JP5218965B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5218965B2
JP5218965B2 JP2008112431A JP2008112431A JP5218965B2 JP 5218965 B2 JP5218965 B2 JP 5218965B2 JP 2008112431 A JP2008112431 A JP 2008112431A JP 2008112431 A JP2008112431 A JP 2008112431A JP 5218965 B2 JP5218965 B2 JP 5218965B2
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
copper foil
current collector
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008112431A
Other languages
Japanese (ja)
Other versions
JP2009266466A (en
Inventor
昌明 木部
稔之 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2008112431A priority Critical patent/JP5218965B2/en
Publication of JP2009266466A publication Critical patent/JP2009266466A/en
Application granted granted Critical
Publication of JP5218965B2 publication Critical patent/JP5218965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、非水電解液二次電池に関し、負極集電体上にアモルファスカーボン等の炭素材料を形成した非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and relates to a non-aqueous electrolyte secondary battery in which a carbon material such as amorphous carbon is formed on a negative electrode current collector.

非水電解液二次電池は様々なものが実用化されており、その一つとしてリチウムイオン二次電池がある。リチウムイオン二次電池は、小型軽量で、かつ高容量であることから携帯電子機器、通信機器や、電動アシスト自転車、電動工具などにも用いられるようになってきている。   Various non-aqueous electrolyte secondary batteries have been put into practical use, and one of them is a lithium ion secondary battery. Lithium ion secondary batteries are small, light, and have a high capacity, so that they are used in portable electronic devices, communication devices, electric assist bicycles, electric tools, and the like.

非水電解液二次電池は正極活物質、正極結着剤、導電助剤を含む正極層を正極集電体上に形成した正極と、負極活物質、負極結着剤を含む負極層を負極集電体上に形成した負極を、セパレータを介して積層あるいは巻回した積層体を金属ケースあるいはラミネートフィルム外装体に収納した構造となっている。   The non-aqueous electrolyte secondary battery includes a positive electrode in which a positive electrode layer including a positive electrode active material, a positive electrode binder, and a conductive additive is formed on a positive electrode current collector, and a negative electrode layer including a negative electrode active material and a negative electrode binder. A laminate in which a negative electrode formed on a current collector is laminated or wound via a separator is housed in a metal case or a laminate film outer package.

非水電解液二次電池の負極は、負極活物質である黒鉛、場合によって導電助剤の混合物を例えばポリビニリデンフルオライド(以下PVDFと表記)のような結着剤と混合し、銅などからなる負極集電体に形成してなる。しかし負極活物質同士(黒鉛と黒鉛)と比較して互いに異なる材質である負極活物質と負極集電体(黒鉛と銅)の接着性は劣る。   The negative electrode of the non-aqueous electrolyte secondary battery is composed of graphite, which is a negative electrode active material, and in some cases, a mixture of conductive aids, for example, mixed with a binder such as polyvinylidene fluoride (hereinafter referred to as PVDF), and from copper. Formed into a negative electrode current collector. However, the adhesion between the negative electrode active material and the negative electrode current collector (graphite and copper), which are different materials from each other as compared with the negative electrode active materials (graphite and graphite), is inferior.

そのため負極活物質が膨張収縮を繰り返す充放電サイクルにおいて、負極層と負極集電体の接着性は次第に弱まる。このような接着性の低下はインピーダンスの増加を引き起こし、サイクル容量劣化の一因となりうる。そこで負極集電体である銅箔を表面処理することで負極層との接着性を高めるという手法が用いられる。例えば特許文献1〜4には接着性を改善するために銅箔表面に銅の酸化物、水酸化物の層を設ける記載がある。また特許文献5〜6には炭素粒子と結着剤から成る層を集電体金属箔上に設ける記載がある。   Therefore, in the charge / discharge cycle in which the negative electrode active material repeatedly expands and contracts, the adhesion between the negative electrode layer and the negative electrode current collector is gradually weakened. Such a decrease in adhesion causes an increase in impedance, which can contribute to cycle capacity deterioration. Therefore, a method is used in which the copper foil as the negative electrode current collector is surface-treated to improve the adhesion with the negative electrode layer. For example, Patent Documents 1 to 4 include a description of providing a copper oxide or hydroxide layer on a copper foil surface in order to improve adhesion. Further, Patent Documents 5 to 6 describe that a layer made of carbon particles and a binder is provided on a current collector metal foil.

