JPWO2020059550A1 - Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery - Google Patents

Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery Download PDF

Info

Publication number
JPWO2020059550A1
JPWO2020059550A1 JP2020548343A JP2020548343A JPWO2020059550A1 JP WO2020059550 A1 JPWO2020059550 A1 JP WO2020059550A1 JP 2020548343 A JP2020548343 A JP 2020548343A JP 2020548343 A JP2020548343 A JP 2020548343A JP WO2020059550 A1 JPWO2020059550 A1 JP WO2020059550A1
Authority
JP
Japan
Prior art keywords
active material
electrode active
material layer
layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020548343A
Other languages
Japanese (ja)
Other versions
JP7064613B2 (en
Inventor
昭人 福永
昭人 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2020059550A1 publication Critical patent/JPWO2020059550A1/en
Application granted granted Critical
Publication of JP7064613B2 publication Critical patent/JP7064613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

正極活物質層と固体電解質層と負極活物質層とをこの順に有する積層体と、この積層体の正極活物質層及び負極活物質層の各表面に配された集電体層とを含む全固体二次電池用積層部材の製造において、
上記正極活物質層及び上記負極活物質層の少なくとも1つの活物質層と、該活物質層に接する集電体層との積層構造の形成をウェットオンウェット塗布により行うことを含む、全固体二次電池用積層部材の製造方法、並びにこの製造方法を用いる全固体二次電池の製造方法。
All including a laminate having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a current collector layer arranged on each surface of the positive electrode active material layer and the negative electrode active material layer of this laminate. In the manufacture of laminated members for solid secondary batteries
An all-solid rechargeable battery including forming a laminated structure of at least one active material layer of the positive electrode active material layer and the negative electrode active material layer and a current collector layer in contact with the active material layer by wet-on-wet coating. A method for manufacturing a laminated member for a secondary battery, and a method for manufacturing an all-solid secondary battery using this manufacturing method.

Description

本発明は、全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a laminated member for an all-solid-state secondary battery and a method for manufacturing an all-solid-state secondary battery.

リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は、負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した積層構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、各種電子機器、電気自動車又は大型蓄電池等への応用が期待されている。
A lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can be charged and discharged by reciprocating lithium ions between the two electrodes. Conventionally, an organic electrolyte has been used as an electrolyte in a lithium ion secondary battery. However, the organic electrolytic solution is liable to leak, and there is a risk of short-circuiting and ignition inside the battery due to overcharging or overdischarging, and further improvement in safety and reliability is required.
Under such circumstances, an all-solid-state secondary battery using an inorganic solid electrolyte instead of the organic electrolyte has attracted attention. In an all-solid-state secondary battery, the negative electrode, electrolyte, and positive electrode are all made of solid, which can greatly improve the safety and reliability of batteries using organic electrolytes, and can also extend the life of the battery. It is said that Further, the all-solid-state secondary battery can have a laminated structure in which electrodes and electrolytes are directly arranged side by side and arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolytic solution, and it is expected to be applied to various electronic devices, electric vehicles, large storage batteries, and the like.

全固体二次電池の基本的な層構成は、正極層と固体電解質層と負極層とからなる積層構造である。全固体二次電池の正極は、一般的には、金属箔からなる正極集電体層と正極活物質層とが積層され、正極活物質層が固体電解質層と接する構成をとる。負極も同様に、金属箔からなる負極集電体層と負極活物質層とが積層された形態が一般的であり、負極活物質層が固体電解質層と接する構成をとる。このような構成の正極及び負極では、集電体層となる金属箔と、固体粒子からなる活物質層との間の密着性の向上には制約があり、集電体層と活物質層との間の電子伝導性が十分でなかったり、集電体層と活物質層との間に剥離が生じたりすることがある。
この問題に対処した技術として、特許文献1には、第1集電体層、第1活物質層、電解質層、第2活物質層及び第2集電体層の各機能層のすべてを塗布により形成することが記載されている。特許文献1記載の技術によれば、集電体層と活物質層との間の密着性を高めることができ、特性の良好な電池を製造することができるとされる。
The basic layer structure of an all-solid-state secondary battery is a laminated structure consisting of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer. The positive electrode of an all-solid-state secondary battery generally has a structure in which a positive electrode current collector layer made of a metal foil and a positive electrode active material layer are laminated, and the positive electrode active material layer is in contact with a solid electrolyte layer. Similarly, the negative electrode is generally in the form of a laminated negative electrode current collector layer made of metal foil and a negative electrode active material layer, and the negative electrode active material layer is in contact with the solid electrolyte layer. In the positive electrode and the negative electrode having such a configuration, there is a limitation in improving the adhesion between the metal foil serving as the current collector layer and the active material layer made of solid particles, and the current collector layer and the active material layer The electron conductivity between them may not be sufficient, or peeling may occur between the current collector layer and the active material layer.
As a technique for dealing with this problem, Patent Document 1 is coated with all of the functional layers of the first current collector layer, the first active material layer, the electrolyte layer, the second active material layer, and the second current collector layer. It is described that it is formed by. According to the technique described in Patent Document 1, it is said that the adhesion between the current collector layer and the active material layer can be improved, and a battery having good characteristics can be manufactured.

全固体二次電池は、正極活物質層、固体電解質層及び負極活物質層をこの順で積層した積層体と、この積層体の正極活物質層又は負極活物質層に接して配された集電体層とから構成される積層構造を1ユニットとして、このユニットを、金属箔等の集電体上に、集電体層同士が接しないように複数段積み上げた複数ユニットの構成が知られている。このような複数ユニット構成とすることにより電池の出力を高めることができる。複数ユニット構成にはモノポーラ型とバイポーラ型が知られている。モノポーラ型は、正極集電体層の両側に正極活物質層が配され、負極集電体層の両側には負極集電体が配される。つまり、集電体層の両側に配される活物質層は同種である。他方、バイポーラ型は、正極活物質層と負極活物質層が1つの集電体層の両側に配された構造をとる。 An all-solid secondary battery is a collection of a laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and a collection arranged in contact with the positive electrode active material layer or the negative electrode active material layer of the laminate. It is known that a laminated structure composed of an electric body layer is regarded as one unit, and this unit is stacked in a plurality of stages on a current collecting body such as a metal foil so that the current collecting body layers do not come into contact with each other. ing. The output of the battery can be increased by adopting such a plurality of units configuration. Monopolar type and bipolar type are known as multi-unit configurations. In the monopolar type, positive electrode active material layers are arranged on both sides of the positive electrode current collector layer, and negative electrode current collectors are arranged on both sides of the negative electrode current collector layer. That is, the active material layers arranged on both sides of the current collector layer are of the same type. On the other hand, the bipolar type has a structure in which a positive electrode active material layer and a negative electrode active material layer are arranged on both sides of one current collector layer.

特開2012−64487号公報Japanese Unexamined Patent Publication No. 2012-64487

本発明者らは電池性能のさらなる向上を目的に、上記特許文献1記載の技術について検討を重ねた。その結果、特許文献1に記載されるように、集電体層の構成材料を含む塗布液(スラリー)を調製し、この塗布液を活物質層上に塗布して集電体層を形成した場合でも、集電体層と活物質層との間の密着性を、近年要求される充放電時の低抵抗(充放電時における集電体層と活物質層間の電子伝導性の向上)を十分に満足するレベルまで高めるには至らず、電池性能の向上には制約があることがわかってきた。 The present inventors have repeatedly studied the techniques described in Patent Document 1 for the purpose of further improving the battery performance. As a result, as described in Patent Document 1, a coating liquid (slurry) containing a constituent material of the current collector layer was prepared, and this coating liquid was applied onto the active material layer to form a current collector layer. Even in this case, the adhesion between the current collector layer and the active material layer is improved by the low resistance during charging and discharging (improvement of electron conductivity between the current collector layer and the active material layer during charging and discharging), which has been required in recent years. It has not been possible to raise the level to a sufficiently satisfactory level, and it has become clear that there are restrictions on improving battery performance.

本発明は、全固体二次電池の構成部材として用いることにより、充放電時の抵抗を十分に抑えた全固体二次電池を得ることができる全固体二次電池用積層部材の製造方法を提供することを課題とする。また本発明は、充放電時の抵抗を十分に抑えた全固体二次電池を得ることができる全固体二次電池の製造方法を提供することを課題とする。 The present invention provides a method for manufacturing a laminated member for an all-solid-state secondary battery, which can be used as a component of an all-solid-state secondary battery to obtain an all-solid-state secondary battery in which resistance during charging and discharging is sufficiently suppressed. The task is to do. Another object of the present invention is to provide a method for manufacturing an all-solid-state secondary battery capable of obtaining an all-solid-state secondary battery in which resistance during charging and discharging is sufficiently suppressed.

本発明者らは上記課題に鑑み鋭意検討を重ねた。その結果、正極活物質層と固体電解質層と負極活物質層とをこの順に有する積層体と、この積層体の正極活物質層及び負極活物質層の各表面に配された集電体層とを含む全固体二次電池用積層部材の作製において、正極活物質層又は負極活物質層と、それに接する集電体層との積層構造の形成をウェットオンウェット塗布により行い、得られた全固体二次電池用積層部材を全固体二次電池に適用することにより、抵抗を十分に抑えた全固体二次電池が提供できることを見出した。本発明はこの知見に基づきさらに検討を重ね、完成されるに至ったものである。 The present inventors have made extensive studies in view of the above problems. As a result, a laminate having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a current collector layer arranged on each surface of the positive electrode active material layer and the negative electrode active material layer of this laminate. In the production of the laminated member for the all-solid secondary battery including the above, the laminated structure of the positive electrode active material layer or the negative electrode active material layer and the current collector layer in contact with the positive electrode active material layer is formed by wet-on-wet coating, and the obtained all-solid material is formed. It has been found that by applying a laminated member for a secondary battery to an all-solid secondary battery, an all-solid secondary battery with sufficiently suppressed resistance can be provided. Based on this finding, the present invention has been further studied and completed.

すなわち、上記の課題は以下の手段により解決された。
〔1〕
正極活物質層と固体電解質層と負極活物質層とをこの順に有する積層体と、この積層体の正極活物質層及び負極活物質層の各表面に配された集電体層とを含む全固体二次電池用積層部材の製造において、
上記正極活物質層及び上記負極活物質層の少なくとも1つの活物質層と、この活物質層に接する集電体層との積層構造の形成をウェットオンウェット塗布により行うことを含む、全固体二次電池用積層部材の製造方法。
〔2〕
上記全固体二次電池用積層部材が、金属箔からなる第1の集電体層と、正極活物質層と、固体電解質層と、負極活物質層と、第2の集電体層とがこの順に積層された構造であり、正極活物質層と、固体電解質層と、負極活物質層と、第2の集電体層との積層構造の形成を、上記の金属箔からなる第1の集電体層上への同時重層塗布により行う、〔1〕に記載の全固体二次電池用積層部材の製造方法。
〔3〕
上記全固体二次電池用積層部材が、金属箔からなる第1の集電体層と、負極活物質層と、固体電解質層と、正極活物質層と、第2の集電体層とがこの順に積層された構造であり、負極活物質層と、固体電解質層と、正極活物質層と、第2の集電体層との積層構造の形成を、上記の金属箔からなる第1の集電体層上への同時重層塗布により行う、〔1〕に記載の全固体二次電池用積層部材の製造方法。
〔4〕
上記全固体二次電池用積層部材が、正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体と、この積層体の正極活物質層又は負極活物質層に接して配された集電体層とから構成される積層ユニットを、金属箔からなる集電体層上に、集電体層同士が接しないように複数段積み重ねた積層構造であり、
上記の積層ユニットを複数段積み重ねた積層構造の形成を、上記の金属箔からなる集電体層上への同時重層塗布により行う、〔1〕に記載の全固体二次電池用積層部材の製造方法。
〔5〕
ウェットオンウェット塗布により形成される集電体層が粒子状バインダーを含有する、〔1〕〜〔4〕のいずれかに記載の全固体二次電池用積層部材の製造方法。
〔6〕
上記固体電解質層を構成する固体電解質が硫化物系無機固体電解質である、〔1〕〜〔5〕のいずれかに記載の全固体二次電池用積層部材の製造方法。
〔7〕
〔1〕〜〔6〕のいずれかに記載の全固体二次電池用積層部材の製造方法により全固体二次電池用積層部材を得て、この全固体二次電池用積層部材を用いて全固体二次電池を得る、全固体二次電池の製造方法。
That is, the above problem was solved by the following means.
[1]
All including a laminate having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a current collector layer arranged on each surface of the positive electrode active material layer and the negative electrode active material layer of this laminate. In the manufacture of laminated members for solid secondary batteries
An all-solid-state battery including forming a laminated structure of at least one active material layer of the positive electrode active material layer and the negative electrode active material layer and a current collector layer in contact with the active material layer by wet-on-wet coating. A method for manufacturing a laminated member for a next battery.
[2]
The laminated member for an all-solid secondary battery includes a first current collector layer made of a metal foil, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a second current collector layer. It is a structure in which the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the second current collector layer are laminated in this order. The method for manufacturing a laminated member for an all-solid secondary battery according to [1], which is carried out by simultaneous layer coating on the current collector layer.
[3]
The laminated member for an all-solid secondary battery includes a first current collector layer made of a metal foil, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a second current collector layer. It is a structure in which the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the second current collector layer are laminated in this order. The method for manufacturing a laminated member for an all-solid secondary battery according to [1], which is carried out by simultaneous layer coating on the current collector layer.
[4]
The laminated member for an all-solid secondary battery is in contact with a laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and a positive electrode active material layer or a negative electrode active material layer of the laminated body. It has a laminated structure in which a laminated unit composed of the current collector layers arranged therein is stacked in a plurality of stages on a current collector layer made of a metal foil so that the current collector layers do not come into contact with each other.
Manufacture of the laminated member for an all-solid-state secondary battery according to [1], wherein a laminated structure in which the above-mentioned laminated units are stacked in a plurality of stages is formed by simultaneous layering on a current collector layer made of the above-mentioned metal foil. Method.
[5]
The method for producing a laminated member for an all-solid-state secondary battery according to any one of [1] to [4], wherein the current collector layer formed by wet-on-wet coating contains a particulate binder.
[6]
The method for producing a laminated member for an all-solid secondary battery according to any one of [1] to [5], wherein the solid electrolyte constituting the solid electrolyte layer is a sulfide-based inorganic solid electrolyte.
[7]
All-solid-state secondary battery laminated members are obtained by the method for manufacturing all-solid-state secondary battery laminated members according to any one of [1] to [6], and all the all-solid-state secondary battery laminated members are used. A method for manufacturing an all-solid-state secondary battery to obtain a solid-state secondary battery.

本発明の説明において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In the description of the present invention, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.

本発明の全固体二次電池用積層部材の製造方法によれば、全固体二次電池の構成部材として用いることにより、充放電時の抵抗を十分に抑えた全固体二次電池を得ることができる全固体二次電池用積層部材を提供することができる。また、本発明の全固体二次電池の製造方法によれば、充放電時の抵抗を十分に抑えた全固体二次電池を提供することができる。 According to the method for manufacturing a laminated member for an all-solid-state secondary battery of the present invention, it is possible to obtain an all-solid-state secondary battery in which resistance during charging and discharging is sufficiently suppressed by using it as a constituent member of the all-solid-state secondary battery. It is possible to provide a laminated member for an all-solid-state secondary battery. Further, according to the method for manufacturing an all-solid-state secondary battery of the present invention, it is possible to provide an all-solid-state secondary battery in which resistance during charging and discharging is sufficiently suppressed.

図1は、モノポーラ型の全固体二次電池における層構成を模式化して示す縦断面図である。FIG. 1 is a vertical cross-sectional view schematically showing a layer structure of a monopolar type all-solid-state secondary battery. 図2は、バイポーラ型の全固体二次電池における層構成を模式化して示す縦断面図である。FIG. 2 is a vertical cross-sectional view schematically showing the layer structure of the bipolar type all-solid-state secondary battery. 図3は、全固体二次電池の基本的な構成を模式化して示す縦断面図である。FIG. 3 is a vertical cross-sectional view schematically showing the basic configuration of an all-solid-state secondary battery.

本発明の全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法について、好ましい実施形態を説明するが、本発明は、本発明で規定すること以外は、これらの形態に限定されるものではない。 Preferred embodiments will be described for the method for manufacturing the laminated member for the all-solid-state secondary battery and the method for manufacturing the all-solid-state secondary battery of the present invention. It is not limited.

