WO2020059550A1 - Production method for all-solid secondary battery layered member, and production method for all-solid secondary battery - Google Patents

Production method for all-solid secondary battery layered member, and production method for all-solid secondary battery Download PDF

Info

Publication number
WO2020059550A1
WO2020059550A1 PCT/JP2019/035316 JP2019035316W WO2020059550A1 WO 2020059550 A1 WO2020059550 A1 WO 2020059550A1 JP 2019035316 W JP2019035316 W JP 2019035316W WO 2020059550 A1 WO2020059550 A1 WO 2020059550A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
material layer
layer
current collector
Prior art date
Application number
PCT/JP2019/035316
Other languages
French (fr)
Japanese (ja)
Inventor
昭人 福永
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020548343A priority Critical patent/JP7064613B2/en
Publication of WO2020059550A1 publication Critical patent/WO2020059550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a laminated member for an all-solid secondary battery and a method for manufacturing an all-solid secondary battery.
  • a lithium ion secondary battery is a storage battery having a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and capable of charging and discharging by reciprocating lithium ions between the two electrodes.
  • organic electrolytes have been used as electrolytes in lithium ion secondary batteries.
  • the organic electrolyte is liable to leak, and a short circuit may occur in the battery due to overcharging or overdischarging, causing ignition, and further improvement in safety and reliability is required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been receiving attention.
  • the all-solid-state secondary battery has a negative electrode, an electrolyte, and a positive electrode, all of which are solid, greatly improving the safety and reliability of batteries using organic electrolytes, and extending the life of the battery. It is said to be. Further, the all-solid-state secondary battery can have a laminated structure in which electrodes and electrolytes are directly arranged and arranged in series. Therefore, higher energy density can be achieved as compared with a secondary battery using an organic electrolyte, and application to various electronic devices, electric vehicles, large storage batteries, and the like is expected.
  • the basic layer configuration of an all solid state secondary battery is a laminated structure including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.
  • the positive electrode of an all solid state secondary battery generally has a configuration in which a positive electrode current collector layer made of a metal foil and a positive electrode active material layer are laminated, and the positive electrode active material layer is in contact with the solid electrolyte layer.
  • the negative electrode also generally has a configuration in which a negative electrode current collector layer made of a metal foil and a negative electrode active material layer are laminated, and has a configuration in which the negative electrode active material layer is in contact with the solid electrolyte layer.
  • Patent Document 1 discloses that all functional layers of a first current collector layer, a first active material layer, an electrolyte layer, a second active material layer, and a second current collector layer are applied. Is described. According to the technique described in Patent Document 1, it is said that the adhesion between the current collector layer and the active material layer can be increased, and a battery having good characteristics can be manufactured.
  • the all-solid-state secondary battery includes a stacked body in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are stacked in this order, and a collector disposed in contact with the positive electrode active material layer or the negative electrode active material layer of the stacked body.
  • a configuration of a plurality of units in which a stacked structure composed of a current collector layer and one unit are stacked on a current collector such as a metal foil so that the current collector layers do not contact each other. ing. With such a plurality of units, the output of the battery can be increased.
  • a monopolar type and a bipolar type are known as a multiple unit configuration.
  • the bipolar type has a structure in which a positive electrode active material layer and a negative electrode active material layer are arranged on both sides of one current collector layer.
  • Patent Document 1 ⁇ The present inventors have repeatedly studied the technology described in Patent Document 1 for the purpose of further improving battery performance.
  • a coating solution (slurry) containing the constituent material of the current collector layer was prepared, and this coating solution was applied on the active material layer to form a current collector layer.
  • the adhesion between the current collector layer and the active material layer is reduced by the low resistance required during charge / discharge (improved electron conductivity between the current collector layer and the active material layer during charge / discharge) required in recent years. It has not been possible to raise the level to a sufficiently satisfactory level, and it has been found that there is a limitation in improving the battery performance.
  • the present invention provides a method for manufacturing a laminated member for an all-solid secondary battery, which can be used as a constituent member of the all-solid secondary battery to obtain an all-solid secondary battery with sufficiently suppressed resistance during charge and discharge.
  • the task is to Another object of the present invention is to provide a method for manufacturing an all-solid-state secondary battery capable of obtaining an all-solid-state secondary battery with sufficiently reduced resistance during charge and discharge.
  • the present inventors have conducted intensive studies in view of the above problems.
  • a laminate having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a current collector layer disposed on each surface of the positive electrode active material layer and the negative electrode active material layer of the laminate
  • a laminated member for an all-solid secondary battery including, a positive electrode active material layer or a negative electrode active material layer, the formation of a laminated structure of a current collector layer in contact with it, by wet-on-wet coating, the obtained solid
  • a laminate including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a current collector layer disposed on each surface of the positive electrode active material layer and the negative electrode active material layer of the laminate.
  • An all-solid-state method including forming a laminated structure of at least one active material layer of the positive electrode active material layer and the negative electrode active material layer and a current collector layer in contact with the active material layer by wet-on-wet coating; Method for producing laminated member for secondary battery.
  • the laminated member for an all-solid secondary battery includes a first current collector layer made of a metal foil, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a second current collector layer.
  • the structure in which the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the second current collector layer are formed in a laminated structure in this order is a first structure made of the above metal foil.
  • the above-described laminated member for an all-solid secondary battery includes a first current collector layer made of a metal foil, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a second current collector layer.
  • the structure in which the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the second current collector layer are formed in a stacked structure in this order is formed by the first metal foil.
  • the laminated member for an all-solid secondary battery has a laminated body in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and is in contact with the positive electrode active material layer or the negative electrode active material layer of the laminated body.
  • a stacked unit composed of a current collector layer arranged and arranged on a current collector layer made of metal foil has a stacked structure in which a plurality of layers are stacked so that the current collector layers do not contact each other,
  • Method. [5] The method for producing a laminated member for an all-solid secondary battery according to any one of [1] to [4], wherein the current collector layer formed by wet-on-wet coating contains a particulate binder.
  • a laminated member for an all-solid secondary battery is obtained by the method for producing a laminated member for an all-solid secondary battery according to any one of [1] to [6], and the laminated member for an all-solid secondary battery is entirely used A method for producing an all-solid secondary battery, which obtains a solid secondary battery.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • the method for manufacturing a laminated member for an all-solid-state secondary battery of the present invention by using it as a constituent member of the all-solid-state secondary battery, it is possible to obtain an all-solid-state secondary battery with sufficiently suppressed resistance during charge and discharge. It is possible to provide a laminated member for an all-solid secondary battery that can be obtained. Further, according to the method for manufacturing an all-solid secondary battery of the present invention, it is possible to provide an all-solid secondary battery in which resistance during charging and discharging is sufficiently suppressed.
  • FIG. 1 is a longitudinal sectional view schematically showing a layer configuration in a monopolar type all solid state secondary battery.
  • FIG. 2 is a longitudinal sectional view schematically illustrating a layer configuration in a bipolar type all-solid secondary battery.
  • FIG. 3 is a longitudinal sectional view schematically illustrating a basic configuration of the all solid state secondary battery.
  • the method for producing a laminated member for an all-solid secondary battery of the present invention (hereinafter, also referred to as “the production method of the present invention”) is a laminate having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order. And a laminated member for an all-solid-state secondary battery including a current collector layer disposed on each surface of the positive electrode active material layer and the negative electrode active material layer of the laminate (hereinafter, also referred to as a “laminated member of the present invention”). ).
  • wet-on-wet coating refers to a coating method in which a plurality of coating films are repeatedly applied without drying (that is, in a wet state). More specifically, it means that another coating film is formed on this coating film in a state where the residual solvent amount of the formed coating film is 5% by mass or more.
  • the “wet” On-wet application in which a plurality of coating solutions (slurries) for forming different layers are simultaneously supplied to a coating device from the stage of a coating process, and a plurality of stacked coating solutions are simultaneously coated on a substrate, is also referred to as “multi-layer coating”.
  • Wet-on-wet coating in which a plurality of coating solutions (slurries) for forming different layers are simultaneously supplied to a coating device from the stage of a coating process, and a plurality of stacked coating solutions are simultaneously coated on a substrate.
  • laminated structures that the laminated member of the present invention can employ include the following laminated structures (a) to (c).
  • B A laminated structure having a first current collector layer / a negative electrode active material layer / a solid electrolyte layer / a positive electrode active material layer / a second current collector layer composed of a metal foil in this order.
  • C A laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and a current collector layer disposed in contact with the positive electrode active material layer or the negative electrode active material layer of the laminate. And a stacked structure in which a plurality of stacked units are stacked on a current collector layer made of metal foil so that the current collector layers do not contact each other.
  • the first current collector layer made of a metal foil becomes a base material when forming a coating film.
  • simultaneous multilayer coating is performed on the first current collector layer made of metal foil.
  • the laminated structure of (a) and (b) corresponds to the layer configuration of the all-solid-state secondary battery shown in FIG. 3 described later.
  • the current collector layer constituting the laminate unit is a positive electrode active material of a laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order. It is disposed in contact with one of the layer and the negative electrode active material layer.
  • a current collector layer of another laminated unit in contact with the surface is provided on the surface of the active material layer having no current collector layer. That is, the stacking of a plurality of stacked units is such that the current collectors of the stacked units are not in contact with each other, and the active material layer of another stacked unit is arranged on the current collector layer surface of a certain stacked unit. I do.
  • FIG. 1 shows an example of a monopolar stacked structure.
  • This monopolar lamination structure (lamination member 101) is composed of two types of lamination units. That is, a unit in which a current collector layer 5 is provided in contact with the positive electrode active material layer 2 of a laminate in which the positive electrode active material layer 2, the solid electrolyte layer 3, and the negative electrode active material layer 4 are laminated in this order (FIG. B), and a current collector layer 5 was provided in contact with the negative electrode active material layer 4 of a laminate in which the positive electrode active material layer 2, the solid electrolyte layer 3, and the negative electrode active material layer 4 were laminated in this order.
  • FIG. 1 shows a structure in which three layers are stacked).
  • FIG. 1 shows a structure in which three layers are stacked.
  • FIG. 2 shows an example of a bipolar type lamination structure.
  • This bipolar type lamination structure (lamination member 102) is composed of one type of lamination unit. That is, a unit in which a current collector layer 5 is provided in contact with the negative electrode active material layer 4 of a laminate in which the positive electrode active material layer 2, the solid electrolyte layer 3, and the negative electrode active material layer 4 are laminated in this order (FIG. A) in which a plurality of layers are stacked on the current collector layer (metal foil) 1 so that the current collector layers do not contact each other (FIG. 2 shows a structure in which three layers are stacked) is a bipolar type. Can be adopted.
  • a bipolar stacked structure can also be obtained by stacking a plurality of layers on the current collector layer (metal foil) so as not to be in contact with each other.
  • the expression “laminated unit” is used for convenience to specify the layer configuration of the laminated structure. That is, the term “laminated unit” or “laminated structure in which a plurality of stacked units are stacked” does not mean a form in which a plurality of laminated units are prepared in advance and the plurality of laminated units are actually stacked.
  • a slurry for forming each of the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the current collector layer is repeatedly coated one by one on the current collector layer made of a metal foil, or the positive electrode active material layer , A solid electrolyte layer, a negative electrode active material layer, and a current collector layer are coated simultaneously so as to be repeated in order, and the finally completed overall laminated structure is a “laminated unit” If the same laminated structure as the whole is included in the laminated structure of (c) above.
  • the formation of the laminated structure formed by the negative electrode active material layer and the current collector layer in contact with the negative electrode active material layer is performed by a wet process. This is performed by on-wet coating.
  • a slurry containing a constituent material of a negative electrode active material layer is applied and coated on a solid electrolyte of a three-layer structure of a first current collector layer / a positive electrode active material layer / a solid electrolyte layer made of a metal foil.
  • a film is formed, and a slurry containing the constituent material of the second current collector layer is applied in a state where the residual solvent amount of the coating film is 5% by mass or more.
  • a slurry containing the constituent material of the negative electrode active material layer and a slurry containing the constituent material of the second current collector layer can be simultaneously applied on the solid electrolyte layer.
  • the slurry containing the constituent material of the solid electrolyte layer and the slurry of the negative electrode active material layer were formed on the positive electrode active material layer of the two-layer structure of the first current collector layer / positive electrode active material layer made of metal foil.
  • the slurry containing the material and the slurry containing the constituent material of the second current collector layer may be sequentially or simultaneously multi-layer coated by wet-on-wet coating.
  • a slurry containing a constituent material of a positive electrode active material layer, a slurry containing a constituent material of a solid electrolyte layer, and a slurry containing a constituent material of a negative electrode active material layer are formed on a first current collector layer made of a metal foil.
  • the slurry containing the constituent material of the second current collector layer may be sequentially or simultaneously multi-layer coated by wet-on-wet coating.
  • a slurry containing a constituent material of the positive electrode active material layer, a slurry containing a constituent material of the solid electrolyte layer, and a structure of the negative electrode active material layer are formed on the first current collector layer made of a metal foil. It is preferable that the slurry containing the material and the slurry containing the constituent material of the second current collector layer be simultaneously and multi-layer coated.
  • the formation of the laminated structure formed by the positive electrode active material layer and the current collector layer in contact with the positive electrode active material layer is performed by a wet process. This is performed by on-wet coating.
  • a slurry containing a constituent material of a positive electrode active material layer is applied and coated on a solid electrolyte of a three-layer structure of a first current collector layer / a negative electrode active material layer / a solid electrolyte layer made of a metal foil.
  • a film is formed, and a slurry containing the constituent material of the second current collector layer is applied in a state where the residual solvent amount of the coating film is 5% by mass or more.
  • a slurry containing the constituent material of the positive electrode active material layer and a slurry containing the constituent material of the second current collector layer may be simultaneously applied on the solid electrolyte. Also, a slurry containing a constituent material of a solid electrolyte layer and a slurry of a positive electrode active material layer are formed on a negative electrode active material layer of a two-layer structure of a first current collector layer / anode active material layer made of a metal foil. The slurry containing the material and the slurry containing the constituent material of the second current collector layer may be sequentially or simultaneously multi-layer coated by wet-on-wet coating.
  • a slurry containing a constituent material of a negative electrode active material layer, a slurry containing a constituent material of a solid electrolyte layer, and a slurry containing a constituent material of a positive electrode active material layer are formed on a first current collector layer made of a metal foil.
  • the slurry containing the constituent material of the second current collector layer may be sequentially or simultaneously multi-layer coated by wet-on-wet coating.
  • a slurry containing a constituent material of a negative electrode active material layer, a slurry containing a constituent material of a solid electrolyte layer, and a structure of a positive electrode active material layer are formed on a first current collector layer made of a metal foil. It is preferable that the slurry containing the material and the slurry containing the constituent material of the second current collector layer be simultaneously and multi-layer coated.
  • each layer constituting each laminated unit is formed by sequentially or simultaneously applying a slurry containing the constituent material of each layer onto a current collector layer made of a metal foil, and then drying and forming the laminated unit.
  • each layer constituting each laminated unit is formed by simultaneously applying a slurry containing the constituent material of each layer onto a current collector layer made of a metal foil, and then drying the laminated unit. It is preferable to form a laminated structure having a configuration in which a plurality of layers are stacked. In this case, the formation of the laminated structure can be performed in one step, and the production efficiency of a monopolar or bipolar laminated member can be greatly increased.
  • the slurry itself for forming each of the above layers can be prepared by a conventional method. Specifically, it can be prepared by mixing at least a constituent material of each layer described below and a dispersion medium. This mixing can be performed using various mixers. For example, a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, a disk mill and the like can be mentioned.
  • the content of the constituent material of each layer in the slurry is not particularly limited as long as a coating film exhibiting a desired function can be formed, and is appropriately set in consideration of the film thickness, dispersibility, and the like.
  • Examples of the dispersion medium used for the slurry include alcohol compound solvents, ether compound solvents, amide compound solvents, amino compound solvents, ketone compound solvents, ester compound solvents, aromatic compound solvents, aliphatic compound solvents, and nitrile compound solvents.
  • Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4- Butanediol.
  • ether compound solvent examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, Propylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, etc., dialkyl ethers (dimethyl ether, diethyl ether, dibutyl ether, etc.), tetrahydrofuran, and dioxane (1,2-, 1,3- Including 1,4-isomers) of the like.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether,
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, and hexamethylphosphoric triamide.
  • amino compound solvent examples include triethylamine and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dibutyl ketone, and diisobutyl ketone.
  • ester compound solvent examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, and propyl butyrate.
  • aromatic compound solvent examples include benzene, toluene, xylene, and mesitylene.
  • aliphatic compound solvent examples include hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, decalin, octane, pentane, cyclopentane, and cyclooctane.
  • Examples of the penitrile compound solvent include acetonitrile, propylonitrile, and butyronitrile.
  • the method of applying each of the above slurries for film formation is not particularly limited and can be appropriately selected.
  • sequential multilayer coating it can be performed by a usual coating method such as an extrusion die coater, an air doctor coater, a bread coater, a rod coater, a knife coater, a squeeze coater, a reverse roll coater, and a bar coater.
  • simultaneous multi-layer coating can be performed by a conventional method.
  • JP-A-2005-271283 and JP-A-2006-247967 can be referred to.
  • simultaneous multi-layer coating can be performed using a die (multi-layer dedicated Gieser) described in JP-A-2018-122283.
  • the drying temperature of the coating film after performing the wet-on-wet coating is not particularly limited, and is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher. Further, the drying temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • the solid electrolyte layer that constitutes the laminated member of the present invention can be formed of a general constituent material used for a solid electrolyte layer in an all-solid secondary battery.
  • the solid electrolyte layer preferably has an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and further contains a binder if necessary.
  • the solid electrolyte layer constituting the all-solid secondary battery of the present invention can be formed, for example, by applying a solid electrolyte composition (slurry) containing the inorganic solid electrolyte, the binder, and the dispersion medium described above. it can.
  • the content of each component of the solid electrolyte composition can be appropriately adjusted according to the purpose.
  • the content of the inorganic solid electrolyte is preferably set to 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and further preferably 90% by mass or more. preferable.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte in which ions can move inside. Since it does not contain an organic substance as a main ion conductive material, it is an organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO) and the like; an organic represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) and the like) Electrolyte salt). Further, since the inorganic solid electrolyte is a solid in a steady state, it is not usually dissociated or released into cations and anions.
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • an inorganic electrolyte salt LiPF 6 , LiBF 4 , LiFSI, LiCl, or the like
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and generally has no electron conductivity.
  • the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table.
  • a solid electrolyte material applied to this type of product can be appropriately selected and used.
  • Representative examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte. In terms of high ionic conductivity and ease of interparticle interfacial bonding, sulfides are preferred. A system inorganic solid electrolyte is preferred.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and And a compound having an electronic insulating property are preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity, but depending on the purpose or case, other than Li, S, and P, It may contain an element.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium-ion conductive sulfide-based inorganic solid electrolyte satisfying the composition represented by the following formula (I).
  • L represents an element selected from Li, Na and K, and Li is preferable.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, more preferably 0 to 1.
  • d1 is preferably from 2.5 to 10, and more preferably from 3.0 to 8.5.
  • e1 is preferably from 0 to 5, more preferably from 0 to 3.
  • composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compounds when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramic), or may be partially crystallized.
  • glass glass
  • glass-ceramic glass-ceramic
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramic containing Li, P and S can be used.
  • Examples of the sulfide-based inorganic solid electrolyte include lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example, LiI, LiBr, LiCl) and at least two or more of sulfides (for example, SiS 2 , SnS, GeS 2 ) of the element represented by M can be produced.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • elemental phosphorus elemental sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide hydrogen sulfide
  • lithium halide for example, LiI, LiBr, LiCl
  • at least two or more of sulfides for example, SiS 2 , SnS,
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 SP—P 2 S 5 —P 2 O 5 , Li 2 SP—P 2 S 5 —SiS 2 , Li 2 SP—P 2 S 5 —SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-G
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method, and a melt quenching method. This is because processing at normal temperature becomes possible, and the manufacturing process can be simplified.
  • Oxide-based inorganic solid electrolyte contains an oxygen atom (O), has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and And a compound having an electronic insulating property are preferable.
  • a phosphorus compound containing Li, P and O is also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of oxygen of lithium phosphate is substituted by nitrogen
  • LiPOD 1 LiPOD 1
  • a 1 ON LiA 1 is at least one selected from Si, B, Ge, Al, C, Ga, and the like
  • Si, B, Ge, Al, C, Ga, and the like can also be preferably used.
  • the inorganic solid electrolyte is preferably a particle.
  • the particle size of the inorganic solid electrolyte is not particularly limited.
  • the particle diameter of the inorganic solid electrolyte is preferably 0.01 ⁇ m or more, more preferably 0.2 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • the particle diameter of the inorganic solid electrolyte is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 20 ⁇ m or less, further preferably 4 ⁇ m or less, and particularly preferably 2 ⁇ m or less.
  • the particle size of the inorganic solid electrolyte particles means an average particle size and can be determined as follows.
  • the inorganic solid electrolyte particles are diluted with water (heptane in the case of a substance unstable to water) to adjust a 1% by mass dispersion liquid in a 20 mL sample bottle.
  • the dispersion sample after dilution is irradiated with 1 kHz ultrasonic wave for 10 minutes and used immediately after the test.
  • data was taken 50 times at a temperature of 25 ° C. using a laser diffraction / scattering type particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) using a quartz cell for measurement.
  • JIS Z 8828 2013 “Particle size analysis-dynamic light scattering method” as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the binder contained in the solid electrolyte layer can be composed of various organic high molecular compounds (polymers).
  • the binder enhances the binding property between the inorganic solid electrolyte particles and contributes to improvement in mechanical strength, ionic conductivity, and the like.
  • the organic polymer compound constituting the binder may include a particulate one or a non-particulate one. From the viewpoint of further improving ion conductivity, a particulate binder is preferable.
  • the primary particle diameter (volume average particle diameter) of the particulate binder is preferably from 10 to 1,000 nm, more preferably from 20 to 750 nm, further preferably from 30 to 500 nm, and still more preferably from 50 to 300 nm.
  • the binder may be composed of, for example, an organic polymer compound described below.
  • fluorinated resin examples include polytetrafluoroethylene (PTFE), polyvinylene difluoride (PVdF), and a copolymer of polyvinylene difluoride and hexafluoropropylene (PVdF-HFP).
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylene difluoride
  • PVdF-HFP a copolymer of polyvinylene difluoride and hexafluoropropylene
  • hydrocarbon thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
  • the (meth) acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of two or more of these monomers.
  • copolymers with other vinyl monomers are also preferably used.
  • a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene It is not limited to these.
  • the copolymer may be any of a statistical copolymer and a periodic copolymer, and is preferably a random copolymer.
  • -Other resins examples include polyurethane resins, polyurea resins, polyamide resins, polyimide resins, polyester resins, polyether resins, polycarbonate resins, and cellulose derivative resins.
  • the content of the binder in the solid content of the solid electrolyte composition can be 1 to 20% by mass, preferably 2 to 15% by mass, more preferably 3 to 10% by mass. .
  • a fluorine-containing resin, a hydrocarbon-based thermoplastic resin, a (meth) acrylic resin, a polyurethane resin, a polycarbonate resin, and a cellulose derivative resin are preferable, which have good affinity with an inorganic solid electrolyte, and A (meth) acrylic resin or a polyurethane resin is particularly preferred in that it has good flexibility and can show stronger binding with solid particles.
  • Commercially available products can be used as the above various resins.
  • it can also be prepared by a conventional method.
  • the number average molecular weight of the polymer constituting the binder is preferably from 1,000 to 1,000,000, and more preferably from 10,000 to 500,000, from the viewpoint of improving the binding between solid particles.
  • the organic polymer compound described above is an example, and the binder in the present invention is not limited to these forms.
  • the solid electrolyte containing layer may contain a lithium salt (supporting electrolyte).
  • a lithium salt usually used for this kind of product is preferable, and there is no particular limitation.
  • the content of the lithium salt is preferably at least 0.1 part by mass, more preferably at least 5 parts by mass, based on 100 parts by mass of the inorganic solid electrolyte. As a maximum, 50 mass parts or less are preferred, and 20 mass parts or less are more preferred.
  • the solid electrolyte containing layer may contain an ionic liquid in order to further improve the ionic conductivity.
  • the ionic liquid is not particularly limited, but is preferably one that dissolves the above-described lithium salt from the viewpoint of effectively improving ionic conductivity.
  • a compound comprising a combination of the following cation and an anion is exemplified.
  • the positive electrode active material layer and the negative electrode active material layer that constitute the laminated member of the present invention can be formed by ordinary constituent materials used in an all-solid secondary battery.
  • the positive electrode active material layer contains a positive electrode active material
  • the negative electrode active material layer contains a negative electrode active material.
  • the positive electrode active material layer and the negative electrode active material layer preferably have the same configuration as the above-described solid electrolyte layer except that they include an active material. That is, in the present invention, the positive electrode active material layer and the negative electrode active material layer are a composition (a positive electrode forming composition and a negative electrode forming composition; a composition in which a corresponding active material is added to the solid electrolyte composition described above.
  • each component in the electrode forming composition can be appropriately adjusted depending on the purpose.
  • the content of the active material in the solid content of the electrode forming composition can be 20 to 95% by mass, and more preferably 30 to 90% by mass.
  • the shape of the active material is not particularly limited, but is preferably particulate.
  • the particle size of the active material is not particularly limited as long as the above-mentioned particle size ratio is satisfied.
  • the particle diameter of the active material is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more from the viewpoints of improving dispersibility, increasing the contact area between solid particles, and reducing interface reactivity. Is more preferable.
  • the particle size of the active material is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the particle size of the active material means an average particle size, and can be determined in the same manner as the particle size of the inorganic solid electrolyte.
  • the particle size of the active material is equal to or less than the measurement limit of the particle size measuring device, the active material is dried if necessary, and then the particle size is measured by observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element such as sulfur, which can be combined with Li, or a composite of sulfur and a metal.
