WO2017104583A1 - All-solid secondary battery, electrode sheet for all-solid secondary battery, and method of manufacturing said battery and sheet - Google Patents

All-solid secondary battery, electrode sheet for all-solid secondary battery, and method of manufacturing said battery and sheet Download PDF

Info

Publication number
WO2017104583A1
WO2017104583A1 PCT/JP2016/086820 JP2016086820W WO2017104583A1 WO 2017104583 A1 WO2017104583 A1 WO 2017104583A1 JP 2016086820 W JP2016086820 W JP 2016086820W WO 2017104583 A1 WO2017104583 A1 WO 2017104583A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
solid
active material
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2016/086820
Other languages
French (fr)
Japanese (ja)
Inventor
目黒 克彦
宏顕 望月
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017556032A priority Critical patent/JP6640874B2/en
Publication of WO2017104583A1 publication Critical patent/WO2017104583A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state secondary battery, an electrode sheet for an all-solid-state secondary battery, and methods for producing them.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can be charged and discharged by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge and overdischarge, resulting in ignition, and further improvements in reliability and safety are required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
  • the all-solid-state secondary battery consists of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can extend the service life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density compared to a secondary battery using an organic electrolyte, and application to an electric vehicle or a large storage battery is expected.
  • the electrode of the all-solid-state secondary battery has a current collector and an active material layer formed on the current collector.
  • a conductive film may be provided between the current collector and the active material layer for the purpose of improving the adhesion between the active material layer and the current collector or good ionic conductivity of the electrode (for example, Patent Document 1).
  • the inorganic solid electrolyte is usually fine particles, a certain amount of fine voids (also simply referred to as voids) are generated between the electrolyte particles forming the solid electrolyte layer. It is considered that reducing the voids between the particles greatly contributes to improvement of battery characteristics such as ion conductivity. This applies to the case where the electrode is formed using a particulate electrode active material, preferably a particulate inorganic solid electrolyte.
  • an all-solid-state secondary battery using solid particles such as an electrode active material or an inorganic solid electrolyte
  • a pressure load is applied to the solid particles of the inorganic solid electrolyte layer or the active material layer in order to exert a desired ionic conductivity.
  • the conductive film provided on the electrode is peeled off from the current collector, and the ionic conductivity between the current collector and the active material layer is lowered.
  • the inorganic solid electrolyte breaks through (breaks) the conductive film, or the electrode active material breaks through the conductive film provided on the counter electrode, and a short circuit occurs.
  • the present invention has an inorganic solid electrolyte layer closely packed with an inorganic solid electrolyte, it is possible to ensure the adhesion between the current collector and the conductive film and further prevent the occurrence of a short circuit. It is an object to provide a secondary battery and a manufacturing method thereof. Moreover, this invention makes it a subject to provide the electrode sheet for all-solid-state secondary batteries used suitably for the said all-solid-state secondary battery, and its manufacturing method.
  • the term “closely packed with an inorganic solid electrolyte” means that a fine void having no substance such as a binder (binder) between particles of the inorganic solid electrolyte substantially reduces ionic conductivity.
  • the level that does not have a substantial effect cannot be uniquely determined. For example, when the cross section (63 ⁇ m ⁇ 48 ⁇ m) of the all-solid-state secondary battery is observed with a scanning microscope at a magnification of 3000 times, It can be set to such an extent that voids originating from the interface (which cannot be uniquely determined, but usually have a diameter or major axis length of 1 ⁇ m or more) cannot be confirmed.
  • the present inventors examined the effect on the battery when a pressure load was applied.
  • the conductive film was formed into a thin film by vapor deposition or the like, In addition to this, by setting the surface of the current collector on which the conductive film is provided to a specific surface morphology, the interaction between the conductive film and the surface of the current collector is enhanced, and pressure is applied. It has been found that even when a load acts, high adhesion between the current collector and the conductive film can be secured, and occurrence of a short circuit can be prevented.
  • the present invention has been further studied based on these findings and has been completed.
  • An all solid state secondary battery comprising: The surface of the current collector of the positive electrode has an arithmetic average roughness Ra of 0.24 to 0.38 ⁇ m, and 10 to 80 recesses / 100 ⁇ m 2 having an average opening diameter of 0.3 to 3.0 ⁇ m. All-solid secondary battery.
  • the negative electrode has a conductive film and a negative electrode active material layer in this order on the surface of the current collector,
  • the surface of the current collector of the negative electrode has an arithmetic average roughness Ra of 0.24 to 0.38 ⁇ m, and 10 to 80 concave portions with an average opening diameter of 0.3 to 3.0 ⁇ m / 100 ⁇ m 2.
  • the all-solid-state secondary battery as described in ⁇ 1>.
  • ⁇ 3> The all-solid secondary according to ⁇ 1> or ⁇ 2>, wherein the surface has an arithmetic average roughness Ra of 0.25 to 0.31, and the number of recesses is 40 to 70/100 ⁇ m 2 battery.
  • ⁇ 4> The all-solid-state secondary battery according to any one of ⁇ 1> to ⁇ 3>, wherein the conductive film is a film of a metal, a metal oxide, or a carbonaceous material.
  • the conductive film is a film of a metal, a metal oxide, or a carbonaceous material.
  • a current collector having a surface having an arithmetic average roughness Ra of 0.24 to 0.38 ⁇ m and 10 to 80 concave portions with an average opening diameter of 0.3 to 3.0 ⁇ m / 100 ⁇ m 2
  • An electrode sheet for an all-solid-state secondary battery having a conductive film and an active material layer in this order on the surface.
  • a current collector having a surface having an arithmetic average roughness Ra of 0.24 to 0.38 ⁇ m and a recess having an average opening diameter of 0.3 to 3.0 ⁇ m of 10 to 80/100 ⁇ m 2
  • the manufacturing method of the electrode sheet for all-solid-state secondary batteries which forms a conductive film on the surface and then forms an active material layer.
  • ⁇ 8> The method for producing an electrode sheet for an all-solid-state secondary battery according to ⁇ 6> or ⁇ 7>, wherein the conductive film is formed by a vapor deposition method or a coating method using a metal, a metal oxide, or a carbonaceous material.
  • a method for producing an all-solid secondary battery including the method for producing an electrode sheet for an all-solid secondary battery according to any one of ⁇ 6> to ⁇ 8>.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • acryl when “acryl” is simply described, it means methacryl and / or acryl.
  • the all-solid-state secondary battery of the present invention has an inorganic solid electrolyte layer closely packed with an inorganic solid electrolyte, it can ensure the adhesion between the current collector and the conductive film, and further, the occurrence of a short circuit. Can also be prevented.
  • the electrode sheet for all-solid-state secondary batteries of this invention can be used suitably for the all-solid-state secondary battery which has said outstanding characteristic.
  • the all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode conductive film and a positive electrode active material layer in this order on the surface of the positive electrode current collector.
  • the negative electrode has a negative electrode active material layer on the negative electrode current collector, and may have a negative electrode conductive film on the surface of the negative electrode current collector on which the negative electrode active material layer is formed.
  • the positive electrode current collector forming the positive electrode has a specific surface form (uneven structure) described later.
  • the surface on which the negative electrode conductive film is formed preferably has the same surface form as the positive electrode current collector.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 includes a negative electrode current collector 1, a negative electrode conductive film 7, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode conductive film as viewed from the negative electrode side. 8. It has a structure in which the positive electrode current collector 5 is laminated in this order, and adjacent layers are in direct contact with each other.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • a material for forming the positive electrode current collector aluminum, aluminum alloy, stainless steel, nickel, titanium and the like are preferable, and among them, aluminum and aluminum alloy are more preferable.
  • aluminum, copper, copper alloy, stainless steel, nickel, and titanium are preferable, and aluminum, copper, and copper alloy are more preferable.
  • the shape of the current collector is usually a film sheet, but if a conductive film can be formed, the net, punched, lath, porous, foam, and fiber group are formed.
  • the body can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the positive electrode current collector has the following surface form on the surface on which the positive electrode conductive film is formed.
  • Arithmetic mean roughness Ra is 0.24 to 0.38 ⁇ m
  • the number of recesses having an average opening diameter of 0.3 to 3.0 ⁇ m is 10 to 80/100 ⁇ m 2
  • the arithmetic average roughness Ra is 0.24 to 0.38 ⁇ m.
  • the arithmetic average roughness Ra is smaller than 0.24 ⁇ m, the adhesion between the positive electrode current collector and the positive electrode conductive film is not sufficient, and the positive electrode conductive film may be peeled off from the positive electrode current collector.
  • the arithmetic average roughness Ra is larger than 0.38 ⁇ m, the all solid state secondary battery may be short-circuited. Further, the positive electrode conductive film may be peeled off.
  • Arithmetic average roughness Ra is preferably 0.25 to 0.37 ⁇ m, more preferably 0.25 to 0.31 ⁇ m, in terms of adhesion between the positive electrode current collector and the positive electrode conductive film and prevention of occurrence of short circuit. preferable.
  • the arithmetic average roughness Ra is an arithmetic average roughness measured according to JIS B0601: 2010 using a stylus type surface roughness meter (for example, a surface roughness measuring machine SJ-401 manufactured by Mitutoyo Corporation). .
  • the positive electrode current collector has a recess on its surface.
  • the concave portion is not particularly limited with respect to the average opening diameter, but the concave portion having an average opening diameter of 0.3 to 3.0 ⁇ m includes the adhesion between the positive electrode current collector and the positive electrode conductive film, And it is important in terms of preventing the occurrence of short circuits.
  • the average opening diameter of the recesses is preferably 0.8 to 3.0 ⁇ m.
  • the surface of the positive electrode current collector has 10 to 80 recesses having an average opening diameter of 0.3 to 3.0 ⁇ m per surface area of 100 ⁇ m 2 .
  • the number of concave portions with the average opening diameter per unit surface area (sometimes referred to as the number of concave portions) is less than 10, the adhesion between the positive electrode current collector and the positive electrode conductive film is not sufficient, and the positive electrode current collector In some cases, the positive electrode conductive film may peel off.
  • the number of recesses is more than 80, the peripheral edge of each opening becomes a protrusion, and the short circuit may increase during a pressure load.
  • the number of recesses is preferably 15 to 70, more preferably 20 to 70, and still more preferably 40 to 70.
  • the interaction with the positive electrode conductive film formed on the thin film is increased, and a pressure load force is applied during and after production. Even if the inorganic solid electrolyte is closely packed, the adhesion between the positive electrode current collector and the positive electrode conductive film and the occurrence of a short circuit can be achieved at a high level.
  • the opening diameter of a recessed part means the opening diameter of a recessed part, and the average opening diameter of a recessed part is the average value.
  • SEM scanning electron microscope
  • the surface of the positive electrode current collector was photographed at a magnification of 2000 times from directly above, and in the obtained SEM image, the periphery (“the opening of the recess was defined).
  • At least 50 concave portions having a substantially circular shape (annular shape) are extracted, and the diameter is read as an opening diameter to calculate an average opening diameter.
  • one recessed part overlaps with another recessed part, it does not extract as a recessed part.
  • a recess having an opening diameter of 0.3 to 3.0 ⁇ m existing in a 10 ⁇ m ⁇ 10 ⁇ m region (arbitrary three regions) (limited to a recess in which the edge of the opening is continuous in an annular shape) Is counted for each region, and the average value is calculated as the number of recesses (pieces / 100 ⁇ m 2 ).
  • the surface form of the negative electrode current collector is not particularly limited, it is preferable that the negative electrode current collector has a surface form satisfying the above (1) and (2) as in the positive electrode current collector. In this case, the surface forms of the positive electrode current collector and the negative electrode current collector may be the same or different.
  • the conductive film (positive electrode conductive film) 8 forming the positive electrode may be any film formed of a conductive material.
  • the conductive material include conductive particles such as metals, metal oxides, and carbonaceous materials.
  • the metal include copper, nickel, chromium, aluminum, platinum, silver, zinc, titanium, indium, antimony, bismuth, cobalt, tungsten, molybdenum, and alloys thereof.
  • the metal oxide the said metal oxide is mentioned, for example.
  • As a carbonaceous material the carbonaceous material demonstrated with the conductive support agent mentioned later is mentioned, for example.
  • metals or carbonaceous materials are preferable, carbonaceous materials are more preferable, and graphite or carbon nanotubes (CNT) are more preferable.
  • the film thickness of the positive electrode conductive film is not particularly limited, but is preferably 0.05 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m in terms of adhesion to the positive electrode current collector, stress relaxation under pressure load, and the like. preferable.
  • the positive electrode conductive film is not a solid fine particle of a conductive material, but is formed into a thin film by a coating (printing) method, a vapor deposition method, a plating method, or the like, and has an adhesive property with a positive electrode current collector and a conductive material. From the viewpoint of improving the property, it is preferable.
  • This positive electrode conductive film preferably has a low volume resistivity because of its characteristics, and those having a volume resistivity of 0.5 ⁇ -cm or less, for example, 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 ⁇ 5 ⁇ -cm are used. it can.
  • the volume resistivity is preferably 5 ⁇ 10 ⁇ 2 to 5 ⁇ 10 ⁇ 5 ⁇ -cm, more preferably 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 4 ⁇ -cm.
  • the negative electrode conductive film is synonymous with the positive electrode conductive film, and preferable ones are also the same.
  • the type and thickness of the material having conductivity may be the same as or different from those of the positive electrode conductive film.
  • either or both of the positive electrode conductive film and the negative electrode conductive film may be simply referred to as a conductive film.
  • the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. Considering general battery dimensions, the thickness of each of the above layers is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 is 50 ⁇ m or more and less than 500 ⁇ m.
  • the solid electrolyte layer 3 contains an inorganic solid electrolyte, and preferably contains a binder from the viewpoint of improving the binding between solid particles and between layers.
  • the solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
  • the positive electrode active material layer 4 and the negative electrode active material layer 2 each contain a positive electrode active material or a negative electrode active material, and preferably contain a solid electrolyte from the viewpoint of improving ion conductivity.
  • Each active material layer preferably contains a binder from the viewpoint of improving the binding between the solid particles, the active material layer-solid electrolyte layer, and the active material layer-conductive film.
  • the inorganic solid electrolyte and the binder contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different from each other.
  • one or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material.
  • One or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer.
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). Further, since the inorganic solid electrolyte is solid in a steady state, it is not dissociated or released into cations and anions.
  • organic solid electrolytes polymer electrolytes typified by polyethylene oxide (PEO), etc.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • inorganic electrolyte salts LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.
  • LiPF 6 lithium bis (fluorosulfonyl) imide
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiCl LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metal elements belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte has ion conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table.
  • the inorganic solid electrolyte preferably has an ionic conductivity of lithium ions.
  • a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
  • a sulfide-based inorganic solid electrolyte is preferably used from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
  • Sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ionic conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table, And what has electronic insulation is preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S, and P may be used. An element may be included.
  • a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (A) can be mentioned and is preferable.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge. Among these, B, Sn, Si, Al, or Ge is preferable, and Sn, Al, or Ge is more preferable.
  • A represents I, Br, Cl or F, preferably I or Br, and particularly preferably I.
  • L, M, and A can each be one or more of the above elements.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 1: 1: 2 to 12: 0 to 5.
  • a1 is further preferably 1 to 9, and more preferably 1.5 to 4.
  • b1 is preferably 0 to 0.5.
  • d1 is preferably 3 to 7, and more preferably 3.25 to 4.5.
  • e1 is preferably 0 to 3, more preferably 0 to 1.
  • the composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P, and S or Li—PS system glass ceramics containing Li, P, and S can be used.
  • the sulfide-based inorganic solid electrolyte includes [1] lithium sulfide (Li 2 S) and phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), [2] lithium sulfide and at least one of simple phosphorus and simple sulfur, Or [3] It can be produced by the reaction of lithium sulfide, phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), at least one of elemental phosphorus and elemental sulfur.
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 85:15, more preferably 68:32 to 77:23.
  • the lithium ion conductivity can be further increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • the sulfide-based inorganic solid electrolyte include, for example, those using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15. it can. More specifically, Li 2 S—P 2 S 5 , Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5- SiS 2 , Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S— Ga 2 S 3 , Li 2 S—GeS 2 —G
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table, And what has electronic insulation is preferable.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7.
  • LLT Li xb La yb Zr zb M bb mb Onb
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn
  • Xb satisfies 5 ⁇ xb ⁇ 10
  • yb satisfies 1 ⁇ yb ⁇ 4
  • zb satisfies 1 ⁇ zb ⁇ 4
  • mb satisfies 0 ⁇ mb ⁇ 2
  • nb satisfies 5 ⁇ nb ⁇ 20.
  • Li xc B yc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5
  • Yc satisfies 0 ⁇ yc ⁇ 1,
  • zc satisfies 0 ⁇ zc ⁇ 1,
  • nc satisfies 0 ⁇ nc ⁇ 6
  • Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md Ond (xd satisfies 1 ⁇ xd ⁇ 3, yd Satisfies 0 ⁇ yd ⁇ 1, zd satisfies 0 ⁇ zd ⁇ 2, ad satisfies 0 ⁇ ad ⁇ 1, md satisfies 1 ⁇ md ⁇ 7, and nd satisfies 3 ⁇
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by substituting a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, And at least one element selected from Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
  • LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C, and Ga) can be preferably used.
  • LLT Li xb La yb Zr zb M bb mb O nb
  • LLZ Li 3 BO 3, Li 3 BO 3 -Li 2 SO 4
  • Li xd (Al , Ga) yd (Ti, Ge) zd Si ad P md O nd Li xd, yd, zd, ad, md and nd are as defined above.
  • These may be used alone or in combination of two or more.
  • the inorganic solid electrolyte is preferably a particle.
  • the volume average particle diameter of the particulate inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the measurement of the volume average particle diameter of an inorganic solid electrolyte is performed in the following procedures.
  • the inorganic solid electrolyte particles are prepared by diluting a 1 mass% dispersion in a 20 mL sample bottle using water (heptane in the case of a substance unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA)
  • data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Obtain the volume average particle size.
  • JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the content of the solid component in the inorganic solid electrolyte layer of the inorganic solid electrolyte is 5% by mass or more at 100% by mass of the solid component when considering both the battery performance and the effect of reducing and maintaining the interface resistance. Is more preferable, 70% by mass or more is more preferable, and 90% by mass or more is particularly preferable. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • the content of the inorganic solid electrolyte in the positive electrode active material layer or the negative electrode active material layer is preferably such that the total content of the positive electrode active material or the negative electrode active material and the inorganic solid electrolyte is in the above range.
  • the solid component refers to a component that does not volatilize or evaporate when dried at 170 ° C. for 6 hours. Typically, it refers to components other than the dispersion medium described below.
  • An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • each layer (that is, a negative electrode active material layer, a solid electrolyte layer and / or a positive electrode active material layer, the same shall apply hereinafter) preferably contains a binder.
  • the binder that can be used in the present invention is not particularly limited as long as it is an organic polymer.
  • the binder that can be used in the present invention is preferably a binder that is usually used as a binder for a positive electrode or a negative electrode of a battery material, and is not particularly limited.
  • a binder made of a resin described below is preferable.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, polyisoprene, and polyisoprene latex.
  • acrylic resin examples include poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate isopropyl, poly (meth) acrylate isobutyl, poly (meth) butyl acrylate, poly (meth) ) Hexyl acrylate, poly (meth) acrylate octyl, poly (meth) acrylate dodecyl, poly (meth) acrylate stearyl, poly (meth) acrylate 2-hydroxyethyl, poly (meth) acrylic acid, poly (meth) ) Benzyl acrylate, poly (meth) acrylate glycidyl, poly (meth) acrylate dimethylaminopropyl, and copolymers of monomers constituting these resins.
  • urethane resin examples include polyurethane.
  • copolymers with other vinyl monomers are also preferably used. Examples thereof include a poly (meth) methyl acrylate-polystyrene copolymer, a poly (meth) methyl acrylate-acrylonitrile copolymer, and a poly (meth) butyl acrylate-acrylonitrile-styrene copolymer.
  • PVdF-HFP or HSBR is preferably used. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the polymer constituting the binder that can be used in the present invention preferably has a mass average molecular weight of 10,000 or more, more preferably 20,000 or more, and even more preferably 50,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
  • the molecular weight of the polymer means a mass average molecular weight unless otherwise specified.
  • the mass average molecular weight can be measured as a molecular weight in terms of polystyrene by gel permeation chromatography (GPC). The measuring method is based on the measuring method in the examples described later.
  • the eluent used is THF (tetrahydrofuran), and is selected from chloroform, NMP (N-methyl-2-pyrrolidone), and m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.). be able to.
  • the content of the binder in the layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 1% by mass or more. Is more preferable.
  • 10 mass% or less is preferable from a viewpoint of a battery characteristic, 8 mass% or less is more preferable, 6 mass% or less is further more preferable, and 5 mass% or less is especially preferable.
  • the mass ratio of the total mass (total amount) of the inorganic solid electrolyte and the active material to the mass of the binder [(mass of the inorganic solid electrolyte + mass of the active material) / mass of the binder] is preferably in the range of 1,000 to 1. This ratio is more preferably 500 to 2, and further preferably 100 to 10.
  • Each layer also preferably contains a lithium salt.
  • the lithium salt is preferably a lithium salt usually used for an all-solid secondary battery, and is not particularly limited. For example, lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
  • the content of the lithium salt is preferably 0 part by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • Each layer, particularly the active material layer, may contain a conductive additive used for improving the electronic conductivity of the active material.
  • a general conductive auxiliary agent can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube, which are electron conductive materials
  • Carbon fibers such as graphene, carbonaceous materials such as graphene or fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives May be used.
  • the content of the conductive assistant in the layer is not particularly limited and can be appropriately set in consideration of battery characteristics and the like.
  • Dispersant In the present invention, it is preferable to contain a dispersant in any of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer.
  • a dispersant By adding a dispersant, even when the concentration of either the electrode active material or the inorganic solid electrolyte is high, aggregation can be suppressed, and a uniform electrode layer (active material layer) and solid electrolyte layer can be formed. It is effective for improvement.
  • the dispersant those usually used for all-solid secondary batteries can be appropriately selected and used.
  • the content of the dispersant in the layer is not particularly limited and can be appropriately set in consideration of battery characteristics and the like.
  • the positive electrode active material is preferably one that can reversibly insert and / or release lithium ions.
  • the material is not particularly limited, and may be a transition metal oxide or an element that can be complexed with Li such as sulfur.
  • the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). More preferred.
  • this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P, and B) may be mixed.
  • the mixing amount 0 ⁇ 30 mol% relative to the amount of the transition metal element M a is preferable.
  • Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halide phosphate compounds, (ME) lithium-containing transition metal silicate compounds, and the like.
  • transition metal oxide having a layered rock salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • transition metal oxide having an (MB) spinel structure include LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 , and Li 2 NiMn 3 O 8. .
  • Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • the (MD) lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F, Li 2 CoPO 4 F Cobalt fluorophosphates such as
  • Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4, and the like.
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
  • the thickness can be 0.1 to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • the content of the positive electrode active material in the positive electrode active material layer is not particularly limited, preferably 10 to 95% by mass, more preferably 20 to 90% by mass, further preferably 30 to 85% by mass, and 50 to 80% by mass. Particularly preferred.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be arbitrarily determined according to the designed battery capacity.
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the negative electrode active material is preferably one that can reversibly insert and / or release lithium ions.
  • the material is not particularly limited, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium alloy such as lithium alone or a lithium aluminum alloy, and a lithium such as Sn, Si or In. And metals capable of forming an alloy.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) resin or furfuryl alcohol resin, etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, etc. And mesophase microspheres, graphite whiskers, flat graphite and the like.
  • carbonaceous materials can be divided into non-graphitizable carbonaceous materials and graphite-based carbonaceous materials according to the degree of graphitization.
  • the carbonaceous material preferably has a face spacing or density and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb, Bi alone or in combination of two or more thereof, and chalcogenide are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 i 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , SnSiS 3 is preferred.
  • these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during occlusion and release of lithium ions, and the deterioration of the electrode is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the carbonaceous materials may be used singly or in combination of two or more.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • an ordinary pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
  • the content of the negative electrode active material in the negative electrode active material layer is not particularly limited, is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, and more preferably 30 to 85% by mass. More preferably, it is 40 to 80% by mass.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be arbitrarily determined according to the designed battery capacity.
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • a functional layer or a member is appropriately interposed or disposed between or outside each of the negative electrode conductive film, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode conductive film. May be.
  • each said layer and electrical power collector may be comprised by the single layer, or may be comprised by the multilayer.
  • the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing.
  • the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy or stainless steel can be mentioned, for example.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • Electrode sheet for all-solid-state secondary battery (hereinafter simply referred to as “electrode sheet of the present invention”) is an electrode sheet having a conductive film and an active material layer in this order on a current collector, It can use suitably for the all-solid-state secondary battery of this invention.
  • This electrode sheet is usually a sheet having a current collector and an active material layer provided with a conductive film, but an embodiment having a current collector with a conductive film, an active material layer and a solid electrolyte layer in this order, and The aspect which has a collector with an electroconductive film, an active material layer, a solid electrolyte layer, and an active material layer in this order is also included.
  • the configuration and the layer thickness of each layer constituting the electrode sheet are the same as the configuration and the layer thickness of each layer described in the all solid state secondary battery of the present invention.
  • the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery can be produced by a conventional method. This will be described in detail below.
  • the all-solid-state secondary battery and the all-solid-state secondary battery electrode sheet of the present invention form a conductive film on a metal foil serving as a current collector, and then apply the solid electrolyte composition to form a coating film. It can be manufactured by forming.
  • a positive electrode conductive film is formed on a metal foil that is a positive electrode current collector, a positive electrode material (positive electrode composition) is applied to form a positive electrode active material layer, and a positive electrode sheet for an all-solid-state secondary battery is formed. Make it.
  • a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer of the sheet to form a solid electrolyte layer.
  • a negative electrode material negative electrode composition
  • a solid electrolyte layer was sandwiched between the positive electrode active material layer and the negative electrode active material layer by superimposing a negative electrode current collector (metal foil) provided with a negative electrode conductive film as necessary on the negative electrode active material layer.
  • An all-solid secondary battery having a structure can be obtained. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery. Further, by reversely forming each layer, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector with the positive electrode conductive film is stacked, A solid secondary battery can also be manufactured.
  • Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode conductive film is formed on a metal foil as a negative electrode current collector, and a negative electrode material (a composition for negative electrode layer) is applied to form a negative electrode active material layer. A sheet is produced. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, an all-solid secondary battery can be manufactured. Another method includes the following method.
  • a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced.
  • a solid electrolyte composition is applied to a substrate to produce a solid electrolyte sheet composed of a solid electrolyte layer. Furthermore, it laminates
  • An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet are respectively produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery. In the said manufacturing method, it can replace with the said negative electrode sheet for all-solid-state secondary batteries, and can also use the sheet
  • the positive electrode current collector used in the above production method is provided with a positive electrode conductive film on the surface thereof.
  • the negative electrode current collector is provided with a negative electrode conductive film on the surface thereof as necessary.
  • the surface of the current collector is roughened as necessary, and the current collector is set to the surface form.
  • the method for roughening the surface of the current collector is not particularly limited, and a normal method can be employed. For example, when producing a current collector by rolling, a method of transferring the surface state of a rolling roll can be mentioned. Further, a method of roughening the surface of the current collector by a sandblast method or the like can be mentioned.
  • the surface form can be appropriately set according to the conditions of the material, shape, particle size, spraying pressure, spraying speed, and spraying time of the sand used.
  • a method of subjecting the current collector to an electrochemical surface roughening treatment (also referred to as an electrolytic surface roughening treatment) is also included.
  • electrolytic surface roughening is preferred.
  • an electrolytic surface-roughening method will be described by taking a current collector made of aluminum as an example.
  • the surface form of the current collector can be appropriately set by subjecting the current collector formed of a material other than aluminum to the same electrolytic surface roughening.
  • the aluminum forming the current collector subjected to the electrolytic surface roughening treatment is not particularly limited, and a normal aluminum foil can be used.
  • the aluminum foil is a metal foil mainly composed of aluminum.
  • alloy numbers 1085, 1N30, and 3003 described in Japanese Industrial Standard (JIS Standard) H4000 can be used.
  • the thickness of the aluminum foil may be the same as the thickness of the current collector, but is preferably 100 ⁇ m or less, preferably 5 to 80 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the electrochemical roughening treatment of the aluminum foil may include various treatments or steps other than the electrochemical roughening treatment as long as it includes at least the electrochemical roughening treatment.
  • an electrochemical surface-roughening method for obtaining the above surface form for example, if necessary, an aluminum foil is subjected to an alkali etching treatment, followed by an acid desmutting treatment and an electrochemical surface-roughening treatment using an electrolytic solution in sequence. Examples of the method include a method of performing an alkali etching treatment, an acid desmutting treatment on an aluminum foil, and an electrochemical surface roughening treatment using different electrolytic solutions a plurality of times, but the present invention is not limited thereto. In these methods, after the electrochemical surface roughening treatment, an alkali etching treatment and an acid desmutting treatment may be further performed. Hereinafter, each process of the surface treatment will be described in detail.
  • an electrolytic solution used for the electrochemical surface roughening treatment using a normal alternating current can be used.
  • an electrolytic solution mainly composed of hydrochloric acid or nitric acid because the above-described surface shape can be easily obtained.
  • Electrolytic surface roughening can be performed according to, for example, the electrochemical grain method (electrolytic grain method) described in Japanese Patent Publication No. 48-28123 and British Patent No. 896,563.
  • This electrolytic grain method uses a sinusoidal alternating current, but it may be performed using a special waveform as described in JP-A-52-58602. Further, the waveform described in JP-A-3-79799 can also be used.
  • the methods described in JP-A-3-267400 and JP-A-1-141094 can also be applied.
  • JP-A-52-58602, JP-A-52-152302, JP-A-53-12738, JP-A-53-12739, JP-A-53-32821, JP-A-53-32222, JP 53-32833, JP 53-32824, JP 53-32825, JP 54-85802, JP 55-122896, JP 55-13284, JP 48-28123, JP-B-51-7081, JP-A-52-13338, JP-A-52-133840, JP-A-52-133844, JP-A-52-133845, JP-A-53- Nos. 149135 and 54-146234 can also be used.
  • the concentration of the acidic solution is preferably 0.5 to 2.5% by mass, but it is particularly preferably 0.7 to 2.0% by mass in consideration of use in the smut removal treatment.
  • the liquid temperature is preferably 20 to 80 ° C., more preferably 30 to 60 ° C.
  • An aqueous solution mainly composed of hydrochloric acid or nitric acid is an aqueous solution of hydrochloric acid or nitric acid having a concentration of 1 to 100 g / L. At least one of the hydrochloric acid compounds having hydrochloric acid ions can be used by adding in a range from 1 g / L to saturation. Moreover, the metal contained in aluminum alloys, such as iron, copper, manganese, nickel, titanium, magnesium, a silica, may melt
  • the compound capable of forming a complex with Cu include ammonia; hydrogen atom of ammonia such as methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, cyclohexylamine, triethanolamine, triisopropanolamine, EDTA (ethylenediaminetetraacetic acid). And amines obtained by substituting with a hydrocarbon group (aliphatic, aromatic, etc.); metal carbonates such as sodium carbonate, potassium carbonate, potassium hydrogen carbonate and the like.
  • ammonium salts such as ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium phosphate, and ammonium carbonate are also included.
  • the temperature is preferably 10 to 60 ° C, more preferably 20 to 50 ° C.
  • the AC power wave used for the electrochemical surface roughening treatment is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave or the like is used, but a rectangular wave or a trapezoidal wave is preferable, and a trapezoidal wave is particularly preferable.
  • the time (TP) until the current reaches a peak from zero is preferably 0.5 to 3 msec. If it is less than 0.5 msec, processing irregularities such as chatter marks that occur perpendicular to the traveling direction of the aluminum foil are likely to occur.
  • TP exceeds 3 msec, especially when a nitric acid electrolyte is used, it is easily affected by trace components in the electrolyte typified by ammonium ions and the like that spontaneously increase by electrolytic treatment, and uniform graining is performed. It becomes hard to be broken.
  • a trapezoidal wave AC duty ratio of 1: 2 to 2: 1 can be used. However, as described in Japanese Patent Laid-Open No. 5-195300, in an indirect power feeding method that does not use a conductor roll for aluminum. A duty ratio of 1: 1 is preferable.
  • a trapezoidal AC frequency of 0.1 to 120 Hz can be used, but 50 to 70 Hz is preferable in terms of equipment. When the frequency is lower than 50 Hz, the carbon electrode of the main electrode is easily dissolved, and when the frequency is higher than 70 Hz, it is easily affected by an inductance component on the power supply circuit, and the power supply cost is increased.
  • One or more AC power supplies can be connected to the electrolytic cell.
  • an auxiliary anode is installed, It is preferable to divert part of the alternating current.
  • An anodic reaction that acts on the aluminum foil facing the main electrode by diverting a part of the current value as a direct current to an auxiliary anode provided in a separate tank from the two main electrodes via a rectifier or switching element It is possible to control the ratio between the current value for the current and the current value for the cathode reaction.
  • the ratio of the amount of electricity involved in the cathode reaction and the anodic reaction is preferably 0.3 to 0.95.
  • an electrolytic cell usually used for surface treatment such as a vertical type, a flat type, and a radial type can be used.
  • a radial type electrolytic cell as described in JP-A-5-195300 is particularly preferable.
  • the electrolytic solution passing through the electrolytic cell may be parallel to the traveling direction of the aluminum web or may be a counter.
  • the arithmetic average roughness Ra and the number of recesses are set in the above range by electrochemical surface roughening treatment (hereinafter also referred to as “nitric acid electrolysis”) using an electrolytic solution mainly composed of nitric acid.
  • nitric acid electrolysis since nitric acid electrolysis enables formation of a uniform and high-density recess, alternating current is used, the peak current density (peak value of current density) is set to 15 A / dm 2 or more, and the average current density (average value). ) Is preferably 13 A / dm 2 or more, and the amount of electricity is preferably 100 c / dm 2 or more.
  • the peak current density is preferably 100 A / dm 2 or less, and more preferably 68 A / dm 2 or less. Further, the average current density is preferably 40 A / dm 2 or less, and more preferably 31.0 A / dm 2 or less.
  • the amount of electricity is preferably 400 c / dm 2 or less.
  • the concentration or temperature of the electrolytic solution in nitric acid electrolysis is not particularly limited, and electrolysis is performed at 30 to 60 ° C. using a nitric acid electrolytic solution having a high concentration, for example, a nitric acid concentration of 15 to 35% by mass, or a nitric acid concentration of 0.1%. Electrolysis can be carried out at a high temperature, for example, at 80 ° C. or higher, using a 7-2 mass% nitric acid electrolyte.
  • the arithmetic average roughness Ra and the number of recesses are set in the above range also by electrochemical surface roughening treatment (hereinafter, also referred to as “hydrochloric acid electrolysis”) using an electrolytic solution mainly composed of hydrochloric acid. can do.
  • hydrochloric acid electrolysis for the reason that uniform and high-density recesses can be formed, an alternating current is used, the peak current density is 30 A / dm 2 or more, the average current density is 13 A / dm 2 or more, and The electrolytic treatment is preferably performed under the condition that the amount of electricity is 150 c / dm 2 or more.
  • the peak current density is preferably 100 A / dm 2 or less, the average current density is preferably 40 A / dm 2 or less, and the amount of electricity is preferably 400 c / dm 2 or less.
  • pickling is preferably performed to remove dirt (smut) remaining on the surface.
  • the acid used include nitric acid, sulfuric acid, phosphoric acid, chromic acid, hydrofluoric acid, and borohydrofluoric acid.
  • the desmutting treatment is performed, for example, by bringing the aluminum foil into contact with an acidic solution (containing aluminum ions of 0.01 to 5% by mass) having a concentration of 0.5 to 30% by mass such as hydrochloric acid, nitric acid, and sulfuric acid. .
  • the method of bringing the aluminum foil into contact with the acidic solution examples include a method of passing the aluminum foil through the acidic solution bath, a method of immersing the aluminum foil in the acidic solution bath, and spraying the acidic solution onto the surface of the aluminum foil.
  • the acid solution is mainly composed of an aqueous solution mainly composed of nitric acid or an aqueous solution mainly composed of hydrochloric acid discharged in the above-described electrolytic surface-roughening treatment, or sulfuric acid discharged in an anodic oxidation process described later. It is possible to use a waste solution of an aqueous solution.
  • the temperature of the desmut treatment is preferably 25 to 90 ° C.
  • the processing time is preferably 1 to 180 seconds.
  • Aluminum and aluminum alloy components may be dissolved in the acidic solution used for the desmut treatment.
  • an alkali etching treatment can be performed before and / or after the electrolytic surface roughening treatment.
  • the alkali etching treatment is a treatment for dissolving the surface layer by bringing the aluminum foil into contact with an alkali solution. This treatment is performed for the purpose of removing the rolling oil, dirt, natural oxide film, etc. on the surface of the aluminum foil or dissolving the smut generated in the acidic electrolyte.
  • the alkali etching treatment can be performed by applying normal conditions without particular limitation.
  • the aluminum foil treated as described above can be anodized as necessary from the viewpoint of preventing corrosion.
  • the anodizing treatment can be performed by a usual method and conditions.
  • the sealing process which seals the micropore which exists in an anodic oxide film can also be performed as needed.
  • the sealing treatment can be performed by a usual method and conditions.
  • a normal method and conditions can be adopted for each treatment in the electrochemical surface roughening treatment method. For example, each process (method or condition) described in JP-A-2015-53240 can be referred to as appropriate.
  • -Washing treatment- it is preferable to carry out water washing after completion of the above-described processes.
  • pure water, well water, tap water, or the like can be used.
  • a nip device may be used to prevent the processing liquid from being brought into the next process.
  • the method for forming the conductive film on the surface of the current collector having the above surface form is not particularly limited.
  • CVD chemical vapor deposition
  • BVD physical vapor deposition
  • sputtering using the above-described conductive particles examples include a deposition method such as phosphorus, a plating method such as electroplating, and an application (printing) method in which a coating composition in which the above-described conductive particles are dispersed in a binder is applied (printed) to the surface of the current collector and dried. It is done.
  • a method of forming a conductive film by the vapor deposition method or the coating method using the above-described conductive particles is preferable.
  • the solid electrolyte composition for forming the solid electrolyte layer contains an inorganic solid electrolyte.
  • the composition for positive electrodes for forming a positive electrode active material layer contains a positive electrode active material, and also contains an inorganic solid electrolyte.
  • the negative electrode composition for forming the negative electrode active material layer preferably contains a negative electrode active material and further contains an inorganic solid electrolyte.
  • the solid electrolyte composition for forming the solid electrolyte layer, the positive electrode composition, and the negative electrode composition are combined.
  • a solid electrolyte composition sometimes referred to as a solid electrolyte composition.
  • the solid electrolyte composition contains an inorganic solid electrolyte, and may contain a positive electrode active material or a negative electrode active material, and further a binder, a lithium salt, a conductive additive, a dispersant, and a dispersion medium.
  • the inorganic solid electrolyte, the positive electrode active material, the negative electrode active material, the binder, the lithium salt, the conductive assistant and the dispersant are as described above.
  • Examples of the dispersion medium include the following, which are preferable.
  • the dispersion medium only needs to disperse each of the above components, and examples thereof include various organic solvents.
  • Specific examples of the dispersion medium include the following.
  • Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, Examples include 2-methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
  • ether compound solvents examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene.
  • Glycol monomethyl ether tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dialkyl ethers (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ethers (tetrahydrofuran, geo Sun (1,2-, 1,3- and each isomer 1,4), etc.), and the like.
  • Examples of the amide compound solvent include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amino compound solvent include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Examples of the aromatic compound solvent include benzene, toluene, xylene and the like.
  • Examples of the aliphatic compound solvent include hexane, heptane, octane, decane, and the like.
  • Examples of the nitrile compound solvent include acetonitrile, propyronitrile, isobutyronitrile, and the like.
  • Examples of the ester compound solvent include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, and butyl pentanoate.
  • Examples of the non-aqueous dispersion medium include the above aromatic compound solvents and aliphatic compound solvents.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher, at normal pressure (1 atm).
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the content of the dispersion medium in the solid electrolyte composition is preferably 10 to 95 parts by weight, more preferably 15 to 90 parts by weight, and particularly preferably 20 to 85 parts by weight with respect to 100 parts by weight as a whole.
  • the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the solid electrolyte composition of the present invention can be produced by mixing an inorganic solid electrolyte, a binder and a dispersion medium, and if necessary, other components using, for example, various mixers.
  • the method for applying the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating.
  • the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited. The lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and the upper limit is preferably 300 ° C or lower, more preferably 250 ° C or lower. By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state.
  • each layer or all-solid secondary battery After producing the applied solid electrolyte composition or all-solid-state secondary battery. Moreover, it may pressurize in the state which laminated
  • An example of the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte. On the other hand, when the inorganic solid electrolyte and the binder coexist, pressing can be performed at a temperature higher than the glass transition temperature of the binder. However, in general, the temperature does not exceed the melting point of the binder.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • the atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point of ⁇ 20 ° C. or lower), inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • all-solid-state secondary battery other than the electrode sheet or the solid electrolyte sheet for an all-solid-state secondary battery for example, in order to keep applying moderate pressure, all-solid-state secondary battery restraints (screw tightening pressure, etc.) It can also be used.
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area or film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military purposes and space. Moreover, it can also combine with a solar cell.
  • An all-solid secondary battery is a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state secondary battery that uses the above-described Li—PS, LLT, LLZ, or the like. It is divided into batteries.
  • the application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte particles.
  • the inorganic solid electrolyte is distinguished from the above-described electrolyte (polymer electrolyte) using a polymer compound such as polyethylene oxide as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include Li—PS, LLT, and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations is sometimes called an electrolyte, but it is distinguished from the electrolyte as the ion transport material.
  • electrolyte salt or “supporting electrolyte”.
  • the electrolyte salt include LiTFSI (lithium bistrifluoromethanesulfonylimide).
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • a solid electrolyte composition when it is referred to as a solid electrolyte composition, it basically refers to a composition (typically a paste) that is a material for forming a solid electrolyte layer or the like, and an electrolyte layer or the like formed by curing the composition. Shall not be included in this.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • a zirconia 45 mL container (manufactured by Fritsch) was charged with 66 zirconia beads having a diameter of 5 mm, and then the entire amount of the mixture of lithium sulfide and diphosphorus pentasulfide was charged, and the container was completely sealed under an argon atmosphere. .
  • This container is set in a planetary ball mill P-7 (trade name, manufactured by Fritsch), mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours, and a yellow powder of Li—PS system glass (sulfide inorganic) 6.20 g of solid electrolyte) was obtained.
  • the AC power supply waveform is subjected to electrochemical surface roughening using a carbon electrode as a counter electrode, using a trapezoidal rectangular wave alternating current with a time TP of 0.8 msec until the current value reaches a peak from zero, a duty ratio of 1: 1. It was. Ferrite was used for the auxiliary anode. The current density was 60A / dm 2 at the peak current, and a 28.1A / dm 2 in average, also the quantity of electricity in the aluminum foil of the electric quantity during anodic sum at 120c / dm 2 there were. Then, water washing by spraying was performed. Table 1 below shows the conditions for electrochemical surface roughening.
  • the current collector AL-1 was produced in the same manner as the current collector AL-1, except that the electrochemical roughening treatment conditions were changed to the treatment conditions shown in Table 1 below.
  • Body AL-2 to 5 and current collector C-AL-1 to 3 for comparison were prepared.
  • Example 1 ⁇ Preparation of each composition> -Preparation of solid electrolyte composition- 180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, 9.5 g of the Li—PS system glass synthesized above, 0.5 g of PVdF—HFP, and 1,4 as a dispersion medium. -15.0 g of dioxane was charged. Thereafter, this container was set in a planetary ball mill P-7 (trade name, manufactured by Fritsch), and stirring was continued for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm to prepare a solid electrolyte composition.
  • the PVdF-HFP was measured by GPC under the following conditions, and the mass average molecular weight was 70,000.
  • composition for positive electrode- 180 zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, 1.5 g of the Li—PS system glass synthesized above, 0.5 g of PVdF—HFP, and 1,4 as dispersion media.
  • This container was set in a planetary ball mill P-7 (manufactured by Fritsch), and machine dispersion was continued for 2 hours under the conditions of a temperature of 25 ° C. and a rotation speed of 300 rpm.
  • composition for negative electrode- 180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 8 parts by mass of graphite (spheroidized graphite powder manufactured by Nippon Graphite Industries, Ltd., described as “graphite” in Table 2 below) , 2 parts by mass of the Li—PS glass synthesized above, 0.3 part by mass of binder (HSBR, hydrogenated styrene butadiene rubber, JSR product name: Dynalon 1321P), and 10 parts by mass of heptane as a dispersion medium did.
  • HSBR hydrogenated styrene butadiene rubber
  • Dynalon 1321P Dynalon 1321P
  • This container was set on a planetary ball mill P-7 (trade name, manufactured by Fritsch), and mechanical dispersion was continued for 90 minutes at a temperature of 25 ° C. and a rotation speed of 360 rpm to prepare a composition for a negative electrode.
  • the mass average molecular weight of the HSBR measured by GPC was 200,000, and Tg was ⁇ 50 ° C.
  • the negative electrode composition prepared above was applied onto a conductive film provided on a copper foil by an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.) with adjustable clearance, and 80 After heating at 1 ° C. for 1 hour, the composition was further heated at 110 ° C. for 1 hour to dry the negative electrode composition. Then, using a heat press, the dried negative electrode composition is heated (110 ° C.) while being pressurized (605 MPa, 1 minute), and has a negative electrode active material layer with a thickness of 100 ⁇ m. A sheet was produced.
  • SA-201 Baker type applicator manufactured by Tester Sangyo Co., Ltd.
  • the solid electrolyte composition prepared above was applied onto the negative electrode active material layer by the above-described Baker type applicator, and the solid electrolyte composition was heated at 80 ° C. for 1 hour, and further heated at 110 ° C. for 6 hours.
  • the sheet having the solid electrolyte layer formed on the negative electrode active material layer was pressurized (605 MPa, 1 minute) while being heated (120 ° C.) using a heat press, and the total film thickness with the negative electrode active material layer was 150 ⁇ m.
  • a negative electrode sheet for an all-solid secondary battery with a solid electrolyte layer was produced.
  • the film thickness of the solid electrolyte layer was 50 ⁇ m.
  • the positive electrode composition prepared above was applied onto the positive electrode conductive film by the above-mentioned Baker type applicator, heated at 80 ° C. for 1 hour, and further heated at 110 ° C. for 1 hour to dry the positive electrode composition. did. Then, using a heat press, the dried positive electrode composition is pressurized (605 MPa, 1 minute) while heating (120 ° C.), and has a positive electrode active material layer with a film thickness of 100 ⁇ m. A sheet was produced.
  • An all-solid secondary battery shown in FIG. 2 was produced.
  • the negative electrode sheet for an all solid secondary battery with the solid electrolyte layer produced above was cut out into a disk shape with a diameter of 10 mm, and the positive electrode sheet for an all solid secondary battery was cut out into a disk shape with a diameter of 10 mm.
  • the cut-out negative electrode sheet piece for an all-solid-state secondary battery with a solid electrolyte layer and the positive-electrode sheet piece for an all-solid-state secondary battery are attached by pressing at 605 MPa so that the solid electrolyte layer and the positive electrode active material layer face each other.
  • all-solid-state secondary battery (coin battery) 13 was manufactured by placing it in a stainless steel 2032 type coin case 11 incorporating a spacer and washer (both not shown in FIG. 2) and applying a restraining pressure from the outside.
  • 12 shows the laminated body of the electrode sheet for all-solid-state secondary batteries which laminated
  • the layer configuration of the all-solid secondary battery manufactured in this way has the layer configuration shown in FIG.
  • Examples 2 to 5 and Comparative Examples 1 to 3 In the production of the all-solid secondary battery of Example 1, except that the current collector AL-1 was changed to the current collector shown in Table 2, the same as the production of the all-solid secondary battery of Example 1, The all solid state secondary batteries of Examples 2, 4, 5 and Comparative Examples 1 to 3 were produced, respectively. Further, in the production of the all-solid-state secondary battery of Example 1, the current collector AL-1 was changed to the current collector shown in Table 2, and further replaced with a graphite positive electrode conductive film as follows. An all-solid secondary battery of Example 3 was produced in the same manner as in the production of the all-solid secondary battery of Example 1 except that a positive electrode conductive film (thickness 4 ⁇ m) of carbon nanotubes was formed.
  • the all-solid-state secondary batteries of Examples 1 to 5 in which the conductive film is formed on the surface of the current collector having a specific surface form in which the arithmetic average roughness Ra and the number of recesses are within a predetermined range are inorganic It was shown that fine voids could not be confirmed in the solid electrolyte layer, the adhesion between the current collector and the conductive film was high, and no short circuit occurred. On the other hand, in the all-solid-state secondary batteries of Comparative Examples 1 to 3 in which a conductive film is formed on the surface of the current collector that does not have the specific surface form, fine voids are confirmed in the inorganic solid electrolyte layer. Although it was not possible, it was shown that the conductive film peeled off from the current collector or a short circuit occurred.
  • Examples 6 to 10 In Examples 1 to 5, the same procedure as in Examples 1 to 5 except that the current collectors AL-1 to AL-5 used in each example were used instead of the copper foil as the negative electrode current collector.
  • Each solid secondary battery was manufactured. About each manufactured all-solid-state secondary battery, the presence or absence of the space