[全固体二次電池用積層部材の製造方法]
本発明の全固体二次電池用積層部材の製造方法(以下、「本発明の製造方法」とも称す。)は、正極活物質層と固体電解質層と負極活物質層とをこの順に有する積層体と、この積層体の正極活物質層及び負極活物質層の各表面に配された集電体層とを含む全固体二次電池用積層部材(以下、「本発明の積層部材」とも称す。)を得るための方法である。
本発明の製造方法では、上記正極活物質層及び上記負極活物質層の少なくとも1つの活物質層と、この活物質層に接する集電体層との積層構造の形成を、ウェットオンウェット塗布により行うことを含む。
本発明において「ウェットオンウェット塗布」とは、複数の塗膜を乾燥させることなく(すなわち湿潤状態で)塗り重ねる塗布方式を意味する。より詳細には、形成した塗膜の残留溶媒量が5質量%以上の状態で、この塗膜上に別の塗膜を形成することを意味する。例えば逐次塗布による塗布方法では、形成した塗膜が一定程度乾燥しても、この塗膜の残留溶媒量が5質量%以上の状態で、その上に別の塗膜を形成する場合、「ウェットオンウェット塗布」である。また、異なる層を形成するための複数の塗布液(スラリー)を、塗布工程の段階から同時に塗布装置に供給して、積層した複数の塗布液を同時に基材上に塗布する同時重層塗布も「ウェットオンウェット塗布」の一形態である。
[Manufacturing method of laminated members for all-solid-state secondary batteries]
The method for manufacturing a laminated member for an all-solid-state secondary battery of the present invention (hereinafter, also referred to as "the manufacturing method of the present invention") is a laminate having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order. And a laminated member for an all-solid-state secondary battery including a positive electrode active material layer and a current collector layer arranged on each surface of the negative electrode active material layer of this laminated body (hereinafter, also referred to as "laminated member of the present invention". ) Is a way to get.
In the production method of the present invention, a laminated structure of at least one active material layer of the positive electrode active material layer and the negative electrode active material layer and a current collector layer in contact with the active material layer is formed by wet-on-wet coating. Including doing.
In the present invention, "wet-on-wet coating" means a coating method in which a plurality of coating films are repeatedly coated without being dried (that is, in a wet state). More specifically, it means that another coating film is formed on this coating film in a state where the residual solvent amount of the formed coating film is 5% by mass or more. For example, in the coating method by sequential coating, even if the formed coating film is dried to a certain extent, when another coating film is formed on the coating film with a residual solvent amount of 5% by mass or more, "wet" is used. "On-wet application". In addition, simultaneous multi-layer coating is also performed in which a plurality of coating liquids (slurries) for forming different layers are simultaneously supplied to the coating apparatus from the stage of the coating process, and the plurality of laminated coating liquids are simultaneously coated on the substrate. It is a form of "wet-on-wet application".

本発明の積層部材が採り得る好ましい積層構造として、下記(a)〜(c)の積層構造を挙げることができる。 As a preferable laminated structure that can be adopted by the laminated member of the present invention, the following laminated structures (a) to (c) can be mentioned.

(a)金属箔からなる第1の集電体層/正極活物質層/固体電解質層/負極活物質層/第2の集電体層 をこの順に有する積層構造。
(b)金属箔からなる第1の集電体層/負極活物質層/固体電解質層/正極活物質層/第2の集電体層 をこの順に有する積層構造。
(c)正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体と、この積層体の正極活物質層又は負極活物質層に接して配された集電体層とから構成される積層ユニットを、金属箔からなる集電体層上に、集電体層同士が接しないように複数段積み重ねた積層構造。
(A) A laminated structure having a first current collector layer made of a metal foil, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a second current collector layer in this order.
(B) A laminated structure having a first current collector layer made of a metal foil, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a second current collector layer in this order.
(C) A laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and a current collector layer arranged in contact with the positive electrode active material layer or the negative electrode active material layer of this laminate. A laminated structure in which multiple laminated units composed of the above are stacked on a current collector layer made of metal foil so that the current collector layers do not come into contact with each other.

上記(a)において、金属箔からなる第1の集電体層は、塗膜の形成の際の基材となる。例えば、正極活物質層/固体電解質層/負極活物質層/第2の集電体層を同時重層塗布により形成する場合、金属箔からなる第1の集電体層上に同時重層塗布が行われる。このことは(b)についても同様である。上記(a)及び(b)の積層構造は、後述する図3に示す全固体二次電池の層構成に対応している。 In the above (a), the first current collector layer made of a metal foil serves as a base material when forming a coating film. For example, when the positive electrode active material layer / solid electrolyte layer / negative electrode active material layer / second current collector layer is formed by simultaneous layer coating, simultaneous layer coating is performed on the first current collector layer made of metal foil. Be told. This also applies to (b). The laminated structure of the above (a) and (b) corresponds to the layer structure of the all-solid-state secondary battery shown in FIG. 3 described later.

上記(c)において、1つの積層ユニットにおいて、積層ユニットを構成する集電体層は、正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体の、正極活物質層及び負極活物質層のいずれか一方の層に接して配されている。集電体層を有しない活物質層の表面には、この表面に接する別の積層ユニットの集電体層が配される。
すなわち、積層ユニットの複数段の積み重ねは、積層ユニットの集電体同士が接しない形態とし、ある積層ユニットの集電体層表面には、別の積層ユニットの活物質層が配される形態とする。
積層ユニットを複数段の積み重ねた積層構成として、モノポーラ型の積層構成と、バイポーラ型の積層構成がある。モノポーラ型の積層構成では、積層ユニットが積み重ねられた形態において、積層ユニットを構成する集電体層の両面に同種の活物質層が配される。つまり、1つの集電体層の片面に正極活物質層が配される場合、他方の面にも正極活物質層が配される。同様に、1つの集電体層の片面に負極活物質層が配される場合、他方の面にも負極活物質層が配される。
モノポーラ型の積層構成の一例を図1に示す。このモノポーラ型の積層構成(積層部材101)は、2種類の積層ユニットから構成される。すなわち、正極活物質層2と固体電解質層3と負極活物質層4とをこの順で積層した積層体の、正極活物質層2に接して集電体層5が設けられたユニット(図1中のB)と、正極活物質層2と固体電解質層3と負極活物質層4とをこの順で積層した積層体の、負極活物質層4に接して集電体層5が設けられたユニット(図1中のA)とを、集電体層同士が接しないように、集電体層(金属箔)1上に複数段積み重ねた構造(図1は3段積み重ねた構造)とすることにより、モノポーラ型の積層構成とすることができる。
他方、バイポーラ型の積層構成では、積層ユニットが積み重ねられた形態において、積層ユニットを構成する集電体層の両面に互いに異種の活物質層が配される。すなわち、1つの集電体層の片面に正極活物質層が配される場合、他方の面には負極活物質層が配される。
バイポーラ型の積層構成の一例を図2に示す。このバイポーラ型の積層構成(積層部材102)は、1種類の積層ユニットから構成される。すなわち、正極活物質層2と固体電解質層3と負極活物質層4とをこの順で積層した積層体の、負極活物質層4に接して集電体層5が設けられたユニット(図2中のA)を、集電体層同士が接しないように、集電体層(金属箔)1上に複数段積み重ねた構造(図2は3段積み重ねた構造)とすることにより、バイポーラ型の積層構成とすることができる。また、正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体の、正極活物質層に接して集電体層が設けられたユニットを、集電体層同士が接しないように、集電体層(金属箔)上に複数段積み重ねた構造とすることによっても、バイポーラ型の積層構成とすることができる。
In the above (c), in one laminated unit, the current collector layer constituting the laminated unit is a positive electrode active material of a laminated body in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order. It is arranged in contact with either the layer or the negative electrode active material layer. On the surface of the active material layer having no current collector layer, a current collector layer of another laminated unit in contact with the surface is arranged.
That is, the stacking of a plurality of stages of the laminated units is such that the current collectors of the laminated units do not contact each other, and the active material layer of another laminated unit is arranged on the surface of the current collector layer of one laminated unit. To do.
As a laminated structure in which a plurality of laminated units are stacked, there are a monopolar type laminated structure and a bipolar type laminated structure. In the monopolar type laminated structure, in the form in which the laminated units are stacked, the same type of active material layer is arranged on both sides of the current collector layer constituting the laminated unit. That is, when the positive electrode active material layer is arranged on one side of one current collector layer, the positive electrode active material layer is also arranged on the other side. Similarly, when the negative electrode active material layer is arranged on one side of one current collector layer, the negative electrode active material layer is also arranged on the other side.
FIG. 1 shows an example of a monopolar type laminated structure. This monopolar type laminated structure (laminated member 101) is composed of two types of laminated units. That is, a unit in which the positive electrode active material layer 2, the solid electrolyte layer 3, and the negative electrode active material layer 4 are laminated in this order, and the current collector layer 5 is provided in contact with the positive electrode active material layer 2 (FIG. 1). The current collector layer 5 was provided in contact with the negative electrode active material layer 4 of the laminate in which B), the positive electrode active material layer 2, the solid electrolyte layer 3, and the negative electrode active material layer 4 were laminated in this order. The unit (A in FIG. 1) has a structure in which a plurality of stages are stacked on the current collector layer (metal foil) 1 so that the current collector layers do not come into contact with each other (FIG. 1 is a structure in which three layers are stacked). As a result, a monopolar type laminated structure can be obtained.
On the other hand, in the bipolar type laminated structure, in the form in which the laminated units are stacked, different types of active material layers are arranged on both sides of the current collector layer constituting the laminated unit. That is, when the positive electrode active material layer is arranged on one side of one current collector layer, the negative electrode active material layer is arranged on the other side.
An example of the bipolar type laminated structure is shown in FIG. This bipolar type laminated structure (laminated member 102) is composed of one type of laminated unit. That is, a unit in which the positive electrode active material layer 2, the solid electrolyte layer 3, and the negative electrode active material layer 4 are laminated in this order, and the current collector layer 5 is provided in contact with the negative electrode active material layer 4 (FIG. 2). The inside A) is a bipolar type by forming a structure in which a plurality of layers are stacked on the current collector layer (metal foil) 1 so that the current collector layers do not come into contact with each other (FIG. 2 shows a structure in which three layers are stacked). Can be laminated. Further, the collector layers form a unit in which the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are laminated in this order, and the current collector layer is provided in contact with the positive electrode active material layer. A bipolar type laminated structure can also be obtained by forming a structure in which a plurality of stages are stacked on the current collector layer (metal foil) so as not to come into contact with each other.

本発明において「積層ユニット」との表現は、積層構造の層構成を特定するために便宜上用いている。すなわち、「積層ユニットを」「複数段積み重ねた積層構造」とは、あらかじめ積層ユニットを複数作製して、これら複数の積層ユニットを実際に積み重ねた形態を意図したものではない。金属箔からなる集電体層上に、正極活物質層、固体電解質層、負極活物質層及び集電体層の各層形成用スラリーを、一層ずつ繰り返し重層塗布して、あるいは、正極活物質層、固体電解質層、負極活物質層及び集電体層の順序の繰り返しになるように同時重層塗布して、最終的にできあがる全体の積層構造が、「積層ユニットを」「複数段積み重ねた積層構造」全体と同じ積層構造であれば、上記(c)の積層構造に含まれる。 In the present invention, the expression "laminated unit" is used for convenience in order to specify the layer structure of the laminated structure. That is, the "laminated structure in which a plurality of laminated units are stacked" is not intended to be a form in which a plurality of laminated units are manufactured in advance and the plurality of laminated units are actually stacked. On the current collector layer made of metal foil, the slurry for forming each layer of the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer and the current collector layer is repeatedly applied layer by layer, or the positive electrode active material layer. , The solid electrolyte layer, the negative electrode active material layer, and the current collector layer are applied in multiple layers at the same time so that the order is repeated. If the laminated structure is the same as the whole, it is included in the laminated structure of (c) above.

本発明の製造方法において、上記(a)の積層構造を有する積層部材を形成する場合、負極活物質層と、この負極活物質層に接する集電体層により形成される積層構造の形成をウェットオンウェット塗布により行う。例えば、金属箔からなる第1の集電体層/正極活物質層/固体電解質層 の3層構造の積層体の固体電解質上に、負極活物質層の構成材料を含むスラリーを塗布して塗膜を形成し、この塗膜の残留溶媒量が5質量%以上の状態で、第2の集電体層の構成材料を含むスラリーを塗布する。塗布後、乾燥し、上記(a)の積層構造を有する積層部材を得ることができる。上記の固体電解質層上に、負極活物質層の構成材料を含むスラリーと第2の集電体層の構成材料を含むスラリーとを同時重層塗布することもできる。
また、金属箔からなる第1の集電体層/正極活物質層 の2層構造の積層体の正極活物質層上に、固体電解質層の構成材料を含むスラリーと、負極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、ウェットオンウェット塗布により逐次に、又は同時に重層塗布することもできる。
また、金属箔からなる第1の集電体層上に、正極活物質層の構成材料を含むスラリーと、固体電解質層の構成材料を含むスラリーと、負極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、ウェットオンウェット塗布により逐次に、又は同時に重層塗布することもできる。
量産化を考慮した場合、金属箔からなる第1の集電体層上に、正極活物質層の構成材料を含むスラリーと、固体電解質層の構成材料を含むスラリーと、負極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、同時重層塗布することが好ましい。
In the manufacturing method of the present invention, when the laminated member having the laminated structure of the above (a) is formed, the formation of the laminated structure formed by the negative electrode active material layer and the current collector layer in contact with the negative electrode active material layer is wet. Perform by on-wet application. For example, a slurry containing the constituent material of the negative electrode active material layer is applied and coated on the solid electrolyte of the three-layer structure of the first current collector layer / positive electrode active material layer / solid electrolyte layer made of metal foil. A film is formed, and a slurry containing a constituent material of the second current collector layer is applied in a state where the residual solvent amount of the coating film is 5% by mass or more. After coating, it is dried to obtain a laminated member having the above-mentioned laminated structure (a). On the solid electrolyte layer, a slurry containing a constituent material of the negative electrode active material layer and a slurry containing a constituent material of the second current collector layer can be simultaneously coated.
Further, on the positive electrode active material layer of the two-layer structure of the first current collector layer / positive electrode active material layer made of metal foil, a slurry containing a constituent material of the solid electrolyte layer and a negative electrode active material layer are configured. The slurry containing the material and the slurry containing the constituent material of the second current collector layer can be sequentially or simultaneously applied in multiple layers by wet-on-wet application.
Further, on the first current collector layer made of metal foil, a slurry containing a constituent material of the positive electrode active material layer, a slurry containing a constituent material of the solid electrolyte layer, and a slurry containing a constituent material of the negative electrode active material layer , The slurry containing the constituent material of the second current collector layer can be sequentially or simultaneously applied in multiple layers by wet-on-wet application.
Considering mass production, a slurry containing a constituent material of a positive electrode active material layer, a slurry containing a constituent material of a solid electrolyte layer, and a configuration of a negative electrode active material layer are formed on a first current collector layer made of a metal foil. It is preferable to simultaneously coat the slurry containing the material and the slurry containing the constituent material of the second current collector layer in multiple layers.

