WO2020067108A1 - Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery - Google Patents

Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery Download PDF

Info

Publication number
WO2020067108A1
WO2020067108A1 PCT/JP2019/037485 JP2019037485W WO2020067108A1 WO 2020067108 A1 WO2020067108 A1 WO 2020067108A1 JP 2019037485 W JP2019037485 W JP 2019037485W WO 2020067108 A1 WO2020067108 A1 WO 2020067108A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
solid
secondary battery
group
Prior art date
Application number
PCT/JP2019/037485
Other languages
French (fr)
Japanese (ja)
Inventor
陽 串田
智則 三村
宏顕 望月
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020549265A priority Critical patent/JPWO2020067108A1/en
Publication of WO2020067108A1 publication Critical patent/WO2020067108A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composition for an anode of an all-solid secondary battery, an anode sheet for an all-solid secondary battery and an all-solid secondary battery, and a method for producing an anode sheet for an all-solid secondary battery and an all-solid secondary battery. .
  • the negative electrode, the electrolyte, and the positive electrode are all made of a solid, and can greatly improve safety and reliability, which are issues of a battery using an organic electrolyte.
  • an inorganic solid electrolyte used for a solid electrolyte layer or the like of an all-solid secondary battery has been shown to have a high ionic conductivity approaching that of an organic electrolyte, and is expected as a promising electrolyte.
  • the all-solid-state secondary battery can have a long life. Therefore, research and development of all-solid-state secondary batteries have been actively conducted.
  • the all-solid-state secondary battery can have a structure in which the electrodes and the solid electrolyte are directly arranged side by side and arranged in series, so that high energy density can be achieved.
  • development and commercialization of electric vehicles have been rapidly progressing in consideration of environmental issues, and all-solid-state batteries are required to have higher energy density.
  • the constituent layers of an all solid state secondary battery are laminated, it is usual to perform pressure bonding in order to secure adhesion between the layers. At this time, if the strength of the constituent layer (the binding force between the solid particles forming the constituent layer) is not sufficient, defects (cracks, chips or breaks, or interface peeling between the solid particles (poor contact)) may occur in the constituent layer. Occur.
  • Patent Document 1 discloses that a polymer (a (meth) acrylic polymer as a suitable polymer) having a macromonomer having a number average molecular weight of 1,000 or more as a side chain component has an average particle size of 10 nm or more, A solid electrolyte composition containing 000 nm or less binder particles, an inorganic solid electrolyte, and a dispersion medium is described.
  • Patent Document 2 describes a solid electrolyte composition containing an inorganic solid electrolyte, polymer particles composed of various organic polymers, and a specific dispersion medium.
  • the binder does not usually exhibit ionic conductivity, if the content of the binder in the above material is too large, the battery resistance increases (the ionic conductivity decreases) and the battery performance decreases. Therefore, when a binder is used, it is required to achieve both a reduction in battery resistance and a suppression of the occurrence of the defect.
  • the defects of the constituent layers are generated not only when the all-solid secondary battery is manufactured (when the constituent layers are pressed and pressed), but also when the all-solid secondary battery is used (charge / discharge). This is because, when the all-solid secondary battery is charged and discharged, the active material layer contracts and expands, and the film strength (the binding force between the solid particles) gradually decreases.
  • the change in volume due to the contraction and expansion is large in the negative electrode active material layer, and defects are likely to occur in the negative electrode active material layer. Furthermore, in recent years, with the aim of increasing the battery capacity of the all-solid secondary battery and extending the driving time, a negative electrode active material capable of absorbing more Li ions than a carbon-based material and capable of being alloyed with lithium (for example, Application of Si) is being considered.
  • This negative electrode active material usually has a larger degree of contraction and expansion associated with charging and discharging of the all-solid secondary battery than conventional carbon-based materials. Therefore, when such a negative electrode active material is used, it is required to further increase the strength of the negative electrode active material layer.
  • the present invention provides a negative electrode composition that can achieve a high level of suppression of resistance rise and improvement in film strength of the obtained negative electrode active material layer by using as a material constituting the negative electrode active material layer of an all solid state secondary battery.
  • the task is to provide things. Further, the present invention provides a method for producing an all-solid secondary battery negative electrode sheet and an all-solid secondary battery, and an all-solid secondary battery negative electrode sheet and an all-solid secondary battery using the solid electrolyte composition. The task is to provide.
  • the present inventors have made various studies and found that a binder formed of a polymer having a main chain containing a specific bond and a component having a side chain containing a specific group at a specific position is made of an inorganic material.
  • a solid electrolyte, a negative electrode composition prepared in combination with a negative electrode active material and a dispersion medium can form a negative electrode active material layer in which solid particles are firmly bound while suppressing an increase in interface resistance between solid particles, was found.
  • an all-solid secondary battery provided with this negative electrode active material layer exhibits high ionic conductivity and can maintain a high discharge capacity even after repeated charging and discharging.
  • the present invention has been further studied based on these findings, and has been completed.
  • a composition for a negative electrode of a battery The polymer has at least one bond selected from the group consisting of an amide bond, a urea bond and a urethane bond in the main chain, and The following conditions A and B: [Condition A] At least one group selected from the group consisting of a carbonyl group, a thiocarbonyl group and a phosphoryl group is provided in a chain structure at least four atoms away from the atoms constituting the main chain. [Condition B] A composition for a negative electrode, comprising a polymer having a constituent component having a side chain that is not bonded to a hydroxy group.
  • composition for a negative electrode according to ⁇ 1> wherein the content of the above constituent components in the polymer is 5 to 40% by mass.
  • the proportion of the total weight W G of the base relative to the total weight W S of the chain structure portion [W G / W S] is 0.05 or more, according to ⁇ 1> or ⁇ 2>
  • ⁇ 4> The composition for a negative electrode according to any one of ⁇ 1> to ⁇ 3>, wherein the negative electrode active material is an active material that can be alloyed with lithium.
  • the active material that can be alloyed with lithium is a silicon-based negative electrode active material containing a Si element as a constituent element.
  • ⁇ 6> The negative electrode composition according to any one of ⁇ 1> to ⁇ 5>, wherein the side chain has a partial structure represented by any of the following formulas (I) to (III).
  • L 1 to L 4 represent a linking group
  • R 1 and R 2 represent a substituent.
  • the inorganic solid electrolyte is a sulfide-based solid electrolyte.
  • An all-solid secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, An all-solid secondary battery in which the negative electrode active material layer is a negative electrode active material layer composed of the composition for a negative electrode according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 12> A method for producing a negative electrode sheet for an all-solid secondary battery, wherein the negative electrode composition according to any one of ⁇ 1> to ⁇ 9> is formed.
  • ⁇ 13> A method for manufacturing an all-solid secondary battery, which manufactures an all-solid secondary battery via the manufacturing method according to ⁇ 12>.
  • the composition for negative electrodes of this invention can form the negative electrode active material layer which suppressed the increase in resistance and improved the film
  • the negative electrode composition of the present invention, and the negative electrode sheet for an all-solid secondary battery of the present invention provided with a negative electrode active material layer formed of the negative electrode composition of the present invention are used for the negative electrode active material layer of the all-solid secondary battery.
  • the material By using the material as a forming material, it is possible to provide the all-solid secondary battery with a reduction in battery resistance and a property capable of maintaining a high discharge capacity.
  • the all-solid-state secondary battery of the present invention exhibits low battery resistance and characteristics capable of maintaining a high discharge capacity.
  • the method for producing an all-solid secondary battery negative electrode sheet and the all-solid secondary battery of the present invention produces the all-solid secondary battery negative electrode sheet and the all-solid secondary battery of the present invention exhibiting the above-described excellent characteristics. be able to.
  • FIG. 1 is a longitudinal sectional view schematically illustrating an all solid state secondary battery according to a preferred embodiment of the present invention. It is a longitudinal cross-sectional view which shows typically the test body for ion conductivity measurement produced in the Example.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • acryl when simply described as “acryl” or “(meth) acryl”, it means acryl and / or methacryl.
  • the expression of a compound is used to include the compound itself, its salt, and its ion. Further, it is meant to include a derivative partially changed by introducing a substituent within a range in which a desired effect is exhibited.
  • a substituent, a linking group, and the like which is not specified as substituted or unsubstituted means that the group may have an appropriate substituent. Therefore, in the present specification, even when simply referred to as a YYY group, the YYY group also includes an embodiment having a substituent in addition to an embodiment having no substituent. This is synonymous with a compound for which no substitution or no substitution is specified. Preferred substituents are not particularly limited, for example, the substituent which may take as R M2 or R 1 described later.
  • each substituent and the like when there are a plurality of substituents and the like indicated by a specific symbol, or when defining a plurality of substituents simultaneously or alternatively, each substituent and the like may be the same or different from each other Means good. Further, even when not otherwise specified, when a plurality of substituents and the like are adjacent to each other, it means that they may be connected to each other or condensed to form a ring.
  • a composition containing an inorganic solid electrolyte is referred to as a solid electrolyte composition or an inorganic solid electrolyte-containing composition, and when a composition containing a negative electrode active material or a positive electrode active material is further distinguished from a solid electrolyte composition.
  • a negative electrode composition and a positive electrode composition are respectively referred to as a negative electrode composition and a positive electrode composition.
  • the negative electrode active material and the positive electrode active material may be collectively referred to as an active material
  • the negative electrode composition and the positive electrode composition may be collectively referred to as an electrode composition.
  • composition for a negative electrode of the present invention contains an inorganic solid electrolyte, a binder made of a polymer, a dispersion medium, and a negative electrode active material.
  • the polymer forming the binder includes a polymer having at least one bond selected from the group consisting of an amide bond, a urea bond and a urethane bond in the main chain. Further, this polymer has a component having a side chain satisfying the following conditions A and B.
  • Condition A at least one group selected from the group consisting of a carbonyl group, a thiocarbonyl group, and a phosphoryl group (> P (OO) —) is provided on a chain structure portion at least four atoms away from the atoms constituting the main chain.
  • Condition B none of the carbonyl group, thiocarbonyl group and phosphoryl group are bonded to the hydroxy group. That is, the carbonyl group, thiocarbonyl group, and phosphoryl group do not form a carboxy group, thiocarboxy group, or hydroxyphosphoryl, respectively.
  • This polymer binds solid particles (for example, an inorganic solid electrolyte, a negative electrode active material, and a negative electrode active material) to each other in the negative electrode composition and the negative electrode active material layer formed of the negative electrode composition, and further collects the particles. It functions as a binding agent (binder) for binding the electric body and the solid particles. It is considered that when the composition for a negative electrode of the present invention having the above composition is used as a negative electrode active material layer, an increase in interface resistance can be suppressed and solid particles can be firmly bound.
  • solid particles for example, an inorganic solid electrolyte, a negative electrode active material, and a negative electrode active material
  • the negative electrode sheet for an all-solid secondary battery and the all-solid secondary battery provided with the negative electrode active material layer formed using the negative electrode composition of the present invention have low battery resistance (high ionic conductivity) and sufficient charge.
  • the characteristics excellent cycle characteristics that can maintain a high discharge capacity even after repeated discharges. Although the details of the reason are not yet clear, it is considered as follows.
  • the specific bond forms a hydrogen bond (interaction), whereby the polymers are strongly connected to each other (intramolecular or molecular). (Establishment or integration of a polymer network by hydrogen bonding between them), and the film strength of the negative electrode active material layer can be enhanced.
  • this polymer contains a component having a specific group such as a carbonyl group in a chain structure of a side chain.
  • the specific group interacts with a functional group (for example, a silanol group or a siloxy group) present on the surface of the negative electrode active material, and further on the surface of solid particles such as an inorganic solid electrolyte, so that the above-mentioned polymer becomes negative electrode active material. It exhibits high adsorption power to solid particles such as substances. As a result, the solid particles can be firmly bound together, and furthermore, the solid particles and the negative electrode current collector can be firmly bound. Thus, not only during pressure bonding of the negative electrode active material layer and the like but also during charging and discharging of the all-solid-state secondary battery, resistance to stress (and stress concentration) acting on the negative electrode active material layer is exhibited.
  • a functional group for example, a silanol group or a siloxy group
  • the interaction between the specific group of the polymer and the solid particle may be a chemical interaction or a physical interaction, and is not unique due to the functional group present on the surface of the solid particle. , Hydrogen bond, acid-base ionic bond, covalent bond, aromatic ring ⁇ - ⁇ interaction, hydrophobic-hydrophobic interaction, and the like.
  • the binder made of the polymer is adsorbed on the solid particles by the above-mentioned group located at a specific position away from the main chain, and partially covers the surface of the solid particles, not the whole. Therefore, the solid particles can directly contact each other, and an ion conduction path and an electron conduction path are constructed.
  • the construction of the conduction path and the strong binding force of the solid particles by the polymer can suppress an increase in (battery) resistance of the negative electrode active material layer and the all-solid secondary battery.
  • the negative electrode composition of the present invention can form a high-strength negative electrode active material layer in which solid particles such as a negative electrode active material are firmly bound while suppressing an increase in interface resistance between solid particles.
  • Can be The composition for a negative electrode of the present invention exhibiting such a function and effect can impart high ionic conductivity and excellent cycle characteristics to an all-solid secondary battery, and can be used as a negative electrode sheet or an all-solid secondary battery for an all-solid secondary battery.
  • the mixing mode of the inorganic solid electrolyte, the binder, the negative electrode active material, and the dispersion medium is not particularly limited, but at least, from a polymer having a constituent component having a side chain satisfying the above conditions A and B.
  • the binder is preferably a slurry in which the inorganic solid electrolyte and the negative electrode active material are dispersed in a dispersion medium.
  • the composition for a negative electrode of the present invention is not particularly limited, but preferably has a water content (also referred to as a water content) of 500 ppm or less, more preferably 200 ppm or less, further preferably 100 ppm or less. It is particularly preferably at most 50 ppm.
  • a water content also referred to as a water content
  • the water content indicates the amount of water (mass ratio based on the composition for the negative electrode) contained in the composition for the negative electrode. Specifically, the water content is filtered through a 0.02 ⁇ m membrane filter, and measured by Karl Fischer titration. The measured value.
  • the composition for a negative electrode of the present invention contains an inorganic solid electrolyte.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte in which ions can move inside. Since it does not contain an organic substance as a main ion conductive material, an organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO), etc .; an organic represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc.) Electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is a solid in a steady state, it is not usually dissociated or released into cations and anions.
  • the electrolyte solution or the inorganic electrolyte salt LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • the inorganic solid electrolyte a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iv) a hydride-based solid electrolyte.
  • a sulfide-based inorganic solid electrolyte is preferably used from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom, has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Those having properties are preferred.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity, but depending on the purpose or case, other than Li, S, and P, It may contain an element.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying a composition represented by the following formula (1).
  • L a1 M b1 P c1 S d1 A e1 (1)
  • L represents an element selected from Li, Na and K, and Li is preferable.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, more preferably 0 to 1.
  • d1 is preferably from 2.5 to 10, and more preferably from 3.0 to 8.5.
  • e1 is preferably from 0 to 5, more preferably from 0 to 3.
  • composition ratio of each element can be controlled by adjusting the compounding amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramic), or may be partially crystallized.
  • glass glass
  • glass-ceramic glass-ceramic
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramic containing Li, P and S can be used.
  • Examples of the sulfide-based inorganic solid electrolyte include lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example, LiI, LiBr, LiCl) and at least two or more of sulfides (for example, SiS 2 , SnS, GeS 2 ) of the element represented by M can be produced.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • elemental phosphorus elemental sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide hydrogen sulfide
  • lithium halide for example, LiI, LiBr, LiCl
  • at least two or more of sulfides for example, SiS 2 , SnS,
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 SP—P 2 S 5 —P 2 O 5 , Li 2 SP—P 2 S 5 —SiS 2 , Li 2 SP—P 2 S 5 —SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-G
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method, and a melt quenching method. This is because processing at normal temperature becomes possible, and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom, has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Those having properties are preferred.
  • the oxide-based inorganic solid electrolyte has an ionic conductivity of preferably 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and more preferably 1 ⁇ 10 ⁇ 5 S / cm. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but is practically 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, ya satisfies 0.3 ⁇ ya ⁇ 0.7. ] (LLT); Li xb La yb Zr zb M bb mb O nb (M bb is Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, one or more elements selected from In and Sn Xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20.
  • Li xc B yc M cc zc O nc (M cc is C, S, Al, Si, Ga, Ge, is .xc is one or more elements selected from in and Sn 0 ⁇ xc ⁇ 5 , Yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, and nc satisfies 0 ⁇ nc ⁇ 6.); Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd (xd satisfies 1 ⁇ xd ⁇ 3, yd Satisfies 0 ⁇ yd ⁇ 1, zd satisfies 0 ⁇ zd ⁇ 2, ad satisfies 0 ⁇ ad ⁇ 1, md satisfies 1 ⁇ md ⁇ 7, and nd satisfies 3 ⁇ nd ⁇
  • Li 7 La 3 Zr 2 O 12 having a garnet-type crystal structure.
  • a phosphorus compound containing Li, P and O is also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of oxygen of lithium phosphate is substituted with nitrogen
  • LiPOD 1 LiPON in which a part of oxygen of lithium phosphate is substituted with nitrogen
  • LiPOD 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
  • LiA 1 ON (A 1 is at least one element selected from Si, B, Ge, Al, C and Ga) can also be preferably used.
  • Halide-based inorganic solid electrolyte A halide-based inorganic solid electrolyte is generally used and contains a halogen atom and has an ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table. And a compound having electronic insulating properties.
  • the halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as LiCl, LiBr, LiI, and Li 3 YBr 6 and Li 3 YCl 6 described in ADVANCED MATERIALS, 2018, 30, 1803075. Among them, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • a hydride-based inorganic solid electrolyte is generally used, and contains a hydrogen atom and has an ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table. And a compound having electronic insulating properties.
  • the hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, 3LiBH 4 -LiCl, and the like.
  • the inorganic solid electrolyte is preferably particles.
  • the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the measurement of the average particle size is performed according to the following procedure.
  • the inorganic solid electrolyte particles are diluted with water (heptane in the case of a substance unstable to water) to prepare a 1% by mass dispersion liquid in a 20 mL sample bottle.
  • the dispersion sample after dilution is irradiated with 1 kHz ultrasonic wave for 10 minutes and used immediately after the test.
  • data was taken 50 times at a temperature of 25 ° C. using a laser diffraction / scattering type particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) using a quartz cell for measurement. Obtain the volume average particle size.
  • JIS Z 8828 2013 “Particle Size Analysis-Dynamic Light Scattering Method” as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the composition for a negative electrode may contain one kind of inorganic solid electrolyte, or may contain two or more kinds.
  • the total mass (mg) (weight per unit area) of the inorganic solid electrolyte and the negative electrode active material described later per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. . It can be appropriately determined according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
  • the total content of the inorganic solid electrolyte and the negative electrode active material in the negative electrode composition is 50% by mass or more at a solid content of 100% by mass in terms of dispersibility, reduction of interface resistance, and binding properties. Is preferably 70% by mass or more, and particularly preferably 90% by mass or more. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the solid content (solid component) refers to a component that does not disappear by volatilization or evaporation when the composition for a negative electrode is dried at 170 ° C. for 6 hours under a nitrogen atmosphere under a pressure of 1 mmHg. Typically, it refers to components other than the dispersion medium described below.
  • the binder contained in the composition for a negative electrode of the present invention contains a binder comprising the following polymer.
  • This polymer has a main chain containing at least one bond selected from the group consisting of an amide bond, a urea bond, and a urethane bond. Further, this polymer has a component having a side chain that satisfies the conditions A and B described later as a component forming the polymer.
  • the main chain of the polymer refers to a linear molecular chain in which all other molecular chains constituting the polymer can be regarded as branched or pendant to the main chain.
  • the longest chain among the molecular chains constituting the polymer is the main chain.
  • the functional groups of the polymer terminals are not included in the main chain.
  • the side chain of the polymer refers to a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
  • the main chain of the polymer has at least one bond selected from the group consisting of an amide bond, a urea bond, and a urethane bond. These bonds contained in the main chain form hydrogen bonds, thereby contributing to an improvement in the film strength of the negative electrode active material layer as described above. Therefore, the hydrogen bond formed by these bonds may be the above-mentioned bonds or other partial structures of the above-mentioned bond and the main chain.
  • the bond preferably has a hydrogen atom that forms a hydrogen bond (the nitrogen atom of each bond is unsubstituted) in that a hydrogen bond can be formed with each other.
  • the above-mentioned bond is not particularly limited as long as it is contained in the main chain of the polymer, and may be any of a form included in a structural unit (repeating unit) and / or a form included as a bond connecting different structural units. .
  • the number of the bonds contained in the main chain is not limited to one type, and may be two or more types.
  • the bonding mode of the main chain is not particularly limited, and the main chain may have two or more types of bonds at random, and may be a segmented main chain of a segment having a specific bond and a segment having another bond. It may be a chain.
  • the main chain having the above bond is not particularly limited, but is preferably a main chain having at least one segment selected from polyamide, polyurea and polyurethane, and more preferably a main chain made of polyamide, polyurea or polyurethane.
  • the main chain having the above-mentioned bond is formed by combining two or more (preferably 2 to 8) components represented by any of the following formulas (I-1) to (I-4).
  • a backbone is preferred. The combination of each component is appropriately selected according to the above-mentioned binding.
  • R P1 and R P2 each represent a hydrocarbon group or a molecular chain having a mass average molecular weight of 200 to 200,000.
  • R P1 is preferably a hydrocarbon group, more preferably an aromatic hydrocarbon group.
  • R P2 is preferably an aliphatic hydrocarbon group or the above-mentioned molecular chain, and more preferably an embodiment containing each of the aliphatic hydrocarbon group and the above-mentioned molecular chain.
  • the component represented by the formula (I-3) or (I-4) includes a component in which R P2 is an aliphatic hydrocarbon group and a component in which R P2 is the above-mentioned molecular chain. Contains two of the components.
  • the hydrocarbon group that can be taken as R P1 and R P2 is a hydrocarbon group having a mass average molecular weight of less than 200, and includes, for example, an aliphatic or aromatic hydrocarbon group.
  • the hydrocarbon group include an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and still more preferably 1 to 3), and an arylene group (preferably having 6 to 14 carbon atoms and more preferably 6 to 10). Or a group consisting of a combination thereof.
  • the hydrocarbon group can take as R P2, and more preferably an alkylene group, more preferably an alkylene group having 2 to 6 carbon atoms, particularly preferably an alkylene group having 2 or 3 carbon atoms.
  • the hydrocarbon group that can be taken as R P1 and R P2 is, for example, a hydrocarbon group represented by the following formula (M2), and an oxygen atom in the group such as N, N′-bis (2-hydroxyethyl) oxamide. , A sulfur atom or a group containing an imino group.
  • the aliphatic hydrocarbon group is not particularly limited, and may be a hydrogen reduced form of an aromatic hydrocarbon group represented by the following formula (M2), a partial structure (for example, an isophoronyl group) of a known aliphatic diisosonate compound, or the like. Is mentioned.
  • the aromatic hydrocarbon group is preferably a hydrocarbon group represented by the following formula (M2).
  • X represents a single bond, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —S—, —CO—, or —O—;
  • —CH 2 — or —O— is preferable, and —CH 2 — is more preferable.
  • the alkylene group exemplified here may be substituted with a halogen atom (preferably a fluorine atom).
  • R M2 to R M5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable.
  • the substituents that can be taken as R M2 to R M5 are not particularly limited.
  • an alkyl group having 1 to 20 carbon atoms for example, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, —OR M6 , —N (R M6 ) 2 , —SR M6 (R M6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom) Is mentioned.
  • a halogen atom eg, a fluorine atom, a chlorine atom, a bromine atom
  • —N (R M6 ) 2 is an alkylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 6) or an arylamino group (having a carbon number of preferably 6 to 40, and 6 to 20 is preferable) More preferred).
  • the molecular chain which can be taken as R P1 and R P2 is preferably a hydrocarbon group, a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, more preferably a hydrocarbon group or a polyalkylene oxide chain, and is preferably a hydrocarbon group or a polyalkylene oxide chain. Ethylene oxide chains or polypropylene oxide chains are more preferred.