Abstract

An all-solid secondary battery, a method for manufacturing the same, an electrode sheet for an all-solid secondary battery, and a method for manufacturing the same, said battery being provided with a cathode that has an electroconductive film and a cathode active material layer in the stated order on the surface of a collector, an anode that has an anode active material layer, and an inorganic solid electrolyte layer between the cathode active material layer and the anode active material layer; the surface of the collector having an arithmetic average roughness Ra of 0.24 to 0.38 µm, and 10 to 80 recesses per 100 µm2; and said recesses having an average opening diameter of 0.3 to 3.0 µm.

Description

全固体二次電池、全固体二次電池用電極シート及びこれらの製造方法All-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and production method thereof
 本発明は、全固体二次電池、全固体二次電池用電極シート及びこれらの製造方法に関する。 The present invention relates to an all-solid-state secondary battery, an electrode sheet for an all-solid-state secondary battery, and methods for producing them.
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充電、放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電、過放電により電池内部で短絡が生じ発火するおそれもあり、信頼性と安全性のさらなる向上が求められている。
 かかる状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質、正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車又は大型蓄電池等への応用が期待されている。
A lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can be charged and discharged by reciprocating lithium ions between the two electrodes. Conventionally, an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery. However, the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge and overdischarge, resulting in ignition, and further improvements in reliability and safety are required.
Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention. The all-solid-state secondary battery consists of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can extend the service life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density compared to a secondary battery using an organic electrolyte, and application to an electric vehicle or a large storage battery is expected.
 全固体二次電池の電極は、集電体と集電体上に形成された活物質層とを有している。この電極において、活物質層と集電体との密着性向上又は電極の良好なイオン伝導度を目的として、集電体と活物質層との間に導電性膜が設けられることがある(例えば、特許文献1)。 The electrode of the all-solid-state secondary battery has a current collector and an active material layer formed on the current collector. In this electrode, a conductive film may be provided between the current collector and the active material layer for the purpose of improving the adhesion between the active material layer and the current collector or good ionic conductivity of the electrode (for example, Patent Document 1).
特開2015-5421号公報Japanese Patent Laying-Open No. 2015-5421
 全固体二次電池において、無機固体電解質は、通常、微粒子であるため、固体電解質層を形成する電解質粒子間にはある程度の、微細な空隙(単に空隙ともいう)が生じる。この粒子間の空隙を減らすことが、イオン伝導度等の電池特性の向上に、大きく貢献すると考えられている。この点は、電極を粒子状の電極活物質、好ましくはさらに粒子状の無機固体電解質を用いて形成する場合も、同様である。したがって、電極活物質又は無機固体電解質等の固体粒子を用いた全固体二次電池においては、所望のイオン伝導度を発揮させるために、無機固体電解質層又は活物質層の固体粒子に加圧負荷をかけて粒子間の空隙を減らすことが行われる。
 しかし、製造時又は使用時に加圧負荷をかけすぎると、電極に設けた導電性膜が集電体から剥離して、集電体と活物質層とのイオン伝導度がかえって低下する。また、無機固体電解質が導電性膜を(破損させて)突き破り、又は、電極活物質がその対極に設けた導電性膜を突き破って、短絡が発生する。
 このように、加圧負荷をかけた全固体二次電池においては、イオン伝導度向上のための加圧負荷(粒子間空隙の低減)と、導電性膜の剥離防止及び短絡防止(損傷防止)とはトレードオフの関係にある。そのため、従来の全固体二次電池においては、その性能は十分ではなく、改善の余地があった。
In the all solid state secondary battery, since the inorganic solid electrolyte is usually fine particles, a certain amount of fine voids (also simply referred to as voids) are generated between the electrolyte particles forming the solid electrolyte layer. It is considered that reducing the voids between the particles greatly contributes to improvement of battery characteristics such as ion conductivity. This applies to the case where the electrode is formed using a particulate electrode active material, preferably a particulate inorganic solid electrolyte. Therefore, in an all-solid-state secondary battery using solid particles such as an electrode active material or an inorganic solid electrolyte, a pressure load is applied to the solid particles of the inorganic solid electrolyte layer or the active material layer in order to exert a desired ionic conductivity. To reduce the voids between the particles.
However, if a pressure load is excessively applied during production or use, the conductive film provided on the electrode is peeled off from the current collector, and the ionic conductivity between the current collector and the active material layer is lowered. In addition, the inorganic solid electrolyte breaks through (breaks) the conductive film, or the electrode active material breaks through the conductive film provided on the counter electrode, and a short circuit occurs.
Thus, in an all-solid-state secondary battery subjected to a pressure load, a pressure load for improving ion conductivity (reduction of inter-particle voids), prevention of peeling of the conductive film and prevention of short circuit (damage prevention) Is in a trade-off relationship. Therefore, the performance of the conventional all-solid secondary battery is not sufficient and there is room for improvement.
 本発明は、無機固体電解質を密に充填した無機固体電解質層を有していても、集電体と導電性膜との密着性を確保でき、さらには短絡の発生をも防止可能な全固体二次電池及びその製造方法を提供することを課題とする。また、本発明は、上記全固体二次電池に好適に用いられる全固体二次電池用電極シート及びその製造方法を提供することを課題とする。
 本発明において、「無機固体電解質を密に充填した」とは、無機固体電解質の粒子間にバインダー(結着剤)等の物質を有しない微細な空隙がイオン伝導度を低下させるなど実質的な影響を与えない程度まで存在しない状態に、無機固体電解質を充填すること(無機固体電解質層を形成すること)を意味する。実質的な影響を与えない程度とは、一義的に決定できないが、例えば、形態的には全固体二次電池の断面(63μm×48μm)を3000倍で走査型顕微鏡により観察した場合に、粒子界面に由来する空隙(一義的に決定できないが、通常、直径又は長軸長さが1μm以上)が確認できない程度とすることができる。
Even if the present invention has an inorganic solid electrolyte layer closely packed with an inorganic solid electrolyte, it is possible to ensure the adhesion between the current collector and the conductive film and further prevent the occurrence of a short circuit. It is an object to provide a secondary battery and a manufacturing method thereof. Moreover, this invention makes it a subject to provide the electrode sheet for all-solid-state secondary batteries used suitably for the said all-solid-state secondary battery, and its manufacturing method.
In the present invention, the term “closely packed with an inorganic solid electrolyte” means that a fine void having no substance such as a binder (binder) between particles of the inorganic solid electrolyte substantially reduces ionic conductivity. This means filling the inorganic solid electrolyte in a state where it does not exist to the extent that it does not affect (forming an inorganic solid electrolyte layer). The level that does not have a substantial effect cannot be uniquely determined. For example, when the cross section (63 μm × 48 μm) of the all-solid-state secondary battery is observed with a scanning microscope at a magnification of 3000 times, It can be set to such an extent that voids originating from the interface (which cannot be uniquely determined, but usually have a diameter or major axis length of 1 μm or more) cannot be confirmed.
 本発明者らは、導電性膜を備えた全固体二次電池において、加圧負荷をかけたときに電池に作用する影響について検討したところ、導電性膜を蒸着法等によって薄膜に形成し、これに加えて、導電性膜を設ける集電体の表面を特定の表面形態(morphology)に設定することにより、上記の導電性膜と集電体の表面との相互作用を高めて、加圧負荷が作用しても、集電体と導電性膜との高い密着性を確保でき、短絡の発生をも防止できることを、見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。 In the all-solid-state secondary battery provided with the conductive film, the present inventors examined the effect on the battery when a pressure load was applied. The conductive film was formed into a thin film by vapor deposition or the like, In addition to this, by setting the surface of the current collector on which the conductive film is provided to a specific surface morphology, the interaction between the conductive film and the surface of the current collector is enhanced, and pressure is applied. It has been found that even when a load acts, high adhesion between the current collector and the conductive film can be secured, and occurrence of a short circuit can be prevented. The present invention has been further studied based on these findings and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
<1>集電体の表面に導電性膜と正極活物質層とをこの順に有する正極と、負極活物質層を有する負極と、正極活物質層及び負極活物質層の間の無機固体電解質層とを有する全固体二次電池であって、
 正極が有する集電体の表面が、0.24~0.38μmの算術平均粗さRaを有し、かつ、平均開口径0.3~3.0μmの凹部を10~80個/100μm有する、全固体二次電池。
<2>負極が、集電体の表面に導電性膜と負極活物質層とをこの順に有し、
 負極が有する集電体の表面が、0.24~0.38μmの算術平均粗さRaを有し、かつ、平均開口径0.3~3.0μmの凹部を10~80個/100μm有する<1>に記載の全固体二次電池。
<3>上記表面の、算術平均粗さRaが0.25~0.31であり、凹部の数が40~70個/100μmである<1>又は<2>に記載の全固体二次電池。
<4>導電性膜が、金属、金属酸化物又は炭素質材料の膜である<1>~<3>のいずれか1つに記載の全固体二次電池。
<5>算術平均粗さRaが0.24~0.38μmであり、かつ、平均開口径0.3~3.0μmの凹部が10~80個/100μmである表面を有する集電体の表面上に、導電性膜と活物質層とをこの順に有する全固体二次電池用電極シート。
<6>算術平均粗さRaが0.24~0.38μmであり、かつ、平均開口径0.3~3.0μmの凹部が10~80個/100μmである表面を有する集電体の表面上に、導電性膜を形成し、次いで、活物質層を形成する全固体二次電池用電極シートの製造方法。
<7>集電体の表面が、電気化学的粗面化処理により粗面化されている<6>に記載の全固体二次電池用電極シートの製造方法。
<8>導電性膜を、金属、金属酸化物又は炭素質材料を用いて蒸着法又は塗布法により形成する<6>又は<7>に記載の全固体二次電池用電極シートの製造方法。
<9>上記<6>~<8>のいずれか1つに記載の全固体二次電池用電極シートの製造方法を含む全固体二次電池の製造方法。
That is, the above problem has been solved by the following means.
<1> A positive electrode having a conductive film and a positive electrode active material layer in this order on the surface of a current collector, a negative electrode having a negative electrode active material layer, and an inorganic solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer An all solid state secondary battery comprising:
The surface of the current collector of the positive electrode has an arithmetic average roughness Ra of 0.24 to 0.38 μm, and 10 to 80 recesses / 100 μm 2 having an average opening diameter of 0.3 to 3.0 μm. All-solid secondary battery.
<2> The negative electrode has a conductive film and a negative electrode active material layer in this order on the surface of the current collector,
The surface of the current collector of the negative electrode has an arithmetic average roughness Ra of 0.24 to 0.38 μm, and 10 to 80 concave portions with an average opening diameter of 0.3 to 3.0 μm / 100 μm 2. The all-solid-state secondary battery as described in <1>.
<3> The all-solid secondary according to <1> or <2>, wherein the surface has an arithmetic average roughness Ra of 0.25 to 0.31, and the number of recesses is 40 to 70/100 μm 2 battery.
<4> The all-solid-state secondary battery according to any one of <1> to <3>, wherein the conductive film is a film of a metal, a metal oxide, or a carbonaceous material.
<5> A current collector having a surface having an arithmetic average roughness Ra of 0.24 to 0.38 μm and 10 to 80 concave portions with an average opening diameter of 0.3 to 3.0 μm / 100 μm 2 An electrode sheet for an all-solid-state secondary battery having a conductive film and an active material layer in this order on the surface.
<6> A current collector having a surface having an arithmetic average roughness Ra of 0.24 to 0.38 μm and a recess having an average opening diameter of 0.3 to 3.0 μm of 10 to 80/100 μm 2 The manufacturing method of the electrode sheet for all-solid-state secondary batteries which forms a conductive film on the surface and then forms an active material layer.
<7> The method for producing an electrode sheet for an all-solid-state secondary battery according to <6>, wherein the surface of the current collector is roughened by an electrochemical roughening treatment.
<8> The method for producing an electrode sheet for an all-solid-state secondary battery according to <6> or <7>, wherein the conductive film is formed by a vapor deposition method or a coating method using a metal, a metal oxide, or a carbonaceous material.
<9> A method for producing an all-solid secondary battery, including the method for producing an electrode sheet for an all-solid secondary battery according to any one of <6> to <8>.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」と記載するときは、メタアクリル及び/又はアクリルを意味する。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, when “acryl” is simply described, it means methacryl and / or acryl.
 本発明の全固体二次電池は、無機固体電解質を密に充填した無機固体電解質層を有していても、集電体と導電性膜との密着性を確保でき、さらには短絡の発生をも防止できる。また、本発明の全固体二次電池用電極シートは、上記の優れた特性を有する全固体二次電池に好適に用いることができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
Even if the all-solid-state secondary battery of the present invention has an inorganic solid electrolyte layer closely packed with an inorganic solid electrolyte, it can ensure the adhesion between the current collector and the conductive film, and further, the occurrence of a short circuit. Can also be prevented. Moreover, the electrode sheet for all-solid-state secondary batteries of this invention can be used suitably for the all-solid-state secondary battery which has said outstanding characteristic.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the all-solid-state secondary battery which concerns on preferable embodiment of this invention. 実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the all-solid-state secondary battery (coin battery) produced in the Example.
 本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体の表面に正極導電性膜と正極活物質層とをこの順に有する。負極は、負極集電体上に負極活物質層を有しており、負極集電体の、負極活物質層が形成される表面に負極導電性膜を有していてもよい。正極を形成する正極集電体は、後述する特有の表面形態(凹凸構造)を有している。負極を形成する負極集電体が負極導電性膜を備える場合、負極導電性膜が形成される表面は正極集電体と同様の表面形態を有していることが好ましい。
 以下に、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
The all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode. The positive electrode has a positive electrode conductive film and a positive electrode active material layer in this order on the surface of the positive electrode current collector. The negative electrode has a negative electrode active material layer on the negative electrode current collector, and may have a negative electrode conductive film on the surface of the negative electrode current collector on which the negative electrode active material layer is formed. The positive electrode current collector forming the positive electrode has a specific surface form (uneven structure) described later. When the negative electrode current collector that forms the negative electrode includes a negative electrode conductive film, the surface on which the negative electrode conductive film is formed preferably has the same surface form as the positive electrode current collector.
Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited thereto.
[全固体二次電池]
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極導電性膜7、負極活物質層2、固体電解質層3、正極活物質層4、正極導電性膜8、正極集電体5を、この順に積層してなる構造を有しており、隣接する層同士は直に接触している。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子を供給することができる。図示した全固体二次電池の例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。
[All-solid secondary battery]
FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 10 according to this embodiment includes a negative electrode current collector 1, a negative electrode conductive film 7, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode conductive film as viewed from the negative electrode side. 8. It has a structure in which the positive electrode current collector 5 is laminated in this order, and adjacent layers are in direct contact with each other. By adopting such a structure, at the time of charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein. On the other hand, at the time of discharging, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons can be supplied to the working part 6. In the example of the illustrated all-solid-state secondary battery, a light bulb is adopted as a model for the operation site 6 and is lit by discharge.
〔集電体(金属箔)〕
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は両方を合わせて、単に集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタンなどが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。
[Current collector (metal foil)]
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors.
In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
As a material for forming the positive electrode current collector, aluminum, aluminum alloy, stainless steel, nickel, titanium and the like are preferable, and among them, aluminum and aluminum alloy are more preferable.
As the material for forming the negative electrode current collector, aluminum, copper, copper alloy, stainless steel, nickel, and titanium are preferable, and aluminum, copper, and copper alloy are more preferable.
 集電体の形状は、通常フィルムシート状のものが使用されるが、導電性膜を形成できるのであれば、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。
The shape of the current collector is usually a film sheet, but if a conductive film can be formed, the net, punched, lath, porous, foam, and fiber group are formed. The body can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.
 正極集電体は、正極導電性膜が形成される表面について、以下の表面形態を有している。
(1)算術平均粗さRaが0.24~0.38μm
(2)平均開口径0.3~3.0μmの凹部の個数が10~80個/100μm
The positive electrode current collector has the following surface form on the surface on which the positive electrode conductive film is formed.
(1) Arithmetic mean roughness Ra is 0.24 to 0.38 μm
(2) The number of recesses having an average opening diameter of 0.3 to 3.0 μm is 10 to 80/100 μm 2
 算術平均粗さRaは、0.24~0.38μmである。算術平均粗さRaが0.24μmより小さいと、正極集電体と正極導電性膜との密着性が十分ではなく、正極集電体から正極導電性膜が剥離することがある。一方、算術平均粗さRaが0.38μmよりも大きいと、全固体二次電池が短絡することがある。また正極導電性膜が剥離することがある。正極集電体と正極導電性膜との密着性、及び、短絡の発生防止の点で、算術平均粗さRaは、0.25~0.37μmが好ましく、0.25~0.31μmがより好ましい。 The arithmetic average roughness Ra is 0.24 to 0.38 μm. When the arithmetic average roughness Ra is smaller than 0.24 μm, the adhesion between the positive electrode current collector and the positive electrode conductive film is not sufficient, and the positive electrode conductive film may be peeled off from the positive electrode current collector. On the other hand, if the arithmetic average roughness Ra is larger than 0.38 μm, the all solid state secondary battery may be short-circuited. Further, the positive electrode conductive film may be peeled off. Arithmetic average roughness Ra is preferably 0.25 to 0.37 μm, more preferably 0.25 to 0.31 μm, in terms of adhesion between the positive electrode current collector and the positive electrode conductive film and prevention of occurrence of short circuit. preferable.
 算術平均粗さRaは、触針式の表面粗さ計(例えば、ミツトヨ社製の表面粗さ測定機SJ-401)を用いて、JIS B0601:2010に準拠して測定した算術平均粗さとする。 The arithmetic average roughness Ra is an arithmetic average roughness measured according to JIS B0601: 2010 using a stylus type surface roughness meter (for example, a surface roughness measuring machine SJ-401 manufactured by Mitutoyo Corporation). .
 正極集電体は、その表面に凹部を有する。この凹部は、その平均開口径について、特に限定されないが、0.3~3.0μmの平均開口径を有する凹部を含んでいることが、正極集電体と正極導電性膜との密着性、及び、短絡の発生防止の点で、重要である。凹部の平均開口径は、0.8~3.0μmであることが好ましい。
 本発明においては、正極集電体の表面には、0.3~3.0μmの平均開口径を有する凹部を、表面積100μm当たり、10~80個有する。上記平均開口径の凹部の単位表面積当たりの個数(凹部数と称することがある)が10個より少ないと、正極集電体と正極導電性膜との密着性が十分ではなく、正極集電体から正極導電性膜が剥離することがある。一方、凹部数が80個よりも多いと、各開口部の周辺縁が突起となり加圧負荷時に短絡が増加することがある。正極集電体と正極導電性膜との密着性、及び、短絡防止の点で、凹部数は、15~70個が好ましく、20~70個がより好ましく、40~70個がさらに好ましい。
The positive electrode current collector has a recess on its surface. The concave portion is not particularly limited with respect to the average opening diameter, but the concave portion having an average opening diameter of 0.3 to 3.0 μm includes the adhesion between the positive electrode current collector and the positive electrode conductive film, And it is important in terms of preventing the occurrence of short circuits. The average opening diameter of the recesses is preferably 0.8 to 3.0 μm.
In the present invention, the surface of the positive electrode current collector has 10 to 80 recesses having an average opening diameter of 0.3 to 3.0 μm per surface area of 100 μm 2 . If the number of concave portions with the average opening diameter per unit surface area (sometimes referred to as the number of concave portions) is less than 10, the adhesion between the positive electrode current collector and the positive electrode conductive film is not sufficient, and the positive electrode current collector In some cases, the positive electrode conductive film may peel off. On the other hand, if the number of recesses is more than 80, the peripheral edge of each opening becomes a protrusion, and the short circuit may increase during a pressure load. In terms of adhesion between the positive electrode current collector and the positive electrode conductive film and prevention of short circuit, the number of recesses is preferably 15 to 70, more preferably 20 to 70, and still more preferably 40 to 70.
 本発明においては、算術平均粗さRaと凹部数とを上記範囲に設定することにより、薄膜に形成した正極導電性膜との相互作用が高まり、製造時及び製造後に加圧負荷力をかけて無機固体電解質を密に充填しても、正極集電体及び正極導電性膜の密着性と短絡の発生とを高い水準で両立できる。 In the present invention, by setting the arithmetic average roughness Ra and the number of recesses within the above ranges, the interaction with the positive electrode conductive film formed on the thin film is increased, and a pressure load force is applied during and after production. Even if the inorganic solid electrolyte is closely packed, the adhesion between the positive electrode current collector and the positive electrode conductive film and the occurrence of a short circuit can be achieved at a high level.
 凹部の開口径は、凹部の開口部直径を意味し、凹部の平均開口径とは、その平均値である。
 具体的には、高分解能走査型電子顕微鏡(SEM)を用いて、正極集電体の表面を真上から倍率2000倍で撮影し、得られたSEM画像において、周囲(「凹部の開口部を構成する縁」をいう。)が略円形状(環状)に連なっている凹部を少なくとも50個抽出し、その直径を読み取って開口径とし、平均開口径を算出する。
 なお、1つの凹部が他の凹部と重なりあっている場合、凹部として抽出しない。
 また、得られたSEM画像において、10μm×10μmの領域(任意の3領域)内に存在する開口径0.3~3.0μmの凹部(開口部における縁が環状に連なっている凹部に限る)の個数を領域ごとに計数し、その平均値を凹部数(個/100μm)として算出する。
The opening diameter of a recessed part means the opening diameter of a recessed part, and the average opening diameter of a recessed part is the average value.
Specifically, using a high-resolution scanning electron microscope (SEM), the surface of the positive electrode current collector was photographed at a magnification of 2000 times from directly above, and in the obtained SEM image, the periphery (“the opening of the recess was defined). At least 50 concave portions having a substantially circular shape (annular shape) are extracted, and the diameter is read as an opening diameter to calculate an average opening diameter.
In addition, when one recessed part overlaps with another recessed part, it does not extract as a recessed part.
Further, in the obtained SEM image, a recess having an opening diameter of 0.3 to 3.0 μm existing in a 10 μm × 10 μm region (arbitrary three regions) (limited to a recess in which the edge of the opening is continuous in an annular shape) Is counted for each region, and the average value is calculated as the number of recesses (pieces / 100 μm 2 ).
 負極集電体の表面形態は、特に限定されないが、正極集電体と同様に、上記(1)及び(2)を満たす表面形態を有していることが好ましい。この場合、正極集電体と負極集電体との表面形態は、同一であっても異なっていてもよい。 Although the surface form of the negative electrode current collector is not particularly limited, it is preferable that the negative electrode current collector has a surface form satisfying the above (1) and (2) as in the positive electrode current collector. In this case, the surface forms of the positive electrode current collector and the negative electrode current collector may be the same or different.
〔導電性膜〕
 正極を形成する導電性膜(正極導電性膜)8は、導電性を有する材料で膜状に形成されたものであればよい。
 導電性を有する材料として、金属、金属酸化物、炭素質材料等の導電性粒子が挙げられる。金属としては、例えば、銅、ニッケル、クロム、アルミニウム、白金、銀、亜鉛、チタン、インジウム、アンチモン、ビスマス、コバルト、タングステン、モリブデン又はこれらの合金が挙げられる。金属酸化物としては、例えば、上記金属の酸化物が挙げられる。炭素質材料としては、例えば、後述する導電助剤で説明する炭素質材料が挙げられる。中でも、金属又は炭素質材料が好ましく、炭素質材料がより好ましく、黒鉛又はカーボンナノチューブ(CNT)がさらに好ましい。
[Conductive film]
The conductive film (positive electrode conductive film) 8 forming the positive electrode may be any film formed of a conductive material.
Examples of the conductive material include conductive particles such as metals, metal oxides, and carbonaceous materials. Examples of the metal include copper, nickel, chromium, aluminum, platinum, silver, zinc, titanium, indium, antimony, bismuth, cobalt, tungsten, molybdenum, and alloys thereof. As a metal oxide, the said metal oxide is mentioned, for example. As a carbonaceous material, the carbonaceous material demonstrated with the conductive support agent mentioned later is mentioned, for example. Among these, metals or carbonaceous materials are preferable, carbonaceous materials are more preferable, and graphite or carbon nanotubes (CNT) are more preferable.
 正極導電性膜の膜厚は、特に限定されないが、正極集電体との密着性、加圧負荷時の応力緩和等の点で、0.05~50μmが好ましく、0.1~30μmがより好ましい。
 正極導電性膜は、導電性を有する材料の固体微粒子ではなく、塗布(印刷)法、蒸着法又はめっき法等によって薄膜に形成されたものが、正極集電体との密着性、及び、導電性の向上の点で、好ましい。