本発明の製造方法において、上記(b)の積層構造を有する積層部材を形成する場合、正極活物質層と、この正極活物質層に接する集電体層により形成される積層構造の形成をウェットオンウェット塗布により行う。例えば、金属箔からなる第1の集電体層/負極活物質層/固体電解質層 の3層構造の積層体の固体電解質上に、正極活物質層の構成材料を含むスラリーを塗布して塗膜を形成し、この塗膜の残留溶媒量が5質量%以上の状態で、第2の集電体層の構成材料を含むスラリーを塗布する。塗布後、乾燥し、上記(b)の積層構造を有する積層部材を得ることができる。上記の固体電解質上に、正極活物質層の構成材料を含むスラリーと第2の集電体層の構成材料を含むスラリーとを同時重層塗布することもできる。
また、金属箔からなる第1の集電体層/負極活物質層 の2層構造の積層体の負極活物質層上に、固体電解質層の構成材料を含むスラリーと、正極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、ウェットオンウェット塗布により逐次に、又は同時に重層塗布することもできる。
また、金属箔からなる第1の集電体層上に、負極活物質層の構成材料を含むスラリーと、固体電解質層の構成材料を含むスラリーと、正極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、ウェットオンウェット塗布により逐次に、又は同時に重層塗布することもできる。
量産化を考慮した場合、金属箔からなる第1の集電体層上に、負極活物質層の構成材料を含むスラリーと、固体電解質層の構成材料を含むスラリーと、正極活物質層の構成材料を含むスラリーと、第2の集電体層の構成材料を含むスラリーとを、同時重層塗布することが好ましい。
In the manufacturing method of the present invention, when the laminated member having the laminated structure of the above (b) is formed, the formation of the laminated structure formed by the positive electrode active material layer and the current collector layer in contact with the positive electrode active material layer is wet. Perform by on-wet application. For example, a slurry containing the constituent material of the positive electrode active material layer is applied and coated on the solid electrolyte of the three-layer structure of the first current collector layer / negative electrode active material layer / solid electrolyte layer made of metal foil. A film is formed, and a slurry containing a constituent material of the second current collector layer is applied in a state where the residual solvent amount of the coating film is 5% by mass or more. After coating, it is dried to obtain a laminated member having the above-mentioned laminated structure (b). A slurry containing a constituent material of the positive electrode active material layer and a slurry containing a constituent material of the second current collector layer can be simultaneously coated on the above solid electrolyte.
Further, on the negative electrode active material layer of the two-layer structure of the first current collector layer / negative electrode active material layer made of metal foil, a slurry containing a constituent material of the solid electrolyte layer and a positive electrode active material layer are configured. The slurry containing the material and the slurry containing the constituent material of the second current collector layer can be sequentially or simultaneously applied in multiple layers by wet-on-wet application.
Further, on the first current collector layer made of metal foil, a slurry containing a constituent material of the negative electrode active material layer, a slurry containing a constituent material of the solid electrolyte layer, and a slurry containing a constituent material of the positive electrode active material layer , The slurry containing the constituent material of the second current collector layer can be sequentially or simultaneously applied in multiple layers by wet-on-wet application.
Considering mass production, a slurry containing a constituent material of the negative electrode active material layer, a slurry containing a constituent material of the solid electrolyte layer, and a configuration of the positive electrode active material layer on the first current collector layer made of metal foil. It is preferable to simultaneously coat the slurry containing the material and the slurry containing the constituent material of the second current collector layer in multiple layers.

本発明の製造方法において、上記(c)の積層構造を有する積層部材を形成する場合、積層ユニットが複数段に積み重ねられた積層構造における少なくとも1つの活物質層と、この活物質層に接する集電体層との積層構造の形成を、ウェットオンウェット塗布により行う。より好ましくは、各積層ユニットを構成する各層を、各層の構成材料を含むスラリーを逐次に又は同時に、金属箔からなる集電体層上に重層塗布して形成し、次いで乾燥して、積層ユニットが複数段に積み重ねられた構成の積層構造を形成する。
量産化を考慮した場合、各積層ユニットを構成する各層を、各層の構成材料を含むスラリーを金属箔からなる集電体層上に同時重層塗布して形成し、次いで乾燥して、積層ユニットが複数段に積み重ねられた構成の積層構造を形成することが好ましい。この場合、積層構造の形成を1ステップで行うことができ、モノポーラ型又はバイポーラ型の積層部材の生産効率を大きく高めることができる。
In the manufacturing method of the present invention, when the laminated member having the laminated structure of the above (c) is formed, at least one active material layer in the laminated structure in which the laminated units are stacked in a plurality of stages and a collection in contact with the active material layer. The laminated structure with the electric body layer is formed by wet-on-wet coating. More preferably, each layer constituting each laminated unit is formed by coating a slurry containing a constituent material of each layer sequentially or simultaneously on a current collector layer made of a metal foil, and then drying to form the laminated unit. Form a laminated structure in which is stacked in a plurality of stages.
In consideration of mass production, each layer constituting each laminated unit is formed by simultaneously coating a slurry containing the constituent materials of each layer on a current collector layer made of a metal foil, and then drying to form the laminated unit. It is preferable to form a laminated structure having a structure in which a plurality of stages are stacked. In this case, the laminated structure can be formed in one step, and the production efficiency of the monopolar type or bipolar type laminated member can be greatly improved.

上記の各層を形成するためのスラリーそれ自体は、常法により調製することができる。具体的には、少なくとも後述する各層の構成材料と分散媒とを混合し、調製することができる。この混合は、各種の混合機を用いて行うことができる。例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダー、ディスクミル等が挙げられる。スラリー中の、各層の構成材料の含有量は、所望の機能を発現する塗膜を形成できれば特に制限されず、膜厚、分散性等を考慮して適宜に設定される。 The slurry itself for forming each of the above layers can be prepared by a conventional method. Specifically, at least the constituent materials of each layer described later and the dispersion medium can be mixed and prepared. This mixing can be performed using various mixers. For example, ball mills, bead mills, planetary mixers, blade mixers, roll mills, kneaders, disc mills and the like can be mentioned. The content of the constituent material of each layer in the slurry is not particularly limited as long as a coating film exhibiting a desired function can be formed, and is appropriately set in consideration of film thickness, dispersibility and the like.

スラリーに用いる分散媒として、例えば、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エステル化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒、及びニトリル化合物溶媒が挙げられる。
アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1−プロピルアルコール、2−ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6−ヘキサンジオール、1,3−ブタンジオール、及び1,4−ブタンジオールが挙げられる。
Examples of the dispersion medium used in the slurry include an alcohol compound solvent, an ether compound solvent, an amide compound solvent, an amino compound solvent, a ketone compound solvent, an ester compound solvent, an aromatic compound solvent, an aliphatic compound solvent, and a nitrile compound solvent. ..
Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4-. Butanediol can be mentioned.

エーテル化合物溶媒としては、例えば、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、テトラヒドロフラン、及びジオキサン(1,2−、1,3−及び1,4−の各異性体を含む)が挙げられる。 Examples of the ether compound solvent include alkylene glycol alkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, and di. Propropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, etc.), dialkyl ether (dimethyl ether, diethyl ether, dibutyl ether, etc.), tetrahydrofuran, and dioxane (1,2-, 1,3- and 1). , 4-Including each isomer).

アミド化合物溶媒としては、例えば、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、2−ピロリジノン、ε−カプロラクタム、ホルムアミド、N−メチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロパンアミド、及びヘキサメチルホスホリックトリアミドが挙げられる。 Examples of the amide compound solvent include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, and N. Included are-methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, and hexamethylphosphoric triamide.

アミノ化合物溶媒としては、例えば、トリエチルアミン、及びトリブチルアミンが挙げられる。 Examples of the amino compound solvent include triethylamine and tributylamine.

ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジブチルケトン、及びジイソブチルケトンが挙げられる。 Examples of the ketone compound solvent include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dibutyl ketone, and diisobutyl ketone.

エステル化合物溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、イソ酪酸イソブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル、及びカプロン酸ブチル等が挙げられる。 Examples of the ester compound solvent include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, and propyl butyrate. , Butyl butyl, isobutyl isobutyrate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate, butyl caproate and the like.

芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレン、及びメシチレンが挙げられる。 Examples of the aromatic compound solvent include benzene, toluene, xylene, and mesitylene.

脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン、オクタン、ペンタン、シクロペンタン、及びシクロオクタンが挙げられる。 Aliphatic compound solvents include, for example, hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, decalin, octane, pentane, cyclopentane, and cyclooctane.

ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、及びブチロニトリルが挙げられる。 Examples of the nitrile compound solvent include acetonitrile, propyronitrile, and butyronitrile.

上記の各スラリーの製膜のための塗布方法は、特に制限されず、適宜に選択できる。例えば、逐次重層塗布の場合、エクストルージョンダイコーター、エアードクターコーター、ブレッドコーター、ロッドコーター、ナイフコーター、スクイズコーター、リバースロールコーター、バーコーター等の通常の塗布方法によって行うことができる。
また、同時重層塗布についても塗布それ自体は、常法により行うことができる。例えば、特開2005−271283号公報及び特開2006−247967号公報を参照することができる。また、例えば、特開2018−122283号公報に記載されたダイ(重層専用ギーサー)を用いて同時重層塗布をすることもできる。
また、ウェットオンウェット塗布を行った後の、塗布膜の乾燥温度は特に制限されず、好ましくは30℃以上、より好ましくは60℃以上、さらに好ましくは80℃以上である。また、乾燥温度は300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。
The coating method for forming the film of each of the above slurries is not particularly limited and can be appropriately selected. For example, in the case of sequential multi-layer coating, it can be carried out by a usual coating method such as an extrusion die coater, an air doctor coater, a bread coater, a rod coater, a knife coater, a squeeze coater, a reverse roll coater, and a bar coater.
Further, the simultaneous multi-layer coating itself can be performed by a conventional method. For example, Japanese Patent Application Laid-Open No. 2005-271283 and Japanese Patent Application Laid-Open No. 2006-247967 can be referred to. Further, for example, simultaneous layer coating can be performed using a die (multilayer dedicated gieser) described in Japanese Patent Application Laid-Open No. 2018-12283.
The drying temperature of the coating film after the wet-on-wet coating is not particularly limited, and is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher. The drying temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.

続いて、本発明の積層部材の各層の構成材料について説明する。 Subsequently, the constituent materials of each layer of the laminated member of the present invention will be described.

<固体電解質層>
本発明の積層部材を構成する固体電解質層は、全固体二次電池において固体電解質層に用いられる通常の構成材料で形成することができる。本発明において固体電解質層は、好ましくは、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質を有し、さらに、必要によりバインダーを含有する。本発明の全固体二次電池を構成する固体電解質層は、例えば、上記無機固体電解質とバインダーと、上述したこれらの分散媒とを含む固体電解質組成物(スラリー)を塗布し、形成することができる。固体電解質組成物の各成分含有量は、目的に応じて適宜に調整できる。例えば、固体電解質組成物の固形分中、無機固体電解質の含有量を50質量%以上とすることが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がさらに好ましい。
<Solid electrolyte layer>
The solid electrolyte layer constituting the laminated member of the present invention can be formed of the usual constituent materials used for the solid electrolyte layer in the all-solid secondary battery. In the present invention, the solid electrolyte layer preferably has an inorganic solid electrolyte having ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and further contains a binder if necessary. The solid electrolyte layer constituting the all-solid secondary battery of the present invention can be formed by applying, for example, a solid electrolyte composition (slurry) containing the above-mentioned inorganic solid electrolyte, a binder, and the above-mentioned dispersion medium. it can. The content of each component of the solid electrolyte composition can be appropriately adjusted according to the intended purpose. For example, the content of the inorganic solid electrolyte in the solid content of the solid electrolyte composition is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and further preferably 90% by mass or more. preferable.

(無機固体電解質)
本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有するものであれば特に制限されず電子伝導性を有しないものが一般的である。
(Inorganic solid electrolyte)
In the present invention, the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polymer electrolyte typified by polyethylene oxide (PEO), organic typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from electrolyte salts). Further, since the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is also clearly distinguished from an electrolyte or an inorganic electrolyte salt (LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or liberated in the polymer. The inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally not electron conductive.

本発明において、無機固体電解質は、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有する。無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は、(i)硫化物系無機固体電解質と、(ii)酸化物系無機固体電解質が代表例として挙げられ、高いイオン伝導度と粒子間界面接合の容易さの点で、硫化物系無機固体電解質が好ましい。
本発明の全固体二次電池が全固体リチウムイオン二次電池である場合、無機固体電解質はリチウムイオンのイオン伝導度を有することが好ましい。
In the present invention, the inorganic solid electrolyte has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table. As the inorganic solid electrolyte, a solid electrolyte material applicable to this type of product can be appropriately selected and used. Typical examples of the inorganic solid electrolytes are (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes, which are sulfides in terms of high ionic conductivity and ease of interparticle interface bonding. A based inorganic solid electrolyte is preferable.
When the all-solid-state secondary battery of the present invention is an all-solid-state lithium-ion secondary battery, the inorganic solid electrolyte preferably has lithium ion ionic conductivity.

(i)硫化物系無機固体電解質
硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom (S), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and has ionic conductivity. , A compound having electronic insulation is preferable. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.

硫化物系無機固体電解質としては、例えば、下記式(I)で示される組成を満たすリチウムイオン伝導性硫化物系無機固体電解質が挙げられる。

a1b1c1d1e1 式(I)

式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1〜e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1〜12:0〜5:1:2〜12:0〜10を満たす。a1は1〜9が好ましく、1.5〜7.5がより好ましい。b1は0〜3が好ましく、0〜1がより好ましい。d1は2.5〜10が好ましく、3.0〜8.5がより好ましい。e1は0〜5が好ましく、0〜3がより好ましい。
Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive sulfide-based inorganic solid electrolyte satisfying the composition represented by the following formula (I).

La1 M b1 P c1 S d1 A e1 equation (I)

In the formula, L represents an element selected from Li, Na and K, with Li being preferred. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12:00 to 5: 1: 2 to 12:00 to 10. a1 is preferably 1 to 9, more preferably 1.5 to 7.5. b1 is preferably 0 to 3, more preferably 0 to 1. d1 is preferably 2.5 to 10 and more preferably 3.0 to 8.5. e1 is preferably 0 to 5, more preferably 0 to 3.

各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合比を調整することにより制御できる。 The composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.

硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi−P−S系ガラス、又はLi、P及びSを含有するLi−P−S系ガラスセラミックスを用いることができる。
硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be non-crystal (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized. For example, Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (eg, lithium halide). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2).

Li−P−S系ガラス及びLi−P−S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40〜90:10、より好ましくは68:32〜78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10−4S/cm以上、より好ましくは1×10−3S/cm以上とすることができる。上限は特にないが、1×10−1S/cm以下であることが実際的である。In Li-P-S based glass and Li-P-S based glass ceramics, the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60:40 It is 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S and P 2 S 5 in this range, the lithium ion conductivity can be made high. Specifically, the lithium ion conductivity can be preferably 1 × 10 -4 S / cm or more, and more preferably 1 × 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 × 10 -1 S / cm or less.

具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS−P、LiS−P−LiCl、LiS−P−HS、LiS−P−HS−LiCl、LiS−LiI−P、LiS−LiI−LiO−P、LiS−LiBr−P、LiS−LiO−P、LiS−LiPO−P、LiS−P−P、LiS−P−SiS、LiS−P−SiS−LiCl、LiS−P−SnS、LiS−P−Al、LiS−GeS、LiS−GeS−ZnS、LiS−Ga、LiS−GeS−Ga、LiS−GeS−P、LiS−GeS−Sb、LiS−GeS−Al、LiS−SiS、LiS−Al、LiS−SiS−Al、LiS−SiS−P、LiS−SiS−P−LiI、LiS−SiS−LiI、LiS−SiS−LiSiO、LiS−SiS−LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。As an example of a specific sulfide-based inorganic solid electrolyte, an example of combining raw materials is shown below. For example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2- LiCl, Li 2 S-P 2 S 5- SnS, Li 2 S-P 2 S 5- Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2- ZnS, Li 2 S-Ga 2 S 3 , Li 2 S-GeS 2- Ga 2 S 3 , Li 2 S-GeS 2- P 2 S 5 , Li 2 S-GeS 2- Sb 2 S 5 , Li 2 S-GeS 2- Al 2 S 3 , Li 2 S-SiS 2 , Li 2 S-Al 2 S 3 , Li 2 S-SiS 2- Al 2 S 3 , Li 2 S-SiS 2- P 2 S 5 , Li 2 S-SiS 2- P 2 S 5 -LiI, Li 2 S -SiS 2 -LiI, such as Li 2 S-SiS 2 -Li 4 SiO 4, Li 2 S-SiS 2 -Li 3 PO 4, Li 10 GeP 2 S 12 and the like. However, the mixing ratio of each raw material does not matter. As a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition, for example, an amorphization method can be mentioned. Examples of the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.

(ii)酸化物系無機固体電解質
酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
(Ii) Oxide-based inorganic solid electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom (O), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and has ionic conductivity. , A compound having an electron insulating property is preferable.

