WO2013183524A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2013183524A1
WO2013183524A1 PCT/JP2013/064951 JP2013064951W WO2013183524A1 WO 2013183524 A1 WO2013183524 A1 WO 2013183524A1 JP 2013064951 W JP2013064951 W JP 2013064951W WO 2013183524 A1 WO2013183524 A1 WO 2013183524A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
lithium
material layer
Prior art date
Application number
PCT/JP2013/064951
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 梶田
慎 芹澤
入山 次郎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014519952A priority Critical patent/JPWO2013183524A1/en
Publication of WO2013183524A1 publication Critical patent/WO2013183524A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0442Anodisation, Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a high capacity non-aqueous electrolyte secondary battery using a high capacity active material for a negative electrode.
  • Carbon (C) such as graphite and hard carbon is mainly used for the negative electrode of the lithium ion secondary battery. Although carbon can repeat charge / discharge cycles satisfactorily, the capacity has already been used up to near the theoretical capacity, so a significant increase in capacity cannot be expected in the future. On the other hand, there is a strong demand for improving the capacity of lithium ion secondary batteries, and negative electrode materials having a higher capacity than carbon are being studied.
  • An example of a negative electrode material capable of realizing a high capacity is silicon (Si).
  • Si silicon
  • the negative electrode using Si has a large amount of occlusion and release of lithium ions per unit volume and a high capacity, when the lithium ions are occluded and released, the electrode active material itself has a large expansion and contraction, so that the pulverization proceeds.
  • the irreversible capacity in the first charge / discharge is large, and a portion not used for charge / discharge is formed on the positive electrode side. There is also a problem that the charge / discharge cycle life is short.
  • Patent Document 1 proposes a method using Si oxide as a negative electrode active material as a measure for reducing the initial irreversible capacity using Si and improving the charge / discharge cycle life.
  • Si oxide as a negative electrode active material
  • improvement in cycle characteristics has been confirmed.
  • the conductivity of the oxide is low, the current collecting property is lowered, and the irreversible capacity in charge / discharge is large.
  • Patent Document 2 proposes a method using particles obtained by combining a carbon material with Si and Si oxide as a negative electrode active material. Although the improvement of the cycle characteristics is confirmed by this, it is still insufficient, and the improvement of the initial charge / discharge efficiency is insufficient.
  • the method of charging electrochemically is excellent in that it can be charged according to the purpose by controlling the amount of energized electricity, but it is complicated and productivity because it is reassembled as a battery after charging the electrode once. Very low.
  • Patent Document 3 proposes a non-aqueous electrolyte lithium ion secondary battery using a mixed active material with a product.
  • the lithium-containing composite nitride is excellent in terms of compensating the irreversible capacity of the Si oxide, but the capacity per mass of the lithium-containing composite nitride is about 800 mAh / g, which is small compared to the Si oxide, and only the Si oxide is used. There is a problem that the energy density of the battery is smaller than the energy density of the battery when used as the negative electrode active material.
  • Patent Document 4 proposes a method of doping Li to the negative electrode in advance by attaching Li metal to the negative electrode and heating, but the doping time tends to be long, the doping tends to be non-uniform. There is a problem that is high.
  • an object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery having a high capacity, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery having the negative electrode.
  • the present invention is a negative electrode having a negative electrode active material layer containing at least one selected from the group consisting of silicon, silicon oxide and carbon, and in the presence of an ionic liquid, the negative electrode active material layer and the lithium source
  • the present invention relates to a negative electrode that is doped with lithium by performing a heat treatment by contacting the same, and a method for producing the same.
  • a negative electrode for a non-aqueous electrolyte secondary battery having a high capacity can be provided, and the manufacturing time of the negative electrode can be shortened.
  • FIG. 3 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type secondary battery. It is sectional drawing of the negative electrode for nonaqueous electrolyte secondary batteries which concerns on this invention.
  • an electrode element in which a positive electrode and a negative electrode are arranged to face each other, and an electrolytic solution are included in an outer package.
  • the shape of the secondary battery may be any of a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminated type, and a laminated laminate type, and a laminated laminate type is preferable.
  • a laminated laminate type secondary battery will be described.
  • FIG. 1 is a schematic cross-sectional view showing the structure of an electrode element included in a laminated laminate type secondary battery.
  • This electrode element is formed by alternately stacking a plurality of positive electrodes c and a plurality of negative electrodes a with a separator b interposed therebetween.
  • the positive electrode current collector e of each positive electrode c is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and a positive electrode terminal f is welded to the welded portion.
  • a negative electrode current collector d of each negative electrode a is welded and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal g is welded to the welded portion.
  • the negative electrode has a negative electrode active material layer containing a negative electrode active material containing at least one selected from the group consisting of silicon, silicon oxide, and carbon, and in the presence of an ionic liquid, Lithium is doped by performing a heat treatment by bringing the negative electrode active material layer and the lithium source into contact with each other.
  • the negative electrode before being doped with lithium may be referred to as a “negative electrode structure”.
  • the inventors of the present invention as a result of earnestly studying the problem that when doping Li by a method of heating Li metal in contact with the negative electrode in advance, the doping time is long and tends to be non-uniform, It was found that the low ionic conductivity was the cause. Then, the knowledge which can perform this Li dope process rapidly and uniformly by introduce
  • the negative electrode active material includes at least one selected from the group consisting of silicon, silicon oxide, and carbon, preferably includes silicon, and more preferably includes all of silicon, silicon oxide, and carbon.
  • the silicon oxide include silicon dioxide (SiO 2 ) and SiOx (x> 0, preferably 0 ⁇ x ⁇ 2).
  • the carbon include carbon that performs charging and discharging, such as graphite and hard carbon. These may use only 1 type and may use 2 or more types together.
  • the negative electrode active material may include at least one of silicon, silicon oxide, and carbon. These contents are not particularly limited.
  • the contents of silicon, silicon oxide, and carbon with respect to the total of silicon, silicon oxide, and carbon are 5% by mass to 90% by mass, and 5% by mass, respectively. % To 90% by mass and 2% to 80% by mass are preferable.
  • the content of each silicon, silicon oxide, and carbon with respect to the total of silicon, silicon oxide, and carbon is 20% by mass to 50% by mass, 40% by mass to 70% by mass, and 2% by mass, respectively. More preferably, it is 30 mass% or less.
  • the negative electrode structure is produced by forming a negative electrode active material layer on a negative electrode current collector using a mixture in which a negative electrode active material and a negative electrode binder are mixed.
  • the negative electrode binder include thermosetting compounds represented by polyimide, polyamide, polyamideimide, polyacrylic acid resin, polymethacrylic acid resin, and the like.
  • the content of the negative electrode binder is preferably in the range of 1 to 30% by mass and more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder.
  • the mixture containing the negative electrode active material and the negative electrode binder can further contain a solvent such as N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a paste prepared by kneading the mixture and solvent is applied onto a negative electrode current collector such as a copper foil and rolled to form a coated electrode plate, or directly pressed to form a pressure molded electrode plate.
  • the negative electrode structure can be fabricated by processing into the form. Specifically, for example, silicon powder, silicon oxide powder, carbon powder, and a negative electrode binder are dispersed in a solvent and kneaded.
  • the kneaded product is applied onto a negative electrode current collector made of a metal foil, and dried in a high-temperature atmosphere to produce a negative electrode structure in which a negative electrode active material layer is formed on the negative electrode current collector. it can.
  • the negative electrode active material layer a material that does not charge and discharge, such as carbon black and acetylene black, may be mixed in order to impart conductivity as necessary.
  • the electrode density of the negative electrode active material layer is preferably 0.5 g / cm 3 or more and 2.0 g / cm 3 or less. When the electrode density is less than 0.5 g / cm 3 , the absolute value of the discharge capacity is small, and there are cases where the merit for the carbon material cannot be obtained. On the other hand, when the electrode density exceeds 2.0 g / cm 3 , it is difficult to impregnate the electrode with the electrolytic solution, and the discharge capacity may be reduced.
  • the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • the thickness of the negative electrode current collector is preferably 4 to 100 ⁇ m because it is preferable to maintain the strength, and more preferably 5 to 30 ⁇ m in order to increase the energy density.