  • a transition metal oxide is preferably used as the positive electrode active material, and a transition metal oxide containing a transition metal element M a (at least one element selected from Co, Ni, Fe, Mn, Cu, and V). are more preferred.
  • the transition metal oxide includes an element M b (an element of Group 1 (Ia), an element of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P or B).
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%).
  • Those synthesized by mixing such that the molar ratio of Li / Ma becomes 0.3 to 2.2 are more preferable.
  • Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, (MD) And (ME) lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt type structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0.1 . 05 O 2 (lithium nickel cobalt aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • LCO lithium cobaltate
  • NCA lithium nickel cobalt aluminum oxide
  • NMC lithium nickel manganese cobalt oxide
  • LiNi 0.5 Mn 0.5 O 2 Lithium manganese nickelate
  • transition metal oxide having a spinel structure examples include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8, and Li. 2 NiMn 3 O 8 .
  • the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. And monoclinic nasicon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
  • Li 2 FePO 4 F such fluorinated phosphorus iron salt
  • Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
  • Examples of the lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the positive electrode active material In order to make the positive electrode active material have a desired particle size, an ordinary pulverizer or a classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (basis weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately according to the designed battery capacity.
  • the negative electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, carbonaceous materials, metal oxides such as tin oxide, silicon oxide, metal composite oxides, lithium alone and lithium alloys such as lithium aluminum alloy, and , Sn, Si, Al, In and other metals that can form an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide it is preferable that lithium can be inserted and extracted.
  • the material is not particularly limited, but preferably contains titanium and / or lithium from the viewpoint of high current density charge / discharge characteristics.
  • a carbonaceous material used as a negative electrode active material is a material substantially composed of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • a carbonaceous material obtained by firing a resin can be used.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber.
  • an amorphous oxide is particularly preferable, and chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table is also preferably used.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having an apex in a range of 20 ° to 40 ° in 2 ⁇ value, and a crystalline diffraction line. May be provided.
  • an amorphous oxide of a metalloid element and a chalcogenide are more preferable, and an element of Group 13 (IIIB) to Group 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are particularly preferably oxides composed of one or a combination of two or more thereof, and chalcogenides.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Further, these may be a composite oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuation at the time of occlusion and release of lithium ions. This is preferable in that the life of the battery can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to use a Si-based negative electrode.
  • a Si negative electrode can store more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the storage amount of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • an ordinary pulverizer or a classifier is used.
  • mortars, ball mills, sand mills, vibrating ball mills, satellite ball mills, planetary ball mills, swirling air jet mills, sieves, and the like are preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can also be performed if necessary.
  • Classification is preferably performed to obtain a desired particle size.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be performed both in a dry process and in a wet process.
  • the chemical formula of the compound obtained by the above firing method can be calculated from inductively coupled plasma (ICP) emission spectroscopy as a measuring method, and from the mass difference of powder before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the negative electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (basis weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined appropriately according to the designed battery capacity.
  • the surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide.
  • the surface of the particles of the positive electrode active material or the negative electrode active material may be subjected to a surface treatment with an active ray or an active gas (such as plasma) before and after the surface coating.
  • the positive electrode active material layer and the negative electrode active material layer may contain a conductive auxiliary.
  • the conductive assistant is not particularly limited, and those known as general conductive assistants can be used.
  • electron conductive materials such as natural graphite, graphite such as artificial graphite, carbon black such as acetylene black, Ketjen black, furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube Carbon fibers such as graphene or fullerene; metal powder such as copper and nickel; metal fibers; and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives. May be used.
  • each of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer is not particularly limited.
  • the thickness of each layer is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 to 400 ⁇ m, and still more preferably 20 to 200 ⁇ m, in consideration of the dimensions of a general all-solid secondary battery.
  • each of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer may be a single layer or a multilayer. In the case of a multilayer, it is preferable that the thickness of the entire multilayer be within the above preferred range.
  • the above-described negative electrode active material layer can be a lithium metal layer.
  • the lithium metal layer include a layer formed by depositing or molding lithium metal powder, a lithium foil, and a lithium vapor deposition film. Regardless of the thickness of the negative electrode active material layer, the thickness of the lithium metal layer can be, for example, 1 to 500 ⁇ m.
  • the current collector layer used for the laminated member of the present invention is preferably an electron conductor. It is preferable that at least one of the current collector layers used in the laminated member of the present invention is made of a metal foil. It is preferable that the slurry for forming each layer is sequentially or simultaneously applied onto the metal foil.
  • this metal foil is used as a positive electrode current collector layer, its constituent materials include aluminum, an aluminum alloy, stainless steel, nickel, and titanium. Further, those obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium or silver (thin films formed) are also preferable. Among them, aluminum and aluminum alloy are more preferable.
  • the metal foil When the metal foil is used as a negative electrode current collector layer, its constituent materials include aluminum, copper, copper alloy, stainless steel, nickel, and titanium. Further, those obtained by treating the surface of aluminum, copper, copper alloy or stainless steel with carbon, nickel, titanium or silver are also preferable. Above all, the constituent material of the negative electrode current collector layer is more preferably aluminum, copper, a copper alloy, or stainless steel.
  • the shape of the current collector layer made of a metal foil is usually a film sheet, but a net, a punched material, a lath, a porous material, a foam, a molded product of a fiber group, and the like may also be used. Can be.
  • the second current collector layer contains the slurry containing the constituent material of the second current collector layer. It is formed by using. This slurry may be in a form containing a powder of a constituent material of the second current collector layer.
  • the second current collector layer is a negative electrode current collector layer, and as a conductive material, for example, powder (particles) of aluminum, copper, copper alloy, stainless steel, nickel, titanium, or the like is used.
  • the second current collector layer can be formed by applying the contained slurry.
  • the second current collector layer is a positive electrode active material layer, and a slurry containing a powder of, for example, aluminum, an aluminum alloy, stainless steel, nickel, and titanium as a conductive material is used. Can be used to form a second current collector layer. Further, the second current collector layer may be configured to contain carbon black as a conductive material. That is, it is also preferable to apply and form the current collector layer using a slurry obtained by mixing carbon black and a dispersion medium.
  • all of the current collector layers other than the current collector layer composed of the metal foil as the base material contain the constituent material of the current collector layer It is formed by wet-on-wet coating using a slurry to be formed.
  • the constituent material of the current collector layer can be appropriately selected from, for example, the constituent materials described above in consideration of the form such as a monopolar type and a bipolar type.
  • the slurry for forming the current collector layer also preferably contains a binder. The preferred form of the binder is the same as the binder described above.
  • the binding property of the constituent material of the current collector layer can be increased, the adhesion to the active material layer can be increased, and the resistance during charge and discharge of the battery can be further reduced.
  • the content of the constituent material of the current collector layer in the slurry may be appropriately adjusted depending on the purpose.
  • the content of the conductive material in the solid content of the slurry can be 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the conductive material / binder mass ratio
  • the conductive material / binder mass ratio
  • the conductive material / binder is preferably 3/1 to 50/1, more preferably 5/1 to 30/1, and more preferably 7/1 to 20/1. / 1 is more preferable.
  • the thickness of the current collector layer is not particularly limited, but is preferably 1 to 500 ⁇ m, more preferably 2 to 300 ⁇ m, and further preferably 2 to 200 ⁇ m.
  • the types of the dispersion medium used in the slurry for forming the solid electrolyte layer, the positive electrode active material layer, the negative electrode active material layer, and the current collector layer are the same.
  • the method for manufacturing an all-solid secondary battery of the present invention is a method of obtaining the laminated member of the present invention by the above-described manufacturing method of the present invention, and obtaining an all-solid secondary battery using the laminated member.
  • a general all-solid secondary battery production process may be applied except for using the laminated member of the present invention.
  • the laminated member of the present invention operates as a secondary battery as it is, usually, the laminated member of the present invention is housed in an appropriate housing (enclosed in a housing or put in a coin case or the like). The pressurized state is assumed to be an all solid state secondary battery.
  • the housing may be made of metal or resin (plastic).
  • a metallic material for example, an aluminum alloy or a stainless steel material can be used.
  • the metallic casing is divided into a casing on the positive electrode side and a casing on the negative electrode side, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively.
  • the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing short circuit.
  • ⁇ Initialization> It is preferable to initialize the all-solid-state secondary battery manufactured as described above after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charge / discharge in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all solid state secondary battery is reached.
  • FIG. 3 is a cross-sectional view schematically illustrating the all-solid-state secondary battery, in which the description of the housing and the like is omitted, and the laminated member (corresponding to the laminated structure of the above (a) and (b)) of the present invention. 2 shows the configuration.
  • the all-solid secondary battery 103 includes a negative electrode current collector layer 11, a negative electrode active material layer 12, a solid electrolyte layer 13, a positive electrode active material layer 14, and a positive electrode current collector layer 15 in this order.
  • Each layer is in contact with each other and has an adjacent structure.
  • electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein.
  • lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 16.
  • a light bulb is employed as a model for the operating portion 16, and this is turned on by discharge.
  • the all-solid secondary battery obtained by the production method of the present invention can be applied to various uses.
  • an electronic device for example, a notebook computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, and a mobile phone Copy, portable printer, headphone stereo, video movie, LCD television, handy cleaner, portable CD, mini disk, electric shaver, transceiver, electronic organizer, calculator, portable tape recorder, radio, backup power supply, memory card, and the like.
  • Other consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting fixtures, toys, game machines, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). . Furthermore, it can be used for various military purposes and space applications. Further, it can be combined with a solar cell.
  • the sulfide-based inorganic solid electrolyte is manufactured by T.I. Ohtomo, A .; Hayashi, M .; Tatsusumisago, Y .; Tsuchida, S .; Hama, K .; Kawamoto, Journal of Power Sources, 233, (2013), pp 231-235 and A.I. Hayashi, S .; Hama, H .; Morimoto, M .; Tatsusumisago, T .; Minami, Chem. Lett. , (2001), pp872-873.
  • Li 2 S lithium sulfide
  • P 2 S diphosphorus pentasulfide
  • 66 zirconia beads having a diameter of 5 mm were placed in a 45 mL zirconia container (manufactured by Fritsch), and the entire mixture of lithium sulfide and diphosphorus pentasulfide was charged therein.
  • the container was sealed under an argon atmosphere.
  • the container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mechanical milling was performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powdered sulfide-based inorganic solid electrolyte (Li-PS-based). Glass, also referred to as "LPS".) 6.20 g was obtained.
  • the container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours.
  • NMC LiNi 0.33 Co 0.33 Mn 0.33 O 2
  • acetylene black manufactured by Denka Corporation
  • the container was set in a planetary ball mill P-7 manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours.
  • Example 1 The slurry prepared above for forming a positive electrode active material layer was applied on an aluminum foil (positive electrode current collector, thickness: 20 ⁇ m) using an applicator (trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.) at 30 mg / It was applied so as to have a basis weight of 2 cm2, and a coating film (a positive electrode active material layer precursor coating film) was formed on the positive electrode current collector layer made of aluminum foil.
  • an applicator trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.
  • the solid electrolyte layer forming slurry is applied onto the positive electrode active material layer precursor coating film so as to have a basis weight of 8 mg / cm 2 by the applicator. This was applied to form a coating film (solid electrolyte layer precursor coating film) on the positive electrode active material layer precursor coating film.
  • the negative electrode active material layer forming slurry was applied on the solid electrolyte layer precursor coating film by the above-mentioned applicator so as to have a basis weight of 20 mg / cm 2.
  • a coating film (a negative electrode active material layer precursor coating film) was formed on the solid electrolyte layer precursor coating film.
  • the current collector layer forming slurry was applied on the negative electrode active material layer precursor coating film by the above-mentioned applicator to have a basis weight of 10 mg / cm 2.
  • a coating film (second current collector layer precursor coating film) on the negative electrode active material layer precursor coating film.
  • the laminate thus obtained by wet-on-wet coating was heated at 120 ° C. for 1 hour to remove the dispersion medium, thereby obtaining a laminated member for an all-solid-state secondary battery of Example 1 having the above-described laminated structure (a).
  • a coating film (a negative electrode active material layer precursor coating film) was formed on the solid electrolyte layer precursor coating film.
  • the thickness of the positive electrode active material layer was 100 ⁇ m
  • the thickness of the solid electrolyte layer was 20 ⁇ m
  • the thickness of the negative electrode active material layer was 80 ⁇ m
  • the thickness of the second current collector layer was The thickness was 20 ⁇ m.
  • a slurry for forming a positive electrode active material layer, a slurry for forming a solid electrolyte layer, a slurry for forming a negative electrode active material layer, and a slurry for forming a current collector layer are formed on an aluminum foil (positive electrode current collector, 20 ⁇ m thick) in this order.
  • Simultaneous multi-layer coating was performed using a multi-layer dedicated greaser so that the coating films were laminated.
  • the laminate thus obtained by wet-on-wet coating was heated at 120 ° C. for 2 hours to remove the dispersion medium, thereby obtaining a laminate member for an all-solid-state secondary battery of Example 2 having the above-described laminate structure (a).
  • a laminate structure
  • the thickness of the positive electrode active material layer was 100 ⁇ m
  • the thickness of the solid electrolyte layer was 20 ⁇ m
  • the thickness of the negative electrode active material layer was 80 ⁇ m
  • the thickness of the second current collector layer was The thickness was 20 ⁇ m.
  • Example 3 In Example 1, after forming the second current collector layer precursor coating film, the positive electrode active material layer forming slurry was mixed with the above-mentioned slurry in a state where the residual solvent amount of the second current collector layer precursor coating film was 5% by mass. The solution was applied with an applicator so as to have a basis weight of 30 mg / cm 2 , and a coating film (second positive electrode active material layer precursor coating film) was formed on the second current collector layer precursor coating film.
  • the solid electrolyte layer forming slurry was applied on the second positive electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 .
  • a coating film (second solid electrolyte layer precursor coating film) was formed on the second positive electrode active material layer precursor coating film.
  • the negative electrode active material layer forming slurry was applied onto the second solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 20 mg / cm 2.
  • a coating film (second negative electrode active material layer precursor coating film) was formed on the second solid electrolyte layer precursor coating film.
  • the residual solvent amount of the second negative electrode active material layer precursor coating film being 5% by mass
  • a slurry for forming a current collector layer was applied onto the second negative electrode active material layer precursor coating film by the above-mentioned applicator at a basis weight of 10 mg / cm 2 .
  • the laminate obtained by wet-on-wet coating in this manner is heated at 120 ° C.
  • a laminated member for an all-solid secondary battery of Example 3 was obtained.
  • the laminated member for an all solid state secondary battery of Example 3 is of a bipolar type.
  • the thickness of each layer is the same as that of Example 1.
  • Example 4 In Example 3, after forming the third current collector layer precursor coating film, the slurry for forming a positive electrode active material layer was subjected to the above-mentioned slurry in a state where the residual solvent amount of the third current collector layer precursor coating film was 5% by mass. The resultant was applied with an applicator so as to have a basis weight of 30 mg / cm 2 to form a coating film (third positive electrode active material layer precursor coating film) on the third current collector layer precursor coating film.
  • the solid electrolyte layer forming slurry was applied onto the third positive electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 .
  • the negative electrode active material layer forming slurry was applied onto the third solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 20 mg / cm 2.
  • a coating film (third negative electrode active material layer precursor coating film) was formed on the third solid electrolyte layer precursor coating film.
  • a current collector layer forming slurry was applied on the third negative electrode active material layer precursor coating film by the above-mentioned applicator at a basis weight of 10 mg / cm 2 .
  • a coating film (fourth current collector layer precursor coating film) on the third negative electrode active material layer precursor coating film.
  • the laminate obtained by wet-on-wet coating in this manner is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminate structure in which three lamination units are stacked (an embodiment of the laminate structure (c) described above).
  • a laminated member for an all-solid secondary battery of Example 4 was obtained.
  • the laminated member for an all solid state secondary battery of Example 3 is of a bipolar type.
  • the thickness of each layer is the same as that of Example 1.
  • Example 5 In Example 4, after forming the fourth current collector layer precursor coating film, the slurry for forming a positive electrode active material layer was subjected to the above-mentioned slurry in a state where the residual solvent amount of the fourth current collector layer precursor coating film was 5% by mass. The solution was applied with an applicator so as to have a basis weight of 30 mg / cm 2 to form a coating film (fourth positive electrode active material layer precursor coating film) on the fourth current collector layer precursor coating film.
  • the solid electrolyte layer forming slurry was applied on the fourth positive electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 .
  • a coating film (fourth solid electrolyte layer precursor coating film) on the positive electrode active material layer precursor coating film.
  • a slurry for forming a negative electrode active material layer was applied onto the fourth solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 20 mg / cm 2.
  • a coating film (fourth negative electrode active material layer precursor coating film) was formed on the fourth solid electrolyte layer precursor coating film.
  • a current collector layer forming slurry was applied onto the fourth negative electrode active material layer precursor coating film by the above-described applicator at a basis weight of 10 mg / cm 2 .
  • a coating film (fifth current collector layer precursor coating film) was formed on the fourth negative electrode active material layer precursor coating film.
  • the laminate thus obtained by wet-on-wet coating is heated at 120 ° C.
  • a laminated member for an all solid state secondary battery of Example 5 was obtained.
  • the laminated member for an all solid state secondary battery of Example 3 is of a bipolar type.
  • the thickness of each layer is the same as that of Example 1.
  • Example 1 was the same as Example 1 except that the binder (SBR, particulate, 0.06 g) used in the slurry for forming the current collector layer was replaced with a binder (S-SBR (solution-polymerized styrene-butadiene rubber), 0.06 g). Then, a laminated member for an all-solid-state secondary battery of Example 6 was obtained in the same manner as in Example 1. S-SBR is soluble in heptane.
  • Example 7 In Example 1, LPS was replaced with LLZ: Li 7 La 3 Zr 2 O 12 (lithium lanthanum zirconate having an average particle size of 5.0 ⁇ m, manufactured by Toshima Seisakusho), which is an oxide-based inorganic solid electrolyte.
  • LLZ Li 7 La 3 Zr 2 O 12 (lithium lanthanum zirconate having an average particle size of 5.0 ⁇ m, manufactured by Toshima Seisakusho), which is an oxide-based inorganic solid electrolyte.
  • a laminated member for an all-solid-state secondary battery of Example 8 was obtained in the same manner as in Example 1 except for changing the above.
  • Example 8> The slurry for forming a negative electrode active material layer prepared above was applied to a copper foil (negative electrode current collector, thickness: 20 ⁇ m) using an applicator (trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.) at a concentration of 20 mg / The resultant was applied so as to have a basis weight of 2 cm 2 , and a coating film (a negative electrode active material layer precursor coating film) was formed on the negative electrode current collector layer made of copper foil.
  • an applicator trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.
  • the solid electrolyte layer forming slurry is applied onto the negative electrode active material layer precursor coating film so as to have a basis weight of 8 mg / cm 2 by the applicator. This was applied to form a coating film (solid electrolyte layer precursor coating film) on the negative electrode active material layer precursor coating film.
  • a slurry for forming a positive electrode active material layer is applied on the solid electrolyte layer precursor coating film by the above-mentioned applicator so as to have a basis weight of 30 mg / cm 2.
  • a coating film (a positive electrode active material layer precursor coating film) was formed on the solid electrolyte layer precursor coating film.
  • the current collector layer forming slurry is applied on the positive electrode active material layer precursor coating film by the above-mentioned applicator to a basis weight of 10 mg / cm 2.
  • a coating film (second current collector layer precursor coating film) on the positive electrode active material layer precursor coating film.
  • the laminate thus obtained by wet-on-wet coating was heated at 120 ° C. for 2 hours to remove the dispersion medium, thereby obtaining a laminated member for an all-solid secondary battery of Example 8 having the above-described laminated structure (b).
  • the thickness of each layer formed by application is the same as that of Example 1.
  • a slurry for forming a negative electrode active material layer, a slurry for forming a solid electrolyte layer, a slurry for forming a positive electrode active material layer, and a slurry for forming a current collector layer are formed on a copper foil (a negative electrode current collector, having a thickness of 20 ⁇ m) in this order.
  • Simultaneous multi-layer coating was performed using a multi-layer dedicated greaser so that the coating films were laminated. The laminate thus obtained by wet-on-wet coating was heated at 120 ° C.
  • Example 10 After forming the second current collector layer precursor coating film, the slurry for forming a negative electrode active material layer was coated with the above-mentioned slurry in a state where the residual solvent amount of the second current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a basis weight of 20 mg / cm 2 , and a coating film (second negative electrode active material layer precursor coating film) was formed on the second current collector layer precursor coating film.
  • the solid electrolyte layer forming slurry was applied on the second negative electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 .
  • the positive electrode active material layer forming slurry was applied on the second solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 30 mg / cm 2.
  • a coating film (second positive electrode active material layer precursor coating film) was formed on the second solid electrolyte layer precursor coating film.
  • a current collector layer forming slurry was applied on the second positive electrode active material layer precursor coating film by the above-mentioned applicator at a basis weight of 10 mg / cm 2 .
  • a coating film (third current collector layer precursor coating film) on the second positive electrode active material layer precursor coating film.
  • the laminate obtained by wet-on-wet coating in this manner is heated at 120 ° C.
  • a laminated member for an all solid state secondary battery of Example 10 was obtained.
  • the laminated member for an all solid state secondary battery of Example 10 is of a bipolar type.
  • the thickness of each layer is the same as that of Example 8.
  • Example 11 In Example 10, after forming the third current collector layer precursor coating film, the slurry for forming a negative electrode active material layer was subjected to the above-mentioned slurry in a state where the residual solvent amount of the third current collector layer precursor coating film was 5% by mass. It was applied so as to have a basis weight of 20 mg / cm 2 by an applicator to form a coating film (third negative electrode active material layer precursor coating film) on the third current collector layer precursor coating film.
  • the solid electrolyte layer forming slurry is applied on the third negative electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 . And a coating film (third solid electrolyte layer precursor coating film) was formed on the third negative electrode active material layer precursor coating film.
  • the slurry for forming a positive electrode active material layer is formed on the third solid electrolyte layer precursor coating film with a basis weight of 30 mg / cm 2 by the applicator.
  • a coating film (third positive electrode active material layer precursor coating film) was formed on the third solid electrolyte layer precursor coating film.
  • a current collector layer forming slurry was applied on the third positive electrode active material layer precursor coating film by the above-mentioned applicator at a basis weight of 10 mg / cm 2 .
  • a coating film (fourth current collector layer precursor coating film) on the third positive electrode active material layer precursor coating film.
  • the laminate obtained by wet-on-wet coating in this manner is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminate structure in which three lamination units are stacked (an embodiment of the laminate structure (c) described above).
  • a laminated member for an all-solid secondary battery of Example 11 was obtained.
  • the laminated member for an all solid state secondary battery of Example 11 is of a bipolar type.
  • the thickness of each layer is the same as that of Example 8.
  • Example 12 In Example 11, after the fourth current collector layer precursor coating film was formed, the slurry for forming a negative electrode active material layer was coated with the above-mentioned slurry in a state where the residual solvent amount of the fourth current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a basis weight of 20 mg / cm 2 to form a coating film (fourth negative electrode active material layer precursor coating film) on the fourth current collector layer precursor coating film.
  • the solid electrolyte layer forming slurry was applied on the fourth negative electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 .
  • the slurry for forming a positive electrode active material layer was applied onto the fourth solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 30 mg / cm 2.
  • a coating film (fourth positive electrode active material layer precursor coating film) was formed on the fourth solid electrolyte layer precursor coating film.
  • the residual solvent amount of the fourth positive electrode active material layer precursor coating film being 5% by mass
  • a slurry for forming a current collector layer was applied onto the fourth positive electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 10 mg / cm 2 .
  • a coating film (fifth current collector layer precursor coating film) was formed on the fourth positive electrode active material layer precursor coating film.
  • the laminate thus obtained by wet-on-wet coating is heated at 120 ° C.
  • a laminated member for an all solid state secondary battery of Example 5 was obtained.
  • the laminated member for an all solid state secondary battery of Example 12 is of a bipolar type. In the laminated member for an all solid state secondary battery of Example 12, the thickness of each layer is the same as that of Example 8.
  • Example 1 was repeated in the same manner as in Example 1 except that 6.0 g of carbon black used in the slurry for forming the current collector layer was replaced with 6.0 g of copper powder (manufactured by Hayashi Junyaku Kogyo Co., Ltd.). Thus, thirteen laminated members for an all-solid secondary battery were obtained.
  • ⁇ Comparative Example 4> Four laminated members for an all-solid-state secondary battery of Comparative Example 1 were prepared, and a second laminated member was placed on the copper foil of the first laminated member so that the aluminum foil side of the second laminated member was in contact. Stack the third laminated member on the copper foil of the second laminated member so that the aluminum foil side of the third laminated member is in contact with the copper foil of the third laminated member. The fourth laminated member was stacked so that the aluminum foil side of the first laminated member was in contact with the first laminated member to obtain a laminated member for an all-solid secondary battery of Comparative Example 4.
  • Example 5 Application of the current collector layer forming slurry onto the negative electrode active material layer precursor coating film was performed by drying at 120 ° C. for 120 minutes after forming the negative electrode active material layer precursor coating film.
  • a laminated member for an all-solid-state secondary battery of Comparative Example 5 was obtained in the same manner as in Example 1, except that the dispersion medium was removed from the film.
  • Example 3 application of the current collector layer forming slurry onto the negative electrode active material layer precursor coating film was performed by drying at 120 ° C. for 120 minutes after forming the negative electrode active material layer precursor coating film. After the dispersion medium is removed from the film, the application of the slurry for forming the current collector layer onto the second negative electrode active material layer precursor coating film is performed at 120 ° C. after the formation of the second negative electrode active material layer precursor coating film.
  • a laminated member for an all-solid-state secondary battery of Comparative Example 6 was obtained in the same manner as in Example 3, except that drying was performed for 120 minutes to remove the dispersion medium from the second negative electrode active material layer precursor coating film. .
  • Comparative Example 7 Comparative Example 5 was prepared in the same manner as in Comparative Example 5, except that 6.0 g of copper powder (manufactured by Hayashi Junyaku Kogyo) was used instead of 6.0 g of carbon black used in the slurry for forming the current collector layer. Thus, a laminated member for an all-solid secondary battery No. 7 was obtained.
  • Comparative Example 8 In Comparative Example 5, all of Comparative Example 8 was performed in the same manner as in Example 1 except that 6.0 g of carbon black used for the slurry for forming the current collector layer was replaced with 6.0 g of stainless steel powder for sintering. A laminated member for a solid state secondary battery was obtained.
  • the battery performance of the all solid state secondary battery was evaluated using a charge / discharge evaluation device “TOSCAT-3000” (trade name) manufactured by Toyo System Corporation. Specifically, the all-solid-state secondary battery was charged at a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 2.0 mA until the battery voltage reached 3.0 V.
  • the battery voltage 10 seconds after the start of discharging was read according to the following criteria, and evaluated by applying the following criteria. The higher the battery voltage 10 seconds after the start of discharging, the lower the resistance.