具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3〜0.7、ya=0.3〜0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3−2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO−LiSO、LiO−B−P、LiO−SiO、LiBaLaTa12、LiPO(4−3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2−xhSiyh3−yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。Specific examples of the compound include, for example, Li xa La ya TiO 3 [xa = 0.3 to 0.7, ya = 0.3 to 0.7] (LLT), Li xb La yb Zr zb M bb mb O. nb (M bb is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, xb satisfies 5 ≦ xb ≦ 10, and yb is 1 ≦ yb. ≦ 4 was filled, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, nb satisfies 5 ≦ nb ≦ 20.), Li xc B yc M cc zc O nc (M cc is C, S, Al, Si, Ga, Ge, In, Sn are at least one element, xc satisfies 0 ≦ xc ≦ 5, yc satisfies 0 ≦ yc ≦ 1, and zc satisfies 0 ≦ zc ≦. met 1, nc satisfies 0 ≦ nc ≦ 6.), Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ≦ xd ≦ 3,0 ≦ yd ≦ 1 , 0 ≦ zd ≦ 2,0 ≦ ad ≦ 1,1 ≦ md ≦ 7,3 ≦ nd ≦ 13), the number of Li (3-2xe) M ee xe D ee O (xe 0 to 0.1 represents, M ee is .D ee representing the divalent metal atom represent a combination of halogen atom or two or more halogen atoms.), Li xf Si yf O zf (1 ≦ xf ≦ 5,0 <yf ≦ 3 , 1 ≦ zf ≦ 10), Li xg S yg O zg (1 ≦ xg ≦ 3,0 <yg ≦ 2,1 ≦ zg ≦ 10), Li 3 BO 3 -Li 2 SO 4, Li 2 O-B 2 O 3- P 2 O 5 , Li 2 O-SiO 2 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w) N w (w is w <1), LISION (Lithium superionic compound) ) Type crystal structure Li 3.5 Zn 0.25 GeO 4 , La 0.55 Li 0.35 TIO 3 having a perovskite type crystal structure, LiTi 2 P 3 having a NASICON (Naturium superionic compound) type crystal structure O 12 , Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (however, 0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1), Li having a garnet-type crystal structure 7 La 3 Zr 2 O 12 (LLZ) and the like can be mentioned. Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ), LiPON in which a part of oxygen of lithium phosphate is replaced with nitrogen, LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr. , Nb, Mo, Ru, Ag, Ta, W, Pt, Au and the like (at least one selected from) and the like. Further, LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga and the like) and the like can also be preferably used.

無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の粒径は特に制限されない。イオン伝導度、更には加工性及び界面形成性の点では、無機固体電解質の粒径は、0.01μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。また、無機固体電解質の粒径は、100μm以下が好ましく、50μm以下がより好ましく、20μm以下がさらに好ましく、4μm以下がさらに好ましく、2μm以下が特に好ましい。
無機固体電解質粒子の粒径は平均粒径を意味し、以下の通り決定することができる。
無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA−920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析−動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
The inorganic solid electrolyte is preferably particles. In this case, the particle size of the inorganic solid electrolyte is not particularly limited. From the viewpoint of ionic conductivity, processability and interface forming property, the particle size of the inorganic solid electrolyte is preferably 0.01 μm or more, more preferably 0.2 μm or more, still more preferably 0.3 μm or more. The particle size of the inorganic solid electrolyte is preferably 100 μm or less, more preferably 50 μm or less, further preferably 20 μm or less, further preferably 4 μm or less, and particularly preferably 2 μm or less.
The particle size of the inorganic solid electrolyte particles means the average particle size and can be determined as follows.
The inorganic solid electrolyte particles are diluted and adjusted by 1% by mass of a dispersion in a 20 mL sample bottle with water (heptane in the case of a water-unstable substance). The diluted dispersed sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test. Using this dispersion sample, data was captured 50 times using a measurement quartz cell at a temperature of 25 ° C. using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA). Obtain the volume average particle size. For other detailed conditions, etc., refer to the description of JIS Z 8828: 2013 “Particle size analysis-Dynamic light scattering method” as necessary. Five samples are prepared for each level and the average value is adopted.

(バインダー)
上記固体電解質層に含まれる上記バインダーは、各種の有機高分子化合物(ポリマー)で構成することができる。バインダーは、無機固体電解質粒子間の結着性を高めて、機械強度、イオン伝導性等の向上に寄与する。バインダーを構成する有機高分子化合物は、粒子状のものを含んでもよいし、非粒子状のものを含んでもよい。イオン伝導性をより高める観点からは、粒子状バインダーが好ましい。粒子状バインダーは、一次粒径(体積平均粒子径)が10〜1000nmが好ましく、20〜750nmがより好ましく、30〜500nmがさらに好ましく、50〜300nmがさらに好ましい。
(binder)
The binder contained in the solid electrolyte layer can be composed of various organic polymer compounds (polymers). The binder enhances the binding property between the inorganic solid electrolyte particles and contributes to the improvement of mechanical strength, ionic conductivity and the like. The organic polymer compound constituting the binder may contain a particulate compound or a non-particulate compound. From the viewpoint of further enhancing ionic conductivity, a particulate binder is preferable. The particulate binder has a primary particle size (volume average particle size) of preferably 10 to 1000 nm, more preferably 20 to 750 nm, further preferably 30 to 500 nm, and even more preferably 50 to 300 nm.

バインダーは、例えば、以下に述べる有機高分子化合物で構成することができる。 The binder can be composed of, for example, the organic polymer compounds described below.

−含フッ素樹脂−
含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF−HFP)が挙げられる。
-Fluororesin-
Examples of the fluororesin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).

−炭化水素系熱可塑性樹脂−
炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
-Hydrocarbon-based thermoplastic resin-
Examples of the hydrocarbon-based thermoplastic resin include polyethylene, polypropylene, styrene-butadiene rubber (SBR), hydrogenated styrene-butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.

−(メタ)アクリル樹脂−
(メタ)アクリル樹脂としては、各種の(メタ)アクリルモノマー、(メタ)アクリルアミドモノマー、及びこれらモノマーの2種以上の共重合体が挙げられる。
また、その他のビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられるが、これらに限定されるものではない。本願明細書において、コポリマーは、統計コポリマー及び周期コポリマーのいずれでもよく、ランダムコポリマーが好ましい。
-(Meta) acrylic resin-
Examples of the (meth) acrylic resin include various (meth) acrylic monomers, (meth) acrylamide monomers, and two or more copolymers of these monomers.
Further, a copolymer (copolymer) with other vinyl-based monomers is also preferably used. Examples thereof include a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene. It is not limited to these. In the present specification, the copolymer may be either a statistical copolymer or a periodic copolymer, and a random copolymer is preferable.

−その他の樹脂−
その他の樹脂としては、例えば、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
-Other resins-
Examples of other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, cellulose derivative resin and the like.

固体電解質組成物がバインダーを含む場合、固体電解質組成物固形分中、バインダーの含有量は1〜20質量%とすることができ、2〜15質量%が好ましく、3〜10質量%がさらに好ましい。 When the solid electrolyte composition contains a binder, the content of the binder in the solid content of the solid electrolyte composition can be 1 to 20% by mass, preferably 2 to 15% by mass, more preferably 3 to 10% by mass. ..

上記の中でも、含フッ素樹脂、炭化水素系熱可塑性樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂及びセルロース誘導体樹脂が好ましく、無機固体電解質との親和性が良好であり、また、樹脂自体の柔軟性が良好で、固体粒子とのより強固な結着性を示し得る点で、(メタ)アクリル樹脂又はポリウレタン樹脂が特に好ましい。
上記各種の樹脂は、市販品を用いることができる。また、常法により調製することもできる。
バインダーを構成する高分子の数平均分子量は、固体粒子間の結着性向上の観点から、1000〜1000000であることが好ましく、10000〜500000がより好ましい。
なお、上記で説明した有機高分子化合物は一例であり、本発明におけるバインダーはこれらの形態に限定されるものではない。
Among the above, fluorine-containing resin, hydrocarbon-based thermoplastic resin, (meth) acrylic resin, polyurethane resin, polycarbonate resin and cellulose derivative resin are preferable, and the affinity with the inorganic solid electrolyte is good, and the resin itself A (meth) acrylic resin or a polyurethane resin is particularly preferable because it has good flexibility and can exhibit stronger binding property to solid particles.
Commercially available products can be used as the above-mentioned various resins. It can also be prepared by a conventional method.
The number average molecular weight of the polymer constituting the binder is preferably 1000 to 1000000, more preferably 1000 to 500000, from the viewpoint of improving the binding property between the solid particles.
The organic polymer compound described above is an example, and the binder in the present invention is not limited to these forms.

(リチウム塩)
固体電解質含有層は、リチウム塩(支持電解質)を含有してもよい。
リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015−088486の段落0082〜0085記載のリチウム塩が好ましい。
固体電解質含有層がリチウム塩を含む場合、リチウム塩の含有量は、無機固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(Lithium salt)
The solid electrolyte-containing layer may contain a lithium salt (supporting electrolyte).
As the lithium salt, the lithium salt usually used for this kind of product is preferable, and there is no particular limitation. For example, the lithium salt described in paragraphs 0083-00885 of JP2015-088486 is preferable.
When the solid electrolyte-containing layer contains a lithium salt, the content of the lithium salt is preferably 0.1 part by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the inorganic solid electrolyte. The upper limit is preferably 50 parts by mass or less, more preferably 20 parts by mass or less.

(イオン液体)
固体電解質含有層は、イオン伝導度をより向上させるため、イオン液体を含有してもよい。イオン液体としては、特に限定されないが、イオン伝導度を効果的に向上させる観点から、上述したリチウム塩を溶解するものが好ましい。例えば、下記のカチオンと、アニオンとの組み合わせよりなる化合物が挙げられる。
(Ionic liquid)
The solid electrolyte-containing layer may contain an ionic liquid in order to further improve the ionic conductivity. The ionic liquid is not particularly limited, but one that dissolves the above-mentioned lithium salt is preferable from the viewpoint of effectively improving the ionic conductivity. For example, a compound composed of a combination of the following cations and anions can be mentioned.

<正極活物質層、負極活物質層>
本発明の積層部材を構成する正極活物質層及び負極活物質層は、全固体二次電池において用いられる通常の構成材料で形成することができる。正極活物質層には正極活物質が含まれ、負極活物質層には負極活物質が含まれる。正極活物質層及び負極活物質層は、活物質を含むこと以外は、上述した固体電解質層の構成と同じであることが好ましい。
すなわち、本発明において正極活物質層、及び負極活物質層は、上述した固体電解質組成物に、対応する活物質を含有させた組成物(正極形成用組成物及び負極形成用組成物。これらをまとめて電極形成用組成物とも称す。)を調製し、これを基材に塗布して形成することができる。電極形成用組成物中の各成分含有量は、目的に応じて適宜に調整できる。例えば、電極形成用組成物の固形分中、活物質の含有量を20〜95質量%とすることができ、30〜90質量%がより好ましい。
<Positive electrode active material layer, Negative electrode active material layer>
The positive electrode active material layer and the negative electrode active material layer constituting the laminated member of the present invention can be formed of ordinary constituent materials used in an all-solid-state secondary battery. The positive electrode active material layer contains a positive electrode active material, and the negative electrode active material layer contains a negative electrode active material. The positive electrode active material layer and the negative electrode active material layer preferably have the same structure as the above-mentioned solid electrolyte layer except that they contain an active material.
That is, in the present invention, the positive electrode active material layer and the negative electrode active material layer are compositions in which the above-mentioned solid electrolyte composition contains the corresponding active material (positive electrode forming composition and negative electrode forming composition). Collectively, it is also referred to as an electrode forming composition), and this can be applied to a base material to form the electrode. The content of each component in the electrode-forming composition can be appropriately adjusted according to the intended purpose. For example, the content of the active material in the solid content of the electrode forming composition can be 20 to 95% by mass, more preferably 30 to 90% by mass.

(活物質)
活物質の形状は、特に制限されないが、粒子状が好ましい。また、活物質の粒径は、上記粒径比を満足する限り、特に制限されない。活物質の粒径は、分散性向上、固体粒子間の接触面積向上、界面反応性低減の点で、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることがさらに好ましい。また、活物質の粒径は、20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。活物質の粒径は平均粒径を意味し、無機固体電解質の粒径と同様にして決定することができる。活物質の粒径が粒径測定装置の測定限界以下の場合は、必要により活物質を乾固した後に、透過型電子顕微鏡(TEM)観察により粒径を測定する。
(Active material)
The shape of the active material is not particularly limited, but is preferably in the form of particles. Further, the particle size of the active material is not particularly limited as long as the above particle size ratio is satisfied. The particle size of the active material is preferably 0.1 μm or more, more preferably 1 μm or more, and 2 μm or more in terms of improving dispersibility, improving the contact area between solid particles, and reducing interfacial reactivity. Is even more preferable. The particle size of the active material is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. The particle size of the active material means the average particle size and can be determined in the same manner as the particle size of the inorganic solid electrolyte. When the particle size of the active material is equal to or less than the measurement limit of the particle size measuring device, the particle size is measured by observation with a transmission electron microscope (TEM) after the active material is dried to dryness, if necessary.

−正極活物質−
正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0〜30mol%が好ましい。Li/Maのモル比が0.3〜2.2になるように混合して合成されたものが、より好ましい。
遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
-Positive electrode active material-
The positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above-mentioned properties, and may be a transition metal oxide, an organic substance, an element that can be composited with Li such as sulfur, or a composite of sulfur and a metal.
Among them, as the positive electrode active material, a transition metal oxide having preferably used a transition metal oxide, a transition metal element M a (Co, Ni, Fe , Mn, 1 or more elements selected from Cu and V) the Things are more preferred. Further, the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P or B) may be mixed. The mixing amount, 0~30mol% is preferred for the amount of the transition metal element M a (100mol%). It is more preferable that the mixture is synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphoric acid compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound, and the like.

(MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
(MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
(MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
(MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
(ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
(MA) Specific examples of the transition metal oxide having a layered rock salt structure include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
(MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. Examples thereof include cobalt phosphates of the above, and monoclinic panocycon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts such as.
Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.

正極活物質を所望の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。 In order to obtain the desired particle size of the positive electrode active material, a normal crusher or classifier may be used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.

上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The positive electrode active material may be used alone or in combination of two or more.
When forming the positive electrode active material layer, the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.

−負極活物質−
負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体及びリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al及びIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵及び放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
-Negative electrode active material-
The negative electrode active material is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance, a lithium alloy such as a lithium aluminum alloy, and the like. , Sn, Si, Al, In and other metals that can be alloyed with lithium. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability. Further, as the metal composite oxide, it is preferable that lithium can be occluded and released. The material is not particularly limited, but it is preferable that the material contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.

負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially composed of carbon. For example, various synthesis of petroleum pitch, carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin. A carbonaceous material obtained by firing a resin can be mentioned. Furthermore, various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polypoly alcohol) -based carbon fibers, lignin carbon fibers, graphitic carbon fibers, and activated carbon fibers. Kind, mesophase microspheres, graphite whisker, flat graphite and the like can also be mentioned.

負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°〜40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。 As the metal oxide and the metal composite oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. Be done. Amorphous here means an X-ray diffraction method using CuKα rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2θ value, and is a crystalline diffraction line. May have.

上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族〜15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、並びにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb及びSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。Among the compound group consisting of the amorphous oxide and the chalcogenide, the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and the elements of the groups 13 (IIIB) to 15 (VB) of the periodic table, Al. , Ga, Si, Sn, Ge, Pb, Sb and Bi alone or a combination of two or more of them oxides, and chalcogenides are particularly preferred. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSi S 3 are preferably mentioned. Further, these may be a composite oxide with lithium oxide, for example, Li 2 SnO 2 .

負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。It is also preferable that the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) has excellent rapid charge / discharge characteristics due to small volume fluctuations during storage and release of lithium ions, and electrode deterioration is suppressed and lithium ion secondary It is preferable in that the life of the battery can be improved.

本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。 In the present invention, it is also preferable to apply a Si-based negative electrode. In general, the Si negative electrode can occlude more Li ions than the carbon negative electrode (graphite, acetylene black, etc.). That is, the amount of Li ions occluded per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery drive time can be lengthened.

負極活物質を所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル及び旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式及び湿式ともに用いることができる。 An ordinary crusher or classifier is used to adjust the negative electrode active material to a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, and the like are preferably used. At the time of pulverization, wet pulverization in which water or an organic solvent such as methanol coexists can also be performed, if necessary. It is preferable to perform classification in order to obtain a desired particle size. The classification method is not particularly limited, and a sieve, a wind power classifier, or the like can be used as needed. Both dry and wet classifications can be used.

上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measuring method and the mass difference of the powder before and after firing as a simple method.

上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The negative electrode active material may be used alone or in combination of two or more.
When the negative electrode active material layer is formed, the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.