特開平07−109558号公報Japanese Patent Application Laid-Open No. 07-109558 特開平11−310864号公報JP-A-11-310864 特開平11−293444号公報JP 11-293444 A 特開2000−45059号公報JP 2000-45059 A 特開平09−97625号公報JP 09-97625 A 特開平06−163030号公報Japanese Patent Laid-Open No. 06-163030

特許文献1〜4の技術では、負極層と集電体表面の接着性を向上できる反面、負極層と集電体の間に酸化物や水酸化物といった抵抗体を設けることになる。また特許文献5〜6の技術では炭素粒子を結着剤で集電体金属箔表面に接着するため、炭素粒子と集電体金属箔の表面は点接触となる。   In the techniques of Patent Documents 1 to 4, the adhesion between the negative electrode layer and the current collector surface can be improved, but a resistor such as an oxide or hydroxide is provided between the negative electrode layer and the current collector. In the techniques of Patent Documents 5 to 6, since the carbon particles are bonded to the surface of the current collector metal foil with a binder, the surfaces of the carbon particles and the current collector metal foil are in point contact.

本発明の技術的課題は、負極層と負極集電体表面の良好な電気的接触を付与し、且つ充放電サイクルを繰り返してもその電気的特性が安定し、内部抵抗増加による容量劣化の少ない非水電解液二次電池を提供することにある。   The technical problem of the present invention is that good electrical contact is provided between the negative electrode layer and the negative electrode current collector surface, and the electrical characteristics are stable even when the charge / discharge cycle is repeated, and there is little capacity deterioration due to increase in internal resistance. The object is to provide a non-aqueous electrolyte secondary battery.

本発明の非水電解液二次電池は、負極活物質と負極結着剤を含む負極層を負極集電体上に形成した負極および正極を、セパレータを介して積層もしくは巻回し外装体に収納した非水電解液二次電池において、前記負極集電体が、表面に炭素をコーティングした銅箔からなる。   The non-aqueous electrolyte secondary battery of the present invention includes a negative electrode and a positive electrode in which a negative electrode layer containing a negative electrode active material and a negative electrode binder is formed on a negative electrode current collector, and is stacked or wound via a separator and stored in an outer package. In the non-aqueous electrolyte secondary battery, the negative electrode current collector is made of a copper foil whose surface is coated with carbon.

本発明の非水電解液二次電池は、前記負極集電体の炭素のコーティングが炭素前駆体樹脂の熱分解により、銅箔上に形成されることが好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, the carbon coating of the negative electrode current collector is preferably formed on a copper foil by thermal decomposition of a carbon precursor resin.

本発明の非水電解液二次電池は、前記炭素前駆体樹脂が熱分解以前に樹脂溶液の吹き付け塗工により銅箔表面にコーティングされることが好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, it is preferable that the carbon precursor resin is coated on the surface of the copper foil by spray coating of the resin solution before thermal decomposition.

本発明の非水電解液二次電池は、前記炭素前駆体樹脂のコーティングが銅箔上に水玉状で均一に分布し、その被覆率が30%以上、60%以下となるように塗工されることが好ましい。   The non-aqueous electrolyte secondary battery of the present invention is coated such that the coating of the carbon precursor resin is uniformly distributed in the form of polka dots on the copper foil, and the coverage is 30% or more and 60% or less. It is preferable.

本発明によれば、負極活物質に黒鉛を用いた非水電解液二次電池において負極集電体に炭素をコーティングした銅箔を用いることにより負極層と負極集電体表面の良好な電気的接触を維持しつつ接着性を向上させ、充放電サイクルによる負極層と負極集電体表面の抵抗増加を抑制することによりサイクル容量劣化を低減する非水電解液二次電池の提供が可能である。   According to the present invention, in a non-aqueous electrolyte secondary battery using graphite as a negative electrode active material, the negative electrode current collector and the surface of the negative electrode current collector can be electrically isolated by using a copper foil coated with carbon on the negative electrode current collector. It is possible to provide a non-aqueous electrolyte secondary battery that reduces cycle capacity deterioration by improving adhesion while maintaining contact and suppressing an increase in resistance between the negative electrode layer and the negative electrode current collector surface due to charge / discharge cycles. .

本発明の非水電解液二次電池は、負極活物質、負極結着剤、場合によって導電助剤を含む負極層を負極集電体上に形成した負極と、正極活物質、正極結着剤、導電助剤を含む正極層を正極集電体上に形成した正極を、セパレータを介して積層あるいは巻回した積層体を外装体に収納して非水電解液あるいはポリマー電解質を注液したのち封止して製造する。   The non-aqueous electrolyte secondary battery of the present invention includes a negative electrode active material, a negative electrode binder, and a negative electrode in which a negative electrode layer containing a conductive auxiliary agent is formed on the negative electrode current collector, a positive electrode active material, and a positive electrode binder. After a positive electrode layer including a conductive auxiliary agent formed on a positive electrode current collector is stacked or wound with a separator interposed between the laminate and the non-aqueous electrolyte or polymer electrolyte is injected Sealed and manufactured.