  • lithium pre-doping treatment in the presence of an ionic liquid, lithium is doped by bringing the negative electrode active material layer in the negative electrode structure into contact with the lithium source and performing a heat treatment (hereinafter referred to as “lithium pre-doping treatment”). May be described).
  • lithium pre-doping treatment a heat treatment
  • the ionic liquid is a salt composed of a cation and an anion that shows a liquid state at ⁇ 10 ° C. to 100 ° C.
  • the ionic liquid preferably has lithium ion conductivity. Since the ionic liquid generally has a high decomposition temperature, it is stable even when heated when doping the negative electrode structure with lithium.
  • anion constituting the ionic liquid examples include (CF 3 SO 2 ) 2 N ⁇ (also referred to as TFSI), (C 2 F 5 SO 2 ) 2 N ⁇ (also referred to as BETI), and (FSO 2 ) 2 N ⁇ .
  • CF 2 SO 2 ) 2 N ⁇ referred to as C-TFSI
  • CF 2 ) 3 (SO 2 ) 2 N ⁇ a cyclic anion such as (CF 2 SO 2 ) 2 N ⁇ (referred to as C-TFSI) or (CF 2 ) 3 (SO 2 ) 2 N ⁇ .
  • TFSI, BETI, FSI or (C 4 F 9 SO 2) 2 N - imide anion are preferable, TFSI or FSI is more preferable.
  • Examples of the cation constituting the ionic liquid include lithium, imidazolium, ammonium, pyridinium, pyrrolidinium, piperidinium, phosphonium, and sulfonium.
  • Examples of the imidazolium include 1-ethyl-3-methylimidazolium (EMI), 1-methyl-3-octylimidazolium (MOI), 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1 Examples include -propyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, or 1-ethyl-2,3-dimethylimidazolium.
  • ammonium examples include tetrabutylammonium, tetraethylammonium, triethylmethylammonium, N, N-dimethyl-N-methyl-N- (2-methoxyethyl) ammonium (DEME), trimethylhexylammonium (TMHA), or N, N, N-trimethyl-N-propylammonium and the like can be mentioned.
  • Examples of pyridinium include 1-butyl-3-methylpyridinium and 1-butylpyridinium.
  • Examples of pyrrolidinium include 1-methyl-1-propyl-pyrrolidinium (MPPy), 1-butyl-1-methylpyrrolidinium (BMP), and N-methyl-N-propylpyrrolidinium (P13). It is done.
  • Examples of piperidinium include 1-methyl-1-propyl-piperidinium (MPPi), 1-ethyl-1-methylpiperidinium, N-methyl-N-propylpiperidinium (PP13), and the like.
  • Examples of phosphonium include triethylmethoxyethylphosphonium (TEMEP), triethylmethylphosphonium, triethylhexylphosphonium, and the like.
  • sulfonium examples include triethylsulfonium (TES), triethylmethylsulfonium, triethylhexylsulfonium, and the like. Of these, lithium, MPPy, EMI, PP13, and P13 are preferable.
  • each of these anions and cations may be used alone or in combination of two or more.
  • MPPy-TFSI, BMP-TFSI, EMI-TFSI, TEMEP-TFSI or TES-TFSI are preferable, and MPPy-TFSI, BMP-TFSI or EMI-TFSI are more preferable.
  • an ionic liquid may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the negative electrode is subjected to a lithium pre-doping process in the presence of an ionic liquid.
  • an ionic liquid As a method for causing the ionic liquid to be present on the negative electrode, it is preferable to apply the ionic liquid on the negative electrode active material layer of the negative electrode structure.
  • the ionic liquid may be sprayed and sprayed on the negative electrode active material layer of the negative electrode structure, or the negative electrode structure may be immersed in the ionic liquid.
  • the ionic liquid is preferably applied to part or all of the surface of the negative electrode active material layer of the negative electrode structure.
  • Examples of a method for applying the ionic liquid include a doctor blade method and a large coater method.
  • FIG. 2 is a schematic cross-sectional view showing a negative electrode structure.
  • a negative electrode active material layer 1 is formed on a negative electrode current collector 2, and an ionic liquid 3 is immersed in the negative electrode active material.
  • the lithium source is preferably in the form of a sheet in order to uniformly contact the negative electrode structure, and examples thereof include metal foils mainly composed of lithium such as rolled lithium foil and vapor-deposited lithium foil.
  • the base material of the sheet include metals such as copper and plastic films such as PET. If the heating temperature exceeds the melting point of metallic lithium (180.5 ° C), the molten lithium will flow out to places other than the electrodes, and efficient diffusion will not be performed. It is more preferable to carry out at 60 ° C. or higher and 120 ° C. or lower, and 60 ° C.
  • the heating time is not particularly limited, but is preferably 10 minutes to 48 hours, more preferably 10 minutes to 30 minutes, and even more preferably 10 minutes to 15 minutes.
  • the presence of the ionic liquid makes it possible to perform the lithium doping process uniformly in a short time. Since metallic lithium reacts violently with moisture, all operations are preferably performed in a low humidity environment.
  • the positive electrode is formed, for example, by binding a positive electrode active material so as to cover the positive electrode current collector with a positive electrode binder.
  • the positive electrode active material is not particularly limited, LiMnO 2, LixMn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3, LixMn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) or the like Lithium manganate having a layered structure or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2 or a part of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn 1 / Lithium transition metal oxides in which more than half of specific transition metals such as 3 O 2 are present; Li in excess of the stoichiometric composition in these lithium transition metal oxides; Lithium oxide such as LiFePO 4 Etc.
  • these metal oxides were partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Materials can also be used.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • radical materials or the like can be used as the positive electrode active material.
  • the same negative electrode binder can be used.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • the positive electrode current collector the same as the negative electrode current collector can be used.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • Electrode As the electrolytic solution, a solution in which a lithium salt is dissolved as an electrolyte in a solvent can be used.
  • Solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC).
  • Chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylform Amide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, And apro
  • propylene carbonate, ethylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferably used alone or in combination.
  • lithium salt examples include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, include LiI, LiSCN, LiCl, imides and the like It is done. These can be used alone or in combination of two or more.
  • the electrolyte concentration of the electrolytic solution can be, for example, 0.5 mol / l to 1.5 mol / l. If electrolyte concentration is 1.5 mol / l or less, the increase in the density and viscosity of electrolyte solution can be suppressed. Moreover, if electrolyte concentration is 0.5 mol / l or more, the electrical conductivity of electrolyte solution can be made enough. A polymer electrolyte may be used instead of the electrolyte.
  • a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used.
  • a separator what laminated
  • polyimide, polyamideimide, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), cellulose, or glass fiber having high heat resistance can be used.
  • the textile separator which bundled those fibers and made it into a thread form and made it into a textile fabric can also be used.
  • the exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
  • a laminated laminate type secondary battery a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
  • an aluminum laminate film from the viewpoint of suppressing volume expansion.
  • Example 1 and 2 Preparation of negative electrode
  • a mixture in which the molar ratio of Si, SiO 2 and carbon (C) was 1: 1: 0.8 was used as the negative electrode active material.
  • This negative electrode active material was mixed with polyimide as a negative electrode binder at a weight ratio of 85:15 (negative electrode active material: negative electrode binder), and an electrode material mixed with NMP as a solvent had a thickness of 10 ⁇ m. This was coated on a copper foil and dried at 125 ° C. for 5 minutes. Thereafter, compression molding was performed with a roll press, and drying was performed again in a drying furnace at 350 ° C. for 30 minutes in an N 2 atmosphere. The copper foil on which the negative electrode active material layer was formed was punched out to 30 ⁇ 28 mm to produce a negative electrode.
  • Li dope An ionic liquid of 1.0 mol / L LiTFSI / MPPy-TFSI was applied to the negative electrode surface, and a 3.2 ⁇ 3.4 mm Li foil was attached to the negative electrode. The laminate was sealed and left in a high-temperature bath at 60 ° C. for 10 minutes.
  • Example 2 it carried out like Example 1 except the temperature of the thermostat having been 80 degreeC. The results are shown in Table 2.
  • a model cell was similarly produced in the case where Li was doped under the same conditions as in Example 1 except that a carbonate-based electrolyte was introduced instead of the ionic liquid and Li was attached to the negative electrode.