正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。また、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
また、本発明において、正極活物質層や負極活物質層は、導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いてもよい。
The surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide. Further, the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
Further, in the present invention, the positive electrode active material layer and the negative electrode active material layer may contain a conductive auxiliary agent. The conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used. For example, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fibers or carbon nanotubes, which are electron conductive materials. It may be a carbon fiber such as graphene or fullerene, a metal powder such as copper or nickel, or a metal fiber, and a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. You may use it.

本発明の積層部材において、負極活物質層、固体電解質層及び正極活物質層の各層厚は特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10μm〜500μmが好ましく、20〜400μmがより好ましく、20〜200μmがさらに好ましい。また、負極活物質層、固体電解質層及び正極活物質層の各層は、単層であってもよく、複層としてもよい。複層の場合、複層全体の厚さを上記の好ましい範囲内とすることが好ましい。 In the laminated member of the present invention, the thickness of each of the negative electrode active material layer, the solid electrolyte layer and the positive electrode active material layer is not particularly limited. The thickness of each layer is preferably 10 μm to 500 μm, more preferably 20 to 400 μm, and even more preferably 20 to 200 μm, respectively, considering the dimensions of a general all-solid-state secondary battery. Further, each layer of the negative electrode active material layer, the solid electrolyte layer and the positive electrode active material layer may be a single layer or a plurality of layers. In the case of multiple layers, it is preferable that the thickness of the entire multiple layers is within the above preferable range.

本発明の積層部材は、上述した負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1〜500μmとすることができる。 In the laminated member of the present invention, the above-mentioned negative electrode active material layer can be a lithium metal layer. Examples of the lithium metal layer include a layer formed by depositing or molding a lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like. The thickness of the lithium metal layer can be, for example, 1 to 500 μm regardless of the thickness of the negative electrode active material layer.

<集電体層>
本発明の積層部材に用いる集電体層は、電子伝導体が好ましい。本発明の積層部材に用いる集電体層のうち少なくとも1つは金属箔からなることが好ましい。この金属箔上に、各層形成用のスラリーが逐次、又は同時に塗布されることが好ましい。
この金属箔を正極集電体層として使用する場合、その構成材料は、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどが挙げられる。また、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)も好ましい。その中でも、アルミニウム及びアルミニウム合金がより好ましい。
また、上記金属箔を負極集電体層として使用する場合、その構成材料は、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどが挙げられる。また、アルミニウム、銅、銅合金又はステンレス鋼の表面をカーボン、ニッケル、チタンあるいは銀で処理したものも好ましい。なかでも負極集電体層の構成材料は、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
<Current collector layer>
The current collector layer used for the laminated member of the present invention is preferably an electron conductor. It is preferable that at least one of the current collector layers used in the laminated member of the present invention is made of metal foil. It is preferable that the slurry for forming each layer is sequentially or simultaneously applied on the metal foil.
When this metal foil is used as the positive electrode current collector layer, its constituent materials include aluminum, aluminum alloy, stainless steel, nickel and titanium. Further, a material obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium or silver (a thin film formed) is also preferable. Among them, aluminum and aluminum alloys are more preferable.
When the metal foil is used as the negative electrode current collector layer, the constituent materials thereof include aluminum, copper, copper alloy, stainless steel, nickel and titanium. Further, it is also preferable that the surface of aluminum, copper, copper alloy or stainless steel is treated with carbon, nickel, titanium or silver. Among them, aluminum, copper, copper alloy and stainless steel are more preferable as the constituent materials of the negative electrode current collector layer.

金属箔からなる集電体層の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。 The shape of the current collector layer made of metal foil is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, etc. may also be used. Can be done.

本発明の積層部材が、例えば、上記(a)及び(b)の積層構造の場合、上述したように、第2の集電体層は第2の集電体層の構成材料を含有するスラリーを用いて形成される。このスラリーは、第2の集電体層の構成材料の粉末を含有する形態とすることができる。上記(a)の積層構造では、第2の集電体層は負極集電体層であり、導電材料として、例えばアルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの粉末(粒子)を含有するスラリーを塗布して、第2の集電体層を形成することができる。また、上記(b)の積層構造では、第2の集電体層は正極活物質層であり、導電材料として、例えばアルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの粉末を含有するスラリーを用いて第2の集電体層を形成することができる。
また、第2の集電体層は、導電材料としてカーボンブラックを含有する構成することもできる。すなわち、カーボンブラックと分散媒とを混合してなるスラリーを用いて集電体層を塗布形成することも好ましい。
本発明の積層部材が上記(c)の積層構造の場合、好ましくは、基材とする金属箔からなる集電体層以外の集電体層のすべてが、集電体層の構成材料を含有するスラリーを用いてウェットオンウェット塗布により形成される。集電体層の構成材料は、モノポーラ型、バイポーラ型等の形態を考慮し、例えば、上述した構成材料から適宜に選択することができる。
集電体層を形成するためのスラリーは、バインダーを含むことも好ましい。バインダーの好ましい形態は、上述したバインダーと同じである。バインダーを含むことにより、集電体層の構成材料の結着性が高まり、また活物質層との密着性も高めることができ、電池の充放電時の抵抗をより低く抑えることができる。
スラリー中の、集電体層の構成材料の含有量は、目的に応じて適宜に調整すればよい。例えば、スラリーの固形分中、導電材料の含有量を50質量%以上とすることができ、70質量%以上が好ましく、80質量%以上がより好ましい。また、スラリーがバインダーを含む場合、導電材料/バインダー(質量比)を3/1〜50/1とすることが好ましく、5/1〜30/1とすることがより好ましく、7/1〜20/1とすることがさらに好ましい。
When the laminated member of the present invention has, for example, the laminated structure of (a) and (b) above, as described above, the second current collector layer is a slurry containing a constituent material of the second current collector layer. Is formed using. This slurry can be in the form of containing the powder of the constituent material of the second current collector layer. In the laminated structure of (a) above, the second current collector layer is a negative electrode current collector layer, and powders (particles) such as aluminum, copper, copper alloy, stainless steel, nickel and titanium are used as the conductive material. The contained slurry can be applied to form a second current collector layer. Further, in the laminated structure of the above (b), the second current collector layer is a positive electrode active material layer, and a slurry containing powders such as aluminum, aluminum alloy, stainless steel, nickel and titanium as a conductive material is used. It can be used to form a second collector layer.
Further, the second current collector layer may be configured to contain carbon black as a conductive material. That is, it is also preferable to coat and form the current collector layer using a slurry formed by mixing carbon black and a dispersion medium.
When the laminated member of the present invention has the laminated structure of the above (c), preferably, all of the current collector layers other than the current collector layer made of the metal foil as the base material contain the constituent materials of the current collector layer. It is formed by wet-on-wet application using the slurry to be used. The constituent material of the current collector layer can be appropriately selected from the above-mentioned constituent materials in consideration of forms such as a monopolar type and a bipolar type.
The slurry for forming the current collector layer preferably contains a binder. The preferred form of the binder is the same as that of the binder described above. By including the binder, the binding property of the constituent materials of the current collector layer can be enhanced, the adhesion to the active material layer can be enhanced, and the resistance during charging and discharging of the battery can be suppressed to a lower level.
The content of the constituent material of the current collector layer in the slurry may be appropriately adjusted according to the purpose. For example, the content of the conductive material in the solid content of the slurry can be 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. When the slurry contains a binder, the conductive material / binder (mass ratio) is preferably 3/1 to 50/1, more preferably 5/1 to 30/1, and 7/1 to 20. It is more preferable to set it to 1/1.

集電体層の厚みは、特に制限されないが、1〜500μmが好ましく、2〜300μmがより好ましく、2〜200μmがさらに好ましい。 The thickness of the current collector layer is not particularly limited, but is preferably 1 to 500 μm, more preferably 2 to 300 μm, and even more preferably 2 to 200 μm.

本発明の製造方法において、固体電解質層、正極活物質層、負極活物質層、及び集電体層を形成するためのスラリーに用いる分散媒の種類は同じであることが好ましい。 In the production method of the present invention, it is preferable that the types of dispersion media used in the slurry for forming the solid electrolyte layer, the positive electrode active material layer, the negative electrode active material layer, and the current collector layer are the same.

[全固体二次電池の製造方法]
本発明の全固体二次電池の製造方法は、上述した本発明の製造方法により本発明の積層部材を得て、この積層部材を用いて全固体二次電池を得る方法である。本発明の全固体二次電池の製造方法には、本発明の積層部材を用いること以外は、通常の全固体二次電池の製造工程を適用すればよい。本発明の積層部材は、そのままでも二次電池として作動するが、通常は、本発明の積層部材を適当なハウジングに収めて(筐体に封入したり、コインケース等に収めたりして)、加圧状態として全固体二次電池とする。
上記筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[Manufacturing method of all-solid-state secondary battery]
The method for manufacturing an all-solid-state secondary battery of the present invention is a method of obtaining a laminated member of the present invention by the above-mentioned manufacturing method of the present invention and using the laminated member to obtain an all-solid-state secondary battery. To the method for manufacturing the all-solid-state secondary battery of the present invention, a normal manufacturing process for the all-solid-state secondary battery may be applied except that the laminated member of the present invention is used. The laminated member of the present invention operates as a secondary battery as it is, but usually, the laminated member of the present invention is housed in an appropriate housing (enclosed in a housing, housed in a coin case, etc.). An all-solid-state secondary battery is used under pressure.
The housing may be made of metal or resin (plastic). When a metallic material is used, for example, one made of aluminum alloy or stainless steel can be mentioned. It is preferable that the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.

<初期化>
上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化することが好ましい。初期化は、特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
<Initialization>
The all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.

以下に、図3を参照して、本発明の全固体二次電池の製造方法で得られる全固体二次電池(リチウムイオン二次電池)の一実施形態について説明する。図3は、この全固体二次電池を模式化して示す断面図であり、筐体等の記載は省略し、本発明の積層部材(上記(a)及び(b)の積層構造に対応)の構成を示すものである。全固体二次電池103は、負極側からみて、負極集電体層11、負極活物質層12、固体電解質層13、正極活物質層14、正極集電体層15を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位16に電子が供給される。図示した例では、作動部位16に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。Hereinafter, an embodiment of an all-solid-state secondary battery (lithium-ion secondary battery) obtained by the method for manufacturing an all-solid-state secondary battery of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view schematically showing this all-solid-state secondary battery, and the description of the housing and the like is omitted, and the laminated member of the present invention (corresponding to the laminated structure of (a) and (b) above). It shows the configuration. The all-solid-state secondary battery 103 has a negative electrode current collector layer 11, a negative electrode active material layer 12, a solid electrolyte layer 13, a positive electrode active material layer 14, and a positive electrode current collector layer 15 in this order when viewed from the negative electrode side. Each layer is in contact with each other and has an adjacent structure. By adopting such a structure, during charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated there. On the other hand, at the time of discharge, the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 16. In the illustrated example, a light bulb is used as a model for the operating portion 16, and the light bulb is turned on by electric discharge.

本発明の製造方法で得られる全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。 The all-solid-state secondary battery obtained by the production method of the present invention can be applied to various uses. The application mode is not particularly limited, but for example, when mounted on an electronic device, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone. Examples include copying, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, portable tape recorders, radios, backup power supplies, memory cards, etc. Other consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). .. Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.

以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples. It should be noted that the present invention is not construed as being limited thereto.

[硫化物系無機固体電解質(Li−P−S系ガラス)の合成]
硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231−235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872−873の非特許文献を参考にして合成した。
[Sulfide-based inorganic solid electrolyte (Li-PS-based glass) synthesis]
Sulfide-based inorganic solid electrolytes are described in T.I. Ohtomo, A.M. Hayashi, M. et al. Tassumisago, Y. et al. Tsuchida, S.A. Hama, K.K. Kawamoto, Journal of Power Sources, 233, (2013), pp231-235 and A.M. Hayashi, S.A. Hama, H. Morimoto, M.D. Tatsumi sago, T. et al. Minami, Chem. Lett. , (2001), pp872-873, was synthesized with reference to the non-patent documents.

具体的には、アルゴン雰囲気下(露点−70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42kg、五硫化二リン(P、Aldrich社製、純度>99%)3.90kgをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳鉢を用いて、5分間混合した。なお、LiS及びPはモル比でLiS:P=75:25とした。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP−7(商品名)に容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li−P−S系ガラス、「LPS」とも称する。)6.20gを得た。
Specifically, in a glove box under an argon atmosphere (dew point -70 ° C.), lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%) 2.42 kg, diphosphorus pentasulfide (P 2 S). 5. Aldrich, purity> 99%) 3.90 kg was weighed, put into an agate mortar, and mixed for 5 minutes using an agate mortar. The molar ratios of Li 2 S and P 2 S 5 were Li 2 S: P 2 S 5 = 75: 25.
66 zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and the entire mixture of lithium sulfide and diphosphorus pentasulfide was put into the container, and the container was sealed under an argon atmosphere. A container is set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours. Glass, also referred to as "LPS") 6.20 g was obtained.

[固体電解質層形成用スラリーの調製]
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを130個投入し、LPSを3.0g、バインダーとしてスチレンブタジエンゴム(SBR、平均一次粒径100nm、以下同様)を0.09g、分散媒としてトルエンを9.0g投入した。フリッチュ社製遊星ボールミルP−7(商品名)に容器をセットし、温度25℃、回転数100rpmで30分混合し、粒径2.0μmのLPSを含有する、固体電解質層を形成するための固体電解質層形成用スラリーを調製した。
[Preparation of slurry for forming solid electrolyte layer]
In a 45 mL container made of zirconia (manufactured by Fritsch), 130 zirconia beads having a diameter of 5 mm were put, 3.0 g of LPS, and 0.09 g of styrene-butadiene rubber (SBR, average primary particle size 100 nm, the same applies hereinafter) as a binder. 9.0 g of toluene was added as a dispersion medium. A container is set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 100 rpm for 30 minutes to form a solid electrolyte layer containing LPS having a particle size of 2.0 μm. A slurry for forming a solid electrolyte layer was prepared.

[正極活物質層形成用スラリーの調製]
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPSを2.8g、バインダーとしてSBRを0.1g、分散媒としてトルエン12.3gを投入した。フリッチュ社製遊星ボールミルP−7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてNMC(LiNi0.33Co0.33Mn0.33(アルドリッチ社製))7.0g、導電助剤としてアセチレンブラック(デンカ(株)製)を0.2g容器に投入し、同様に、遊星ボールミルP−7に容器をセットし、温度25℃、回転数100rpmで10分間混合を続け、正極活物質層形成用スラリーを調製した。
[Preparation of slurry for forming positive electrode active material layer]
180 zirconia beads having a diameter of 5 mm were put into a zirconia 45 mL container (manufactured by Fritsch), 2.8 g of LPS synthesized above, 0.1 g of SBR as a binder, and 12.3 g of toluene as a dispersion medium were put. .. The container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours. After that, 7.0 g of NMC (LiNi 0.33 Co 0.33 Mn 0.33 O 2 (manufactured by Aldrich)) as an active material and 0.2 g of acetylene black (manufactured by Denka Co., Ltd.) as a conductive auxiliary agent were put into a container. Similarly, the container was set in the planetary ball mill P-7, and mixing was continued for 10 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm to prepare a slurry for forming a positive electrode active material layer.

[負極活物質層形成用スラリーの調製]
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS系ガラス2.8g、バインダーとしてSBSを0.2g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP−7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質として黒鉛7.0gを容器に投入し、同様に、遊星ボールミルP−7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け負極活物質層形成用スラリーを調製した。
[Preparation of slurry for forming negative electrode active material layer]
180 zirconia beads having a diameter of 5 mm were put into a zirconia 45 mL container (manufactured by Fritsch), and 2.8 g of LPS-based glass synthesized above, 0.2 g of SBS as a binder, and 12.3 g of heptane as a dispersion medium were put into the container. did. The container was set on a planetary ball mill P-7 manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours. After that, 7.0 g of graphite was put into a container as an active material, the container was similarly set in a planetary ball mill P-7, and mixing was continued at a temperature of 25 ° C. and a rotation speed of 200 rpm for 15 minutes to prepare a slurry for forming a negative electrode active material layer. Prepared.

[集電体層形成用スラリーの調製]
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、カーボンブラックを6.0g、バインダーとしてSBRを0.06g、分散媒としてヘプタンを4.0g投入した。フリッチュ社製遊星ボールミルP−7に容器をセットし、温度25℃、回転数300rpmで2時間混合し、集電体層形成用スラリーを調製した。
[Preparation of slurry for current collector layer formation]
180 zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), 6.0 g of carbon black, 0.06 g of SBR as a binder, and 4.0 g of heptane as a dispersion medium were put. A container was set on a planetary ball mill P-7 manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours to prepare a slurry for forming a current collector layer.