炭素をコーティングするものとしてはフェノール樹脂などを用いることができる。たとえば5重量%のレゾール型フェノール樹脂溶液を負極集電体に吹き付け塗工した後、炭素化する。負極活物質としては人造黒鉛、天然黒鉛を用いることができる。負極活物質、結着剤混合物、場合によってカーボンブラックのような導電助剤をN−メチル−2−ピロリドン(以下NMPと表記)のような溶剤中に分散させ、スラリーを調製し、炭素をコーティングした負極集電体上に直接塗工、乾燥し圧縮することにより負極を形成する。   As the carbon coating, a phenol resin or the like can be used. For example, 5% by weight of a resol type phenolic resin solution is spray-coated on the negative electrode current collector and then carbonized. Artificial graphite and natural graphite can be used as the negative electrode active material. A negative electrode active material, a binder mixture, and optionally a conductive aid such as carbon black are dispersed in a solvent such as N-methyl-2-pyrrolidone (hereinafter referred to as NMP), a slurry is prepared, and carbon is coated. The negative electrode is formed by directly coating, drying and compressing on the negative electrode current collector.

本発明の非水電解液二次電池において用いることのできる正極活物質として、LiMO2(ただしMは、少なくとも一つの遷移金属を表す)を単独あるいは複数種を混合したものを用いることができる。たとえば正極活物質、正極結着剤、カーボンブラックのような導電助剤をNMPのような溶剤中に分散させ、スラリーを調製し、正極集電体上に直接塗工、乾燥し圧縮することにより正極を形成する。 As a positive electrode active material that can be used in the non-aqueous electrolyte secondary battery of the present invention, LiMO 2 (wherein M represents at least one transition metal) can be used alone or a mixture of a plurality of types. For example, by dispersing a conductive additive such as a positive electrode active material, a positive electrode binder, and carbon black in a solvent such as NMP, preparing a slurry, coating directly on the positive electrode current collector, drying and compressing A positive electrode is formed.

セパレータとしてはポリプロピレン、ポリエチレン等のポリオレフィン樹脂、フッ素樹脂等の多孔性フィルムなどが使用できる。   As the separator, a polyolefin resin such as polypropylene or polyethylene, a porous film such as a fluororesin, or the like can be used.

電解液としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エーテル等の脂肪カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン、エトキメトキシエタン等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキシラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾノジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル等の非プロトン性溶媒のうち一種、あるいは二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させる。   Examples of the electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, and vinylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, methyl formate, and methyl acetate. , Fatty carboxylic acid esters such as propionate ether, γ-lactones such as γ-butyrolactone, chain ethers such as 1,2-diethoxyethane and ethoxymethoxyethane, cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran , Dimethyl sulfoxide, 1,3-dioxirane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl Noglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl ether, etc. One or a mixture of two or more aprotic solvents is used, and the lithium salt dissolved in these organic solvents is dissolved.

リチウム塩としては、例えばLiPF6 、LiAsF6 、LiAlCl4 、LiClO4、LiBF4、LiSbF6 、Li(CF3SO22、LiBr 、LiCl 、低脂肪酸カルボン酸リチウム、イミド類が挙げられる。また、電解液に代えてポリマー電解質を用いてもよい。 Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , Li (CF 3 SO 2 ) 2 , LiBr 3, LiCl 3, low fatty acid carboxylic acid lithium, and imides. Further, a polymer electrolyte may be used instead of the electrolytic solution.

図1は、本発明の負極を示す模式的断面図である。銅箔11の表面に炭素12をコーティングしており、その上に負極層13を塗工したものである。   FIG. 1 is a schematic cross-sectional view showing a negative electrode of the present invention. The surface of the copper foil 11 is coated with carbon 12, and the negative electrode layer 13 is coated thereon.

図2は、本発明に用いる、炭素をコーティングした銅箔を表す模式図であり、炭素22が銅箔21の表面に被覆率30%以上、60%以下で塗工されている。   FIG. 2 is a schematic diagram showing a carbon-coated copper foil used in the present invention. Carbon 22 is coated on the surface of copper foil 21 at a coverage of 30% or more and 60% or less.

図3は、本発明に用いる、炭素をコーティングした銅箔を表す模式図であり、炭素32が銅箔31の表面に被覆率60%を超えて塗工されている。   FIG. 3 is a schematic view showing a carbon-coated copper foil used in the present invention, in which carbon 32 is coated on the surface of the copper foil 31 with a covering rate exceeding 60%.

負極集電体に炭素をコーティングした銅箔を用いることにより、負極層と負極集電体間の良好な電気的接触と接着性を付与し、インピーダンス増加によるサイクル容量劣化を低減することができる。具体的には、レゾール型フェノール樹脂溶液を銅箔表面に直接塗工し、これを炭素化することで導電性の炭素をコーティングできるため、図1に示すように炭素12と銅箔11の表面は面接触となるため電気的接触は良好である。   By using a copper foil coated with carbon on the negative electrode current collector, good electrical contact and adhesion between the negative electrode layer and the negative electrode current collector can be imparted, and cycle capacity deterioration due to an increase in impedance can be reduced. Specifically, since the resol type phenolic resin solution is directly coated on the surface of the copper foil and carbonized, the conductive carbon can be coated. Therefore, the surface of the carbon 12 and the copper foil 11 as shown in FIG. Since this is a surface contact, electrical contact is good.