The film thickness of the positive electrode conductive film is not particularly limited, but is preferably 0.05 to 50 μm, more preferably 0.1 to 30 μm in terms of adhesion to the positive electrode current collector, stress relaxation under pressure load, and the like. preferable.
The positive electrode conductive film is not a solid fine particle of a conductive material, but is formed into a thin film by a coating (printing) method, a vapor deposition method, a plating method, or the like, and has an adhesive property with a positive electrode current collector and a conductive material. From the viewpoint of improving the property, it is preferable.
 この正極導電性膜は、その特性上、体積固有抵抗率が低い方が好ましく、0.5Ω-cm以下のもの、例えば、1×10-1~1×10-5Ω-cmのものが使用できる。体積固有抵抗率は、好ましくは5×10-2~5×10-5Ω-cm、より好ましくは1×10-2~1×10-4Ω-cmである。 This positive electrode conductive film preferably has a low volume resistivity because of its characteristics, and those having a volume resistivity of 0.5Ω-cm or less, for example, 1 × 10 −1 to 1 × 10 −5 Ω-cm are used. it can. The volume resistivity is preferably 5 × 10 −2 to 5 × 10 −5 Ω-cm, more preferably 1 × 10 −2 to 1 × 10 −4 Ω-cm.
 負極が導電性膜(負極導電性膜)7を備える場合、負極導電性膜は正極導電性膜と同義であり、好ましいものも同じである。ただし、導電性を有する材料の種類、膜厚等は、正極導電性膜と同じであっても異なっていてもよい。
 本発明において、正極導電性膜及び負極導電性膜のいずれか、又は両方を合わせて、単に導電性膜と称することがある。
When the negative electrode includes a conductive film (negative electrode conductive film) 7, the negative electrode conductive film is synonymous with the positive electrode conductive film, and preferable ones are also the same. However, the type and thickness of the material having conductivity may be the same as or different from those of the positive electrode conductive film.
In the present invention, either or both of the positive electrode conductive film and the negative electrode conductive film may be simply referred to as a conductive film.
〔正極活物質層、固体電解質層、負極活物質層〕
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。一般的な電池の寸法を考慮すると、上記各層の厚さは10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3及び負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。
[Positive electrode active material layer, solid electrolyte layer, negative electrode active material layer]
The thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. Considering general battery dimensions, the thickness of each of the above layers is preferably 10 to 1,000 μm, more preferably 20 μm or more and less than 500 μm. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 is 50 μm or more and less than 500 μm.
 固体電解質層3は、無機固体電解質を含み、固体粒子間及び層間の結着性向上の観点から、バインダーを含有することが好ましい。固体電解質層は、通常、正極活物質及び/又は負極活物質を含まない。正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、イオン伝導性を向上させる観点から、好ましくは固体電解質を含んでいる。また、各活物質層は、それぞれ、固体粒子間、活物質層-固体電解質層間及び活物質層-導電性膜間の結着性向上の観点から、バインダーを含有することが好ましい。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及びバインダーは、それぞれ、互いに同種であっても異種であってもよい。
 本発明において、正極活物質及び負極活物質のいずれか、又は、両方を合わせて、単に、活物質又は電極活物質と称することがある。また、正極活物質層及び負極活物質層のいずれか、又は両方を合わせて、単に、活物質層と称することがある。
The solid electrolyte layer 3 contains an inorganic solid electrolyte, and preferably contains a binder from the viewpoint of improving the binding between solid particles and between layers. The solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material. The positive electrode active material layer 4 and the negative electrode active material layer 2 each contain a positive electrode active material or a negative electrode active material, and preferably contain a solid electrolyte from the viewpoint of improving ion conductivity. Each active material layer preferably contains a binder from the viewpoint of improving the binding between the solid particles, the active material layer-solid electrolyte layer, and the active material layer-conductive film.
The inorganic solid electrolyte and the binder contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different from each other.
In the present invention, one or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material. One or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer.
(無機固体電解質)
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、カチオン及びアニオンに解離又は遊離していない。この点で、電解液又はポリマー中でカチオン及びアニオンが解離又は遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族又は第2族に属する金属元素のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
(Inorganic solid electrolyte)
The inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). Further, since the inorganic solid electrolyte is solid in a steady state, it is not dissociated or released into cations and anions. In this respect, it is also clearly distinguished from inorganic electrolyte salts (LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) in which cations and anions are dissociated or liberated in the electrolyte or polymer. . The inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metal elements belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
 本発明において、無機固体電解質は、周期律表第1族又は第2族に属する金属元素のイオン伝導性を有する。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導度を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましく用いられる。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族又は第2族に属する金属元素のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 例えば下記式(A)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられ、好ましい。
In the present invention, the inorganic solid electrolyte has ion conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table. When the all solid state secondary battery of the present invention is a lithium ion battery, the inorganic solid electrolyte preferably has an ionic conductivity of lithium ions.
As the inorganic solid electrolyte, a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used. Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes. In the present invention, a sulfide-based inorganic solid electrolyte is preferably used from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ionic conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table, And what has electronic insulation is preferable. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S, and P may be used. An element may be included.
For example, a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (A) can be mentioned and is preferable.
   La1b1c1d1e1 (A) L a1 M b1 P c1 S d1 A e1 (A)
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。
 Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。中でも、B、Sn、Si、Al又はGeが好ましく、Sn、Al又はGeがより好ましい。
 Aは、I、Br、Cl又はFを示し、I又はBrが好ましく、Iが特に好ましい。
 L、M及びAは、それぞれ、上記元素の1種又は2種以上とすることができる。
 a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~1:1:2~12:0~5を満たす。a1はさらに、1~9が好ましく、1.5~4がより好ましい。b1は0~0.5が好ましい。d1はさらに、3~7が好ましく、3.25~4.5がより好ましい。e1はさらに、0~3が好ましく、0~1がより好ましい。
In the formula, L represents an element selected from Li, Na and K, and Li is preferred.
M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge. Among these, B, Sn, Si, Al, or Ge is preferable, and Sn, Al, or Ge is more preferable.
A represents I, Br, Cl or F, preferably I or Br, and particularly preferably I.
L, M, and A can each be one or more of the above elements.
a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 1: 1: 2 to 12: 0 to 5. a1 is further preferably 1 to 9, and more preferably 1.5 to 4. b1 is preferably 0 to 0.5. Further, d1 is preferably 3 to 7, and more preferably 3.25 to 4.5. Further, e1 is preferably 0 to 3, more preferably 0 to 1.
 式(A)において、L、M、P、S及びAの組成比は、好ましくはb1、e1が0であり、より好ましくはb1=0、e1=0で且つa1、c1及びd1の比がa1:c1:d1=1~9:1:3~7であり、さらに好ましくはb1=0、e1=0で且つa1:c1:d1=1.5~4:1:3.25~4.5である。各元素の組成比は、後述するように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 In the formula (A), the composition ratio of L, M, P, S and A is preferably such that b1 and e1 are 0, more preferably b1 = 0 and e1 = 0 and the ratio of a1, c1 and d1 is a1: c1: d1 = 1-9: 1: 3-7, more preferably b1 = 0 and e1 = 0 and a1: c1: d1 = 1.5-4: 1: 3.25-4. 5. As will be described later, the composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、[1]硫化リチウム(LiS)と硫化リン(例えば五硫化二燐(P))、[2]硫化リチウムと単体燐及び単体硫黄の少なくとも一方、又は[3]硫化リチウムと硫化リン(例えば五硫化二燐(P))と単体燐及び単体硫黄の少なくとも一方、の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized. For example, Li—PS system glass containing Li, P, and S, or Li—PS system glass ceramics containing Li, P, and S can be used.
The sulfide-based inorganic solid electrolyte includes [1] lithium sulfide (Li 2 S) and phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), [2] lithium sulfide and at least one of simple phosphorus and simple sulfur, Or [3] It can be produced by the reaction of lithium sulfide, phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), at least one of elemental phosphorus and elemental sulfur.
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは65:35~85:15、より好ましくは68:32~77:23である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度をより高めることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 The ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 85:15, more preferably 68:32 to 77:23. By setting the ratio of Li 2 S to P 2 S 5 within this range, the lithium ion conductivity can be further increased. Specifically, the lithium ion conductivity can be preferably 1 × 10 −4 S / cm or more, more preferably 1 × 10 −3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 × 10 −1 S / cm or less.
 硫化物系無機固体電解質の具体的な化合物例としては、例えば、LiSと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。より具体的には、LiS-P、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。その中でも、LiS-P、LiS-GeS-Ga、LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO4、LiS-LiI-LiO-P、LiS-LiO-P、LiS-LiPO-P、LiS-GeS-P、Li10GeP12からなる結晶質、非晶質若しくは結晶質と非晶質混合の原料組成物が、高いリチウムイオン伝導性を有するので好ましい。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法及び溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 Specific examples of the sulfide-based inorganic solid electrolyte include, for example, those using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15. it can. More specifically, Li 2 S—P 2 S 5 , Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5- SiS 2 , Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S— Ga 2 S 3 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—GeS 2 —Sb 2 S 5 , Li 2 S—GeS 2Al 2 S 3, Li 2 S-SiS 2, Li 2 S-Al 2 S 3, Li 2 S-SiS 2 - l 2 S 3, Li 2 S -SiS 2 -P 2 S 5, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -Li 4 SiO 4 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 10 GeP 2 S 12 and the like. Among them, Li 2 S—P 2 S 5 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 S—SiS 2 —Li 4 SiO 4 , Li 2 S—SiS 2 —Li 3 PO 4, Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , since a raw material composition of crystalline, amorphous or mixed crystalline and amorphous material composed of Li 2 S—GeS 2 —P 2 S 5 and Li 10 GeP 2 S 12 has high lithium ion conductivity. preferable. Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method. Examples of the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属元素のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されないが、1×10-1S/cm以下であることが実際的である。
(Ii) Oxide-based inorganic solid electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal element belonging to Group 1 or Group 2 of the periodic table, And what has electronic insulation is preferable.
The oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 × 10 −6 S / cm or more, more preferably 5 × 10 −6 S / cm or more, and 1 × 10 −5 S. / Cm or more is particularly preferable. The upper limit is not particularly limited, but it is practical that it is 1 × 10 −1 S / cm or less.
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 さらに、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
 その中でも、LLT、LixbLaybZrzbbb mbnb(Mbb、xb、yb、zb、mb及びnb上記の通りである。)、LLZ、LiBO、LiBO-LiSO、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xd、yd、zd、ad、md及びndは上記の通りである。)が好ましい。
 これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As a specific compound example, for example, Li xa La ya TiO 3 [xa satisfies 0.3 ≦ xa ≦ 0.7, and ya satisfies 0.3 ≦ ya ≦ 0.7. (LLT); Li xb La yb Zr zb M bb mb Onb (M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn) Xb satisfies 5 ≦ xb ≦ 10, yb satisfies 1 ≦ yb ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, and nb satisfies 5 ≦ nb ≦ 20. Li xc B yc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn. Xc is 0 ≦ xc ≦ 5 Yc satisfies 0 ≦ yc ≦ 1, zc satisfies 0 ≦ zc ≦ 1, and nc satisfies 0 ≦ nc ≦ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md Ond (xd satisfies 1 ≦ xd ≦ 3, yd Satisfies 0 ≦ yd ≦ 1, zd satisfies 0 ≦ zd ≦ 2, ad satisfies 0 ≦ ad ≦ 1, md satisfies 1 ≦ md ≦ 7, and nd satisfies 3 ≦ nd ≦ 13.) Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, M ee represents a divalent metal atom, D ee represents a halogen atom or two or more types of halogen atoms; Li xf Si yf O zf (xf satisfies 1 ≦ xf ≦ 5, yf satisfies 0 <yf ≦ 3, and zf satisfies 1 ≦ zf ≦ 10); Li xg S yg O zg (xg satisfies 1 ≦ xg ≦ 3, yg satisfies 0 <yg ≦ 2, and zg satisfies 1 ≦ zg ≦ 10); Li 3 BO 3 ; Li 3 BO 3 —Li 2 SO 4 ; Li 2 O-B 2 O 3 -P 2 O 5; Li 2 O-SiO 2 Li 6 BaLa 2 Ta 2 O 12 ; Li 3 PO (4-3 / 2w) N w (w is w <1); LISICON Li 3.5 Zn 0.25 GeO with (Lithium super ionic conductor) type crystal structure 4 ; La 0.55 Li 0.35 TiO 3 having a perovskite-type crystal structure; LiTi 2 P 3 O 12 having a NASICON (Natrium super ionic conductor) type crystal structure; Li 1 + xh + yh (Al, Ge) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (xh satisfies 0 ≦ xh ≦ 1 and yh satisfies 0 ≦ yh ≦ 1) And Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ); LiPON obtained by substituting a part of oxygen of lithium phosphate with nitrogen; LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, And at least one element selected from Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
Furthermore, LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C, and Ga) can be preferably used.
Among them, (is as M bb, xb, yb, zb , mb and nb above.) LLT, Li xb La yb Zr zb M bb mb O nb, LLZ, Li 3 BO 3, Li 3 BO 3 -Li 2 SO 4, Li xd (Al , Ga) yd (Ti, Ge) zd Si ad P md O nd (xd, yd, zd, ad, md and nd are as defined above.) is preferable.
These may be used alone or in combination of two or more.
 無機固体電解質は粒子であることが好ましい。粒子状の無機固体電解質の体積平均粒子径は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質の体積平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。 The inorganic solid electrolyte is preferably a particle. The volume average particle diameter of the particulate inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less. In addition, the measurement of the volume average particle diameter of an inorganic solid electrolyte is performed in the following procedures. The inorganic solid electrolyte particles are prepared by diluting a 1 mass% dispersion in a 20 mL sample bottle using water (heptane in the case of a substance unstable to water). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA), data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Obtain the volume average particle size. For other detailed conditions, the description of JISZ8828: 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
 無機固体電解質の無機固体電解質層中の固形成分における含有量は、電池性能と界面抵抗を低減し維持する効果との両立を考慮したとき、固形成分100質量%において、5質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、正極活物質層又は負極活物質層中における、無機固体電解質の含有量は、正極活物質又は負極活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 なお、本明細書において固形成分とは、170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒体以外の成分を指す。
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
The content of the solid component in the inorganic solid electrolyte layer of the inorganic solid electrolyte is 5% by mass or more at 100% by mass of the solid component when considering both the battery performance and the effect of reducing and maintaining the interface resistance. Is more preferable, 70% by mass or more is more preferable, and 90% by mass or more is particularly preferable. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
However, the content of the inorganic solid electrolyte in the positive electrode active material layer or the negative electrode active material layer is preferably such that the total content of the positive electrode active material or the negative electrode active material and the inorganic solid electrolyte is in the above range.
In the present specification, the solid component refers to a component that does not volatilize or evaporate when dried at 170 ° C. for 6 hours. Typically, it refers to components other than the dispersion medium described below.
An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
(バインダー)
 本発明の全固体二次電池において、各層(すなわち、負極活物質層、固体電解質層及び/又は正極活物質層、以下同様。)はバインダーを含有することも好ましい。本発明で使用することができるバインダーは、有機ポリマーであれば特に限定されない。
 本発明に用いることができるバインダーは、通常、電池材料の正極又は負極用結着剤として用いられるバインダーが好ましく、特に制限はなく、例えば、以下に述べる樹脂からなるバインダーが好ましい。
(binder)
In the all solid state secondary battery of the present invention, each layer (that is, a negative electrode active material layer, a solid electrolyte layer and / or a positive electrode active material layer, the same shall apply hereinafter) preferably contains a binder. The binder that can be used in the present invention is not particularly limited as long as it is an organic polymer.
The binder that can be used in the present invention is preferably a binder that is usually used as a binder for a positive electrode or a negative electrode of a battery material, and is not particularly limited. For example, a binder made of a resin described below is preferable.
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンの共重合物(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレン、ポリイソプレンラテックスが挙げられる。
 アクリル樹脂としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸イソプロピル、ポリ(メタ)アクリル酸イソブチル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリル酸ヘキシル、ポリ(メタ)アクリル酸オクチル、ポリ(メタ)アクリル酸ドデシル、ポリ(メタ)アクリル酸ステアリル、ポリ(メタ)アクリル酸2-ヒドロキシエチル、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ベンジル、ポリ(メタ)アクリル酸グリシジル、ポリ(メタ)アクリル酸ジメチルアミノプロピル、及びこれら樹脂を構成するモノマーの共重合体が挙げられる。
 ウレタン樹脂としては、例えば、ポリウレタンが挙げられる。
 またそのほかのビニル系モノマーとの共重合体も好適に用いられる。例えばポリ(メタ)アクリル酸メチル-ポリスチレン共重合体、ポリ(メタ)アクリル酸メチル-アクリロニトリル共重合体、ポリ(メタ)アクリル酸ブチル-アクリロニトリル-スチレン共重合体が挙げられる。本発明においては、PVdF-HFP又はHSBRが好ましく用いられる。
 これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
Examples of the fluorine-containing resin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
Examples of the hydrocarbon-based thermoplastic resin include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, polyisoprene, and polyisoprene latex.
Examples of the acrylic resin include poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate isopropyl, poly (meth) acrylate isobutyl, poly (meth) butyl acrylate, poly (meth) ) Hexyl acrylate, poly (meth) acrylate octyl, poly (meth) acrylate dodecyl, poly (meth) acrylate stearyl, poly (meth) acrylate 2-hydroxyethyl, poly (meth) acrylic acid, poly (meth) ) Benzyl acrylate, poly (meth) acrylate glycidyl, poly (meth) acrylate dimethylaminopropyl, and copolymers of monomers constituting these resins.
Examples of the urethane resin include polyurethane.
Further, copolymers with other vinyl monomers are also preferably used. Examples thereof include a poly (meth) methyl acrylate-polystyrene copolymer, a poly (meth) methyl acrylate-acrylonitrile copolymer, and a poly (meth) butyl acrylate-acrylonitrile-styrene copolymer. In the present invention, PVdF-HFP or HSBR is preferably used.
These may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明に用いることができるバインダーを構成するポリマーの質量平均分子量は10,000以上が好ましく、20,000以上がより好ましく、50,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
 本発明において、ポリマーの分子量は、特に断らない限り、質量平均分子量を意味する。質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によってポリスチレン換算の分子量として計測することができる。測定方法は、後記実施例での測定方法による。なお、溶離液としては、THF(テトラヒドロフラン)を用いることとするが、クロロホルム、NMP(N-メチル-2-ピロリドン)、m-クレゾール/クロロホルム(湘南和光純薬(株)社製)から選定することができる。
The polymer constituting the binder that can be used in the present invention preferably has a mass average molecular weight of 10,000 or more, more preferably 20,000 or more, and even more preferably 50,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
In the present invention, the molecular weight of the polymer means a mass average molecular weight unless otherwise specified. The mass average molecular weight can be measured as a molecular weight in terms of polystyrene by gel permeation chromatography (GPC). The measuring method is based on the measuring method in the examples described later. The eluent used is THF (tetrahydrofuran), and is selected from chloroform, NMP (N-methyl-2-pyrrolidone), and m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.). be able to.
 本発明の全固体二次電池において、バインダーを含む層がある場合、層中のバインダーの含有量は、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上限としては、電池特性の観点から、10質量%以下が好ましく、8質量%以下がより好ましく、6質量%以下がさらに好ましく、5質量%以下が特に好ましい。
 本発明において、各層にバインダーを含有する場合、バインダーの質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/バインダーの質量]は、1,000~1の範囲が好ましい。この比率はさらに500~2がより好ましく、100~10がさらに好ましい。
In the all solid state secondary battery of the present invention, when there is a layer containing a binder, the content of the binder in the layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 1% by mass or more. Is more preferable. As an upper limit, 10 mass% or less is preferable from a viewpoint of a battery characteristic, 8 mass% or less is more preferable, 6 mass% or less is further more preferable, and 5 mass% or less is especially preferable.
In the present invention, when each layer contains a binder, the mass ratio of the total mass (total amount) of the inorganic solid electrolyte and the active material to the mass of the binder [(mass of the inorganic solid electrolyte + mass of the active material) / mass of the binder] Is preferably in the range of 1,000 to 1. This ratio is more preferably 500 to 2, and further preferably 100 to 10.
(リチウム塩)
 各層は、リチウム塩を含有することも好ましい。リチウム塩としては、全固体二次電池に通常用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 リチウム塩の含有量は、固体電解質100質量部に対して0質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(Lithium salt)
Each layer also preferably contains a lithium salt. The lithium salt is preferably a lithium salt usually used for an all-solid secondary battery, and is not particularly limited. For example, lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
The content of the lithium salt is preferably 0 part by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
(導電助剤)
 各層、特に活物質層は、活物質の電子導電性を向上させる等のために用いられる導電助剤を含有してもよい。導電助剤としては、一般的な導電助剤を用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。またこれらの内1種を用いてもよいし、2種以上を用いてもよい。
 本発明の全固体二次電池において、導電助剤を含む層がある場合、層中の導電助剤の含有量は、特に限定されず、電池特性などを考慮して、適宜に設定できる。
(Conductive aid)
Each layer, particularly the active material layer, may contain a conductive additive used for improving the electronic conductivity of the active material. As the conductive auxiliary agent, a general conductive auxiliary agent can be used. For example, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube, which are electron conductive materials Carbon fibers such as graphene, carbonaceous materials such as graphene or fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives May be used. Moreover, 1 type of these may be used and 2 or more types may be used.
In the all solid state secondary battery of the present invention, when there is a layer containing a conductive assistant, the content of the conductive assistant in the layer is not particularly limited and can be appropriately set in consideration of battery characteristics and the like.
(分散剤)
 本発明において、正極活物質層、固体電解質層及び負極活物質層のいずれかに分散剤を含有することが好ましい。分散剤を添加することで電極活物質又は無機固体電解質のいずれかの濃度が高い場合においても凝集を抑制し、均一な電極層(活物質層)及び固体電解質層を形成することができ、出力向上に効果を奏する。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。例えば、分子量200以上3000未満の低分子又はオリゴマーからなり、官能基群(I)で示される官能基と、炭素数8以上のアルキル基又は炭素数10以上のアリール基を同一分子内に含有するものが好ましい。
官能基群(I):酸性基、塩基性窒素原子を有する基、(メタ)アクリル基、(メタ)アクリルアミド基、アルコキシシリル基、エポキシ基、オキセタニル基、イソシアネート基、シアノ基、チオール基及びヒドロキシ基(酸性基、塩基性窒素原子を有する基、アルコキシシリル基、シアノ基、チオール基及びヒドロキシ基が好ましく、カルボキシ基、スルホン酸基、シアノ基、アミノ基、ヒドロキシ基がより好ましい。)
 本発明の全固体二次電池において、分散剤を含む層がある場合、層中の分散剤の含有量は、特に限定されず、電池特性などを考慮して、適宜に設定できる。
(Dispersant)
In the present invention, it is preferable to contain a dispersant in any of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer. By adding a dispersant, even when the concentration of either the electrode active material or the inorganic solid electrolyte is high, aggregation can be suppressed, and a uniform electrode layer (active material layer) and solid electrolyte layer can be formed. It is effective for improvement. As the dispersant, those usually used for all-solid secondary batteries can be appropriately selected and used. For example, it consists of a low molecule or oligomer having a molecular weight of 200 or more and less than 3000, and contains the functional group represented by the functional group (I) and an alkyl group having 8 or more carbon atoms or an aryl group having 10 or more carbon atoms in the same molecule. Those are preferred.