  • the results are shown in Table 6.
  • the Li metal is pasted in the presence of the ionic liquid and the temperature is increased.
  • the heating temperature was preferably 60 ° C. to 80 ° C. from the viewpoint of the amount of lithium to be doped.
  • negative electrode b separator c positive electrode d negative electrode current collector e positive electrode current collector f positive electrode terminal g negative electrode terminal 1 negative electrode active material layer 2 negative electrode current collector 3 ionic liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a negative electrode which has a negative electrode active material layer that contains at least one substance selected from the group consisting of silicon, silicon oxide and carbon, and which is characterized in that the negative electrode is doped with lithium by bringing the negative electrode active material layer into contact with a lithium source and carrying out a heat treatment in the presence of an ionic liquid.

Description

非水電解質二次電池Nonaqueous electrolyte secondary battery
 本発明は負極に高容量活物質を用いた、高容量を有する非水電解質二次電池に関する。 The present invention relates to a high capacity non-aqueous electrolyte secondary battery using a high capacity active material for a negative electrode.
 現在、携帯電話やノートパソコン等のモバイル機器の普及により、その電力源となる二次電池の役割が重要視されている。これらの二次電池には小型・軽量でかつ高容量であり、充放電を繰り返しても劣化しにくい性能、高安全性が求められ、現在はリチウムイオン二次電池が最も多く利用されている。 Nowadays, with the spread of mobile devices such as mobile phones and laptop computers, the role of secondary batteries as a power source is regarded as important. These secondary batteries are small, light and have a high capacity, and are required to have performance and high safety which are not easily deteriorated even after repeated charge and discharge. Lithium ion secondary batteries are currently most frequently used.
 リチウムイオン二次電池の負極には、主として黒鉛やハードカーボン等の炭素(C)が用いられている。炭素は充放電サイクルを良好に繰り返すことができるものの、すでに理論容量付近まで容量を使用していることから、今後大幅な容量向上は期待出来ない。その一方で、リチウムイオン二次電池の容量向上の要求は強く、炭素よりも高容量を有する負極材料の検討が行われている。 Carbon (C) such as graphite and hard carbon is mainly used for the negative electrode of the lithium ion secondary battery. Although carbon can repeat charge / discharge cycles satisfactorily, the capacity has already been used up to near the theoretical capacity, so a significant increase in capacity cannot be expected in the future. On the other hand, there is a strong demand for improving the capacity of lithium ion secondary batteries, and negative electrode materials having a higher capacity than carbon are being studied.
 高容量を実現可能な負極材料としては、例えばケイ素(Si)が挙げられる。Siを用いた負極は、単位体積当りのリチウムイオンの吸蔵放出量が多く高容量であるものの、リチウムイオンが吸蔵放出される際に電極活物質自体の膨脹収縮が大きいために微粉化が進行し、初回充放電における不可逆容量が大きく、正極側に充放電に利用されない部分ができる。また、充放電サイクル寿命が短いという問題もある。 An example of a negative electrode material capable of realizing a high capacity is silicon (Si). Although the negative electrode using Si has a large amount of occlusion and release of lithium ions per unit volume and a high capacity, when the lithium ions are occluded and released, the electrode active material itself has a large expansion and contraction, so that the pulverization proceeds. The irreversible capacity in the first charge / discharge is large, and a portion not used for charge / discharge is formed on the positive electrode side. There is also a problem that the charge / discharge cycle life is short.
 Siを用いた初回不可逆容量の低減、及び充放電サイクル寿命の改善対策として、Si酸化物を負極活物質として用いる方法が特許文献1で提案されている。特許文献1においては、Si酸化物を負極活物質として用いることにより活物質単位質量あたりの体積膨張収縮を減らすことができるためサイクル特性の向上が確認されている。一方、酸化物の導電性が低いため、集電性が低下し、充放電における不可逆容量が大きい問題を有している。 Patent Document 1 proposes a method using Si oxide as a negative electrode active material as a measure for reducing the initial irreversible capacity using Si and improving the charge / discharge cycle life. In Patent Document 1, since the volume expansion / contraction per unit mass of the active material can be reduced by using Si oxide as the negative electrode active material, improvement in cycle characteristics has been confirmed. On the other hand, since the conductivity of the oxide is low, the current collecting property is lowered, and the irreversible capacity in charge / discharge is large.
 更に容量及び充放電サイクル寿命の改善を行う方法として、Si及びSi酸化物に炭素材料を複合化させた粒子を負極活物質として用いる方法が特許文献2で提案されている。これによりサイクル特性の向上が確認されるものの未だ不十分であり、また初回充放電効率の改善は不十分である。 Further, as a method for further improving the capacity and charge / discharge cycle life, Patent Document 2 proposes a method using particles obtained by combining a carbon material with Si and Si oxide as a negative electrode active material. Although the improvement of the cycle characteristics is confirmed by this, it is still insufficient, and the improvement of the initial charge / discharge efficiency is insufficient.
 この初回不可逆容量の対応策として、不可逆容量分を予め電気化学的に充電しておく方法が試みられている。電気化学的に充電しておく方法は、通電電気量を制御することで目的に応じた充電が可能な点が優れているが、一度電極を充電した後に再び電池として組み直すため煩雑で生産性も極めて低い。 As a countermeasure for the first irreversible capacity, an attempt is made to electrochemically charge the irreversible capacity in advance. The method of charging electrochemically is excellent in that it can be charged according to the purpose by controlling the amount of energized electricity, but it is complicated and productivity because it is reassembled as a battery after charging the electrode once. Very low.
 他に、初回不可逆容量の対応策として、負極にSi酸化物とLi3-xN(Mは遷移金属を表し、0≦x≦0.8である)で表されるリチウム含有複合窒化物との混合活物質を用いる非水電解質リチウムイオン二次電池が特許文献3で提案されている。リチウム含有複合窒化物でSi酸化物の不可逆容量を補う点で優れているが、リチウム含有複合窒化物の質量あたりの容量が約800mAh/gとSi酸化物と比べて小さく、Si酸化物のみを負極活物質に用いた場合の電池のエネルギー密度に比べて、電池としてのエネルギー密度は小さくなる課題がある。 In addition, as a countermeasure for the first irreversible capacity, lithium-containing composite nitridation represented by Si oxide and Li 3-x M x N (M represents a transition metal and 0 ≦ x ≦ 0.8) is used for the negative electrode. Patent Document 3 proposes a non-aqueous electrolyte lithium ion secondary battery using a mixed active material with a product. The lithium-containing composite nitride is excellent in terms of compensating the irreversible capacity of the Si oxide, but the capacity per mass of the lithium-containing composite nitride is about 800 mAh / g, which is small compared to the Si oxide, and only the Si oxide is used. There is a problem that the energy density of the battery is smaller than the energy density of the battery when used as the negative electrode active material.
 また、特許文献4にて負極にLi金属を貼り付け加熱することで、あらかじめ負極にLiをドープする方法が提案されているが、ドープする時間が長い、ドープが不均一になりやすい、ドープ温度が高いという問題がある。 Patent Document 4 proposes a method of doping Li to the negative electrode in advance by attaching Li metal to the negative electrode and heating, but the doping time tends to be long, the doping tends to be non-uniform. There is a problem that is high.
特開平06-325765号公報Japanese Patent Laid-Open No. 06-325765 特開2004-139886号公報JP 2004-139886 A 特開2000-164207号公報JP 2000-164207 A 特開2007-214109公報JP 2007-214109 A
 前述したような問題点を鑑みて、本発明は、高容量を有する非水電解質二次電池用負極、その製造方法および該負極を有する非水電解質二次電池を提供することを目的とする。 In view of the problems as described above, an object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery having a high capacity, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery having the negative electrode.
 本発明は、シリコン、シリコン酸化物および炭素からなる群から選択される少なくとも一種を含む負極活物質層を有する負極であって、イオン液体が存在する状態で、前記負極活物質層とリチウム源とを接触させて加熱処理を行うことによりリチウムがドープされたことを特徴とする負極と、その製造方法に関する。 The present invention is a negative electrode having a negative electrode active material layer containing at least one selected from the group consisting of silicon, silicon oxide and carbon, and in the presence of an ionic liquid, the negative electrode active material layer and the lithium source The present invention relates to a negative electrode that is doped with lithium by performing a heat treatment by contacting the same, and a method for producing the same.
