容量1mAhを放電したときの電流値と電圧値との関係をプロットし、プロットして得られた直線の傾きに基づいて内部抵抗を算出した。 Using these positive electrode and negative electrode, a battery cell was manufactured using an HS flat cell manufactured by Hosen. This battery cell was subjected to a conditioning charge / discharge treatment for 3 cycles at a current of charge / discharge rate of 0.2C, and then a discharge test was performed at a plurality of current values of 0.2C to 10C. In the discharge curve of each current value obtained by the discharge test, the relationship between the current value and the voltage value when discharging a capacity of 1 mAh was plotted, and the internal resistance was calculated based on the slope of the straight line obtained by plotting. .
 また、導電物質を有さない厚さ15μmのAl箔の基材のみを集電体として用いて、他の試料と同様に正電極を作製し、この正電極を用いて同様に電池セルを作製した。この電池セルについて、他の試料を用いた電池セルと同様に放電曲線を測定し、内部抵抗を算出した。そして、この基材のみの集電体を用いて作製した電池セルの内部抵抗と比較して、内部抵抗が低減するものを、内部抵抗の低減効果があると判定した。なお、基材であるAl箔のみを集電体として用いて作製した電池セルの内部抵抗は45Ωであった。 In addition, using only a 15 μm-thick Al foil base material having no conductive material as a current collector, a positive electrode is produced in the same manner as other samples, and a battery cell is produced in the same manner using this positive electrode. did. About this battery cell, the discharge curve was measured similarly to the battery cell using another sample, and internal resistance was computed. And what reduced internal resistance compared with the internal resistance of the battery cell produced using the collector only of this base material was determined to have the effect of reducing internal resistance. In addition, the internal resistance of the battery cell produced using only the Al foil as the base material as a current collector was 45Ω.
 (接触抵抗の評価)
 基材としてCu箔を用いた場合の抵抗低減効果については、以下のように測定を行った。
試料の両面を2枚のカーボンクロスで挟み、更にその外側を接触面積1cmの2枚の銅電極で挟み、この銅電極に1kgf(9.8N)の荷重をかけて加圧し、直流電流電源を用いて7.4mAの電流を通電し、カーボンクロス間に加わる電圧を電圧計で測定した。接触抵抗は、前記した電流値、接触面積および測定した電圧から算出して求めた。同様の測定を基材のみを用いて行い、基材のみの場合と比較して接触抵抗が低減するものを接触抵抗の低減効果があると判定した。なお、何ら表面処理を施さないCu箔のみの場合の接触抵抗は、98mΩ・cmであった。
(Evaluation of contact resistance)
About the resistance reduction effect at the time of using Cu foil as a base material, it measured as follows.
Both sides of the sample are sandwiched between two carbon cloths, and the outside is sandwiched between two copper electrodes with a contact area of 1 cm 2. A pressure of 1 kgf (9.8 N) is applied to the copper electrodes, and a direct current power supply is applied. A current of 7.4 mA was applied using a voltmeter, and the voltage applied between the carbon cloths was measured with a voltmeter. The contact resistance was calculated from the above-described current value, contact area, and measured voltage. The same measurement was performed using only the base material, and it was determined that there was an effect of reducing the contact resistance when the contact resistance was reduced compared to the case of only the base material. In addition, the contact resistance in the case of only Cu foil which did not perform any surface treatment was 98 mΩ · cm 2 .
 (溶接性の評価1)
 Al箔に対する溶接性の評価は、厚さ15μmのAl箔の両面に、導電物質(炭素)が形成された試料を10枚重ね、その上下(両端)に30μm厚のAl箔、及び250μmのAl板を配し、一定圧力を加えた状態で溶接を行い、8枚以上溶接されたものを良好(○)、7枚以下しか溶接されなかったものを不良(×)と判定した。
 なお、溶接には、ソノボンド社製の超音波溶接機MH2026/CLF2500を用い、圧力0.28MPa、パワー400W、エネルギー20Jの条件で、通電時間70μ秒にて溶接を行った。
(Evaluation of weldability 1)
Evaluation of weldability to Al foil was made by stacking 10 samples each having a conductive material (carbon) on both sides of a 15 μm thick Al foil, and 30 μm thick Al foil and 250 μm Al on the upper and lower sides (both ends). A plate was placed and welding was performed with a constant pressure applied, and it was determined that 8 or more pieces were welded as good (◯), and 7 or less pieces were welded as bad (x).