Functional group (I): acidic group, group having basic nitrogen atom, (meth) acryl group, (meth) acrylamide group, alkoxysilyl group, epoxy group, oxetanyl group, isocyanate group, cyano group, thiol group and hydroxy Group (an acidic group, a group having a basic nitrogen atom, an alkoxysilyl group, a cyano group, a thiol group, and a hydroxy group are preferable, and a carboxy group, a sulfonic acid group, a cyano group, an amino group, and a hydroxy group are more preferable).
In the all solid state secondary battery of the present invention, when there is a layer containing a dispersant, the content of the dispersant in the layer is not particularly limited and can be appropriately set in consideration of battery characteristics and the like.
(正極活物質)
 次に、本発明の全固体二次電池の正極活物質層4に用いられる正極活物質について説明する。正極活物質は、可逆的にリチウムイオンを挿入及び/又は放出できるものが好ましい。その材料は、特に制限はなく、遷移金属酸化物又は、硫黄などのLiと複合化できる元素などでもよい。中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物、(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(Positive electrode active material)
Next, the positive electrode active material used for the positive electrode active material layer 4 of the all-solid-state secondary battery of the present invention will be described. The positive electrode active material is preferably one that can reversibly insert and / or release lithium ions. The material is not particularly limited, and may be a transition metal oxide or an element that can be complexed with Li such as sulfur. Among them, as the positive electrode active material, it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). More preferred. In addition, this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P, and B) may be mixed. The mixing amount, 0 ~ 30 mol% relative to the amount of the transition metal element M a is preferable. Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halide phosphate compounds, (ME) lithium-containing transition metal silicate compounds, and the like.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiCoMnO、LiFeMn、LiCuMn、LiCrMn、LiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO、LiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類、Li(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩、LiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCOがより好ましい。
(MA) As specific examples of the transition metal oxide having a layered rock salt structure, LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
Specific examples of the transition metal oxide having an (MB) spinel structure include LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 , and Li 2 NiMn 3 O 8. .
Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
The (MD) lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F, Li 2 CoPO 4 F Cobalt fluorophosphates such as
Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4, and the like.
In the present invention, a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。 The shape of the positive electrode active material is not particularly limited, but is preferably particulate. The volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited. For example, the thickness can be 0.1 to 50 μm. In order to make the positive electrode active material have a predetermined particle size, an ordinary pulverizer or classifier may be used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent. The volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
 正極活物質層中の正極活物質の含有量は、特に限定されず、10~95質量%が好ましく、20~90質量%がより好ましく、30~85質量がさらに好ましく、50~80質量%が特に好ましい。 The content of the positive electrode active material in the positive electrode active material layer is not particularly limited, preferably 10 to 95% by mass, more preferably 20 to 90% by mass, further preferably 30 to 85% by mass, and 50 to 80% by mass. Particularly preferred.
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、任意に決めることができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
When forming the positive electrode active material layer, the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be arbitrarily determined according to the designed battery capacity.
The positive electrode active materials may be used alone or in combination of two or more.
(負極活物質)
 次に、本発明の全固体二次電池の負極活物質層に用いられる負極活物質について説明する。負極活物質は、可逆的にリチウムイオンを挿入及び/又は放出できるものが好ましい。その材料は、特に制限はなく、炭素質材料、酸化錫若しくは酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体若しくはリチウムアルミニウム合金等のリチウム合金、及び、Sn、Si若しくはIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
(Negative electrode active material)
Next, the negative electrode active material used for the negative electrode active material layer of the all solid state secondary battery of the present invention will be described. The negative electrode active material is preferably one that can reversibly insert and / or release lithium ions. The material is not particularly limited, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium alloy such as lithium alone or a lithium aluminum alloy, and a lithium such as Sn, Si or In. And metals capable of forming an alloy. Among these, a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability. In addition, the metal composite oxide is preferably capable of inserting and extracting lithium. The material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂又はフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. For example, various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) resin or furfuryl alcohol resin, etc. The carbonaceous material which baked resin can be mentioned. Further, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, etc. And mesophase microspheres, graphite whiskers, flat graphite and the like.
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。 These carbonaceous materials can be divided into non-graphitizable carbonaceous materials and graphite-based carbonaceous materials according to the degree of graphitization. The carbonaceous material preferably has a face spacing or density and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 As the metal oxide and metal composite oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done. The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have. The strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the compound group consisting of the amorphous oxide and the chalcogenide, the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb, Bi alone or in combination of two or more thereof, and chalcogenide are particularly preferable. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 i 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , SnSiS 3 is preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。 It is also preferable that the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during occlusion and release of lithium ions, and the deterioration of the electrode is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
 本発明においては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。なお、本発明において、上記炭素質材料は1種単独でも2種以上を組み合わせて用いてもよい。 In the present invention, hard carbon or graphite is preferably used, and graphite is more preferably used. In the present invention, the carbonaceous materials may be used singly or in combination of two or more.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。 The shape of the negative electrode active material is not particularly limited, but is preferably particulate. The average particle size of the negative electrode active material is preferably 0.1 to 60 μm. In order to obtain a predetermined particle size, an ordinary pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle diameter, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet. The average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
 負極活物質層中の負極活物質の含有量は、特に限定されず、10~95質量%であることが好ましく、20~90質量%がより好ましく、30~85質量%であることがより好ましく、40~80質量%であることがさらに好ましい。 The content of the negative electrode active material in the negative electrode active material layer is not particularly limited, is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, and more preferably 30 to 85% by mass. More preferably, it is 40 to 80% by mass.
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、任意に決めることができる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
When the negative electrode active material layer is formed, the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be arbitrarily determined according to the designed battery capacity.
The said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明において、負極導電性膜、負極活物質層、固体電解質層、正極活物質層及び正極導電性膜の各層の間又はその外側には、機能性の層又は部材等を適宜介在ないし配設してもよい。また、上記各層及び集電体は単層で構成されていても、複層で構成されていてもよい。 In the present invention, a functional layer or a member is appropriately interposed or disposed between or outside each of the negative electrode conductive film, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode conductive film. May be. Moreover, each said layer and electrical power collector may be comprised by the single layer, or may be comprised by the multilayer.
〔筐体〕
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又はステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[Case]
The basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing. The housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy or stainless steel can be mentioned, for example. The metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively. The casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
[全固体二次電池用電極シート]
 本発明の全固体二次電池用電極シート(以下、単に「本発明の電極シート」という。)は、集電体上に導電性膜と活物質層とをこの順で有する電極シートであり、本発明の全固体二次電池に好適に用いることができる。
 この電極シートは、通常、導電性膜を備えた集電体及び活物質層を有するシートであるが、導電性膜付集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、導電性膜付集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートを構成する各層の構成、層厚は、本発明の全固体二次電池において説明した各層の構成、層厚と同じである。
[Electrode sheet for all-solid-state secondary battery]
The electrode sheet for an all-solid-state secondary battery of the present invention (hereinafter simply referred to as “electrode sheet of the present invention”) is an electrode sheet having a conductive film and an active material layer in this order on a current collector, It can use suitably for the all-solid-state secondary battery of this invention.
This electrode sheet is usually a sheet having a current collector and an active material layer provided with a conductive film, but an embodiment having a current collector with a conductive film, an active material layer and a solid electrolyte layer in this order, and The aspect which has a collector with an electroconductive film, an active material layer, a solid electrolyte layer, and an active material layer in this order is also included.
The configuration and the layer thickness of each layer constituting the electrode sheet are the same as the configuration and the layer thickness of each layer described in the all solid state secondary battery of the present invention.
[全固体二次電池及び全固体二次電池用電極シートの製造]
 全固体二次電池及び全固体二次電池用電極シートの製造は常法によって行うことができる。以下詳述する。
 本発明の全固体二次電池及び全固体二次電池用電極シートは、集電体となる金属箔上に、導電性膜を形成し、次いで、上記固体電解質組成物を塗布して塗膜を形成することにより、製造できる。
 例えば、正極集電体である金属箔上に正極導電性膜を形成し、正極用材料(正極用組成物)を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、このシートの正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布し、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極用組成物)を塗布し、負極活物質層を形成する。負極活物質層の上に、負極導電性膜を必要により設けた負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に、固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極導電性膜付の正極集電体を重ねて、全固体二次電池を製造することもできる。
[Manufacture of all-solid-state secondary battery and electrode sheet for all-solid-state secondary battery]
The all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery can be produced by a conventional method. This will be described in detail below.
The all-solid-state secondary battery and the all-solid-state secondary battery electrode sheet of the present invention form a conductive film on a metal foil serving as a current collector, and then apply the solid electrolyte composition to form a coating film. It can be manufactured by forming.
For example, a positive electrode conductive film is formed on a metal foil that is a positive electrode current collector, a positive electrode material (positive electrode composition) is applied to form a positive electrode active material layer, and a positive electrode sheet for an all-solid-state secondary battery is formed. Make it. Next, a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer of the sheet to form a solid electrolyte layer. Further, a negative electrode material (negative electrode composition) is applied on the solid electrolyte layer to form a negative electrode active material layer. A solid electrolyte layer was sandwiched between the positive electrode active material layer and the negative electrode active material layer by superimposing a negative electrode current collector (metal foil) provided with a negative electrode conductive film as necessary on the negative electrode active material layer. An all-solid secondary battery having a structure can be obtained. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
Further, by reversely forming each layer, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector with the positive electrode conductive film is stacked, A solid secondary battery can also be manufactured.
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極導電性膜を形成し、負極用材料(負極層用組成物)を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。さらに、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材に塗布して、固体電解質層からなる固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで固体電解質シートを挟むように積層する。このようにして、全固体二次電池を製造することができる。
Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode conductive film is formed on a metal foil as a negative electrode current collector, and a negative electrode material (a composition for negative electrode layer) is applied to form a negative electrode active material layer. A sheet is produced. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, an all-solid secondary battery can be manufactured.
Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately, a solid electrolyte composition is applied to a substrate to produce a solid electrolyte sheet composed of a solid electrolyte layer. Furthermore, it laminates | stacks so that a solid electrolyte sheet may be pinched | interposed with the positive electrode sheet for all-solid-state secondary batteries, and the negative electrode sheet for all-solid-state secondary batteries. In this way, an all-solid secondary battery can be manufactured.
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
 上記製造方法において、上記全固体二次電池用負極シートに代えて、負極集電体とこれに隣接する負極活物質層とを備えたシートを用いることもできる。
An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet are respectively produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
In the said manufacturing method, it can replace with the said negative electrode sheet for all-solid-state secondary batteries, and can also use the sheet | seat provided with the negative electrode electrical power collector and the negative electrode active material layer adjacent to this.
 上記製造方法における各工程(処理)について、具体的に説明する。
 (集電体の粗面化処理)
 上記の製造方法に用いる正極集電体は、その表面に正極導電性膜を設ける。負極集電体は、必要に応じて、その表面に負極導電性膜を設ける。このとき、集電体は、必要に応じて、その表面が粗面化処理され、上記表面形態に設定される。
 集電体の表面を粗面化処理する方法としては、特に限定されず、通常の方法を採用できる。例えば、集電体を圧延により作製する場合は、圧延ロールの表面状態を転写する方法が挙げられる。また、集電体表面をサンドブラスト法等により粗面化処理する方法が挙げられる。この場合、用いるサンドの材質、形状、粒径、吹付圧、吹付速度、吹付時間の条件によって、表面形態を適宜に設定できる。さらに、集電体を電気化学的粗面化処理(電解粗面化処理ともいう。)する方法も挙げられる。本発明においては、電解粗面化処理が好ましい。
Each process (process) in the said manufacturing method is demonstrated concretely.
(Roughening of current collector)
The positive electrode current collector used in the above production method is provided with a positive electrode conductive film on the surface thereof. The negative electrode current collector is provided with a negative electrode conductive film on the surface thereof as necessary. At this time, the surface of the current collector is roughened as necessary, and the current collector is set to the surface form.
The method for roughening the surface of the current collector is not particularly limited, and a normal method can be employed. For example, when producing a current collector by rolling, a method of transferring the surface state of a rolling roll can be mentioned. Further, a method of roughening the surface of the current collector by a sandblast method or the like can be mentioned. In this case, the surface form can be appropriately set according to the conditions of the material, shape, particle size, spraying pressure, spraying speed, and spraying time of the sand used. Furthermore, a method of subjecting the current collector to an electrochemical surface roughening treatment (also referred to as an electrolytic surface roughening treatment) is also included. In the present invention, electrolytic surface roughening is preferred.
 以下に、電解粗面化処理の方法を、アルミニウムからなる集電体を例に挙げて、説明する。しかし、アルミニウム以外の材料で形成した集電体についても同様にして電解粗面化することにより、集電体の表面形態を適宜に設定できる。 Hereinafter, an electrolytic surface-roughening method will be described by taking a current collector made of aluminum as an example. However, the surface form of the current collector can be appropriately set by subjecting the current collector formed of a material other than aluminum to the same electrolytic surface roughening.
 電解粗面化処理する集電体を形成するアルミニウムとしては、特に限定されず、通常のアルミニウム箔を用いることができる。アルミニウム箔は、アルミニウムを主成分とする金属の箔であり、例えば、日本工業規格(JIS規格)H4000に記載されている合金番号1085、1N30、3003等を用いることができる。
 また、アルミニウム箔の厚みは、上記集電体の厚みと同じであればよいが、100μm以下であるのが好ましく、5~80μmであるのが好ましく、10~50μmであるのがより好ましい。
The aluminum forming the current collector subjected to the electrolytic surface roughening treatment is not particularly limited, and a normal aluminum foil can be used. The aluminum foil is a metal foil mainly composed of aluminum. For example, alloy numbers 1085, 1N30, and 3003 described in Japanese Industrial Standard (JIS Standard) H4000 can be used.
The thickness of the aluminum foil may be the same as the thickness of the current collector, but is preferably 100 μm or less, preferably 5 to 80 μm, and more preferably 10 to 50 μm.
 アルミニウム箔の電気化学的粗面化処理は、少なくとも電気化学的粗面化処理を含むものであれば、電気化学的粗面化処理以外の各種処理又は工程を含んでいてもよい。
 上記表面形態とするための電気化学的粗面化処理法として、例えば、必要によりアルミニウム箔にアルカリエッチング処理をした後に、酸によるデスマット処理及び電解液を用いた電気化学的粗面化処理を順次施す方法、及び、アルミニウム箔にアルカリエッチング処理、酸によるデスマット処理及び異なる電解液を用いた電気化学的粗面化処理を複数回施す方法等が挙げられるが、本発明はこれらに限定されない。これらの方法において、電気化学的粗面化処理の後、さらに、アルカリエッチング処理及び酸によるデスマット処理を施してもよい。
 以下、表面処理の各処理について、詳細に説明する。
The electrochemical roughening treatment of the aluminum foil may include various treatments or steps other than the electrochemical roughening treatment as long as it includes at least the electrochemical roughening treatment.
As an electrochemical surface-roughening method for obtaining the above surface form, for example, if necessary, an aluminum foil is subjected to an alkali etching treatment, followed by an acid desmutting treatment and an electrochemical surface-roughening treatment using an electrolytic solution in sequence. Examples of the method include a method of performing an alkali etching treatment, an acid desmutting treatment on an aluminum foil, and an electrochemical surface roughening treatment using different electrolytic solutions a plurality of times, but the present invention is not limited thereto. In these methods, after the electrochemical surface roughening treatment, an alkali etching treatment and an acid desmutting treatment may be further performed.
Hereinafter, each process of the surface treatment will be described in detail.
 -電気化学的粗面化処理-
 電気化学的粗面化処理には、通常の交流を用いた電気化学的粗面化処理に用いられる電解液を用いることができる。中でも、塩酸又は硝酸を主体とする電解液を用いるのが、上述した表面形状を得やすいので好ましい。
-Electrochemical roughening-
In the electrochemical surface roughening treatment, an electrolytic solution used for the electrochemical surface roughening treatment using a normal alternating current can be used. Among them, it is preferable to use an electrolytic solution mainly composed of hydrochloric acid or nitric acid because the above-described surface shape can be easily obtained.
 電解粗面化処理は、例えば、特公昭48-28123号公報及び英国特許第896,563号明細書に記載されている電気化学的グレイン法(電解グレイン法)に従うことができる。この電解グレイン法は、正弦波形の交流電流を用いるものであるが、特開昭52-58602号公報に記載されているような特殊な波形を用いて行ってもよい。また、特開平3-79799号公報に記載されている波形を用いることもできる。また、特開昭55-158298号、特開昭56-28898号、特開昭52-58602号、特開昭52-152302号、特開昭54-85802号、特開昭60-190392号、特開昭58-120531号、特開昭63-176187号、特開平1-5889号、特開平1-280590号、特開平1-118489号、特開平1-148592号、特開平1-178496号、特開平1-188315号、特開平1-154797号、特開平2-235794号、特開平3-260100号、特開平3-253600号、特開平4-72079号、特開平4-72098号、特開平3-267400号、特開平1-141094の各公報に記載されている方法も適用できる。また、前述のほかに、電解コンデンサーの製造方法として提案されている特殊な周波数の交番電流を用いて電解することも可能である。例えば、特開昭58-207400号公報、米国特許第4,276,129号明細書及び同第4,676,879号明細書に記載されている。 Electrolytic surface roughening can be performed according to, for example, the electrochemical grain method (electrolytic grain method) described in Japanese Patent Publication No. 48-28123 and British Patent No. 896,563. This electrolytic grain method uses a sinusoidal alternating current, but it may be performed using a special waveform as described in JP-A-52-58602. Further, the waveform described in JP-A-3-79799 can also be used. Further, JP-A-55-158298, JP-A-56-28898, JP-A-52-58602, JP-A-52-152302, JP-A-54-85802, JP-A-60-190392, JP-A-58-120531, JP-A-63-176187, JP-A-1-5889, JP-A-1-280590, JP-A-1-118489, JP-A-1-148592, and JP-A-1-17896. JP-A-1-188315, JP-A-1-1549797, JP-A-2-235794, JP-A-3-260100, JP-A-3-253600, JP-A-4-72079, JP-A-4-72098, The methods described in JP-A-3-267400 and JP-A-1-141094 can also be applied. In addition to the above, it is also possible to perform electrolysis using an alternating current having a special frequency that has been proposed as a method of manufacturing an electrolytic capacitor. For example, it is described in JP-A-58-207400, US Pat. Nos. 4,276,129 and 4,676,879.
 電解槽及び電源については、種々提案されているが、米国特許第4203637号明細書、特開昭56-123400号、特開昭57-59770号、特開昭53-12738号、特開昭53-32821号、特開昭53-32822号、特開昭53-32823号、特開昭55-122896号、特開昭55-132884号、特開昭62-127500号、特開平1-52100号、特開平1-52098号、特開昭60-67700号、特開平1-230800号、特開平3-257199号の各公報等に記載されているものを用いることができる。また、特開昭52-58602号、特開昭52-152302号、特開昭53-12738号、特開昭53-12739号、特開昭53-32821号、特開昭53-32822号、特開昭53-32833号、特開昭53-32824号、特開昭53-32825号、特開昭54-85802号、特開昭55-122896号、特開昭55-132884号、特公昭48-28123号、特公昭51-7081号、特開昭52-133838号、特開昭52-133840号号、特開昭52-133844号、特開昭52-133845号、特開昭53-149135号、特開昭54-146234号の各公報等に記載されているもの等も用いることができる。 Various electrolyzers and power sources have been proposed. US Pat. No. 4,203,637, JP-A-56-123400, JP-A-57-59770, JP-A-53-12738, JP-A-53. -32821, JP-A 53-32822, JP-A 53-32823, JP-A 55-122896, JP-A 55-13284, JP-A 62-127500, JP-A-1-52100 JP-A-1-52098, JP-A-60-67700, JP-A-1-230800, JP-A-3-257199 and the like can be used. Further, JP-A-52-58602, JP-A-52-152302, JP-A-53-12738, JP-A-53-12739, JP-A-53-32821, JP-A-53-32222, JP 53-32833, JP 53-32824, JP 53-32825, JP 54-85802, JP 55-122896, JP 55-13284, JP 48-28123, JP-B-51-7081, JP-A-52-13338, JP-A-52-133840, JP-A-52-133844, JP-A-52-133845, JP-A-53- Nos. 149135 and 54-146234 can also be used.
 電解液である酸性溶液としては、硝酸、塩酸のほかに、米国特許第4,671,859号、同第4,661,219号、同第4,618,405号、同第4,600,482号、同第4,566,960号、同第4,566,958号、同第4,566,959号、同第4,416,972号、同第4,374,710号、同第4,336,113号、同第4,184,932号の各明細書等に記載されている電解液を用いることもできる。 As an acidic solution which is an electrolytic solution, in addition to nitric acid and hydrochloric acid, U.S. Pat. Nos. 4,671,859, 4,661,219, 4,618,405, 4,600, 482, 4,566,960, 4,566,958, 4,566,959, 4,416,972, 4,374,710, The electrolyte solution described in each specification of 4,336,113 and 4,184,932 can also be used.
 酸性溶液の濃度は0.5~2.5質量%であるのが好ましいが、スマット除去処理での使用を考慮すると、0.7~2.0質量%であるのが特に好ましい。また、液温は20~80℃であるのが好ましく、30~60℃であるのがより好ましい。 The concentration of the acidic solution is preferably 0.5 to 2.5% by mass, but it is particularly preferably 0.7 to 2.0% by mass in consideration of use in the smut removal treatment. The liquid temperature is preferably 20 to 80 ° C., more preferably 30 to 60 ° C.