 本発明によれば、高容量を有する非水電解質二次電池用負極を提供でき、さらに、負極の製造時間を短縮できる。 According to the present invention, a negative electrode for a non-aqueous electrolyte secondary battery having a high capacity can be provided, and the manufacturing time of the negative electrode can be shortened.
積層ラミネート型の二次電池が有する電極素子の構造を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type secondary battery. 本発明に係る非水電解質二次電池用負極の断面図である。It is sectional drawing of the negative electrode for nonaqueous electrolyte secondary batteries which concerns on this invention.
(二次電池)
 本実施形態に係る二次電池は、正極および負極が対向配置された電極素子と、電解液とが外装体に内包されている。二次電池の形状は、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型および積層ラミネート型のいずれでもよいが、積層ラミネート型が好ましい。以下、積層ラミネート型の二次電池について説明する。
(Secondary battery)
In the secondary battery according to this embodiment, an electrode element in which a positive electrode and a negative electrode are arranged to face each other, and an electrolytic solution are included in an outer package. The shape of the secondary battery may be any of a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminated type, and a laminated laminate type, and a laminated laminate type is preferable. Hereinafter, a laminated laminate type secondary battery will be described.
 図1は、積層ラミネート型二次電池が有する電極素子の構造を示す模式的断面図である。この電極素子は、正極cの複数および負極aの複数が、セパレータbを挟みつつ交互に積み重ねられて形成されている。各正極cが有する正極集電体eは、正極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に正極端子fが溶接されている。各負極aが有する負極集電体dは、負極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に負極端子gが溶接されている。 FIG. 1 is a schematic cross-sectional view showing the structure of an electrode element included in a laminated laminate type secondary battery. This electrode element is formed by alternately stacking a plurality of positive electrodes c and a plurality of negative electrodes a with a separator b interposed therebetween. The positive electrode current collector e of each positive electrode c is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and a positive electrode terminal f is welded to the welded portion. A negative electrode current collector d of each negative electrode a is welded and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal g is welded to the welded portion.
(負極)
 本実施形態において、負極は、シリコン、シリコン酸化物および炭素からなる群から選択される少なくとも一種を含む負極活物質を含む負極活物質層を有し、かつ、イオン液体が存在する状態で、前記負極活物質層とリチウム源とを接触させて加熱処理を行うことによりリチウムがドープされている。なお、以下、本明細書において、リチウムがドープされる前の負極のことを、「負極構造体」と記載することもある。
(Negative electrode)
In the present embodiment, the negative electrode has a negative electrode active material layer containing a negative electrode active material containing at least one selected from the group consisting of silicon, silicon oxide, and carbon, and in the presence of an ionic liquid, Lithium is doped by performing a heat treatment by bringing the negative electrode active material layer and the lithium source into contact with each other. Hereinafter, in the present specification, the negative electrode before being doped with lithium may be referred to as a “negative electrode structure”.
 本発明の発明者らは、あらかじめ負極にLi金属を接触させて加熱する方法によりLiをドープする場合、ドープする時間が長く、不均一になりやすいという問題について鋭意研究を行った結果、負極中のイオン伝導度の低さが原因であることをつきとめた。そこで、負極中にLiイオン伝導性のある液体を導入することで、このLiドープ工程を高速かつ均一に行うことができる知見を得た。これらの知見に基づき、本発明を完成させた。 The inventors of the present invention, as a result of earnestly studying the problem that when doping Li by a method of heating Li metal in contact with the negative electrode in advance, the doping time is long and tends to be non-uniform, It was found that the low ionic conductivity was the cause. Then, the knowledge which can perform this Li dope process rapidly and uniformly by introduce | transducing the liquid with Li ion conductivity in a negative electrode was acquired. Based on these findings, the present invention has been completed.
 また、導入するLiイオン伝導性のある液体として、加熱温度を高温にしても分解しないイオン液体が最適であることを見出した。 Also, it has been found that an ionic liquid that does not decompose even when the heating temperature is high is optimal as the Li ion conductive liquid to be introduced.
 本実施形態において、負極活物質は、シリコン、シリコン酸化物及び炭素からなる群から選択される少なくとも一種を含み、シリコンを含むことが好ましく、シリコン、シリコン酸化物および炭素をすべて含むことがより好ましい。前記シリコン酸化物としては、二酸化ケイ素(SiO)、SiOx(x>0、好ましくは0<x≦2)が挙げられる。前記炭素としては、黒鉛、ハードカーボン等、充放電を行う炭素が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。 In the present embodiment, the negative electrode active material includes at least one selected from the group consisting of silicon, silicon oxide, and carbon, preferably includes silicon, and more preferably includes all of silicon, silicon oxide, and carbon. . Examples of the silicon oxide include silicon dioxide (SiO 2 ) and SiOx (x> 0, preferably 0 <x ≦ 2). Examples of the carbon include carbon that performs charging and discharging, such as graphite and hard carbon. These may use only 1 type and may use 2 or more types together.
 上述のように負極活物質は、シリコン、シリコン酸化物及び炭素のうち少なくとも一種を含めばよい。これらの含有量は特に限定はされないが、例えば、シリコン、シリコン酸化物及び炭素の合計に対するそれぞれのシリコン、シリコン酸化物及び炭素の含有量は、それぞれ、5質量%以上90質量%以下、5質量%以上90質量%以下及び2質量%以上80質量%以下であることが好ましい。また、シリコン、シリコン酸化物及び炭素の合計に対するそれぞれのシリコン、シリコン酸化物及び炭素の含有量は、それぞれ、20質量%以上50質量%以下、40質量%以上70質量%以下及び2質量%以上30質量%以下であることがより好ましい。 As described above, the negative electrode active material may include at least one of silicon, silicon oxide, and carbon. These contents are not particularly limited. For example, the contents of silicon, silicon oxide, and carbon with respect to the total of silicon, silicon oxide, and carbon are 5% by mass to 90% by mass, and 5% by mass, respectively. % To 90% by mass and 2% to 80% by mass are preferable. Further, the content of each silicon, silicon oxide, and carbon with respect to the total of silicon, silicon oxide, and carbon is 20% by mass to 50% by mass, 40% by mass to 70% by mass, and 2% by mass, respectively. More preferably, it is 30 mass% or less.
 負極構造体は、負極活物質及び負極用結着剤を混合した合剤を用いて、負極集電体上に負極活物質層を形成することで作製される。負極用結着剤としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸系樹脂、およびポリメタクリル酸系樹脂等に代表される熱硬化性を有する化合物が挙げられる。負極結着剤の含有量は、負極活物質と負極結着剤の総量に対して1~30質量%の範囲であることが好ましく、2~25質量%であることがより好ましい。1質量%以上とすることにより、活物質同士あるいは活物質と集電体との密着性が向上し、サイクル特性が良好になる。また、30質量%以下とすることにより、活物質比率が向上し、負極容量を向上することができる。 The negative electrode structure is produced by forming a negative electrode active material layer on a negative electrode current collector using a mixture in which a negative electrode active material and a negative electrode binder are mixed. Examples of the negative electrode binder include thermosetting compounds represented by polyimide, polyamide, polyamideimide, polyacrylic acid resin, polymethacrylic acid resin, and the like. The content of the negative electrode binder is preferably in the range of 1 to 30% by mass and more preferably 2 to 25% by mass with respect to the total amount of the negative electrode active material and the negative electrode binder. By setting the content to 1% by mass or more, the adhesion between the active materials or between the active material and the current collector is improved, and the cycle characteristics are improved. Moreover, by setting it as 30 mass% or less, an active material ratio can improve and a negative electrode capacity | capacitance can be improved.