[全固体二次電池用積層部材の作製]
<実施例1>
上記で調製した正極活物質層形成用スラリーを、アルミ箔(正極集電体、厚さ20μm)上に、アプリケータ(商品名:SA−201ベーカー式アプリケータ、テスター産業社製)により30mg/cmの目付量となるように塗布し、アルミ箔からなる正極集電体層上に塗膜(正極活物質層前駆塗膜)を形成した。
正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、正極活物質層前駆塗膜上に塗膜(固体電解質層前駆塗膜)を形成した。
固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、固体電解質層前駆塗膜上に負極活物質層形成用スラリーを上記アプリケータにより20mg/cmの目付量となるように塗布し、固体電解質層前駆塗膜上に塗膜(負極活物質層前駆塗膜)を形成した。
負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、負極活物質層前駆塗膜上に塗膜(第2集電体層前駆塗膜)を形成した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で1時間加熱して分散媒を除去し、上述した(a)の積層構造を有する実施例1の全固体二次電池用積層部材を得た。
実施例1の全固体二次電池用積層部材において、正極活物質層の厚さは100μm、固体電解質層の厚さは20μm、負極活物質層の厚さは80μm、第2集電体層の厚さは20μmであった。
[Manufacturing of laminated members for all-solid-state secondary batteries]
<Example 1>
The slurry for forming the positive electrode active material layer prepared above is placed on an aluminum foil (positive electrode current collector, thickness 20 μm) with an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.) at 30 mg / The coating was applied so as to have a texture of cm 2 , and a coating film (positive electrode active material layer precursor coating film) was formed on the positive electrode current collector layer made of aluminum foil.
With the residual solvent amount of the positive electrode active material layer precursor coating film being 5% by mass, a slurry for forming a solid electrolyte layer was applied onto the positive electrode active material layer precursor coating film so as to have a coating amount of 8 mg / cm 2 by the above applicator. The coating was applied to form a coating film (solid electrolyte layer precursor coating film) on the positive electrode active material layer precursor coating film.
With the residual solvent amount of the solid electrolyte layer precursor coating film being 5% by mass, the slurry for forming the negative electrode active material layer was applied onto the solid electrolyte layer precursor coating film by the above applicator so as to have a grain size of 20 mg / cm 2. Then, a coating film (negative electrode active material layer precursor coating film) was formed on the solid electrolyte layer precursor coating film.
With the residual solvent amount of the negative electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied onto the negative electrode active material layer precursor coating film so as to have a coating amount of 10 mg / cm 2 by the above applicator. A coating film (second current collector layer precursor coating film) was formed on the negative electrode active material layer precursor coating film.
The laminate thus obtained by wet-on-wet coating is heated at 120 ° C. for 1 hour to remove the dispersion medium, thereby obtaining the laminate member for the all-solid-state secondary battery of Example 1 having the laminate structure of (a) described above. It was.
In the laminated member for an all-solid secondary battery of Example 1, the thickness of the positive electrode active material layer is 100 μm, the thickness of the solid electrolyte layer is 20 μm, the thickness of the negative electrode active material layer is 80 μm, and the thickness of the second current collector layer. The thickness was 20 μm.

<実施例2>
アルミ箔(正極集電体、厚さ20μm)上に、正極活物質層形成用スラリー、固体電解質層形成用スラリー、負極活物質層形成用スラリー、及び集電体層形成用スラリーを、この順に塗膜が積層されるように重層専用ギーサーを用いて同時重層塗布した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、上述した(a)の積層構造を有する実施例2の全固体二次電池用積層部材を得た。
実施例2の全固体二次電池用積層部材において、正極活物質層の厚さは100μm、固体電解質層の厚さは20μm、負極活物質層の厚さは80μm、第2集電体層の厚さは20μmであった。
<Example 2>
On an aluminum foil (positive electrode current collector, thickness 20 μm), a slurry for forming a positive electrode active material layer, a slurry for forming a solid electrolyte layer, a slurry for forming a negative electrode active material layer, and a slurry for forming a current collector layer are placed in this order. Simultaneous multi-layer coating was performed using a multi-layer dedicated Gieser so that the coating films could be laminated.
The laminate thus obtained by wet-on-wet coating is heated at 120 ° C. for 2 hours to remove the dispersion medium, thereby obtaining the laminate member for the all-solid-state secondary battery of Example 2 having the laminate structure of (a) described above. It was.
In the laminated member for an all-solid secondary battery of Example 2, the thickness of the positive electrode active material layer is 100 μm, the thickness of the solid electrolyte layer is 20 μm, the thickness of the negative electrode active material layer is 80 μm, and the thickness of the second current collector layer. The thickness was 20 μm.

<実施例3>
実施例1において、第2集電体層前駆塗膜を形成した後、第2集電体層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層形成用スラリーを、上記アプリケータにより30mg/cmの目付量となるように塗布し、第2集電体層前駆塗膜上に塗膜(第2正極活物質層前駆塗膜)を形成した。
第2正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第2正極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、第2正極活物質層前駆塗膜上に塗膜(第2固体電解質層前駆塗膜)を形成した。
第2固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第2固体電解質層前駆塗膜上に負極活物質層形成用スラリーを上記アプリケータにより20mg/cmの目付量となるように塗布し、第2固体電解質層前駆塗膜上に塗膜(第2負極活物質層前駆塗膜)を形成した。
第2負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第2負極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第2負極活物質層前駆塗膜上に塗膜(第3集電体層前駆塗膜)を形成した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを2段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例3の全固体二次電池用積層部材を得た。実施例3の全固体二次電池用積層部材はバイポーラ型である。
実施例3の全固体二次電池用積層部材において、各層の厚さは実施例1と同じである。
<Example 3>
In Example 1, after the second collector layer precursor coating film was formed, the positive electrode active material layer forming slurry was prepared in a state where the residual solvent amount of the second current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a grain size of 30 mg / cm 2 , and a coating film (second positive electrode active material layer precursor coating film) was formed on the second current collector layer precursor coating film.
With the residual solvent amount of the second positive electrode active material layer precursor coating film being 5% by mass, a slurry for forming a solid electrolyte layer was applied onto the second positive electrode active material layer precursor coating film by the above applicator in an amount of 8 mg / cm 2. A coating film (second solid electrolyte layer precursor coating film) was formed on the second positive electrode active material layer precursor coating film.
With the residual solvent amount of the second solid electrolyte layer precursor coating film being 5% by mass, the slurry for forming the negative electrode active material layer was applied onto the second solid electrolyte layer precursor coating film with the above applicator to obtain a coating amount of 20 mg / cm 2. A coating film (second negative electrode active material layer precursor coating film) was formed on the second solid electrolyte layer precursor coating film.
With the residual solvent amount of the second negative electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied on the second negative electrode active material layer precursor coating film with the above applicator at a scale of 10 mg / cm 2. It was applied in an amount to form a coating film (third current collector layer precursor coating film) on the second negative electrode active material layer precursor coating film.
The laminated body thus obtained by wet-on-wet coating is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which two laminated units are stacked (one form of the above-mentioned laminated structure (c)). A laminated member for an all-solid-state secondary battery of Example 3 was obtained. The laminated member for an all-solid-state secondary battery of Example 3 is a bipolar type.
In the laminated member for the all-solid-state secondary battery of Example 3, the thickness of each layer is the same as that of Example 1.

<実施例4>
実施例3において、第3集電体層前駆塗膜を形成した後、第3集電体層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層形成用スラリーを、上記アプリケータにより30mg/cmの目付量となるように塗布し、第3集電体層前駆塗膜上に塗膜(第3正極活物質層前駆塗膜)を形成した。
第3正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第3正極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、正極活物質層前駆塗膜上に塗膜(第3固体電解質層前駆塗膜)を形成した。
第3固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第3固体電解質層前駆塗膜上に負極活物質層形成用スラリーを上記アプリケータにより20mg/cmの目付量となるように塗布し、第3固体電解質層前駆塗膜上に塗膜(第3負極活物質層前駆塗膜)を形成した。
第3負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第3負極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第3負極活物質層前駆塗膜上に塗膜(第4集電体層前駆塗膜)を形成した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを3段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例4の全固体二次電池用積層部材を得た。実施例3の全固体二次電池用積層部材はバイポーラ型である。
実施例4の全固体二次電池用積層部材において、各層の厚さは実施例1と同じである。
<Example 4>
In Example 3, after the third collector layer precursor coating film was formed, the positive electrode active material layer forming slurry was prepared in a state where the residual solvent amount of the third current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a grain size of 30 mg / cm 2 , and a coating film (third positive electrode active material layer precursor coating film) was formed on the third current collector layer precursor coating film.
With the residual solvent amount of the third positive electrode active material layer precursor coating film being 5% by mass, a slurry for forming a solid electrolyte layer was applied onto the third positive electrode active material layer precursor coating film by the above applicator in an amount of 8 mg / cm 2. A coating film (third solid electrolyte layer precursor coating film) was formed on the positive electrode active material layer precursor coating film.
With the residual solvent amount of the third solid electrolyte layer precursor coating film being 5% by mass, the slurry for forming the negative electrode active material layer was applied onto the third solid electrolyte layer precursor coating film with the above applicator to obtain a coating amount of 20 mg / cm 2. A coating film (third negative electrode active material layer precursor coating film) was formed on the third solid electrolyte layer precursor coating film.
With the residual solvent amount of the third negative electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied on the third negative electrode active material layer precursor coating film with the above applicator at a scale of 10 mg / cm 2. It was applied in an amount to form a coating film (fourth current collector layer precursor coating film) on the third negative electrode active material layer precursor coating film.
The laminated body thus obtained by wet-on-wet coating is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which three laminated units are stacked (one form of the above-mentioned laminated structure (c)). A laminated member for an all-solid-state secondary battery of Example 4 was obtained. The laminated member for an all-solid-state secondary battery of Example 3 is a bipolar type.
In the laminated member for the all-solid-state secondary battery of Example 4, the thickness of each layer is the same as that of Example 1.

<実施例5>
実施例4において、第4集電体層前駆塗膜を形成した後、第4集電体層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層形成用スラリーを、上記アプリケータにより30mg/cmの目付量となるように塗布し、第4集電体層前駆塗膜上に塗膜(第4正極活物質層前駆塗膜)を形成した。
第4正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第4正極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、正極活物質層前駆塗膜上に塗膜(第4固体電解質層前駆塗膜)を形成した。
第4固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第4固体電解質層前駆塗膜上に負極活物質層形成用スラリーを上記アプリケータにより20mg/cmの目付量となるように塗布し、第4固体電解質層前駆塗膜上に塗膜(第4負極活物質層前駆塗膜)を形成した。
第4負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第4負極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第4負極活物質層前駆塗膜上に塗膜(第5集電体層前駆塗膜)を形成した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを4段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例5の全固体二次電池用積層部材を得た。実施例3の全固体二次電池用積層部材はバイポーラ型である。
実施例5の全固体二次電池用積層部材において、各層の厚さは実施例1と同じである。
<Example 5>
In Example 4, after the fourth collector layer precursor coating film was formed, the positive electrode active material layer forming slurry was prepared in a state where the residual solvent amount of the fourth current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a grain size of 30 mg / cm 2 , and a coating film (fourth positive electrode active material layer precursor coating film) was formed on the fourth current collector layer precursor coating film.
With the residual solvent amount of the 4th positive electrode active material layer precursor coating film being 5% by mass, a slurry for forming a solid electrolyte layer was applied onto the 4th positive electrode active material layer precursor coating film by the above applicator in an amount of 8 mg / cm 2. A coating film (fourth solid electrolyte layer precursor coating film) was formed on the positive electrode active material layer precursor coating film.
With the residual solvent amount of the 4th solid electrolyte layer precursor coating film being 5% by mass, the slurry for forming the negative electrode active material layer was applied onto the 4th solid electrolyte layer precursor coating film with the above applicator to obtain a coating amount of 20 mg / cm 2. A coating film (fourth negative electrode active material layer precursor coating film) was formed on the fourth solid electrolyte layer precursor coating film.
With the residual solvent amount of the 4th negative electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied on the 4th negative electrode active material layer precursor coating film with the above applicator at a scale of 10 mg / cm 2. It was applied in an amount to form a coating film (fifth current collector layer precursor coating film) on the fourth negative electrode active material layer precursor coating film.
The laminated body thus obtained by wet-on-wet coating is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which four laminated units are stacked (one form of the above-mentioned laminated structure (c)). A laminated member for an all-solid-state secondary battery of Example 5 was obtained. The laminated member for an all-solid-state secondary battery of Example 3 is a bipolar type.
In the laminated member for the all-solid-state secondary battery of Example 5, the thickness of each layer is the same as that of Example 1.

<実施例6>
実施例1において、集電体層形成用スラリーに用いたバインダー(SBR、粒子状、0.06g)を、バインダー(S−SBR(溶液重合スチレンブタジエンゴム)、0.06g)に代えた以外は、実施例1と同様にして実施例6の全固体二次電池用積層部材を得た。S−SBRはヘプタンに溶解性である。
<Example 6>
In Example 1, except that the binder (SBR, particulate, 0.06 g) used in the slurry for forming the current collector layer was replaced with a binder (S-SBR (solution-polymerized styrene-butadiene rubber), 0.06 g). , A laminated member for an all-solid-state secondary battery of Example 6 was obtained in the same manner as in Example 1. S-SBR is soluble in heptane.

<実施例7>
実施例1において、LPSを、酸化物系無機固体電解質であるLLZ:LiLaZr12(ランタンジルコン酸リチウム 平均粒径5.0μm 豊島製作所社製)
に代えた以外は、実施例1と同様にして実施例8の全固体二次電池用積層部材を得た。
<Example 7>
In Example 1, LPS was used as an oxide-based inorganic solid electrolyte LLZ: Li 7 La 3 Zr 2 O 12 (lithium lanthanum dilconate with an average particle size of 5.0 μm, manufactured by Toyoshima Seisakusho Co., Ltd.).
An all-solid-state secondary battery laminated member of Example 8 was obtained in the same manner as in Example 1 except that the case was replaced with.

<実施例8>
上記で調製した負極活物質層形成用スラリーを、銅箔(負極集電体、厚さ20μm)上に、アプリケータ(商品名:SA−201ベーカー式アプリケータ、テスター産業社製)により20mg/cmの目付量となるように塗布し、銅箔からなる負極集電体層上に塗膜(負極活物質層前駆塗膜)を形成した。
負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、負極活物質層前駆塗膜上に塗膜(固体電解質層前駆塗膜)を形成した。
固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、固体電解質層前駆塗膜上に正極活物質層形成用スラリーを上記アプリケータにより30mg/cmの目付量となるように塗布し、固体電解質層前駆塗膜上に塗膜(正極活物質層前駆塗膜)を形成した。
正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、正極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、正極活物質層前駆塗膜上に塗膜(第2集電体層前駆塗膜)を形成した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、上述した(b)の積層構造を有する実施例8の全固体二次電池用積層部材を得た。
実施例8の全固体二次電池用積層部材において、塗布形成した各層の厚さは実施例1と同じである。
<Example 8>
20 mg / mg of the slurry for forming the negative electrode active material layer prepared above on a copper foil (negative electrode current collector, thickness 20 μm) with an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.). The coating was applied so as to have a texture of cm 2 , and a coating film (negative electrode active material layer precursor coating film) was formed on the negative electrode current collector layer made of copper foil.
With the residual solvent amount of the negative electrode active material layer precursor coating film being 5% by mass, a slurry for forming a solid electrolyte layer was applied onto the negative electrode active material layer precursor coating film so as to have a coating amount of 8 mg / cm 2 by the above applicator. The coating was applied to form a coating film (solid electrolyte layer precursor coating film) on the negative electrode active material layer precursor coating film.
With the residual solvent amount of the solid electrolyte layer precursor coating film being 5% by mass, the slurry for forming the positive electrode active material layer was applied onto the solid electrolyte layer precursor coating film by the above applicator so as to have a grain size of 30 mg / cm 2. Then, a coating film (positive electrode active material layer precursor coating film) was formed on the solid electrolyte layer precursor coating film.
With the residual solvent amount of the positive electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied onto the positive electrode active material layer precursor coating film so as to have a coating amount of 10 mg / cm 2 by the above applicator. A coating film (second current collector layer precursor coating film) was formed on the positive electrode active material layer precursor coating film.
The laminate thus obtained by wet-on-wet coating was heated at 120 ° C. for 2 hours to remove the dispersion medium, thereby obtaining the laminate member for the all-solid-state secondary battery of Example 8 having the laminate structure of (b) described above. It was.
In the laminated member for an all-solid-state secondary battery of Example 8, the thickness of each layer formed by coating is the same as that of Example 1.