Abstract

A production method for an all-solid secondary battery layered member that includes: a layered body that has, in order, a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer; and collector layers that are arranged on the surfaces of the positive electrode active material layer and the negative electrode active material layer of the layered body. The production method includes using wet-on-wet coating to form a layered structure of: at least one active material layer from among the abovementioned positive electrode active material layer and the abovementioned negative electrode active material layer; and a collector layer that contacts the active material layer. A production method for an all-solid secondary battery, the production method using the production method for an all-solid secondary battery layered member.

Description

全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法Method for manufacturing laminated member for all-solid-state secondary battery and method for manufacturing all-solid-state secondary battery
 本発明は、全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a laminated member for an all-solid secondary battery and a method for manufacturing an all-solid secondary battery.
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は、負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した積層構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、各種電子機器、電気自動車又は大型蓄電池等への応用が期待されている。
A lithium ion secondary battery is a storage battery having a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and capable of charging and discharging by reciprocating lithium ions between the two electrodes. Conventionally, organic electrolytes have been used as electrolytes in lithium ion secondary batteries. However, the organic electrolyte is liable to leak, and a short circuit may occur in the battery due to overcharging or overdischarging, causing ignition, and further improvement in safety and reliability is required.
Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been receiving attention. The all-solid-state secondary battery has a negative electrode, an electrolyte, and a positive electrode, all of which are solid, greatly improving the safety and reliability of batteries using organic electrolytes, and extending the life of the battery. It is said to be. Further, the all-solid-state secondary battery can have a laminated structure in which electrodes and electrolytes are directly arranged and arranged in series. Therefore, higher energy density can be achieved as compared with a secondary battery using an organic electrolyte, and application to various electronic devices, electric vehicles, large storage batteries, and the like is expected.
 全固体二次電池の基本的な層構成は、正極層と固体電解質層と負極層とからなる積層構造である。全固体二次電池の正極は、一般的には、金属箔からなる正極集電体層と正極活物質層とが積層され、正極活物質層が固体電解質層と接する構成をとる。負極も同様に、金属箔からなる負極集電体層と負極活物質層とが積層された形態が一般的であり、負極活物質層が固体電解質層と接する構成をとる。このような構成の正極及び負極では、集電体層となる金属箔と、固体粒子からなる活物質層との間の密着性の向上には制約があり、集電体層と活物質層との間の電子伝導性が十分でなかったり、集電体層と活物質層との間に剥離が生じたりすることがある。
 この問題に対処した技術として、特許文献1には、第1集電体層、第1活物質層、電解質層、第2活物質層及び第2集電体層の各機能層のすべてを塗布により形成することが記載されている。特許文献1記載の技術によれば、集電体層と活物質層との間の密着性を高めることができ、特性の良好な電池を製造することができるとされる。
The basic layer configuration of an all solid state secondary battery is a laminated structure including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer. The positive electrode of an all solid state secondary battery generally has a configuration in which a positive electrode current collector layer made of a metal foil and a positive electrode active material layer are laminated, and the positive electrode active material layer is in contact with the solid electrolyte layer. Similarly, the negative electrode also generally has a configuration in which a negative electrode current collector layer made of a metal foil and a negative electrode active material layer are laminated, and has a configuration in which the negative electrode active material layer is in contact with the solid electrolyte layer. In the positive electrode and the negative electrode having such a configuration, there is a limitation in improving the adhesion between the metal foil serving as the current collector layer and the active material layer formed of solid particles, and the current collector layer and the active material layer Between the current collector layer and the active material layer may be insufficient.
As a technique for addressing this problem, Patent Document 1 discloses that all functional layers of a first current collector layer, a first active material layer, an electrolyte layer, a second active material layer, and a second current collector layer are applied. Is described. According to the technique described in Patent Document 1, it is said that the adhesion between the current collector layer and the active material layer can be increased, and a battery having good characteristics can be manufactured.
 全固体二次電池は、正極活物質層、固体電解質層及び負極活物質層をこの順で積層した積層体と、この積層体の正極活物質層又は負極活物質層に接して配された集電体層とから構成される積層構造を1ユニットとして、このユニットを、金属箔等の集電体上に、集電体層同士が接しないように複数段積み上げた複数ユニットの構成が知られている。このような複数ユニット構成とすることにより電池の出力を高めることができる。複数ユニット構成にはモノポーラ型とバイポーラ型が知られている。モノポーラ型は、正極集電体層の両側に正極活物質層が配され、負極集電体層の両側には負極集電体が配される。つまり、集電体層の両側に配される活物質層は同種である。他方、バイポーラ型は、正極活物質層と負極活物質層が1つの集電体層の両側に配された構造をとる。 The all-solid-state secondary battery includes a stacked body in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are stacked in this order, and a collector disposed in contact with the positive electrode active material layer or the negative electrode active material layer of the stacked body. There is known a configuration of a plurality of units in which a stacked structure composed of a current collector layer and one unit are stacked on a current collector such as a metal foil so that the current collector layers do not contact each other. ing. With such a plurality of units, the output of the battery can be increased. A monopolar type and a bipolar type are known as a multiple unit configuration. In the monopolar type, a positive electrode active material layer is provided on both sides of a positive electrode current collector layer, and a negative electrode current collector is provided on both sides of a negative electrode current collector layer. That is, the active material layers disposed on both sides of the current collector layer are of the same type. On the other hand, the bipolar type has a structure in which a positive electrode active material layer and a negative electrode active material layer are arranged on both sides of one current collector layer.
特開2012-64487号公報JP 2012-64487 A
 本発明者らは電池性能のさらなる向上を目的に、上記特許文献1記載の技術について検討を重ねた。その結果、特許文献1に記載されるように、集電体層の構成材料を含む塗布液(スラリー)を調製し、この塗布液を活物質層上に塗布して集電体層を形成した場合でも、集電体層と活物質層との間の密着性を、近年要求される充放電時の低抵抗(充放電時における集電体層と活物質層間の電子伝導性の向上)を十分に満足するレベルまで高めるには至らず、電池性能の向上には制約があることがわかってきた。 者 The present inventors have repeatedly studied the technology described in Patent Document 1 for the purpose of further improving battery performance. As a result, as described in Patent Literature 1, a coating solution (slurry) containing the constituent material of the current collector layer was prepared, and this coating solution was applied on the active material layer to form a current collector layer. Even in such a case, the adhesion between the current collector layer and the active material layer is reduced by the low resistance required during charge / discharge (improved electron conductivity between the current collector layer and the active material layer during charge / discharge) required in recent years. It has not been possible to raise the level to a sufficiently satisfactory level, and it has been found that there is a limitation in improving the battery performance.
 本発明は、全固体二次電池の構成部材として用いることにより、充放電時の抵抗を十分に抑えた全固体二次電池を得ることができる全固体二次電池用積層部材の製造方法を提供することを課題とする。また本発明は、充放電時の抵抗を十分に抑えた全固体二次電池を得ることができる全固体二次電池の製造方法を提供することを課題とする。 The present invention provides a method for manufacturing a laminated member for an all-solid secondary battery, which can be used as a constituent member of the all-solid secondary battery to obtain an all-solid secondary battery with sufficiently suppressed resistance during charge and discharge. The task is to Another object of the present invention is to provide a method for manufacturing an all-solid-state secondary battery capable of obtaining an all-solid-state secondary battery with sufficiently reduced resistance during charge and discharge.
 本発明者らは上記課題に鑑み鋭意検討を重ねた。その結果、正極活物質層と固体電解質層と負極活物質層とをこの順に有する積層体と、この積層体の正極活物質層及び負極活物質層の各表面に配された集電体層とを含む全固体二次電池用積層部材の作製において、正極活物質層又は負極活物質層と、それに接する集電体層との積層構造の形成をウェットオンウェット塗布により行い、得られた全固体二次電池用積層部材を全固体二次電池に適用することにより、抵抗を十分に抑えた全固体二次電池が提供できることを見出した。本発明はこの知見に基づきさらに検討を重ね、完成されるに至ったものである。 The present inventors have conducted intensive studies in view of the above problems. As a result, a laminate having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a current collector layer disposed on each surface of the positive electrode active material layer and the negative electrode active material layer of the laminate, In the production of a laminated member for an all-solid secondary battery including, a positive electrode active material layer or a negative electrode active material layer, the formation of a laminated structure of a current collector layer in contact with it, by wet-on-wet coating, the obtained solid By applying the laminated member for a secondary battery to an all-solid secondary battery, it has been found that an all-solid secondary battery with sufficiently suppressed resistance can be provided. The present invention has been further studied based on this finding, and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
〔1〕
 正極活物質層と固体電解質層と負極活物質層とをこの順に有する積層体と、この積層体の正極活物質層及び負極活物質層の各表面に配された集電体層とを含む全固体二次電池用積層部材の製造において、
 上記正極活物質層及び上記負極活物質層の少なくとも1つの活物質層と、この活物質層に接する集電体層との積層構造の形成をウェットオンウェット塗布により行うことを含む、全固体二次電池用積層部材の製造方法。
〔2〕
 上記全固体二次電池用積層部材が、金属箔からなる第1の集電体層と、正極活物質層と、固体電解質層と、負極活物質層と、第2の集電体層とがこの順に積層された構造であり、正極活物質層と、固体電解質層と、負極活物質層と、第2の集電体層との積層構造の形成を、上記の金属箔からなる第1の集電体層上への同時重層塗布により行う、〔1〕に記載の全固体二次電池用積層部材の製造方法。
〔3〕
 上記全固体二次電池用積層部材が、金属箔からなる第1の集電体層と、負極活物質層と、固体電解質層と、正極活物質層と、第2の集電体層とがこの順に積層された構造であり、負極活物質層と、固体電解質層と、正極活物質層と、第2の集電体層との積層構造の形成を、上記の金属箔からなる第1の集電体層上への同時重層塗布により行う、〔1〕に記載の全固体二次電池用積層部材の製造方法。
〔4〕
 上記全固体二次電池用積層部材が、正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体と、この積層体の正極活物質層又は負極活物質層に接して配された集電体層とから構成される積層ユニットを、金属箔からなる集電体層上に、集電体層同士が接しないように複数段積み重ねた積層構造であり、
 上記の積層ユニットを複数段積み重ねた積層構造の形成を、上記の金属箔からなる集電体層上への同時重層塗布により行う、〔1〕に記載の全固体二次電池用積層部材の製造方法。
〔5〕
 ウェットオンウェット塗布により形成される集電体層が粒子状バインダーを含有する、〔1〕~〔4〕のいずれかに記載の全固体二次電池用積層部材の製造方法。
〔6〕
 上記固体電解質層を構成する固体電解質が硫化物系無機固体電解質である、〔1〕~〔5〕のいずれかに記載の全固体二次電池用積層部材の製造方法。
〔7〕
 〔1〕~〔6〕のいずれかに記載の全固体二次電池用積層部材の製造方法により全固体二次電池用積層部材を得て、この全固体二次電池用積層部材を用いて全固体二次電池を得る、全固体二次電池の製造方法。
That is, the above problem was solved by the following means.
[1]
A laminate including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a current collector layer disposed on each surface of the positive electrode active material layer and the negative electrode active material layer of the laminate. In the production of laminated members for solid state rechargeable batteries,
An all-solid-state method including forming a laminated structure of at least one active material layer of the positive electrode active material layer and the negative electrode active material layer and a current collector layer in contact with the active material layer by wet-on-wet coating; Method for producing laminated member for secondary battery.
[2]
The laminated member for an all-solid secondary battery includes a first current collector layer made of a metal foil, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a second current collector layer. The structure in which the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the second current collector layer are formed in a laminated structure in this order is a first structure made of the above metal foil. The method for producing a laminated member for an all-solid-state secondary battery according to [1], wherein the method is performed by simultaneous multi-layer coating on a current collector layer.
[3]
The above-described laminated member for an all-solid secondary battery includes a first current collector layer made of a metal foil, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a second current collector layer. The structure in which the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the second current collector layer are formed in a stacked structure in this order is formed by the first metal foil. The method for producing a laminated member for an all-solid-state secondary battery according to [1], wherein the method is performed by simultaneous multi-layer coating on a current collector layer.
[4]
The laminated member for an all-solid secondary battery has a laminated body in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and is in contact with the positive electrode active material layer or the negative electrode active material layer of the laminated body. A stacked unit composed of a current collector layer arranged and arranged on a current collector layer made of metal foil, has a stacked structure in which a plurality of layers are stacked so that the current collector layers do not contact each other,
The production of a laminated member for an all-solid-state secondary battery according to [1], wherein the lamination structure in which the lamination units are stacked in a plurality of stages is formed by simultaneous multi-layer coating on the current collector layer made of the metal foil. Method.
[5]
The method for producing a laminated member for an all-solid secondary battery according to any one of [1] to [4], wherein the current collector layer formed by wet-on-wet coating contains a particulate binder.
[6]
The method for producing a laminated member for an all-solid secondary battery according to any one of [1] to [5], wherein the solid electrolyte constituting the solid electrolyte layer is a sulfide-based inorganic solid electrolyte.
[7]
A laminated member for an all-solid secondary battery is obtained by the method for producing a laminated member for an all-solid secondary battery according to any one of [1] to [6], and the laminated member for an all-solid secondary battery is entirely used A method for producing an all-solid secondary battery, which obtains a solid secondary battery.
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 に お い て In the description of the present invention, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
 本発明の全固体二次電池用積層部材の製造方法によれば、全固体二次電池の構成部材として用いることにより、充放電時の抵抗を十分に抑えた全固体二次電池を得ることができる全固体二次電池用積層部材を提供することができる。また、本発明の全固体二次電池の製造方法によれば、充放電時の抵抗を十分に抑えた全固体二次電池を提供することができる。 According to the method for manufacturing a laminated member for an all-solid-state secondary battery of the present invention, by using it as a constituent member of the all-solid-state secondary battery, it is possible to obtain an all-solid-state secondary battery with sufficiently suppressed resistance during charge and discharge. It is possible to provide a laminated member for an all-solid secondary battery that can be obtained. Further, according to the method for manufacturing an all-solid secondary battery of the present invention, it is possible to provide an all-solid secondary battery in which resistance during charging and discharging is sufficiently suppressed.
図1は、モノポーラ型の全固体二次電池における層構成を模式化して示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing a layer configuration in a monopolar type all solid state secondary battery. 図2は、バイポーラ型の全固体二次電池における層構成を模式化して示す縦断面図である。FIG. 2 is a longitudinal sectional view schematically illustrating a layer configuration in a bipolar type all-solid secondary battery. 図3は、全固体二次電池の基本的な構成を模式化して示す縦断面図である。FIG. 3 is a longitudinal sectional view schematically illustrating a basic configuration of the all solid state secondary battery.
 本発明の全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法について、好ましい実施形態を説明するが、本発明は、本発明で規定すること以外は、これらの形態に限定されるものではない。 The preferred embodiment of the method for producing a laminated member for an all-solid secondary battery and the method for producing an all-solid secondary battery of the present invention will be described. It is not limited.
[全固体二次電池用積層部材の製造方法]
 本発明の全固体二次電池用積層部材の製造方法(以下、「本発明の製造方法」とも称す。)は、正極活物質層と固体電解質層と負極活物質層とをこの順に有する積層体と、この積層体の正極活物質層及び負極活物質層の各表面に配された集電体層とを含む全固体二次電池用積層部材(以下、「本発明の積層部材」とも称す。)を得るための方法である。
 本発明の製造方法では、上記正極活物質層及び上記負極活物質層の少なくとも1つの活物質層と、この活物質層に接する集電体層との積層構造の形成を、ウェットオンウェット塗布により行うことを含む。
 本発明において「ウェットオンウェット塗布」とは、複数の塗膜を乾燥させることなく(すなわち湿潤状態で)塗り重ねる塗布方式を意味する。より詳細には、形成した塗膜の残留溶媒量が5質量%以上の状態で、この塗膜上に別の塗膜を形成することを意味する。例えば逐次塗布による塗布方法では、形成した塗膜が一定程度乾燥しても、この塗膜の残留溶媒量が5質量%以上の状態で、その上に別の塗膜を形成する場合、「ウェットオンウェット塗布」である。また、異なる層を形成するための複数の塗布液(スラリー)を、塗布工程の段階から同時に塗布装置に供給して、積層した複数の塗布液を同時に基材上に塗布する同時重層塗布も「ウェットオンウェット塗布」の一形態である。
[Method of Manufacturing Laminated Member for All-Solid Secondary Battery]
The method for producing a laminated member for an all-solid secondary battery of the present invention (hereinafter, also referred to as “the production method of the present invention”) is a laminate having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order. And a laminated member for an all-solid-state secondary battery including a current collector layer disposed on each surface of the positive electrode active material layer and the negative electrode active material layer of the laminate (hereinafter, also referred to as a “laminated member of the present invention”). ).
In the production method of the present invention, the formation of a laminated structure of at least one active material layer of the positive electrode active material layer and the negative electrode active material layer and a current collector layer in contact with the active material layer is performed by wet-on-wet coating. Including doing.
In the present invention, “wet-on-wet coating” refers to a coating method in which a plurality of coating films are repeatedly applied without drying (that is, in a wet state). More specifically, it means that another coating film is formed on this coating film in a state where the residual solvent amount of the formed coating film is 5% by mass or more. For example, in a coating method by sequential coating, even if the formed coating film is dried to a certain extent, when a residual coating film amount of the coating film is 5% by mass or more and another coating film is formed thereon, the “wet” On-wet application ". Simultaneous multi-layer coating, in which a plurality of coating solutions (slurries) for forming different layers are simultaneously supplied to a coating device from the stage of a coating process, and a plurality of stacked coating solutions are simultaneously coated on a substrate, is also referred to as “multi-layer coating”. Wet-on-wet coating ".
 本発明の積層部材が採り得る好ましい積層構造として、下記(a)~(c)の積層構造を挙げることができる。 好 ま し い Preferred laminated structures that the laminated member of the present invention can employ include the following laminated structures (a) to (c).
(a)金属箔からなる第1の集電体層/正極活物質層/固体電解質層/負極活物質層/第2の集電体層 をこの順に有する積層構造。
(b)金属箔からなる第1の集電体層/負極活物質層/固体電解質層/正極活物質層/第2の集電体層 をこの順に有する積層構造。
(c)正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体と、この積層体の正極活物質層又は負極活物質層に接して配された集電体層とから構成される積層ユニットを、金属箔からなる集電体層上に、集電体層同士が接しないように複数段積み重ねた積層構造。
(A) A laminated structure having a first current collector layer / positive electrode active material layer / solid electrolyte layer / negative electrode active material layer / second current collector layer made of metal foil in this order.
(B) A laminated structure having a first current collector layer / a negative electrode active material layer / a solid electrolyte layer / a positive electrode active material layer / a second current collector layer composed of a metal foil in this order.
(C) A laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and a current collector layer disposed in contact with the positive electrode active material layer or the negative electrode active material layer of the laminate. And a stacked structure in which a plurality of stacked units are stacked on a current collector layer made of metal foil so that the current collector layers do not contact each other.
 上記(a)において、金属箔からなる第1の集電体層は、塗膜の形成の際の基材となる。例えば、正極活物質層/固体電解質層/負極活物質層/第2の集電体層を同時重層塗布により形成する場合、金属箔からなる第1の集電体層上に同時重層塗布が行われる。このことは(b)についても同様である。上記(a)及び(b)の積層構造は、後述する図3に示す全固体二次電池の層構成に対応している。 に お い て In (a) above, the first current collector layer made of a metal foil becomes a base material when forming a coating film. For example, when forming the positive electrode active material layer / solid electrolyte layer / negative electrode active material layer / second current collector layer by simultaneous multilayer coating, simultaneous multilayer coating is performed on the first current collector layer made of metal foil. Will be This is the same for (b). The laminated structure of (a) and (b) corresponds to the layer configuration of the all-solid-state secondary battery shown in FIG. 3 described later.
 上記(c)において、1つの積層ユニットにおいて、積層ユニットを構成する集電体層は、正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体の、正極活物質層及び負極活物質層のいずれか一方の層に接して配されている。集電体層を有しない活物質層の表面には、この表面に接する別の積層ユニットの集電体層が配される。
 すなわち、積層ユニットの複数段の積み重ねは、積層ユニットの集電体同士が接しない形態とし、ある積層ユニットの集電体層表面には、別の積層ユニットの活物質層が配される形態とする。
 積層ユニットを複数段の積み重ねた積層構成として、モノポーラ型の積層構成と、バイポーラ型の積層構成がある。モノポーラ型の積層構成では、積層ユニットが積み重ねられた形態において、積層ユニットを構成する集電体層の両面に同種の活物質層が配される。つまり、1つの集電体層の片面に正極活物質層が配される場合、他方の面にも正極活物質層が配される。同様に、1つの集電体層の片面に負極活物質層が配される場合、他方の面にも負極活物質層が配される。
 モノポーラ型の積層構成の一例を図1に示す。このモノポーラ型の積層構成(積層部材101)は、2種類の積層ユニットから構成される。すなわち、正極活物質層2と固体電解質層3と負極活物質層4とをこの順で積層した積層体の、正極活物質層2に接して集電体層5が設けられたユニット(図1中のB)と、正極活物質層2と固体電解質層3と負極活物質層4とをこの順で積層した積層体の、負極活物質層4に接して集電体層5が設けられたユニット(図1中のA)とを、集電体層同士が接しないように、集電体層(金属箔)1上に複数段積み重ねた構造(図1は3段積み重ねた構造)とすることにより、モノポーラ型の積層構成とすることができる。
 他方、バイポーラ型の積層構成では、積層ユニットが積み重ねられた形態において、積層ユニットを構成する集電体層の両面に互いに異種の活物質層が配される。すなわち、1つの集電体層の片面に正極活物質層が配される場合、他方の面には負極活物質層が配される。
 バイポーラ型の積層構成の一例を図2に示す。このバイポーラ型の積層構成(積層部材102)は、1種類の積層ユニットから構成される。すなわち、正極活物質層2と固体電解質層3と負極活物質層4とをこの順で積層した積層体の、負極活物質層4に接して集電体層5が設けられたユニット(図2中のA)を、集電体層同士が接しないように、集電体層(金属箔)1上に複数段積み重ねた構造(図2は3段積み重ねた構造)とすることにより、バイポーラ型の積層構成とすることができる。また、正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体の、正極活物質層に接して集電体層が設けられたユニットを、集電体層同士が接しないように、集電体層(金属箔)上に複数段積み重ねた構造とすることによっても、バイポーラ型の積層構成とすることができる。
In the above (c), in one laminate unit, the current collector layer constituting the laminate unit is a positive electrode active material of a laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order. It is disposed in contact with one of the layer and the negative electrode active material layer. On the surface of the active material layer having no current collector layer, a current collector layer of another laminated unit in contact with the surface is provided.