 負極活物質及び負極用結着剤を含む合剤は、さらにN-メチル-2-ピロリドン(NMP)等の溶剤を含むことができる。該合剤と溶剤とを混練したペーストを銅箔等の負極集電体上に塗布して圧延加工し塗布型極板としたり、直接プレスして加圧成形極板としたりすることにより、周知の形態に加工して、負極構造体を作製することができる。具体的には、例えば、シリコン粉末と、シリコン酸化物粉末と、炭素粉末と、負極用結着剤とを、溶剤に分散させ混練する。続いて、該混練物を金属箔からなる負極集電体上に塗布し、高温雰囲気で乾燥することにより、負極集電体上に負極活物質層が形成された負極構造体を作製することができる。 The mixture containing the negative electrode active material and the negative electrode binder can further contain a solvent such as N-methyl-2-pyrrolidone (NMP). A paste prepared by kneading the mixture and solvent is applied onto a negative electrode current collector such as a copper foil and rolled to form a coated electrode plate, or directly pressed to form a pressure molded electrode plate. The negative electrode structure can be fabricated by processing into the form. Specifically, for example, silicon powder, silicon oxide powder, carbon powder, and a negative electrode binder are dispersed in a solvent and kneaded. Subsequently, the kneaded product is applied onto a negative electrode current collector made of a metal foil, and dried in a high-temperature atmosphere to produce a negative electrode structure in which a negative electrode active material layer is formed on the negative electrode current collector. it can.
 負極活物質層中には、必要に応じて導電性を付与するため、カーボンブラックやアセチレンブラック等、前記炭素とは異なり充放電を行わない材料を混合してもよい。負極活物質層の電極密度は0.5g/cm以上、2.0g/cm以下であることが好ましい。該電極密度が0.5g/cm未満である場合には、放電容量の絶対値が小さく、炭素材料に対するメリットが得られない場合がある。一方、該電極密度が2.0g/cmをこえる場合、電極に電解液を含浸させることが難しく、放電容量が低下する場合がある。 In the negative electrode active material layer, a material that does not charge and discharge, such as carbon black and acetylene black, may be mixed in order to impart conductivity as necessary. The electrode density of the negative electrode active material layer is preferably 0.5 g / cm 3 or more and 2.0 g / cm 3 or less. When the electrode density is less than 0.5 g / cm 3 , the absolute value of the discharge capacity is small, and there are cases where the merit for the carbon material cannot be obtained. On the other hand, when the electrode density exceeds 2.0 g / cm 3 , it is difficult to impregnate the electrode with the electrolytic solution, and the discharge capacity may be reduced.
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。負極集電体の厚みは、強度を保てる厚みとすることが好ましいことから、4~100μmであることが好ましく、エネルギー密度を高めるためには、5~30μmであることがより好ましい。 As the negative electrode current collector, aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability. Examples of the shape include foil, flat plate, and mesh. The thickness of the negative electrode current collector is preferably 4 to 100 μm because it is preferable to maintain the strength, and more preferably 5 to 30 μm in order to increase the energy density.
 本実施形態においては、イオン液体が存在する状態で、負極構造体中の負極活物質層とリチウム源とを接触させて加熱処理を行うことによりリチウムをドープする(以下、「リチウムプレドープ処理」と記載することもある)。リチウムプレドープ処理の際にイオン液体が存在することにより、リチウムを負極構造体に高速かつ均一にドープすることができる。 In the present embodiment, in the presence of an ionic liquid, lithium is doped by bringing the negative electrode active material layer in the negative electrode structure into contact with the lithium source and performing a heat treatment (hereinafter referred to as “lithium pre-doping treatment”). May be described). By the presence of the ionic liquid during the lithium pre-doping treatment, lithium can be uniformly and rapidly doped into the negative electrode structure.
 イオン液体は-10℃から100℃において液体状態を示す、カチオンとアニオンからなる塩である。本実施形態において、イオン液体は、リチウムイオン導電性を有することが好ましい。イオン液体は分解温度が総じて高いため、負極構造体にリチウムをドープする際、加熱されても安定である。 The ionic liquid is a salt composed of a cation and an anion that shows a liquid state at −10 ° C. to 100 ° C. In the present embodiment, the ionic liquid preferably has lithium ion conductivity. Since the ionic liquid generally has a high decomposition temperature, it is stable even when heated when doping the negative electrode structure with lithium.
 イオン液体を構成するアニオンとしては、例えば、(CFSO-(TFSIとも称す)、(CSO-(BETIとも称す)、(FSO-(FSIとも称す)、(CSO-、(CFSO-、(CSO-、BF -、AlF -、PF -、AsF -、SbF -、ClO -、AlCl -、CFSO -、CSO -、CSO -、CSO -、CHSO -、CSO -、CHOSO -、COSO -、(CFPF -、(CPF -、(CPF -又は(CPF -等を挙げることができる。また、(CFSO-(C-TFSIと称す)又は(CF(SO-などの環状アニオンでもよい。これらの中でも、イオン液体を構成するアニオンとしては、TFSI、BETI、FSI又は(CSO-等のイミド系アニオンが好ましく、TFSI又はFSIがより好ましい。 Examples of the anion constituting the ionic liquid include (CF 3 SO 2 ) 2 N (also referred to as TFSI), (C 2 F 5 SO 2 ) 2 N (also referred to as BETI), and (FSO 2 ) 2 N −. (Also referred to as FSI), (C 4 F 9 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , (C 2 F 5 SO 2 ) 3 C , BF 4 , AlF 4 , PF 6 -, AsF 6 -, SbF 6 -, ClO 4 -, AlCl 4 -, CF 3 SO 3 -, C 2 F 5 SO 3 -, C 3 F 7 SO 3 -, C 4 F 9 SO 3 -, CH 3 SO 3 , C 2 H 5 SO 3 , CH 3 OSO 3 , C 2 H 5 OSO 3 , (CF 3 ) 3 PF 3 , (C 2 F 5 ) 3 PF 3 , (C 3 F 7 ) 3 PF 3 - or (C 4 F 9 ) 3 PF 3- and the like. Further, it may be a cyclic anion such as (CF 2 SO 2 ) 2 N (referred to as C-TFSI) or (CF 2 ) 3 (SO 2 ) 2 N . Among these, as the anion constituting the ionic liquid, TFSI, BETI, FSI or (C 4 F 9 SO 2) 2 N - imide anion are preferable, TFSI or FSI is more preferable.
 イオン液体を構成するカチオンとしては、例えば、リチウム、イミダゾリウム、アンモニウム、ピリジニウム、ピロリジニウム、ピペリジニウム、ホスホニウム、又はスルホニウム等が挙げられる。イミダゾリウムとしては、例えば、1-エチル-3-メチルイミダゾリウム(EMI)、1-メチル-3-オクチルイミダゾリウム(MOI)、1,3-ジメチルイミダゾリウム、1,3-ジエチルイミダゾリウム、1-プロピル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ヘキシル-3-メチルイミダゾリウム、又は1-エチル-2,3-ジメチルイミダゾリウム等が挙げられる。アンモニウムとしては、例えば、テトラブチルアンモニウム、テトラエチルアンモニウム、トリエチルメチルアンモニウム、N,N-ジメチル-N-メチル-N-(2-メトキシエチル)アンモニウム(DEME)、トリメチルヘキシルアンモニウム(TMHA)、又はN,N,N-トリメチル-N-プロピルアンモニウム等が挙げられる。ピリジニウムとしては、例えば、1-ブチル-3-メチルピリジニウム、又は1-ブチルピリジニウム等が挙げられる。ピロリジニウムとしては、例えば、1-メチル-1-プロピル-ピロリジニウム(MPPy)、1-ブチル-1-メチルピロリジニウム(BMP)、又はN-メチル-N-プロピルピロリジニウム(P13)等が挙げられる。ピペリジニウムとしては、例えば、1-メチル-1-プロピル-ピぺリジニウム(MPPi)、1-エチル-1-メチルピペリジニウム、又はN-メチル-N-プロピルピペリジニウム(PP13)等が挙げられる。ホスホニウムとしては、例えば、トリエチルメトキシエチルホスホニウム(TEMEP)、トリエチルメチルホスホニウム、又はトリエチルヘキシルホスホニウム等が挙げられる。スルホニウムとしては、例えば、トリエチルスルホニウム(TES)、トリエチルメチルスルホニウム、又はトリエチルヘキシルスルホニウム等が挙げられる。これらのうち、リチウム、MPPy、EMI、PP13、P13が好ましい。 Examples of the cation constituting the ionic liquid include lithium, imidazolium, ammonium, pyridinium, pyrrolidinium, piperidinium, phosphonium, and sulfonium. Examples of the imidazolium include 1-ethyl-3-methylimidazolium (EMI), 1-methyl-3-octylimidazolium (MOI), 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1 Examples include -propyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, or 1-ethyl-2,3-dimethylimidazolium. Examples of ammonium include tetrabutylammonium, tetraethylammonium, triethylmethylammonium, N, N-dimethyl-N-methyl-N- (2-methoxyethyl) ammonium (DEME), trimethylhexylammonium (TMHA), or N, N, N-trimethyl-N-propylammonium and the like can be mentioned. Examples of pyridinium include 1-butyl-3-methylpyridinium and 1-butylpyridinium. Examples of pyrrolidinium include 1-methyl-1-propyl-pyrrolidinium (MPPy), 1-butyl-1-methylpyrrolidinium (BMP), and N-methyl-N-propylpyrrolidinium (P13). It is done. Examples of piperidinium include 1-methyl-1-propyl-piperidinium (MPPi), 1-ethyl-1-methylpiperidinium, N-methyl-N-propylpiperidinium (PP13), and the like. . Examples of phosphonium include triethylmethoxyethylphosphonium (TEMEP), triethylmethylphosphonium, triethylhexylphosphonium, and the like. Examples of the sulfonium include triethylsulfonium (TES), triethylmethylsulfonium, triethylhexylsulfonium, and the like. Of these, lithium, MPPy, EMI, PP13, and P13 are preferable.