For the welding, an ultrasonic welding machine MH2026 / CLF2500 manufactured by Sonobond Co., Ltd. was used, and welding was performed with a current supply time of 70 μsec under the conditions of a pressure of 0.28 MPa, a power of 400 W, and an energy of 20 J.
 (溶接性の評価2)
 Cu箔に対する溶接性の評価は、厚さ15μmのCu箔の両面に、導電物質(炭素)が形成された試料を10枚重ね、一定圧力を加えた状態で溶接を行い、8枚以上溶接されたものを良好(○)、7枚以下しか溶接されなかったものを不良(×)と判定した。
 なお、溶接には、Yokodai.jp社製のスポット溶接機HSW-02Aを用い、電圧25V、通電時間500μ秒にて溶接を行った。
(Evaluation of weldability 2)
Evaluation of weldability to Cu foil is made by stacking 10 samples with conductive material (carbon) on both sides of a 15 μm thick Cu foil, welding under a constant pressure, and welding 8 or more sheets. The test piece was judged as good (◯), and the case where only 7 or less pieces were welded was judged as bad (x).
For welding, Yokodai. Using a spot welder HSW-02A manufactured by jp, welding was performed at a voltage of 25 V and an energization time of 500 μsec.
 表1に、作製した試料の作製条件、特性評価結果の一覧を示す。また、表1において、本発明の規定する範囲外の数値、および特性評価が合格基準を満たさない数値に下線を付して示した。
 なお、得られた試料は、いずれも、300μm四方の視野にて観察した際に、導電物質がAl箔、またはCu箔表面に島状に配置されていた。
Table 1 shows a list of production conditions and characteristic evaluation results of the produced samples. In Table 1, numerical values outside the range defined by the present invention and numerical values whose characteristic evaluation does not satisfy the acceptance criteria are underlined.
In each of the obtained samples, the conductive material was arranged in an island shape on the surface of the Al foil or Cu foil when observed in a 300 μm square field of view.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料No.1~3及び7、8は、本発明の規定する要件を満たすことから、箔強度、密着性、内部抵抗、溶接性の全てが、良好以上という結果となった。 Sample No. Since 1-3, 7, and 8 satisfy the requirements defined by the present invention, the foil strength, adhesion, internal resistance, and weldability were all good or better.
 試料No.4は、窪みが形成されていなかったため、密着性を得ることができなかった。また、試料No.4は、溶接性について良好という結果であったが、試料No.1~3と比較すると、若干、劣る結果となった。 Sample No. In No. 4, no depression was formed, so that adhesion could not be obtained. Sample No. No. 4 was a result of good weldability. Compared with 1-3, the results were slightly inferior.
 試料No.5は、比較的粗いサンドペーパーで粗面化しているが、粗面化後の圧延の圧下率が十分でなかったため、窪みの平均深さが本発明の規定する平均深さより深くなり、十分な箔強度を得ることができなかった。 Sample No. 5 is roughened with a relatively rough sandpaper, but the rolling reduction after the roughening was not sufficient, the average depth of the dent becomes deeper than the average depth defined by the present invention, sufficient The foil strength could not be obtained.
 試料No.6、9は、粗面化後の圧延の圧下率が十分でなかったため、金属箔の平坦部が十分に形成されず、導電物質の被覆率が本発明の規定する被覆率より高くなり、良好なタブ溶接性を得ることができなかった。 Sample No. Nos. 6 and 9 were not sufficient in rolling reduction after roughening, so that the flat portion of the metal foil was not sufficiently formed, and the coverage of the conductive material was higher than the coverage defined in the present invention, which was good Tab weldability could not be obtained.
 以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。
 本出願は、2011年10月26日出願の日本特許出願(特願2011-234528)及び2012年9月18日出願の日本特許出願(特願2012-204167)に基づくものであり、その内容はここに参照として取り込まれる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. .
This application is based on a Japanese patent application filed on October 26, 2011 (Japanese Patent Application No. 2011-234528) and a Japanese patent application filed on September 18, 2012 (Japanese Patent Application No. 2012-204167). Incorporated herein by reference.
 本発明に係る電極材料によれば、導電物質を基材である金属箔の表面に島状に配置し、導電物質の被覆率を制限して金属箔の素地を電極材料の表面に一部露出させたことにより、タブ溶接性の確保、電極材料の接触抵抗の低減を図ることができる。
 加えて、基材表面に形成した窪みに導電物質を配置していることにより、基材と導電物質との接触面積の増大を図ることができ、その結果、基材に対する導電物質の密着性を向上させるとともに電極材料の接触抵抗をさらに低減させることができる。