 塩酸又は硝酸を主体とする水溶液は、濃度1~100g/Lの塩酸又は硝酸の水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウム等の硝酸イオンを有する硝酸化合物又は塩化アルミニウム、塩化ナトリウム、塩化アンモニウム等の塩酸イオンを有する塩酸化合物の少なくとも一つを1g/Lから飽和するまでの範囲で添加して使用することができる。また、塩酸又は硝酸を主体とする水溶液には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。好ましくは、塩酸又は硝酸の濃度0.5~2質量%の水溶液にアルミニウムイオンが3~50g/Lとなるように、塩化アルミニウム、硝酸アルミニウム等を添加した液を用いることが好ましい。 An aqueous solution mainly composed of hydrochloric acid or nitric acid is an aqueous solution of hydrochloric acid or nitric acid having a concentration of 1 to 100 g / L. At least one of the hydrochloric acid compounds having hydrochloric acid ions can be used by adding in a range from 1 g / L to saturation. Moreover, the metal contained in aluminum alloys, such as iron, copper, manganese, nickel, titanium, magnesium, a silica, may melt | dissolve in the aqueous solution which has hydrochloric acid or nitric acid as a main component. It is preferable to use a solution obtained by adding aluminum chloride, aluminum nitrate or the like to an aqueous solution of hydrochloric acid or nitric acid having a concentration of 0.5 to 2% by mass so that aluminum ions are 3 to 50 g / L.
 さらに、Cuと錯体を形成しうる化合物を添加して使用することによりCuを多く含有するアルミニウム箔に対しても均一な砂目立てが可能になる。Cuと錯体を形成しうる化合物としては、例えば、アンモニア;メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、シクロヘキシルアミン、トリエタノールアミン、トリイソプロパノールアミン、EDTA(エチレンジアミン四酢酸)等のアンモニアの水素原子を炭化水素基(脂肪族、芳香族等)等で置換して得られるアミン類;炭酸ナトリウム、炭酸カリウム、炭酸水素カリウム等の金属炭酸塩類が挙げられる。また、硝酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム、炭酸アンモニウム等のアンモニウム塩も挙げられる。温度は10~60℃が好ましく、20~50℃がより好ましい。 Furthermore, by adding and using a compound capable of forming a complex with Cu, uniform graining is possible even for an aluminum foil containing a large amount of Cu. Examples of the compound capable of forming a complex with Cu include ammonia; hydrogen atom of ammonia such as methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, cyclohexylamine, triethanolamine, triisopropanolamine, EDTA (ethylenediaminetetraacetic acid). And amines obtained by substituting with a hydrocarbon group (aliphatic, aromatic, etc.); metal carbonates such as sodium carbonate, potassium carbonate, potassium hydrogen carbonate and the like. In addition, ammonium salts such as ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium phosphate, and ammonium carbonate are also included. The temperature is preferably 10 to 60 ° C, more preferably 20 to 50 ° C.
 電気化学的粗面化処理に用いられる交流電源波は、特に限定されず、サイン波、矩形波、台形波、三角波等が用いられるが、矩形波又は台形波が好ましく、台形波が特に好ましい。この台形波において電流がゼロからピークに達するまでの時間(TP)は0.5~3msecであるのが好ましい。0.5msec未満であると、アルミニウム箔の進行方向と垂直に発生するチャタマークという処理ムラが発生しやすい。TPが3msecを超えると、特に硝酸電解液を用いる場合、電解処理で自然発生的に増加するアンモニウムイオン等に代表される電解液中の微量成分の影響を受けやすくなり、均一な砂目立てが行われにくくなる。 The AC power wave used for the electrochemical surface roughening treatment is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave or the like is used, but a rectangular wave or a trapezoidal wave is preferable, and a trapezoidal wave is particularly preferable. In this trapezoidal wave, the time (TP) until the current reaches a peak from zero is preferably 0.5 to 3 msec. If it is less than 0.5 msec, processing irregularities such as chatter marks that occur perpendicular to the traveling direction of the aluminum foil are likely to occur. When TP exceeds 3 msec, especially when a nitric acid electrolyte is used, it is easily affected by trace components in the electrolyte typified by ammonium ions and the like that spontaneously increase by electrolytic treatment, and uniform graining is performed. It becomes hard to be broken.
 台形波交流のduty比は1:2~2:1のものが使用可能であるが、特開平5-195300号公報に記載されているように、アルミニウムにコンダクタロールを用いない間接給電方式においてはduty比が1:1のものが好ましい。台形波交流の周波数は0.1~120Hzのものを用いることが可能であるが、50~70Hzが設備上好ましい。50Hzよりも低いと、主極のカーボン電極が溶解しやすくなり、また、70Hzよりも高いと、電源回路上のインダクタンス成分の影響を受けやすくなり、電源コストが高くなる。 A trapezoidal wave AC duty ratio of 1: 2 to 2: 1 can be used. However, as described in Japanese Patent Laid-Open No. 5-195300, in an indirect power feeding method that does not use a conductor roll for aluminum. A duty ratio of 1: 1 is preferable. A trapezoidal AC frequency of 0.1 to 120 Hz can be used, but 50 to 70 Hz is preferable in terms of equipment. When the frequency is lower than 50 Hz, the carbon electrode of the main electrode is easily dissolved, and when the frequency is higher than 70 Hz, it is easily affected by an inductance component on the power supply circuit, and the power supply cost is increased.
 電解槽には1個以上の交流電源を接続することができる。主極に対向するアルミニウム箔に加わる交流の陽極と陰極との電流比をコントロールし、均一な砂目立てを行うことと、主極のカーボンを溶解することとを目的として、補助陽極を設置し、交流電流の一部を分流させることが好ましい。整流素子又はスイッチング素子を介して電流値の一部を二つの主電極とは別の槽に設けた補助陽極に直流電流として分流させることにより、主極に対向するアルミニウム箔上で作用するアノード反応にあずかる電流値と、カソード反応にあずかる電流値との比を制御することができる。主極に対向するアルミニウム箔上で、陰極反応と陽極反応とにあずかる電気量の比(陰極時電気量/陽極時電気量)は、0.3~0.95であるのが好ましい。 One or more AC power supplies can be connected to the electrolytic cell. For the purpose of controlling the current ratio between the anode and cathode of alternating current applied to the aluminum foil facing the main electrode, uniform graining, and dissolving the carbon of the main electrode, an auxiliary anode is installed, It is preferable to divert part of the alternating current. An anodic reaction that acts on the aluminum foil facing the main electrode by diverting a part of the current value as a direct current to an auxiliary anode provided in a separate tank from the two main electrodes via a rectifier or switching element It is possible to control the ratio between the current value for the current and the current value for the cathode reaction. On the aluminum foil facing the main electrode, the ratio of the amount of electricity involved in the cathode reaction and the anodic reaction (cathode amount of electricity / anode amount of electricity) is preferably 0.3 to 0.95.
 電解槽は、縦型、フラット型、ラジアル型等の、通常、表面処理に用いる電解槽が使用可能であるが、特開平5-195300号公報に記載されているようなラジアル型電解槽が特に好ましい。電解槽内を通過する電解液は、アルミニウムウェブの進行方向に対してパラレルであってもカウンターであってもよい。 As the electrolytic cell, an electrolytic cell usually used for surface treatment such as a vertical type, a flat type, and a radial type can be used. However, a radial type electrolytic cell as described in JP-A-5-195300 is particularly preferable. preferable. The electrolytic solution passing through the electrolytic cell may be parallel to the traveling direction of the aluminum web or may be a counter.
  (硝酸電解)
 本発明においては、硝酸を主体とする電解液を用いた電気化学的粗面化処理(以下、「硝酸電解」とも略す。)により、上記算術平均粗さRa及び凹部数を上記範囲に設定することができる。
 ここで、硝酸電解は、均一で密度の高い凹部形成が可能となる理由から、交流電流を用い、ピーク電流密度(電流密度のピーク値)を15A/dm以上とし、平均電流密度(平均値)を13A/dm以上とし、かつ、電気量を100c/dm以上とする条件で施す電解処理であるのが好ましい。なお、ピーク電流密度は、100A/dm以下であるのが好ましく、68A/dm以下であるのがより好ましい。また、平均電流密度は、40A/dm以下であるのが好ましく、31.0A/dm以下であるのがより好ましい。電気量は400c/dm以下であるのが好ましい。
 また、硝酸電解における電解液の濃度又は温度は特に限定されず、高濃度、例えば、硝酸濃度15~35質量%の硝酸電解液を用いて30~60℃で電解を行ったり、硝酸濃度0.7~2質量%の硝酸電解液を用いて高温、例えば、80℃以上で電解を行ったりすることできる。
(Nitric acid electrolysis)
In the present invention, the arithmetic average roughness Ra and the number of recesses are set in the above range by electrochemical surface roughening treatment (hereinafter also referred to as “nitric acid electrolysis”) using an electrolytic solution mainly composed of nitric acid. be able to.
Here, since nitric acid electrolysis enables formation of a uniform and high-density recess, alternating current is used, the peak current density (peak value of current density) is set to 15 A / dm 2 or more, and the average current density (average value). ) Is preferably 13 A / dm 2 or more, and the amount of electricity is preferably 100 c / dm 2 or more. The peak current density is preferably 100 A / dm 2 or less, and more preferably 68 A / dm 2 or less. Further, the average current density is preferably 40 A / dm 2 or less, and more preferably 31.0 A / dm 2 or less. The amount of electricity is preferably 400 c / dm 2 or less.
The concentration or temperature of the electrolytic solution in nitric acid electrolysis is not particularly limited, and electrolysis is performed at 30 to 60 ° C. using a nitric acid electrolytic solution having a high concentration, for example, a nitric acid concentration of 15 to 35% by mass, or a nitric acid concentration of 0.1%. Electrolysis can be carried out at a high temperature, for example, at 80 ° C. or higher, using a 7-2 mass% nitric acid electrolyte.
  (塩酸電解)
 本発明においては、塩酸を主体とする電解液を用いた電気化学的粗面化処理(以下、「塩酸電解」とも略す。)によっても、上記算術平均粗さRa及び凹部数を上記範囲に設定することができる。
 ここで、塩酸電解においては、均一で密度の高い凹部形成が可能となる理由から、交流電流を用い、ピーク電流密度を30A/dm以上とし、平均電流密度を13A/dm以上とし、かつ、電気量を150c/dm以上とする条件で施す電解処理であるのが好ましい。なお、ピーク電流密度は100A/dm以下であるのが好ましく、平均電流密度は40A/dm以下であるのが好ましく、電気量は400c/dm以下であるのが好ましい。
(Hydrochloric acid electrolysis)
In the present invention, the arithmetic average roughness Ra and the number of recesses are set in the above range also by electrochemical surface roughening treatment (hereinafter, also referred to as “hydrochloric acid electrolysis”) using an electrolytic solution mainly composed of hydrochloric acid. can do.
Here, in hydrochloric acid electrolysis, for the reason that uniform and high-density recesses can be formed, an alternating current is used, the peak current density is 30 A / dm 2 or more, the average current density is 13 A / dm 2 or more, and The electrolytic treatment is preferably performed under the condition that the amount of electricity is 150 c / dm 2 or more. The peak current density is preferably 100 A / dm 2 or less, the average current density is preferably 40 A / dm 2 or less, and the amount of electricity is preferably 400 c / dm 2 or less.
 -デスマット処理-
 電解粗面化処理又はアルカリエッチング処理を行った後、表面に残留する汚れ(スマット)を除去するために酸洗い(デスマット処理)が行われるのが好ましい。
 用いられる酸としては、例えば、硝酸、硫酸、リン酸、クロム酸、フッ化水素酸、ホウフッ化水素酸が挙げられる。上記デスマット処理は、例えば、上記アルミニウム箔を塩酸、硝酸、硫酸等の濃度0.5~30質量%の酸性溶液(アルミニウムイオン0.01~5質量%を含有する。)に接触させることにより行う。アルミニウム箔を酸性溶液に接触させる方法としては、例えば、アルミニウム箔を酸性溶液槽の中を通過させる方法、アルミニウム箔を酸性溶液槽の中に浸せきさせる方法、酸性溶液をアルミニウム箔の表面に噴きかける方法が挙げられる。デスマット処理においては、酸性溶液として、上述した電解粗面化処理において排出される硝酸を主体とする水溶液若しくは塩酸を主体とする水溶液の廃液、又は、後述する陽極酸化処理において排出される硫酸を主体とする水溶液の廃液を用いることができる。デスマット処理の液温は、25~90℃であるのが好ましい。また、処理時間は、1~180秒であるのが好ましい。デスマット処理に用いられる酸性溶液には、アルミニウム及びアルミニウム合金成分が溶け込んでいてもよい。
-Desmut treatment-
After the electrolytic surface roughening treatment or the alkali etching treatment, pickling (desmut treatment) is preferably performed to remove dirt (smut) remaining on the surface.
Examples of the acid used include nitric acid, sulfuric acid, phosphoric acid, chromic acid, hydrofluoric acid, and borohydrofluoric acid. The desmutting treatment is performed, for example, by bringing the aluminum foil into contact with an acidic solution (containing aluminum ions of 0.01 to 5% by mass) having a concentration of 0.5 to 30% by mass such as hydrochloric acid, nitric acid, and sulfuric acid. . Examples of the method of bringing the aluminum foil into contact with the acidic solution include a method of passing the aluminum foil through the acidic solution bath, a method of immersing the aluminum foil in the acidic solution bath, and spraying the acidic solution onto the surface of the aluminum foil. A method is mentioned. In the desmutting treatment, the acid solution is mainly composed of an aqueous solution mainly composed of nitric acid or an aqueous solution mainly composed of hydrochloric acid discharged in the above-described electrolytic surface-roughening treatment, or sulfuric acid discharged in an anodic oxidation process described later. It is possible to use a waste solution of an aqueous solution. The temperature of the desmut treatment is preferably 25 to 90 ° C. The processing time is preferably 1 to 180 seconds. Aluminum and aluminum alloy components may be dissolved in the acidic solution used for the desmut treatment.
 -その他の処理-
 電気化学的粗面化処理法においては、電解粗面化処理の前及び/又は後にアルカリエッチング処理を行うことができる。アルカリエッチング処理は、アルミニウム箔をアルカリ溶液に接触させることにより、表層を溶解させる処理である。この処理は、アルミニウム箔の表面の圧延油、汚れ、自然酸化皮膜等の除去、又は、酸性電解液中で生成したスマットの溶解を目的として、行われる。アルカリエッチング処理は、通常の条件を特に限定されることなく適用して、行うことができる。
 電気化学的粗面化処理法においては、以上のように処理されたアルミニウム箔に対して、腐食防止の観点から、必要に応じて陽極酸化処理を行うことができる。陽極酸化処理は、通常行われている方法及び条件で行うことができる。また、必要に応じて陽極酸化皮膜に存在するマイクロポアを封じる封孔処理を行うこともできる。封孔処理は、通常行われている方法及び条件で行うことができる。
 電気化学的粗面化処理法における各処理は、通常の方法及び条件を採用することができる。例えば、特開2015-53240号公報に記載の各処理(方法又は条件)を適宜参照することができる。
-Other processing-
In the electrochemical surface roughening treatment method, an alkali etching treatment can be performed before and / or after the electrolytic surface roughening treatment. The alkali etching treatment is a treatment for dissolving the surface layer by bringing the aluminum foil into contact with an alkali solution. This treatment is performed for the purpose of removing the rolling oil, dirt, natural oxide film, etc. on the surface of the aluminum foil or dissolving the smut generated in the acidic electrolyte. The alkali etching treatment can be performed by applying normal conditions without particular limitation.
In the electrochemical surface roughening treatment method, the aluminum foil treated as described above can be anodized as necessary from the viewpoint of preventing corrosion. The anodizing treatment can be performed by a usual method and conditions. Moreover, the sealing process which seals the micropore which exists in an anodic oxide film can also be performed as needed. The sealing treatment can be performed by a usual method and conditions.
A normal method and conditions can be adopted for each treatment in the electrochemical surface roughening treatment method. For example, each process (method or condition) described in JP-A-2015-53240 can be referred to as appropriate.
 -水洗処理-
 本発明においては、上述した各処理の工程終了後には水洗を行うのが好ましい。水洗には、純水、井水、水道水等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置を用いてもよい。
-Washing treatment-
In the present invention, it is preferable to carry out water washing after completion of the above-described processes. For washing, pure water, well water, tap water, or the like can be used. A nip device may be used to prevent the processing liquid from being brought into the next process.
(導電性膜の形成)
 上記表面形態を有する、集電体の表面に導電性膜を形成する方法は、特に限定されず、例えば、上述の導電性粒子を用いた、化学蒸着(CVD)、物理蒸着(BVD)、スパッタリン等の蒸着法、電気めっき等のめっき法、上述の導電性粒子をバインダー等に分散した塗料組成物を集電体の表面に塗布(印刷)し、乾燥する塗布(印刷)法などが挙げられる。中でも、上述の導電性粒子を用いて、蒸着法又は塗布法により、導電性膜を形成する方法が好ましい。
(Formation of conductive film)
The method for forming the conductive film on the surface of the current collector having the above surface form is not particularly limited. For example, chemical vapor deposition (CVD), physical vapor deposition (BVD), sputtering using the above-described conductive particles. Examples include a deposition method such as phosphorus, a plating method such as electroplating, and an application (printing) method in which a coating composition in which the above-described conductive particles are dispersed in a binder is applied (printed) to the surface of the current collector and dried. It is done. Among these, a method of forming a conductive film by the vapor deposition method or the coating method using the above-described conductive particles is preferable.
(各層の形成(成膜))
 正極活物質層4、固体電解質層3、負極活物質層2の各層を形成するには、好ましくは、固体電解質組成物を用いる。
 本発明において、固体電解質層を形成するための固体電解質組成物は、無機固体電解質を含有する。また、正極活物質層を形成するための正極用組成物は、正極活物質を含有し、さらに無機固体電解質を含有することが好ましい。同様に、負極活物質層を形成するための負極用組成物は、負極活物質を含有し、さらに無機固体電解質を含有することが好ましい。
 本発明において、正極用組成物及び負極用組成物が無機固体電解質を含有する場合、固体電解質層を形成するための固体電解質組成物と、正極用組成物及び負極用組成物とを合わせて、固体電解質組成物と称することがある。
(Formation of each layer (film formation))
In order to form each layer of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2, a solid electrolyte composition is preferably used.
In the present invention, the solid electrolyte composition for forming the solid electrolyte layer contains an inorganic solid electrolyte. Moreover, it is preferable that the composition for positive electrodes for forming a positive electrode active material layer contains a positive electrode active material, and also contains an inorganic solid electrolyte. Similarly, the negative electrode composition for forming the negative electrode active material layer preferably contains a negative electrode active material and further contains an inorganic solid electrolyte.
In the present invention, when the positive electrode composition and the negative electrode composition contain an inorganic solid electrolyte, the solid electrolyte composition for forming the solid electrolyte layer, the positive electrode composition, and the negative electrode composition are combined. Sometimes referred to as a solid electrolyte composition.
 固体電解質組成物は、無機固体電解質を含有し、正極活物質又は負極活物質、さらには、バインダー、リチウム塩、導電助剤、分散剤、分散媒体を含有してもよい。
 無機固体電解質、正極活物質、負極活物質、バインダー、リチウム塩、導電助剤及び分散剤は、上記した通りである。
The solid electrolyte composition contains an inorganic solid electrolyte, and may contain a positive electrode active material or a negative electrode active material, and further a binder, a lithium salt, a conductive additive, a dispersant, and a dispersion medium.
The inorganic solid electrolyte, the positive electrode active material, the negative electrode active material, the binder, the lithium salt, the conductive assistant and the dispersant are as described above.
 分散媒体としては、例えば、下記のものが挙げられ、好ましい。
 分散媒体は、上記の各成分を分散させるものであればよく、例えば、各種の有機溶媒が挙げられる。分散媒体の具体例としては下記のものが挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)、が挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
 アミノ化合物溶媒としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物溶媒としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸ブチル、ペンタン酸ブチルなどが挙げられる。
 非水系分散媒体としては、上記芳香族化合物溶媒、脂肪族化合物溶媒等が挙げられる。
Examples of the dispersion medium include the following, which are preferable.
The dispersion medium only needs to disperse each of the above components, and examples thereof include various organic solvents. Specific examples of the dispersion medium include the following.
Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, Examples include 2-methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
Examples of ether compound solvents include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene. Glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dialkyl ethers (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ethers (tetrahydrofuran, geo Sun (1,2-, 1,3- and each isomer 1,4), etc.), and the like.
Examples of the amide compound solvent include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
Examples of the amino compound solvent include triethylamine, diisopropylethylamine, tributylamine and the like.
Examples of the ketone compound solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
Examples of the aromatic compound solvent include benzene, toluene, xylene and the like.
Examples of the aliphatic compound solvent include hexane, heptane, octane, decane, and the like.
Examples of the nitrile compound solvent include acetonitrile, propyronitrile, isobutyronitrile, and the like.
Examples of the ester compound solvent include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, and butyl pentanoate.
Examples of the non-aqueous dispersion medium include the above aromatic compound solvents and aliphatic compound solvents.
 本発明においては、中でも、エーテル化合物溶媒、脂肪族化合物溶媒、ニトリル化合物溶媒、芳香族化合物溶媒が好ましく、ヘプタン、オクタン、ノナン及びトルエン、キシレンがより好ましい。
 分散媒体は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることがさらに好ましい。
 固体電解質組成物中の、分散媒体の含有量は、全質量100質量部に対して、10~95質量部が好ましく、15~90質量部が好ましく、20~85質量部が特に好ましい。
 上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
In the present invention, among them, ether compound solvents, aliphatic compound solvents, nitrile compound solvents, and aromatic compound solvents are preferable, and heptane, octane, nonane, toluene, and xylene are more preferable.
The dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher, at normal pressure (1 atm). The upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
The content of the dispersion medium in the solid electrolyte composition is preferably 10 to 95 parts by weight, more preferably 15 to 90 parts by weight, and particularly preferably 20 to 85 parts by weight with respect to 100 parts by weight as a whole.
The said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明の固体電解質組成物は、無機固体電解質、バインダー及び分散媒体、必要により他の成分を、例えば、各種の混合機を用いて、混合することにより、製造できる。 The solid electrolyte composition of the present invention can be produced by mixing an inorganic solid electrolyte, a binder and a dispersion medium, and if necessary, other components using, for example, various mixers.
 固体電解質組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、上限は、300℃以下が好ましく、250℃以下がより好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。
The method for applying the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating.
At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and the upper limit is preferably 300 ° C or lower, more preferably 250 ° C or lower. By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state.
 塗布した固体電解質組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することもある。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。この加圧により、固体電解質層等において、無機固体電解質等の粒子界面に由来する空隙をなくして無機固体電解質等を密に充填することができる。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。一方、無機固体電解質とバインダーが共存する場合、バインダーのガラス転移温度よりも高い温度でプレスすることもできる。ただし、一般的にはバインダーの融点を越えない温度である。
 加圧は塗布溶媒又は分散媒体をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒体が残存している状態で行ってもよい。
It is preferable to pressurize each layer or all-solid secondary battery after producing the applied solid electrolyte composition or all-solid-state secondary battery. Moreover, it may pressurize in the state which laminated | stacked each layer. An example of the pressurizing method is a hydraulic cylinder press. The applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa. By this pressurization, in the solid electrolyte layer or the like, voids derived from the particle interface such as the inorganic solid electrolyte can be eliminated and the inorganic solid electrolyte or the like can be densely filled.
Moreover, you may heat the apply | coated solid electrolyte composition simultaneously with pressurization. The heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte. On the other hand, when the inorganic solid electrolyte and the binder coexist, pressing can be performed at a temperature higher than the glass transition temperature of the binder. However, in general, the temperature does not exceed the melting point of the binder.
The pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用電極シート又は固体電解質シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point of −20 ° C. or lower), inert gas (for example, argon gas, helium gas, nitrogen gas).
The pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more). In the case of an all-solid-state secondary battery other than the electrode sheet or the solid electrolyte sheet for an all-solid-state secondary battery, for example, in order to keep applying moderate pressure, all-solid-state secondary battery restraints (screw tightening pressure, etc.) It can also be used.
The pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
The pressing pressure can be changed according to the area or film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
The press surface may be smooth or roughened.
(初期化)
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
(Initialization)
The all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
〔全固体二次電池の用途〕
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。さらに、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[Use of all-solid secondary batteries]
The all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military purposes and space. Moreover, it can also combine with a solar cell.
 中でも、高容量かつ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の安全性が求められる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。 In particular, it is preferably applied to applications that require high capacity and high rate discharge characteristics. For example, in power storage facilities and the like that are expected to increase in capacity in the future, high safety is essential, and further compatibility of battery performance is required. In addition, electric vehicles and the like are equipped with a high-capacity secondary battery and are expected to be charged every day at home, and further safety is required against overcharging. According to the present invention, it is possible to exhibit the excellent effect correspondingly to such a usage pattern.
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池をいう。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。この中で、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S又はLLT、LLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に高分子化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質粒子のバインダーとして高分子化合物を適用することができる。
 無機固体電解質とは、上述した、ポリエチレンオキサイド等の高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S又はLLT、LLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがあるが、上記のイオン輸送材料としての電解質と区別するときにはこれを「電解質塩」又は「支持電解質」と呼ぶ。電解質塩としては例えばLiTFSI(リチウムビストリフルオロメタンスルホニルイミド)が挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集又は偏在が生じていてもよい。また、特に固体電解質組成物というときには、基本的に固体電解質層等を形成するための材料となる組成物(典型的にはペースト状)を指し、上記組成物を硬化して形成した電解質層等はこれに含まれないものとする。