また銅箔表面にコーティングされた炭素前駆体樹脂が吹き付け塗工時の液滴の形状を維持したまま硬化、炭素化されることにより図1に示すように炭素12をコーティングした銅箔11の表面が粗面化されアンカー効果をもたらす。さらに銅箔表面の炭素のコーティングが図2のように炭素前駆体樹脂溶液吹き付け塗工時の液滴の形状を反映した水玉状で且つ均一に分布することで、充放電サイクルによる負極層や負極集電体の膨張収縮、および巻回時の曲げに対する炭素の追従性を付加することができる。   Also, the surface of the copper foil 11 coated with carbon 12 as shown in FIG. 1 is obtained by curing and carbonizing the carbon precursor resin coated on the copper foil surface while maintaining the shape of the droplets during spray coating. Is roughened to provide an anchor effect. Furthermore, the carbon coating on the surface of the copper foil has a polka dot shape and a uniform distribution reflecting the shape of the droplets during the spray coating of the carbon precursor resin solution as shown in FIG. It is possible to add the following property of carbon to expansion and contraction of the current collector and bending during winding.

その結果、充放電サイクルによる負極層と負極集電体表面の接着性低下を抑制し、内部抵抗による容量劣化を低減することができる。   As a result, it is possible to suppress a decrease in adhesion between the negative electrode layer and the surface of the negative electrode current collector due to the charge / discharge cycle, and to reduce capacity deterioration due to internal resistance.

また、前記の要件を満足するために炭素が銅箔表面に被覆率30%以上、60%以下で塗工されることが好ましい。すなわち、炭素の被覆率が30%未満の場合、結果として得られる炭素の凹凸によるアンカー効果や負極層との親和性による効果が不十分なため負極層と負極集電体表面の接着性に関して十分な効果が得られないためである。   In order to satisfy the above requirements, carbon is preferably applied to the copper foil surface at a coverage of 30% or more and 60% or less. That is, when the carbon coverage is less than 30%, the resulting anchor effect due to the unevenness of the carbon and the effect due to the affinity with the negative electrode layer are insufficient, so the adhesion between the negative electrode layer and the negative electrode current collector surface is sufficient. This is because a special effect cannot be obtained.

また、炭素の被覆率が60%を超えた場合、噴霧した前駆体樹脂溶液の液滴同士が凝集し、結果として図3のような連続的な炭素32が得られ、曲げや負極の膨張収縮に対する追従性が損なわれる恐れがあるためである。   Further, when the carbon coverage exceeds 60%, the sprayed droplets of the precursor resin solution aggregate to result in continuous carbon 32 as shown in FIG. This is because there is a possibility that followability with respect to may be impaired.

以下に本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

(実施例1)
厚さ10μmの銅箔の両面にレゾール型フェノール樹脂(以下フェノール樹脂と表記)の5重量%溶液を被覆率30%となるように吹付け塗工した。フェノール樹脂を塗工した銅箔を大気中で130℃−30分間熱処理してフェノール樹脂を硬化した。さらに窒素雰囲気中で600℃−60分間熱処理して銅箔表面に塗工したフェノール樹脂を炭素化し、炭素をコーティングした銅箔を調製した。
Example 1
A 5% by weight solution of a resol type phenolic resin (hereinafter referred to as a phenolic resin) was spray-coated on both sides of a copper foil having a thickness of 10 μm so that the coverage was 30%. The copper foil coated with the phenol resin was heat-treated at 130 ° C. for 30 minutes in the air to cure the phenol resin. Further, the phenol resin coated on the surface of the copper foil by heat treatment at 600 ° C. for 60 minutes in a nitrogen atmosphere was carbonized to prepare a copper foil coated with carbon.

負極活物質として人造黒鉛を93重量部、導電助剤としてカーボンブラックを2重量部、負極結着剤としてPVDFを5重量部となるように、負極結着剤を溶解したNMP溶液に混合してスラリーを調製し、このスラリーを、炭素をコーティングした銅箔の両面にドクターブレード法により塗工して負極を形成した。   Mix in an NMP solution in which the negative electrode binder is dissolved so that 93 parts by weight of artificial graphite as the negative electrode active material, 2 parts by weight of carbon black as the conductive auxiliary agent, and 5 parts by weight of PVDF as the negative electrode binder. A slurry was prepared, and this slurry was applied to both sides of a copper foil coated with carbon by a doctor blade method to form a negative electrode.