 さらに、基材表面に形成した窪みに導電物質を配置していることにより、導電物質を基材表面に層状に形成する場合と比較し、電極材料の薄膜化を図ることができ、その結果、単位体積あたりの活物質層の量が大きく制限されず、電池の容量の低下を回避することができる。
 本発明に係る電極および二次電池によれば、所定の電極材料を備えることにより、電極材料と活物質層との間の接触抵抗を低減、電池の内部抵抗を低減することができるとともに、タブ溶接性を向上させ、薄膜化することが可能となる。
 本発明に係る電極材料の製造方法によれば、基材表面に複数の窪みを形成し、当該窪みに導電物質を配置することで、基材表面に導電物質を島状に配置することができ、接触抵抗が低減するとともに、タブ溶接性に優れた電極材料を製造することができる。
 本発明に係る電極材料の製造方法によれば、基材表面に形成された複数の窪みに導電物質を配置することより、基材と導電物質との密着性が向上するため、接触抵抗がさらに低減するとともに薄膜化が可能な電極材料を製造することができる。
 本発明に係る電極材料の製造方法によれば、導電物質配置工程の後に基材を圧延することにより、導電物質の付着していない平坦部を形成することで、タブ溶接性を向上させることができるとともに、基材に対する導電物質の密着性が向上し、接触抵抗を低減させることができる。
According to the electrode material according to the present invention, the conductive material is arranged in an island shape on the surface of the metal foil as a base material, and the coverage of the conductive material is limited to partially expose the metal foil substrate on the surface of the electrode material. By doing so, it is possible to ensure tab weldability and reduce the contact resistance of the electrode material.
In addition, by arranging the conductive material in the depression formed on the surface of the base material, the contact area between the base material and the conductive material can be increased, and as a result, the adhesion of the conductive material to the base material can be improved. In addition to the improvement, the contact resistance of the electrode material can be further reduced.
Furthermore, by arranging the conductive material in the depression formed on the substrate surface, the electrode material can be made thinner compared to the case where the conductive material is formed in layers on the substrate surface. The amount of the active material layer per unit volume is not greatly limited, and a reduction in battery capacity can be avoided.
According to the electrode and the secondary battery of the present invention, by providing the predetermined electrode material, the contact resistance between the electrode material and the active material layer can be reduced, the internal resistance of the battery can be reduced, and the tab It is possible to improve the weldability and reduce the thickness.
According to the method for manufacturing an electrode material according to the present invention, by forming a plurality of depressions on the surface of the base material and arranging the conductive material in the depressions, the conductive material can be arranged in an island shape on the surface of the base material. In addition to reducing contact resistance, an electrode material having excellent tab weldability can be produced.
According to the method for producing an electrode material according to the present invention, the contact resistance is further increased because the adhesion between the base material and the conductive material is improved by arranging the conductive material in the plurality of depressions formed on the surface of the base material. An electrode material that can be reduced and made thinner can be manufactured.
According to the method for producing an electrode material according to the present invention, the tab weldability can be improved by rolling the base material after the conductive material arranging step to form a flat portion to which no conductive material is adhered. In addition, the adhesion of the conductive material to the substrate can be improved, and the contact resistance can be reduced.
1 集電体(電極材料)
1a 基材
1b 導電物質
2 活物質層
10 電極
11 正電極(電極)
12 負電極(電極)
13 セパレータ
14 電解液
20 リチウムイオン二次電池(二次電池)
1 Current collector (electrode material)
DESCRIPTION OF SYMBOLS 1a Base material 1b Conductive material 2 Active material layer 10 Electrode 11 Positive electrode (electrode)
12 Negative electrode (electrode)
13 Separator 14 Electrolyte 20 Lithium ion secondary battery (secondary battery)