  • the hydrocarbon group is not particularly limited, but preferably has 18 or more, more preferably 30 or more, and still more preferably 50 or more carbon atoms.
  • the upper limit is not particularly limited, and may be, for example, 90.
  • the hydrocarbon chain may have a carbon-carbon unsaturated bond, and may have a ring structure of an aliphatic ring and / or an aromatic ring. That is, the hydrocarbon chain may be a hydrocarbon chain composed of a hydrocarbon group selected from an aliphatic hydrocarbon group and an aromatic hydrocarbon group, and may be a hydrocarbon chain composed of an aliphatic hydrocarbon group. Base chains are preferred.
  • the hydrocarbon chain is preferably an aliphatic saturated hydrocarbon group or aliphatic unsaturated hydrocarbon group or a polymer (preferably an elastomer) that satisfies the above-mentioned number of carbon atoms.
  • the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain.
  • the diene polymer include a styrene-butadiene copolymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer, and ethylene.
  • IIR butyl rubber
  • the non-diene polymer include olefin polymers such as an ethylene-propylene copolymer and a styrene-ethylene-butylene copolymer, and hydrogen reduced products of the diene polymer.
  • polyalkylene oxide chain examples include a chain composed of a known polyalkylene oxide.
  • the alkyleneoxy group as a constituent component preferably has 1 to 8 carbon atoms, more preferably 1 to 6, and even more preferably 2 or 3 (polyethylene oxide chain or polypropylene oxide chain).
  • polycarbonate chain or the polyester chain examples include a chain composed of a known polycarbonate or polyester.
  • the molecular chain When the molecular chain is a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, it preferably has an alkyl group (having preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
  • the mass average molecular weight of the molecular chain is preferably 250 or more, more preferably 500 or more, still more preferably 700 or more, and particularly preferably 1,000 or more.
  • the upper limit is preferably 100,000 or less, more preferably 10,000 or less.
  • the mass average molecular weight of the molecular chain is measured for the raw material compound before being incorporated into the main chain of the polymer.
  • the starting compound (diisocyanate compound) for deriving the component represented by the above formula (I-1) is not particularly limited, and for example, a diisocyanate represented by the formula (M1) described in WO2018 / 020827 Compounds and specific examples thereof are given.
  • the starting compound (such as a carboxylic acid or an acid chloride thereof) for deriving the component represented by the above formula (I-2) is not particularly limited, and for example, a compound represented by the formula ( The compound represented by M1) and specific examples thereof are exemplified.
  • the raw material compound (diol compound or diamine compound) for deriving the component represented by the above formula (I-3) or (I-4) is not particularly limited, and is described in, for example, International Publication No. WO2018 / 020827.
  • Each of the compounds described above and specific examples thereof are exemplified, and further, dihydroxyoxamide is exemplified.
  • R P1 and R P2 may each have a substituent.
  • substituent group is not particularly limited, for example, an above substituents can take as R M2, also also include groups corresponding to the side chain will be described later.
  • the polymer forming the binder has a component having a specific side chain described later.
  • This side chain may be incorporated into any component as long as it is a component forming a polymer.
  • this side chain is incorporated into any one of the above formulas (I-1) to (I-4). You may. Above all, it is preferable that it is incorporated in the component represented by the above formula (I-3) or (I-4), and the structure represented by the above formula (I-3) or (I-4) it is more preferred that R P2 among components are incorporated in component a hydrocarbon group having aliphatic. When these constituents have a specific side chain, they easily interact with the negative electrode active material.
  • the side chain of the polymer forming the binder satisfies the following conditions A and B.
  • Condition A at least one group selected from the group consisting of a carbonyl group, a thiocarbonyl group, and a phosphoryl group (> P (OO) —) is provided in a chain structure portion at least four atoms away from atoms constituting the main chain.
  • Condition B none of the carbonyl group, thiocarbonyl group and phosphoryl group are bonded to a hydroxy group.
  • the chain structure part in the side chain is a side chain (a molecular chain composed of a group of atoms bonded in a chain), which is located at a terminal side of the side chain that is at least 4 atoms away from atoms constituting the main chain molecular chain.
  • the structural part refers to the structural part.
  • the chain structure part is attached to the carbon atom forming the main chain. A portion where the number of connected atoms is 4 or more in the longest molecular chain starting from the bonding atom.
  • the end of the molecular chain is a hydrogen atom
  • this hydrogen atom is not included in the number of connected atoms.
  • the longest molecular chain ( ⁇ ) starts from the carbon atom bonded to the carbon atom forming the main chain molecular chain (ethylene dioxide chain).
  • the number of connected atoms is 4 or more.
  • C (tertiary carbon atom) -C (carbonyl carbon atom) -OC (carbon atom of methyl group) becomes the chain structure.
  • a strong interaction with the negative electrode active material occurs in combination with the ease of molecular movement of the side chain.
  • these groups are incorporated at the end of the above-mentioned chain structure.
  • the group closest to the atoms that make up the molecular chain of the chain is preferably incorporated into a chain structure that is at least 6 atoms away from the atoms that make up the main chain molecular chain, More preferably, it is incorporated.
  • the most terminal group is preferably incorporated within 2 to 4 atoms from the end of the chain structure (excluding the hydrogen atom). More preferably, it is incorporated within 2 or 3 atoms.
  • the above group contained in the chain structure is preferably a carbonyl group.
  • the carbonyl group, thiocarbonyl group, and phosphoryl group do not have a hydroxy group as an end of the chain structure (condition B). Further, it is preferable that none of these groups is bonded to a hydrogen atom. That is, these groups are preferably incorporated in the chain structure. Two of the bonds of the phosphoryl group are used for incorporation into the chain structure, and the other one bonds to a substituent other than a hydrogen atom and a hydroxy group.
  • the substituent is not particularly limited, and examples thereof include the following substituents that can be taken as R 1 and R 2 .
  • the number of the groups included in the chain structure portion may be at least one in one chain structure portion (constituent component), for example, 1 to 10, and 1 to 5 in terms of interaction with the negative electrode active material. Is preferable, and 1-3 are more preferable.
  • the group chain structure has, when defining the mass ratio, the ratio of the total mass W G of the base relative to the total weight W S of the chain structure portion [W G / W S] is not less than 0.05 Preferably, it is more preferably 0.1 or more, further preferably 0.2 or more, and particularly preferably 0.3 or more.
  • the upper limit is not particularly limited, and can be, for example, 0.7 or less, and preferably 0.5 or less.
  • the chain structure has a branched chain (such as a substituent)
  • the mass of the branched structure and the mass of the hydrogen atom at the end of the molecular chain are also included in the total mass of the chain structure.
  • the number of the above groups in one molecule of the polymer is not particularly limited as long as the number of the above constituent components is satisfied, and is appropriately set.
  • the type of the group contained in the chain structure portion may be at least one type, and may be two or more types.
  • the side chain preferably has a partial structure represented by any of the following formulas (I) to (III), and more preferably has a partial structure represented by the following formula (II) or (III). More preferably, it has a partial structure represented by the following formula (III).
  • the position at which these partial structures are incorporated into the side chain is not particularly limited, but it is preferable that the carbonyl group in each structure be incorporated at a position at least four atoms away from the atoms constituting the main chain.
  • L 1 to L 4 each represent a linking group.
  • the linking group that can be taken as L 1 to L 4 is not particularly limited, and examples thereof include an alkylene group (preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3), and an arylene group.
  • the number of carbon atoms is preferably 6 to 24, more preferably 6 to 14, and particularly preferably 6 to 10.
  • R N is a bonding site, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms), or two or more of these (preferably Is 2 to 10).
  • the linking group that can be taken as L 1 to L 4 an alkylene group is preferable, and as the linking group that can be taken as L 4 , methylene is more preferable.
  • R 1 and R 2 each represent a substituent. However, R 1 does not take “—L 4 —CO—R 2 ” in the formula (III).
  • the substituents that can be taken as R 1 and R 2 are not particularly limited, and include an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3), and an aryl group (having a carbon number of 1 to 3). 6 to 22, preferably 6 to 14, and more preferably 6 to 10), and a group containing a hetero atom.
  • the hetero atom is not particularly limited, but is preferably an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, or the like.
  • the group containing a hetero atom include a group containing a hetero atom in the group, a group bonded to the carbonyl carbon atom in each formula by the above hetero atom, and the like.
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom and nitrogen atom.
  • the substituent which can be taken as R 1 is preferably a group containing a hetero atom
  • the substituent which can be taken as R 2 is preferably an alkyl group.
  • the carbon number of each of the alkoxy group and the alkylthio group is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 3.
  • Each of the aryloxy group and the arylthio group preferably has 6 to 24 carbon atoms, more preferably has 6 to 14 carbon atoms, and particularly preferably has 6 to 10 carbon atoms.
  • the substituents that can be taken as R 1 and R 2 may further have a substituent, such as an alkyl group, an aryl group, an amino group, a (diamino) phosphoryl group, an ether group, or A group in which two or more (preferably 2 to 10) are combined is exemplified.
  • the substituents that can be taken as R 1 and R 2 are L 1 or L 4 , or a linking group that links the structure represented by each of the above-mentioned formulas and the main chain of the polymer to form a cyclohexane ring, cyclohexene It may form a ring such as a ring.
  • ** indicates a bonding portion to the main chain (atom constituting the polymer) of the polymer.
  • the partial structure represented by each of the above formulas may be directly bonded to the main chain of the polymer, but is preferably bonded via a linking group.
  • the linking group that bonds the partial structure represented by each formula to the main chain of the polymer is not particularly limited, and examples thereof include linking groups that can be taken as L 1 to L 4 , and among them, an alkylene group, an arylene group , A heteroarylene group, an ether group, a sulfide group, a carbonyl group or an imino group, or a linking group obtained by combining two or more (preferably 2 to 10) thereof, and is preferably an alkylene group, an ether group, a sulfide group or a carbonyl group.
  • the number of atoms constituting the linking group is preferably 1 to 30, more preferably 3 to 20, and still more preferably 5 to 15.
  • the number of linking atoms of the linking group is preferably from 1 to 15, more preferably from 5 to 12.
  • the content of the component can be appropriately set. It is preferable that the content of each component relative to the total number of moles of all components forming the polymer be determined from the following range so as to be 100 mol% in total.
  • the content of the component (RP1 in the examples described later) in which R P1 is a hydrocarbon group is determined by the hydrogen bond formation. From the viewpoint of film strength due to, for example, the amount is preferably 50 to 10 mol%, more preferably 50 to 20 mol%, and more preferably 50 to 30 mol%, based on all the constituent components forming the polymer. Is more preferred.
  • the content of the component (RP M2 in Examples described later) in which R P2 is a hydrocarbon group is hydrogen.
  • the content is preferably 50 to 1 mol%, more preferably 40 to 2 mol%, and more preferably 30 to 3 mol%, based on all constituent components forming the polymer. It is even more preferred.
  • the content of each of the above components is the content of the components that do not contain the above-mentioned side chains and do not have the above-mentioned side chains.
  • the content of the component represented by the formula (I-1) or (I-2) in which RP2 is the above-mentioned molecular chain depends on the content of the polymer formed from the viewpoint of improving the flexibility of the film.
  • the content is preferably 50 to 10 mol%, more preferably 50 to 20 mol%, even more preferably 50 to 30 mol%, based on all the constituent components.
  • the content of a component (RP M1 in Examples described later) in which R P1 is the above molecular chain is determined by the film.
  • each of the above components is the content of the components that do not contain the above-mentioned side chains and do not have the above-mentioned side chains.
  • the content of the component having the side chain is 80 to 5 mol% with respect to all components forming the polymer in terms of interaction with the negative electrode active material. Preferably, it is 80 to 10 mol%, more preferably 60 to 15 mol%, and particularly preferably 40 to 15 mol%.
  • the content of the other components is preferably 15 mol% or less based on all the components forming the polymer.
  • the content of each component relative to the total mass of all components forming the polymer is determined so as to be 100% by mass in total from the following range.
  • the content of the component in which R P1 is a hydrocarbon group depends on the polymer strength in terms of film strength due to hydrogen bond formation and the like. The amount is preferably from 80 to 20% by mass, more preferably from 70 to 30% by mass, even more preferably from 60 to 35% by mass, based on the total mass of all constituent components to be formed.
  • the content of the component in which R P2 is a hydrocarbon group is determined in terms of film strength due to hydrogen bond formation and the like.
  • the amount is preferably from 80 to 20% by mass, more preferably from 70 to 30% by mass, even more preferably from 60 to 35% by mass, based on the total mass of all the constituent components forming the polymer.
  • the content of each of the above components is the content of the components that do not contain the above-mentioned side chains and do not have the above-mentioned side chains.
  • the content of the component represented by the above formula (I-1) or (I-2) in which RP1 is the above-mentioned molecular chain is determined from the viewpoint of improving the flexibility of the film. It is preferably from 80 to 20% by mass, more preferably from 70 to 30% by mass, even more preferably from 60 to 35% by mass, based on the total mass of all the constituent components.
  • the content of the component in which RP2 is the above molecular chain is determined from the viewpoint of improving the flexibility of the film.
  • each of the above components is the content of the components that do not contain the above-mentioned side chains and do not have the above-mentioned side chains.
  • the content of the component having the side chain is preferably 41 to 1% by mass, and more preferably 40 to 1% by mass with respect to the total mass of all the components constituting the polymer in terms of interaction with the negative electrode active material.
  • the content is more preferably 5% by mass, further preferably 20 to 5% by mass, and particularly preferably 10 to 5% by mass.
  • the content of the other components is preferably 15% by mass based on all the components forming the polymer.
  • the polymer may not have a known group having an adsorptivity to solid particles such as a negative electrode active material, a positive electrode active material, an inorganic solid electrolyte, and the like. May further have a group exhibiting an adsorptivity in order to further improve the binding property with the compound.
  • the group exhibiting adsorptivity is not particularly limited, and examples thereof include groups included in “functional group (II)” described in WO2018 / 020827.
  • the polymer can be synthesized by polycondensation of a raw material compound by a known method according to the type of the bond in the main chain.
  • a synthesis method for example, “ ⁇ (B) Method for synthesizing polymer>” described in WO2018 / 020827 can be referred to.
  • the above-mentioned polymer may be soluble in the dispersion medium, but is preferably insoluble (particles) in the dispersion medium particularly from the viewpoint of ion conductivity.
  • the term “insoluble in a dispersion medium” means that a polymer is added to a dispersion medium at 30 ° C. (the amount used is 10 times the mass of the polymer) and left standing for 24 hours. Means 3% by mass or less, preferably 2% by mass or less, more preferably 1% by mass or less.
  • the amount of dissolution is defined as the ratio of the mass of the polymer obtained from the dispersion medium that has been solid-liquid separated after 24 hours to the mass of the polymer added to the dispersion medium.
  • the polymer (binder) may be present in the negative electrode composition, for example, dissolved in a dispersion medium, or may be present (preferably dispersed) in a solid state without being dissolved in the dispersion medium (solid). Binders that are present in the form of particles are referred to as particulate binders).
  • the polymer (binder) is preferably a particulate binder in the negative electrode composition and further in the negative electrode active material layer (coating dried layer), from the viewpoint of battery resistance and cycle characteristics.
  • the binder is a particulate binder
  • its shape is not particularly limited and may be flat, amorphous, or the like, but is preferably spherical or granular.
  • the average particle size of the particulate binder is not particularly limited, but is preferably 1,000 nm or less, more preferably 500 nm or less, and even more preferably 300 nm or less.
  • the lower limit is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 50 nm or more.
  • the average particle size can be measured in the same manner as the above-mentioned average particle size of the inorganic solid electrolyte.
  • the weight average molecular weight of the polymer is not particularly limited. For example, it is preferably 3,000 or more, more preferably 5,000 or more, still more preferably 7,000 or more, and particularly preferably 10,000 or more.
  • the upper limit is substantially 1,000,000 or less, preferably 300,000 or less, more preferably 200,000 or less, and even more preferably 100,000 or less.
  • GPC gel permeation chromatography
  • the measurement method is basically a value measured by the method of the following condition 1 or condition 2 (priority).
  • an appropriate eluent may be appropriately selected and used depending on the type of the polymer (polymer or the like) to be measured.
  • This polymer may be a non-crosslinked polymer or a crosslinked polymer.
  • the molecular weight may be higher than the above molecular weight.
  • the polymer has a weight average molecular weight in the above range at the start of use of the all solid state secondary battery.
  • the water concentration of the polymer is preferably 100 ppm (by mass) or less.
  • the polymer may be crystallized and dried, or the polymer dispersion may be used as it is.
  • the glass transition temperature of the polymer is not particularly limited, but is preferably 30 ° C. or lower, more preferably 25 ° C. or lower, further preferably 15 ° C. or lower, and particularly preferably 5 ° C. or lower.
  • the lower limit of the glass transition temperature is not particularly limited and can be set, for example, to -200 ° C, is preferably -150 ° C or higher, and more preferably -120 ° C or higher.
  • the glass transition temperature (Tg) is measured using a differential scanning calorimeter: X-DSC7000 (trade name, manufactured by SII Nanotechnology Co., Ltd.) on a dry sample of the polymer under the following conditions. The measurement is performed twice with the same sample, and the result of the second measurement is adopted.
  • Sample pan Aluminum pan Mass of sample: 5mg Calculation of Tg: Tg is calculated by rounding the decimal point of the intermediate temperature between the descent start point and descent end point of the DSC chart.
  • the binder included in the composition for a negative electrode of the present invention may include a binder other than the binder including the polymer having the constituent component having the side chain satisfying the above conditions A and B.
  • a binder include a binder contained in a solid electrolyte composition described later (a binder composed of various polymers described in the solid electrolyte composition).
  • the binder contains a binder other than a binder having a component having a side chain that satisfies the above conditions A and B, all of the binder having a polymer having a side chain that satisfies the above conditions A and B.
  • the content in the binder is not particularly limited, but is preferably, for example, 10 to 100% by mass.
  • the negative electrode composition may contain one kind of binder or two or more kinds of binders.
  • the content of the binder in the negative electrode composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and more preferably 0.3% by mass or more in the solid content. It is particularly preferred that there is.
  • the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less.
  • the composition for a negative electrode of the present invention contains a negative electrode active material as an active material capable of inserting and releasing ions of a metal belonging to Group 1 or 2 of the periodic table.
  • a negative electrode active material those capable of reversibly inserting and / or releasing lithium ions are preferable.
  • the material is not particularly limited as long as it has the above characteristics.
  • Carbonaceous materials, metal oxides, metal composite oxides, lithium alone, lithium alloys, alloyable with lithium (forming alloys with lithium) Negative electrode active material and the like are Among them, a carbonaceous material, a metal composite oxide or lithium alone is preferably used from the viewpoint of reliability.
  • An active material that can be alloyed with lithium is preferable in that the capacity of the all-solid secondary battery can be increased.
  • the solid particles are firmly bound to each other, and thus the above-described active material that can be alloyed with lithium can be used as the negative electrode active material.
  • a carbonaceous material used as a negative electrode active material is a material substantially composed of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • a carbonaceous material obtained by firing a resin can be used.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber.
  • carbonaceous materials can be classified into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials according to the degree of graphitization.
  • the carbonaceous material preferably has a plane spacing or a density and a crystallite size described in JP-A-62-22066, JP-A-2-6856 and JP-A-3-45473.
  • the carbonaceous material does not need to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like may be used.
  • the carbonaceous material hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the oxide of the metal or metalloid element applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of occluding and releasing lithium.
  • An oxide of the metal element metal oxide
  • a composite of the metal element An oxide or a composite oxide of a metal element and a metalloid element (collectively, a metal composite oxide) and an oxide of a metalloid element (metalloid oxide) are given.
  • amorphous oxides are preferable, and chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table is also preferable.
  • the term “metalloid element” refers to an element having an intermediate property between a metal element and a nonmetalloid element, and usually includes six elements of boron, silicon, germanium, arsenic, antimony, and tellurium, and further includes selenium. , Polonium and astatine.
  • amorphous means an X-ray diffraction method using CuK ⁇ rays having a broad scattering band having an apex in a range of 20 ° to 40 ° in 2 ⁇ value. May have.
  • the strongest intensity of the crystalline diffraction lines observed at 40 ° to 70 ° in the 2 ⁇ value is 100 times or less the intensity of the diffraction line at the apex of the broad scattering band observed at 20 ° to 40 ° in the 2 ⁇ value. It is more preferably 5 times or less, particularly preferably no crystalline diffraction line.
  • an amorphous oxide of a metalloid element or the above-mentioned chalcogenide is more preferable, and an element of group 13 (IIIB) to group 15 (VB) of the periodic table (for example, , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi), a (composite) oxide composed of one or a combination of two or more thereof, or a chalcogenide is particularly preferred.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , GeS, PbS, PbS 2 , Sb 2 S 3 or Sb 2 S 5 is a preferred example.
  • Examples of the negative electrode active material that can be used in combination with an amorphous oxide centering on Sn, Si, and Ge include a carbonaceous material that can occlude and / or release lithium ions or lithium metal, simple lithium, a lithium alloy, and lithium.
  • An active material that can be alloyed with is preferably used.
  • An oxide of a metal or metalloid element, particularly a metal (composite) oxide and the above-described chalcogenide preferably contain at least one of titanium and lithium as a component from the viewpoint of high current density charge / discharge characteristics.
  • the lithium-containing metal composite oxide include, for example, a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, more specifically, Li 2 SnO 2.
  • the negative electrode active material for example, a metal oxide also preferably includes a titanium atom (titanium oxide).
  • Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuation at the time of occlusion and release of lithium ions. This is preferable in that the life of the battery can be improved.
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy generally used as a negative electrode active material of a secondary battery, and examples thereof include a lithium aluminum alloy.
  • the active material that can be alloyed with lithium is not particularly limited as long as it is commonly used as a negative electrode active material of a secondary battery.
  • Such an active material has a large expansion and contraction due to charge and discharge of the all-solid secondary battery, and accelerates a decrease in cycle characteristics.However, since the negative electrode composition of the present invention contains the binder described above, a decrease in cycle characteristics is caused. Can be suppressed.
  • Examples of such an active material include (negative electrode) active materials (alloys and the like) having a silicon element or a tin element, and metals such as Al and In, which include a silicon element that enables higher battery capacity as a constituent element.
  • a silicon-based negative electrode active material (silicon element-containing active material) is preferable, and a silicon element-containing active material having a silicon element content of 50 mol% or more of all constituent elements is more preferable.
  • a negative electrode containing such a negative electrode active material (a Si negative electrode containing a silicon element-containing active material, a Sn negative electrode containing a tin element-containing active material) is used as a carbon negative electrode (eg, graphite and acetylene black).
  • a carbon negative electrode eg, graphite and acetylene black
  • silicon element-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and silicon-containing alloys including titanium, vanadium, chromium, manganese, nickel, copper, and lanthanum (for example, LaSi 2 , VSi 2 , La—Si, Gd—Si, Ni—Si), or an organized active material (eg, LaSi 2 / Si), as well as silicon and tin elements such as SnSiO 3 and SnSiS 3 And the like.
  • SiOx itself can be used as a negative electrode active material (semi-metal oxide).
  • a negative electrode active material that can be alloyed with lithium (the Precursor material).
  • the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and an active material containing the above silicon element and tin element.
  • a composite oxide with lithium oxide for example, Li 2 SnO 2 can also be used.
  • the above-described negative electrode active material can be used without any particular limitation.However, in terms of battery capacity, a negative electrode active material that can be alloyed with lithium is a preferable embodiment.
  • a negative electrode active material that can be alloyed with lithium is a preferable embodiment.
  • the above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and silicon (Si) or a silicon-containing alloy is further preferable.
  • the chemical formula of the compound obtained by the calcination method can be calculated from inductively coupled plasma (ICP) emission spectroscopy as a measuring method, and from the mass difference of powder before and after calcination as a simple method.
  • ICP inductively coupled plasma
  • the surface of the negative electrode active material may be coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples include titanate spinel, tantalum-based oxide, niobium-based oxide, lithium niobate-based compound, and the like.