That is, the stacking of a plurality of stacked units is such that the current collectors of the stacked units are not in contact with each other, and the active material layer of another stacked unit is arranged on the current collector layer surface of a certain stacked unit. I do.
As a stacked configuration in which a plurality of stacked units are stacked, there are a monopolar type stacked configuration and a bipolar type stacked configuration. In the monopolar type lamination structure, in the form in which the lamination units are stacked, the same type of active material layer is arranged on both surfaces of the current collector layer constituting the lamination unit. That is, when the positive electrode active material layer is provided on one surface of one current collector layer, the positive electrode active material layer is also provided on the other surface. Similarly, when the negative electrode active material layer is provided on one surface of one current collector layer, the negative electrode active material layer is also provided on the other surface.
FIG. 1 shows an example of a monopolar stacked structure. This monopolar lamination structure (lamination member 101) is composed of two types of lamination units. That is, a unit in which a current collector layer 5 is provided in contact with the positive electrode active material layer 2 of a laminate in which the positive electrode active material layer 2, the solid electrolyte layer 3, and the negative electrode active material layer 4 are laminated in this order (FIG. B), and a current collector layer 5 was provided in contact with the negative electrode active material layer 4 of a laminate in which the positive electrode active material layer 2, the solid electrolyte layer 3, and the negative electrode active material layer 4 were laminated in this order. The unit (A in FIG. 1) has a structure in which a plurality of layers are stacked on the current collector layer (metal foil) 1 so that the current collector layers do not contact each other (FIG. 1 shows a structure in which three layers are stacked). Thereby, a monopolar type laminated structure can be obtained.
On the other hand, in the bipolar type lamination structure, in a form in which the lamination units are stacked, different types of active material layers are arranged on both surfaces of the current collector layer constituting the lamination unit. That is, when the positive electrode active material layer is provided on one surface of one current collector layer, the negative electrode active material layer is provided on the other surface.
FIG. 2 shows an example of a bipolar type lamination structure. This bipolar type lamination structure (lamination member 102) is composed of one type of lamination unit. That is, a unit in which a current collector layer 5 is provided in contact with the negative electrode active material layer 4 of a laminate in which the positive electrode active material layer 2, the solid electrolyte layer 3, and the negative electrode active material layer 4 are laminated in this order (FIG. A) in which a plurality of layers are stacked on the current collector layer (metal foil) 1 so that the current collector layers do not contact each other (FIG. 2 shows a structure in which three layers are stacked) is a bipolar type. Can be adopted. In addition, a unit in which a current collector layer is provided in contact with the positive electrode active material layer of a laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are stacked in this order, A bipolar stacked structure can also be obtained by stacking a plurality of layers on the current collector layer (metal foil) so as not to be in contact with each other.
 本発明において「積層ユニット」との表現は、積層構造の層構成を特定するために便宜上用いている。すなわち、「積層ユニットを」「複数段積み重ねた積層構造」とは、あらかじめ積層ユニットを複数作製して、これら複数の積層ユニットを実際に積み重ねた形態を意図したものではない。金属箔からなる集電体層上に、正極活物質層、固体電解質層、負極活物質層及び集電体層の各層形成用スラリーを、一層ずつ繰り返し重層塗布して、あるいは、正極活物質層、固体電解質層、負極活物質層及び集電体層の順序の繰り返しになるように同時重層塗布して、最終的にできあがる全体の積層構造が、「積層ユニットを」「複数段積み重ねた積層構造」全体と同じ積層構造であれば、上記(c)の積層構造に含まれる。 に お い て In the present invention, the expression “laminated unit” is used for convenience to specify the layer configuration of the laminated structure. That is, the term “laminated unit” or “laminated structure in which a plurality of stacked units are stacked” does not mean a form in which a plurality of laminated units are prepared in advance and the plurality of laminated units are actually stacked. A slurry for forming each of the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the current collector layer is repeatedly coated one by one on the current collector layer made of a metal foil, or the positive electrode active material layer , A solid electrolyte layer, a negative electrode active material layer, and a current collector layer are coated simultaneously so as to be repeated in order, and the finally completed overall laminated structure is a “laminated unit” If the same laminated structure as the whole is included in the laminated structure of (c) above.
 本発明の製造方法において、上記(a)の積層構造を有する積層部材を形成する場合、負極活物質層と、この負極活物質層に接する集電体層により形成される積層構造の形成をウェットオンウェット塗布により行う。例えば、金属箔からなる第1の集電体層/正極活物質層/固体電解質層 の3層構造の積層体の固体電解質上に、負極活物質層の構成材料を含むスラリーを塗布して塗膜を形成し、この塗膜の残留溶媒量が5質量%以上の状態で、第2の集電体層の構成材料を含むスラリーを塗布する。塗布後、乾燥し、上記(a)の積層構造を有する積層部材を得ることができる。上記の固体電解質層上に、負極活物質層の構成材料を含むスラリーと第2の集電体層の構成材料を含むスラリーとを同時重層塗布することもできる。
 また、金属箔からなる第1の集電体層/正極活物質層 の2層構造の積層体の正極活物質層上に、固体電解質層の構成材料を含むスラリーと、負極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、ウェットオンウェット塗布により逐次に、又は同時に重層塗布することもできる。
 また、金属箔からなる第1の集電体層上に、正極活物質層の構成材料を含むスラリーと、固体電解質層の構成材料を含むスラリーと、負極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、ウェットオンウェット塗布により逐次に、又は同時に重層塗布することもできる。
 量産化を考慮した場合、金属箔からなる第1の集電体層上に、正極活物質層の構成材料を含むスラリーと、固体電解質層の構成材料を含むスラリーと、負極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、同時重層塗布することが好ましい。
In the production method of the present invention, when forming the laminated member having the laminated structure of (a), the formation of the laminated structure formed by the negative electrode active material layer and the current collector layer in contact with the negative electrode active material layer is performed by a wet process. This is performed by on-wet coating. For example, a slurry containing a constituent material of a negative electrode active material layer is applied and coated on a solid electrolyte of a three-layer structure of a first current collector layer / a positive electrode active material layer / a solid electrolyte layer made of a metal foil. A film is formed, and a slurry containing the constituent material of the second current collector layer is applied in a state where the residual solvent amount of the coating film is 5% by mass or more. After the application, the coating is dried to obtain a laminated member having the above-mentioned laminated structure (a). A slurry containing the constituent material of the negative electrode active material layer and a slurry containing the constituent material of the second current collector layer can be simultaneously applied on the solid electrolyte layer.
The slurry containing the constituent material of the solid electrolyte layer and the slurry of the negative electrode active material layer were formed on the positive electrode active material layer of the two-layer structure of the first current collector layer / positive electrode active material layer made of metal foil. The slurry containing the material and the slurry containing the constituent material of the second current collector layer may be sequentially or simultaneously multi-layer coated by wet-on-wet coating.
Further, a slurry containing a constituent material of a positive electrode active material layer, a slurry containing a constituent material of a solid electrolyte layer, and a slurry containing a constituent material of a negative electrode active material layer are formed on a first current collector layer made of a metal foil. And the slurry containing the constituent material of the second current collector layer may be sequentially or simultaneously multi-layer coated by wet-on-wet coating.
In consideration of mass production, a slurry containing a constituent material of the positive electrode active material layer, a slurry containing a constituent material of the solid electrolyte layer, and a structure of the negative electrode active material layer are formed on the first current collector layer made of a metal foil. It is preferable that the slurry containing the material and the slurry containing the constituent material of the second current collector layer be simultaneously and multi-layer coated.
 本発明の製造方法において、上記(b)の積層構造を有する積層部材を形成する場合、正極活物質層と、この正極活物質層に接する集電体層により形成される積層構造の形成をウェットオンウェット塗布により行う。例えば、金属箔からなる第1の集電体層/負極活物質層/固体電解質層 の3層構造の積層体の固体電解質上に、正極活物質層の構成材料を含むスラリーを塗布して塗膜を形成し、この塗膜の残留溶媒量が5質量%以上の状態で、第2の集電体層の構成材料を含むスラリーを塗布する。塗布後、乾燥し、上記(b)の積層構造を有する積層部材を得ることができる。上記の固体電解質上に、正極活物質層の構成材料を含むスラリーと第2の集電体層の構成材料を含むスラリーとを同時重層塗布することもできる。
 また、金属箔からなる第1の集電体層/負極活物質層 の2層構造の積層体の負極活物質層上に、固体電解質層の構成材料を含むスラリーと、正極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、ウェットオンウェット塗布により逐次に、又は同時に重層塗布することもできる。
 また、金属箔からなる第1の集電体層上に、負極活物質層の構成材料を含むスラリーと、固体電解質層の構成材料を含むスラリーと、正極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、ウェットオンウェット塗布により逐次に、又は同時に重層塗布することもできる。
 量産化を考慮した場合、金属箔からなる第1の集電体層上に、負極活物質層の構成材料を含むスラリーと、固体電解質層の構成材料を含むスラリーと、正極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、同時重層塗布することが好ましい。
In the production method of the present invention, when forming the laminated member having the laminated structure of (b), the formation of the laminated structure formed by the positive electrode active material layer and the current collector layer in contact with the positive electrode active material layer is performed by a wet process. This is performed by on-wet coating. For example, a slurry containing a constituent material of a positive electrode active material layer is applied and coated on a solid electrolyte of a three-layer structure of a first current collector layer / a negative electrode active material layer / a solid electrolyte layer made of a metal foil. A film is formed, and a slurry containing the constituent material of the second current collector layer is applied in a state where the residual solvent amount of the coating film is 5% by mass or more. After the application, it is dried to obtain a laminated member having the above-mentioned laminated structure (b). A slurry containing the constituent material of the positive electrode active material layer and a slurry containing the constituent material of the second current collector layer may be simultaneously applied on the solid electrolyte.
Also, a slurry containing a constituent material of a solid electrolyte layer and a slurry of a positive electrode active material layer are formed on a negative electrode active material layer of a two-layer structure of a first current collector layer / anode active material layer made of a metal foil. The slurry containing the material and the slurry containing the constituent material of the second current collector layer may be sequentially or simultaneously multi-layer coated by wet-on-wet coating.
Further, a slurry containing a constituent material of a negative electrode active material layer, a slurry containing a constituent material of a solid electrolyte layer, and a slurry containing a constituent material of a positive electrode active material layer are formed on a first current collector layer made of a metal foil. And the slurry containing the constituent material of the second current collector layer may be sequentially or simultaneously multi-layer coated by wet-on-wet coating.
In consideration of mass production, a slurry containing a constituent material of a negative electrode active material layer, a slurry containing a constituent material of a solid electrolyte layer, and a structure of a positive electrode active material layer are formed on a first current collector layer made of a metal foil. It is preferable that the slurry containing the material and the slurry containing the constituent material of the second current collector layer be simultaneously and multi-layer coated.
 本発明の製造方法において、上記(c)の積層構造を有する積層部材を形成する場合、積層ユニットが複数段に積み重ねられた積層構造における少なくとも1つの活物質層と、この活物質層に接する集電体層との積層構造の形成を、ウェットオンウェット塗布により行う。より好ましくは、各積層ユニットを構成する各層を、各層の構成材料を含むスラリーを逐次に又は同時に、金属箔からなる集電体層上に重層塗布して形成し、次いで乾燥して、積層ユニットが複数段に積み重ねられた構成の積層構造を形成する。
 量産化を考慮した場合、各積層ユニットを構成する各層を、各層の構成材料を含むスラリーを金属箔からなる集電体層上に同時重層塗布して形成し、次いで乾燥して、積層ユニットが複数段に積み重ねられた構成の積層構造を形成することが好ましい。この場合、積層構造の形成を1ステップで行うことができ、モノポーラ型又はバイポーラ型の積層部材の生産効率を大きく高めることができる。
In the production method of the present invention, when forming the laminated member having the laminated structure of (c), at least one active material layer in the laminated structure in which the laminated units are stacked in a plurality of stages, and a collection member in contact with the active material layer. The formation of the laminated structure with the electric conductor layer is performed by wet-on-wet coating. More preferably, each layer constituting each laminated unit is formed by sequentially or simultaneously applying a slurry containing the constituent material of each layer onto a current collector layer made of a metal foil, and then drying and forming the laminated unit. Form a laminated structure having a configuration in which the layers are stacked in a plurality of stages.
In consideration of mass production, each layer constituting each laminated unit is formed by simultaneously applying a slurry containing the constituent material of each layer onto a current collector layer made of a metal foil, and then drying the laminated unit. It is preferable to form a laminated structure having a configuration in which a plurality of layers are stacked. In this case, the formation of the laminated structure can be performed in one step, and the production efficiency of a monopolar or bipolar laminated member can be greatly increased.
 上記の各層を形成するためのスラリーそれ自体は、常法により調製することができる。具体的には、少なくとも後述する各層の構成材料と分散媒とを混合し、調製することができる。この混合は、各種の混合機を用いて行うことができる。例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダー、ディスクミル等が挙げられる。スラリー中の、各層の構成材料の含有量は、所望の機能を発現する塗膜を形成できれば特に制限されず、膜厚、分散性等を考慮して適宜に設定される。 ス ラ リ ー The slurry itself for forming each of the above layers can be prepared by a conventional method. Specifically, it can be prepared by mixing at least a constituent material of each layer described below and a dispersion medium. This mixing can be performed using various mixers. For example, a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, a disk mill and the like can be mentioned. The content of the constituent material of each layer in the slurry is not particularly limited as long as a coating film exhibiting a desired function can be formed, and is appropriately set in consideration of the film thickness, dispersibility, and the like.
 スラリーに用いる分散媒として、例えば、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エステル化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒、及びニトリル化合物溶媒が挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、1,3-ブタンジオール、及び1,4-ブタンジオールが挙げられる。
Examples of the dispersion medium used for the slurry include alcohol compound solvents, ether compound solvents, amide compound solvents, amino compound solvents, ketone compound solvents, ester compound solvents, aromatic compound solvents, aliphatic compound solvents, and nitrile compound solvents. .
Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4- Butanediol.
 エーテル化合物溶媒としては、例えば、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、テトラヒドロフラン、及びジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)が挙げられる。 Examples of the ether compound solvent include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, Propylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, etc., dialkyl ethers (dimethyl ether, diethyl ether, dibutyl ether, etc.), tetrahydrofuran, and dioxane (1,2-, 1,3- Including 1,4-isomers) of the like.
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、及びヘキサメチルホスホリックトリアミドが挙げられる。 Examples of the amide compound solvent include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, and hexamethylphosphoric triamide.
 アミノ化合物溶媒としては、例えば、トリエチルアミン、及びトリブチルアミンが挙げられる。 (4) Examples of the amino compound solvent include triethylamine and tributylamine.
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジブチルケトン、及びジイソブチルケトンが挙げられる。 (4) Examples of the ketone compound solvent include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dibutyl ketone, and diisobutyl ketone.
 エステル化合物溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、イソ酪酸イソブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル、及びカプロン酸ブチル等が挙げられる。 Examples of the ester compound solvent include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, and propyl butyrate. Butyl butyrate, isobutyl isobutyrate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate, and butyl caproate.
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレン、及びメシチレンが挙げられる。 Examples of the aromatic compound solvent include benzene, toluene, xylene, and mesitylene.
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン、オクタン、ペンタン、シクロペンタン、及びシクロオクタンが挙げられる。 Examples of the aliphatic compound solvent include hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, decalin, octane, pentane, cyclopentane, and cyclooctane.
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、及びブチロニトリルが挙げられる。 Examples of the penitrile compound solvent include acetonitrile, propylonitrile, and butyronitrile.
 上記の各スラリーの製膜のための塗布方法は、特に制限されず、適宜に選択できる。例えば、逐次重層塗布の場合、エクストルージョンダイコーター、エアードクターコーター、ブレッドコーター、ロッドコーター、ナイフコーター、スクイズコーター、リバースロールコーター、バーコーター等の通常の塗布方法によって行うことができる。
 また、同時重層塗布についても塗布それ自体は、常法により行うことができる。例えば、特開2005-271283号公報及び特開2006-247967号公報を参照することができる。また、例えば、特開2018-122283号公報に記載されたダイ(重層専用ギーサー)を用いて同時重層塗布をすることもできる。
 また、ウェットオンウェット塗布を行った後の、塗布膜の乾燥温度は特に制限されず、好ましくは30℃以上、より好ましくは60℃以上、さらに好ましくは80℃以上である。また、乾燥温度は300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。
The method of applying each of the above slurries for film formation is not particularly limited and can be appropriately selected. For example, in the case of sequential multilayer coating, it can be performed by a usual coating method such as an extrusion die coater, an air doctor coater, a bread coater, a rod coater, a knife coater, a squeeze coater, a reverse roll coater, and a bar coater.
Also, simultaneous multi-layer coating can be performed by a conventional method. For example, JP-A-2005-271283 and JP-A-2006-247967 can be referred to. Further, for example, simultaneous multi-layer coating can be performed using a die (multi-layer dedicated Gieser) described in JP-A-2018-122283.
Further, the drying temperature of the coating film after performing the wet-on-wet coating is not particularly limited, and is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher. Further, the drying temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
 続いて、本発明の積層部材の各層の構成材料について説明する。 Next, the constituent materials of each layer of the laminated member of the present invention will be described.
<固体電解質層>
 本発明の積層部材を構成する固体電解質層は、全固体二次電池において固体電解質層に用いられる通常の構成材料で形成することができる。本発明において固体電解質層は、好ましくは、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質を有し、さらに、必要によりバインダーを含有する。本発明の全固体二次電池を構成する固体電解質層は、例えば、上記無機固体電解質とバインダーと、上述したこれらの分散媒とを含む固体電解質組成物(スラリー)を塗布し、形成することができる。固体電解質組成物の各成分含有量は、目的に応じて適宜に調整できる。例えば、固体電解質組成物の固形分中、無機固体電解質の含有量を50質量%以上とすることが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がさらに好ましい。
<Solid electrolyte layer>
The solid electrolyte layer that constitutes the laminated member of the present invention can be formed of a general constituent material used for a solid electrolyte layer in an all-solid secondary battery. In the present invention, the solid electrolyte layer preferably has an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and further contains a binder if necessary. The solid electrolyte layer constituting the all-solid secondary battery of the present invention can be formed, for example, by applying a solid electrolyte composition (slurry) containing the inorganic solid electrolyte, the binder, and the dispersion medium described above. it can. The content of each component of the solid electrolyte composition can be appropriately adjusted according to the purpose. For example, in the solid content of the solid electrolyte composition, the content of the inorganic solid electrolyte is preferably set to 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and further preferably 90% by mass or more. preferable.
(無機固体電解質)
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有するものであれば特に制限されず電子伝導性を有しないものが一般的である。
(Inorganic solid electrolyte)
In the present invention, the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte in which ions can move inside. Since it does not contain an organic substance as a main ion conductive material, it is an organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO) and the like; an organic represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) and the like) Electrolyte salt). Further, since the inorganic solid electrolyte is a solid in a steady state, it is not usually dissociated or released into cations and anions. In this regard, it is also clearly distinguished from an inorganic electrolyte salt (LiPF 6 , LiBF 4 , LiFSI, LiCl, or the like) in which cations and anions are dissociated or released in the electrolyte solution or the polymer. The inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and generally has no electron conductivity.
 本発明において、無機固体電解質は、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有する。無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は、(i)硫化物系無機固体電解質と、(ii)酸化物系無機固体電解質が代表例として挙げられ、高いイオン伝導度と粒子間界面接合の容易さの点で、硫化物系無機固体電解質が好ましい。
 本発明の全固体二次電池が全固体リチウムイオン二次電池である場合、無機固体電解質はリチウムイオンのイオン伝導度を有することが好ましい。
In the present invention, the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table. As the inorganic solid electrolyte, a solid electrolyte material applied to this type of product can be appropriately selected and used. Representative examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte. In terms of high ionic conductivity and ease of interparticle interfacial bonding, sulfides are preferred. A system inorganic solid electrolyte is preferred.
When the all-solid secondary battery of the present invention is an all-solid lithium ion secondary battery, the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and And a compound having an electronic insulating property are preferable. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity, but depending on the purpose or case, other than Li, S, and P, It may contain an element.
 硫化物系無機固体電解質としては、例えば、下記式(I)で示される組成を満たすリチウムイオン伝導性硫化物系無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
Examples of the sulfide-based inorganic solid electrolyte include a lithium-ion conductive sulfide-based inorganic solid electrolyte satisfying the composition represented by the following formula (I).