 なお、これらのアニオンおよびカチオンはそれぞれ、一種のみが単独で用いられてもよいし、二種以上を組み合わせて用いられてもよい。 In addition, each of these anions and cations may be used alone or in combination of two or more.
 上記のイオン液体の中でも、MPPy-TFSI、BMP-TFSI、EMI-TFSI、TEMEP-TFSI又はTES-TFSIが好ましく、MPPy-TFSI、BMP-TFSI又はEMI-TFSIがより好ましい。また、イオン液体は1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 Among the above ionic liquids, MPPy-TFSI, BMP-TFSI, EMI-TFSI, TEMEP-TFSI or TES-TFSI are preferable, and MPPy-TFSI, BMP-TFSI or EMI-TFSI are more preferable. Moreover, an ionic liquid may be used individually by 1 type, and 2 or more types may be mixed and used for it.
 本実施形態において、負極は、イオン液体が存在する状態でリチウムプレドープ処理が施される。イオン液体を負極上に存在させる方法としては、負極構造体の負極活物質層上にイオン液体を塗布することが好ましい。別の方法として、イオン液体を噴霧状にして負極構造体の負極活物質層上に吹き付けてもよく、または、イオン液体中に負極構造体を浸漬してもよい。 In this embodiment, the negative electrode is subjected to a lithium pre-doping process in the presence of an ionic liquid. As a method for causing the ionic liquid to be present on the negative electrode, it is preferable to apply the ionic liquid on the negative electrode active material layer of the negative electrode structure. As another method, the ionic liquid may be sprayed and sprayed on the negative electrode active material layer of the negative electrode structure, or the negative electrode structure may be immersed in the ionic liquid.
 イオン液体は負極構造体の負極活物質層の表面の一部または全部に塗布されることが好ましい。イオン液体を塗布する方法としては、ドクターブレード法、大コーター法等の方法が挙げられる。 The ionic liquid is preferably applied to part or all of the surface of the negative electrode active material layer of the negative electrode structure. Examples of a method for applying the ionic liquid include a doctor blade method and a large coater method.
 図2は、負極構造を示す模式的断面図である。この負極は、負極集電体2の上に負極活物質層1が形成されており、その負極活物質の間にイオン液体3が浸み込んでいる。 FIG. 2 is a schematic cross-sectional view showing a negative electrode structure. In this negative electrode, a negative electrode active material layer 1 is formed on a negative electrode current collector 2, and an ionic liquid 3 is immersed in the negative electrode active material.
 リチウムプレドープ処理の方法としては、負極活物質層上のイオン液体が塗布されている面とリチウム源とを接触した状態で加熱する方法が好ましい。リチウム源は、負極構造体に均一に接触させるため、シート状であることが好ましく、例えば、圧延リチウム箔や蒸着リチウム箔などリチウムを主体とする金属箔が挙げられる。シートの基材としては、銅などの金属やPETなどのプラスチックフィルムが挙げられる。加熱温度は、金属リチウムの融点(180.5℃)を超えると、溶融したリチウムが電極以外の場所にも流れ出てしまい、効率的な拡散が行われないので、180.5℃以下で行うことが好ましく、60℃以上120℃以下で行うことがより好ましく、60℃以上80℃以下が特に好ましい。加熱時間は、特に限定はされないが、10分以上48時間以下であることが好ましく、10分以上30分以下がより好ましく、10分以上15分以下がさらに好ましい。本実施形態においては、イオン液体が存在することにより、短時間で均一にリチウムドープ処理を行うことができる。なお、金属リチウムは水分と激しく反応するため、全ての作業は低湿度環境で行うことが好ましい。 As a method of the lithium pre-doping treatment, a method of heating the surface of the negative electrode active material layer on which the ionic liquid is applied and the lithium source in contact is preferable. The lithium source is preferably in the form of a sheet in order to uniformly contact the negative electrode structure, and examples thereof include metal foils mainly composed of lithium such as rolled lithium foil and vapor-deposited lithium foil. Examples of the base material of the sheet include metals such as copper and plastic films such as PET. If the heating temperature exceeds the melting point of metallic lithium (180.5 ° C), the molten lithium will flow out to places other than the electrodes, and efficient diffusion will not be performed. It is more preferable to carry out at 60 ° C. or higher and 120 ° C. or lower, and 60 ° C. or higher and 80 ° C. or lower is particularly preferable. The heating time is not particularly limited, but is preferably 10 minutes to 48 hours, more preferably 10 minutes to 30 minutes, and even more preferably 10 minutes to 15 minutes. In this embodiment, the presence of the ionic liquid makes it possible to perform the lithium doping process uniformly in a short time. Since metallic lithium reacts violently with moisture, all operations are preferably performed in a low humidity environment.
(正極)
 正極は、例えば、正極活物質が正極用結着剤によって正極集電体を覆うように結着されてなる。
(Positive electrode)
The positive electrode is formed, for example, by binding a positive electrode active material so as to cover the positive electrode current collector with a positive electrode binder.
 正極活物質としては、特に限定はされないが、LiMnO、LixMn(0<x<2)、LiMnO、LixMn1.5Ni0.5(0<x<2)等の層状構造を持つマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;LiFePOなどのオリビン構造を有するもの等が挙げられる。また、これらの金属酸化物に、Al、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδ(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)またはLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。 As the positive electrode active material is not particularly limited, LiMnO 2, LixMn 2 O 4 (0 <x <2), Li 2 MnO 3, LixMn 1.5 Ni 0.5 O 4 (0 <x <2) or the like Lithium manganate having a layered structure or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2 or a part of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn 1 / Lithium transition metal oxides in which more than half of specific transition metals such as 3 O 2 are present; Li in excess of the stoichiometric composition in these lithium transition metal oxides; Lithium oxide such as LiFePO 4 Etc. Further, these metal oxides were partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Materials can also be used. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2) or Li α Ni β Co γ Mn δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, γ ≦ 0.2). A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
 また、ラジカル材料等を正極活物質として用いることも可能である。 Also, radical materials or the like can be used as the positive electrode active material.
 正極用結着剤としては、負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~15質量部が好ましい。 As the positive electrode binder, the same negative electrode binder can be used. Among these, polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost. The amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
 正極集電体としては、負極集電体と同様のものを用いることができる。 As the positive electrode current collector, the same as the negative electrode current collector can be used.
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。 A conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
 (電解液)
 電解液には、溶媒に電解質としてリチウム塩を溶解させた溶液を用いることが出来る。溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等が挙げられる。これらは一種又は二種以上を混合して使用できる。これらの中でも、プロピレンカーボネート、エチレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートを単独で又は混合して用いることが好ましい。
(Electrolyte)
As the electrolytic solution, a solution in which a lithium salt is dissolved as an electrolyte in a solvent can be used. Solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC). ), Chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylform Amide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, And aprotic organic solvents such as propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, and fluorinated carboxylic acid esters. These can be used alone or in combination of two or more. Among these, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferably used alone or in combination.