  • the surface of the electrode containing the negative electrode active material may be surface-treated with sulfur or phosphorus. Further, the surface of the particles of the negative electrode active material may be subjected to a surface treatment before or after the above-mentioned surface coating with an active ray or an active gas (plasma or the like).
  • the shape of the negative electrode active material is not particularly limited, but is preferably in the form of particles.
  • the average particle size of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 ⁇ m.
  • the average particle size of the negative electrode active material particles can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
  • an ordinary pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air jet mill, or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can also be performed.
  • Classification is preferably performed to obtain a desired particle size.
  • Classification is not particularly limited, and can be performed using a sieve, an air classifier, or the like. Classification can be performed both in a dry process and in a wet process.
  • the composition for the negative electrode may contain one kind of the negative electrode active material or may contain two or more kinds of the negative electrode active material.
  • the content of the negative electrode active material in the negative electrode composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and more preferably 30 to 80% by mass at a solid content of 100% by mass. %, More preferably 40 to 75% by mass.
  • the composition for a negative electrode of the present invention contains a dispersion medium (dispersion medium).
  • the dispersing medium may be any as long as it disperses or dissolves the above-mentioned components, but preferably disperses at least without dissolving the binder.
  • Examples of the dispersion medium contained in the negative electrode composition include various organic solvents. Examples of the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds, and other solvents. Specific examples of the dispersion medium include the following. One.
  • Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, -Methyl-2,4-pentanediol, 1,3-butanediol and 1,4-butanediol.
  • ether compound examples include alkylene glycol (diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.), alkylene glycol alkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl).
  • alkylene glycol diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.
  • alkylene glycol alkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl.
  • Ether dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc., dialkyl ether (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ether ( Tetrahydrofuran, dioxane (1,2, including 1,3- and 1,4-isomers of), etc.).
  • Examples of the amide compound include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N- Examples include methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, and the like.
  • Examples of the aromatic compound include benzene, toluene, xylene and the like.
  • Examples of the aliphatic compound include hexane, heptane, octane, decane and the like.
  • Examples of the nitrile compound include acetonitrile, propylonitrile, isobutyronitrile and the like.
  • ester compound examples include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, and butyl pentanoate.
  • non-aqueous dispersion medium examples include the above aromatic compounds and aliphatic compounds.
  • ketone compounds, aromatic compounds, aliphatic compounds and ester compounds are preferable, and ketone compounds, aliphatic compounds and ester compounds are more preferable.
  • a sulfide-based inorganic solid electrolyte can be stably handled because a functional group active with respect to the sulfide-based inorganic solid electrolyte is not included.
  • a combination of a sulfide-based inorganic solid electrolyte and an aliphatic compound is preferable.
  • the dispersion medium preferably has a boiling point at normal pressure (1 atm) of 50 ° C or higher, more preferably 70 ° C or higher.
  • the upper limit is preferably 250 ° C or lower, more preferably 220 ° C or lower.
  • the composition for a negative electrode may contain one type of dispersion medium or two or more types.
  • the content of the dispersion medium in the negative electrode composition is not particularly limited and can be appropriately set.
  • the amount is preferably 20 to 99% by mass, more preferably 25 to 70% by mass, and particularly preferably 30 to 60% by mass.
  • the composition for a negative electrode of the present invention may appropriately contain a conductive additive used for improving the electronic conductivity of the active material.
  • a conductive assistant a general conductive assistant can be used.
  • electron conductive materials such as natural graphite, graphite such as artificial graphite, carbon black such as acetylene black, Ketjen black, furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube Carbon fibers such as graphene or fullerene; metal powders such as copper and nickel; metal fibers; and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives. May be used.
  • the shape of the conductive additive is not particularly limited, but is preferably in the form of particles.
  • the content of the conductive additive in the composition for a negative electrode is preferably 0 to 10% by mass based on 100% by mass of solid content.
  • ions of a metal belonging to the first or second group of the periodic table preferably Li
  • a substance that does not cause insertion and release of ions and does not function as an active material is defined as a conductive assistant.
  • conductive assistants those that can function as an active material in the active material layer when the battery is charged and discharged are classified as active materials rather than conductive assistants. Whether or not the battery functions as an active material when charged and discharged is not unique and is determined by a combination with the active material.
  • the composition for a negative electrode of the present invention also preferably contains a lithium salt (supporting electrolyte).
  • a lithium salt usually used for this kind of product is preferable, and there is no particular limitation.
  • lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
  • the content of the lithium salt is preferably at least 0.1 part by mass, more preferably at least 5 parts by mass, based on 100 parts by mass of the solid electrolyte. As a maximum, 50 mass parts or less are preferred, and 20 mass parts or less are more preferred.
  • the composition for a negative electrode of the present invention may contain a dispersant.
  • a dispersant those commonly used in all solid-state secondary batteries can be appropriately selected and used. Generally, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
  • the composition for a negative electrode of the present invention may further include, if desired, an ionic liquid, a thickener, a crosslinking agent (such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization) as a component other than the above-described components. It may contain an initiator (such as one that generates an acid or a radical by heat or light), an antifoaming agent, a leveling agent, a dehydrating agent, an antioxidant and the like.
  • the ionic liquid is contained for further improving the ionic conductivity, and a known ionic liquid can be used without any particular limitation.
  • composition for negative electrode ⁇ Preparation of composition for negative electrode>
  • the composition for a negative electrode of the present invention, an inorganic solid electrolyte, a binder, a negative electrode active material, a dispersion medium, and any other components for example, by mixing with various commonly used mixers, as a mixture, preferably as a slurry Can be prepared.
  • the mixing method is not particularly limited, and they may be mixed at once or may be mixed sequentially.
  • the mixing environment is not particularly limited, and examples thereof include under dry air or under an inert gas.
  • the method for dispersing the binder is not particularly limited, and a known emulsification method such as a method for synthesizing the polymer (for example, an emulsion polymerization method) and a phase inversion emulsification method can be applied.
  • a known emulsification method such as a method for synthesizing the polymer (for example, an emulsion polymerization method) and a phase inversion emulsification method can be applied.
  • the negative electrode sheet for an all-solid secondary battery of the present invention has a negative electrode active material layer composed of the above-described negative electrode composition of the present invention. Therefore, the negative electrode active material layer of the negative electrode sheet for an all solid state secondary battery of the present invention has both a high resistance and a high film strength. Further, the negative electrode active material layer is firmly bound to the negative electrode current collector.
  • the negative electrode sheet for an all-solid secondary battery of the present invention having such a negative electrode active material layer can provide the all-solid secondary battery with characteristics of reducing battery resistance and maintaining a high discharge capacity, It can be preferably used as a material for forming a negative electrode active material layer of a battery.
  • the negative electrode sheet for an all-solid secondary battery of the present invention may be a sheet having the above-described negative electrode active material layer.
  • the substrate is not particularly limited as long as it can support the negative electrode active material layer, and includes a sheet (plate-like body) such as a material described below for an anode current collector, an organic material, and an inorganic material.
  • the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • Examples of the inorganic material include glass and ceramic.
  • the negative electrode sheet for an all-solid-state secondary battery of the present invention is generally a sheet having a negative electrode current collector and a negative electrode active material layer, and has a negative electrode current collector, a negative electrode active material layer and a solid electrolyte layer in this order, In addition, an embodiment having a negative electrode current collector, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer in this order is also included.
  • This negative electrode sheet may have other layers such as a protective layer (release sheet), a current collector, and a coat layer.
  • the layer thickness of each layer constituting the negative electrode sheet is the same as the layer thickness of each layer described in the all solid state secondary battery described later.
  • the content of each component in the negative electrode active material layer of the negative electrode sheet is not particularly limited, but is preferably the same as the content of each component in the solid content of the electrolyte composition (composition for negative electrode) of the present invention. .
  • the method for producing the negative electrode sheet for an all-solid secondary battery of the present invention is not particularly limited, and the negative electrode sheet can be produced by forming the negative electrode composition of the present invention into a film to form a negative electrode active material layer.
  • the negative electrode composition of the present invention is preferably formed (coated and dried) on a substrate (may be via another layer) to form a negative electrode active material layer (coated and dried layer). Method. Thereby, a negative electrode sheet for an all-solid secondary battery having a substrate and a coating and drying layer can be produced.
  • the coating dry layer is a negative electrode active material layer formed by applying the negative electrode composition of the present invention and drying the dispersion medium (that is, the negative electrode active material layer formed using the negative electrode composition of the present invention.
  • Negative electrode active material layer having a composition obtained by removing the dispersion medium from the negative electrode composition of the present invention).
  • the dried coating layer may contain a dispersion medium even after drying, as long as the effect of the present invention is not impaired.
  • the coating medium is contained (remaining) in a content of 1% by mass or less based on the total mass of the dried coating layer. Is also good.
  • each step of coating and drying will be described in the following method for producing an all-solid secondary battery.
  • the coated and dried layer obtained as described above may be pressed.
  • the pressing conditions and the like the conditions in the method for manufacturing an all-solid secondary battery described below can be applied, but the pressing force may be, for example, 3 to 2000 MPa.
  • the base material, the protective layer (particularly, a release sheet), and the like can be peeled off.
  • the all solid state secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer opposed to the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is preferably formed on a positive electrode current collector and forms a positive electrode.
  • the negative electrode active material layer is preferably formed on a negative electrode current collector to form a negative electrode.
  • the negative electrode active material layer is preferably formed of the composition for a negative electrode of the present invention, and the positive electrode active material layer and the solid electrolyte layer are made of a known material, for example, a positive electrode active material described later.
  • the negative electrode active material layer formed of the composition for a negative electrode of the present invention has both a high level of suppression of resistance increase and an improvement in film strength, and the all-solid secondary battery has a low battery resistance and a high discharge capacity. It contributes to achieving maintainable characteristics.
  • the negative electrode active material layer formed of the composition for a negative electrode of the present invention is preferably the same as the solid component of the composition for a negative electrode of the present invention with respect to the types of components contained and the content ratio thereof.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
  • each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m, in consideration of the dimensions of a general all solid state secondary battery.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure depending on the application. Is preferred.
  • the housing may be made of metal or resin (plastic). When a metallic material is used, for example, an aluminum alloy or a stainless steel material can be used. It is preferable that the metallic casing is divided into a casing on the positive electrode side and a casing on the negative electrode side, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing short circuit.
  • FIG. 1 is a cross-sectional view schematically illustrating an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. .
  • Each layer is in contact with each other and has an adjacent structure. By employing such a structure, at the time of charging, electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein.
  • lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6.
  • a light bulb is employed as a model for the operating part 6, and this is turned on by discharge.
  • this all-solid secondary battery When the all-solid secondary battery having the layer configuration shown in FIG. 1 is placed in a 2032 type coin case, this all-solid secondary battery is referred to as an all-solid secondary battery electrode sheet, and the all-solid secondary battery electrode sheet is referred to as an all-solid secondary battery electrode sheet.
  • a battery manufactured in a 2032 type coin case is sometimes referred to as an all solid state secondary battery.
  • the negative electrode active material layer is formed of the negative electrode composition of the present invention.
  • the positive electrode active material layer and the solid electrolyte layer are formed of a positive electrode active material sheet or a positive electrode composition described later, or a solid electrolyte composition.
  • the all-solid-state secondary battery 10 including the negative electrode active material layer exhibits excellent battery performance (characteristics capable of maintaining low battery resistance and high discharge capacity).
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors.
  • one or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • a current collector As the material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, a material obtained by treating a surface of aluminum or stainless steel with carbon, nickel, titanium or silver (forming a thin film) Are preferred, and among them, aluminum and an aluminum alloy are more preferred.
  • materials for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., the surface of aluminum, copper, copper alloy or stainless steel is treated with carbon, nickel, titanium or silver.
  • aluminum, copper, copper alloy and stainless steel are more preferred.
  • a film sheet is usually used, but a net, a punched material, a lath, a porous material, a foam, a molded product of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the surface of the current collector be provided with irregularities by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or provided between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer, or may be composed of multiple layers.
  • the all-solid-state secondary battery can be manufactured by a conventional method, and can be preferably manufactured through a method of manufacturing a negative-electrode sheet for an all-solid-state secondary battery. More specifically, it can be manufactured by forming a negative electrode active material layer using the composition for a negative electrode of the present invention and the like, and forming a positive electrode active material layer and a solid electrolyte layer using known materials.
  • the composition for the negative electrode or the negative electrode sheet for the all-solid secondary battery used in the production of the all-solid secondary battery is as described above.
  • a material (composition or sheet) used for forming the positive electrode active material layer and the solid electrolyte layer in the method for manufacturing an all-solid secondary battery will be briefly described.
  • the positive electrode active material layer of the all solid state secondary battery can be formed of, for example, a positive electrode composition, a sheet made of the positive electrode active material, or the like.
  • a known composition can be used without any particular limitation.
  • a positive electrode active material preferably an inorganic solid electrolyte, a binder, further a dispersion medium, a composition for a positive electrode containing other additives as appropriate, preferably, an inorganic solid electrolyte, a positive electrode active material, a binder and a dispersion And a composition for a positive electrode containing a solvent.
  • the composition for the positive electrode contains, as the inorganic solid electrolyte, the binder, the dispersion medium and the other additives, each can be used without particular limitation, and those in the negative electrode composition of the present invention May be the same or different.
  • a binder different from the binder containing the constituent component having the side chain that satisfies the above conditions A and B contained in the composition for the negative electrode of the present invention (hereinafter referred to as the composition for the negative electrode) And a binder different from the above.) May be a binder contained in a solid electrolyte composition described later.
  • the contents of the binder, the dispersion medium and the other additives in the positive electrode composition can be set in the same ranges as the contents in the negative electrode composition of the present invention.
  • the dispersed state and the water content of the positive electrode composition are preferably the same as those of the negative electrode composition of the present invention.
  • the composition for the positive electrode can be prepared in the same manner as the composition for the negative electrode.
  • the positive electrode composition contains a positive electrode active material as an active material capable of inserting and releasing ions of a metal belonging to Group 1 or 2 of the periodic table. It is preferable that the positive electrode active material be capable of reversibly inserting and / or releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an element such as sulfur, which can be combined with Li, or the like. Among them, a transition metal oxide is preferably used as the positive electrode active material, and a transition metal oxide containing a transition metal element M a (at least one element selected from Co, Ni, Fe, Mn, Cu, and V). Are more preferred.
  • the transition metal oxide includes an element M b (an element of the first (Ia) group, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P and B).
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, (MD) And (ME) lithium-containing transition metal silicate compounds.
  • MA a transition metal oxide having a layered rock salt type structure
  • MB transition metal oxide having a spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD And
  • ME lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt type structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0.1 . 05 O 2 (lithium nickel cobalt aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • LCO lithium cobaltate
  • NCA lithium nickel cobalt aluminum oxide
  • NMC lithium nickel manganese cobalt oxide
  • LiNi 0.5 Mn 0.5 O 2 Lithium manganese nickelate
  • (MB) As specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8, and Li 2 2 NiMn 3 O 8 .
  • Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. And monoclinic nasicon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
  • Li 2 FePO 4 F such fluorinated phosphorus iron salt
  • Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
  • Examples of the lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size (sphere-converted average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m.
  • the average particle diameter of the positive electrode active material particles can be measured in the same manner as the above-mentioned average particle diameter of the inorganic solid electrolyte.
  • an ordinary pulverizer or a classifier is used as in the case of the negative electrode active material.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material may be surface-coated with the above-mentioned surface coating agent, sulfur or phosphorus, and further with the above-mentioned actinic ray or the like, similarly to the negative electrode active material.
  • the positive electrode composition may contain one kind of positive electrode active material, or may contain two or more kinds.
  • the total mass (mg) (weight per unit area) of the positive electrode active material and the inorganic solid electrolyte per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
  • the content of the positive electrode active material in the positive electrode composition is not particularly limited, and is preferably from 10 to 97% by mass, more preferably from 30 to 95% by mass, and still more preferably from 40 to 93% by mass at a solid content of 100% by mass. , 50 to 90% by mass is particularly preferred.
  • the positive electrode composition contains an inorganic solid electrolyte
  • the total content of the inorganic solid electrolyte and the positive electrode active material in the positive electrode composition is, in the negative electrode composition, the inorganic solid electrolyte and the negative electrode active material. It is preferable that it is in the same range as the total content.
  • a positive electrode sheet for an all solid state secondary battery capable of forming a positive electrode active material layer of an all solid state secondary battery includes a positive electrode active material layer instead of a negative electrode active material layer, and further includes a positive electrode collector instead of a negative electrode current collector. It is the same as the negative electrode sheet for an all-solid secondary battery of the present invention, except that an electric conductor is appropriately provided.
  • the layer thickness of each layer constituting the positive electrode sheet for an all-solid secondary battery is the same as the layer thickness of each layer described in the all-solid secondary battery described later.
  • the content of each component in the positive electrode active material layer of the positive electrode sheet is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the solid electrolyte composition (composition for positive electrode) of the present invention. is there.
  • the method for producing a positive electrode sheet for an all-solid secondary battery is also the same as the method for producing a negative electrode sheet for an all-solid secondary battery of the present invention, except that the above-mentioned composition for a positive electrode is appropriately used with a positive electrode current collector.
  • the inorganic solid electrolyte layer of the all solid state secondary battery can be formed of, for example, a solid electrolyte composition or the like.
  • a known composition can be used without any particular limitation.
  • the solid electrolyte composition usually does not contain an active material.
  • the solid electrolyte composition contains, as the inorganic solid electrolyte, the binder, the dispersion medium and the other additives, each can be used without particular limitation, and those in the negative electrode composition of the present invention. May be the same or different.
  • various binders usually used for the solid electrolyte composition for an all-solid secondary battery can be applied without any particular limitation.
  • the binder include various polymers such as derivative polymers.
  • fluorine-containing polymer examples include polytetrafluoroethylene (PTFE), polyvinylene difluoride (PVdF), and a copolymer of polyvinylene difluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon group-based thermoplastic polymer examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
  • Examples of the (meth) acrylic polymer include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of two or more of these monomers (preferably, copolymers of acrylic acid and methyl acrylate). No. In addition, copolymers with other vinyl monomers are also preferably used. Examples include a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene.
  • the copolymer may be any of a statistical copolymer and a periodic copolymer, and is preferably a block copolymer.
  • the (meth) acrylic polymer include a polymer described in JP-A-2015-088486.
  • the polyurethane, polyurea, polyamide, and polyimide polymers include, for example, a polymer having a urethane bond, a polymer having a urea bond, a polymer having an amide bond, and a polymer having an imide bond described in JP-A-2015-088480. Polymers and the like.
  • the content of the binder, the dispersion medium, and the other additives in the solid electrolyte composition can be set in the same range as the content in the negative electrode composition of the present invention.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is preferably 50% by mass or more and 100% by mass or more, and more preferably 70% by mass or more at a solid content of 100% by mass in view of dispersibility, reduction of interface resistance, and binding property. Is more preferable, and it is particularly preferable that it is 90 mass% or more.
  • the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the solid electrolyte composition preferably has the same dispersion state and water content as the negative electrode composition of the present invention.
  • the solid electrolyte composition can be prepared in the same manner as the negative electrode composition.
  • the solid electrolyte sheet for an all-solid secondary battery capable of forming a solid electrolyte layer of an all-solid secondary battery may be a sheet having a solid electrolyte layer, even if the solid electrolyte layer is formed on a substrate, A sheet having no base material and formed from a solid electrolyte layer may be used.
  • the solid electrolyte layer of the solid electrolyte sheet for an all-solid secondary battery can be obtained by forming the above-described solid electrolyte composition into a film in the same manner as the negative electrode composition.
  • the configuration and thickness of the solid electrolyte layer of the sheet for an all-solid secondary battery are the same as the configuration and thickness of the solid electrolyte layer described in the all-solid secondary battery of the present invention.
  • the solid electrolyte layer of the solid electrolyte sheet for an all-solid secondary battery is preferably formed of the solid electrolyte composition of the present invention.
  • the content of each component in the solid electrolyte layer is not particularly limited, but preferably has the same meaning as the content of each component in the solid content of the solid electrolyte composition of the present invention.
  • the solid electrolyte sheet for an all-solid secondary battery may have another layer described above in addition to the solid electrolyte layer.
  • the all solid state secondary battery of the present invention includes a step of applying the composition for a negative electrode of the present invention on a base material (for example, a metal foil serving as a negative electrode current collector) and forming a coating film (forming a film).
  • a base material for example, a metal foil serving as a negative electrode current collector
  • a coating film forming a film.
  • (Intermediate) method the method for producing the sheet for an all solid state secondary battery of the present invention.
  • the above-described composition for a positive electrode layer is applied on a metal foil as a positive electrode current collector to form a positive electrode active material layer, thereby producing a positive electrode sheet for an all-solid secondary battery.
  • the solid electrolyte composition is applied on the positive electrode active material layer to form a solid electrolyte layer.
  • composition for a negative electrode layer of the present invention is applied on the solid electrolyte layer to form a negative electrode active material layer.
  • Obtaining an all-solid secondary battery with a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer Can be. This can be sealed in a housing to form a desired all-solid secondary battery.
  • a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery. You can also.
  • Another method is as follows. That is, as described above, the positive electrode sheet for an all-solid secondary battery and the negative electrode sheet for an all-solid secondary battery of the present invention are produced. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Further, the other of the positive electrode sheet for an all-solid secondary battery and the negative electrode sheet for an all-solid secondary battery of the present invention is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. Thus, an all-solid secondary battery can be manufactured.
  • Another method is as follows. That is, as described above, the positive electrode sheet for an all-solid secondary battery and the negative electrode sheet for an all-solid secondary battery of the present invention are produced. Separately, a solid electrolyte composition is applied on a substrate to prepare a solid electrolyte sheet for an all-solid secondary battery. Further, the positive electrode sheet for an all-solid secondary battery and the negative electrode sheet for an all-solid secondary battery are laminated so as to sandwich the solid electrolyte layer peeled off from the base material. Thus, an all-solid secondary battery can be manufactured. Further, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are prepared as described above.
  • the all-solid secondary battery positive electrode sheet or the all-solid secondary battery negative electrode sheet and the all-solid secondary battery solid electrolyte sheet were brought into contact with the positive electrode active material layer or the negative electrode active material layer and the solid electrolyte layer. In the state, it overlaps and pressurizes. Thus, the solid electrolyte layer is transferred to the positive electrode sheet for an all-solid secondary battery or the negative electrode sheet for an all-solid secondary battery.
  • the solid electrolyte layer from which the base material of the solid electrolyte sheet for an all-solid secondary battery was peeled off and the negative electrode sheet for an all-solid secondary battery or the positive electrode sheet for an all-solid secondary battery were added (a negative electrode active material layer or The positive electrode active material layer is contacted (in a state of being in contact with the positive electrode active material layer) and pressurized.
  • an all-solid secondary battery can be manufactured.
  • the composition for a negative electrode of the present invention or the negative electrode sheet for an all-solid secondary battery of the present invention is used for forming a negative electrode active material layer.
  • the solid electrolyte layer or the like can be formed by, for example, pressing a solid electrolyte composition or the like under pressure conditions described below on a substrate or an active material layer, or forming a sheet formed body of the solid electrolyte or the active material. It can also be used.
  • each composition such as the composition for a negative electrode of the present invention
  • the method for applying each composition is not particularly limited and can be appropriately selected. Examples include coating (preferably wet coating), spray coating, spin coating, dip coating, slit coating, stripe coating, and bar coating.
  • each composition may be subjected to a drying treatment after being applied, or may be subjected to a drying treatment after being applied in a multilayer manner.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, even more preferably 80 ° C. or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C.
  • the dispersion medium can be removed, and a solid state (coated dry layer) can be obtained. Further, it is preferable because the temperature is not set too high and each member of the all solid state secondary battery is not damaged.
  • composition for a negative electrode of the present invention when applied and dried, solid particles are firmly bound, and further, an applied dry layer having low interface resistance between solid particles can be formed.
  • each layer or the all-solid secondary battery is pressurized after preparing the applied composition or the all-solid secondary battery. It is also preferable to apply pressure in a state where the respective layers are stacked.