Claims (10)

  1.  金属箔を含む基材と、この基材の少なくとも一方の表面に配置された導電物質と、を備える電極材料であって、
     前記基材の表面は、平坦部と複数の窪みとから構成され、
     前記窪みの平均深さが0.3μm以上3.0μm以下であり、
     前記窪みに前記導電物質が配置され、前記平坦部は露出し、
     300μm四方の視野にて観察した際に、前記導電物質が前記基材の表面に島状に配置されているとともに、前記導電物質による前記基材の表面の被覆率が1~80%であることを特徴とする電極材料。
    An electrode material comprising a base material including a metal foil and a conductive substance disposed on at least one surface of the base material,
    The surface of the substrate is composed of a flat portion and a plurality of depressions,
    The average depth of the depression is 0.3 μm or more and 3.0 μm or less,
    The conductive material is disposed in the depression, the flat portion is exposed,
    When observed in a 300 μm square field of view, the conductive material is arranged in an island shape on the surface of the substrate, and the coverage of the surface of the substrate with the conductive material is 1 to 80%. An electrode material characterized by.
  2.  前記金属箔は、アルミニウム、アルミニウム合金、銅、または銅合金からなることを特徴とする請求項1に記載の電極材料。 The electrode material according to claim 1, wherein the metal foil is made of aluminum, an aluminum alloy, copper, or a copper alloy.
  3.  前記導電物質は、炭素系材料を含んでいることを特徴とする請求項1に記載の電極材料。 2. The electrode material according to claim 1, wherein the conductive material includes a carbon-based material.
  4.  前記導電物質は、炭素系材料を含んでいることを特徴とする請求項2に記載の電極材料。 3. The electrode material according to claim 2, wherein the conductive substance includes a carbon-based material.
  5.  二次電池の電極であって、
     請求項1に記載の電極材料と、
     前記電極材料の前記誘導物質の表面に形成された活物質層とを備えていることを特徴とする二次電池の電極。
    A secondary battery electrode,
    An electrode material according to claim 1;
    An electrode of a secondary battery, comprising: an active material layer formed on a surface of the inducer of the electrode material.
  6.  正電極と負電極とを備える二次電池であって、
     前記正電極および前記負電極のうち少なくとも一方が、請求項5に記載の電極であることを特徴とする二次電池。
    A secondary battery comprising a positive electrode and a negative electrode,
    The secondary battery according to claim 5, wherein at least one of the positive electrode and the negative electrode is the electrode according to claim 5.
  7.  請求項1に記載の電極材料の製造方法であって、
     前記基材の表面に複数の前記窪みを形成する窪み形成工程と、
     形成された前記窪みに前記導電物質を配置する導電物質配置工程と、を含むことを特徴とする電極材料の製造方法。
    It is a manufacturing method of the electrode material according to claim 1,
    Forming a plurality of depressions on the surface of the substrate; and
    And a conductive substance arranging step of arranging the conductive substance in the formed recess.
  8.  前記窪み形成工程は、複数の凸部を有する転写体を前記基材に押し当てることによって、前記基材の表面に複数の前記窪みを形成する工程であることを特徴とする請求項7に記載の電極材料の製造方法。 The said dent formation process is a process of forming the said some dent on the surface of the said base material by pressing the transfer body which has a some convex part on the said base material, The said recessed part is a process characterized by the above-mentioned. Manufacturing method of electrode material.
  9.  前記導電物質配置工程の後に、前記窪みに前記導電物質が配置された前記基材をプレスすることにより、前記導電物質を前記窪みに圧着させる圧着工程を、さらに含むことを特徴とする請求項8に記載の電極材料の製造方法。 9. The method according to claim 8, further comprising a crimping step of pressing the conductive material in the depression by pressing the base material on which the conductive substance is arranged in the depression after the conductive substance arranging step. The manufacturing method of the electrode material as described in any one of.
  10.  前記窪み形成工程は、前記基材の表面を粗面化することによって、前記基材の表面に複数の前記窪みを形成する工程であり、
     前記導電物質配置工程の後に、前記窪みに前記導電物質が配置された前記基材を圧延することにより前記平坦部を形成する圧延工程を、さらに含むことを特徴とする請求項7に記載の電極材料の製造方法。
    The indentation forming step is a step of forming a plurality of indentations on the surface of the base material by roughening the surface of the base material.
    The electrode according to claim 7, further comprising a rolling step of forming the flat portion by rolling the base material on which the conductive material is disposed in the depression after the conductive material disposing step. Material manufacturing method.
PCT/JP2012/077128 2011-10-26 2012-10-19 Electrode material, electrode, secondary cell, and method for producing electrode material WO2013061890A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-234528 2011-10-26
JP2011234528 2011-10-26
JP2012-204167 2012-09-18
JP2012204167A JP5325326B2 (en) 2011-10-26 2012-09-18 Current collector, electrode, secondary battery, and method of manufacturing secondary battery