 前記リチウム塩としては、例えばLiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCCO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等が挙げられる。これらは一種又は二種以上を混合して使用できる。 Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, include LiI, LiSCN, LiCl, imides and the like It is done. These can be used alone or in combination of two or more.
 前記電解液の電解質濃度は、例えば0.5mol/lから1.5mol/lとすることができる。電解質濃度が1.5mol/l以下であれば、電解液の密度と粘度の増加を抑制することができる。また、電解質濃度が0.5mol/l以上であれば、電解液の電気電導率を十分とすることができる。なお、前記電解質に代えてポリマー電解質を用いてもよい。 The electrolyte concentration of the electrolytic solution can be, for example, 0.5 mol / l to 1.5 mol / l. If electrolyte concentration is 1.5 mol / l or less, the increase in the density and viscosity of electrolyte solution can be suppressed. Moreover, if electrolyte concentration is 0.5 mol / l or more, the electrical conductivity of electrolyte solution can be made enough. A polymer electrolyte may be used instead of the electrolyte.
(セパレータ)
 セパレータとしては、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。また、耐熱性の高い、ポリイミド、ポリアミドイミド、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、セルロース、ガラス繊維を用いることもできる。また、それらの繊維を束ねて糸状にし、織物とした織物セパレータを用いることも出来る。
(Separator)
As the separator, a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used. Moreover, what laminated | stacked them can also be used as a separator. Alternatively, polyimide, polyamideimide, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), cellulose, or glass fiber having high heat resistance can be used. Moreover, the textile separator which bundled those fibers and made it into a thread form and made it into a textile fabric can also be used.
(外装体)
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
(Exterior body)
The exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property. For example, in the case of a laminated laminate type secondary battery, a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package. In particular, it is preferable to use an aluminum laminate film from the viewpoint of suppressing volume expansion.
 以下、本実施形態を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present embodiment will be specifically described by way of examples, but the present invention is not limited to the following examples.
[実施例1,2]
(負極の作製)
 本実施例では、負極活物質としてSi、SiO、炭素(C)のモル比が1:1:0.8である混合物を用いた。Si原料としてはSi粉末、SiO原料としてはSiO粉末、炭素原料としては炭素粉末を用い、これらを混合して負極活物質とした。
[Examples 1 and 2]
(Preparation of negative electrode)
In this example, a mixture in which the molar ratio of Si, SiO 2 and carbon (C) was 1: 1: 0.8 was used as the negative electrode active material. Si powder as the Si raw material using carbon powder as the SiO 2 raw material SiO 2 powder as the carbon source, and a negative electrode active material as a mixture thereof.
 この負極活物質と、負極用結着剤としてポリイミドを85:15(負極活物質:負極用結着剤)の重量比になるよう混合し、さらに溶剤としてNMPを混合した電極材を10μmの厚さの銅箔の上に塗布し、125℃、5分間乾燥した。その後、ロールプレスにて圧縮成型を行い、再度乾燥炉にて350℃、30分間N雰囲気中で乾燥処理を行った。該負極活物質層が形成された銅箔を30×28mmに打ち抜き、負極を作製した。 This negative electrode active material was mixed with polyimide as a negative electrode binder at a weight ratio of 85:15 (negative electrode active material: negative electrode binder), and an electrode material mixed with NMP as a solvent had a thickness of 10 μm. This was coated on a copper foil and dried at 125 ° C. for 5 minutes. Thereafter, compression molding was performed with a roll press, and drying was performed again in a drying furnace at 350 ° C. for 30 minutes in an N 2 atmosphere. The copper foil on which the negative electrode active material layer was formed was punched out to 30 × 28 mm to produce a negative electrode.
 (Liのドープ)
 1.0mol/LのLiTFSI/MPPy-TFSIのイオン液体を負極表面に塗りこみ、さらに3.2×3.4mmのLi箔を負極に貼り付けた。ラミネートで封止し、60℃の高温槽中に10分放置した。
(Li dope)
An ionic liquid of 1.0 mol / L LiTFSI / MPPy-TFSI was applied to the negative electrode surface, and a 3.2 × 3.4 mm Li foil was attached to the negative electrode. The laminate was sealed and left in a high-temperature bath at 60 ° C. for 10 minutes.
(電池の作製)
 負極を取り出し、DECで洗浄後、負極中から2箇所を12φの円形に打ち抜き、それぞれについて、金属リチウムを対極としたモデルセルにより、20℃にて充放電特性を確認した。充電時の電位は0.02mV vs. Li/Li+であり,放電時の電位は1000mV vs. Li/Li+とした。結果を表1に示す。
(Production of battery)
The negative electrode was taken out, washed with DEC, and then punched into two 12φ circles from the negative electrode, and the charge / discharge characteristics were confirmed at 20 ° C. with a model cell using metallic lithium as a counter electrode. The electric potential during charging is 0.02 mV vs.. Li / Li +, and the potential during discharge is 1000 mV vs. Li / Li +. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~2のモデルセルでは、初回の充電容量と初回放電容量の差が小さく、Si、SiO、炭素を含む負極活物質の不可逆容量による容量の低下が抑えられていた。 As shown in Table 1, in the model cells of Examples 1 and 2, the difference between the initial charge capacity and the initial discharge capacity is small, and the capacity is reduced due to the irreversible capacity of the negative electrode active material containing Si, SiO 2 , and carbon. It was suppressed.
 また、恒温槽の温度を80℃とした以外は実施例1と同様に行った。結果を表2に示す。 Moreover, it carried out like Example 1 except the temperature of the thermostat having been 80 degreeC. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、恒温槽の温度を50℃とした以外は実施例1と同様に行った。結果を表3に示す。 Moreover, it carried out like Example 1 except the temperature of the thermostat having been 50 degreeC. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、恒温槽の温度を100℃とした以外は実施例1と同様に行った。結果を表4に示す。 Moreover, it carried out like Example 1 except the temperature of the thermostat having been 100 degreeC. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[比較例]
 イオン液体を導入せず、Liを負極に貼り付けた以外は、実施例1と同条件にてLiをドープした場合で同様にモデルセルを作製した。結果を表5に示す。
[Comparative example]
A model cell was similarly produced in the case where Li was doped under the same conditions as in Example 1 except that the ionic liquid was not introduced and Li was attached to the negative electrode. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 イオン液体の代わりにカーボネート系電解液を導入し、Liを負極に貼り付けた以外は実施例1と同条件にてLiをドープした場合で同様にモデルセルを作製した。結果を表6に示す。 A model cell was similarly produced in the case where Li was doped under the same conditions as in Example 1 except that a carbonate-based electrolyte was introduced instead of the ionic liquid and Li was attached to the negative electrode. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 このように、Si、Si酸化物及び炭素からなる群から選択される少なくとも一種を含む負極活物質を含む負極の製造工程において、イオン液体が存在する状態でLi金属を貼り付け、温度を上げることで、より高速、かつ、より均一にLiをドープすることができた。また、加熱温度を60℃~80℃にすると、ドープされるリチウム量の観点からより好ましいことも確認できた。 As described above, in the manufacturing process of the negative electrode including the negative electrode active material including at least one selected from the group consisting of Si, Si oxide, and carbon, the Li metal is pasted in the presence of the ionic liquid and the temperature is increased. Thus, Li could be doped more rapidly and more uniformly. It was also confirmed that the heating temperature was preferably 60 ° C. to 80 ° C. from the viewpoint of the amount of lithium to be doped.
a  負極
b  セパレータ
c  正極
d  負極集電体
e  正極集電体
f  正極端子
g  負極端子
1  負極活物質層
2  負極集電体
3  イオン液体
a negative electrode b separator c positive electrode d negative electrode current collector e positive electrode current collector f positive electrode terminal g negative electrode terminal 1 negative electrode active material layer 2 negative electrode current collector 3 ionic liquid

Claims (9)

  1.  シリコン、シリコン酸化物および炭素からなる群から選択される少なくとも一種を含む負極活物質層を有する負極であって、
     イオン液体が存在する状態で、前記負極活物質層とリチウム源とを接触させて加熱処理を行うことによりリチウムがドープされたことを特徴とする負極。
    A negative electrode having a negative electrode active material layer containing at least one selected from the group consisting of silicon, silicon oxide and carbon,
    A negative electrode which is doped with lithium by performing heat treatment by bringing the negative electrode active material layer into contact with a lithium source in the presence of an ionic liquid.