L a1 M b1 P c1 S d1 A e1 formula (I)

In the formula, L represents an element selected from Li, Na and K, and Li is preferable. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. a1 is preferably 1 to 9, and more preferably 1.5 to 7.5. b1 is preferably 0 to 3, more preferably 0 to 1. d1 is preferably from 2.5 to 10, and more preferably from 3.0 to 8.5. e1 is preferably from 0 to 5, more preferably from 0 to 3.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合比を調整することにより制御できる。 組成 The composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compounds when producing the sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramic), or may be partially crystallized. For example, Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramic containing Li, P and S can be used.
Examples of the sulfide-based inorganic solid electrolyte include lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example, LiI, LiBr, LiCl) and at least two or more of sulfides (for example, SiS 2 , SnS, GeS 2 ) of the element represented by M can be produced.
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 In Li-P-S based glass and Li-P-S based glass ceramics, the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ~ 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S and P 2 S 5 to this range, the lithium ion conductivity can be increased. Specifically, the lithium ion conductivity can be preferably 1 × 10 −4 S / cm or more, more preferably 1 × 10 −3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 × 10 −1 S / cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 As examples of specific sulfide-based inorganic solid electrolytes, combinations of raw materials are shown below. For example, Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 SP—P 2 S 5 —P 2 O 5 , Li 2 SP—P 2 S 5 —SiS 2 , Li 2 SP—P 2 S 5 —SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2 S-GeS 2 -ZnS, Li 2 S-Ga 2 S 3, Li 2 S- GeS 2 -Ga 2 S 3, Li 2 S-GeS 2 -P 2 S 5 Li 2 S-GeS 2 -Sb 2 S 5, Li 2 S-GeS 2 -Al 2 S 3, Li 2 S-SiS 2, Li 2 S-Al 2 S 3, Li 2 S-SiS 2 -Al 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —Li 4 SiO 4 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 10 GeP 2 S 12 and the like. However, the mixing ratio of each raw material does not matter. As a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition, for example, an amorphization method can be mentioned. Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quenching method. This is because processing at normal temperature becomes possible, and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
(Ii) Oxide-based inorganic solid electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom (O), has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and And a compound having an electronic insulating property are preferable.
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。 Specific examples of the compound include, for example, Li xa La ya TiO 3 [xa = 0.3 to 0.7, ya = 0.3 to 0.7] (LLT), Li xb La yb Zr zb M bb mb O nb ( Mbb is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn, xb satisfies 5 ≦ xb ≦ 10, and yb satisfies 1 ≦ yb Satisfies ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, nb satisfies 5 ≦ nb ≦ 20), Li xc Byc M cc zc O nc (M cc is C, S, Al, Si, Ga, Ge, In and Sn are at least one or more elements, xc satisfies 0 ≦ xc ≦ 5, yc satisfies 0 ≦ yc ≦ 1, and zc satisfies 0 ≦ zc ≦ met 1, nc satisfies 0 ≦ nc ≦ 6.), Li xd ( l, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ≦ xd ≦ 3,0 ≦ yd ≦ 1,0 ≦ zd ≦ 2,0 ≦ ad ≦ 1,1 ≦ md ≦ 7, 3 ≦ nd ≦ 13), Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, .D ee M ee is representative of a divalent metal atom is a halogen atom or a Represents a combination of two or more halogen atoms.), Li xf Si yf O zf (1 ≦ xf ≦ 5, 0 <yf ≦ 3, 1 ≦ zf ≦ 10), Li xg S yg O zg (1 ≦ xg ≦ 3, 0 <yg ≦ 2, 1 ≦ zg ≦ 10), Li 3 BO 3 —Li 2 SO 4 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 6 BaLa 2 ta 2 O 12, Li 3 PO (4-3 / 2w) N w (w is w <1), LIS CON (Lithium super ionic conductor) type Li 3.5 Zn 0.25 GeO 4 having a crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite crystal structure, NASICON (Natrium super ionic conductor) type crystal structure LiTi 2 P 3 O 12 , Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (where 0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1), garnet Li 7 La 3 Zr 2 O 12 (LLZ) having a type crystal structure is exemplified. Further, a phosphorus compound containing Li, P and O is also desirable. For example, lithium phosphate (Li 3 PO 4 ), LiPON in which a part of oxygen of lithium phosphate is substituted by nitrogen, LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr , Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.). Further, LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, and the like) can also be preferably used.
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の粒径は特に制限されない。イオン伝導度、更には加工性及び界面形成性の点では、無機固体電解質の粒径は、0.01μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。また、無機固体電解質の粒径は、100μm以下が好ましく、50μm以下がより好ましく、20μm以下がさらに好ましく、4μm以下がさらに好ましく、2μm以下が特に好ましい。
 無機固体電解質粒子の粒径は平均粒径を意味し、以下の通り決定することができる。
 無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
The inorganic solid electrolyte is preferably a particle. In this case, the particle size of the inorganic solid electrolyte is not particularly limited. In terms of ionic conductivity, furthermore, processability and interface forming property, the particle diameter of the inorganic solid electrolyte is preferably 0.01 μm or more, more preferably 0.2 μm or more, and further preferably 0.3 μm or more. The particle diameter of the inorganic solid electrolyte is preferably 100 μm or less, more preferably 50 μm or less, further preferably 20 μm or less, further preferably 4 μm or less, and particularly preferably 2 μm or less.
The particle size of the inorganic solid electrolyte particles means an average particle size and can be determined as follows.
The inorganic solid electrolyte particles are diluted with water (heptane in the case of a substance unstable to water) to adjust a 1% by mass dispersion liquid in a 20 mL sample bottle. The dispersion sample after dilution is irradiated with 1 kHz ultrasonic wave for 10 minutes and used immediately after the test. Using this dispersion liquid sample, data was taken 50 times at a temperature of 25 ° C. using a laser diffraction / scattering type particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) using a quartz cell for measurement. Obtain the volume average particle size. For other detailed conditions, refer to the description of JIS Z 8828: 2013 “Particle size analysis-dynamic light scattering method” as necessary. Five samples are prepared for each level, and the average value is adopted.
(バインダー)
 上記固体電解質層に含まれる上記バインダーは、各種の有機高分子化合物(ポリマー)で構成することができる。バインダーは、無機固体電解質粒子間の結着性を高めて、機械強度、イオン伝導性等の向上に寄与する。バインダーを構成する有機高分子化合物は、粒子状のものを含んでもよいし、非粒子状のものを含んでもよい。イオン伝導性をより高める観点からは、粒子状バインダーが好ましい。粒子状バインダーは、一次粒径(体積平均粒子径)が10~1000nmが好ましく、20~750nmがより好ましく、30~500nmがさらに好ましく、50~300nmがさらに好ましい。
(binder)
The binder contained in the solid electrolyte layer can be composed of various organic high molecular compounds (polymers). The binder enhances the binding property between the inorganic solid electrolyte particles and contributes to improvement in mechanical strength, ionic conductivity, and the like. The organic polymer compound constituting the binder may include a particulate one or a non-particulate one. From the viewpoint of further improving ion conductivity, a particulate binder is preferable. The primary particle diameter (volume average particle diameter) of the particulate binder is preferably from 10 to 1,000 nm, more preferably from 20 to 750 nm, further preferably from 30 to 500 nm, and still more preferably from 50 to 300 nm.
 バインダーは、例えば、以下に述べる有機高分子化合物で構成することができる。 The binder may be composed of, for example, an organic polymer compound described below.
-含フッ素樹脂-
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
-Fluorine-containing resin-
Examples of the fluorinated resin include polytetrafluoroethylene (PTFE), polyvinylene difluoride (PVdF), and a copolymer of polyvinylene difluoride and hexafluoropropylene (PVdF-HFP).
-炭化水素系熱可塑性樹脂-
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
-Hydrocarbon thermoplastic resin-
Examples of the hydrocarbon thermoplastic resin include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
-(メタ)アクリル樹脂-
 (メタ)アクリル樹脂としては、各種の(メタ)アクリルモノマー、(メタ)アクリルアミドモノマー、及びこれらモノマーの2種以上の共重合体が挙げられる。
 また、その他のビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられるが、これらに限定されるものではない。本願明細書において、コポリマーは、統計コポリマー及び周期コポリマーのいずれでもよく、ランダムコポリマーが好ましい。
-(Meth) acrylic resin-
Examples of the (meth) acrylic resin include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of two or more of these monomers.
In addition, copolymers with other vinyl monomers are also preferably used. For example, a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene, It is not limited to these. In the present specification, the copolymer may be any of a statistical copolymer and a periodic copolymer, and is preferably a random copolymer.
-その他の樹脂-
 その他の樹脂としては、例えば、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
-Other resins-
Examples of other resins include polyurethane resins, polyurea resins, polyamide resins, polyimide resins, polyester resins, polyether resins, polycarbonate resins, and cellulose derivative resins.
 固体電解質組成物がバインダーを含む場合、固体電解質組成物固形分中、バインダーの含有量は1~20質量%とすることができ、2~15質量%が好ましく、3~10質量%がさらに好ましい。 When the solid electrolyte composition contains a binder, the content of the binder in the solid content of the solid electrolyte composition can be 1 to 20% by mass, preferably 2 to 15% by mass, more preferably 3 to 10% by mass. .
 上記の中でも、含フッ素樹脂、炭化水素系熱可塑性樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂及びセルロース誘導体樹脂が好ましく、無機固体電解質との親和性が良好であり、また、樹脂自体の柔軟性が良好で、固体粒子とのより強固な結着性を示し得る点で、(メタ)アクリル樹脂又はポリウレタン樹脂が特に好ましい。
 上記各種の樹脂は、市販品を用いることができる。また、常法により調製することもできる。
 バインダーを構成する高分子の数平均分子量は、固体粒子間の結着性向上の観点から、1000~1000000であることが好ましく、10000~500000がより好ましい。
 なお、上記で説明した有機高分子化合物は一例であり、本発明におけるバインダーはこれらの形態に限定されるものではない。
Among the above, a fluorine-containing resin, a hydrocarbon-based thermoplastic resin, a (meth) acrylic resin, a polyurethane resin, a polycarbonate resin, and a cellulose derivative resin are preferable, which have good affinity with an inorganic solid electrolyte, and A (meth) acrylic resin or a polyurethane resin is particularly preferred in that it has good flexibility and can show stronger binding with solid particles.
Commercially available products can be used as the above various resins. Moreover, it can also be prepared by a conventional method.
The number average molecular weight of the polymer constituting the binder is preferably from 1,000 to 1,000,000, and more preferably from 10,000 to 500,000, from the viewpoint of improving the binding between solid particles.
The organic polymer compound described above is an example, and the binder in the present invention is not limited to these forms.
(リチウム塩)
 固体電解質含有層は、リチウム塩(支持電解質)を含有してもよい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 固体電解質含有層がリチウム塩を含む場合、リチウム塩の含有量は、無機固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(Lithium salt)
The solid electrolyte containing layer may contain a lithium salt (supporting electrolyte).
As the lithium salt, a lithium salt usually used for this kind of product is preferable, and there is no particular limitation. For example, lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
When the solid electrolyte containing layer contains a lithium salt, the content of the lithium salt is preferably at least 0.1 part by mass, more preferably at least 5 parts by mass, based on 100 parts by mass of the inorganic solid electrolyte. As a maximum, 50 mass parts or less are preferred, and 20 mass parts or less are more preferred.
(イオン液体)
 固体電解質含有層は、イオン伝導度をより向上させるため、イオン液体を含有してもよい。イオン液体としては、特に限定されないが、イオン伝導度を効果的に向上させる観点から、上述したリチウム塩を溶解するものが好ましい。例えば、下記のカチオンと、アニオンとの組み合わせよりなる化合物が挙げられる。
(Ionic liquid)
The solid electrolyte containing layer may contain an ionic liquid in order to further improve the ionic conductivity. The ionic liquid is not particularly limited, but is preferably one that dissolves the above-described lithium salt from the viewpoint of effectively improving ionic conductivity. For example, a compound comprising a combination of the following cation and an anion is exemplified.
<正極活物質層、負極活物質層>
 本発明の積層部材を構成する正極活物質層及び負極活物質層は、全固体二次電池において用いられる通常の構成材料で形成することができる。正極活物質層には正極活物質が含まれ、負極活物質層には負極活物質が含まれる。正極活物質層及び負極活物質層は、活物質を含むこと以外は、上述した固体電解質層の構成と同じであることが好ましい。
 すなわち、本発明において正極活物質層、及び負極活物質層は、上述した固体電解質組成物に、対応する活物質を含有させた組成物(正極形成用組成物及び負極形成用組成物。これらをまとめて電極形成用組成物とも称す。)を調製し、これを基材に塗布して形成することができる。電極形成用組成物中の各成分含有量は、目的に応じて適宜に調整できる。例えば、電極形成用組成物の固形分中、活物質の含有量を20~95質量%とすることができ、30~90質量%がより好ましい。
<Positive electrode active material layer, negative electrode active material layer>
The positive electrode active material layer and the negative electrode active material layer that constitute the laminated member of the present invention can be formed by ordinary constituent materials used in an all-solid secondary battery. The positive electrode active material layer contains a positive electrode active material, and the negative electrode active material layer contains a negative electrode active material. The positive electrode active material layer and the negative electrode active material layer preferably have the same configuration as the above-described solid electrolyte layer except that they include an active material.
That is, in the present invention, the positive electrode active material layer and the negative electrode active material layer are a composition (a positive electrode forming composition and a negative electrode forming composition; a composition in which a corresponding active material is added to the solid electrolyte composition described above. (Referred to collectively as a composition for forming an electrode)), and applied to a substrate to form the composition. The content of each component in the electrode forming composition can be appropriately adjusted depending on the purpose. For example, the content of the active material in the solid content of the electrode forming composition can be 20 to 95% by mass, and more preferably 30 to 90% by mass.
(活物質)
 活物質の形状は、特に制限されないが、粒子状が好ましい。また、活物質の粒径は、上記粒径比を満足する限り、特に制限されない。活物質の粒径は、分散性向上、固体粒子間の接触面積向上、界面反応性低減の点で、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることがさらに好ましい。また、活物質の粒径は、20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。活物質の粒径は平均粒径を意味し、無機固体電解質の粒径と同様にして決定することができる。活物質の粒径が粒径測定装置の測定限界以下の場合は、必要により活物質を乾固した後に、透過型電子顕微鏡(TEM)観察により粒径を測定する。
(Active material)
The shape of the active material is not particularly limited, but is preferably particulate. The particle size of the active material is not particularly limited as long as the above-mentioned particle size ratio is satisfied. The particle diameter of the active material is preferably 0.1 μm or more, more preferably 1 μm or more, and more preferably 2 μm or more from the viewpoints of improving dispersibility, increasing the contact area between solid particles, and reducing interface reactivity. Is more preferable. The particle size of the active material is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. The particle size of the active material means an average particle size, and can be determined in the same manner as the particle size of the inorganic solid electrolyte. When the particle size of the active material is equal to or less than the measurement limit of the particle size measuring device, the active material is dried if necessary, and then the particle size is measured by observation with a transmission electron microscope (TEM).
-正極活物質-
 正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
-Positive electrode active material-
The positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element such as sulfur, which can be combined with Li, or a composite of sulfur and a metal.
Among them, a transition metal oxide is preferably used as the positive electrode active material, and a transition metal oxide containing a transition metal element M a (at least one element selected from Co, Ni, Fe, Mn, Cu, and V). Are more preferred. In addition, the transition metal oxide includes an element M b (an element of Group 1 (Ia), an element of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P or B). The mixing amount is preferably 0 ~ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing such that the molar ratio of Li / Ma becomes 0.3 to 2.2 are more preferable.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, (MD) And (ME) lithium-containing transition metal silicate compounds.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
(MA) As specific examples of the transition metal oxide having a layered rock salt type structure, LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0.1 . 05 O 2 (lithium nickel cobalt aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
(MB) Specific examples of the transition metal oxide having a spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8, and Li. 2 NiMn 3 O 8 .
Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. And monoclinic nasicon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
(ME) Examples of the lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
 正極活物質を所望の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。 (4) In order to make the positive electrode active material have a desired particle size, an ordinary pulverizer or a classifier may be used. The positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The positive electrode active material may be used alone or in combination of two or more.
When the positive electrode active material layer is formed, the mass (mg) (basis weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately according to the designed battery capacity.
-負極活物質-
 負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体及びリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al及びIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵及び放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
-Negative electrode active material-
The negative electrode active material is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, carbonaceous materials, metal oxides such as tin oxide, silicon oxide, metal composite oxides, lithium alone and lithium alloys such as lithium aluminum alloy, and , Sn, Si, Al, In and other metals that can form an alloy with lithium. Among them, a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability. Further, as the metal composite oxide, it is preferable that lithium can be inserted and extracted. The material is not particularly limited, but preferably contains titanium and / or lithium from the viewpoint of high current density charge / discharge characteristics.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。 炭素 A carbonaceous material used as a negative electrode active material is a material substantially composed of carbon. For example, various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin. A carbonaceous material obtained by firing a resin can be used. Further, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. , Mesophase microspheres, graphite whiskers, flat graphite, and the like.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。 As the metal oxide and the metal composite oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table is also preferably used. Can be The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having an apex in a range of 20 ° to 40 ° in 2θ value, and a crystalline diffraction line. May be provided.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、並びにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb及びSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the compound group consisting of the above-mentioned amorphous oxide and chalcogenide, an amorphous oxide of a metalloid element and a chalcogenide are more preferable, and an element of Group 13 (IIIB) to Group 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are particularly preferably oxides composed of one or a combination of two or more thereof, and chalcogenides. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Further, these may be a composite oxide with lithium oxide, for example, Li 2 SnO 2 .
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。 It is also preferable that the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuation at the time of occlusion and release of lithium ions. This is preferable in that the life of the battery can be improved.
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。 に お い て In the present invention, it is also preferable to use a Si-based negative electrode. Generally, a Si negative electrode can store more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the storage amount of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
 負極活物質を所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル及び旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式及び湿式ともに用いることができる。 通常 In order to make the negative electrode active material have a predetermined particle size, an ordinary pulverizer or a classifier is used. For example, mortars, ball mills, sand mills, vibrating ball mills, satellite ball mills, planetary ball mills, swirling air jet mills, sieves, and the like are preferably used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as methanol can also be performed if necessary. Classification is preferably performed to obtain a desired particle size. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be performed both in a dry process and in a wet process.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 化学 The chemical formula of the compound obtained by the above firing method can be calculated from inductively coupled plasma (ICP) emission spectroscopy as a measuring method, and from the mass difference of powder before and after firing as a simple method.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The negative electrode active material may be used alone or in combination of two or more.
When the negative electrode active material layer is formed, the mass (mg) (basis weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined appropriately according to the designed battery capacity.
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。また、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
 また、本発明において、正極活物質層や負極活物質層は、導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いてもよい。
The surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide. In addition, the surface of the particles of the positive electrode active material or the negative electrode active material may be subjected to a surface treatment with an active ray or an active gas (such as plasma) before and after the surface coating.
Further, in the present invention, the positive electrode active material layer and the negative electrode active material layer may contain a conductive auxiliary. The conductive assistant is not particularly limited, and those known as general conductive assistants can be used. For example, electron conductive materials such as natural graphite, graphite such as artificial graphite, carbon black such as acetylene black, Ketjen black, furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube Carbon fibers such as graphene or fullerene; metal powder such as copper and nickel; metal fibers; and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives. May be used.
 本発明の積層部材において、負極活物質層、固体電解質層及び正極活物質層の各層厚は特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10μm~500μmが好ましく、20~400μmがより好ましく、20~200μmがさらに好ましい。また、負極活物質層、固体電解質層及び正極活物質層の各層は、単層であってもよく、複層としてもよい。複層の場合、複層全体の厚さを上記の好ましい範囲内とすることが好ましい。 に お い て In the laminated member of the present invention, the thickness of each of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer is not particularly limited. The thickness of each layer is preferably 10 μm to 500 μm, more preferably 20 to 400 μm, and still more preferably 20 to 200 μm, in consideration of the dimensions of a general all-solid secondary battery. In addition, each of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer may be a single layer or a multilayer. In the case of a multilayer, it is preferable that the thickness of the entire multilayer be within the above preferred range.
 本発明の積層部材は、上述した負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1~500μmとすることができる。 積 層 In the laminated member of the present invention, the above-described negative electrode active material layer can be a lithium metal layer. Examples of the lithium metal layer include a layer formed by depositing or molding lithium metal powder, a lithium foil, and a lithium vapor deposition film. Regardless of the thickness of the negative electrode active material layer, the thickness of the lithium metal layer can be, for example, 1 to 500 μm.
<集電体層>
 本発明の積層部材に用いる集電体層は、電子伝導体が好ましい。本発明の積層部材に用いる集電体層のうち少なくとも1つは金属箔からなることが好ましい。この金属箔上に、各層形成用のスラリーが逐次、又は同時に塗布されることが好ましい。
 この金属箔を正極集電体層として使用する場合、その構成材料は、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどが挙げられる。また、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)も好ましい。その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 また、上記金属箔を負極集電体層として使用する場合、その構成材料は、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどが挙げられる。また、アルミニウム、銅、銅合金又はステンレス鋼の表面をカーボン、ニッケル、チタンあるいは銀で処理したものも好ましい。なかでも負極集電体層の構成材料は、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
<Current collector layer>
The current collector layer used for the laminated member of the present invention is preferably an electron conductor. It is preferable that at least one of the current collector layers used in the laminated member of the present invention is made of a metal foil. It is preferable that the slurry for forming each layer is sequentially or simultaneously applied onto the metal foil.
When this metal foil is used as a positive electrode current collector layer, its constituent materials include aluminum, an aluminum alloy, stainless steel, nickel, and titanium. Further, those obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium or silver (thin films formed) are also preferable. Among them, aluminum and aluminum alloy are more preferable.
When the metal foil is used as a negative electrode current collector layer, its constituent materials include aluminum, copper, copper alloy, stainless steel, nickel, and titanium. Further, those obtained by treating the surface of aluminum, copper, copper alloy or stainless steel with carbon, nickel, titanium or silver are also preferable. Above all, the constituent material of the negative electrode current collector layer is more preferably aluminum, copper, a copper alloy, or stainless steel.
 金属箔からなる集電体層の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。 The shape of the current collector layer made of a metal foil is usually a film sheet, but a net, a punched material, a lath, a porous material, a foam, a molded product of a fiber group, and the like may also be used. Can be.