An all-solid secondary battery is a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte. In this, this invention presupposes an inorganic all-solid-state secondary battery. The all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state secondary battery that uses the above-described Li—PS, LLT, LLZ, or the like. It is divided into batteries. The application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte particles.
The inorganic solid electrolyte is distinguished from the above-described electrolyte (polymer electrolyte) using a polymer compound such as polyethylene oxide as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include Li—PS, LLT, and LLZ. The inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function. On the other hand, a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte, but it is distinguished from the electrolyte as the ion transport material. In this case, this is called “electrolyte salt” or “supporting electrolyte”. Examples of the electrolyte salt include LiTFSI (lithium bistrifluoromethanesulfonylimide).
In the present invention, the term “composition” means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved. In particular, when it is referred to as a solid electrolyte composition, it basically refers to a composition (typically a paste) that is a material for forming a solid electrolyte layer or the like, and an electrolyte layer or the like formed by curing the composition. Shall not be included in this.
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。 Hereinafter, the present invention will be described in more detail based on examples. The present invention is not construed as being limited thereby. In the following examples, “part” and “%” representing the composition are based on mass unless otherwise specified.
<硫化物系無機固体電解質の合成>
-Li-P-S系ガラスの合成-
 硫化物系の無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
<Synthesis of sulfide-based inorganic solid electrolyte>
-Synthesis of Li-PS system glass-
As a sulfide-based inorganic solid electrolyte, T.I. Ohtomo, A .; Hayashi, M .; Tatsumisago, Y. et al. Tsuchida, S .; Hama, K .; Kawamoto, Journal of Power Sources, 233, (2013), pp231-235 and A.K. Hayashi, S .; Hama, H .; Morimoto, M .; Tatsumisago, T .; Minami, Chem. Lett. , (2001), pp 872-873, Li—PS glass was synthesized.
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、次いで上記の硫化リチウムと五硫化二リンの混合物の全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。この容器を遊星ボールミルP-7(商品名、フリッチュ社製)にセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉末のLi-P-S系ガラス(硫化物系無機固体電解質)6.20gを得た。
Specifically, in a glove box under an argon atmosphere (dew point −70 ° C.), 2.42 g of lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%) and diphosphorus pentasulfide (P 2 S 5 , 3.90 g manufactured by Aldrich, purity> 99%) was weighed, put into an agate mortar, and mixed for 5 minutes using an agate pestle. The mixing ratio of Li 2 S and P 2 S 5 was set to Li 2 S: P 2 S 5 = 75: 25 in terms of molar ratio.
A zirconia 45 mL container (manufactured by Fritsch) was charged with 66 zirconia beads having a diameter of 5 mm, and then the entire amount of the mixture of lithium sulfide and diphosphorus pentasulfide was charged, and the container was completely sealed under an argon atmosphere. . This container is set in a planetary ball mill P-7 (trade name, manufactured by Fritsch), mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours, and a yellow powder of Li—PS system glass (sulfide inorganic) 6.20 g of solid electrolyte) was obtained.
<集電体の作製>
 厚さ20μm、幅200mmのアルミニウム箔(JIS H-4160、合金番号:1N30-H、アルミニウム純度:99.30%)の表面を、以下に示す電気化学的粗面化処理(a1)及びデスマット処理(b1)に供して、集電体AL-1を作製した。
 (a1)電気化学的粗面化処理(硝酸電解)
 まず、50Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。このときの電解液は、硝酸8.9g/L水溶液(アルミニウムイオンを4.4g/L含む。)、温度50℃であった。交流電源波形は電流値がゼロからピークに達するまでの時間TPが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的粗面化処理を行った。補助アノードにはフェライトを用いた。電流密度は電流のピーク値で60A/dmであり、かつ、平均値で28.1A/dmであり、また、電気量はアルミニウム箔が陽極時の電気量の総和で120c/dmであった。その後、スプレーによる水洗を行った。
 なお、下記表1に電気化学的粗面化処理の処理条件を示した。
 (b1)デスマット処理
 次いで、温度60℃の硫酸濃度25質量%水溶液(アルミニウムイオンを0.5質量%含む。)で、スプレーによるデスマット処理を30秒間行い、その後、スプレーによる水洗を行った。
<Preparation of current collector>
The surface of an aluminum foil (JIS H-4160, alloy number: 1N30-H, aluminum purity: 99.30%) having a thickness of 20 μm and a width of 200 mm is subjected to the following electrochemical roughening treatment (a1) and desmut treatment A current collector AL-1 was prepared for (b1).
(A1) Electrochemical roughening treatment (nitric acid electrolysis)
First, electrochemical roughening treatment was continuously performed using an AC voltage of 50 Hz. The electrolytic solution at this time was an aqueous solution of 8.9 g / L nitric acid (containing 4.4 g / L of aluminum ions) at a temperature of 50 ° C. The AC power supply waveform is subjected to electrochemical surface roughening using a carbon electrode as a counter electrode, using a trapezoidal rectangular wave alternating current with a time TP of 0.8 msec until the current value reaches a peak from zero, a duty ratio of 1: 1. It was. Ferrite was used for the auxiliary anode. The current density was 60A / dm 2 at the peak current, and a 28.1A / dm 2 in average, also the quantity of electricity in the aluminum foil of the electric quantity during anodic sum at 120c / dm 2 there were. Then, water washing by spraying was performed.
Table 1 below shows the conditions for electrochemical surface roughening.
(B1) Desmutting treatment Next, a desmutting treatment by spraying was performed for 30 seconds with a 25% by weight aqueous solution of sulfuric acid having a temperature of 60 ° C. (containing 0.5% by weight of aluminum ions), followed by washing with water by spraying.
 集電体AL-1の作製において、電気化学的粗面化処理の処理条件を下記表1に示す処理条件に変更したこと以外は、集電体AL-1の作製と同様にして、集電体AL-2~5、及び、比較のための集電体C-AL-1~3を、それぞれ、作製した。 The current collector AL-1 was produced in the same manner as the current collector AL-1, except that the electrochemical roughening treatment conditions were changed to the treatment conditions shown in Table 1 below. Body AL-2 to 5 and current collector C-AL-1 to 3 for comparison were prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 作製した各集電体AL-1~5及びC-AL-1~3について、上記方法に基づき、算術平均粗さRaと、平均開口径0.3~3.0μmの凹部の数とを、測定した。その結果を、後記の表2に示す。 For each of the current collectors AL-1 to 5 and C-AL-1 to 3 produced, the arithmetic average roughness Ra and the number of recesses having an average opening diameter of 0.3 to 3.0 μm were determined based on the above method. It was measured. The results are shown in Table 2 below.
(実施例1)
<各組成物の調製>
-固体電解質組成物の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス9.5g、PVdF-HFP0.5g、及び分散媒体として1,4-ジオキサン15.0gを投入した。その後、この容器を遊星ボールミルP-7(商品名、フリッチュ社製)にセットし、温度25℃、回転数300rpmにて2時間攪拌を続け、固体電解質組成物を調製した。
 上記PVdF-HFPをGPCにより下記の条件で測定した質量平均分子量は70,000であった。
Example 1
<Preparation of each composition>
-Preparation of solid electrolyte composition-
180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, 9.5 g of the Li—PS system glass synthesized above, 0.5 g of PVdF—HFP, and 1,4 as a dispersion medium. -15.0 g of dioxane was charged. Thereafter, this container was set in a planetary ball mill P-7 (trade name, manufactured by Fritsch), and stirring was continued for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm to prepare a solid electrolyte composition.
The PVdF-HFP was measured by GPC under the following conditions, and the mass average molecular weight was 70,000.
-正極用組成物の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス1.5g、PVdF-HFP0.5g、及び分散媒体として1,4-ジオキサン12.3gを投入した。この容器を遊星ボールミルP-7(フリッチュ社製)にセットし、温度25℃、回転数300rpmの条件にて2時間機械分散を続けた。その後、活物質としてコバルト酸リチウム(LCO、日本化学工業(株)製)8.0gを容器に投入し、再びこの容器を遊星ボールミルP-7にセットし、温度25℃、回転数100rpmにて15分間混合を続けた。このようにして、正極用組成物を調製した。
-Preparation of composition for positive electrode-
180 zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, 1.5 g of the Li—PS system glass synthesized above, 0.5 g of PVdF—HFP, and 1,4 as dispersion media. -Charge 12.3 g of dioxane. This container was set in a planetary ball mill P-7 (manufactured by Fritsch), and machine dispersion was continued for 2 hours under the conditions of a temperature of 25 ° C. and a rotation speed of 300 rpm. Thereafter, 8.0 g of lithium cobalt oxide (LCO, manufactured by Nippon Kagaku Kogyo Co., Ltd.) as an active material is put into the container, and the container is set again on the planetary ball mill P-7, at a temperature of 25 ° C. and a rotation speed of 100 rpm. Mixing continued for 15 minutes. In this way, a positive electrode composition was prepared.
-負極用組成物の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、グラファイト(日本黒鉛工業社製の球状化黒鉛粉末、下記表2では「黒鉛」と記載する。)8質量部、上記で合成したLi-P-S系ガラス2質量部、バインダー(HSBR、水素添加スチレンブタジエンラバー、JSR製商品名:ダイナロン1321P)0.3質量部、及び分散媒体としてヘプタン10質量部を投入した。この容器を遊星ボールミルP-7(商品名、フリッチュ社製)にセットし、温度25℃、回転数360rpmにて90分間、機械分散を続け、負極用組成物を調製した。
 なお、上記HSBRをGPCで測定した質量平均分子量は200,000であり、Tgは-50℃であった。
-Preparation of composition for negative electrode-
180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 8 parts by mass of graphite (spheroidized graphite powder manufactured by Nippon Graphite Industries, Ltd., described as “graphite” in Table 2 below) , 2 parts by mass of the Li—PS glass synthesized above, 0.3 part by mass of binder (HSBR, hydrogenated styrene butadiene rubber, JSR product name: Dynalon 1321P), and 10 parts by mass of heptane as a dispersion medium did. This container was set on a planetary ball mill P-7 (trade name, manufactured by Fritsch), and mechanical dispersion was continued for 90 minutes at a temperature of 25 ° C. and a rotation speed of 360 rpm to prepare a composition for a negative electrode.
The mass average molecular weight of the HSBR measured by GPC was 200,000, and Tg was −50 ° C.
-質量平均分子量の測定-
 本発明に用いられるバインダーの質量平均分子量は、GPCによって標準ポリスチレン換算したものを採用した。測定装置及び測定条件を以下に示す。
  カラム:TOSOH TSKgel Super HZM-H、
      TOSOH TSKgel Super HZ4000、
      TOSOH TSKgel Super HZ2000(いずれも商品名、東ソー社製)
をつないだカラムを用いた。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0mL/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
-Measurement of mass average molecular weight-
As the mass average molecular weight of the binder used in the present invention, a standard polystyrene converted by GPC was adopted. The measurement apparatus and measurement conditions are shown below.
Column: TOSOH TSKgel Super HZM-H,
TOSOH TSKgel Super HZ4000,
TOSOH TSKgel Super HZ2000 (both trade names, manufactured by Tosoh Corporation)
A column connected with was used.
Carrier: Tetrahydrofuran Measurement temperature: 40 ° C
Carrier flow rate: 1.0 mL / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
<全固体二次電池用負極シートの作製>
 厚み20μmの銅箔上に、次のようにして、膜厚4μmの負極導電性膜を形成した。すなわち、市販の導電性塗料(商品名:バニーハイト#27、日本黒鉛工業製)をキシレン/トルエン=1/1混合溶剤で希釈し均一膜厚が得られるようにグラビア塗工機にて塗工し、負極導電性膜としてカーボンコート箔(体積固有抵抗率:0.4Ω-cm)を得た。
<Preparation of negative electrode sheet for all solid state secondary battery>
A negative electrode conductive film having a thickness of 4 μm was formed on a copper foil having a thickness of 20 μm as follows. That is, a commercially available conductive paint (trade name: Bunny Height # 27, manufactured by Nippon Graphite Industries Co., Ltd.) was diluted with a xylene / toluene = 1/1 mixed solvent and applied with a gravure coating machine so as to obtain a uniform film thickness. As a negative electrode conductive film, a carbon coated foil (volume resistivity: 0.4 Ω-cm) was obtained.
 次いで、上記で調製した負極用組成物を、銅箔に設けた導電性膜上に、クリアランスが調節可能なアプリケーター(商品名:SA-201ベーカー式アプリケーター、テスター産業社製)により塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、負極用組成物を乾燥した。その後、ヒートプレス機を用いて、乾燥した負極用組成物を加熱(110℃)しながら加圧(605MPa、1分)し、膜厚100μmの負極活物質層を有する全固体二次電池用負極シートを作製した。 Next, the negative electrode composition prepared above was applied onto a conductive film provided on a copper foil by an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.) with adjustable clearance, and 80 After heating at 1 ° C. for 1 hour, the composition was further heated at 110 ° C. for 1 hour to dry the negative electrode composition. Then, using a heat press, the dried negative electrode composition is heated (110 ° C.) while being pressurized (605 MPa, 1 minute), and has a negative electrode active material layer with a thickness of 100 μm. A sheet was produced.
 さらに、負極活物質層上に、上記で調製した固体電解質組成物を、上記ベーカー式アプリケーターにより塗布し、固体電解質組成物を80℃で1時間加熱後、さらに110℃で6時間加熱した。負極活物質層上に固体電解質層を形成したシートを、ヒートプレス機を用いて、加熱(120℃)しながら加圧(605MPa、1分)し、負極活物質層との合計膜厚150μmの、固体電解質層付きの全固体二次電池用負極シートを作製した。固体電解質層の膜厚は50μmであった。 Furthermore, the solid electrolyte composition prepared above was applied onto the negative electrode active material layer by the above-described Baker type applicator, and the solid electrolyte composition was heated at 80 ° C. for 1 hour, and further heated at 110 ° C. for 6 hours. The sheet having the solid electrolyte layer formed on the negative electrode active material layer was pressurized (605 MPa, 1 minute) while being heated (120 ° C.) using a heat press, and the total film thickness with the negative electrode active material layer was 150 μm. A negative electrode sheet for an all-solid secondary battery with a solid electrolyte layer was produced. The film thickness of the solid electrolyte layer was 50 μm.
<全固体二次電池用正極シートの作製>
 上記のようにして作製した集電体AL-1の表面に、次のようにして、膜厚4μmの正極導電性膜を形成した。すなわち、市販の導電性塗料(商品名:バニーハイト#27、日本黒鉛工業製)をキシレン/トルエン=1/1混合溶剤で希釈し均一膜厚が得られるようにグラビア塗工機にて塗工し、正極導電性膜としてカーボンコート箔を得た。
<Preparation of positive electrode sheet for all solid state secondary battery>
A positive electrode conductive film having a thickness of 4 μm was formed on the surface of the current collector AL-1 produced as described above as follows. That is, a commercially available conductive paint (trade name: Bunny Height # 27, manufactured by Nippon Graphite Industries Co., Ltd.) was diluted with a xylene / toluene = 1/1 mixed solvent and applied with a gravure coating machine so as to obtain a uniform film thickness. A carbon coated foil was obtained as a positive electrode conductive film.
 さらに、上記で調製した正極用組成物を、正極導電性膜上に、上記ベーカー式アプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、正極用組成物を乾燥した。その後、ヒートプレス機を用いて、乾燥した正極用組成物を加熱(120℃)しながら加圧(605MPa、1分)し、膜厚100μmの正極活物質層を有する全固体二次電池用正極シートを作製した。 Further, the positive electrode composition prepared above was applied onto the positive electrode conductive film by the above-mentioned Baker type applicator, heated at 80 ° C. for 1 hour, and further heated at 110 ° C. for 1 hour to dry the positive electrode composition. did. Then, using a heat press, the dried positive electrode composition is pressurized (605 MPa, 1 minute) while heating (120 ° C.), and has a positive electrode active material layer with a film thickness of 100 μm. A sheet was produced.
<全固体二次電池の製造>
 図2に示す全固体二次電池を作製した。
 上記で作製した固体電解質層付きの全固体二次電池用負極シートを直径10mmの円板状に切り出し、また全固体二次電池用正極シートを直径10mmの円板状に切り出した。切り出した固体電解質層付きの全固体二次電池用負極シート片と、全固体二次電池用正極シート片とを、固体電解質層と正極活物質層とが向かい合うように、605MPaで加圧して貼り合わせた後、スペーサーとワッシャー(ともに図2において図示しない)を組み込んだステンレス製の2032型コインケース11に入れ、外部から拘束圧をかけて、全固体二次電池(コイン電池)13を製造した。図2において、12は固体電解質層付きの全固体二次電池用負極シート片と、全固体二次電池用正極シート片とを積層した全固体二次電池用電極シートの積層体を示す。
 このようにして製造した全固体二次電池の層構成は図1に示す層構成を有する。
<Manufacture of all-solid-state secondary batteries>
An all-solid secondary battery shown in FIG. 2 was produced.
The negative electrode sheet for an all solid secondary battery with the solid electrolyte layer produced above was cut out into a disk shape with a diameter of 10 mm, and the positive electrode sheet for an all solid secondary battery was cut out into a disk shape with a diameter of 10 mm. The cut-out negative electrode sheet piece for an all-solid-state secondary battery with a solid electrolyte layer and the positive-electrode sheet piece for an all-solid-state secondary battery are attached by pressing at 605 MPa so that the solid electrolyte layer and the positive electrode active material layer face each other. After the alignment, all-solid-state secondary battery (coin battery) 13 was manufactured by placing it in a stainless steel 2032 type coin case 11 incorporating a spacer and washer (both not shown in FIG. 2) and applying a restraining pressure from the outside. . In FIG. 2, 12 shows the laminated body of the electrode sheet for all-solid-state secondary batteries which laminated | stacked the negative electrode sheet piece for all-solid-state secondary batteries with a solid electrolyte layer, and the positive electrode sheet piece for all-solid-state secondary batteries.
The layer configuration of the all-solid secondary battery manufactured in this way has the layer configuration shown in FIG.
(実施例2~5及び比較例1~3)
 実施例1の全固体二次電池の製造において、集電体AL-1を表2に示す集電体に変更したこと以外は、実施例1の全固体二次電池の製造と同様にして、実施例2、4、5及び比較例1~3の全固体二次電池を、それぞれ、製造した。
 また、実施例1の全固体二次電池の製造において、集電体AL-1を表2に示す集電体に変更し、さらに、黒鉛の正極導電性膜に代えて、下記のようにしてカーボンナノチューブの正極導電性膜(厚み4μm)を形成したと以外は、実施例1の全固体二次電池の製造と同様にして、実施例3の全固体二次電池を製造した。
 (カーボンナノチューブの導電性膜の形成方法)
 繊維径10nmのカーボンナノチューブ(CNT)5質量部、デオキシコール酸10質量部、スチレンブタジエンゴム85質量部及びキシレン/トルエン=1/1混合溶剤500質量部を加え、ビーズミルを用いて分散液を作製し、均一膜厚が得られるようにグラビア塗工機にて塗工し、カーボンコート箔(体積固有抵抗率:4×10-4Ω-cm)を得た。
(Examples 2 to 5 and Comparative Examples 1 to 3)
In the production of the all-solid secondary battery of Example 1, except that the current collector AL-1 was changed to the current collector shown in Table 2, the same as the production of the all-solid secondary battery of Example 1, The all solid state secondary batteries of Examples 2, 4, 5 and Comparative Examples 1 to 3 were produced, respectively.
Further, in the production of the all-solid-state secondary battery of Example 1, the current collector AL-1 was changed to the current collector shown in Table 2, and further replaced with a graphite positive electrode conductive film as follows. An all-solid secondary battery of Example 3 was produced in the same manner as in the production of the all-solid secondary battery of Example 1 except that a positive electrode conductive film (thickness 4 μm) of carbon nanotubes was formed.
(Method of forming carbon nanotube conductive film)
Add 5 parts by mass of carbon nanotubes (CNT) with a fiber diameter of 10 nm, 10 parts by mass of deoxycholic acid, 85 parts by mass of styrene butadiene rubber and 500 parts by mass of xylene / toluene = 1/1 mixed solvent, and prepare a dispersion using a bead mill. Then, coating was performed with a gravure coating machine so as to obtain a uniform film thickness to obtain a carbon-coated foil (volume resistivity: 4 × 10 −4 Ω-cm).
<固体電解質層の空隙の有無>
 製造した各全固体二次電池において、固体電解質層中の、微細な空隙の有無を次のようにして確認した。その結果を表2に示す。
 各全固体二次電池の断面を走査型顕微鏡(SEM:日立ハイテクノロジーズ製、卓上顕微鏡TM-1000)で観察した。空隙の有無の評価基準は、任意の断面(63μm×48μm)を倍率3000倍で観察し、固体電解質粒子の界面に由来する空隙(長軸長さが1μm以上の空隙)を確認できなかった場合を「空隙なし」とし、空隙を確認できた場合を「空隙あり」とした。
<Presence or absence of voids in the solid electrolyte layer>
In each manufactured all-solid-state secondary battery, the presence or absence of fine voids in the solid electrolyte layer was confirmed as follows. The results are shown in Table 2.
The cross section of each all-solid-state secondary battery was observed with a scanning microscope (SEM: Hitachi High-Technologies Corporation, tabletop microscope TM-1000). The evaluation criteria for the presence or absence of voids are when an arbitrary cross section (63 μm × 48 μm) is observed at a magnification of 3000 times, and voids originating from the interface of the solid electrolyte particles (voids having a major axis length of 1 μm or more) cannot be confirmed. Was “no void”, and when the void was confirmed, it was designated “with void”.
<導電性膜の剥離試験>
 製造した各全固体二次電池において、導電性膜と集電体との剥離の有無を次のようにして確認した。その結果を表2に示す。
 全固体二次電池を分解し、集電体をピンセットで掴んで剥がした。剥がした集電体から、導電性膜が剥がれて活物質層に転写されなかった(導電性膜として残存した)面積割合((転写されなかった導電性膜の合計面積/集電体表面積)×100(%))を算出して、下記A~Dの4段階で判定した。評価は、正極導電性膜について、行った。
 本試験において、評価「B」以上が合格である。
 算出した面積割合が、
A:100%である場合
B:90%以上100%未満である場合
C:60%以上90%未満である場合
D:60%未満である場合
<Peeling test of conductive film>
In each manufactured all-solid-state secondary battery, the presence or absence of peeling between the conductive film and the current collector was confirmed as follows. The results are shown in Table 2.
The all solid state secondary battery was disassembled, and the current collector was grasped with tweezers and peeled off. The ratio of the area where the conductive film was peeled off from the peeled current collector and was not transferred to the active material layer (remained as a conductive film) ((total area of conductive film not transferred / current collector surface area)) × 100 (%)) was calculated and judged in the following four stages A to D. The evaluation was performed on the positive electrode conductive film.
In this test, an evaluation “B” or higher is acceptable.
The calculated area ratio is
A: When it is 100% B: When it is 90% or more and less than 100% C: When it is 60% or more and less than 90% D: When it is less than 60%
<短絡試験>
 製造した各全固体二次電池において、短絡の発生の有無を、全固体二次電池の正極及び負極の抵抗をテスターで測定した抵抗値により、次のように、判断した。測定された抵抗値が極端に低い、又はほぼ0Vであった場合に「短絡」しているとした。結果を表2に示す。
<Short-circuit test>
In each manufactured all-solid-state secondary battery, the presence or absence of the occurrence of a short circuit was determined as follows based on the resistance value measured by the tester for the resistance of the positive electrode and the negative electrode of the all-solid-state secondary battery. When the measured resistance value is extremely low or approximately 0 V, it is assumed that the circuit is “short-circuited”. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に記載の結果から次のことが分かった。すなわち、算術平均粗さRa及び凹部数が所定の範囲内にある特定の表面形態を有する集電体の表面に導電性膜を形成した、実施例1~5の全固体二次電池は、無機固体電解質層内に微細な空隙を確認できず、集電体と導電性膜との密着性が高く、しかも短絡も発生しないことが示された。これに対して、上記特定の表面形態を有しない集電体の表面に導電性膜を形成した、比較例1~3の全固体二次電池は、無機固体電解質層内に微細な空隙を確認できなかったものの、集電体から導電性膜が剥がれ、又は、短絡が発生することが示された。 From the results shown in Table 2, the following was found. That is, the all-solid-state secondary batteries of Examples 1 to 5 in which the conductive film is formed on the surface of the current collector having a specific surface form in which the arithmetic average roughness Ra and the number of recesses are within a predetermined range are inorganic It was shown that fine voids could not be confirmed in the solid electrolyte layer, the adhesion between the current collector and the conductive film was high, and no short circuit occurred. On the other hand, in the all-solid-state secondary batteries of Comparative Examples 1 to 3 in which a conductive film is formed on the surface of the current collector that does not have the specific surface form, fine voids are confirmed in the inorganic solid electrolyte layer. Although it was not possible, it was shown that the conductive film peeled off from the current collector or a short circuit occurred.
(実施例6~10)
 実施例1~5において、負極集電体として上記銅箔に代えて各実施例で用いた集電体AL-1~5をそれぞれ用いたこと以外は実施例1~5と同様にして、全固体二次電池をそれぞれ製造した。製造した各全固体二次電池について、固体電解質層の空隙の有無、短絡試験、及び、負極導電性膜についての剥離試験を、実施例1と同様にして、行った。その結果、実施例6~10は、それぞれ、実施例1~5と同じ結果が得られた。
(Examples 6 to 10)
In Examples 1 to 5, the same procedure as in Examples 1 to 5 except that the current collectors AL-1 to AL-5 used in each example were used instead of the copper foil as the negative electrode current collector. Each solid secondary battery was manufactured. About each manufactured all-solid-state secondary battery, the presence or absence of the space | gap of a solid electrolyte layer, a short circuit test, and the peeling test about a negative electrode electroconductive film were done like Example 1. FIG. As a result, Examples 6 to 10 obtained the same results as Examples 1 to 5, respectively.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2015年12月14日に日本国で特許出願された特願2015-242839に基づく優先権を主張するものであり、これはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims the priority based on Japanese Patent Application No. 2015-242839 for which it applied for a patent in Japan on December 14, 2015, and these are all referred to here for description of this specification. As part of.
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
7 負極導電性膜
8 正極導電性膜
10 全固体二次電池
11 コインケース
12 全固体二次電池用電極シートの積層体
13 コイン電池
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode collector 6 Operating part 7 Negative electrode conductive film 8 Positive electrode conductive film 10 All-solid-state secondary battery 11 Coin case 12 All-solid-state two Laminate of electrode sheet for secondary battery 13 Coin battery