Publications (1)

Publication Number Publication Date
WO2013061890A1 true WO2013061890A1 (en) 2013-05-02

Family

ID=48167722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077128 WO2013061890A1 (en) 2011-10-26 2012-10-19 Electrode material, electrode, secondary cell, and method for producing electrode material

Country Status (3)

Country Link
JP (1) JP5325326B2 (en)
TW (1) TWI514658B (en)
WO (1) WO2013061890A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6745587B2 (en) 2014-05-29 2020-08-26 株式会社半導体エネルギー研究所 Electrode manufacturing method
WO2019021581A1 (en) * 2017-07-27 2019-01-31 パナソニックIpマネジメント株式会社 Positive electrode for secondary batteries, and secondary battery
JP7214765B2 (en) * 2021-02-22 2023-01-30 プライムプラネットエナジー&ソリューションズ株式会社 METHOD FOR MANUFACTURING ELECTRODE FOR SECONDARY BATTERY

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249223A (en) * 2002-02-26 2003-09-05 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2009038017A (en) * 2007-07-12 2009-02-19 Toshiba Corp Electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2010215964A (en) * 2009-03-17 2010-09-30 Toyo Aluminium Kk Conductive substance coated aluminum material and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218965B2 (en) * 2008-04-23 2013-06-26 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
JP2010086866A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Electrode sheet and method of manufacturing the same
JP5287601B2 (en) * 2009-08-25 2013-09-11 日本ゼオン株式会社 Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249223A (en) * 2002-02-26 2003-09-05 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2009038017A (en) * 2007-07-12 2009-02-19 Toshiba Corp Electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2010215964A (en) * 2009-03-17 2010-09-30 Toyo Aluminium Kk Conductive substance coated aluminum material and method for manufacturing the same

Also Published As

Publication number Publication date
TW201334275A (en) 2013-08-16
TWI514658B (en) 2015-12-21
JP2013110100A (en) 2013-06-06
JP5325326B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5281706B2 (en) Current collector, current collector manufacturing method, electrode, and secondary battery
EP3721493A1 (en) Binding agents for electrochemically active materials and methods of forming the same
JP2018142431A (en) Negative electrode for sulfide all-solid battery, and sulfide all-solid battery and manufacturing method of the same
JP6535662B2 (en) Method of manufacturing metal foil for current collector
JP2019135690A (en) Electrode collector, all-solid battery and manufacturing method of electrode collector
WO2017104583A1 (en) All-solid secondary battery, electrode sheet for all-solid secondary battery, and method of manufacturing said battery and sheet
JP5144821B1 (en) Method for producing electrode material
TW201320454A (en) Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell
KR20150032307A (en) Current collector foil, electrode structure, lithium secondary cell, or electric double-layer capacitor
JP6849863B2 (en) Lithium-ion secondary battery, its manufacturing method, and positive electrode for lithium-ion secondary battery
JP5325326B2 (en) Current collector, electrode, secondary battery, and method of manufacturing secondary battery
JP2010199022A (en) Method of manufacturing electrode for secondary battery, electrode for secondary battery, and secondary battery
JP5590173B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20140009041A (en) Energy storage device
JP7301082B2 (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
Tsuda et al. Fabrication of porous electrodes with a picosecond pulsed laser and improvement of the rate performance of a porous graphite anode and LiFePO4 cathode
JP5140779B1 (en) Electrode material
WO2022210654A1 (en) Current collector steel foil, electrode, and battery
JP2000268826A (en) Copper material for negative electrode collector of li ion battery, and li ion battery
CN117344357A (en) Electrolytic copper foil, electrode comprising same and lithium ion battery
JP2020098683A (en) Positive electrode current collector foil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842961

Country of ref document: EP

Kind code of ref document: A1