<実施例9>
銅箔(負極集電体、厚さ20μm)上に、負極活物質層形成用スラリー、固体電解質層形成用スラリー、正極活物質層形成用スラリー、及び集電体層形成用スラリーを、この順に塗膜が積層されるように重層専用ギーサーを用いて同時重層塗布した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、上述した(b)の積層構造を有する実施例9の全固体二次電池用積層部材を得た。
実施例9の全固体二次電池用積層部材において、塗布形成した各層の厚さは実施例8と同じである。
<Example 9>
On a copper foil (negative electrode current collector, thickness 20 μm), a slurry for forming a negative electrode active material layer, a slurry for forming a solid electrolyte layer, a slurry for forming a positive electrode active material layer, and a slurry for forming a current collector layer are placed in this order. Simultaneous multi-layer coating was performed using a multi-layer dedicated Gieser so that the coating films could be laminated.
The laminate thus obtained by wet-on-wet coating was heated at 120 ° C. for 2 hours to remove the dispersion medium, thereby obtaining the laminate member for the all-solid-state secondary battery of Example 9 having the laminate structure of (b) described above. It was.
In the laminated member for an all-solid-state secondary battery of Example 9, the thickness of each layer formed by coating is the same as that of Example 8.

<実施例10>
実施例8において、第2集電体層前駆塗膜を形成した後、第2集電体層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層形成用スラリーを、上記アプリケータにより20mg/cmの目付量となるように塗布し、第2集電体層前駆塗膜上に塗膜(第2負極活物質層前駆塗膜)を形成した。
第2負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第2負極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、第2負極活物質層前駆塗膜上に塗膜(第2固体電解質層前駆塗膜)を形成した。
第2固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第2固体電解質層前駆塗膜上に正極活物質層形成用スラリーを上記アプリケータにより30mg/cmの目付量となるように塗布し、第2固体電解質層前駆塗膜上に塗膜(第2正極活物質層前駆塗膜)を形成した。
第2正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第2正極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第2正極活物質層前駆塗膜上に塗膜(第3集電体層前駆塗膜)を形成した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを2段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例10の全固体二次電池用積層部材を得た。実施例10の全固体二次電池用積層部材はバイポーラ型である。
実施例10の全固体二次電池用積層部材において、各層の厚さは実施例8と同じである。
<Example 10>
In Example 8, after forming the second collector layer precursor coating film, the slurry for forming the negative electrode active material layer was prepared in a state where the residual solvent amount of the second current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a grain size of 20 mg / cm 2 , and a coating film (second negative electrode active material layer precursor coating film) was formed on the second current collector layer precursor coating film.
With the residual solvent amount of the second negative electrode active material layer precursor coating film being 5% by mass, a slurry for forming a solid electrolyte layer was applied onto the second negative electrode active material layer precursor coating film by the above applicator in an amount of 8 mg / cm 2. A coating film (second solid electrolyte layer precursor coating film) was formed on the second negative electrode active material layer precursor coating film.
With the residual solvent amount of the second solid electrolyte layer precursor coating film being 5% by mass, the slurry for forming the positive electrode active material layer was applied onto the second solid electrolyte layer precursor coating film with the above applicator to obtain a coating amount of 30 mg / cm 2. A coating film (second positive electrode active material layer precursor coating film) was formed on the second solid electrolyte layer precursor coating film.
With the residual solvent amount of the second positive electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied on the second positive electrode active material layer precursor coating film with the above applicator at a scale of 10 mg / cm 2. It was applied in an amount to form a coating film (third current collector layer precursor coating film) on the second positive electrode active material layer precursor coating film.
The laminated body thus obtained by wet-on-wet coating is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which two laminated units are stacked (one form of the above-mentioned laminated structure (c)). A laminated member for an all-solid-state secondary battery of Example 10 was obtained. The laminated member for an all-solid-state secondary battery of Example 10 is a bipolar type.
In the laminated member for an all-solid-state secondary battery of Example 10, the thickness of each layer is the same as that of Example 8.

<実施例11>
実施例10において、第3集電体層前駆塗膜を形成した後、第3集電体層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層形成用スラリーを、上記アプリケータにより20mg/cmの目付量となるように塗布し、第3集電体層前駆塗膜上に塗膜(第3負極活物質層前駆塗膜)を形成した。
第3負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第3負極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、第3負極活物質層前駆塗膜上に塗膜(第3固体電解質層前駆塗膜)を形成した。
第3固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第3固体電解質層前駆塗膜上に正極活物質層形成用スラリーを上記アプリケータにより30mg/cmの目付量となるように塗布し、第3固体電解質層前駆塗膜上に塗膜(第3正極活物質層前駆塗膜)を形成した。
第3正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第3正極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第3正極活物質層前駆塗膜上に塗膜(第4集電体層前駆塗膜)を形成した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを3段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例11の全固体二次電池用積層部材を得た。実施例11の全固体二次電池用積層部材はバイポーラ型である。
実施例11の全固体二次電池用積層部材において、各層の厚さは実施例8と同じである。
<Example 11>
In Example 10, after forming the third collector layer precursor coating film, the slurry for forming the negative electrode active material layer was prepared in a state where the residual solvent amount of the third current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a grain size of 20 mg / cm 2 , and a coating film (third negative electrode active material layer precursor coating film) was formed on the third current collector layer precursor coating film.
With the residual solvent amount of the third negative electrode active material layer precursor coating film being 5% by mass, a slurry for forming a solid electrolyte layer was applied onto the third negative electrode active material layer precursor coating film by the above applicator in an amount of 8 mg / cm 2. A coating film (third solid electrolyte layer precursor coating film) was formed on the third negative electrode active material layer precursor coating film.
With the residual solvent amount of the 3rd solid electrolyte layer precursor coating film being 5% by mass, the slurry for forming the positive electrode active material layer was applied onto the 3rd solid electrolyte layer precursor coating film with the above applicator to obtain a coating amount of 30 mg / cm 2. A coating film (third positive electrode active material layer precursor coating film) was formed on the third solid electrolyte layer precursor coating film.
With the residual solvent amount of the third positive electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied on the third positive electrode active material layer precursor coating film with the above applicator at a scale of 10 mg / cm 2. It was applied in an amount to form a coating film (fourth current collector layer precursor coating film) on the third positive electrode active material layer precursor coating film.
The laminated body thus obtained by wet-on-wet coating is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which three laminated units are stacked (one form of the above-mentioned laminated structure (c)). A laminated member for an all-solid-state secondary battery of Example 11 was obtained. The laminated member for an all-solid-state secondary battery of Example 11 is a bipolar type.
In the laminated member for the all-solid-state secondary battery of Example 11, the thickness of each layer is the same as that of Example 8.

<実施例12>
実施例11において、第4集電体層前駆塗膜を形成した後、第4集電体層前駆塗膜の残留溶媒量が5質量%の状態で、負極活物質層形成用スラリーを、上記アプリケータにより20mg/cmの目付量となるように塗布し、第4集電体層前駆塗膜上に塗膜(第4負極活物質層前駆塗膜)を形成した。
第4負極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第4負極活物質層前駆塗膜上に固体電解質層形成用スラリーを上記アプリケータにより8mg/cmの目付量となるように塗布し、第4負極活物質層前駆塗膜上に塗膜(第4固体電解質層前駆塗膜)を形成した。
第4固体電解質層前駆塗膜の残留溶媒量が5質量%の状態で、第4固体電解質層前駆塗膜上に正極活物質層形成用スラリーを上記アプリケータにより30mg/cmの目付量となるように塗布し、第4固体電解質層前駆塗膜上に塗膜(第4正極活物質層前駆塗膜)を形成した。
第4正極活物質層前駆塗膜の残留溶媒量が5質量%の状態で、第4正極活物質層前駆塗膜上に集電体層形成用スラリーを上記アプリケータにより10mg/cmの目付量となるように塗布し、第4正極活物質層前駆塗膜上に塗膜(第5集電体層前駆塗膜)を形成した。
こうしてウェットオンウェット塗布により得られた積層体を120℃で2時間加熱して分散媒を除去し、積層ユニットを4段積み重ねた積層構造(上述した(c)の積層構造の一形態)を有する実施例5の全固体二次電池用積層部材を得た。実施例12の全固体二次電池用積層部材はバイポーラ型である。
実施例12の全固体二次電池用積層部材において、各層の厚さは実施例8と同じである。
<Example 12>
In Example 11, after the fourth collector layer precursor coating film was formed, the slurry for forming the negative electrode active material layer was prepared in a state where the residual solvent amount of the fourth current collector layer precursor coating film was 5% by mass. It was applied by an applicator so as to have a grain size of 20 mg / cm 2 , and a coating film (fourth negative electrode active material layer precursor coating film) was formed on the fourth current collector layer precursor coating film.
With the residual solvent amount of the 4th negative electrode active material layer precursor coating film being 5% by mass, a slurry for forming a solid electrolyte layer was applied onto the 4th negative electrode active material layer precursor coating film by the above applicator in an amount of 8 mg / cm 2. A coating film (fourth solid electrolyte layer precursor coating film) was formed on the fourth negative electrode active material layer precursor coating film.
With the residual solvent amount of the 4th solid electrolyte layer precursor coating film being 5% by mass, the slurry for forming the positive electrode active material layer was applied onto the 4th solid electrolyte layer precursor coating film with the above applicator to obtain a coating amount of 30 mg / cm 2. A coating film (fourth positive electrode active material layer precursor coating film) was formed on the fourth solid electrolyte layer precursor coating film.
With the residual solvent amount of the 4th positive electrode active material layer precursor coating film being 5% by mass, a slurry for forming a current collector layer was applied on the 4th positive electrode active material layer precursor coating film with the above applicator at a scale of 10 mg / cm 2. It was applied in an amount to form a coating film (fifth current collector layer precursor coating film) on the fourth positive electrode active material layer precursor coating film.
The laminated body thus obtained by wet-on-wet coating is heated at 120 ° C. for 2 hours to remove the dispersion medium, and has a laminated structure in which four laminated units are stacked (one form of the above-mentioned laminated structure (c)). A laminated member for an all-solid-state secondary battery of Example 5 was obtained. The laminated member for an all-solid-state secondary battery of Example 12 is a bipolar type.
In the laminated member for the all-solid-state secondary battery of Example 12, the thickness of each layer is the same as that of Example 8.

<実施例13>
実施例1において、集電体層形成用スラリーに用いたカーボンブラック6.0gを、銅粉末(林純薬工業社製)6.0gに代えた以外は、実施例1と同様にして実施例13の全固体二次電池用積層部材を得た。
<Example 13>
In Example 1, 6.0 g of carbon black used in the slurry for forming a current collector layer was replaced with 6.0 g of copper powder (manufactured by Hayashi Junyaku Kogyo Co., Ltd.), but the same as in Example 1 was carried out. Thirteen laminated members for all-solid-state secondary batteries were obtained.

<比較例1>
実施例1において、負極活物質層前駆塗膜上に、第2集電体層前駆塗膜の形成に代えて銅箔(厚さ20μm)を密着させたこと以外は、実施例1と同様にして比較例1の全固体二次電池用積層部材を得た。
<Comparative example 1>
In Example 1, the same as in Example 1 except that a copper foil (thickness 20 μm) was adhered onto the negative electrode active material layer precursor coating film instead of forming the second current collector layer precursor coating film. A laminated member for an all-solid-state secondary battery of Comparative Example 1 was obtained.

<比較例2>
比較例1の全固体二次電池用積層部材を2つ用意し、1つ目の積層部材の銅箔上に、2つ目の積層部材のアルミ箔を積み重ねて、比較例2の全固体二次電池用積層部材を得た。
<Comparative example 2>
Two laminated members for the all-solid-state secondary battery of Comparative Example 1 are prepared, and the aluminum foil of the second laminated member is stacked on the copper foil of the first laminated member, and the all-solid-state battery of Comparative Example 2 is stacked. A laminated member for the next battery was obtained.

<比較例3>
比較例1の全固体二次電池用積層部材を3つ用意し、1つ目の積層部材の銅箔上に、2つ目の積層部材のアルミ箔側が接するように2つ目の積層部材を積み重ね、2つ目の積層部材の銅箔上に、3つ目の積層部材のアルミ箔側が接するように3つ目の積層部材を積み重ねて、比較例3の全固体二次電池用積層部材を得た。
<Comparative example 3>
Three laminated members for all-solid-state secondary batteries of Comparative Example 1 are prepared, and the second laminated member is placed on the copper foil of the first laminated member so that the aluminum foil side of the second laminated member is in contact with the copper foil. Stacking The third laminated member is stacked on the copper foil of the second laminated member so that the aluminum foil side of the third laminated member is in contact with each other, and the laminated member for the all-solid secondary battery of Comparative Example 3 is formed. Obtained.

<比較例4>
比較例1の全固体二次電池用積層部材を4つ用意し、1つ目の積層部材の銅箔上に、2つ目の積層部材のアルミ箔側が接するように2つ目の積層部材を積み重ね、2つ目の積層部材の銅箔上に、3つ目の積層部材のアルミ箔側が接するように3つ目の積層部材を積み重ね、3つ目の積層部材の銅箔上に、4つ目の積層部材のアルミ箔側が接するように4つ目の積層部材を積み重ねて、比較例4の全固体二次電池用積層部材を得た。
<Comparative example 4>
Four laminated members for all-solid secondary batteries of Comparative Example 1 are prepared, and the second laminated member is placed on the copper foil of the first laminated member so that the aluminum foil side of the second laminated member is in contact with the copper foil. Stacking, stacking the third laminated member on the copper foil of the second laminated member so that the aluminum foil side of the third laminated member is in contact, and four on the copper foil of the third laminated member. The fourth laminated member was stacked so that the aluminum foil side of the laminated member of the eye was in contact with each other to obtain a laminated member for an all-solid secondary battery of Comparative Example 4.

<比較例5>
実施例1において、負極活物質層前駆塗膜上への集電体層形成用スラリーの塗布を、負極活物質層前駆塗膜を形成後に120℃で120分間乾燥して負極活物質層前駆塗膜から分散媒を除去した後に行ったこと以外は、実施例1と同様にして、比較例5の全固体二次電池用積層部材を得た。
<Comparative example 5>
In Example 1, the coating of the current collector layer forming slurry on the negative electrode active material layer precursor coating film is dried at 120 ° C. for 120 minutes after the negative electrode active material layer precursor coating film is formed, and the negative electrode active material layer precursor coating is applied. A laminated member for an all-solid-state secondary battery of Comparative Example 5 was obtained in the same manner as in Example 1 except that the dispersion medium was removed from the membrane.

<比較例6>
実施例3において、負極活物質層前駆塗膜上への集電体層形成用スラリーの塗布を、負極活物質層前駆塗膜を形成後に120℃で120分間乾燥して負極活物質層前駆塗膜から分散媒を除去した後に行い、また、第2負極活物質層前駆塗膜上への集電体層形成用スラリーの塗布を、第2負極活物質層前駆塗膜を形成後に120℃で120分間乾燥して第2負極活物質層前駆塗膜から分散媒を除去した後に行ったこと以外は、実施例3と同様にして、比較例6の全固体二次電池用積層部材を得た。
<Comparative Example 6>
In Example 3, the coating of the current collector layer forming slurry on the negative electrode active material layer precursor coating film is dried at 120 ° C. for 120 minutes after the negative electrode active material layer precursor coating film is formed, and the negative electrode active material layer precursor coating is applied. After removing the dispersion medium from the film, the slurry for forming the current collector layer is applied onto the second negative electrode active material layer precursor coating film at 120 ° C. after the second negative electrode active material layer precursor coating film is formed. A laminated member for an all-solid secondary battery of Comparative Example 6 was obtained in the same manner as in Example 3 except that the dispersion medium was removed from the second negative electrode active material layer precursor coating film after drying for 120 minutes. ..