Claims (9)

  1.  集電体の表面に導電性膜と正極活物質層とをこの順に有する正極と、負極活物質層を有する負極と、前記正極活物質層及び前記負極活物質層の間の無機固体電解質層とを有する全固体二次電池であって、
     前記表面が、0.24~0.38μmの算術平均粗さRaを有し、かつ、平均開口径0.3~3.0μmの凹部を10~80個/100μm有する全固体二次電池。
    A positive electrode having a conductive film and a positive electrode active material layer in this order on the surface of the current collector, a negative electrode having a negative electrode active material layer, and an inorganic solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer; An all-solid secondary battery having
    The all-solid-state secondary battery, wherein the surface has an arithmetic average roughness Ra of 0.24 to 0.38 μm and 10 to 80 concave portions with an average opening diameter of 0.3 to 3.0 μm / 100 μm 2 .
  2.  前記負極が、前記集電体の表面に導電性膜と前記負極活物質層とをこの順に有し、
     前記表面が、0.24~0.38μmの算術平均粗さRaを有し、かつ、平均開口径0.3~3.0μmの凹部を10~80個/100μm有する請求項1に記載の全固体二次電池。
    The negative electrode has a conductive film and the negative electrode active material layer in this order on the surface of the current collector,
    2. The surface according to claim 1, wherein the surface has an arithmetic average roughness Ra of 0.24 to 0.38 μm, and 10 to 80 recesses / 100 μm 2 having an average opening diameter of 0.3 to 3.0 μm. All-solid secondary battery.
  3.  前記表面の、算術平均粗さRaが0.25~0.31であり、凹部の数が40~70個/100μmである請求項1又は2に記載の全固体二次電池。 3. The all-solid-state secondary battery according to claim 1, wherein the surface has an arithmetic average roughness Ra of 0.25 to 0.31 and a number of recesses of 40 to 70/100 μm 2 .
  4.  前記導電性膜が、金属、金属酸化物又は炭素質材料の膜である請求項1~3のいずれか1項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 3, wherein the conductive film is a film of a metal, a metal oxide, or a carbonaceous material.
  5.  算術平均粗さRaが0.24~0.38μmであり、かつ、平均開口径0.3~3.0μmの凹部が10~80個/100μmである表面を有する集電体の表面上に、導電性膜と活物質層とをこの順に有する全固体二次電池用電極シート。 On the surface of the current collector having a surface with an arithmetic average roughness Ra of 0.24 to 0.38 μm and 10 to 80/100 μm 2 concave portions with an average opening diameter of 0.3 to 3.0 μm An electrode sheet for an all-solid-state secondary battery having a conductive film and an active material layer in this order.
  6.  算術平均粗さRaが0.24~0.38μmであり、かつ、平均開口径0.3~3.0μmの凹部が10~80個/100μmである表面を有する集電体の表面上に、導電性膜を形成し、次いで、活物質層を形成する全固体二次電池用電極シートの製造方法。 On the surface of the current collector having a surface with an arithmetic average roughness Ra of 0.24 to 0.38 μm and 10 to 80/100 μm 2 concave portions with an average opening diameter of 0.3 to 3.0 μm The manufacturing method of the electrode sheet for all-solid-state secondary batteries which forms a conductive film and then forms an active material layer.
  7.  前記表面が、電気化学的粗面化処理により粗面化されている請求項6に記載の全固体二次電池用電極シートの製造方法。 The method for producing an electrode sheet for an all-solid-state secondary battery according to claim 6, wherein the surface is roughened by an electrochemical roughening treatment.
  8.  前記導電性膜を、金属、金属酸化物又は炭素質材料を用いて蒸着法又は塗布法により形成する請求項6又は7に記載の全固体二次電池用電極シートの製造方法。 The method for producing an electrode sheet for an all-solid-state secondary battery according to claim 6 or 7, wherein the conductive film is formed by a vapor deposition method or a coating method using a metal, a metal oxide, or a carbonaceous material.
  9.  請求項6~8のいずれか1項に記載の全固体二次電池用電極シートの製造方法を含む全固体二次電池の製造方法。 A method for producing an all-solid-state secondary battery, including the method for producing an electrode sheet for an all-solid-state secondary battery according to any one of claims 6 to 8.
PCT/JP2016/086820 2015-12-14 2016-12-09 All-solid secondary battery, electrode sheet for all-solid secondary battery, and method of manufacturing said battery and sheet WO2017104583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556032A JP6640874B2 (en) 2015-12-14 2016-12-09 All-solid secondary battery, electrode sheet for all-solid secondary battery, and method for producing these