正極活物質としてはLiCoO2を用いた。正極活物質を95重量部、導電助剤としてカーボンブラックを2重量部、正極結着剤としてPVDFを3重量部となるように、正極結着剤を溶解したNMP溶液に混合してスラリーを調製し、このスラリーを厚さ15μmのアルミ箔の両面にドクターブレード法により塗工して正極を形成した。 LiCoO 2 was used as the positive electrode active material. A slurry was prepared by mixing the NMP solution in which the positive electrode binder was dissolved so that the positive electrode active material was 95 parts by weight, the carbon black as the conductive auxiliary agent was 2 parts by weight, and the PVDF as the positive electrode binder was 3 parts by weight. Then, the slurry was applied to both surfaces of a 15 μm thick aluminum foil by a doctor blade method to form a positive electrode.

電解液は1モル/リットルの濃度にLiPF6を溶解させたエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(混合容積比:EC/DEC=30/70)を用いた。また、セパレータは厚さ20μmの多孔性ポリエチレンフィルムを用いた。 As the electrolyte, a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in which LiPF 6 was dissolved at a concentration of 1 mol / liter (mixing volume ratio: EC / DEC = 30/70) was used. The separator used was a porous polyethylene film having a thickness of 20 μm.

上述した負極および正極を、セパレータを介して積層し、ラミネートフィルム外装体に収納して電解液を注液したのち封止して、非水電解液二次電池を組み立てた。   The above-described negative electrode and positive electrode were laminated via a separator, housed in a laminate film outer package, injected with an electrolytic solution, and sealed to assemble a non-aqueous electrolyte secondary battery.

(実施例2)
厚さ10μmの銅箔の両面にフェノール樹脂の5重量%溶液を被覆率40%となるように吹付け塗工した。フェノール樹脂を塗工した銅箔を大気中で130℃−30分間熱処理してフェノール樹脂を硬化した。さらに窒素雰囲気中で600℃−60分間熱処理して銅箔表面に塗工したフェノール樹脂を炭素化し、炭素をコーティングした銅箔を調製した。この炭素をコーティングした銅箔を負極集電体として用いたほかは実施例1と同様に非水電解液二次電池を組み立てた。
(Example 2)
A 5% by weight solution of phenol resin was spray-coated on both sides of a 10 μm thick copper foil so that the coverage was 40%. The copper foil coated with the phenol resin was heat-treated at 130 ° C. for 30 minutes in the air to cure the phenol resin. Further, the phenol resin coated on the surface of the copper foil by heat treatment at 600 ° C. for 60 minutes in a nitrogen atmosphere was carbonized to prepare a copper foil coated with carbon. A nonaqueous electrolyte secondary battery was assembled in the same manner as in Example 1 except that this carbon-coated copper foil was used as the negative electrode current collector.

(実施例3)
厚さ10μmの銅箔の両面にフェノール樹脂の5重量%溶液を被覆率50%となるように吹付け塗工した。フェノール樹脂を塗工した銅箔を大気中で130℃−30分間熱処理してフェノール樹脂を硬化した。さらに窒素雰囲気中で600℃−60分間熱処理して銅箔表面に塗工したフェノール樹脂を炭素化し、炭素をコーティングした銅箔を調製した。この炭素をコーティングした銅箔を負極集電体として用いたほかは実施例1と同様に非水電解液二次電池を組み立てた。
(Example 3)
A 5% by weight solution of phenol resin was spray-coated on both sides of a 10 μm thick copper foil so that the coverage was 50%. The copper foil coated with the phenol resin was heat-treated at 130 ° C. for 30 minutes in the air to cure the phenol resin. Further, the phenol resin coated on the surface of the copper foil by heat treatment at 600 ° C. for 60 minutes in a nitrogen atmosphere was carbonized to prepare a copper foil coated with carbon. A nonaqueous electrolyte secondary battery was assembled in the same manner as in Example 1 except that this carbon-coated copper foil was used as the negative electrode current collector.

(実施例4)
厚さ10μmの銅箔の両面にフェノール樹脂の5重量%溶液を被覆率60%となるように吹付け塗工した。フェノール樹脂を塗工した銅箔を大気中で130℃−30分間熱処理してフェノール樹脂を硬化した。さらに窒素雰囲気中で600℃−60分間熱処理して銅箔表面に塗工したフェノール樹脂を炭素化し、炭素をコーティングした銅箔を調製した。この炭素をコーティングした銅箔を負極集電体として用いたほかは実施例1と同様に非水電解液二次電池を組み立てた。
Example 4
A 5% by weight solution of phenol resin was spray-coated on both sides of a 10 μm thick copper foil so that the coverage was 60%. The copper foil coated with the phenol resin was heat-treated at 130 ° C. for 30 minutes in the air to cure the phenol resin. Further, the phenol resin coated on the surface of the copper foil by heat treatment at 600 ° C. for 60 minutes in a nitrogen atmosphere was carbonized to prepare a copper foil coated with carbon. A nonaqueous electrolyte secondary battery was assembled in the same manner as in Example 1 except that this carbon-coated copper foil was used as the negative electrode current collector.