  • the pressurizing method include a hydraulic cylinder press.
  • the pressure is not particularly limited, and can be generally 5 MPa or more, preferably in the range of 50 to 1500 MPa.
  • Each of the applied compositions may be heated simultaneously with the application of pressure.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. Pressing can be performed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • pressing can be performed at a temperature higher than the glass transition temperature of the polymer forming the binder. However, it is generally a temperature not exceeding the melting point of the polymer. Pressurization may be performed in a state where the coating solvent or the dispersion medium is dried in advance, or may be performed in a state where the solvent or the dispersion medium remains. In addition, each composition may be applied simultaneously, and the application and drying press may be performed simultaneously and / or sequentially. After coating on separate substrates, they may be laminated by transfer.
  • the atmosphere during pressurization is not particularly limited, and may be any of air, dry air (dew point ⁇ 20 ° C. or less), inert gas (eg, argon gas, helium gas, and nitrogen gas).
  • inert gas eg, argon gas, helium gas, and nitrogen gas.
  • a high pressure may be applied in a short time (for example, within several hours), or a medium pressure may be applied for a long time (one day or more).
  • an all-solid secondary battery restraint such as a screw tightening pressure
  • the pressing pressure may be uniform or different with respect to a pressure-receiving portion such as a sheet surface.
  • the pressing pressure can be changed according to the area or the layer thickness of the pressed portion. The same part can be changed stepwise with different pressures.
  • the press surface may be smooth or rough.
  • the transfer conditions are not particularly limited, and the conditions described in the above “Formation of Each Layer (Film Formation)” can be applied.
  • the all-solid-state secondary battery manufactured as described above be initialized after manufacturing or before use.
  • the initialization is not particularly limited.
  • the initialization can be performed by performing initial charge and discharge in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all solid state secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. There is no particular limitation on the application mode. For example, when mounted on an electronic device, a notebook computer, pen input computer, mobile computer, electronic book player, mobile phone, cordless phone handset, pager, handy terminal, mobile fax, mobile phone Copy, portable printer, headphone stereo, video movie, liquid crystal television, handy cleaner, portable CD, mini disk, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, etc.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game machines, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder fir machines, etc.). Furthermore, it can be used for various military purposes and space applications. Further, it can be combined with a solar cell.
  • Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) was added to the obtained solution, followed by stirring at 60 ° C. for 5 hours to obtain a viscous polymer solution.
  • 0.6 g of methanol was added to the polymer solution to seal the terminal of the polymer, and the polymerization reaction was stopped to obtain a 20% by mass THF solution (polymer solution) of the polymer S-1.
  • Synthesis Examples 2 to 16 Preparation of binder dispersions S-1 to S-15 and S-17]
  • Synthesis Example 1 polymers S-1 to S-15 and polymers S-1 to S-15 were synthesized in the same manner as in Synthesis Example 1 except that the starting compounds for deriving the components shown in Table 1 were used in the amounts (mol%) shown in Table 1.
  • Dispersions S-1 to S-15 and S-17 of a binder composed of S-17 were respectively prepared.
  • Synthesis Example 17 Preparation of binder solution S-16
  • Synthesis Example 1 a solution S-16 of a polymer S-16 was prepared in the same manner as in Synthesis Example 1 except that the starting compounds for deriving the components shown in Table 1 were used in the amounts (mol%) shown in Table 1. Was prepared.
  • This solution was diluted with 80 g of ethyl acetate, and washed once with 100 mL of water and five times with 150 mL of saturated saline. Sodium sulfate was added to the washed solution and dried, and after removing sodium sulfate by fold-fold filtration, the solvent was distilled off under reduced pressure. Thus, a diol compound leading to the component A-6 was obtained. The yield was 81%.
  • the precipitate was collected by filtration, washed twice with methanol, and dissolved by adding 300 parts by mass of heptane.
  • the obtained solution was distilled off under reduced pressure to obtain a solution of macromonomer D-1.
  • the solid content concentration was 40.1%, and the mass average molecular weight was 10,000.
  • the structure of the obtained macromonomer D-1 is shown below.
  • the composition of each polymer in the binder dispersion or solution prepared as described above is shown in Table 1 below.
  • the components M1 to M4 shown in Table 1 are as follows.
  • the constituent component M1 is a constituent component represented by the above formula (I-1).
  • the constituent component M2 is a constituent component represented by the above formula (I-3) or (I-4), wherein RP2 is an aliphatic hydrocarbon group.
  • the constituent component M3 is a constituent component represented by the above formula (I-3) and has a specific side chain.
  • the constituent component M4 is a constituent component represented by the above formula (I-3), in which RP2 has the above-mentioned molecular chain.
  • position indicates the position of a carbon atom or a phosphorus atom of a carbonyl group, a thiocarbonyl group or a phosphoryl group in a side chain of the polymer. Specifically, in the longest molecular chain forming the side chain of the polymer, the number of connected atoms starting from an atom bonded to an atom constituting the main chain is shown. In the case where the compound has a plurality of the above carbonyl groups and the like, the number of the plurality of the bonds is also described through “/”.
  • the binder dispersion T-3 uses an acrylic polymer as a polymer forming the binder.
  • the components of the polymer are those corresponding to “Component M1” to “Component M4” in Table 1. Although not shown, for convenience, it is described in each component column of Table 1 in order.
  • Li 2 S lithium sulfide
  • P 2 S diphosphorus pentasulfide
  • Example 2 a negative electrode sheet for an all-solid secondary battery and an all-solid secondary battery having the layer configuration shown in FIG. 1 were prepared using the negative electrode composition prepared using the binder dispersion or the binder solution. To evaluate its performance. Table 2 shows the results.
  • composition for negative electrode> Preparation of Anode Active Material Layer Nos. 11 to 31 and c11 to c14
  • 180 zirconia beads having a diameter of 5 mm were put into a 250-mL zirconia container (manufactured by Fritsch), 20 g of the synthesized LPS, 2.0 g of a binder dispersion (binder solution) shown in Table 2 (in terms of solid content mass), And 48 g of the dispersion medium shown in Table 2.
  • the container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch Inc., and stirred at 25 ° C. for 10 minutes at a rotation speed of 150 rpm.
  • composition No. for negative electrode In the preparation of negative electrode composition No. 11, the content (use amount) of the solid electrolyte layer, the binder dispersion, the negative electrode active material and the conductive additive was changed to the values shown in Table 2. 11 in the same manner as in the preparation of negative electrode active material layer No. 11 32-34 were prepared respectively.
  • ⁇ Preparation of solid electrolyte composition 180 zirconia beads having a diameter of 5 mm were put into a 45 mL zirconia container (manufactured by Fritsch), and 4.85 g of LPS synthesized above, 0.15 g of polyvinylidene fluoride (PVdF, solid content conversion), and a dispersion medium And 16.0 g of heptane was charged. Thereafter, the container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixing was continued at a temperature of 25 ° C. and a rotation speed of 150 rpm for 10 minutes to prepare a solid electrolyte composition.
  • PVdF polyvinylidene fluoride
  • each of the obtained solid electrolyte compositions was applied on a 20- ⁇ m-thick aluminum foil by the above-mentioned baker-type applicator, and heated at 80 ° C. for 2 hours to dry the solid electrolyte compositions. Thereafter, using a heat press machine, the dried solid electrolyte composition (the dried layer coated with the solid electrolyte composition) is heated and pressed at a temperature of 120 ° C. and a pressure of 600 MPa for 10 seconds, and the all solid secondary battery is heated. A solid electrolyte sheet for use was produced. The layer thickness of the solid electrolyte layer was 50 ⁇ m.
  • the aluminum foil of the solid electrolyte sheet was peeled off, and a negative electrode sheet for an all-solid secondary battery provided with a solid electrolyte layer having a layer thickness of 50 ⁇ m (a negative electrode sheet for an all-solid secondary battery with a solid electrolyte layer) No. 1 was obtained. 11 to 34 and c11 to c14 were produced, respectively. The thickness of the negative electrode active material layer of each sheet was 55 ⁇ m.
  • Each of the prepared negative electrode sheets for an all-solid secondary battery with a solid electrolyte layer (the aluminum foil of the solid electrolyte sheet for an all-solid secondary battery was peeled off) was cut into a disc shape having a diameter of 14.5 mm, and FIG. As shown in the figure, the sheet is placed in a stainless steel 2032 type coin case 11 incorporating a spacer and a washer (not shown in FIG. 2), and a sheet-shaped NMC (LiNi 1/3 Co 1/3 Mn) is placed on the solid electrolyte layer. 1/3 O 2 ) positive electrode layer (positive electrode active material layer, layer thickness 70 ⁇ m) was stacked.
  • a stainless steel foil (positive electrode current collector) is further laminated thereon, and a laminate 12 for an all-solid-state secondary battery (a laminate composed of stainless steel foil-NMC positive electrode layer-solid electrolyte layer-negative electrode active material layer-copper foil) ) Formed.
  • a laminate 12 for an all-solid-state secondary battery a laminate composed of stainless steel foil-NMC positive electrode layer-solid electrolyte layer-negative electrode active material layer-copper foil)
  • the sample No. Test solid-state secondary batteries (coin batteries) 13 shown in FIG. 2 of Nos. 11 to 34 and c11 to c14 were produced, respectively.
  • the test all solid state secondary battery 13 manufactured in this way has the layer configuration shown in FIG.
  • This one charge and one discharge was defined as one charge / discharge cycle, and three cycles of charge / discharge were repeated to initialize the all solid state secondary battery.
  • the initialized all-solid-state secondary battery was repeatedly charged and discharged under the same charging and discharging conditions as described above.
  • the discharge capacity (initial discharge capacity) in the first charge / discharge cycle after initialization is 100%
  • the number of charge / discharge cycles when the discharge capacity retention ratio (discharge capacity with respect to the initial discharge capacity) reaches 80% is as follows.
  • the cycle characteristics were evaluated according to which of the following evaluation ranks was included. In this test, the larger the number of charge / discharge cycles, the stronger the solid particles in the negative electrode active material layer were bonded to each other, and moreover, the solid particles and the negative electrode current collector were bonded.
  • the ionic conductivity was measured using the test all-solid secondary battery 13 obtained as the ionic conductivity measurement test body. Specifically, the AC impedance of the test all solid secondary battery 13 was measured in a thermostat at 30 ° C. using a 1255B FREQUENCY RESPONSE ANALYZER (trade name, manufactured by SOLARTRON) at a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz. did. Thereby, the resistance in the layer thickness direction of the bonded negative electrode sheet for an all-solid secondary battery with a solid electrolyte layer was obtained, and the ion conductivity was calculated by the following equation (1).
  • Ion conductivity ⁇ (mS / cm) 1000 ⁇ sample layer thickness (cm) / [resistance ( ⁇ ) ⁇ sample area (cm 2 )]
  • the sample layer thickness is measured before the all-solid-state rechargeable battery laminate 12 is put in the 2032-type coin case 11, and the value obtained by subtracting the thickness of the two copper foils (the solid electrolyte layer and the negative electrode). (Total thickness of active material layers).
  • the sample area is the area of a disc-shaped sheet having a diameter of 14.5 mm.
  • LPS Li / P / S glass synthesized above
  • LLT Li 0.33 La 0.55 TiO 3 (average particle size 3.25 ⁇ m, manufactured by Toshima Seisakusho)
  • Si Si powder (APS: 1 to 5 ⁇ m, manufactured by Alfa Aesar)
  • Graphite CGB20 (trade name, average particle size 20 ⁇ m, manufactured by Nippon Graphite Co., Ltd.)
  • Sn Tin powder (average particle size 10 ⁇ m, manufactured by Aldrich)
  • VGCF carbon nanotube (manufactured by Showa Denko KK)
  • Sample No. The binder used in c11 to c14 is a binder made of a polymer other than the polymer specified in the present invention. When these binders are used as the binder of the composition for the negative electrode, the ionic conductivity is low and the cycle characteristics are not sufficient. Sample No. The binder used for c11 to c14 is, in order, a binder composed of a polymer having a structural unit having a carbonyl group (carboxy group) bonded to a hydroxy group, and a polymer having a structural unit having a carbonyl group bonded directly to the main chain.
  • a binder made of the polymer specified in the present invention is used as a binder of the composition for a negative electrode, high ion conductivity is exhibited and cycle characteristics are excellent. Therefore, an all-solid-state secondary battery including the negative electrode active material layer formed using the negative electrode composition has characteristics of low battery resistance and high discharge capacity. In particular, even when silicon powder is used as the negative electrode active material, the discharge capacity retention rate can be significantly improved while effectively suppressing an increase in battery resistance.

Abstract

The present invention provides a composition for negative electrodes of all-solid-state secondary batteries, which contains an inorganic solid electrolyte, a binder that is composed of a polymer, a negative electrode active material, and a dispersion medium. This composition for negative electrodes is configured such that the polymer contains a polymer that has a specific bond such as a urethane bond in the main chain, while having a constituent which has a side chain containing a specific group such as a carbonyl group in a chain structure site that is at a distance of 4 atoms or more from the atoms that constitute the main chain. The present invention also provides: a negative electrode sheet for all-solid-state secondary batteries, which uses this solid electrolyte composition; an all-solid-state secondary battery; a method for producing a negative electrode sheet for all-solid-state secondary batteries; and a method for producing an all-solid-state secondary battery.

Description

全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法Composition for negative electrode of all-solid secondary battery, negative electrode sheet and all-solid secondary battery for all-solid secondary battery, and method for producing negative-electrode sheet for all-solid secondary battery and all-solid secondary battery
 本発明は、全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法に関する。 The present invention relates to a composition for an anode of an all-solid secondary battery, an anode sheet for an all-solid secondary battery and an all-solid secondary battery, and a method for producing an anode sheet for an all-solid secondary battery and an all-solid secondary battery. .
 全固体二次電池は、負極、電解質、正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性及び信頼性を大きく改善することができる。また、全固体二次電池の固体電解質層等に用いられる無機固体電解質は、有機電解液に迫る高いイオン伝導度を有することが示され、有望な電解質として期待されている。更に、全固体二次電池は長寿命化も可能になるとされる。そのため、全固体二次電池の研究開発が盛んに行われている。 (4) In the all-solid secondary battery, the negative electrode, the electrolyte, and the positive electrode are all made of a solid, and can greatly improve safety and reliability, which are issues of a battery using an organic electrolyte. In addition, an inorganic solid electrolyte used for a solid electrolyte layer or the like of an all-solid secondary battery has been shown to have a high ionic conductivity approaching that of an organic electrolyte, and is expected as a promising electrolyte. Furthermore, it is said that the all-solid-state secondary battery can have a long life. Therefore, research and development of all-solid-state secondary batteries have been actively conducted.
 全固体二次電池は、電極と固体電解質を直接並べて直列に配した構造とすることができるため、高エネルギー密度化も可能となる。近年、環境問題に配慮して電気自動車の開発、実用化が急速に進展しており、全固体電池には更なる高エネルギー密度化が求められている。全固体二次電池の構成層を積層する場合、各層間の密着性等を確保するために加圧圧着することが通常である。この際、構成層の強度(構成層を形成する固体粒子同士の結着力)が十分ではないと、構成層に欠陥(割れ、欠け若しくは破断、又は固体粒子同士の界面剥離(接触不良))が発生する。 (4) The all-solid-state secondary battery can have a structure in which the electrodes and the solid electrolyte are directly arranged side by side and arranged in series, so that high energy density can be achieved. In recent years, development and commercialization of electric vehicles have been rapidly progressing in consideration of environmental issues, and all-solid-state batteries are required to have higher energy density. When the constituent layers of an all solid state secondary battery are laminated, it is usual to perform pressure bonding in order to secure adhesion between the layers. At this time, if the strength of the constituent layer (the binding force between the solid particles forming the constituent layer) is not sufficient, defects (cracks, chips or breaks, or interface peeling between the solid particles (poor contact)) may occur in the constituent layer. Occur.
 構成層の強度を向上させる技術として、無機固体電解質等の固体粒子を結着させる結着剤を用いた材料が検討されている。例えば、特許文献1には、側鎖成分として数平均分子量1,000以上のマクロモノマーを組み込んだポリマー(好適なポリマーとして(メタ)アクリル系ポリマー)で構成された平均粒径が10nm以上1,000nm以下のバインダー粒子と、無機固体電解質と、分散媒とを含む固体電解質組成物が記載されている。
特許文献2には、無機固体電解質と、各種の有機ポリマーからなるポリマー粒子と、特定の分散媒体とを含有する固体電解質組成物が記載されている。
As a technique for improving the strength of the constituent layer, a material using a binder for binding solid particles such as an inorganic solid electrolyte has been studied. For example, Patent Document 1 discloses that a polymer (a (meth) acrylic polymer as a suitable polymer) having a macromonomer having a number average molecular weight of 1,000 or more as a side chain component has an average particle size of 10 nm or more, A solid electrolyte composition containing 000 nm or less binder particles, an inorganic solid electrolyte, and a dispersion medium is described.
Patent Document 2 describes a solid electrolyte composition containing an inorganic solid electrolyte, polymer particles composed of various organic polymers, and a specific dispersion medium.
特開2015-88486号公報JP 2015-88486 A 特開2016-139511号公報JP 2016-139511 A
 しかし、結着剤は通常イオン伝導性を示さないため、上記材料中の結着剤の含有量を多くし過ぎると、電池抵抗が増大(イオン伝導度が低下)して電池性能が低下する。そのため、結着剤を用いる場合には、電池抵抗の低減と、上記欠陥発生の抑制とを両立させることが求められる。
 ところで、構成層の欠陥は、上述の全固体二次電池の製造時(構成層の加圧圧着時)だけでなく、全固体二次電池の使用(充放電)によっても発生する。全固体二次電池の充放電を行うと、活物質層が収縮膨張して次第に膜強度(固体粒子同士の結着力)が低下するためである。この収縮膨張に伴う体積変化は負極活物質層で大きく、負極活物質層には欠陥が発生しやすい。
 更に、近年、全固体二次電池の電池容量の増大と駆動時間の長大化を目指して、炭素系材料に比べてより多くのLiイオンを吸蔵できる、リチウムと合金化可能な負極活物質(例えばSi)の適用が検討されている。この負極活物質は、通常、全固体二次電池の充放電に伴う収縮膨張の程度が従来の炭素系材料よりも大きい。そのため、このような負極活物質を用いる場合には、負極活物質層を更に高強度化することが求められる。
However, since the binder does not usually exhibit ionic conductivity, if the content of the binder in the above material is too large, the battery resistance increases (the ionic conductivity decreases) and the battery performance decreases. Therefore, when a binder is used, it is required to achieve both a reduction in battery resistance and a suppression of the occurrence of the defect.
By the way, the defects of the constituent layers are generated not only when the all-solid secondary battery is manufactured (when the constituent layers are pressed and pressed), but also when the all-solid secondary battery is used (charge / discharge). This is because, when the all-solid secondary battery is charged and discharged, the active material layer contracts and expands, and the film strength (the binding force between the solid particles) gradually decreases. The change in volume due to the contraction and expansion is large in the negative electrode active material layer, and defects are likely to occur in the negative electrode active material layer.
Furthermore, in recent years, with the aim of increasing the battery capacity of the all-solid secondary battery and extending the driving time, a negative electrode active material capable of absorbing more Li ions than a carbon-based material and capable of being alloyed with lithium (for example, Application of Si) is being considered. This negative electrode active material usually has a larger degree of contraction and expansion associated with charging and discharging of the all-solid secondary battery than conventional carbon-based materials. Therefore, when such a negative electrode active material is used, it is required to further increase the strength of the negative electrode active material layer.
 本発明は、全固体二次電池の負極活物質層を構成する材料として用いることにより、得られる負極活物質層について、抵抗上昇の抑制と膜強度の向上とを高い水準で達成できる負極用組成物を提供することを課題とする。また、本発明は、この固体電解質組成物を用いた、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法を提供することを課題とする。 The present invention provides a negative electrode composition that can achieve a high level of suppression of resistance rise and improvement in film strength of the obtained negative electrode active material layer by using as a material constituting the negative electrode active material layer of an all solid state secondary battery. The task is to provide things. Further, the present invention provides a method for producing an all-solid secondary battery negative electrode sheet and an all-solid secondary battery, and an all-solid secondary battery negative electrode sheet and an all-solid secondary battery using the solid electrolyte composition. The task is to provide.
 本発明者らは、種々検討を重ねた結果、特定の結合を含む主鎖を有し、かつ特定の基を特定の位置に含む側鎖を持つ構成成分を有するポリマーで形成したバインダーを、無機固体電解質、負極活物質及び分散媒と組み合わせて調製した負極用組成物が、固体粒子間の界面抵抗の上昇を抑制しつつも固体粒子を強固に結着させた負極活物質層を形成できること、を見出した。更に、この負極活物質層を備えた全固体二次電池が、高いイオン伝導度を示し、しかも充放電を繰り返しても高い放電容量を維持できること、を見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。 The present inventors have made various studies and found that a binder formed of a polymer having a main chain containing a specific bond and a component having a side chain containing a specific group at a specific position is made of an inorganic material. A solid electrolyte, a negative electrode composition prepared in combination with a negative electrode active material and a dispersion medium can form a negative electrode active material layer in which solid particles are firmly bound while suppressing an increase in interface resistance between solid particles, Was found. Furthermore, they have found that an all-solid secondary battery provided with this negative electrode active material layer exhibits high ionic conductivity and can maintain a high discharge capacity even after repeated charging and discharging. The present invention has been further studied based on these findings, and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、ポリマーからなるバインダーと、負極活物質と、分散媒とを含有する、全固体二次電池の負極用組成物であって、
 ポリマーが、アミド結合、ウレア結合及びウレタン結合からなる群より選択される少なくとも一つの結合を主鎖に有し、かつ、
 下記条件A及びB:
  [条件A]主鎖を構成する原子から4原子以上離れた鎖構造部に、カルボニル基、チオカルボニル基及びホスホリル基からなる群より選択される少なくとも1つの基を有する
  [条件B]上記基はヒドロキシ基と結合していない
を満たす側鎖を持つ構成成分を有するポリマーを含む、負極用組成物。
<2>ポリマー中の、上記構成成分の含有量が5~40質量%である、<1>に記載の負極用組成物。
<3>上記構成成分において、鎖構造部の全質量Wに対する上記基の合計質量Wの割合[W/W]が0.05以上である、<1>又は<2>に記載の負極用組成物。
<4>負極活物質が、リチウムと合金化可能な活物質である、<1>~<3>のいずれか1つに記載の負極用組成物。
<5>リチウムと合金化可能な活物質が、構成元素にSi元素を含むケイ素系負極活物質である、<4>に記載の負極用組成物。
That is, the above problem was solved by the following means.
<1> An all-solid secondary containing an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, a binder made of a polymer, a negative electrode active material, and a dispersion medium. A composition for a negative electrode of a battery,
The polymer has at least one bond selected from the group consisting of an amide bond, a urea bond and a urethane bond in the main chain, and
The following conditions A and B:
[Condition A] At least one group selected from the group consisting of a carbonyl group, a thiocarbonyl group and a phosphoryl group is provided in a chain structure at least four atoms away from the atoms constituting the main chain. [Condition B] A composition for a negative electrode, comprising a polymer having a constituent component having a side chain that is not bonded to a hydroxy group.
<2> The composition for a negative electrode according to <1>, wherein the content of the above constituent components in the polymer is 5 to 40% by mass.
<3> In the above components, the proportion of the total weight W G of the base relative to the total weight W S of the chain structure portion [W G / W S] is 0.05 or more, according to <1> or <2> A composition for a negative electrode.
<4> The composition for a negative electrode according to any one of <1> to <3>, wherein the negative electrode active material is an active material that can be alloyed with lithium.
<5> The negative electrode composition according to <4>, wherein the active material that can be alloyed with lithium is a silicon-based negative electrode active material containing a Si element as a constituent element.
<6>側鎖が、下記式(I)~(III)のいずれかで表される部分構造を有する、<1>~<5>のいずれか1つに記載の負極用組成物。
Figure JPOXMLDOC01-appb-C000002
 式中、L~Lは連結基を示し、R及びRは置換基を示す。
<6> The negative electrode composition according to any one of <1> to <5>, wherein the side chain has a partial structure represented by any of the following formulas (I) to (III).