 本発明の積層部材が、例えば、上記(a)及び(b)の積層構造の場合、上述したように、第2の集電体層は第2の集電体層の構成材料を含有するスラリーを用いて形成される。このスラリーは、第2の集電体層の構成材料の粉末を含有する形態とすることができる。上記(a)の積層構造では、第2の集電体層は負極集電体層であり、導電材料として、例えばアルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの粉末(粒子)を含有するスラリーを塗布して、第2の集電体層を形成することができる。また、上記(b)の積層構造では、第2の集電体層は正極活物質層であり、導電材料として、例えばアルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの粉末を含有するスラリーを用いて第2の集電体層を形成することができる。
 また、第2の集電体層は、導電材料としてカーボンブラックを含有する構成することもできる。すなわち、カーボンブラックと分散媒とを混合してなるスラリーを用いて集電体層を塗布形成することも好ましい。
 本発明の積層部材が上記(c)の積層構造の場合、好ましくは、基材とする金属箔からなる集電体層以外の集電体層のすべてが、集電体層の構成材料を含有するスラリーを用いてウェットオンウェット塗布により形成される。集電体層の構成材料は、モノポーラ型、バイポーラ型等の形態を考慮し、例えば、上述した構成材料から適宜に選択することができる。
 集電体層を形成するためのスラリーは、バインダーを含むことも好ましい。バインダーの好ましい形態は、上述したバインダーと同じである。バインダーを含むことにより、集電体層の構成材料の結着性が高まり、また活物質層との密着性も高めることができ、電池の充放電時の抵抗をより低く抑えることができる。
 スラリー中の、集電体層の構成材料の含有量は、目的に応じて適宜に調整すればよい。例えば、スラリーの固形分中、導電材料の含有量を50質量%以上とすることができ、70質量%以上が好ましく、80質量%以上がより好ましい。また、スラリーがバインダーを含む場合、導電材料/バインダー(質量比)を3/1~50/1とすることが好ましく、5/1~30/1とすることがより好ましく、7/1~20/1とすることがさらに好ましい。
When the laminated member of the present invention has, for example, the laminated structure of (a) and (b), as described above, the second current collector layer contains the slurry containing the constituent material of the second current collector layer. It is formed by using. This slurry may be in a form containing a powder of a constituent material of the second current collector layer. In the above laminated structure (a), the second current collector layer is a negative electrode current collector layer, and as a conductive material, for example, powder (particles) of aluminum, copper, copper alloy, stainless steel, nickel, titanium, or the like is used. The second current collector layer can be formed by applying the contained slurry. In the above-described laminated structure (b), the second current collector layer is a positive electrode active material layer, and a slurry containing a powder of, for example, aluminum, an aluminum alloy, stainless steel, nickel, and titanium as a conductive material is used. Can be used to form a second current collector layer.
Further, the second current collector layer may be configured to contain carbon black as a conductive material. That is, it is also preferable to apply and form the current collector layer using a slurry obtained by mixing carbon black and a dispersion medium.
When the laminated member of the present invention has the laminated structure of the above (c), preferably, all of the current collector layers other than the current collector layer composed of the metal foil as the base material contain the constituent material of the current collector layer It is formed by wet-on-wet coating using a slurry to be formed. The constituent material of the current collector layer can be appropriately selected from, for example, the constituent materials described above in consideration of the form such as a monopolar type and a bipolar type.
The slurry for forming the current collector layer also preferably contains a binder. The preferred form of the binder is the same as the binder described above. By including the binder, the binding property of the constituent material of the current collector layer can be increased, the adhesion to the active material layer can be increased, and the resistance during charge and discharge of the battery can be further reduced.
The content of the constituent material of the current collector layer in the slurry may be appropriately adjusted depending on the purpose. For example, the content of the conductive material in the solid content of the slurry can be 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. When the slurry contains a binder, the conductive material / binder (mass ratio) is preferably 3/1 to 50/1, more preferably 5/1 to 30/1, and more preferably 7/1 to 20/1. / 1 is more preferable.
 集電体層の厚みは、特に制限されないが、1~500μmが好ましく、2~300μmがより好ましく、2~200μmがさらに好ましい。 厚 み The thickness of the current collector layer is not particularly limited, but is preferably 1 to 500 μm, more preferably 2 to 300 μm, and further preferably 2 to 200 μm.
 本発明の製造方法において、固体電解質層、正極活物質層、負極活物質層、及び集電体層を形成するためのスラリーに用いる分散媒の種類は同じであることが好ましい。 に お い て In the production method of the present invention, it is preferable that the types of the dispersion medium used in the slurry for forming the solid electrolyte layer, the positive electrode active material layer, the negative electrode active material layer, and the current collector layer are the same.
[全固体二次電池の製造方法]
 本発明の全固体二次電池の製造方法は、上述した本発明の製造方法により本発明の積層部材を得て、この積層部材を用いて全固体二次電池を得る方法である。本発明の全固体二次電池の製造方法には、本発明の積層部材を用いること以外は、通常の全固体二次電池の製造工程を適用すればよい。本発明の積層部材は、そのままでも二次電池として作動するが、通常は、本発明の積層部材を適当なハウジングに収めて(筐体に封入したり、コインケース等に収めたりして)、加圧状態として全固体二次電池とする。
 上記筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[Method of manufacturing all solid state secondary battery]
The method for manufacturing an all-solid secondary battery of the present invention is a method of obtaining the laminated member of the present invention by the above-described manufacturing method of the present invention, and obtaining an all-solid secondary battery using the laminated member. In the method for producing an all-solid secondary battery of the present invention, a general all-solid secondary battery production process may be applied except for using the laminated member of the present invention. Although the laminated member of the present invention operates as a secondary battery as it is, usually, the laminated member of the present invention is housed in an appropriate housing (enclosed in a housing or put in a coin case or the like). The pressurized state is assumed to be an all solid state secondary battery.
The housing may be made of metal or resin (plastic). When a metallic material is used, for example, an aluminum alloy or a stainless steel material can be used. It is preferable that the metallic casing is divided into a casing on the positive electrode side and a casing on the negative electrode side, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing short circuit.
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化することが好ましい。初期化は、特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
<Initialization>
It is preferable to initialize the all-solid-state secondary battery manufactured as described above after manufacturing or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charge / discharge in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all solid state secondary battery is reached.
 以下に、図3を参照して、本発明の全固体二次電池の製造方法で得られる全固体二次電池(リチウムイオン二次電池)の一実施形態について説明する。図3は、この全固体二次電池を模式化して示す断面図であり、筐体等の記載は省略し、本発明の積層部材(上記(a)及び(b)の積層構造に対応)の構成を示すものである。全固体二次電池103は、負極側からみて、負極集電体層11、負極活物質層12、固体電解質層13、正極活物質層14、正極集電体層15を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位16に電子が供給される。図示した例では、作動部位16に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。 Hereinafter, an embodiment of an all solid state secondary battery (lithium ion secondary battery) obtained by the method for manufacturing an all solid state secondary battery of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view schematically illustrating the all-solid-state secondary battery, in which the description of the housing and the like is omitted, and the laminated member (corresponding to the laminated structure of the above (a) and (b)) of the present invention. 2 shows the configuration. When viewed from the negative electrode side, the all-solid secondary battery 103 includes a negative electrode current collector layer 11, a negative electrode active material layer 12, a solid electrolyte layer 13, a positive electrode active material layer 14, and a positive electrode current collector layer 15 in this order. Each layer is in contact with each other and has an adjacent structure. By employing such a structure, at the time of charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein. On the other hand, at the time of discharging, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 16. In the illustrated example, a light bulb is employed as a model for the operating portion 16, and this is turned on by discharge.
 本発明の製造方法で得られる全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。 全 The all-solid secondary battery obtained by the production method of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when mounted on an electronic device, for example, a notebook computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, and a mobile phone Copy, portable printer, headphone stereo, video movie, LCD television, handy cleaner, portable CD, mini disk, electric shaver, transceiver, electronic organizer, calculator, portable tape recorder, radio, backup power supply, memory card, and the like. Other consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting fixtures, toys, game machines, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). . Furthermore, it can be used for various military purposes and space applications. Further, it can be combined with a solar cell.
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。 本 Hereinafter, the present invention will be described in more detail based on examples. It should be noted that the present invention is not construed as being limited thereto.
[硫化物系無機固体電解質(Li-P-S系ガラス)の合成]
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
[Synthesis of sulfide-based inorganic solid electrolyte (Li-PS-based glass)]
The sulfide-based inorganic solid electrolyte is manufactured by T.I. Ohtomo, A .; Hayashi, M .; Tatsusumisago, Y .; Tsuchida, S .; Hama, K .; Kawamoto, Journal of Power Sources, 233, (2013), pp 231-235 and A.I. Hayashi, S .; Hama, H .; Morimoto, M .; Tatsusumisago, T .; Minami, Chem. Lett. , (2001), pp872-873.
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42kg、五硫化二リン(P、Aldrich社製、純度>99%)3.90kgをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳鉢を用いて、5分間混合した。なお、LiS及びPはモル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、「LPS」とも称する。)6.20gを得た。
Specifically, in a glove box under an argon atmosphere (dew point -70 ° C.), 2.42 kg of lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%) and diphosphorus pentasulfide (P 2 S) were used. 5. Aldrich Co., purity> 99%) 3.90 kg were weighed, placed in an agate mortar, and mixed for 5 minutes using the agate mortar. Note that Li 2 S and P 2 S 5 were in a molar ratio of Li 2 S: P 2 S 5 = 75: 25.
66 zirconia beads having a diameter of 5 mm were placed in a 45 mL zirconia container (manufactured by Fritsch), and the entire mixture of lithium sulfide and diphosphorus pentasulfide was charged therein. The container was sealed under an argon atmosphere. The container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mechanical milling was performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powdered sulfide-based inorganic solid electrolyte (Li-PS-based). Glass, also referred to as "LPS".) 6.20 g was obtained.
[固体電解質層形成用スラリーの調製]
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを130個投入し、LPSを3.0g、バインダーとしてスチレンブタジエンゴム(SBR、平均一次粒径100nm、以下同様)を0.09g、分散媒としてトルエンを9.0g投入した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数100rpmで30分混合し、粒径2.0μmのLPSを含有する、固体電解質層を形成するための固体電解質層形成用スラリーを調製した。
[Preparation of slurry for forming solid electrolyte layer]
130 zirconia beads having a diameter of 5 mm are put into a 45 mL zirconia container (manufactured by Fritsch), 3.0 g of LPS, and 0.09 g of styrene-butadiene rubber (SBR, average primary particle size 100 nm, the same applies hereinafter) as a binder, 9.0 g of toluene was added as a dispersion medium. A container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 100 rpm for 30 minutes to form a solid electrolyte layer containing LPS having a particle size of 2.0 μm. A slurry for forming a solid electrolyte layer was prepared.
[正極活物質層形成用スラリーの調製]
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPSを2.8g、バインダーとしてSBRを0.1g、分散媒としてトルエン12.3gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてNMC(LiNi0.33Co0.33Mn0.33(アルドリッチ社製))7.0g、導電助剤としてアセチレンブラック(デンカ(株)製)を0.2g容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数100rpmで10分間混合を続け、正極活物質層形成用スラリーを調製した。
[Preparation of slurry for forming positive electrode active material layer]
180 zirconia beads having a diameter of 5 mm were put into a 45 mL zirconia container (made by Fritsch), 2.8 g of LPS synthesized above, 0.1 g of SBR as a binder, and 12.3 g of toluene as a dispersion medium were put therein. . The container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours. Thereafter, 7.0 g of NMC (LiNi 0.33 Co 0.33 Mn 0.33 O 2 (manufactured by Aldrich)) as an active material and 0.2 g of acetylene black (manufactured by Denka Corporation) as a conductive aid were placed in a container. Then, the container was set in a planetary ball mill P-7, and mixing was continued at a temperature of 25 ° C. and a rotation speed of 100 rpm for 10 minutes to prepare a slurry for forming a positive electrode active material layer.
[負極活物質層形成用スラリーの調製]
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS系ガラス2.8g、バインダーとしてSBSを0.2g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質として黒鉛7.0gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け負極活物質層形成用スラリーを調製した。
[Preparation of slurry for forming negative electrode active material layer]
180 zirconia beads having a diameter of 5 mm are put into a 45 mL zirconia container (made by Fritsch), 2.8 g of the LPS-based glass synthesized above, 0.2 g of SBS as a binder, and 12.3 g of heptane as a dispersion medium. did. The container was set in a planetary ball mill P-7 manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours. Thereafter, 7.0 g of graphite as an active material was charged into the container, and similarly, the container was set in a planetary ball mill P-7, and mixed at a temperature of 25 ° C. and a rotation speed of 200 rpm for 15 minutes to obtain a slurry for forming a negative electrode active material layer. Prepared.
[集電体層形成用スラリーの調製]
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、カーボンブラックを6.0g、バインダーとしてSBRを0.06g、分散媒としてヘプタンを4.0g投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合し、集電体層形成用スラリーを調製した。
[Preparation of slurry for forming current collector layer]
180 zirconia beads having a diameter of 5 mm were charged into a 45 mL zirconia container (Fritsch), 6.0 g of carbon black, 0.06 g of SBR as a binder, and 4.0 g of heptane as a dispersion medium. The container was set in a planetary ball mill P-7 manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours to prepare a slurry for forming a current collector layer.
[全固体二次電池用積層部材の作製]
<実施例1>
 上記で調製した正極活物質層形成用スラリーを、アルミ箔(正極集電体、厚さ20μm)上に、アプリケータ(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により30mg/cmの目付量となるように塗布し、アルミ箔からなる正極集電体層上に塗膜(正極活物質層前駆塗膜)を形成した。
 正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、正極活物質層前駆塗膜上に塗膜(固体電解質層前駆塗膜)を形成した。
 固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、固体電解質層前駆塗膜上に負極活物質層形成用スラリーを上記アプリケータにより20mg/cmの目付量となるように塗布し、固体電解質層前駆塗膜上に塗膜(負極活物質層前駆塗膜)を形成した。
 負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、負極活物質層前駆塗膜上に塗膜(第2集電体層前駆塗膜)を形成した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で1時間加熱して分散媒を除去し、上述した(a)の積層構造を有する実施例1の全固体二次電池用積層部材を得た。
 実施例1の全固体二次電池用積層部材において、正極活物質層の厚さは100μm、固体電解質層の厚さは20μm、負極活物質層の厚さは80μm、第2集電体層の厚さは20μmであった。
[Production of laminated member for all solid state secondary battery]
<Example 1>
The slurry prepared above for forming a positive electrode active material layer was applied on an aluminum foil (positive electrode current collector, thickness: 20 μm) using an applicator (trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.) at 30 mg / It was applied so as to have a basis weight of 2 cm2, and a coating film (a positive electrode active material layer precursor coating film) was formed on the positive electrode current collector layer made of aluminum foil.
In the state where the residual solvent amount of the positive electrode active material layer precursor coating film is 5% by mass, the solid electrolyte layer forming slurry is applied onto the positive electrode active material layer precursor coating film so as to have a basis weight of 8 mg / cm 2 by the applicator. This was applied to form a coating film (solid electrolyte layer precursor coating film) on the positive electrode active material layer precursor coating film.
With the residual solvent amount of the solid electrolyte layer precursor coating film being 5% by mass, the negative electrode active material layer forming slurry was applied on the solid electrolyte layer precursor coating film by the above-mentioned applicator so as to have a basis weight of 20 mg / cm 2. Then, a coating film (a negative electrode active material layer precursor coating film) was formed on the solid electrolyte layer precursor coating film.
With the residual solvent amount of the negative electrode active material layer precursor coating film being 5% by mass, the current collector layer forming slurry was applied on the negative electrode active material layer precursor coating film by the above-mentioned applicator to have a basis weight of 10 mg / cm 2. To form a coating film (second current collector layer precursor coating film) on the negative electrode active material layer precursor coating film.
The laminate thus obtained by wet-on-wet coating was heated at 120 ° C. for 1 hour to remove the dispersion medium, thereby obtaining a laminated member for an all-solid-state secondary battery of Example 1 having the above-described laminated structure (a). Was.
In the laminated member for an all solid state secondary battery of Example 1, the thickness of the positive electrode active material layer was 100 μm, the thickness of the solid electrolyte layer was 20 μm, the thickness of the negative electrode active material layer was 80 μm, and the thickness of the second current collector layer was The thickness was 20 μm.
<実施例2>
 アルミ箔(正極集電体、厚さ20μm)上に、正極活物質層形成用スラリー、固体電解質層形成用スラリー、負極活物質層形成用スラリー、及び集電体層形成用スラリーを、この順に塗膜が積層されるように重層専用ギーサーを用いて同時重層塗布した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、上述した(a)の積層構造を有する実施例2の全固体二次電池用積層部材を得た。
 実施例2の全固体二次電池用積層部材において、正極活物質層の厚さは100μm、固体電解質層の厚さは20μm、負極活物質層の厚さは80μm、第2集電体層の厚さは20μmであった。
<Example 2>
A slurry for forming a positive electrode active material layer, a slurry for forming a solid electrolyte layer, a slurry for forming a negative electrode active material layer, and a slurry for forming a current collector layer are formed on an aluminum foil (positive electrode current collector, 20 μm thick) in this order. Simultaneous multi-layer coating was performed using a multi-layer dedicated greaser so that the coating films were laminated.
The laminate thus obtained by wet-on-wet coating was heated at 120 ° C. for 2 hours to remove the dispersion medium, thereby obtaining a laminate member for an all-solid-state secondary battery of Example 2 having the above-described laminate structure (a). Was.
In the laminated member for an all-solid-state secondary battery of Example 2, the thickness of the positive electrode active material layer was 100 μm, the thickness of the solid electrolyte layer was 20 μm, the thickness of the negative electrode active material layer was 80 μm, and the thickness of the second current collector layer was The thickness was 20 μm.
<実施例3>
 実施例1において、第2集電体層前駆塗膜を形成した後、第2集電体層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層形成用スラリーを、上記アプリケータにより30mg/cmの目付量となるように塗布し、第2集電体層前駆塗膜上に塗膜(第2正極活物質層前駆塗膜)を形成した。
 第2正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第2正極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、第2正極活物質層前駆塗膜上に塗膜(第2固体電解質層前駆塗膜)を形成した。
 第2固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第2固体電解質層前駆塗膜上に負極活物質層形成用スラリーを上記アプリケータにより20mg/cmの目付量となるように塗布し、第2固体電解質層前駆塗膜上に塗膜(第2負極活物質層前駆塗膜)を形成した。
 第2負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第2負極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第2負極活物質層前駆塗膜上に塗膜(第3集電体層前駆塗膜)を形成した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを2段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例3の全固体二次電池用積層部材を得た。実施例3の全固体二次電池用積層部材はバイポーラ型である。
 実施例3の全固体二次電池用積層部材において、各層の厚さは実施例1と同じである。
<Example 3>
In Example 1, after forming the second current collector layer precursor coating film, the positive electrode active material layer forming slurry was mixed with the above-mentioned slurry in a state where the residual solvent amount of the second current collector layer precursor coating film was 5% by mass. The solution was applied with an applicator so as to have a basis weight of 30 mg / cm 2 , and a coating film (second positive electrode active material layer precursor coating film) was formed on the second current collector layer precursor coating film.
With the residual solvent amount of the second positive electrode active material layer precursor coating film being 5% by mass, the solid electrolyte layer forming slurry was applied on the second positive electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 . And a coating film (second solid electrolyte layer precursor coating film) was formed on the second positive electrode active material layer precursor coating film.
With the amount of the residual solvent in the second solid electrolyte layer precursor coating film being 5% by mass, the negative electrode active material layer forming slurry was applied onto the second solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 20 mg / cm 2. Thus, a coating film (second negative electrode active material layer precursor coating film) was formed on the second solid electrolyte layer precursor coating film.
With the residual solvent amount of the second negative electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied onto the second negative electrode active material layer precursor coating film by the above-mentioned applicator at a basis weight of 10 mg / cm 2 . To form a coating film (third current collector layer precursor coating film) on the second negative electrode active material layer precursor coating film.
The laminate obtained by wet-on-wet coating in this manner is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which two laminating units are stacked (an embodiment of the above-described laminated structure (c)). A laminated member for an all-solid secondary battery of Example 3 was obtained. The laminated member for an all solid state secondary battery of Example 3 is of a bipolar type.
In the all-solid-state secondary battery laminated member of Example 3, the thickness of each layer is the same as that of Example 1.
<実施例4>
 実施例3において、第3集電体層前駆塗膜を形成した後、第3集電体層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層形成用スラリーを、上記アプリケータにより30mg/cmの目付量となるように塗布し、第3集電体層前駆塗膜上に塗膜(第3正極活物質層前駆塗膜)を形成した。
 第3正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第3正極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、正極活物質層前駆塗膜上に塗膜(第3固体電解質層前駆塗膜)を形成した。
 第3固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第3固体電解質層前駆塗膜上に負極活物質層形成用スラリーを上記アプリケータにより20mg/cmの目付量となるように塗布し、第3固体電解質層前駆塗膜上に塗膜(第3負極活物質層前駆塗膜)を形成した。
 第3負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第3負極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第3負極活物質層前駆塗膜上に塗膜(第4集電体層前駆塗膜)を形成した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを3段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例4の全固体二次電池用積層部材を得た。実施例3の全固体二次電池用積層部材はバイポーラ型である。
 実施例4の全固体二次電池用積層部材において、各層の厚さは実施例1と同じである。
<Example 4>
In Example 3, after forming the third current collector layer precursor coating film, the slurry for forming a positive electrode active material layer was subjected to the above-mentioned slurry in a state where the residual solvent amount of the third current collector layer precursor coating film was 5% by mass. The resultant was applied with an applicator so as to have a basis weight of 30 mg / cm 2 to form a coating film (third positive electrode active material layer precursor coating film) on the third current collector layer precursor coating film.
With the residual solvent amount of the third positive electrode active material layer precursor coating film being 5% by mass, the solid electrolyte layer forming slurry was applied onto the third positive electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 . To form a coating film (third solid electrolyte layer precursor coating film) on the positive electrode active material layer precursor coating film.
With the residual solvent amount of the third solid electrolyte layer precursor coating film being 5% by mass, the negative electrode active material layer forming slurry was applied onto the third solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 20 mg / cm 2. Thus, a coating film (third negative electrode active material layer precursor coating film) was formed on the third solid electrolyte layer precursor coating film.
With the residual solvent amount of the third negative electrode active material layer precursor coating film being 5% by mass, a current collector layer forming slurry was applied on the third negative electrode active material layer precursor coating film by the above-mentioned applicator at a basis weight of 10 mg / cm 2 . To form a coating film (fourth current collector layer precursor coating film) on the third negative electrode active material layer precursor coating film.
The laminate obtained by wet-on-wet coating in this manner is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminate structure in which three lamination units are stacked (an embodiment of the laminate structure (c) described above). A laminated member for an all-solid secondary battery of Example 4 was obtained. The laminated member for an all solid state secondary battery of Example 3 is of a bipolar type.
In the laminated member for an all-solid-state secondary battery of Example 4, the thickness of each layer is the same as that of Example 1.
<実施例5>
 実施例4において、第4集電体層前駆塗膜を形成した後、第4集電体層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層形成用スラリーを、上記アプリケータにより30mg/cmの目付量となるように塗布し、第4集電体層前駆塗膜上に塗膜(第4正極活物質層前駆塗膜)を形成した。
 第4正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第4正極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、正極活物質層前駆塗膜上に塗膜(第4固体電解質層前駆塗膜)を形成した。
 第4固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第4固体電解質層前駆塗膜上に負極活物質層形成用スラリーを上記アプリケータにより20mg/cmの目付量となるように塗布し、第4固体電解質層前駆塗膜上に塗膜(第4負極活物質層前駆塗膜)を形成した。
 第4負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第4負極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第4負極活物質層前駆塗膜上に塗膜(第5集電体層前駆塗膜)を形成した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを4段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例5の全固体二次電池用積層部材を得た。実施例3の全固体二次電池用積層部材はバイポーラ型である。
 実施例5の全固体二次電池用積層部材において、各層の厚さは実施例1と同じである。
<Example 5>
In Example 4, after forming the fourth current collector layer precursor coating film, the slurry for forming a positive electrode active material layer was subjected to the above-mentioned slurry in a state where the residual solvent amount of the fourth current collector layer precursor coating film was 5% by mass. The solution was applied with an applicator so as to have a basis weight of 30 mg / cm 2 to form a coating film (fourth positive electrode active material layer precursor coating film) on the fourth current collector layer precursor coating film.