参考例1
厚さ10μmの銅箔の両面にフェノール樹脂の5重量%溶液を被覆率70%となるように吹付け塗工した。フェノール樹脂を塗工した銅箔を大気中で130℃−30分間熱処理してフェノール樹脂を硬化した。さらに窒素雰囲気中で600℃−60分間熱処理して銅箔表面に塗工したフェノール樹脂を炭素化し、炭素をコーティングした銅箔を調製した。この炭素をコーティングした銅箔を負極集電体として用いたほかは実施例1と同様に非水電解液二次電池を組み立てた。
( Reference Example 1 )
A 5% by weight solution of phenol resin was spray-coated on both sides of a 10 μm thick copper foil so that the coverage was 70%. The copper foil coated with the phenol resin was heat-treated at 130 ° C. for 30 minutes in the air to cure the phenol resin. Further, the phenol resin coated on the surface of the copper foil by heat treatment at 600 ° C. for 60 minutes in a nitrogen atmosphere was carbonized to prepare a copper foil coated with carbon. A nonaqueous electrolyte secondary battery was assembled in the same manner as in Example 1 except that this carbon-coated copper foil was used as the negative electrode current collector.

(比較例1)
厚さ10μmの炭素をコーティングしていない銅箔を負極集電体として用いたほかは実施例1と同様に非水電解液二次電池を組み立てた。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery was assembled in the same manner as in Example 1 except that a copper foil having a thickness of 10 μm and not coated with carbon was used as the negative electrode current collector.

実施例1〜4、参考例1、比較例1で組み立てた非水電解液二次電池について0.2C、2.0Cの放電容量を測定し、その比からそれぞれのレート特性を比較した。容量測定は充電電圧4.2V(充電条件:電流1.0C、2.5時間、20℃)、放電電圧3.0V(放電条件:電流0.2C、20℃)にて実施した。 The discharge capacities of 0.2C and 2.0C were measured for the nonaqueous electrolyte secondary batteries assembled in Examples 1 to 4, Reference Example 1 and Comparative Example 1, and the respective rate characteristics were compared from the ratios. The capacity measurement was performed at a charge voltage of 4.2 V (charge condition: current 1.0 C, 2.5 hours, 20 ° C.) and a discharge voltage of 3.0 V (discharge condition: current 0.2 C, 20 ° C.).

また実施例1〜4、参考例1、比較例1で組み立てた非水電解液二次電池についてサイクル試験を500サイクル行い、初回の放電容量と500サイクル後の放電容量の比からそれぞれの放電容量維持率を比較した。充放電サイクル試験は充電電圧4.2V(充電条件:電流0.2C、2.5時間、20℃)、放電電圧3.0V(放電条件:電流0.2C、20℃)にて実施した。 In addition, the non-aqueous electrolyte secondary battery assembled in Examples 1 to 4, Reference Example 1 and Comparative Example 1 was subjected to 500 cycles, and each discharge capacity was determined from the ratio of the initial discharge capacity and the discharge capacity after 500 cycles. The maintenance rates were compared. The charge / discharge cycle test was performed at a charge voltage of 4.2 V (charge condition: current 0.2 C, 2.5 hours, 20 ° C.) and a discharge voltage of 3.0 V (discharge condition: current 0.2 C, 20 ° C.).

表1に、実施例1〜4、参考例1、比較例1で組み立てた非水電解液二次電池の0.2C放電容量に対する2.0C放電容量の比率であるレート特性、および初回の放電容量に対する500サイクル後の放電容量維持率を示す。 Table 1 shows rate characteristics which are ratios of the 2.0 C discharge capacity to the 0.2 C discharge capacity of the nonaqueous electrolyte secondary batteries assembled in Examples 1 to 4, Reference Example 1 and Comparative Example 1, and the first discharge. The discharge capacity maintenance rate after 500 cycles with respect to the capacity is shown.

Figure 0005218965
Figure 0005218965

図4は、銅箔の面積に対する炭素の被覆率を横軸に、レート特性を縦軸にしたグラフである。   FIG. 4 is a graph with the horizontal axis representing the carbon coverage with respect to the area of the copper foil and the vertical axis representing the rate characteristic.

図5は、銅箔の面積に対する炭素の被覆率を横軸に、放電容量維持率(C500/C1)を縦軸にしたグラフである。   FIG. 5 is a graph in which the carbon coverage with respect to the area of the copper foil is plotted on the horizontal axis, and the discharge capacity retention ratio (C500 / C1) is plotted on the vertical axis.

図4より、実施例1〜4、参考例1のレート特性は、比較例1より大きくなることがわかった。負極集電体に炭素をコーティングした銅箔を用いることにより負極層と負極集電体表面の良好な電気的接触を維持しつつ接着性を向上させ、充放電サイクルによる負極層と負極集電体表面の抵抗増加を抑制することによりサイクル容量劣化を低減する非水電解液二次電池の提供が可能であり、目的の効果が得られることがわかる。 4 that the rate characteristics of Examples 1 to 4 and Reference Example 1 are greater than those of Comparative Example 1. By using a copper foil coated with carbon on the negative electrode current collector, the adhesion is improved while maintaining good electrical contact between the negative electrode layer and the negative electrode current collector surface, and the negative electrode layer and the negative electrode current collector by charge / discharge cycle are improved. It can be seen that it is possible to provide a non-aqueous electrolyte secondary battery that reduces deterioration of cycle capacity by suppressing an increase in surface resistance, and the intended effect can be obtained.