Figure JPOXMLDOC01-appb-C000002
In the formula, L 1 to L 4 represent a linking group, and R 1 and R 2 represent a substituent.
<7>バインダーが、分散媒中に分散している、<1>~<6>のいずれか1つに記載の負極用組成物。
<8>導電助剤を含有する、<1>~<7>のいずれか1つに記載の負極用組成物。
<9>無機固体電解質が、硫化物系固体電解質である<1>~<8>のいずれか1つに記載の負極用組成物。
<10>上記<1>~<9>のいずれか1つに記載の負極用組成物で構成した負極活物質層を有する全固体二次電池用負極シート。
<11>正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
 負極活物質層が、上記<1>~<9>のいずれか1つに記載の負極用組成物で構成した負極活物質層である全固体二次電池。
<12>上記<1>~<9>のいずれか1つに記載の負極用組成物を製膜する、全固体二次電池用負極シートの製造方法。
<13>上記<12>に記載の製造方法を介して全固体二次電池を製造する、全固体二次電池の製造方法。
<7> The composition for a negative electrode according to any one of <1> to <6>, wherein the binder is dispersed in a dispersion medium.
<8> The composition for a negative electrode according to any one of <1> to <7>, further comprising a conductive additive.
<9> The composition for a negative electrode according to any one of <1> to <8>, wherein the inorganic solid electrolyte is a sulfide-based solid electrolyte.
<10> A negative electrode sheet for an all-solid secondary battery having a negative electrode active material layer composed of the composition for a negative electrode according to any one of the above <1> to <9>.
<11> An all-solid secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order,
An all-solid secondary battery in which the negative electrode active material layer is a negative electrode active material layer composed of the composition for a negative electrode according to any one of <1> to <9>.
<12> A method for producing a negative electrode sheet for an all-solid secondary battery, wherein the negative electrode composition according to any one of <1> to <9> is formed.
<13> A method for manufacturing an all-solid secondary battery, which manufactures an all-solid secondary battery via the manufacturing method according to <12>.
 本発明の負極用組成物は、抵抗上昇の抑制と膜強度の向上とを高い水準で両立した負極活物質層を形成できる。本発明の負極用組成物、及び本発明の負極用組成物で形成した負極活物質層を備えた本発明の全固体二次電池用負極シートは、全固体二次電池の負極活物質層の形成材料として用いることにより、全固体二次電池に、電池抵抗の低減と、高い放電容量を維持できる特性とを付与できる。本発明の全固体二次電池は、低い電池抵抗と、高い放電容量を維持できる特性とを示す。また、本発明の全固体二次電池用負極シート及び全固体二次電池の製造方法は、上記優れた特性を示す本発明の全固体二次電池用負極シート及び全固体二次電池を製造することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
ADVANTAGE OF THE INVENTION The composition for negative electrodes of this invention can form the negative electrode active material layer which suppressed the increase in resistance and improved the film | membrane strength at a high level. The negative electrode composition of the present invention, and the negative electrode sheet for an all-solid secondary battery of the present invention provided with a negative electrode active material layer formed of the negative electrode composition of the present invention are used for the negative electrode active material layer of the all-solid secondary battery. By using the material as a forming material, it is possible to provide the all-solid secondary battery with a reduction in battery resistance and a property capable of maintaining a high discharge capacity. The all-solid-state secondary battery of the present invention exhibits low battery resistance and characteristics capable of maintaining a high discharge capacity. Further, the method for producing an all-solid secondary battery negative electrode sheet and the all-solid secondary battery of the present invention produces the all-solid secondary battery negative electrode sheet and the all-solid secondary battery of the present invention exhibiting the above-described excellent characteristics. be able to.
The above and other features and advantages of the present invention will become more apparent from the following description, appropriately referring to the accompanying drawings.
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically illustrating an all solid state secondary battery according to a preferred embodiment of the present invention. 実施例で作製したイオン伝導度測定用試験体を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the test body for ion conductivity measurement produced in the Example.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、アクリル及び/又はメタクリルを意味する。
 本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本明細書において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、特に制限されず、例えば、後述するRM2若しくはRとして採りうる各置換基が挙げられる。
 本明細書において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
In this specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
In this specification, when simply described as “acryl” or “(meth) acryl”, it means acryl and / or methacryl.
In the present specification, the expression of a compound (for example, when the compound is referred to as a suffix) is used to include the compound itself, its salt, and its ion. Further, it is meant to include a derivative partially changed by introducing a substituent within a range in which a desired effect is exhibited.
In the present specification, a substituent, a linking group, and the like (hereinafter, referred to as a substituent, etc.) which is not specified as substituted or unsubstituted means that the group may have an appropriate substituent. Therefore, in the present specification, even when simply referred to as a YYY group, the YYY group also includes an embodiment having a substituent in addition to an embodiment having no substituent. This is synonymous with a compound for which no substitution or no substitution is specified. Preferred substituents are not particularly limited, for example, the substituent which may take as R M2 or R 1 described later.
In the present specification, when there are a plurality of substituents and the like indicated by a specific symbol, or when defining a plurality of substituents simultaneously or alternatively, each substituent and the like may be the same or different from each other Means good. Further, even when not otherwise specified, when a plurality of substituents and the like are adjacent to each other, it means that they may be connected to each other or condensed to form a ring.
 本発明において、無機固体電解質を含有する組成物を固体電解質組成物若しくは無機固体電解質含有組成物といい、更に負極活物質又は正極活物質を含有する組成物を固体電解質組成物と区別する場合には、それぞれ、負極用組成物及び正極用組成物という。
 本発明において、負極活物質及び正極活物質を併せて活物質といい、負極用組成物及び正極用組成物を併せて電極用組成物ということがある。
In the present invention, a composition containing an inorganic solid electrolyte is referred to as a solid electrolyte composition or an inorganic solid electrolyte-containing composition, and when a composition containing a negative electrode active material or a positive electrode active material is further distinguished from a solid electrolyte composition. Are respectively referred to as a negative electrode composition and a positive electrode composition.
In the present invention, the negative electrode active material and the positive electrode active material may be collectively referred to as an active material, and the negative electrode composition and the positive electrode composition may be collectively referred to as an electrode composition.
[負極用組成物]
 本発明の負極用組成物は、無機固体電解質と、ポリマーからなるバインダーと、分散媒と、負極活物質とを含有する。このバインダーを形成するポリマーは、アミド結合、ウレア結合及びウレタン結合からなる群より選択される少なくとも一つの結合を主鎖に有するポリマーを含んでいる。また、このポリマーは、下記条件A及びBを満たす側鎖を持つ構成成分を有している。
  条件A:主鎖を構成する原子から4原子以上離れた鎖構造部に、カルボニル基、チオ
      カルボニル基及びホスホリル基(>P(=O)-)からなる群より選択され
      る少なくとも1つの基を有する。
  条件B:カルボニル基、チオカルボニル基及びホスホリル基は、いずれも、ヒドロキ
      シ基と結合していない。すなわち、カルボニル基、チオカルボニル基及びホ
      スホリル基は、それぞれ、カルボキシ基、チオカルボキシ基又はヒドロキシ
      ホスホリルを形成していない。
[Composition for negative electrode]
The composition for a negative electrode of the present invention contains an inorganic solid electrolyte, a binder made of a polymer, a dispersion medium, and a negative electrode active material. The polymer forming the binder includes a polymer having at least one bond selected from the group consisting of an amide bond, a urea bond and a urethane bond in the main chain. Further, this polymer has a component having a side chain satisfying the following conditions A and B.
Condition A: at least one group selected from the group consisting of a carbonyl group, a thiocarbonyl group, and a phosphoryl group (> P (OO) —) is provided on a chain structure portion at least four atoms away from the atoms constituting the main chain. Have.
Condition B: none of the carbonyl group, thiocarbonyl group and phosphoryl group are bonded to the hydroxy group. That is, the carbonyl group, thiocarbonyl group, and phosphoryl group do not form a carboxy group, thiocarboxy group, or hydroxyphosphoryl, respectively.
 このポリマーは、負極用組成物中、負極用組成物で形成した負極活物質層中において、固体粒子(例えば、無機固体電解質、負極活物質、負極活物質)同士を結着させ、更には集電体と固体粒子とを結着させる結着剤(バインダー)として機能する。
 上記組成を有する本発明の負極用組成物は、負極活物質層とされると、界面抵抗の上昇を抑え、しかも固体粒子を強固に結着させることができると考えられる。その結果、本発明の負極用組成物を用いて形成した負極活物質層を備えた全固体二次電池用負極シート及び全固体二次電池は、低い電池抵抗(高いイオン伝導度)と、充放電を繰り返しても高い放電容量を維持できる特性(優れたサイクル特性)とを示す。その理由の詳細はまだ明らかではないが、次のように考えられる。
This polymer binds solid particles (for example, an inorganic solid electrolyte, a negative electrode active material, and a negative electrode active material) to each other in the negative electrode composition and the negative electrode active material layer formed of the negative electrode composition, and further collects the particles. It functions as a binding agent (binder) for binding the electric body and the solid particles.
It is considered that when the composition for a negative electrode of the present invention having the above composition is used as a negative electrode active material layer, an increase in interface resistance can be suppressed and solid particles can be firmly bound. As a result, the negative electrode sheet for an all-solid secondary battery and the all-solid secondary battery provided with the negative electrode active material layer formed using the negative electrode composition of the present invention have low battery resistance (high ionic conductivity) and sufficient charge. The characteristics (excellent cycle characteristics) that can maintain a high discharge capacity even after repeated discharges. Although the details of the reason are not yet clear, it is considered as follows.
 すなわち、上記ポリマーは、その主鎖が特定の上記結合を含んで構成されているため、特定の結合同士が水素結合(相互作用)を形成することによりポリマー同士が強固に結びつき(分子内若しくは分子間の水素結合による、ポリマーネットワークの構築若しくは一体化)、負極活物質層の膜強度を強化できる。しかも、このポリマーは、側鎖の鎖構造部にカルボニル基等の特定の基を有する構成成分を含んでいる。そのため、この特定の基が負極活物質の表面、更には無機固体電解質等の固体粒子の表面に存在する官能基(例えばシラノール基、シロキシ基)と相互作用することにより、上記ポリマーは、負極活物質等の固体粒子に対して高い吸着力を発現する。その結果、固体粒子同士を、更には固体粒子と負極集電体とを、強固に結着させることができる。こうして、負極活物質層等の加圧圧着時だけでなく、全固体二次電池の充放電時にも、負極活物質層に作用する応力(更には応力集中)に対して耐性を示し、負極活物質層に欠陥が発生することが抑制される。この欠陥発生は、リチウムと合金化可能な負極活物質を負極活物質層が含有する場合にも、効果的に抑制できる。
 本発明において、ポリマーが有する特定の基と固体粒子との相互作用は、化学的な相互作用でも物理的な相互作用でもよく、固体粒子の表面に存在する官能基によって一義的ではないが、例えば、水素結合によるもの、酸-塩基によるイオン結合によるもの、共有結合によるもの、芳香環によるπ-π相互作用によるもの、又は、疎水-疎水相互作用によるもの等が挙げられる。
That is, since the main chain of the polymer is configured to include the specific bond described above, the specific bond forms a hydrogen bond (interaction), whereby the polymers are strongly connected to each other (intramolecular or molecular). (Establishment or integration of a polymer network by hydrogen bonding between them), and the film strength of the negative electrode active material layer can be enhanced. In addition, this polymer contains a component having a specific group such as a carbonyl group in a chain structure of a side chain. Therefore, the specific group interacts with a functional group (for example, a silanol group or a siloxy group) present on the surface of the negative electrode active material, and further on the surface of solid particles such as an inorganic solid electrolyte, so that the above-mentioned polymer becomes negative electrode active material. It exhibits high adsorption power to solid particles such as substances. As a result, the solid particles can be firmly bound together, and furthermore, the solid particles and the negative electrode current collector can be firmly bound. Thus, not only during pressure bonding of the negative electrode active material layer and the like but also during charging and discharging of the all-solid-state secondary battery, resistance to stress (and stress concentration) acting on the negative electrode active material layer is exhibited. Generation of defects in the material layer is suppressed. This defect generation can be effectively suppressed even when the negative electrode active material layer contains a negative electrode active material that can be alloyed with lithium.
In the present invention, the interaction between the specific group of the polymer and the solid particle may be a chemical interaction or a physical interaction, and is not unique due to the functional group present on the surface of the solid particle. , Hydrogen bond, acid-base ionic bond, covalent bond, aromatic ring π-π interaction, hydrophobic-hydrophobic interaction, and the like.
 更に、上記ポリマーからなるバインダーは、主鎖から離れた特定の位置に有する上記基で固体粒子に吸着して、固体粒子の表面を全体的ではなく部分的に被覆する。そのため、固体粒子同士は直接接触することができ、イオン伝導パス及び電子伝導パスが構築される。この伝導パスの構築と、上記ポリマーによる固体粒子の強固な結着力とにより、負極活物質層及び全固体二次電池の(電池)抵抗上昇を抑えることができる。 {Circle around (2)} The binder made of the polymer is adsorbed on the solid particles by the above-mentioned group located at a specific position away from the main chain, and partially covers the surface of the solid particles, not the whole. Therefore, the solid particles can directly contact each other, and an ion conduction path and an electron conduction path are constructed. The construction of the conduction path and the strong binding force of the solid particles by the polymer can suppress an increase in (battery) resistance of the negative electrode active material layer and the all-solid secondary battery.
 これらにより、本発明の負極用組成物は、固体粒子間の界面抵抗の上昇を抑制しつつ、負極活物質等の固体粒子が強固に結着した高強度の負極活物質層を形成できると考えられる。このような作用効果を奏する本発明の負極用組成物は、全固体二次電池に高いイオン伝導度と優れたサイクル特性とを付与でき、全固体二次電池用負極シート若しくは全固体二次電池の負極活物質層を形成する材料として好ましく用いることができる。 From these, it is considered that the negative electrode composition of the present invention can form a high-strength negative electrode active material layer in which solid particles such as a negative electrode active material are firmly bound while suppressing an increase in interface resistance between solid particles. Can be The composition for a negative electrode of the present invention exhibiting such a function and effect can impart high ionic conductivity and excellent cycle characteristics to an all-solid secondary battery, and can be used as a negative electrode sheet or an all-solid secondary battery for an all-solid secondary battery. Can be preferably used as a material for forming the negative electrode active material layer.
 本発明の負極用組成物において、無機固体電解質、バインダー、負極活物質及び分散媒の混合態様は、特に制限されないが、少なくとも、上記条件A及びBを満たす側鎖を持つ構成成分を有するポリマーからなるバインダーが、更には無機固体電解質及び負極活物質が、分散媒中に分散しているスラリーであることが好ましい。 In the composition for a negative electrode of the present invention, the mixing mode of the inorganic solid electrolyte, the binder, the negative electrode active material, and the dispersion medium is not particularly limited, but at least, from a polymer having a constituent component having a side chain satisfying the above conditions A and B. The binder is preferably a slurry in which the inorganic solid electrolyte and the negative electrode active material are dispersed in a dispersion medium.
 本発明の負極用組成物は、特に制限されないが、含水率(水分含有量ともいう。)が、500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。負極用組成物の含水率が少ないと、無機固体電解質の劣化を抑制することができる。含水量は、負極用組成物中に含有している水の量(負極用組成物に対する質量割合)を示し、具体的には、0.02μmのメンブレンフィルターでろ過し、カールフィッシャー滴定を用いて測定された値とする。 The composition for a negative electrode of the present invention is not particularly limited, but preferably has a water content (also referred to as a water content) of 500 ppm or less, more preferably 200 ppm or less, further preferably 100 ppm or less. It is particularly preferably at most 50 ppm. When the water content of the negative electrode composition is low, the deterioration of the inorganic solid electrolyte can be suppressed. The water content indicates the amount of water (mass ratio based on the composition for the negative electrode) contained in the composition for the negative electrode. Specifically, the water content is filtered through a 0.02 μm membrane filter, and measured by Karl Fischer titration. The measured value.
 以下、本発明の負極用組成物が含有する成分及び含有しうる成分について説明する。 Hereinafter, components contained in the composition for a negative electrode of the present invention and components that may be contained will be described.
<無機固体電解質>
 本発明の負極用組成物は、無機固体電解質を含有する。
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンに解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
<Inorganic solid electrolyte>
The composition for a negative electrode of the present invention contains an inorganic solid electrolyte.
In the present invention, the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte in which ions can move inside. Since it does not contain an organic substance as a main ion conductive material, an organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO), etc .; an organic represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc.) Electrolyte salt). Further, since the inorganic solid electrolyte is a solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, the electrolyte solution or the inorganic electrolyte salt (LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) dissociated or released into cations and anions in the polymer is clearly distinguished. Is done. The inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity. When the all solid state secondary battery of the present invention is a lithium ion battery, the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質としては、(i)硫化物系無機固体電解質、(ii)酸化物系無機固体電解質、(iii)ハロゲン化物系無機固体電解質、(iv)水素化物系固体電解質等が挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましく用いられる。 As the inorganic solid electrolyte, a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used. Examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iv) a hydride-based solid electrolyte. In the present invention, a sulfide-based inorganic solid electrolyte is preferably used from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom, has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Those having properties are preferred. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity, but depending on the purpose or case, other than Li, S, and P, It may contain an element.
 硫化物系無機固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (1)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying a composition represented by the following formula (1).

L a1 M b1 P c1 S d1 A e1 (1)

In the formula, L represents an element selected from Li, Na and K, and Li is preferable. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. a1 is preferably 1 to 9, and more preferably 1.5 to 7.5. b1 is preferably 0 to 3, more preferably 0 to 1. d1 is preferably from 2.5 to 10, and more preferably from 3.0 to 8.5. e1 is preferably from 0 to 5, more preferably from 0 to 3.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 組成 The composition ratio of each element can be controlled by adjusting the compounding amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramic), or may be partially crystallized. For example, Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramic containing Li, P and S can be used.
Examples of the sulfide-based inorganic solid electrolyte include lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example, LiI, LiBr, LiCl) and at least two or more of sulfides (for example, SiS 2 , SnS, GeS 2 ) of the element represented by M can be produced.
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 In Li-P-S based glass and Li-P-S based glass ceramics, the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ~ 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S and P 2 S 5 to this range, the lithium ion conductivity can be increased. Specifically, the lithium ion conductivity can be preferably 1 × 10 −4 S / cm or more, more preferably 1 × 10 −3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 × 10 −1 S / cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 As examples of specific sulfide-based inorganic solid electrolytes, combinations of raw materials are shown below. For example, Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 SP—P 2 S 5 —P 2 O 5 , Li 2 SP—P 2 S 5 —SiS 2 , Li 2 SP—P 2 S 5 —SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2 S-GeS 2 -ZnS, Li 2 S-Ga 2 S 3, Li 2 S- GeS 2 -Ga 2 S 3, Li 2 S-GeS 2 -P 2 S 5 Li 2 S-GeS 2 -Sb 2 S 5, Li 2 S-GeS 2 -Al 2 S 3, Li 2 S-SiS 2, Li 2 S-SiS 5, Li 2 S-Al 2 S 3, Li 2 S —SiS 2 —Al 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —Li 4 SiO 4 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 10 GeP 2 S 12 and the like. However, the mixing ratio of each raw material does not matter. As a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition, for example, an amorphization method can be mentioned. Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quenching method. This is because processing at normal temperature becomes possible, and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
(Ii) Oxide-based inorganic solid electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom, has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Those having properties are preferred.
The oxide-based inorganic solid electrolyte has an ionic conductivity of preferably 1 × 10 −6 S / cm or more, more preferably 5 × 10 −6 S / cm or more, and more preferably 1 × 10 −5 S / cm. / Cm or more is particularly preferable. The upper limit is not particularly limited, but is practically 1 × 10 −1 S / cm or less.
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
Specific compounds, for example Li xa La ya TiO 3 [xa satisfies 0.3 ≦ xa ≦ 0.7, ya satisfies 0.3 ≦ ya ≦ 0.7. ] (LLT); Li xb La yb Zr zb M bb mb O nb (M bb is Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, one or more elements selected from In and Sn Xb satisfies 5 ≦ xb ≦ 10, yb satisfies 1 ≦ yb ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, and nb satisfies 5 ≦ nb ≦ 20. met);. Li xc B yc M cc zc O nc (M cc is C, S, Al, Si, Ga, Ge, is .xc is one or more elements selected from in and Sn 0 <xc ≦ 5 , Yc satisfies 0 <yc ≦ 1, zc satisfies 0 <zc ≦ 1, and nc satisfies 0 <nc ≦ 6.); Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd (xd satisfies 1 ≦ xd ≦ 3, yd Satisfies 0 ≦ yd ≦ 1, zd satisfies 0 ≦ zd ≦ 2, ad satisfies 0 ≦ ad ≦ 1, md satisfies 1 ≦ md ≦ 7, and nd satisfies 3 ≦ nd ≦ 13.) ; Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, M ee is .D ee halogen atom or two or more halogen atoms representing a divalent metal atom Li xf Si yf O zf (xf satisfies 1 ≦ xf ≦ 5, yf satisfies 0 <yf ≦ 3, and zf satisfies 1 ≦ zf ≦ 10); Li xg S yg O zg (xg satisfies 1 ≦ xg ≦ 3, yg satisfies 0 <yg ≦ 2, zg satisfies 1 ≦ zg ≦ 10); Li 3 BO 3 ; Li 3 BO 3 -Li 2 SO 4 ; Li 2 O-B 2 O 3 -P 2 O 5; Li 2 O-SiO 2 Li 6 BaLa 2 Ta 2 O 12 ; Li 3 PO (4-3 / 2w) N w (w is w <1); LISICON Li 3.5 Zn 0.25 GeO with (Lithium super ionic conductor) type crystal structure 4 ; La 0.55 Li 0.35 TiO 3 having a perovskite crystal structure; LiTi 2 P 3 O 12 having a NASICON (Natrium superionic conductor) crystal structure; Li 1 + xh + yy (Al, Ga) xh (Ti, eG ) ) 2-xh Si yh P 3-yh O 12 (xh satisfies 0 ≦ xh ≦ 1 and yh satisfies 0 ≦ yh ≦ 1). ); Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
Further, a phosphorus compound containing Li, P and O is also desirable. For example, lithium phosphate (Li 3 PO 4 ); LiPON in which a part of oxygen of lithium phosphate is substituted with nitrogen; LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au).
Further, LiA 1 ON (A 1 is at least one element selected from Si, B, Ge, Al, C and Ga) can also be preferably used.
(iii)ハロゲン化物系無機固体電解質
 ハロゲン化物系無機固体電解質は、一般に用いられるものであり、ハロゲン原子を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されないが、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClを好ましい。
(Iii) Halide-based inorganic solid electrolyte A halide-based inorganic solid electrolyte is generally used and contains a halogen atom and has an ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table. And a compound having electronic insulating properties.
The halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as LiCl, LiBr, LiI, and Li 3 YBr 6 and Li 3 YCl 6 described in ADVANCED MATERIALS, 2018, 30, 1803075. Among them, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
(iV)水素化物系無機固体電解質
 水素化物系無機固体電解質は、一般に用いられるものであり、水素原子を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されないが、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
(IV) Hydride-based inorganic solid electrolyte A hydride-based inorganic solid electrolyte is generally used, and contains a hydrogen atom and has an ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table. And a compound having electronic insulating properties.
The hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, 3LiBH 4 -LiCl, and the like.
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の平均粒径(体積平均粒子径)は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。平均粒径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。 The inorganic solid electrolyte is preferably particles. In this case, the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. The upper limit is preferably 100 μm or less, more preferably 50 μm or less. The measurement of the average particle size is performed according to the following procedure. The inorganic solid electrolyte particles are diluted with water (heptane in the case of a substance unstable to water) to prepare a 1% by mass dispersion liquid in a 20 mL sample bottle. The dispersion sample after dilution is irradiated with 1 kHz ultrasonic wave for 10 minutes and used immediately after the test. Using this dispersion liquid sample, data was taken 50 times at a temperature of 25 ° C. using a laser diffraction / scattering type particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) using a quartz cell for measurement. Obtain the volume average particle size. For other detailed conditions and the like, refer to the description of JIS Z 8828: 2013 “Particle Size Analysis-Dynamic Light Scattering Method” as necessary. Five samples are prepared for each level, and the average value is adopted.