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015242839 2015-12-14
JP2015-242839 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017104583A1 true WO2017104583A1 (en) 2017-06-22

Family

ID=59056561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086820 WO2017104583A1 (en) 2015-12-14 2016-12-09 All-solid secondary battery, electrode sheet for all-solid secondary battery, and method of manufacturing said battery and sheet

Country Status (2)

Country Link
JP (1) JP6640874B2 (en)
WO (1) WO2017104583A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126808A (en) * 2019-02-06 2020-08-20 トヨタ自動車株式会社 All solid state battery
CN111566849A (en) * 2018-02-05 2020-08-21 富士胶片株式会社 Electrode sheet for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
JP2020140808A (en) * 2019-02-27 2020-09-03 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery
CN112864454A (en) * 2019-11-27 2021-05-28 郑州宇通集团有限公司 Multilayer solid electrolyte, preparation method thereof and solid lithium battery
JP2021089889A (en) * 2019-11-12 2021-06-10 財團法人工業技術研究院Industrial Technology Research Institute Lithium battery structure
WO2022176796A1 (en) * 2021-02-16 2022-08-25 株式会社クレハ Binder solution, slurry, solid electrolyte layer, electrode, and all-solid battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288520A (en) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2012079821A (en) * 2010-09-30 2012-04-19 Jm Energy Corp Electrode, manufacturing method thereof, and power storage device
WO2012127653A1 (en) * 2011-03-23 2012-09-27 トヨタ自動車株式会社 Electrode assembly, cell, and method for producing electrode assembly
JP2015005421A (en) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 Electrode body and all-solid-state battery
JP2015053240A (en) * 2013-09-09 2015-03-19 富士フイルム株式会社 Aluminum base material for collector, collector, positive electrode, negative electrode, and secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077993A (en) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp Electrode and non-aqueous secondary battery
WO2015115531A1 (en) * 2014-01-31 2015-08-06 富士フイルム株式会社 Method for manufacturing aluminum plate, aluminum plate, current collector for electric storage device, and electric storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288520A (en) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2012079821A (en) * 2010-09-30 2012-04-19 Jm Energy Corp Electrode, manufacturing method thereof, and power storage device
WO2012127653A1 (en) * 2011-03-23 2012-09-27 トヨタ自動車株式会社 Electrode assembly, cell, and method for producing electrode assembly
JP2015005421A (en) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 Electrode body and all-solid-state battery
JP2015053240A (en) * 2013-09-09 2015-03-19 富士フイルム株式会社 Aluminum base material for collector, collector, positive electrode, negative electrode, and secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566849A (en) * 2018-02-05 2020-08-21 富士胶片株式会社 Electrode sheet for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
US20200313161A1 (en) * 2018-02-05 2020-10-01 Fujifilm Corporation Electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and method of manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
CN111566849B (en) * 2018-02-05 2023-07-07 富士胶片株式会社 Electrode sheet for all-solid-state secondary battery, and method for producing both
JP2020126808A (en) * 2019-02-06 2020-08-20 トヨタ自動車株式会社 All solid state battery
JP7172679B2 (en) 2019-02-06 2022-11-16 トヨタ自動車株式会社 All-solid battery
JP2020140808A (en) * 2019-02-27 2020-09-03 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery
JP7151036B2 (en) 2019-02-27 2022-10-12 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery
JP2021089889A (en) * 2019-11-12 2021-06-10 財團法人工業技術研究院Industrial Technology Research Institute Lithium battery structure
JP7263304B2 (en) 2019-11-12 2023-04-24 財團法人工業技術研究院 lithium battery structure
CN112864454A (en) * 2019-11-27 2021-05-28 郑州宇通集团有限公司 Multilayer solid electrolyte, preparation method thereof and solid lithium battery
WO2022176796A1 (en) * 2021-02-16 2022-08-25 株式会社クレハ Binder solution, slurry, solid electrolyte layer, electrode, and all-solid battery

Also Published As

Publication number Publication date
JPWO2017104583A1 (en) 2018-08-30
JP6640874B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US10818967B2 (en) Solid electrolyte composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
JP6640874B2 (en) All-solid secondary battery, electrode sheet for all-solid secondary battery, and method for producing these
JP5389391B2 (en) Electrode material sheet for lithium battery, solid lithium battery, and device including solid lithium battery
US20190207253A1 (en) Electrode layer material, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
WO2015147280A1 (en) All-solid-state secondary cell, method for manufacturing electrode sheet for cell, and method for manufacturing all-solid-state secondary cell
EP3780239A1 (en) Fully solid-state secondary battery and method of manufacturing same
WO2017104405A1 (en) Material for electrodes, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
EP2634836A1 (en) Separator including coating layer of inorganic and organic mixture, and battery including the same
KR20090049023A (en) Electrical storage device
EP3425702B1 (en) Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2017209233A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery
WO2019097906A1 (en) Solid electrolyte composition, solid-electrolyte-containing sheet, all-solid-state secondary battery electrode sheet, all-solid-state secondary battery, production method for solid-electrode-containing sheet, and production method for all-solid-state secondary battery
EP3696886A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid secondary battery, and production methods for solid electrolyte-containing sheet and all-solid secondary battery
WO2020059550A1 (en) Production method for all-solid secondary battery layered member, and production method for all-solid secondary battery
CN111566849A (en) Electrode sheet for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
JP2007258086A (en) Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method
KR100462668B1 (en) Polymer cell
WO2017111133A1 (en) All-solid secondary battery, particles for all-solid secondary batteries, solid electrolyte composition for all-solid secondary batteries, electrode sheet for all-solid secondary batteries, and production methods therefor
EP3255708B1 (en) Lithium-ion secondary battery
JPWO2019208346A1 (en) Solid electrolyte-containing sheets, electrode sheets for all-solid-state secondary batteries, all-solid-state secondary batteries, electronic devices and electric vehicles, and methods for manufacturing these.
JPWO2018164050A1 (en) Inorganic solid electrolyte material, and slurry using the same, solid electrolyte membrane for all solid secondary battery, solid electrolyte sheet for all solid secondary battery, positive electrode active material film for all solid secondary battery, for all solid secondary battery Negative electrode active material film, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP6673785B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and method for producing solid electrolyte-containing sheet and all-solid secondary battery
WO2022004884A1 (en) Method for manufacturing sheet for all-solid-state secondary battery and all-solid-state secondary battery, sheet for all-solid-state secondary battery, and all-solid-state secondary battery
EP3713003A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, solid-state rechargeable battery, and method for producing solid electrolyte-containing sheet and solid-state rechargeable battery
KR102634269B1 (en) Separator for lithium-sulfur battery and an lithium-sulfur battery comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875563

Country of ref document: EP

Kind code of ref document: A1