図5より、実施例1〜4の放電容量維持率は、比較例1と同等以上であることがわかった。負極集電体に炭素をコーティングした銅箔を用いることにより負極層と負極集電体表面の良好な電気的接触を維持しつつ接着性を向上させ、充放電サイクルによる負極層と負極集電体表面の抵抗増加を抑制することによりサイクル容量劣化を低減する非水電解液二次電池の提供が可能であり、目的の効果が得られることがわかる。   From FIG. 5, it was found that the discharge capacity retention rates of Examples 1 to 4 were equal to or higher than those of Comparative Example 1. By using a copper foil coated with carbon on the negative electrode current collector, the adhesion is improved while maintaining good electrical contact between the negative electrode layer and the negative electrode current collector surface, and the negative electrode layer and the negative electrode current collector by charge / discharge cycle are improved. It can be seen that it is possible to provide a non-aqueous electrolyte secondary battery that reduces deterioration of cycle capacity by suppressing an increase in surface resistance, and the intended effect can be obtained.

実施例1〜4、参考例1、比較例1の結果である図4〜5のデータを総合して考慮すれば、実施例1〜4の範囲、すなわち、銅箔の面積に対する炭素被覆率が30%以上、60%以下であれば、サイクル容量劣化を低減する非水電解液二次電池の提供が可能であることがわかる。 In consideration of the data of FIGS. 4 to 5 which are the results of Examples 1 to 4, Reference Example 1 and Comparative Example 1, the carbon coverage with respect to the range of Examples 1 to 4, that is, the area of the copper foil is If it is 30% or more and 60% or less, it turns out that the provision of the nonaqueous electrolyte secondary battery which reduces cycle capacity deterioration is possible.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明の負極を示す模式的断面図。The typical sectional view showing the negative electrode of the present invention. 本発明に用いる、被覆率30%以上、60%以下の炭素をコーティングした銅箔を表す模式図。The schematic diagram showing the copper foil which coated the carbon of 30% or more of coverage and 60% or less used for this invention. 被覆率60%を超えて炭素をコーティングした銅箔を表す模式図。 The schematic diagram showing the copper foil which coated carbon exceeding the coverage 60%. 銅箔の面積に対する炭素前駆体樹脂の被覆率とレート特性の関係を示す図。The figure which shows the relationship between the coverage of carbon precursor resin with respect to the area of copper foil, and a rate characteristic. 銅箔の面積に対する炭素前駆体樹脂の被覆率と500サイクル後の放電容量維持率の関係を示す図。The figure which shows the relationship between the coverage of the carbon precursor resin with respect to the area of copper foil, and the discharge capacity maintenance factor after 500 cycles.

符号の説明Explanation of symbols

11、21、31 銅箔
12、22、32 炭素
13 負極層
11, 21, 31 Copper foil 12, 22, 32 Carbon 13 Negative electrode layer

Claims (2)

負極活物質と負極結着剤を含む負極層を負極集電体上に形成した負極および正極を、セパレータを介して積層もしくは巻回し外装体に収納した非水電解液二次電池において、前記負極集電体が、炭素前駆体樹脂の熱分解により表面に炭素をコーティングした銅箔からなり、前記炭素前駆体樹脂は、その熱分解以前に、樹脂溶液の吹き付け塗工により水玉状で均一に分布し、被覆率が30%以上、60%以下となるように銅箔表面にコーティングされることを特徴とする非水電解液二次電池。 In the non-aqueous electrolyte secondary battery in which a negative electrode and a positive electrode in which a negative electrode layer including a negative electrode active material and a negative electrode binder is formed on a negative electrode current collector are stacked or wound via a separator and housed in an outer package, the negative electrode current collector, Ri Do a copper foil coated with carbon on the surface by pyrolysis of the carbon precursor resin, the carbon precursor resin, the thermal decomposition before uniformly with polka dots by spraying a coating resin solution distributed coverage of 30% or more, a non-aqueous electrolyte secondary battery, characterized Rukoto coated on the copper foil surface so that 60% or less. 負極活物質と負極結着剤を含む負極層を負極集電体上に形成した負極および正極を、セパレータを介して積層もしくは巻回し外装体に収納した非水電解液二次電池において、前記負極集電体が、表面に炭素をコーティングした銅箔からなり、前記炭素のコーティングは水玉状で均一に分布し、その被覆率が30%以上、60%以下であることを特徴とする非水電解液二次電池。In the non-aqueous electrolyte secondary battery in which a negative electrode and a positive electrode in which a negative electrode layer including a negative electrode active material and a negative electrode binder is formed on a negative electrode current collector are stacked or wound via a separator and housed in an outer package, the negative electrode Non-aqueous electrolysis characterized in that a current collector is made of copper foil coated with carbon on the surface, the carbon coating is uniformly distributed in a polka dot shape, and the coverage is 30% or more and 60% or less Liquid secondary battery.
JP2008112431A 2008-04-23 2008-04-23 Non-aqueous electrolyte secondary battery Active JP5218965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112431A JP5218965B2 (en) 2008-04-23 2008-04-23 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112431A JP5218965B2 (en) 2008-04-23 2008-04-23 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2009266466A JP2009266466A (en) 2009-11-12
JP5218965B2 true JP5218965B2 (en) 2013-06-26