  2.  前記加熱処理の温度が60℃~80℃であることを特徴とする請求項1に記載の負極。 The negative electrode according to claim 1, wherein the temperature of the heat treatment is 60 to 80 ° C.
  3.  前記リチウム源が、リチウムを主体とする金属箔であることを特徴とする請求項1または2に記載の負極。 The negative electrode according to claim 1 or 2, wherein the lithium source is a metal foil mainly composed of lithium.
  4.  前記負極活物質層の表面上にイオン液体を塗布した後、前記負極活物質層上にリチウムを主体とする金属箔を貼って加熱処理を行うことによりリチウムがドープされたことを特徴とする請求項1~3のいずれか1項に記載の負極。 The lithium is doped by applying an ionic liquid on the surface of the negative electrode active material layer and then applying a heat treatment by applying a metal foil mainly composed of lithium on the negative electrode active material layer. Item 4. The negative electrode according to any one of Items 1 to 3.
  5.  前記イオン液体が、MPPy-TFSIであることを特徴とする請求項1~4のいずれか1項に記載の負極。 The negative electrode according to any one of claims 1 to 4, wherein the ionic liquid is MPPy-TFSI.
  6.  請求項1~5のいずれか1項に記載の負極を含む二次電池。 A secondary battery comprising the negative electrode according to any one of claims 1 to 5.
  7.  シリコン、シリコン酸化物および炭素からなる群から選択される少なくとも一種を含む負極活物質を含む負極活物質層を、負極集電体上に形成する工程と、
     イオン液体が存在する状態で、前記負極活物質層とリチウム源とを接触させて加熱処理を行うことによりリチウムを前記負極活物質にドープする工程と、
    を含む負極の製造の方法。
    Forming a negative electrode active material layer containing a negative electrode active material containing at least one selected from the group consisting of silicon, silicon oxide and carbon on a negative electrode current collector;
    Doping lithium into the negative electrode active material by bringing the negative electrode active material layer into contact with a lithium source and performing a heat treatment in the presence of an ionic liquid;
    A method for producing a negative electrode comprising:
  8.  シリコン、シリコン酸化物および炭素からなる群から選択される少なくとも一種を含む負極活物質層を、負極集電体上に形成する工程と、
     前記負極活物質層の表面にイオン液体を塗布する工程と、
     前記イオン液体が塗布された負極活物質層上にリチウムを主体とする金属箔を貼り、加熱処理を行う工程と、
    を含むことを特徴とする負極の製造方法。
    Forming a negative electrode active material layer containing at least one selected from the group consisting of silicon, silicon oxide and carbon on the negative electrode current collector;
    Applying an ionic liquid to the surface of the negative electrode active material layer;
    Attaching a metal foil mainly composed of lithium on the negative electrode active material layer coated with the ionic liquid, and performing a heat treatment;
    The manufacturing method of the negative electrode characterized by including.
  9.  シリコン、シリコン酸化物および炭素からなる群から選択される少なくとも一種を含む負極活物質を含む負極活物質層を、負極集電体上に形成する工程と、
     イオン液体が存在する状態で、前記負極活物質層とリチウム源とを接触させて加熱処理を行うことによりリチウムが前記負極活物質にドープされた負極を作製する工程と、
    を含む二次電池の製造方法。
    Forming a negative electrode active material layer containing a negative electrode active material containing at least one selected from the group consisting of silicon, silicon oxide and carbon on a negative electrode current collector;
    Producing a negative electrode in which lithium is doped into the negative electrode active material by bringing the negative electrode active material layer into contact with a lithium source and performing a heat treatment in the presence of an ionic liquid;
    The manufacturing method of the secondary battery containing this.
PCT/JP2013/064951 2012-06-04 2013-05-29 Nonaqueous electrolyte secondary battery WO2013183524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014519952A JPWO2013183524A1 (en) 2012-06-04 2013-05-29 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012127598 2012-06-04
JP2012-127598 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013183524A1 true WO2013183524A1 (en) 2013-12-12

Family

ID=49711916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064951 WO2013183524A1 (en) 2012-06-04 2013-05-29 Nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JPWO2013183524A1 (en)
WO (1) WO2013183524A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074933A (en) * 2014-10-03 2016-05-12 Tdk株式会社 Stabilized lithium composite powder, negative electrode using the same, and lithium ion secondary battery
JP2018142528A (en) * 2017-02-28 2018-09-13 株式会社豊田自動織機 Method for manufacturing lithium negative electrode complex
CN114420896A (en) * 2020-10-28 2022-04-29 中国科学院上海硅酸盐研究所 High-rate lithium battery negative electrode piece and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270044A (en) * 1997-03-21 1998-10-09 Kumho Petrochem Co Ltd High capacity limn2o4 secondary battery cathode compound preparing method
JP2007299698A (en) * 2006-05-02 2007-11-15 Fdk Corp Method of manufacturing lithium ion accumulating element
JP2008124227A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Battery device and its manufacturing method
WO2010143634A1 (en) * 2009-06-09 2010-12-16 シャープ株式会社 Redox flow battery
JP2012033474A (en) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd Power storage device and method of producing the same
JP2012074189A (en) * 2010-09-28 2012-04-12 Kri Inc Method for manufacturing pre-doped electrode and energy storage device
JP2012104281A (en) * 2010-11-08 2012-05-31 Fukuda Metal Foil & Powder Co Ltd Anode material for lithium secondary battery and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270044A (en) * 1997-03-21 1998-10-09 Kumho Petrochem Co Ltd High capacity limn2o4 secondary battery cathode compound preparing method
JP2007299698A (en) * 2006-05-02 2007-11-15 Fdk Corp Method of manufacturing lithium ion accumulating element
JP2008124227A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Battery device and its manufacturing method
WO2010143634A1 (en) * 2009-06-09 2010-12-16 シャープ株式会社 Redox flow battery
JP2012033474A (en) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd Power storage device and method of producing the same
JP2012074189A (en) * 2010-09-28 2012-04-12 Kri Inc Method for manufacturing pre-doped electrode and energy storage device
JP2012104281A (en) * 2010-11-08 2012-05-31 Fukuda Metal Foil & Powder Co Ltd Anode material for lithium secondary battery and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074933A (en) * 2014-10-03 2016-05-12 Tdk株式会社 Stabilized lithium composite powder, negative electrode using the same, and lithium ion secondary battery
JP2018142528A (en) * 2017-02-28 2018-09-13 株式会社豊田自動織機 Method for manufacturing lithium negative electrode complex
CN114420896A (en) * 2020-10-28 2022-04-29 中国科学院上海硅酸盐研究所 High-rate lithium battery negative electrode piece and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2013183524A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6288186B2 (en) Lithium ion secondary battery
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
JP5288448B2 (en) Nonaqueous electrolyte secondary battery
US20110117437A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, method for fabricating the same, and nonaqueous electrolyte secondary battery
JP6428243B2 (en) Non-aqueous lithium secondary battery and manufacturing method thereof
WO2014155992A1 (en) Nonaqueous electrolyte secondary battery
JP5561803B2 (en) Nonaqueous electrolyte secondary battery
JP5158578B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2017152259A (en) Lithium ion secondary battery and recovery method thereof
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2019164964A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2013183524A1 (en) Nonaqueous electrolyte secondary battery
WO2013146569A1 (en) Lithium secondary battery and method for manufacturing same
JP6344507B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6209839B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP6992362B2 (en) Lithium ion secondary battery
WO2016021443A1 (en) Method for manufacturing negative electrode of lithium-ion cell, and method for manufacturing lithium-ion cell
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2019065288A1 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
WO2014007183A1 (en) Lithium ion secondary battery
JP2022181360A (en) lithium ion secondary battery
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2018133335A (en) Nonaqueous electrolyte battery
JP2022181365A (en) lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800060

Country of ref document: EP

Kind code of ref document: A1