 負極用組成物は、無機固体電解質を1種含有していても、2種以上を含有していてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの、無機固体電解質及び後述する負極活物質の合計質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
The composition for a negative electrode may contain one kind of inorganic solid electrolyte, or may contain two or more kinds.
When the negative electrode active material layer is formed, the total mass (mg) (weight per unit area) of the inorganic solid electrolyte and the negative electrode active material described later per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. . It can be appropriately determined according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
 負極用組成物中の、無機固体電解質と負極活物質との合計含有量は、分散性、界面抵抗の低減及び結着性の点で、固形分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 本明細書において、固形分(固形成分)とは、負極用組成物を、1mmHgの気圧下、窒素雰囲気下170℃で6時間乾燥処理したときに、揮発又は蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
The total content of the inorganic solid electrolyte and the negative electrode active material in the negative electrode composition is 50% by mass or more at a solid content of 100% by mass in terms of dispersibility, reduction of interface resistance, and binding properties. Is preferably 70% by mass or more, and particularly preferably 90% by mass or more. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
In the present specification, the solid content (solid component) refers to a component that does not disappear by volatilization or evaporation when the composition for a negative electrode is dried at 170 ° C. for 6 hours under a nitrogen atmosphere under a pressure of 1 mmHg. Typically, it refers to components other than the dispersion medium described below.
<バインダー>
 本発明の負極用組成物が含有するバインダーは、下記のポリマーからなるバインダーを含んでいる。
 このポリマーは、アミド結合、ウレア結合及びウレタン結合からなる群より選択される少なくとも一つの結合を含む主鎖を有している。また、このポリマーは、ポリマーを形成する構成成分として、後述する条件A及びBを満たす側鎖を持つ構成成分を有している。
<Binder>
The binder contained in the composition for a negative electrode of the present invention contains a binder comprising the following polymer.
This polymer has a main chain containing at least one bond selected from the group consisting of an amide bond, a urea bond, and a urethane bond. Further, this polymer has a component having a side chain that satisfies the conditions A and B described later as a component forming the polymer.
 本発明において、ポリマーの主鎖とは、ポリマーを構成する、それ以外のすべての分子鎖が、主鎖に対して枝分れ鎖若しくはペンダントとみなしうる線状分子鎖をいう。典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖となる。ただし、ポリマー末端が有する官能基は主鎖に含まない。また、ポリマーの側鎖とは、主鎖以外の分子鎖をいい、短分子鎖及び長分子鎖を含む。 に お い て In the present invention, the main chain of the polymer refers to a linear molecular chain in which all other molecular chains constituting the polymer can be regarded as branched or pendant to the main chain. Typically, the longest chain among the molecular chains constituting the polymer is the main chain. However, the functional groups of the polymer terminals are not included in the main chain. The side chain of the polymer refers to a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
(ポリマーの主鎖)
 ポリマーの主鎖は、アミド結合、ウレア結合及びウレタン結合からなる群より選択される少なくとも一つの結合を有している。主鎖が含むこれら結合は、水素結合を形成することにより、上述のように負極活物質層の膜強度向上に寄与する。したがって、これらの結合が形成する水素結合は、上記結合同士であってもよく、上記結合と主鎖が有するそれ以外の部分構造であってもよい。上記結合は、互いに水素結合を形成可能な点で、水素結合を形成する水素原子を有していること(各結合の窒素原子が無置換であること)が好ましい。
(Polymer main chain)
The main chain of the polymer has at least one bond selected from the group consisting of an amide bond, a urea bond, and a urethane bond. These bonds contained in the main chain form hydrogen bonds, thereby contributing to an improvement in the film strength of the negative electrode active material layer as described above. Therefore, the hydrogen bond formed by these bonds may be the above-mentioned bonds or other partial structures of the above-mentioned bond and the main chain. The bond preferably has a hydrogen atom that forms a hydrogen bond (the nitrogen atom of each bond is unsubstituted) in that a hydrogen bond can be formed with each other.
 上記結合は、ポリマーの主鎖中に含まれる限り特に制限されるものでなく、構成単位(繰り返し単位)中に含まれる態様及び/又は異なる構成単位同士を繋ぐ結合として含まれる態様のいずれでもよい。また、主鎖に含まれる上記結合は、1種に限定されず、2種以上であってもよい。この場合、主鎖の結合様式は、特に制限されず、2種以上の結合をランダムに有していてもよく、特定の結合を有するセグメントと他の結合を有するセグメントとのセグメント化された主鎖でもよい。 The above-mentioned bond is not particularly limited as long as it is contained in the main chain of the polymer, and may be any of a form included in a structural unit (repeating unit) and / or a form included as a bond connecting different structural units. . Further, the number of the bonds contained in the main chain is not limited to one type, and may be two or more types. In this case, the bonding mode of the main chain is not particularly limited, and the main chain may have two or more types of bonds at random, and may be a segmented main chain of a segment having a specific bond and a segment having another bond. It may be a chain.
 上記結合を有する主鎖としては、特に制限されないが、ポリアミド、ポリウレア及びポリウレタンから選択される少なくとも1つのセグメントを有する主鎖が好ましく、ポリアミド、ポリウレア又はポリウレタンからなる主鎖がより好ましい。具体的には、上記結合を有する主鎖は、下記式(I-1)~(I-4)のいずれかで表される構成成分を2種以上(好ましくは2~8種)組み合わせてなる主鎖が好ましい。各構成成分の組み合わせは、上記結合に応じて適宜に選択される。 The main chain having the above bond is not particularly limited, but is preferably a main chain having at least one segment selected from polyamide, polyurea and polyurethane, and more preferably a main chain made of polyamide, polyurea or polyurethane. Specifically, the main chain having the above-mentioned bond is formed by combining two or more (preferably 2 to 8) components represented by any of the following formulas (I-1) to (I-4). A backbone is preferred. The combination of each component is appropriately selected according to the above-mentioned binding.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、RP1及びRP2は、それぞれ、炭化水素基、又は、質量平均分子量が200以上200,000以下の分子鎖を示す。
 RP1は、炭化水素基が好ましく、芳香族の炭化水素基がより好ましい。RP2は、脂肪族の炭化水素基又は上記分子鎖が好ましく、脂肪族の炭化水素基及び上記分子鎖をそれぞれ含む態様がより好ましい。この態様においては、式(I-3)又は式(I-4)で表される構成成分は、RP2が脂肪族の炭化水素基である構成成分と、RP2が上記分子鎖である構成成分の2種を含む。
In the formula, R P1 and R P2 each represent a hydrocarbon group or a molecular chain having a mass average molecular weight of 200 to 200,000.
R P1 is preferably a hydrocarbon group, more preferably an aromatic hydrocarbon group. R P2 is preferably an aliphatic hydrocarbon group or the above-mentioned molecular chain, and more preferably an embodiment containing each of the aliphatic hydrocarbon group and the above-mentioned molecular chain. In this embodiment, the component represented by the formula (I-3) or (I-4) includes a component in which R P2 is an aliphatic hydrocarbon group and a component in which R P2 is the above-mentioned molecular chain. Contains two of the components.
 RP1及びRP2としてとりうる炭化水素基は、質量平均分子量が200未満の炭化水素基であり、例えば、脂肪族若しくは芳香族の炭化水素基が挙げられる。炭化水素基としては、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリーレン基(炭素数は6~14が好ましく、6~10がより好ましい)、又はこれらの組み合わせからなる基が好ましい。RP2としてとりうる炭化水素基としては、アルキレン基がより好ましく、炭素数2~6のアルキレン基が更に好ましく、炭素数2又は3のアルキレン基が特に好ましい。
 RP1及びRP2としてとりうる炭化水素基は、例えば下記式(M2)で表される炭化水素基、更にN,N’-ビス(2-ヒドロキシエチル)オキサミドのように、基中に酸素原子、硫黄原子又はイミノ基を含む基を包含する。
The hydrocarbon group that can be taken as R P1 and R P2 is a hydrocarbon group having a mass average molecular weight of less than 200, and includes, for example, an aliphatic or aromatic hydrocarbon group. Examples of the hydrocarbon group include an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and still more preferably 1 to 3), and an arylene group (preferably having 6 to 14 carbon atoms and more preferably 6 to 10). Or a group consisting of a combination thereof. The hydrocarbon group can take as R P2, and more preferably an alkylene group, more preferably an alkylene group having 2 to 6 carbon atoms, particularly preferably an alkylene group having 2 or 3 carbon atoms.
The hydrocarbon group that can be taken as R P1 and R P2 is, for example, a hydrocarbon group represented by the following formula (M2), and an oxygen atom in the group such as N, N′-bis (2-hydroxyethyl) oxamide. , A sulfur atom or a group containing an imino group.
 脂肪族の炭化水素基としては、特に制限されず、下記式(M2)で表される芳香族の炭化水素基の水素還元体、公知の脂肪族ジイソソアネート化合物が有する部分構造(例えばイソホロニル基)等が挙げられる。
 芳香族の炭化水素基は、下記式(M2)で表される炭化水素基が好ましい。
The aliphatic hydrocarbon group is not particularly limited, and may be a hydrogen reduced form of an aromatic hydrocarbon group represented by the following formula (M2), a partial structure (for example, an isophoronyl group) of a known aliphatic diisosonate compound, or the like. Is mentioned.
The aromatic hydrocarbon group is preferably a hydrocarbon group represented by the following formula (M2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(M2)中、Xは、単結合、-CH-、-C(CH-、-SO-、-S-、-CO-又は-O-を示し、結着性の観点で、-CH-または-O-が好ましく、-CH-がより好ましい。ここで例示した上記アルキレン基はハロゲン原子(好ましくはフッ素原子)で置換されていてもよい。
 RM2~RM5は、それぞれ、水素原子又は置換基を示し、水素原子が好ましい。RM2~RM5としてとりうる置換基としては、特に制限されないが、例えば、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM6、―N(RM6、-SRM6(RM6は置換基を示し、好ましくは炭素数1~20のアルキル基又は炭素数6~10のアリール基を示す。)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)が挙げられる。―N(RM6としては、アルキルアミノ基(炭素数は、1~20が好ましく、1~6がより好ましい)又はアリールアミノ基(炭素数は、6~40が好ましく、6~20がより好ましい)が挙げられる。
In the formula (M2), X represents a single bond, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —S—, —CO—, or —O—; In the formula, —CH 2 — or —O— is preferable, and —CH 2 — is more preferable. The alkylene group exemplified here may be substituted with a halogen atom (preferably a fluorine atom).
R M2 to R M5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable. The substituents that can be taken as R M2 to R M5 are not particularly limited. For example, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, —OR M6 , —N (R M6 ) 2 , —SR M6 (R M6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom) Is mentioned. —N (R M6 ) 2 is an alkylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 6) or an arylamino group (having a carbon number of preferably 6 to 40, and 6 to 20 is preferable) More preferred).
 RP1及びRP2としてとりうる上記分子鎖は、炭化水素基鎖、ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖が好ましく、炭化水素基鎖又はポリアルキレンオキシド鎖がより好ましく、炭化水素基鎖、ポリエチレンオキシド鎖又はポリプロピレンオキシド鎖が更に好ましい。
 炭化水素基鎖は、特に制限されないが、好ましくは18個以上、より好ましくは30個以上、更に好ましくは50個以上の炭素原子から構成される。上限は、特に制限されず、例えば90個とすることができる。炭化水素基鎖は、炭素-炭素不飽和結合を有していてもよく、脂肪族環及び/又は芳香族環の環構造を有していてもよい。すなわち、炭化水素基鎖は、脂肪族炭化水素基及び芳香族炭化水素基から選択される炭化水素基で構成される炭化水素基鎖であればよく、脂肪族炭化水素基で構成される炭化水素基鎖が好ましい。炭化水素基鎖は、上記炭素原子数を満たす、脂肪族飽和炭化水素基若しくは脂肪族不飽和炭化水素基、又は重合体(好ましくはエラストマー)であることが好ましい。重合体としては、具体的には、主鎖に二重結合を有するジエン系重合体、及び、主鎖に二重結合を有しない非ジエン系重合体が挙げられる。ジエン系重合体としては、例えば、スチレン-ブタジエン共重合体、スチレン-エチレン-ブタジエン共重合体、イソブチレンとイソプレンの共重合体(好ましくはブチルゴム(IIR))、ブタジエン重合体、イソプレン重合体及びエチレン-プロピレン-ジエン共重合体等が挙げられる。非ジエン系重合体としては、エチレン-プロピレン共重合体及びスチレン-エチレン-ブチレン共重合体等のオレフィン系重合体、並びに、上記ジエン系重合体の水素還元物が挙げられる。
The molecular chain which can be taken as R P1 and R P2 is preferably a hydrocarbon group, a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, more preferably a hydrocarbon group or a polyalkylene oxide chain, and is preferably a hydrocarbon group or a polyalkylene oxide chain. Ethylene oxide chains or polypropylene oxide chains are more preferred.
The hydrocarbon group is not particularly limited, but preferably has 18 or more, more preferably 30 or more, and still more preferably 50 or more carbon atoms. The upper limit is not particularly limited, and may be, for example, 90. The hydrocarbon chain may have a carbon-carbon unsaturated bond, and may have a ring structure of an aliphatic ring and / or an aromatic ring. That is, the hydrocarbon chain may be a hydrocarbon chain composed of a hydrocarbon group selected from an aliphatic hydrocarbon group and an aromatic hydrocarbon group, and may be a hydrocarbon chain composed of an aliphatic hydrocarbon group. Base chains are preferred. The hydrocarbon chain is preferably an aliphatic saturated hydrocarbon group or aliphatic unsaturated hydrocarbon group or a polymer (preferably an elastomer) that satisfies the above-mentioned number of carbon atoms. Specific examples of the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain. Examples of the diene polymer include a styrene-butadiene copolymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer, and ethylene. -Propylene-diene copolymer and the like. Examples of the non-diene polymer include olefin polymers such as an ethylene-propylene copolymer and a styrene-ethylene-butylene copolymer, and hydrogen reduced products of the diene polymer.
 ポリアルキレンオキシド鎖としては、公知のポリアルキレンオキシドからなる鎖が挙げられる。構成成分としてのアルキレンオキシ基の炭素数は、1~8であることが好ましく、1~6であることがより好ましく、2又は3であること(ポリエチレンオキシド鎖又はポリプロピレンオキシド鎖)が更に好ましい。
 ポリカーボネート鎖又はポリエステル鎖としては、公知のポリカーボネート又はポリエステルからなる鎖が挙げられる。
Examples of the polyalkylene oxide chain include a chain composed of a known polyalkylene oxide. The alkyleneoxy group as a constituent component preferably has 1 to 8 carbon atoms, more preferably 1 to 6, and even more preferably 2 or 3 (polyethylene oxide chain or polypropylene oxide chain).
Examples of the polycarbonate chain or the polyester chain include a chain composed of a known polycarbonate or polyester.
 上記分子鎖がポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖である場合、末端にアルキル基(炭素数は1~12が好ましく、1~6がより好ましい)を有することが好ましい。
 分子鎖が含むアルキル基中に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NR:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)を有していてもよい。
 上記分子鎖の質量平均分子量は、250以上が好ましく、500以上がより好ましく、700以上が更に好ましく、1,000以上が特に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましい。分子鎖の質量平均分子量は、ポリマーの主鎖に組み込む前の原料化合物について測定する。
When the molecular chain is a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, it preferably has an alkyl group (having preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
In the alkyl group contained in the molecular chain, an ether group (—O—), a thioether group (—S—), a carbonyl group (> C = O), an imino group (> NR N : RN is a hydrogen atom, and has 1 carbon atom) (Alkyl group of 6 to 6 or aryl group of 6 to 10 carbon atoms).
The mass average molecular weight of the molecular chain is preferably 250 or more, more preferably 500 or more, still more preferably 700 or more, and particularly preferably 1,000 or more. The upper limit is preferably 100,000 or less, more preferably 10,000 or less. The mass average molecular weight of the molecular chain is measured for the raw material compound before being incorporated into the main chain of the polymer.
 上記式(I-1)で表される構成成分を導く原料化合物(ジイソシアネート化合物)は、特に制限されず、例えば、国際公開第2018/020827号に記載の、式(M1)で表されるジイソシアネート化合物及びその具体例が挙げられる。また、上記式(I-2)で表される構成成分を導く原料化合物(カルボン酸若しくはその酸クロリド等)は、特に制限されず、例えば、国際公開第2018/020827号に記載の、式(M1)で表される化合物及びその具体例が挙げられる。
 上記式(I-3)又は式(I-4)で表される構成成分を導く原料化合物(ジオール化合物又はジアミン化合物)は、それぞれ、特に制限されず、例えば、国際公開第2018/020827号に記載の各化合物及びその具体例が挙げられ、更にジヒドロキシオキサミドが挙げられる。
The starting compound (diisocyanate compound) for deriving the component represented by the above formula (I-1) is not particularly limited, and for example, a diisocyanate represented by the formula (M1) described in WO2018 / 020827 Compounds and specific examples thereof are given. The starting compound (such as a carboxylic acid or an acid chloride thereof) for deriving the component represented by the above formula (I-2) is not particularly limited, and for example, a compound represented by the formula ( The compound represented by M1) and specific examples thereof are exemplified.
The raw material compound (diol compound or diamine compound) for deriving the component represented by the above formula (I-3) or (I-4) is not particularly limited, and is described in, for example, International Publication No. WO2018 / 020827. Each of the compounds described above and specific examples thereof are exemplified, and further, dihydroxyoxamide is exemplified.
 RP1及びRP2は、それぞれ、置換基を有していてもよい。この置換基としては、特に制限されず、例えばRM2として採りうる上記置換基が挙げられ、また後述する側鎖に対応する基も挙げられる。 R P1 and R P2 may each have a substituent. Examples of the substituent group is not particularly limited, for example, an above substituents can take as R M2, also also include groups corresponding to the side chain will be described later.
(側鎖を持つ構成成分)
 バインダーを形成するポリマーは、後述する特定の側鎖を持つ構成成分を有している。この側鎖は、ポリマーを形成する構成成分であればいずれの構成成分に組み込まれていてもよく、例えば上記式(I-1)~式(I-4)のいずれの構成成分に組み込まれていてもよい。中でも、上記式(I-3)又は式(I-4)で表される構成成分に組み込まれていることが好ましく、上記式(I-3)又は式(I-4)で表される構成成分の中でもRP2が脂肪族の炭化水素基である構成成分に組み込まれていることがより好ましい。これらの構成成分が特定の側鎖を持つと、負極活物質と相互作用しやすくなる。
(Components with side chains)
The polymer forming the binder has a component having a specific side chain described later. This side chain may be incorporated into any component as long as it is a component forming a polymer. For example, this side chain is incorporated into any one of the above formulas (I-1) to (I-4). You may. Above all, it is preferable that it is incorporated in the component represented by the above formula (I-3) or (I-4), and the structure represented by the above formula (I-3) or (I-4) it is more preferred that R P2 among components are incorporated in component a hydrocarbon group having aliphatic. When these constituents have a specific side chain, they easily interact with the negative electrode active material.
 - 側鎖 -
 バインダーを形成するポリマーが有する側鎖は、下記条件A及びBを満たす。
条件A:主鎖を構成する原子から4原子以上離れた鎖構造部に、カルボニル基、チオカルボニル基及びホスホリル基(>P(=O)-)からなる群より選択される少なくとも1つの基を有する。
条件B:上記カルボニル基、チオカルボニル基及びホスホリル基は、いずれも、ヒドロキシ基と結合していない。
- Side chain -
The side chain of the polymer forming the binder satisfies the following conditions A and B.
Condition A: at least one group selected from the group consisting of a carbonyl group, a thiocarbonyl group, and a phosphoryl group (> P (OO) —) is provided in a chain structure portion at least four atoms away from atoms constituting the main chain. Have.
Condition B: none of the carbonyl group, thiocarbonyl group and phosphoryl group are bonded to a hydroxy group.
 条件Aにおいて、側鎖における鎖構造部は、側鎖(鎖状に結合する原子群からなる分子鎖)のうち、主鎖の分子鎖を構成する原子から4原子以上離れた側鎖末端側の構造部をいう。例えば、主鎖の分子鎖がアルキレン基を含み、側鎖がこのアルキレン基を構成する炭素原子(主鎖形成炭素原子)に結合している場合、鎖構造部は、上記主鎖形成炭素原子に結合する原子を始点として最も長い分子鎖において原子の連結数が4以上となる部分をいう。ただし、分子鎖の端部が水素原子である場合、この水素原子は原子の連結数に含めない。
 より具体的には、後述する実施例における構成成分A-1においては、主鎖の分子鎖(エチレンジオキシド鎖)を形成する炭素原子に結合する炭素原子を始点として、最も長い分子鎖(-C-S-C-C(3級炭素原子)-C(カルボニル炭素原子)-O-C(メチル基の炭素原子)の原子連結数7の分子鎖)において、原子の連結数が4以上となる部分(C(3級炭素原子)-C(カルボニル炭素原子)-O-C(メチル基の炭素原子))が鎖構造部となる。
In the condition A, the chain structure part in the side chain is a side chain (a molecular chain composed of a group of atoms bonded in a chain), which is located at a terminal side of the side chain that is at least 4 atoms away from atoms constituting the main chain molecular chain. Refers to the structural part. For example, when the molecular chain of the main chain contains an alkylene group, and the side chain is bonded to a carbon atom constituting the alkylene group (carbon atom forming the main chain), the chain structure part is attached to the carbon atom forming the main chain. A portion where the number of connected atoms is 4 or more in the longest molecular chain starting from the bonding atom. However, when the end of the molecular chain is a hydrogen atom, this hydrogen atom is not included in the number of connected atoms.
More specifically, in the component A-1 in Examples described later, the longest molecular chain (−) starts from the carbon atom bonded to the carbon atom forming the main chain molecular chain (ethylene dioxide chain). In a C—S—C—C (tertiary carbon atom) —C (carbonyl carbon atom) —O—C (carbon chain of a methyl group), the number of connected atoms is 4 or more. (C (tertiary carbon atom) -C (carbonyl carbon atom) -OC (carbon atom of methyl group)) becomes the chain structure.
 側鎖は、上述の鎖構造部に、カルボニル基、チオカルボニル基及びホスホリル基(>P(=O)-)からなる群より選択される少なくとも1つの基を有している。これにより、側鎖の分子運動のしやすさと相まって負極活物質と強固な相互作用が生じる。
 これらの基は、負極活物質との相互作用の点で、上述の鎖構造部のより端部側に組み込まれていることが好ましく、例えば、鎖構造部に組み込まれている上記基のうち主鎖の分子鎖を構成する原子に最も近い基は、主鎖の分子鎖を構成する原子から6原子以上離れた鎖構造部に組み込まれていることが好ましく、8原子以上離れた鎖構造部に組み込まれていることがより好ましい。一方、鎖構造部に組み込まれている上記基のうち最も端部側の基は、鎖構造部(水素原子を除く。)の端部から2~4原子以内に組み込まれていることが好ましく、2又は3原子以内に組み込まれていることがより好ましい。
The side chain has at least one group selected from the group consisting of a carbonyl group, a thiocarbonyl group and a phosphoryl group (> P (= O)-) in the above-mentioned chain structure. As a result, a strong interaction with the negative electrode active material occurs in combination with the ease of molecular movement of the side chain.
From the viewpoint of interaction with the negative electrode active material, it is preferable that these groups are incorporated at the end of the above-mentioned chain structure. The group closest to the atoms that make up the molecular chain of the chain is preferably incorporated into a chain structure that is at least 6 atoms away from the atoms that make up the main chain molecular chain, More preferably, it is incorporated. On the other hand, among the above-mentioned groups incorporated in the chain structure, the most terminal group is preferably incorporated within 2 to 4 atoms from the end of the chain structure (excluding the hydrogen atom). More preferably, it is incorporated within 2 or 3 atoms.