Family

ID=41392060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112431A Active JP5218965B2 (en) 2008-04-23 2008-04-23 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5218965B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140779B1 (en) * 2011-06-16 2013-02-13 株式会社神戸製鋼所 Electrode material
JP5144821B1 (en) * 2011-06-16 2013-02-13 株式会社神戸製鋼所 Method for producing electrode material
JP5281706B2 (en) * 2011-10-25 2013-09-04 株式会社神戸製鋼所 Current collector, current collector manufacturing method, electrode, and secondary battery
JP5325326B2 (en) * 2011-10-26 2013-10-23 株式会社神戸製鋼所 Current collector, electrode, secondary battery, and method of manufacturing secondary battery
JP6745587B2 (en) * 2014-05-29 2020-08-26 株式会社半導体エネルギー研究所 Electrode manufacturing method
US20180287129A1 (en) * 2017-03-28 2018-10-04 Enevate Corporation Methods of forming carbon-silicon composite material on a current collector
JP7093985B2 (en) * 2017-11-09 2022-07-01 日本黒鉛工業株式会社 Carbon coat layer, current collector, battery, carbon coat layer formation method and gravure plate
CN110752377A (en) * 2019-12-04 2020-02-04 江西理工大学 Battery current collector coated with graphite-like thin film, preparation method of battery current collector and prepared pole piece
CN112290079A (en) * 2020-10-19 2021-01-29 江苏智泰新能源科技有限公司 Quick-charging lithium ion battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250900A (en) * 1998-02-26 1999-09-17 Sony Corp Manufacture and manufacturing device for electrode for nonaqueous electrolyte secondary battery, electrode, and electrolyte secondary battery using its electrode
JP2000294251A (en) * 1999-04-06 2000-10-20 Hitachi Cable Ltd COPPER MATERIAL FOR NEGATIVE ELECTRODE CURRENT COLLECTOR OF Li ION BATTERY AND MANUFACTURE THEREFOR
JP2003109582A (en) * 2001-09-27 2003-04-11 Hitachi Metals Ltd Laminated strip material, laminated strip material for battery using the same, and manufacturing method of the same
JP4589047B2 (en) * 2003-08-28 2010-12-01 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2006059641A (en) * 2004-08-19 2006-03-02 Nissan Motor Co Ltd Electrode for secondary battery and secondary battery using it
JP2008262810A (en) * 2007-04-12 2008-10-30 Sony Corp Battery
WO2009125540A1 (en) * 2008-04-11 2009-10-15 パナソニック株式会社 Energy storage device, method for manufacturing same, and apparatus equipped with same

Also Published As

Publication number Publication date
JP2009266466A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5218965B2 (en) Non-aqueous electrolyte secondary battery
JP5213015B2 (en) Lithium ion secondary battery
JP5899442B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP7028164B2 (en) Lithium ion secondary battery
WO2015152113A1 (en) Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2017158961A1 (en) Positive electrode mixture for secondary batteries, manufacturing method for positive electrodes for secondary batteries, and manufacturing method for secondary batteries
JP2011023221A (en) Lithium ion secondary battery
JP2008153117A (en) Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US10044072B2 (en) Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
JP2010267540A (en) Nonaqueous electrolyte secondary battery
JP2013145669A (en) Nonaqueous electrolyte secondary battery
JP6428243B2 (en) Non-aqueous lithium secondary battery and manufacturing method thereof
JP2013178913A (en) Nonaqueous electrolyte secondary battery
JP2015088465A (en) Nonaqueous electrolyte secondary battery
CN112072061B (en) Nonaqueous electrolyte secondary battery
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP6567289B2 (en) Lithium ion secondary battery
WO2017188021A1 (en) Electrochemical element electrode and lithium ion secondary battery
JP5271751B2 (en) Lithium ion secondary battery
JP2007250499A (en) Lithium ion secondary battery
JP5252535B2 (en) Non-aqueous electrolyte secondary battery
WO2013183524A1 (en) Nonaqueous electrolyte secondary battery
WO2014007183A1 (en) Lithium ion secondary battery
JP6601951B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5218965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250