<比較例7>
比較例5において、集電体層形成用スラリーに用いたカーボンブラック6.0gを、銅粉末(林純薬工業社製)6.0gに代えた以外は、比較例5と同様にして比較例7の全固体二次電池用積層部材を得た。
<Comparative Example 7>
In Comparative Example 5, 6.0 g of carbon black used for the slurry for forming the current collector layer was replaced with 6.0 g of copper powder (manufactured by Hayashi Junyaku Kogyo Co., Ltd.), but the same as in Comparative Example 5 in Comparative Example. 7 laminated members for all-solid-state secondary batteries were obtained.

<比較例8>
比較例5において、集電体層形成用スラリーに用いたカーボンブラック6.0gを、焼結用ステンレス鋼粉体6.0gに代えた以外は、実施例1と同様にして比較例8の全固体二次電池用積層部材を得た。
<Comparative Example 8>
In Comparative Example 5, all of Comparative Example 8 was carried out in the same manner as in Example 1 except that 6.0 g of carbon black used for the slurry for forming the current collector layer was replaced with 6.0 g of stainless steel powder for sintering. A laminated member for a solid secondary battery was obtained.

[全固体二次電池の作製]
上記で得られた全固体二次電池用積層部材を、50MPaで10秒間加圧した。その後、直径15mmの円形に切り出した。切り出したサンプルを2032型コインケース内に入れて、600MPaで加圧後、コインケースをかしめ、全固体二次電池を作製した。
[Manufacturing of all-solid-state secondary battery]
The laminated member for an all-solid-state secondary battery obtained above was pressurized at 50 MPa for 10 seconds. Then, it was cut into a circle having a diameter of 15 mm. The cut-out sample was placed in a 2032 type coin case, pressurized at 600 MPa, and then the coin case was crimped to prepare an all-solid-state secondary battery.

[電池性能の評価]
全固体二次電池の電池性能を、東洋システム社製の充放電評価装置「TOSCAT−3000」(商品名)を用いて評価した。具体的には、全固体二次電池を電池電圧が4.2Vになるまで電流値0.2mAで充電した後、電池電圧が3.0Vになるまで電流値2.0mAで放電した。放電開始10秒後の電池電圧を以下の基準で読み取り、下記評価基準に当てはめ評価した。放電開始10秒後の電池電圧が高いほど、抵抗が低いことを意味する。
<評価基準>
AA:4.10V以上
A: 4.05V以上4.10V未満
B: 4.00V以上4.05V未満
C: 3.90V以上4.00V未満
D: 3.90V未満
結果を下表に示す。
[Evaluation of battery performance]
The battery performance of the all-solid-state secondary battery was evaluated using a charge / discharge evaluation device "TOSCAT-3000" (trade name) manufactured by Toyo Systems Co., Ltd. Specifically, the all-solid-state secondary battery was charged with a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 2.0 mA until the battery voltage reached 3.0 V. The battery voltage 10 seconds after the start of discharge was read according to the following criteria, and evaluated by applying the following criteria. The higher the battery voltage 10 seconds after the start of discharge, the lower the resistance.
<Evaluation criteria>
AA: 4.10V or more A: 4.05V or more and less than 4.10V B: 4.00V or more and less than 4.05V C: 3.90V or more and less than 4.00V D: less than 3.90V The results are shown in the table below.

Figure 2020059550
Figure 2020059550

Figure 2020059550
Figure 2020059550

上記表に示されるように、積層部材の集電体をすべて金属箔で形成した場合、得られる全固体二次電池は電池抵抗が高く性能に劣る結果となった(比較例1〜4)。また、積層部材の集電体層をスラリーで形成した場合であっても、集電体層形成用スラリーの塗布方法がウェットオンドライ塗布である場合には、やはり電池抵抗が高く性能に劣る結果となった(比較例5〜8)。
これに対し、集電体層を、集電体層形成用スラリーを用いてウェットオンウェットで形成した場合には、電池抵抗を十分に抑制でき、電池性能に優れた全固体二次電池を得ることができた(実施例1〜13)。
As shown in the above table, when the current collectors of the laminated members are all made of metal foil, the obtained all-solid-state secondary battery has high battery resistance and is inferior in performance (Comparative Examples 1 to 4). Further, even when the current collector layer of the laminated member is formed of slurry, if the method of applying the current collector layer forming slurry is wet-on-dry coating, the battery resistance is still high and the performance is inferior. (Comparative Examples 5 to 8).
On the other hand, when the current collector layer is formed wet-on-wet using the slurry for forming the current collector layer, the battery resistance can be sufficiently suppressed and an all-solid-state secondary battery having excellent battery performance can be obtained. It was possible (Examples 1 to 13).

本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 Although the present invention has been described with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, and contrary to the spirit and scope of the invention set forth in the appended claims. I think that it should be widely interpreted without.

本願は、2018年9月18日に日本国で特許出願された特願2018−173571に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2018-173571 filed in Japan on September 18, 2018, which is referred to herein and is described herein. Incorporate as a part.

101、102 全固体二次電池用積層部材
1 集電体層(金属箔)
2 正極活物質層
3 固体電解質層
4 負極活物質層
5 集電体層
A 積層ユニット
B 積層ユニット
103 全固体二次電池
11 負極集電体
12 負極活物質層
13 固体電解質層
14 正極活物質層
15 正極集電体層
101, 102 Laminated member for all-solid-state secondary battery 1 Current collector layer (metal leaf)
2 Positive electrode active material layer 3 Solid electrolyte layer 4 Negative electrode active material layer 5 Current collector layer A Laminated unit B Laminated unit 103 All-solid secondary battery 11 Negative electrode current collector 12 Negative electrode active material layer 13 Solid electrolyte layer 14 Positive electrode active material layer 15 Positive electrode current collector layer

Claims (7)

正極活物質層と固体電解質層と負極活物質層とをこの順に有する積層体と、該積層体の正極活物質層及び負極活物質層の各表面に配された集電体層とを含む全固体二次電池用積層部材の製造において、
前記正極活物質層及び前記負極活物質層の少なくとも1つの活物質層と、該活物質層に接する集電体層との積層構造の形成をウェットオンウェット塗布により行うことを含む、全固体二次電池用積層部材の製造方法。
All including a laminate having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and a current collector layer arranged on each surface of the positive electrode active material layer and the negative electrode active material layer of the laminate. In the manufacture of laminated members for solid secondary batteries
An all-solid-state battery including forming a laminated structure of at least one active material layer of the positive electrode active material layer and the negative electrode active material layer and a current collector layer in contact with the active material layer by wet-on-wet coating. A method for manufacturing a laminated member for a next battery.
前記全固体二次電池用積層部材が、金属箔からなる第1の集電体層と、正極活物質層と、固体電解質層と、負極活物質層と、第2の集電体層とがこの順に積層された構造であり、該正極活物質層と、該固体電解質層と、該負極活物質層と、第2の集電体層との積層構造の形成を、前記の金属箔からなる第1の集電体層上への同時重層塗布により行う、請求項1に記載の全固体二次電池用積層部材の製造方法。 The laminated member for an all-solid secondary battery includes a first current collector layer made of a metal foil, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a second current collector layer. The structure is laminated in this order, and the formation of a laminated structure of the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the second current collector layer is made of the metal foil. The method for manufacturing a laminated member for an all-solid secondary battery according to claim 1, which is performed by simultaneously applying multiple layers on the first current collector layer. 前記全固体二次電池用積層部材が、金属箔からなる第1の集電体層と、負極活物質層と、固体電解質層と、正極活物質層と、第2の集電体層とがこの順に積層された構造であり、該負極活物質層と、該固体電解質層と、該正極活物質層と、第2の集電体層との積層構造の形成を、前記の金属箔からなる第1の集電体層上への同時重層塗布により行う、請求項1に記載の全固体二次電池用積層部材の製造方法。 The laminated member for an all-solid secondary battery includes a first current collector layer made of a metal foil, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a second current collector layer. The structure is laminated in this order, and the formation of a laminated structure of the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the second current collector layer is made of the metal foil. The method for manufacturing a laminated member for an all-solid secondary battery according to claim 1, which is performed by simultaneously applying multiple layers on the first current collector layer. 前記全固体二次電池用積層部材が、正極活物質層と固体電解質層と負極活物質層とをこの順で積層した積層体と、該積層体の正極活物質層又は負極活物質層に接して配された集電体層とから構成される積層ユニットを、金属箔からなる集電体層上に、集電体層同士が接しないように複数段積み重ねた積層構造であり、
前記の積層ユニットを複数段積み重ねた積層構造の形成を、前記の金属箔からなる集電体層上への同時重層塗布により行う、請求項1に記載の全固体二次電池用積層部材の製造方法。
The laminated member for an all-solid secondary battery is in contact with a laminated body in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and a positive electrode active material layer or a negative electrode active material layer of the laminated body. It has a laminated structure in which a laminated unit composed of the current collector layers arranged therein is stacked in a plurality of stages on a current collector layer made of a metal foil so that the current collector layers do not come into contact with each other.
The production of a laminated member for an all-solid-state secondary battery according to claim 1, wherein a laminated structure in which the laminated units are stacked in a plurality of stages is formed by simultaneous layer coating on a current collector layer made of the metal foil. Method.
ウェットオンウェット塗布により形成される集電体層が粒子状バインダーを含有する、請求項1〜4のいずれか1項に記載の全固体二次電池用積層部材の製造方法。 The method for producing a laminated member for an all-solid-state secondary battery according to any one of claims 1 to 4, wherein the current collector layer formed by wet-on-wet coating contains a particulate binder. 前記固体電解質層を構成する固体電解質が硫化物系無機固体電解質である、請求項1〜5のいずれか1項に記載の全固体二次電池用積層部材の製造方法。 The method for producing a laminated member for an all-solid secondary battery according to any one of claims 1 to 5, wherein the solid electrolyte constituting the solid electrolyte layer is a sulfide-based inorganic solid electrolyte. 請求項1〜6のいずれか1項に記載の全固体二次電池用積層部材の製造方法により全固体二次電池用積層部材を得て、該全固体二次電池用積層部材を用いて全固体二次電池を得る、全固体二次電池の製造方法。 A laminated member for an all-solid-state secondary battery is obtained by the method for manufacturing a laminated member for an all-solid-state secondary battery according to any one of claims 1 to 6, and the laminated member for an all-solid-state secondary battery is used for all. A method for manufacturing an all-solid-state secondary battery to obtain a solid-state secondary battery.
JP2020548343A 2018-09-18 2019-09-09 Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery Active JP7064613B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018173571 2018-09-18
JP2018173571 2018-09-18
PCT/JP2019/035316 WO2020059550A1 (en) 2018-09-18 2019-09-09 Production method for all-solid secondary battery layered member, and production method for all-solid secondary battery

Publications (2)

Publication Number Publication Date
JPWO2020059550A1 true JPWO2020059550A1 (en) 2021-03-11
JP7064613B2 JP7064613B2 (en) 2022-05-10

Family

ID=69887422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020548343A Active JP7064613B2 (en) 2018-09-18 2019-09-09 Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery

Country Status (2)

Country Link
JP (1) JP7064613B2 (en)
WO (1) WO2020059550A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048320A1 (en) * 2022-08-29 2024-03-07 富士フイルム株式会社 Method for producing nonaqueous electrolyte secondary battery, slurry for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2024077584A1 (en) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 Battery module and preparation method therefor, and battery pack and electric apparatus
CN116053401A (en) * 2022-12-30 2023-05-02 重庆太蓝新能源有限公司 Composite positive electrode plate, preparation method thereof and lithium battery
CN117059735B (en) * 2023-10-12 2024-04-12 宁德时代新能源科技股份有限公司 Electrode plate, secondary battery, electricity utilization device, preparation method and recycling method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125955A (en) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd Electrode sheet and non-aqueous electrolyte secondary battery using the same
JP2000323131A (en) * 1999-05-14 2000-11-24 Mitsubishi Chemicals Corp Manufactre of electrodes for secondary battery, and manufacture of secondary battery
JP2007227362A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Method for producing solid-state battery
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2008251225A (en) * 2007-03-29 2008-10-16 Tdk Corp All-solid lithium ion secondary battery and its manufacturing method
JP2010113819A (en) * 2008-11-04 2010-05-20 Konica Minolta Holdings Inc Secondary battery, method of manufacturing the same, and laminate type secondary battery
JP2015195183A (en) * 2014-03-28 2015-11-05 富士フイルム株式会社 All-solid type secondary battery, method for manufacturing electrode sheet for batteries, and method for manufacturing all-solid type secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125955A (en) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd Electrode sheet and non-aqueous electrolyte secondary battery using the same
JP2000323131A (en) * 1999-05-14 2000-11-24 Mitsubishi Chemicals Corp Manufactre of electrodes for secondary battery, and manufacture of secondary battery
JP2007227362A (en) * 2006-01-27 2007-09-06 Matsushita Electric Ind Co Ltd Method for producing solid-state battery
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2008251225A (en) * 2007-03-29 2008-10-16 Tdk Corp All-solid lithium ion secondary battery and its manufacturing method
JP2010113819A (en) * 2008-11-04 2010-05-20 Konica Minolta Holdings Inc Secondary battery, method of manufacturing the same, and laminate type secondary battery
JP2015195183A (en) * 2014-03-28 2015-11-05 富士フイルム株式会社 All-solid type secondary battery, method for manufacturing electrode sheet for batteries, and method for manufacturing all-solid type secondary battery

Also Published As

Publication number Publication date
WO2020059550A1 (en) 2020-03-26
JP7064613B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
KR102126144B1 (en) Solid electrolyte composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and electrode sheet for all-solid secondary battery and method for manufacturing all-solid secondary battery
JP6912658B2 (en) All-solid-state secondary battery and its manufacturing method
WO2016194759A1 (en) Material for positive electrodes, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2018047946A1 (en) Electrode layer material, sheet for all-solid-state secondary battery electrode, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP7064613B2 (en) Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery
JP6893253B2 (en) A method for producing a solid electrolyte composition, a solid electrolyte-containing sheet, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery, and a solid electrolyte-containing sheet and an all-solid secondary battery.
JP6942810B2 (en) A method for producing a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid-state secondary battery, and a solid electrolyte-containing sheet and an all-solid-state secondary battery.
JP6839264B2 (en) A method for producing a solid electrolyte-containing sheet, a solid electrolyte composition and an all-solid-state secondary battery, and a solid electrolyte-containing sheet and an all-solid-state secondary battery.
JP7165747B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
JP6928122B2 (en) Solid electrolyte composition and method for producing the same, solid electrolyte-containing sheet, and electrode sheet for all-solid-state secondary battery and method for producing all-solid-state secondary battery.
JP6876820B2 (en) A composition for forming an active material layer and a method for producing the same, and a method for producing an electrode sheet for an all-solid-state secondary battery and an all-solid-state secondary battery.
WO2020196040A1 (en) All-solid-state lithium ion secondary battery and method for manufacturing same, and negative electrode laminate sheet
JP7008080B2 (en) Method for manufacturing solid electrolyte composition, solid electrolyte-containing sheet and all-solid-state secondary battery, and solid electrolyte-containing sheet and all-solid-state secondary battery
JP6948382B2 (en) All-solid-state secondary battery and its manufacturing method, as well as solid-state electrolyte sheet for all-solid-state secondary battery and positive electrode active material sheet for all-solid-state secondary battery
JP7119214B2 (en) All-solid secondary battery and manufacturing method thereof
JP7061728B2 (en) Method for manufacturing composite electrode active material, electrode composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and composite electrode active material, electrode sheet for all-solid secondary battery and all-solid secondary battery.
WO2018164050A1 (en) Inorganic solid electrolyte material, slurry using same, solid electrolyte film for all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary battery, positive electrode active material film for all-solid-state secondary battery, negative electrode active material film for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and production method for all-solid-state secondary battery
JP6670641B2 (en) Electrode material, electrode sheet for all-solid secondary battery and all-solid secondary battery using the same, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
JP6899486B2 (en) Electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP6673785B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and method for producing solid electrolyte-containing sheet and all-solid secondary battery
WO2022004884A1 (en) Method for manufacturing sheet for all-solid-state secondary battery and all-solid-state secondary battery, sheet for all-solid-state secondary battery, and all-solid-state secondary battery
JPWO2020203367A1 (en) All-solid-state secondary battery sheet and all-solid-state secondary battery manufacturing method, and all-solid-state secondary battery sheet and all-solid-state secondary battery
JPWO2019098299A1 (en) Method for manufacturing solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and solid electrolyte-containing sheet and all-solid secondary battery
JP7245847B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220422

R150 Certificate of patent or registration of utility model

Ref document number: 7064613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150