With the residual solvent amount of the fourth positive electrode active material layer precursor coating film being 5% by mass, the solid electrolyte layer forming slurry was applied on the fourth positive electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 . To form a coating film (fourth solid electrolyte layer precursor coating film) on the positive electrode active material layer precursor coating film.
With the residual solvent amount of the fourth solid electrolyte layer precursor coating film being 5% by mass, a slurry for forming a negative electrode active material layer was applied onto the fourth solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 20 mg / cm 2. Thus, a coating film (fourth negative electrode active material layer precursor coating film) was formed on the fourth solid electrolyte layer precursor coating film.
With the residual solvent amount of the fourth negative electrode active material layer precursor coating film being 5% by mass, a current collector layer forming slurry was applied onto the fourth negative electrode active material layer precursor coating film by the above-described applicator at a basis weight of 10 mg / cm 2 . And a coating film (fifth current collector layer precursor coating film) was formed on the fourth negative electrode active material layer precursor coating film.
The laminate thus obtained by wet-on-wet coating is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which four laminating units are stacked (an embodiment of the laminated structure (c) described above). A laminated member for an all solid state secondary battery of Example 5 was obtained. The laminated member for an all solid state secondary battery of Example 3 is of a bipolar type.
In the laminated member for an all-solid-state secondary battery of Example 5, the thickness of each layer is the same as that of Example 1.
<実施例6>
 実施例1において、集電体層形成用スラリーに用いたバインダー(SBR、粒子状、0.06g)を、バインダー(S-SBR(溶液重合スチレンブタジエンゴム)、0.06g)に代えた以外は、実施例1と同様にして実施例6の全固体二次電池用積層部材を得た。S-SBRはヘプタンに溶解性である。
<Example 6>
Example 1 was the same as Example 1 except that the binder (SBR, particulate, 0.06 g) used in the slurry for forming the current collector layer was replaced with a binder (S-SBR (solution-polymerized styrene-butadiene rubber), 0.06 g). Then, a laminated member for an all-solid-state secondary battery of Example 6 was obtained in the same manner as in Example 1. S-SBR is soluble in heptane.
<実施例7>
 実施例1において、LPSを、酸化物系無機固体電解質であるLLZ:LiLaZr12(ランタンジルコン酸リチウム 平均粒径5.0μm 豊島製作所社製)
に代えた以外は、実施例1と同様にして実施例8の全固体二次電池用積層部材を得た。
<Example 7>
In Example 1, LPS was replaced with LLZ: Li 7 La 3 Zr 2 O 12 (lithium lanthanum zirconate having an average particle size of 5.0 μm, manufactured by Toshima Seisakusho), which is an oxide-based inorganic solid electrolyte.
A laminated member for an all-solid-state secondary battery of Example 8 was obtained in the same manner as in Example 1 except for changing the above.
<実施例8>
 上記で調製した負極活物質層形成用スラリーを、銅箔(負極集電体、厚さ20μm)上に、アプリケータ(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により20mg/cmの目付量となるように塗布し、銅箔からなる負極集電体層上に塗膜(負極活物質層前駆塗膜)を形成した。
 負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、負極活物質層前駆塗膜上に塗膜(固体電解質層前駆塗膜)を形成した。
 固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、固体電解質層前駆塗膜上に正極活物質層形成用スラリーを上記アプリケータにより30mg/cmの目付量となるように塗布し、固体電解質層前駆塗膜上に塗膜(正極活物質層前駆塗膜)を形成した。
 正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、正極活物質層前駆塗膜上に塗膜(第2集電体層前駆塗膜)を形成した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、上述した(b)の積層構造を有する実施例8の全固体二次電池用積層部材を得た。
 実施例8の全固体二次電池用積層部材において、塗布形成した各層の厚さは実施例1と同じである。
<Example 8>
The slurry for forming a negative electrode active material layer prepared above was applied to a copper foil (negative electrode current collector, thickness: 20 μm) using an applicator (trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.) at a concentration of 20 mg / The resultant was applied so as to have a basis weight of 2 cm 2 , and a coating film (a negative electrode active material layer precursor coating film) was formed on the negative electrode current collector layer made of copper foil.
In the state where the residual solvent amount of the negative electrode active material layer precursor coating film is 5% by mass, the solid electrolyte layer forming slurry is applied onto the negative electrode active material layer precursor coating film so as to have a basis weight of 8 mg / cm 2 by the applicator. This was applied to form a coating film (solid electrolyte layer precursor coating film) on the negative electrode active material layer precursor coating film.
In a state where the residual solvent amount of the solid electrolyte layer precursor coating film is 5% by mass, a slurry for forming a positive electrode active material layer is applied on the solid electrolyte layer precursor coating film by the above-mentioned applicator so as to have a basis weight of 30 mg / cm 2. Then, a coating film (a positive electrode active material layer precursor coating film) was formed on the solid electrolyte layer precursor coating film.
In the state where the residual solvent amount of the positive electrode active material layer precursor coating film is 5% by mass, the current collector layer forming slurry is applied on the positive electrode active material layer precursor coating film by the above-mentioned applicator to a basis weight of 10 mg / cm 2. To form a coating film (second current collector layer precursor coating film) on the positive electrode active material layer precursor coating film.
The laminate thus obtained by wet-on-wet coating was heated at 120 ° C. for 2 hours to remove the dispersion medium, thereby obtaining a laminated member for an all-solid secondary battery of Example 8 having the above-described laminated structure (b). Was.
In the all-solid-state secondary battery laminated member of Example 8, the thickness of each layer formed by application is the same as that of Example 1.
<実施例9>
 銅箔(負極集電体、厚さ20μm)上に、負極活物質層形成用スラリー、固体電解質層形成用スラリー、正極活物質層形成用スラリー、及び集電体層形成用スラリーを、この順に塗膜が積層されるように重層専用ギーサーを用いて同時重層塗布した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、上述した(b)の積層構造を有する実施例9の全固体二次電池用積層部材を得た。
 実施例9の全固体二次電池用積層部材において、塗布形成した各層の厚さは実施例8と同じである。
<Example 9>
A slurry for forming a negative electrode active material layer, a slurry for forming a solid electrolyte layer, a slurry for forming a positive electrode active material layer, and a slurry for forming a current collector layer are formed on a copper foil (a negative electrode current collector, having a thickness of 20 μm) in this order. Simultaneous multi-layer coating was performed using a multi-layer dedicated greaser so that the coating films were laminated.
The laminate thus obtained by wet-on-wet coating was heated at 120 ° C. for 2 hours to remove the dispersion medium, thereby obtaining a laminated member for an all-solid-state secondary battery of Example 9 having the above-mentioned (b) laminated structure. Was.
In the all-solid-state secondary battery laminated member of Example 9, the thickness of each layer formed by coating is the same as that of Example 8.
<実施例10>
 実施例8において、第2集電体層前駆塗膜を形成した後、第2集電体層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層形成用スラリーを、上記アプリケータにより20mg/cmの目付量となるように塗布し、第2集電体層前駆塗膜上に塗膜(第2負極活物質層前駆塗膜)を形成した。
 第2負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第2負極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、第2負極活物質層前駆塗膜上に塗膜(第2固体電解質層前駆塗膜)を形成した。
 第2固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第2固体電解質層前駆塗膜上に正極活物質層形成用スラリーを上記アプリケータにより30mg/cmの目付量となるように塗布し、第2固体電解質層前駆塗膜上に塗膜(第2正極活物質層前駆塗膜)を形成した。
 第2正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第2正極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第2正極活物質層前駆塗膜上に塗膜(第3集電体層前駆塗膜)を形成した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを2段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例10の全固体二次電池用積層部材を得た。実施例10の全固体二次電池用積層部材はバイポーラ型である。
 実施例10の全固体二次電池用積層部材において、各層の厚さは実施例8と同じである。
<Example 10>
In Example 8, after forming the second current collector layer precursor coating film, the slurry for forming a negative electrode active material layer was coated with the above-mentioned slurry in a state where the residual solvent amount of the second current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a basis weight of 20 mg / cm 2 , and a coating film (second negative electrode active material layer precursor coating film) was formed on the second current collector layer precursor coating film.
With the residual solvent amount of the second negative electrode active material layer precursor coating film being 5% by mass, the solid electrolyte layer forming slurry was applied on the second negative electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 . To form a coating film (second solid electrolyte layer precursor coating film) on the second negative electrode active material layer precursor coating film.
With the residual solvent amount of the second solid electrolyte layer precursor coating film being 5% by mass, the positive electrode active material layer forming slurry was applied on the second solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 30 mg / cm 2. Thus, a coating film (second positive electrode active material layer precursor coating film) was formed on the second solid electrolyte layer precursor coating film.
With the residual solvent amount of the second positive electrode active material layer precursor coating film being 5% by mass, a current collector layer forming slurry was applied on the second positive electrode active material layer precursor coating film by the above-mentioned applicator at a basis weight of 10 mg / cm 2 . To form a coating film (third current collector layer precursor coating film) on the second positive electrode active material layer precursor coating film.
The laminate obtained by wet-on-wet coating in this manner is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which two laminating units are stacked (an embodiment of the above-described laminated structure (c)). A laminated member for an all solid state secondary battery of Example 10 was obtained. The laminated member for an all solid state secondary battery of Example 10 is of a bipolar type.
In the laminated member for an all solid state secondary battery of Example 10, the thickness of each layer is the same as that of Example 8.
<実施例11>
 実施例10において、第3集電体層前駆塗膜を形成した後、第3集電体層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層形成用スラリーを、上記アプリケータにより20mg/cmの目付量となるように塗布し、第3集電体層前駆塗膜上に塗膜(第3負極活物質層前駆塗膜)を形成した。
 第3負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第3負極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、第3負極活物質層前駆塗膜上に塗膜(第3固体電解質層前駆塗膜)を形成した。
 第3固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第3固体電解質層前駆塗膜上に正極活物質層形成用スラリーを上記アプリケータにより30mg/cmの目付量となるように塗布し、第3固体電解質層前駆塗膜上に塗膜(第3正極活物質層前駆塗膜)を形成した。
 第3正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第3正極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第3正極活物質層前駆塗膜上に塗膜(第4集電体層前駆塗膜)を形成した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを3段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例11の全固体二次電池用積層部材を得た。実施例11の全固体二次電池用積層部材はバイポーラ型である。
 実施例11の全固体二次電池用積層部材において、各層の厚さは実施例8と同じである。
<Example 11>
In Example 10, after forming the third current collector layer precursor coating film, the slurry for forming a negative electrode active material layer was subjected to the above-mentioned slurry in a state where the residual solvent amount of the third current collector layer precursor coating film was 5% by mass. It was applied so as to have a basis weight of 20 mg / cm 2 by an applicator to form a coating film (third negative electrode active material layer precursor coating film) on the third current collector layer precursor coating film.
In a state where the amount of the residual solvent in the third negative electrode active material layer precursor coating film is 5% by mass, the solid electrolyte layer forming slurry is applied on the third negative electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 . And a coating film (third solid electrolyte layer precursor coating film) was formed on the third negative electrode active material layer precursor coating film.
In a state where the amount of the residual solvent in the third solid electrolyte layer precursor coating film is 5% by mass, the slurry for forming a positive electrode active material layer is formed on the third solid electrolyte layer precursor coating film with a basis weight of 30 mg / cm 2 by the applicator. Thus, a coating film (third positive electrode active material layer precursor coating film) was formed on the third solid electrolyte layer precursor coating film.
With the residual solvent amount of the third positive electrode active material layer precursor coating film being 5% by mass, a current collector layer forming slurry was applied on the third positive electrode active material layer precursor coating film by the above-mentioned applicator at a basis weight of 10 mg / cm 2 . To form a coating film (fourth current collector layer precursor coating film) on the third positive electrode active material layer precursor coating film.
The laminate obtained by wet-on-wet coating in this manner is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminate structure in which three lamination units are stacked (an embodiment of the laminate structure (c) described above). A laminated member for an all-solid secondary battery of Example 11 was obtained. The laminated member for an all solid state secondary battery of Example 11 is of a bipolar type.
In the laminated member for an all-solid-state secondary battery of Example 11, the thickness of each layer is the same as that of Example 8.
<実施例12>
 実施例11において、第4集電体層前駆塗膜を形成した後、第4集電体層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層形成用スラリーを、上記アプリケータにより20mg/cmの目付量となるように塗布し、第4集電体層前駆塗膜上に塗膜(第4負極活物質層前駆塗膜)を形成した。
 第4負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第4負極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、第4負極活物質層前駆塗膜上に塗膜(第4固体電解質層前駆塗膜)を形成した。
 第4固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第4固体電解質層前駆塗膜上に正極活物質層形成用スラリーを上記アプリケータにより30mg/cmの目付量となるように塗布し、第4固体電解質層前駆塗膜上に塗膜(第4正極活物質層前駆塗膜)を形成した。
 第4正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第4正極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第4正極活物質層前駆塗膜上に塗膜(第5集電体層前駆塗膜)を形成した。
 こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを4段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例5の全固体二次電池用積層部材を得た。実施例12の全固体二次電池用積層部材はバイポーラ型である。
 実施例12の全固体二次電池用積層部材において、各層の厚さは実施例8と同じである。
<Example 12>
In Example 11, after the fourth current collector layer precursor coating film was formed, the slurry for forming a negative electrode active material layer was coated with the above-mentioned slurry in a state where the residual solvent amount of the fourth current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a basis weight of 20 mg / cm 2 to form a coating film (fourth negative electrode active material layer precursor coating film) on the fourth current collector layer precursor coating film.
With the residual solvent amount of the fourth negative electrode active material layer precursor coating film being 5% by mass, the solid electrolyte layer forming slurry was applied on the fourth negative electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 8 mg / cm 2 . To form a coating film (fourth solid electrolyte layer precursor coating film) on the fourth negative electrode active material layer precursor coating film.
With the residual solvent amount of the fourth solid electrolyte layer precursor coating film being 5% by mass, the slurry for forming a positive electrode active material layer was applied onto the fourth solid electrolyte layer precursor coating film by the above-mentioned applicator with a basis weight of 30 mg / cm 2. Thus, a coating film (fourth positive electrode active material layer precursor coating film) was formed on the fourth solid electrolyte layer precursor coating film.
With the residual solvent amount of the fourth positive electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied onto the fourth positive electrode active material layer precursor coating film by the above-mentioned applicator with a basis weight of 10 mg / cm 2 . And a coating film (fifth current collector layer precursor coating film) was formed on the fourth positive electrode active material layer precursor coating film.
The laminate thus obtained by wet-on-wet coating is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which four laminating units are stacked (an embodiment of the laminated structure (c) described above). A laminated member for an all solid state secondary battery of Example 5 was obtained. The laminated member for an all solid state secondary battery of Example 12 is of a bipolar type.
In the laminated member for an all solid state secondary battery of Example 12, the thickness of each layer is the same as that of Example 8.
<実施例13>
 実施例1において、集電体層形成用スラリーに用いたカーボンブラック6.0gを、銅粉末(林純薬工業社製)6.0gに代えた以外は、実施例1と同様にして実施例13の全固体二次電池用積層部材を得た。
<Example 13>
Example 1 was repeated in the same manner as in Example 1 except that 6.0 g of carbon black used in the slurry for forming the current collector layer was replaced with 6.0 g of copper powder (manufactured by Hayashi Junyaku Kogyo Co., Ltd.). Thus, thirteen laminated members for an all-solid secondary battery were obtained.
<比較例1>
 実施例1において、負極活物質層前駆塗膜上に、第2集電体層前駆塗膜の形成に代えて銅箔(厚さ20μm)を密着させたこと以外は、実施例1と同様にして比較例1の全固体二次電池用積層部材を得た。
<Comparative Example 1>
In the same manner as in Example 1, except that a copper foil (thickness: 20 μm) was adhered to the negative electrode active material layer precursor coating film instead of forming the second current collector layer precursor coating film on the anode active material layer precursor coating film. Thus, a laminated member for an all-solid secondary battery of Comparative Example 1 was obtained.
<比較例2>
 比較例1の全固体二次電池用積層部材を2つ用意し、1つ目の積層部材の銅箔上に、2つ目の積層部材のアルミ箔を積み重ねて、比較例2の全固体二次電池用積層部材を得た。
<Comparative Example 2>
Two laminated members for an all-solid-state secondary battery of Comparative Example 1 were prepared, and an aluminum foil of a second laminated member was stacked on a copper foil of a first laminated member. A laminated member for a secondary battery was obtained.
<比較例3>
 比較例1の全固体二次電池用積層部材を3つ用意し、1つ目の積層部材の銅箔上に、2つ目の積層部材のアルミ箔側が接するように2つ目の積層部材を積み重ね、2つ目の積層部材の銅箔上に、3つ目の積層部材のアルミ箔側が接するように3つ目の積層部材を積み重ねて、比較例3の全固体二次電池用積層部材を得た。
<Comparative Example 3>
Three laminated members for an all solid state secondary battery of Comparative Example 1 were prepared, and a second laminated member was placed on the copper foil of the first laminated member so that the aluminum foil side of the second laminated member was in contact with the laminated member. The third stacked member was stacked on the copper foil of the second stacked member such that the aluminum foil side of the third stacked member was in contact with the stacked member, and the stacked member for an all solid state secondary battery of Comparative Example 3 was obtained. Obtained.
<比較例4>
 比較例1の全固体二次電池用積層部材を4つ用意し、1つ目の積層部材の銅箔上に、2つ目の積層部材のアルミ箔側が接するように2つ目の積層部材を積み重ね、2つ目の積層部材の銅箔上に、3つ目の積層部材のアルミ箔側が接するように3つ目の積層部材を積み重ね、3つ目の積層部材の銅箔上に、4つ目の積層部材のアルミ箔側が接するように4つ目の積層部材を積み重ねて、比較例4の全固体二次電池用積層部材を得た。
<Comparative Example 4>
Four laminated members for an all-solid-state secondary battery of Comparative Example 1 were prepared, and a second laminated member was placed on the copper foil of the first laminated member so that the aluminum foil side of the second laminated member was in contact. Stack the third laminated member on the copper foil of the second laminated member so that the aluminum foil side of the third laminated member is in contact with the copper foil of the third laminated member. The fourth laminated member was stacked so that the aluminum foil side of the first laminated member was in contact with the first laminated member to obtain a laminated member for an all-solid secondary battery of Comparative Example 4.
<比較例5>
 実施例1において、負極活物質層前駆塗膜上への集電体層形成用スラリーの塗布を、負極活物質層前駆塗膜を形成後に120℃で120分間乾燥して負極活物質層前駆塗膜から分散媒を除去した後に行ったこと以外は、実施例1と同様にして、比較例5の全固体二次電池用積層部材を得た。
<Comparative Example 5>
In Example 1, application of the current collector layer forming slurry onto the negative electrode active material layer precursor coating film was performed by drying at 120 ° C. for 120 minutes after forming the negative electrode active material layer precursor coating film. A laminated member for an all-solid-state secondary battery of Comparative Example 5 was obtained in the same manner as in Example 1, except that the dispersion medium was removed from the film.
<比較例6>
 実施例3において、負極活物質層前駆塗膜上への集電体層形成用スラリーの塗布を、負極活物質層前駆塗膜を形成後に120℃で120分間乾燥して負極活物質層前駆塗膜から分散媒を除去した後に行い、また、第2負極活物質層前駆塗膜上への集電体層形成用スラリーの塗布を、第2負極活物質層前駆塗膜を形成後に120℃で120分間乾燥して第2負極活物質層前駆塗膜から分散媒を除去した後に行ったこと以外は、実施例3と同様にして、比較例6の全固体二次電池用積層部材を得た。
<Comparative Example 6>
In Example 3, application of the current collector layer forming slurry onto the negative electrode active material layer precursor coating film was performed by drying at 120 ° C. for 120 minutes after forming the negative electrode active material layer precursor coating film. After the dispersion medium is removed from the film, the application of the slurry for forming the current collector layer onto the second negative electrode active material layer precursor coating film is performed at 120 ° C. after the formation of the second negative electrode active material layer precursor coating film. A laminated member for an all-solid-state secondary battery of Comparative Example 6 was obtained in the same manner as in Example 3, except that drying was performed for 120 minutes to remove the dispersion medium from the second negative electrode active material layer precursor coating film. .
<比較例7>
 比較例5において、集電体層形成用スラリーに用いたカーボンブラック6.0gを、銅粉末(林純薬工業社製)6.0gに代えた以外は、比較例5と同様にして比較例7の全固体二次電池用積層部材を得た。
<Comparative Example 7>
Comparative Example 5 was prepared in the same manner as in Comparative Example 5, except that 6.0 g of copper powder (manufactured by Hayashi Junyaku Kogyo) was used instead of 6.0 g of carbon black used in the slurry for forming the current collector layer. Thus, a laminated member for an all-solid secondary battery No. 7 was obtained.
<比較例8>
 比較例5において、集電体層形成用スラリーに用いたカーボンブラック6.0gを、焼結用ステンレス鋼粉体6.0gに代えた以外は、実施例1と同様にして比較例8の全固体二次電池用積層部材を得た。
<Comparative Example 8>
In Comparative Example 5, all of Comparative Example 8 was performed in the same manner as in Example 1 except that 6.0 g of carbon black used for the slurry for forming the current collector layer was replaced with 6.0 g of stainless steel powder for sintering. A laminated member for a solid state secondary battery was obtained.
[全固体二次電池の作製]
 上記で得られた全固体二次電池用積層部材を、50MPaで10秒間加圧した。その後、直径15mmの円形に切り出した。切り出したサンプルを2032型コインケース内に入れて、600MPaで加圧後、コインケースをかしめ、全固体二次電池を作製した。
[Preparation of all solid state secondary battery]
The laminated member for an all solid state secondary battery obtained above was pressed at 50 MPa for 10 seconds. Then, it was cut out into a circle having a diameter of 15 mm. The cut sample was placed in a 2032 type coin case, pressurized at 600 MPa, and then the coin case was swaged to produce an all-solid secondary battery.
[電池性能の評価]
 全固体二次電池の電池性能を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)を用いて評価した。具体的には、全固体二次電池を電池電圧が4.2Vになるまで電流値0.2mAで充電した後、電池電圧が3.0Vになるまで電流値2.0mAで放電した。放電開始10秒後の電池電圧を以下の基準で読み取り、下記評価基準に当てはめ評価した。放電開始10秒後の電池電圧が高いほど、抵抗が低いことを意味する。
<評価基準>
AA:4.10V以上
A: 4.05V以上4.10V未満
B: 4.00V以上4.05V未満
C: 3.90V以上4.00V未満
D: 3.90V未満
 結果を下表に示す。
[Evaluation of battery performance]
The battery performance of the all solid state secondary battery was evaluated using a charge / discharge evaluation device “TOSCAT-3000” (trade name) manufactured by Toyo System Corporation. Specifically, the all-solid-state secondary battery was charged at a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 2.0 mA until the battery voltage reached 3.0 V. The battery voltage 10 seconds after the start of discharging was read according to the following criteria, and evaluated by applying the following criteria. The higher the battery voltage 10 seconds after the start of discharging, the lower the resistance.
<Evaluation criteria>
AA: 4.10 V or more A: 4.05 V or more and less than 4.10 V B: 4.00 V or more and less than 4.05 V C: 3.90 V or more and less than 4.00 V D: Less than 3.90 V The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 上記表に示されるように、積層部材の集電体をすべて金属箔で形成した場合、得られる全固体二次電池は電池抵抗が高く性能に劣る結果となった(比較例1~4)。また、積層部材の集電体層をスラリーで形成した場合であっても、集電体層形成用スラリーの塗布方法がウェットオンドライ塗布である場合には、やはり電池抵抗が高く性能に劣る結果となった(比較例5~8)。
 これに対し、集電体層を、集電体層形成用スラリーを用いてウェットオンウェットで形成した場合には、電池抵抗を十分に抑制でき、電池性能に優れた全固体二次電池を得ることができた(実施例1~13)。
As shown in the above table, when all the current collectors of the laminated member were formed of metal foil, the obtained all-solid secondary battery resulted in high battery resistance and poor performance (Comparative Examples 1 to 4). In addition, even when the current collector layer of the laminated member is formed of slurry, when the method of applying the current collector layer forming slurry is wet-on-dry coating, the battery resistance is still high and the performance is inferior. (Comparative Examples 5 to 8).
In contrast, when the current collector layer is formed wet-on-wet using the current collector layer forming slurry, the battery resistance can be sufficiently suppressed, and an all-solid secondary battery having excellent battery performance can be obtained. (Examples 1 to 13).
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 Although the present invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, which is contrary to the spirit and scope of the invention as set forth in the appended claims. I believe that it should be interpreted broadly without.
 本願は、2018年9月18日に日本国で特許出願された特願2018-173571に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims the priority based on Japanese Patent Application No. 2018-173571 filed in Japan on September 18, 2018, which is hereby incorporated by reference. Capture as a part.
101、102 全固体二次電池用積層部材
1 集電体層(金属箔)
2 正極活物質層
3 固体電解質層
4 負極活物質層
5 集電体層
A 積層ユニット
B 積層ユニット
103 全固体二次電池
11 負極集電体
12 負極活物質層
13 固体電解質層
14 正極活物質層
15 正極集電体層
101, 102 Laminated member 1 for all solid state secondary battery Current collector layer (metal foil)
2 Positive electrode active material layer 3 Solid electrolyte layer 4 Negative electrode active material layer 5 Current collector layer A Stacking unit B Stacking unit 103 All solid state secondary battery 11 Negative current collector 12 Negative electrode active material layer 13 Solid electrolyte layer 14 Positive electrode active material layer 15 positive electrode current collector layer