 鎖構造部が有する上記基は、カルボニル基が好ましい。
 カルボニル基、チオカルボニル基及びホスホリル基(>P(=O)-)は、鎖構造部の端部としてヒドロキシ基を有さない(条件B)。更に、これらの基はいずれも水素原子と結合していないことが好ましい。すなわち、これらの基は、いずれも、鎖構造部中に組み込まれていることが好ましい。なお、ホスホリル基の結合手のうち2つが鎖構造部への組み込みに使用され、残りの1つは水素原子及びヒドロキシ基以外の置換基と結合する。この置換基としては、特に制限されないが、例えばR及びRとしてとりうる下記置換基等が挙げられる。
The above group contained in the chain structure is preferably a carbonyl group.
The carbonyl group, thiocarbonyl group, and phosphoryl group (> P ((O) —) do not have a hydroxy group as an end of the chain structure (condition B). Further, it is preferable that none of these groups is bonded to a hydrogen atom. That is, these groups are preferably incorporated in the chain structure. Two of the bonds of the phosphoryl group are used for incorporation into the chain structure, and the other one bonds to a substituent other than a hydrogen atom and a hydroxy group. The substituent is not particularly limited, and examples thereof include the following substituents that can be taken as R 1 and R 2 .
 鎖構造部が有する上記基は、1つの鎖構造部(構成成分)において少なくとも1個であればよく、例えば、1~10個であり、負極活物質と相互作用の点で、1~5個が好ましく、1~3個がより好ましい。鎖構造部が有する上記基は、質量比で規定すると、鎖構造部の全質量Wに対する上記基の合計質量Wの割合[W/W]が、0.05以上であることが好ましく、0.1以上であることがより好ましく、0.2以上であることが更に好ましく、0.3以上であることが特に好ましい。上限は、特に制限されず、例えば、0.7以下とすることができ、0.5以下が好ましい。
 なお、鎖構造部が分岐鎖(置換基等)を有する場合、分岐構造の質量、及び分子鎖の端部水素原子の質量も鎖構造部の全質量に算入する。
 ポリマー1分子中が有する上記基の数は、上記構成成分における数を満たす限り特に制限されず、適宜に設定される。
 鎖構造部が有する上記基の種類は、少なくとも1種であればよく、2種以上であってもよい。
The number of the groups included in the chain structure portion may be at least one in one chain structure portion (constituent component), for example, 1 to 10, and 1 to 5 in terms of interaction with the negative electrode active material. Is preferable, and 1-3 are more preferable. The group chain structure has, when defining the mass ratio, the ratio of the total mass W G of the base relative to the total weight W S of the chain structure portion [W G / W S] is not less than 0.05 Preferably, it is more preferably 0.1 or more, further preferably 0.2 or more, and particularly preferably 0.3 or more. The upper limit is not particularly limited, and can be, for example, 0.7 or less, and preferably 0.5 or less.
When the chain structure has a branched chain (such as a substituent), the mass of the branched structure and the mass of the hydrogen atom at the end of the molecular chain are also included in the total mass of the chain structure.
The number of the above groups in one molecule of the polymer is not particularly limited as long as the number of the above constituent components is satisfied, and is appropriately set.
The type of the group contained in the chain structure portion may be at least one type, and may be two or more types.
 上記側鎖は、下記式(I)~(III)のいずれかで表される部分構造を有することが好ましく、下記式(II)又は式(III)で表される部分構造を有することがより好ましく、下記式式(III)で表される部分構造を有することが更に好ましい。
 これらの部分構造が側鎖に組み込まれる位置は、特に制限されないが、各構造中のカルボニル基が主鎖を構成する原子から4原子以上離れた位置に組み込まれることが好ましい。
The side chain preferably has a partial structure represented by any of the following formulas (I) to (III), and more preferably has a partial structure represented by the following formula (II) or (III). More preferably, it has a partial structure represented by the following formula (III).
The position at which these partial structures are incorporated into the side chain is not particularly limited, but it is preferable that the carbonyl group in each structure be incorporated at a position at least four atoms away from the atoms constituting the main chain.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、L~Lはそれぞれ連結基を示す。
 L~Lとしてとりうる連結基としては、特に制限されず、例えば、アルキレン基(炭素数は1~10が好ましく、1~6がより好ましく、1~3が特に好ましい。)、アリーレン基(炭素数は6~24が好ましく、6~14がより好ましく、6~10が特に好ましい。)、炭素数3~12のヘテロアリーレン基、エーテル基(-O-)、スルフィド基(-S-)、カルボニル基、イミノ基(-NR-:Rは結合部位、水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)、又は、これらを2個以上(好ましくは2~10個)組み合わせた連結基が挙げられる。中でも、L~Lとしてとりうる連結基としてはいずれもアルキレン基が好ましく、Lとしてとりうる連結基としてはメチレンがより好ましい。L及びLが式中の2つの炭素原子とともに形成する環の員数は、特に制限されないが、4~8員環が好ましく、5若しくは6員環がより好ましい。
In the formula, L 1 to L 4 each represent a linking group.
The linking group that can be taken as L 1 to L 4 is not particularly limited, and examples thereof include an alkylene group (preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3), and an arylene group. (The number of carbon atoms is preferably 6 to 24, more preferably 6 to 14, and particularly preferably 6 to 10.) A heteroarylene group having 3 to 12 carbon atoms, an ether group (—O—), and a sulfide group (—S— ), A carbonyl group, an imino group (—NR N —: R N is a bonding site, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms), or two or more of these (preferably Is 2 to 10). Above all, as the linking group that can be taken as L 1 to L 4 , an alkylene group is preferable, and as the linking group that can be taken as L 4 , methylene is more preferable. The number of members of the ring formed by L 2 and L 3 together with the two carbon atoms in the formula is not particularly limited, but is preferably a 4- to 8-membered ring, more preferably a 5- or 6-membered ring.
 上記式(I)及び式(III)において、R及びRはそれぞれ置換基を示す。ただし、Rは式(III)中の「-L-CO-R」を採らない。
 R及びRとしてとりうる置換基は、特に制限されず、アルキル基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリール基(炭素数は6~22が好ましく、6~14がより好ましく、6~10が更に好ましい)、ヘテロ原子を含む基が挙げられる。ヘテロ原子としては、特に制限されないが、酸素原子、硫黄原子、窒素原子、リン原子等が好ましい。ヘテロ原子を含む基としては、基中にヘテロ原子を含む基、各式中のカルボニル炭素原子に上記ヘテロ原子で結合する基等が挙げられる。例えば、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。)、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、置換若しくは無置換のアミノ基等が挙げられる。
 Rとしてとりうる置換基としてはヘテロ原子を含む基が好ましく、Rとしてとりうる置換基はアルキル基が好ましい。
 アルコキシ基及びアルキルチオ基の炭素数は、いずれも、1~10が好ましく、1~6がより好ましく、1~3が特に好ましい。アリールオキシ基及びアリールチオ基の炭素数は、いずれも、6~24が好ましく、6~14がより好ましく、6~10が特に好ましい。
In the above formulas (I) and (III), R 1 and R 2 each represent a substituent. However, R 1 does not take “—L 4 —CO—R 2 ” in the formula (III).
The substituents that can be taken as R 1 and R 2 are not particularly limited, and include an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3), and an aryl group (having a carbon number of 1 to 3). 6 to 22, preferably 6 to 14, and more preferably 6 to 10), and a group containing a hetero atom. The hetero atom is not particularly limited, but is preferably an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, or the like. Examples of the group containing a hetero atom include a group containing a hetero atom in the group, a group bonded to the carbonyl carbon atom in each formula by the above hetero atom, and the like. For example, a heterocyclic group (preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom and nitrogen atom. Includes an aromatic heterocyclic group and an aliphatic heterocyclic group.), An alkoxy group, an aryloxy group, a heterocyclic oxy group, an alkylthio group, an arylthio group, a heterocyclic thio group, and a substituted or unsubstituted amino group. No.
The substituent which can be taken as R 1 is preferably a group containing a hetero atom, and the substituent which can be taken as R 2 is preferably an alkyl group.
The carbon number of each of the alkoxy group and the alkylthio group is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 3. Each of the aryloxy group and the arylthio group preferably has 6 to 24 carbon atoms, more preferably has 6 to 14 carbon atoms, and particularly preferably has 6 to 10 carbon atoms.
 R及びRとしてとりうる置換基は更に置換基を有していてもよく、この置換基としては、アルキル基、アリール基、アミノ基、(ジアミノ)ホスホリル基、エーテル基、又は、これらを2個以上(好ましくは2~10個)組み合わせた基が挙げられる。
 R及びRとしてとりうる置換基は、L若しくはL、又は、後述する上記各式で表される構造とポリマーの主鎖とを連結する連結基と結合して、シクロヘキサン環、シクロヘキセン環等の環を形成していてもよい。
The substituents that can be taken as R 1 and R 2 may further have a substituent, such as an alkyl group, an aryl group, an amino group, a (diamino) phosphoryl group, an ether group, or A group in which two or more (preferably 2 to 10) are combined is exemplified.
The substituents that can be taken as R 1 and R 2 are L 1 or L 4 , or a linking group that links the structure represented by each of the above-mentioned formulas and the main chain of the polymer to form a cyclohexane ring, cyclohexene It may form a ring such as a ring.
 上記各式において、**は、ポリマーの主鎖(を構成する原子)との結合部を示す。
 上記各式で表される部分構造は、ポリマーの主鎖に直接結合してもよいが、連結基を介して結合していることが好ましい。各式で表される部分構造とポリマーの主鎖とを結合する連結基としては、特に制限されず、例えば、L~Lとしてとりうる連結基が挙げられ、中でも、アルキレン基、アリーレン基、ヘテロアリーレン基、エーテル基、スルフィド基、カルボニル基若しくはイミノ基、又は、これらを2個以上(好ましくは2~10個)組み合わせた連結基が好ましく、アルキレン基、エーテル基、スルフィド基若しくはカルボニル基又はこれらを2個以上(好ましくは2~10個)組み合わせた連結基がより好ましく、-アルキレン-S-基、-C(=O)-O-基、若しくは-アルキレン-S-アルキレン-C(=O)-O-アルキレン-O-基が更に好ましい。
In each of the above formulas, ** indicates a bonding portion to the main chain (atom constituting the polymer) of the polymer.
The partial structure represented by each of the above formulas may be directly bonded to the main chain of the polymer, but is preferably bonded via a linking group. The linking group that bonds the partial structure represented by each formula to the main chain of the polymer is not particularly limited, and examples thereof include linking groups that can be taken as L 1 to L 4 , and among them, an alkylene group, an arylene group , A heteroarylene group, an ether group, a sulfide group, a carbonyl group or an imino group, or a linking group obtained by combining two or more (preferably 2 to 10) thereof, and is preferably an alkylene group, an ether group, a sulfide group or a carbonyl group. Alternatively, a linking group in which two or more (preferably 2 to 10) of them are combined is more preferable, and -alkylene-S-, -C (= O) -O-, or -alkylene-S-alkylene-C ( = O) -O-alkylene-O- groups are more preferred.
 本発明において、連結基を構成する原子の数は、1~30であることが好ましく、3~20であることがより好ましく、5~15であることが更に好ましい。連結基の連結原子数は1~15であることが好ましく、5~12であることがより好ましい。上記連結原子数とは所定の構造部間を結ぶ最少の原子数をいう。例えば、-C(=O)-O-の場合、連結基を構成する原子の数は3となるが、連結原子数は2となる。 に お い て In the present invention, the number of atoms constituting the linking group is preferably 1 to 30, more preferably 3 to 20, and still more preferably 5 to 15. The number of linking atoms of the linking group is preferably from 1 to 15, more preferably from 5 to 12. The number of connected atoms means the minimum number of atoms connecting predetermined structural parts. For example, in the case of —C (= O) —O—, the number of atoms constituting the linking group is 3, but the number of linking atoms is 2.
 上記条件A及びBを満たす側鎖を持つ構成成分を有するポリマーにおいて、構成成分の含有量は適宜に設定することができる。
 上記ポリマーを形成する全構成成分の全モル数に対する各構成成分の含有量は、以下の範囲から、合計で100モル%となるように決定されることが好ましい。
 上記式(I-1)又は式(I-2)で表される構成成分のうちRP1が炭化水素基である構成成分(後述する実施例における構成成分M1)の含有量は、水素結合形成等による膜強度の点で、ポリマーを形成する全構成成分に対して、50~10モル%であることが好ましく、50~20モル%であることがより好ましく、50~30モル%であることが更に好ましい。
 また、上記式(I-3)又は式(I-4)で表される構成成分のうちRP2が炭化水素基である構成成分(後述する実施例における構成成分M2)の含有量は、水素結合形成等による膜強度の点で、ポリマーを形成する全構成成分に対して、50~1モル%であることが好ましく、40~2モル%であることがより好ましく、30~3モル%であることが更に好ましい。
 上記各構成成分の含有量は、上記側鎖を有している構成成分を含まず、上記側鎖を有さない構成成分の含有量とする。
In the polymer having a component having a side chain satisfying the above conditions A and B, the content of the component can be appropriately set.
It is preferable that the content of each component relative to the total number of moles of all components forming the polymer be determined from the following range so as to be 100 mol% in total.
Among the components represented by the formula (I-1) or (I-2), the content of the component (RP1 in the examples described later) in which R P1 is a hydrocarbon group is determined by the hydrogen bond formation. From the viewpoint of film strength due to, for example, the amount is preferably 50 to 10 mol%, more preferably 50 to 20 mol%, and more preferably 50 to 30 mol%, based on all the constituent components forming the polymer. Is more preferred.
Further, among the components represented by the above formula (I-3) or (I-4), the content of the component (RP M2 in Examples described later) in which R P2 is a hydrocarbon group is hydrogen. From the viewpoint of film strength due to bond formation and the like, the content is preferably 50 to 1 mol%, more preferably 40 to 2 mol%, and more preferably 30 to 3 mol%, based on all constituent components forming the polymer. It is even more preferred.
The content of each of the above components is the content of the components that do not contain the above-mentioned side chains and do not have the above-mentioned side chains.
 上記式(I-1)又は式(I-2)で表される構成成分のうちRP2が上記分子鎖である構成成分の含有量は、膜の柔軟性を向上させる観点で、ポリマーを形成する全構成成分に対して、50~10モル%であることが好ましく、50~20モル%であることがより好ましく、50~30モル%であることが更に好ましい。
 また、上記式(I-3)又は式(I-4)で表される構成成分のうちRP1が上記分子鎖である構成成分(後述する実施例における構成成分M4)の含有量は、膜の柔軟性を向上させる観点で、ポリマーを形成する全構成成分に対して、50~1モル%であることが好ましく、40~2モル%であることがより好ましく、20~3モル%であることが更に好ましい。
 上記各構成成分の含有量は、上記側鎖を有している構成成分を含まず、上記側鎖を有さない構成成分の含有量とする。
The content of the component represented by the formula (I-1) or (I-2) in which RP2 is the above-mentioned molecular chain depends on the content of the polymer formed from the viewpoint of improving the flexibility of the film. The content is preferably 50 to 10 mol%, more preferably 50 to 20 mol%, even more preferably 50 to 30 mol%, based on all the constituent components.
Further, among the components represented by the above formula (I-3) or (I-4), the content of a component (RP M1 in Examples described later) in which R P1 is the above molecular chain is determined by the film. From the viewpoint of improving the flexibility of the polymer, it is preferably from 50 to 1 mol%, more preferably from 40 to 2 mol%, and more preferably from 20 to 3 mol%, based on all constituent components forming the polymer. Is more preferred.
The content of each of the above components is the content of the components that do not contain the above-mentioned side chains and do not have the above-mentioned side chains.
 上記側鎖を持つ構成成分(後述する実施例における構成成分M3)の含有量は、負極活物質との相互作用の点で、ポリマーを形成する全構成成分に対して、80~5モル%であることが好ましく、80~10モル%であることがより好ましく、60~15モル%であることが更に好ましく、40~15モル%であることが特に好ましい。
 ポリマーが上記構成成分以外の他の構成成分を有する場合、他の構成成分の含有量は、ポリマーを形成する全構成成分に対して、15モル%以下であることが好ましい。
The content of the component having the side chain (component M3 in Examples described later) is 80 to 5 mol% with respect to all components forming the polymer in terms of interaction with the negative electrode active material. Preferably, it is 80 to 10 mol%, more preferably 60 to 15 mol%, and particularly preferably 40 to 15 mol%.
When the polymer has other components other than the above components, the content of the other components is preferably 15 mol% or less based on all the components forming the polymer.
 ポリマーを形成する全構成成分の全質量に対する各構成成分の含有量は、以下の範囲から、合計で100質量%となるように決定されることが好ましい。
 上記式(I-1)又は式(I-2)で表される構成成分のうちRP1が炭化水素基である構成成分の含有量は、水素結合形成等による膜強度の点で、ポリマーを形成する全構成成分の全質量に対して、80~20質量%であることが好ましく、70~30質量%であることがより好ましく、60~35質量%であることが更に好ましい。
 また、上記式(I-3)又は式(I-4)で表される構成成分のうちRP2が炭化水素基である構成成分の含有量は、水素結合形成等による膜強度の点で、ポリマーを形成する全構成成分の全質量に対して、80~20質量%であることが好ましく、70~30質量%であることがより好ましく、60~35質量%であることが更に好ましい。
 上記各構成成分の含有量は、上記側鎖を有している構成成分を含まず、上記側鎖を有さない構成成分の含有量とする。
It is preferable that the content of each component relative to the total mass of all components forming the polymer is determined so as to be 100% by mass in total from the following range.
Among the components represented by the formula (I-1) or (I-2), the content of the component in which R P1 is a hydrocarbon group depends on the polymer strength in terms of film strength due to hydrogen bond formation and the like. The amount is preferably from 80 to 20% by mass, more preferably from 70 to 30% by mass, even more preferably from 60 to 35% by mass, based on the total mass of all constituent components to be formed.
Further, among the components represented by the above formula (I-3) or (I-4), the content of the component in which R P2 is a hydrocarbon group is determined in terms of film strength due to hydrogen bond formation and the like. The amount is preferably from 80 to 20% by mass, more preferably from 70 to 30% by mass, even more preferably from 60 to 35% by mass, based on the total mass of all the constituent components forming the polymer.
The content of each of the above components is the content of the components that do not contain the above-mentioned side chains and do not have the above-mentioned side chains.
 上記式(I-1)又は式(I-2)で表される構成成分のうちRP1が上記分子鎖である構成成分の含有量は、膜の柔軟性を向上させる観点で、ポリマーを形成する全構成成分の全質量に対して、80~20質量%であることが好ましく、70~30質量%であることがより好ましく、60~35質量%であることが更に好ましい。
 また、上記式(I-3)又は式(I-4)で表される構成成分のうちRP2が上記分子鎖である構成成分の含有量は、膜の柔軟性を向上させる観点で、ポリマーを形成する全構成成分の全質量に対して80~20質量%であることが好ましく、70~30質量%であることがより好ましく、60~35質量%であることが更に好ましい。
 上記各構成成分の含有量は、上記側鎖を有している構成成分を含まず、上記側鎖を有さない構成成分の含有量とする。
The content of the component represented by the above formula (I-1) or (I-2) in which RP1 is the above-mentioned molecular chain is determined from the viewpoint of improving the flexibility of the film. It is preferably from 80 to 20% by mass, more preferably from 70 to 30% by mass, even more preferably from 60 to 35% by mass, based on the total mass of all the constituent components.
In addition, among the components represented by the above formula (I-3) or (I-4), the content of the component in which RP2 is the above molecular chain is determined from the viewpoint of improving the flexibility of the film. Is preferably from 80 to 20% by mass, more preferably from 70 to 30% by mass, even more preferably from 60 to 35% by mass, based on the total mass of all the constituent components forming the polymer.
The content of each of the above components is the content of the components that do not contain the above-mentioned side chains and do not have the above-mentioned side chains.
 上記側鎖を持つ構成成分の含有量は、負極活物質との相互作用の点で、ポリマーを形成する全構成成分の全質量に対して、41~1質量%であることが好ましく、40~5質量%であることがより好ましく、20~5質量%であることが更に好ましく、10~5質量%であることが特に好ましい。
 ポリマーが上記構成成分以外の他の構成成分を有する場合、他の構成成分の含有量は、ポリマーを形成する全構成成分に対して、15質量%であることが好ましい。
The content of the component having the side chain is preferably 41 to 1% by mass, and more preferably 40 to 1% by mass with respect to the total mass of all the components constituting the polymer in terms of interaction with the negative electrode active material. The content is more preferably 5% by mass, further preferably 20 to 5% by mass, and particularly preferably 10 to 5% by mass.
When the polymer has other components other than the above components, the content of the other components is preferably 15% by mass based on all the components forming the polymer.
 上記ポリマーは、上述の側鎖を持つ構成成分を有するため、負極活物質等の固体粒子に対して吸着性を示す公知の基を有していなくてもよく、正極活物質、無機固体電解質等との結着性を更に向上させるため吸着性を示す基を更に有していてもよい。吸着性を示す基としては、特に制限されないが、例えば、国際公開第2018/020827号に記載の「官能基群(II)」に含まれる各基が挙げられる。 Since the polymer has a component having the above-described side chain, the polymer may not have a known group having an adsorptivity to solid particles such as a negative electrode active material, a positive electrode active material, an inorganic solid electrolyte, and the like. May further have a group exhibiting an adsorptivity in order to further improve the binding property with the compound. The group exhibiting adsorptivity is not particularly limited, and examples thereof include groups included in “functional group (II)” described in WO2018 / 020827.
 上記ポリマーは、主鎖が有する結合の種類に応じて公知の方法により原料化合物を縮重合して、合成することができる。合成方法としては、例えば、国際公開第2018/020827号に記載の「<(B)ポリマーの合成方法>」を参照できる。 The polymer can be synthesized by polycondensation of a raw material compound by a known method according to the type of the bond in the main chain. As the synthesis method, for example, “<(B) Method for synthesizing polymer>” described in WO2018 / 020827 can be referred to.
(ポリマーの物性等)
 上述のポリマー(ポリマーからなるバインダー)は、分散媒に対して可溶であってもよいが、特にイオン伝導性の点で、分散媒に対して不溶(の粒子)であることが好ましい。
 本発明において、分散媒に対して不溶であるとは、ポリマーを30℃の分散媒(使用量はポリマーの質量に対して10倍)に添加し、24時間静置しても、分散媒への溶解量が3質量%以下であることを意味し、2質量%以下であることが好ましく、1質量%以下であることがより好ましい。この溶解量は、分散媒に添加したポリマー質量に対する、24時間経過後に固液分離した分散媒から得られるポリマー質量の割合とする。
(Physical properties of polymer, etc.)
The above-mentioned polymer (binder made of a polymer) may be soluble in the dispersion medium, but is preferably insoluble (particles) in the dispersion medium particularly from the viewpoint of ion conductivity.
In the present invention, the term “insoluble in a dispersion medium” means that a polymer is added to a dispersion medium at 30 ° C. (the amount used is 10 times the mass of the polymer) and left standing for 24 hours. Means 3% by mass or less, preferably 2% by mass or less, more preferably 1% by mass or less. The amount of dissolution is defined as the ratio of the mass of the polymer obtained from the dispersion medium that has been solid-liquid separated after 24 hours to the mass of the polymer added to the dispersion medium.
 上記ポリマー(バインダー)は、負極用組成物中において、例えば分散媒に溶解して存在していてもよく、分散媒に溶解せず固体状で存在(好ましくは分散)していてもよい(固体状で存在するバインダーを粒子状バインダーという。)。本発明において、ポリマー(バインダー)は、負極用組成物中、更には負極活物質層(塗布乾燥層)において粒子状バインダーであることが、電池抵抗及びサイクル特性の点で、好ましい。 The polymer (binder) may be present in the negative electrode composition, for example, dissolved in a dispersion medium, or may be present (preferably dispersed) in a solid state without being dissolved in the dispersion medium (solid). Binders that are present in the form of particles are referred to as particulate binders). In the present invention, the polymer (binder) is preferably a particulate binder in the negative electrode composition and further in the negative electrode active material layer (coating dried layer), from the viewpoint of battery resistance and cycle characteristics.