Claims (7)

  1.  正極活物質層と固体電解質層と負極活物質層とをこの順に有する積層体と、該積層体の正極活物質層及び負極活物質層の各表面に配された集電体層とを含む全固体二次電池用積層部材の製造において、
     前記正極活物質層及び前記負極活物質層の少なくとも1つの活物質層と、該活物質層に接する集電体層との積層構造の形成をウェットオンウェット塗布により行うことを含む、全固体二次電池用積層部材の製造方法。
    A laminate including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a current collector layer disposed on each surface of the positive electrode active material layer and the negative electrode active material layer of the laminate. In the production of laminated members for solid state rechargeable batteries,
    An all-solid-state method including forming a laminated structure of at least one active material layer of the positive electrode active material layer and the negative electrode active material layer and a current collector layer in contact with the active material layer by wet-on-wet coating. Method for producing laminated member for secondary battery.
  2.  前記全固体二次電池用積層部材が、金属箔からなる第1の集電体層と、正極活物質層と、固体電解質層と、負極活物質層と、第2の集電体層とがこの順に積層された構造であり、該正極活物質層と、該固体電解質層と、該負極活物質層と、第2の集電体層との積層構造の形成を、前記の金属箔からなる第1の集電体層上への同時重層塗布により行う、請求項1に記載の全固体二次電池用積層部材の製造方法。 The laminated member for an all-solid secondary battery includes a first current collector layer made of metal foil, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a second current collector layer. The structure in which the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the second current collector layer are formed in a laminated structure in this order comprises the metal foil. The method for producing a laminated member for an all-solid secondary battery according to claim 1, wherein the method is performed by simultaneous multilayer coating on the first current collector layer.
  3.  前記全固体二次電池用積層部材が、金属箔からなる第1の集電体層と、負極活物質層と、固体電解質層と、正極活物質層と、第2の集電体層とがこの順に積層された構造であり、該負極活物質層と、該固体電解質層と、該正極活物質層と、第2の集電体層との積層構造の形成を、前記の金属箔からなる第1の集電体層上への同時重層塗布により行う、請求項1に記載の全固体二次電池用積層部材の製造方法。 The laminated member for an all-solid secondary battery includes a first current collector layer made of a metal foil, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a second current collector layer. The negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the second current collector layer are laminated in this order. The method for producing a laminated member for an all-solid secondary battery according to claim 1, wherein the method is performed by simultaneous multilayer coating on the first current collector layer.
  4.  前記全固体二次電池用積層部材が、正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体と、該積層体の正極活物質層又は負極活物質層に接して配された集電体層とから構成される積層ユニットを、金属箔からなる集電体層上に、集電体層同士が接しないように複数段積み重ねた積層構造であり、
     前記の積層ユニットを複数段積み重ねた積層構造の形成を、前記の金属箔からなる集電体層上への同時重層塗布により行う、請求項1に記載の全固体二次電池用積層部材の製造方法。
    The laminated member for an all-solid secondary battery is a laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and is in contact with the positive electrode active material layer or the negative electrode active material layer of the laminate. A stacked unit composed of a current collector layer arranged and arranged on a current collector layer made of metal foil, has a stacked structure in which a plurality of layers are stacked so that the current collector layers do not contact each other,
    2. The production of the laminated member for an all-solid-state secondary battery according to claim 1, wherein the formation of the laminated structure in which the laminated units are stacked in a plurality of stages is performed by simultaneous multilayer coating on the current collector layer made of the metal foil. Method.
  5.  ウェットオンウェット塗布により形成される集電体層が粒子状バインダーを含有する、請求項1~4のいずれか1項に記載の全固体二次電池用積層部材の製造方法。 5. The method for producing a laminated member for an all-solid secondary battery according to claim 1, wherein the current collector layer formed by wet-on-wet coating contains a particulate binder.
  6.  前記固体電解質層を構成する固体電解質が硫化物系無機固体電解質である、請求項1~5のいずれか1項に記載の全固体二次電池用積層部材の製造方法。 The method for producing a laminated member for an all-solid secondary battery according to any one of claims 1 to 5, wherein the solid electrolyte constituting the solid electrolyte layer is a sulfide-based inorganic solid electrolyte.
  7.  請求項1~6のいずれか1項に記載の全固体二次電池用積層部材の製造方法により全固体二次電池用積層部材を得て、該全固体二次電池用積層部材を用いて全固体二次電池を得る、全固体二次電池の製造方法。 The method for producing a laminated member for an all-solid secondary battery according to any one of claims 1 to 6, wherein a laminated member for an all-solid secondary battery is obtained, and the laminated member for an all-solid secondary battery is used. A method for producing an all-solid secondary battery, which obtains a solid secondary battery.
PCT/JP2019/035316 2018-09-18 2019-09-09 Production method for all-solid secondary battery layered member, and production method for all-solid secondary battery WO2020059550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548343A JP7064613B2 (en) 2018-09-18 2019-09-09 Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018173571 2018-09-18
JP2018-173571 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020059550A1 true WO2020059550A1 (en) 2020-03-26

Family

ID=69887422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035316 WO2020059550A1 (en) 2018-09-18 2019-09-09 Production method for all-solid secondary battery layered member, and production method for all-solid secondary battery

Country Status (2)

Country Link
JP (1) JP7064613B2 (en)
WO (1) WO2020059550A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116053401A (en) * 2022-12-30 2023-05-02 重庆太蓝新能源有限公司 Composite positive electrode plate, preparation method thereof and lithium battery
CN117059735A (en) * 2023-10-12 2023-11-14 宁德时代新能源科技股份有限公司 Electrode plate, secondary battery, electricity utilization device, preparation method and recycling method
WO2024048320A1 (en) * 2022-08-29 2024-03-07 富士フイルム株式会社 Method for producing nonaqueous electrolyte secondary battery, slurry for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125955A (en) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd Electrode sheet and non-aqueous electrolyte secondary battery using the same
JP2000323131A (en) * 1999-05-14 2000-11-24 Mitsubishi Chemicals Corp Manufactre of electrodes for secondary battery, and manufacture of secondary battery
JP2007227362A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Method for producing solid-state battery
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2008251225A (en) * 2007-03-29 2008-10-16 Tdk Corp All-solid lithium ion secondary battery and its manufacturing method
JP2010113819A (en) * 2008-11-04 2010-05-20 Konica Minolta Holdings Inc Secondary battery, method of manufacturing the same, and laminate type secondary battery
JP2015195183A (en) * 2014-03-28 2015-11-05 富士フイルム株式会社 All-solid type secondary battery, method for manufacturing electrode sheet for batteries, and method for manufacturing all-solid type secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125955A (en) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd Electrode sheet and non-aqueous electrolyte secondary battery using the same
JP2000323131A (en) * 1999-05-14 2000-11-24 Mitsubishi Chemicals Corp Manufactre of electrodes for secondary battery, and manufacture of secondary battery
JP2007227362A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Method for producing solid-state battery
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2008251225A (en) * 2007-03-29 2008-10-16 Tdk Corp All-solid lithium ion secondary battery and its manufacturing method
JP2010113819A (en) * 2008-11-04 2010-05-20 Konica Minolta Holdings Inc Secondary battery, method of manufacturing the same, and laminate type secondary battery
JP2015195183A (en) * 2014-03-28 2015-11-05 富士フイルム株式会社 All-solid type secondary battery, method for manufacturing electrode sheet for batteries, and method for manufacturing all-solid type secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048320A1 (en) * 2022-08-29 2024-03-07 富士フイルム株式会社 Method for producing nonaqueous electrolyte secondary battery, slurry for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN116053401A (en) * 2022-12-30 2023-05-02 重庆太蓝新能源有限公司 Composite positive electrode plate, preparation method thereof and lithium battery
CN117059735A (en) * 2023-10-12 2023-11-14 宁德时代新能源科技股份有限公司 Electrode plate, secondary battery, electricity utilization device, preparation method and recycling method
CN117059735B (en) * 2023-10-12 2024-04-12 宁德时代新能源科技股份有限公司 Electrode plate, secondary battery, electricity utilization device, preparation method and recycling method

Also Published As

Publication number Publication date
JP7064613B2 (en) 2022-05-10
JPWO2020059550A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6721669B2 (en) Solid electrolyte composition, electrode sheet for all solid state secondary battery and all solid state secondary battery, and electrode sheet for all solid state secondary battery and method for manufacturing all solid state secondary battery
US11909034B2 (en) All-solid state secondary battery and method of manufacturing the same
WO2016194759A1 (en) Material for positive electrodes, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
CN111201660B (en) Solid electrolyte composition, all-solid secondary battery, and method for manufacturing same
JP6572063B2 (en) All-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and production method thereof
JP6640874B2 (en) All-solid secondary battery, electrode sheet for all-solid secondary battery, and method for producing these
WO2019208347A1 (en) Solid electrolyte-including sheet, electrode sheet for fully solid-state secondary battery, fully solid-state secondary battery, electronic device, electric vehicle, and manufacturing methods for these
CN111194492A (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and method for producing solid electrolyte-containing sheet and all-solid-state secondary battery
CN111213213B (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and method for producing solid electrolyte-containing sheet and all-solid-state secondary battery
WO2018163976A1 (en) Solid electrolyte-containing sheet, solid electrolyte composition, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
WO2020059550A1 (en) Production method for all-solid secondary battery layered member, and production method for all-solid secondary battery
WO2020059549A1 (en) All-solid secondary battery and all-solid secondary battery negative electrode sheet
CN111247673B (en) Composition for forming active material layer, battery, electrode sheet, and related manufacturing methods
JP7119214B2 (en) All-solid secondary battery and manufacturing method thereof
JP7061728B2 (en) Method for manufacturing composite electrode active material, electrode composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and composite electrode active material, electrode sheet for all-solid secondary battery and all-solid secondary battery.
WO2018164050A1 (en) Inorganic solid electrolyte material, slurry using same, solid electrolyte film for all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary battery, positive electrode active material film for all-solid-state secondary battery, negative electrode active material film for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and production method for all-solid-state secondary battery
WO2020196040A1 (en) All-solid-state lithium ion secondary battery and method for manufacturing same, and negative electrode laminate sheet
JP6670641B2 (en) Electrode material, electrode sheet for all-solid secondary battery and all-solid secondary battery using the same, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP6673785B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and method for producing solid electrolyte-containing sheet and all-solid secondary battery
CN115917818A (en) Sheet for all-solid-state secondary battery, method for producing all-solid-state secondary battery, sheet for all-solid-state secondary battery, and all-solid-state secondary battery
WO2019098299A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, solid-state rechargeable battery, and method for producing solid electrolyte-containing sheet and solid-state rechargeable battery
JP7245847B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
WO2022202901A1 (en) Solid electrolyte layered sheet, all solid secondary battery, and method for producing all solid secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548343

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862275

Country of ref document: EP

Kind code of ref document: A1