 バインダーが粒子状バインダーである場合、その形状は特に制限されず、偏平状、無定形等であってもよいが、球状若しくは顆粒状が好ましい。
 粒子状バインダーの平均粒径は、特に制限されないが、1000nm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることが更に好ましい。下限値は1nm以上であり、5nm以上であることが好ましく、10nm以上であることがより好ましく、50nm以上であることが更に好ましい。平均粒径は、上記無機固体電解質の平均粒径と同様にして測定できる。
When the binder is a particulate binder, its shape is not particularly limited and may be flat, amorphous, or the like, but is preferably spherical or granular.
The average particle size of the particulate binder is not particularly limited, but is preferably 1,000 nm or less, more preferably 500 nm or less, and even more preferably 300 nm or less. The lower limit is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 50 nm or more. The average particle size can be measured in the same manner as the above-mentioned average particle size of the inorganic solid electrolyte.
 - 質量平均分子量 -
 ポリマーの質量平均分子量は、特に制限されない。例えば、3,000以上が好ましく、5,000以上がより好ましく、7,000以上が更に好ましく、10,000以上が特に好ましい。上限としては、1,000,000以下が実質的であるが、300,000以下が好ましく、200,000以下がより好ましく、100,000以下が更に好ましい。
-分子量の測定-
 本発明において、質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量を計測する。測定法としては、基本として下記条件1又は条件2(優先)の方法により測定した値とする。ただし、測定する重合体(ポリマー等)の種類によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-Hを2本つなげる
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000をつないだカラムを用いる
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
-Weight average molecular weight-
The weight average molecular weight of the polymer is not particularly limited. For example, it is preferably 3,000 or more, more preferably 5,000 or more, still more preferably 7,000 or more, and particularly preferably 10,000 or more. The upper limit is substantially 1,000,000 or less, preferably 300,000 or less, more preferably 200,000 or less, and even more preferably 100,000 or less.
-Measurement of molecular weight-
In the present invention, the mass average molecular weight is measured by gel permeation chromatography (GPC) in terms of standard polystyrene. The measurement method is basically a value measured by the method of the following condition 1 or condition 2 (priority). However, an appropriate eluent may be appropriately selected and used depending on the type of the polymer (polymer or the like) to be measured.
(Condition 1)
Column: connect two TOSOH TSKgel Super AWM-H carriers: 10 mM LiBr / N-methylpyrrolidone Measurement temperature: 40 ° C.
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector (Condition 2)
Column: Use a column connected with TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, and TOSOH TSKgel Super HZ2000 Carrier: Tetrahydrofuran Measurement temperature: 40 ° C.
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
 このポリマーは、非架橋ポリマーであっても架橋ポリマーであってもよい。また、加熱又は電圧の印加によってポリマーの架橋が進行した場合には、上記分子量より大きな分子量となっていてもよい。好ましくは、全固体二次電池の使用開始時にポリマーが上記範囲の質量平均分子量であることである。 This polymer may be a non-crosslinked polymer or a crosslinked polymer. When the crosslinking of the polymer proceeds by heating or application of voltage, the molecular weight may be higher than the above molecular weight. Preferably, the polymer has a weight average molecular weight in the above range at the start of use of the all solid state secondary battery.
 - 水分濃度 -
 ポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。また、このポリマーは、晶析させて乾燥させてもよく、ポリマー分散液をそのまま用いてもよい。
- Moisture concentration -
The water concentration of the polymer is preferably 100 ppm (by mass) or less. The polymer may be crystallized and dried, or the polymer dispersion may be used as it is.
 - ガラス転移温度 -
 ポリマーのガラス転移温度は、特に制限されないが、30℃以下であることが好ましく、25℃以下であることがより好ましく、15℃以下であることが更に好ましく、5℃以下であることが特に好ましい。ガラス転移温度の下限は、特に制限されず、例えば、-200℃に設定でき、-150℃以上であることが好ましく、-120℃以上であることがより好ましい。
- Glass-transition temperature -
The glass transition temperature of the polymer is not particularly limited, but is preferably 30 ° C. or lower, more preferably 25 ° C. or lower, further preferably 15 ° C. or lower, and particularly preferably 5 ° C. or lower. . The lower limit of the glass transition temperature is not particularly limited and can be set, for example, to -200 ° C, is preferably -150 ° C or higher, and more preferably -120 ° C or higher.
 ガラス転移温度(Tg)は、ポリマーの乾燥試料を測定対象として、示差走査熱量計:X-DSC7000(商品名、SII・ナノテクノロジー社製)を用いて、下記の条件で測定する。測定は同一の試料で二回実施し、二回目の測定結果を採用する。
    測定室内の雰囲気:窒素ガス(50mL/min)
    昇温速度:5℃/min
    測定開始温度:-100℃
    測定終了温度:200℃
    試料パン:アルミニウム製パン
    測定試料の質量:5mg
    Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
 なお、全固体二次電池を用いる場合は、例えば、全固体二次電池を分解して活物質層又は固体電解質層を水に入れてその材料を分散させた後、ろ過を行い、残った固体を収集し、上記の測定法でガラス転移温度を測定することにより行うことができる。
The glass transition temperature (Tg) is measured using a differential scanning calorimeter: X-DSC7000 (trade name, manufactured by SII Nanotechnology Co., Ltd.) on a dry sample of the polymer under the following conditions. The measurement is performed twice with the same sample, and the result of the second measurement is adopted.
Atmosphere in measurement room: Nitrogen gas (50 mL / min)
Heating rate: 5 ° C / min
Measurement start temperature: -100 ° C
Measurement end temperature: 200 ° C
Sample pan: Aluminum pan Mass of sample: 5mg
Calculation of Tg: Tg is calculated by rounding the decimal point of the intermediate temperature between the descent start point and descent end point of the DSC chart.
In the case of using an all-solid secondary battery, for example, after disassembling the all-solid secondary battery and putting the active material layer or solid electrolyte layer in water to disperse the material, filtration is performed, and the remaining solid Can be collected and the glass transition temperature can be measured by the above-mentioned measuring method.
 本発明の負極用組成物が有するバインダーは、上記条件A及びBを満たす側鎖を持つ構成成分を有するポリマーからなるバインダー以外のバインダーを含んでいてもよい。このようなバインダーとしては、後述する固体電解質組成物が含有するバインダー(固体電解質組成物において説明する各種ポリマーからなるバインダー)が挙げられる。バインダーが上記条件A及びBを満たす側鎖を持つ構成成分を有するポリマーからなるバインダー以外のバインダーを含む場合、上記条件A及びBを満たす側鎖を持つ構成成分を有するポリマーからなるバインダーの、全バインダー中の含有量は、特に制限されないが、例えば、10~100質量%であることが好ましい。
 負極用組成物は、バインダーを1種含有していても、2種以上を含有していてもよい。
The binder included in the composition for a negative electrode of the present invention may include a binder other than the binder including the polymer having the constituent component having the side chain satisfying the above conditions A and B. Examples of such a binder include a binder contained in a solid electrolyte composition described later (a binder composed of various polymers described in the solid electrolyte composition). When the binder contains a binder other than a binder having a component having a side chain that satisfies the above conditions A and B, all of the binder having a polymer having a side chain that satisfies the above conditions A and B, The content in the binder is not particularly limited, but is preferably, for example, 10 to 100% by mass.
The negative electrode composition may contain one kind of binder or two or more kinds of binders.
 負極用組成物中の、バインダーの含有量は、その固形分中、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.3質量%以上であることが特に好ましい。上限としては、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。 The content of the binder in the negative electrode composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and more preferably 0.3% by mass or more in the solid content. It is particularly preferred that there is. The upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less.
<負極活物質>
 本発明の負極用組成物は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質として負極活物質を含有する。
 負極活物質は、可逆的にリチウムイオンを挿入及び/又は放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、リチウム単体、リチウム合金、リチウムと合金化(リチウムとの合金を形成)可能な負極活物質等が挙げられる。中でも、炭素質材料、金属複合酸化物又はリチウム単体が信頼性の点から好ましく用いられる。全固体二次電池の大容量化が可能となる点では、リチウムと合金化可能な活物質が好ましい。本発明の負極用組成物で形成した負極活物質は固体粒子同士が強固に結着しているため、負極活物質として上記リチウムと合金化可能な活物質を用いることができる。
<Negative electrode active material>
The composition for a negative electrode of the present invention contains a negative electrode active material as an active material capable of inserting and releasing ions of a metal belonging to Group 1 or 2 of the periodic table.
As the negative electrode active material, those capable of reversibly inserting and / or releasing lithium ions are preferable. The material is not particularly limited as long as it has the above characteristics. Carbonaceous materials, metal oxides, metal composite oxides, lithium alone, lithium alloys, alloyable with lithium (forming alloys with lithium) Negative electrode active material and the like. Among them, a carbonaceous material, a metal composite oxide or lithium alone is preferably used from the viewpoint of reliability. An active material that can be alloyed with lithium is preferable in that the capacity of the all-solid secondary battery can be increased. In the negative electrode active material formed using the negative electrode composition of the present invention, the solid particles are firmly bound to each other, and thus the above-described active material that can be alloyed with lithium can be used as the negative electrode active material.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 炭素 A carbonaceous material used as a negative electrode active material is a material substantially composed of carbon. For example, various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin. A carbonaceous material obtained by firing a resin can be used. Further, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. , Mesophase microspheres, graphite whiskers, flat graphite, and the like.
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
These carbonaceous materials can be classified into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials according to the degree of graphitization. Further, the carbonaceous material preferably has a plane spacing or a density and a crystallite size described in JP-A-62-22066, JP-A-2-6856 and JP-A-3-45473. The carbonaceous material does not need to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like may be used. Can also.
As the carbonaceous material, hard carbon or graphite is preferably used, and graphite is more preferably used.
 負極活物質として適用される金属若しくは半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、金属元素の酸化物(金属酸化物)、金属元素の複合酸化物若しくは金属元素と半金属元素との複合酸化物(纏めて金属複合酸化物という。)、半金属元素の酸化物(半金属酸化物)が挙げられる。これらの酸化物としては、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく挙げられる。本発明において、半金属元素とは、金属元素と非半金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、更にはセレン、ポロニウム及びアスタチンの3元素を含む。また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°~70°に見られる結晶性の回折線の内最も強い強度が、2θ値で20°~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 The oxide of the metal or metalloid element applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of occluding and releasing lithium. An oxide of the metal element (metal oxide), a composite of the metal element An oxide or a composite oxide of a metal element and a metalloid element (collectively, a metal composite oxide) and an oxide of a metalloid element (metalloid oxide) are given. As these oxides, amorphous oxides are preferable, and chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table is also preferable. In the present invention, the term “metalloid element” refers to an element having an intermediate property between a metal element and a nonmetalloid element, and usually includes six elements of boron, silicon, germanium, arsenic, antimony, and tellurium, and further includes selenium. , Polonium and astatine. The term “amorphous” means an X-ray diffraction method using CuKα rays having a broad scattering band having an apex in a range of 20 ° to 40 ° in 2θ value. May have. The strongest intensity of the crystalline diffraction lines observed at 40 ° to 70 ° in the 2θ value is 100 times or less the intensity of the diffraction line at the apex of the broad scattering band observed at 20 ° to 40 ° in the 2θ value. It is more preferably 5 times or less, particularly preferably no crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb又はSbが好ましく挙げられる。
 Sn、Si、Geを中心とする非晶質酸化物に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な活物質が好適に挙げられる。
Among the compound group consisting of the above-mentioned amorphous oxide and chalcogenide, an amorphous oxide of a metalloid element or the above-mentioned chalcogenide is more preferable, and an element of group 13 (IIIB) to group 15 (VB) of the periodic table (for example, , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi), a (composite) oxide composed of one or a combination of two or more thereof, or a chalcogenide is particularly preferred. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , GeS, PbS, PbS 2 , Sb 2 S 3 or Sb 2 S 5 is a preferred example.
Examples of the negative electrode active material that can be used in combination with an amorphous oxide centering on Sn, Si, and Ge include a carbonaceous material that can occlude and / or release lithium ions or lithium metal, simple lithium, a lithium alloy, and lithium. An active material that can be alloyed with is preferably used.
 金属若しくは半金属元素の酸化物、とりわけ金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。
 負極活物質、例えば金属酸化物は、チタン原子を含有すること(チタン酸化物)も好ましく挙げられる。具体的には、LiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
An oxide of a metal or metalloid element, particularly a metal (composite) oxide and the above-described chalcogenide preferably contain at least one of titanium and lithium as a component from the viewpoint of high current density charge / discharge characteristics. Examples of the lithium-containing metal composite oxide (lithium composite metal oxide) include, for example, a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, more specifically, Li 2 SnO 2. No.
The negative electrode active material, for example, a metal oxide also preferably includes a titanium atom (titanium oxide). Specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuation at the time of occlusion and release of lithium ions. This is preferable in that the life of the battery can be improved.
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。 リ チ ウ ム The lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy generally used as a negative electrode active material of a secondary battery, and examples thereof include a lithium aluminum alloy.
 リチウムと合金化可能な活物質としては、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質は、全固体二次電池の充放電による膨張収縮が大きく、サイクル特性の低下を加速させるが、本発明の負極用組成物は上述のバインダーを含有するため、サイクル特性の低下を抑制できる。このような活物質として、ケイ素元素若しくはスズ元素を有する(負極)活物質(合金等)、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素元素を構成元素に含むケイ素系負極活物質(ケイ素元素含有活物質)が好ましく、ケイ素元素の含有量が全構成元素の50モル%以上のケイ素元素含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(ケイ素元素含有活物質を含有するSi負極、スズ元素を有する活物質を含有するSn負極等)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素元素含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅、ランタン等を含むケイ素含有合金(例えば、LaSi、VSi、La-Si、Gd-Si、Ni-Si)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素元素及びスズ元素を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な負極活物質(その前駆体物質)として用いることができる。
 スズ元素を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素元素及びスズ元素を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOを挙げることもできる。
The active material that can be alloyed with lithium is not particularly limited as long as it is commonly used as a negative electrode active material of a secondary battery. Such an active material has a large expansion and contraction due to charge and discharge of the all-solid secondary battery, and accelerates a decrease in cycle characteristics.However, since the negative electrode composition of the present invention contains the binder described above, a decrease in cycle characteristics is caused. Can be suppressed. Examples of such an active material include (negative electrode) active materials (alloys and the like) having a silicon element or a tin element, and metals such as Al and In, which include a silicon element that enables higher battery capacity as a constituent element. A silicon-based negative electrode active material (silicon element-containing active material) is preferable, and a silicon element-containing active material having a silicon element content of 50 mol% or more of all constituent elements is more preferable.
Generally, a negative electrode containing such a negative electrode active material (a Si negative electrode containing a silicon element-containing active material, a Sn negative electrode containing a tin element-containing active material) is used as a carbon negative electrode (eg, graphite and acetylene black). In comparison, more Li ions can be stored. That is, the storage amount of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
Examples of the silicon element-containing active material include silicon materials such as Si and SiOx (0 <x ≦ 1), and silicon-containing alloys including titanium, vanadium, chromium, manganese, nickel, copper, and lanthanum (for example, LaSi 2 , VSi 2 , La—Si, Gd—Si, Ni—Si), or an organized active material (eg, LaSi 2 / Si), as well as silicon and tin elements such as SnSiO 3 and SnSiS 3 And the like. Note that SiOx itself can be used as a negative electrode active material (semi-metal oxide). Further, since Si is generated by the operation of an all-solid secondary battery, a negative electrode active material that can be alloyed with lithium (the Precursor material).
Examples of the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and an active material containing the above silicon element and tin element. Further, a composite oxide with lithium oxide, for example, Li 2 SnO 2 can also be used.
 本発明においては、上述の負極活物質を特に制限されることなく用いることができるが、電池容量の点では、負極活物質として、リチウムと合金化可能な負極活物質が好ましい態様であり、中でも、上記ケイ素材料又はケイ素含有合金(ケイ素元素を含有する合金)がより好ましく、ケイ素(Si)又はケイ素含有合金を含むことが更に好ましい。 In the present invention, the above-described negative electrode active material can be used without any particular limitation.However, in terms of battery capacity, a negative electrode active material that can be alloyed with lithium is a preferable embodiment. The above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and silicon (Si) or a silicon-containing alloy is further preferable.
 本発明において、焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 In the present invention, the chemical formula of the compound obtained by the calcination method can be calculated from inductively coupled plasma (ICP) emission spectroscopy as a measuring method, and from the mass difference of powder before and after calcination as a simple method.
(負極活物質の被覆)
 負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
(Coating of negative electrode active material)
The surface of the negative electrode active material may be coated with another metal oxide. Examples of the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples include titanate spinel, tantalum-based oxide, niobium-based oxide, lithium niobate-based compound, and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , and LiTaO 3 , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3 and the like.
The surface of the electrode containing the negative electrode active material may be surface-treated with sulfur or phosphorus.
Further, the surface of the particles of the negative electrode active material may be subjected to a surface treatment before or after the above-mentioned surface coating with an active ray or an active gas (plasma or the like).
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒径は、特に制限されないが、0.1~60μmが好ましい。負極活物質粒子の平均粒径は、上記無機固体電解質の平均粒径と同様にして測定できる。負極活物質を所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水又はメタノール等の有機溶媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級は、特に限定はなく、篩、風力分級機などを用いて行うことができる。分級は乾式及び湿式ともに用いることができる。 形状 The shape of the negative electrode active material is not particularly limited, but is preferably in the form of particles. The average particle size of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 μm. The average particle size of the negative electrode active material particles can be measured in the same manner as the average particle size of the inorganic solid electrolyte. In order to make the negative electrode active material have a predetermined particle size, an ordinary pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air jet mill, or a sieve is preferably used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as methanol can also be performed. Classification is preferably performed to obtain a desired particle size. Classification is not particularly limited, and can be performed using a sieve, an air classifier, or the like. Classification can be performed both in a dry process and in a wet process.
 負極用組成物は、負極活物質を1種含有していても、2種以上を含有していてもよい。 The composition for the negative electrode may contain one kind of the negative electrode active material or may contain two or more kinds of the negative electrode active material.
 負極用組成物中の負極活物質の含有量は、特に制限されず、固形分100質量%において、10~90質量%であることが好ましく、20~85質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることが更に好ましい。 The content of the negative electrode active material in the negative electrode composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and more preferably 30 to 80% by mass at a solid content of 100% by mass. %, More preferably 40 to 75% by mass.
<分散媒>
 本発明の負極用組成物は、分散媒(分散媒体)を含有する。
 分散媒は、上記の各成分を分散又は溶解させるものであればよいが、少なくともバインダーを溶解させずに分散させるものが好ましい。負極用組成物に含有される分散媒としては、例えば、各種の有機溶媒が挙げられる。有機溶媒としては、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等の各溶媒が挙げられ、その分散媒の具体例としては下記のものが挙げられる。
<Dispersion medium>
The composition for a negative electrode of the present invention contains a dispersion medium (dispersion medium).
The dispersing medium may be any as long as it disperses or dissolves the above-mentioned components, but preferably disperses at least without dissolving the binder. Examples of the dispersion medium contained in the negative electrode composition include various organic solvents. Examples of the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds, and other solvents. Specific examples of the dispersion medium include the following. One.
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。 Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, -Methyl-2,4-pentanediol, 1,3-butanediol and 1,4-butanediol.
 エーテル化合物としては、アルキレングリコール(ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール等)、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。 Examples of the ether compound include alkylene glycol (diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.), alkylene glycol alkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl). Ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc., dialkyl ether (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ether ( Tetrahydrofuran, dioxane (1,2, including 1,3- and 1,4-isomers of), etc.).
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。 Examples of the amide compound include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N- Examples include methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどが挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピロニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸ブチル、ペンタン酸ブチルなどが挙げられる。
 非水系分散媒としては、上記芳香族化合物、脂肪族化合物等が挙げられる。
Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, and the like.
Examples of the aromatic compound include benzene, toluene, xylene and the like.
Examples of the aliphatic compound include hexane, heptane, octane, decane and the like.
Examples of the nitrile compound include acetonitrile, propylonitrile, isobutyronitrile and the like.
Examples of the ester compound include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, and butyl pentanoate.
Examples of the non-aqueous dispersion medium include the above aromatic compounds and aliphatic compounds.
 本発明においては、中でも、ケトン化合物、芳香族化合物、脂肪族化合物、エステル化合物が好ましく、ケトン化合物、脂肪族化合物、エステル化合物が更に好ましい。本発明においては、硫化物系無機固体電解質を用いて、更に上記の特定の有機溶媒を選定することが好ましい。この組み合わせを選定することにより、硫化物系無機固体電解質に対して活性な官能基が含まれないため硫化物系無機固体電解質を安定に取り扱える。特に硫化物系無機固体電解質と脂肪族化合物との組み合わせが好ましい。 に お い て In the present invention, among them, ketone compounds, aromatic compounds, aliphatic compounds and ester compounds are preferable, and ketone compounds, aliphatic compounds and ester compounds are more preferable. In the present invention, it is preferable to further select the above specific organic solvent using a sulfide-based inorganic solid electrolyte. By selecting this combination, a sulfide-based inorganic solid electrolyte can be stably handled because a functional group active with respect to the sulfide-based inorganic solid electrolyte is not included. Particularly, a combination of a sulfide-based inorganic solid electrolyte and an aliphatic compound is preferable.
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。
 負極用組成物は、分散媒を1種含有していても、2種以上を含有していてもよい。
The dispersion medium preferably has a boiling point at normal pressure (1 atm) of 50 ° C or higher, more preferably 70 ° C or higher. The upper limit is preferably 250 ° C or lower, more preferably 220 ° C or lower.
The composition for a negative electrode may contain one type of dispersion medium or two or more types.
 本発明において、負極用組成物中の分散媒の含有量は、特に制限されず適宜に設定することができる。例えば、負極用組成物中、20~99質量%が好ましく、25~70質量%がより好ましく、30~60質量%が特に好ましい。 に お い て In the present invention, the content of the dispersion medium in the negative electrode composition is not particularly limited and can be appropriately set. For example, in the composition for a negative electrode, the amount is preferably 20 to 99% by mass, more preferably 25 to 70% by mass, and particularly preferably 30 to 60% by mass.
<導電助剤>
 本発明の負極用組成物は、活物質の電子導電性を向上させる等のために用いられる導電助剤を適宜含有してもよい。導電助剤としては、一般的な導電助剤を用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。またこれらの内1種を用いてもよいし、2種以上を用いてもよい。導電助剤の形状は、特に制限されないが、粒子状が好ましい。
 本発明の負極用組成物が導電助剤を含む場合、負極用組成物中の導電助剤の含有量は、固形分100質量%において、0~10質量%が好ましい。
 本発明において、活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際に周期律表第一族若しくは第二族に属する金属のイオン(好ましくはLiイオン)の挿入と放出が起きず、活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
<Conduction aid>
The composition for a negative electrode of the present invention may appropriately contain a conductive additive used for improving the electronic conductivity of the active material. As the conductive assistant, a general conductive assistant can be used. For example, electron conductive materials such as natural graphite, graphite such as artificial graphite, carbon black such as acetylene black, Ketjen black, furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube Carbon fibers such as graphene or fullerene; metal powders such as copper and nickel; metal fibers; and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives. May be used. One of these may be used, or two or more thereof may be used. The shape of the conductive additive is not particularly limited, but is preferably in the form of particles.
When the composition for a negative electrode of the present invention contains a conductive additive, the content of the conductive additive in the composition for a negative electrode is preferably 0 to 10% by mass based on 100% by mass of solid content.
In the present invention, when an active material and a conductive auxiliary are used in combination, of the above conductive auxiliary, ions of a metal belonging to the first or second group of the periodic table (preferably Li) when the battery is charged and discharged. A substance that does not cause insertion and release of ions and does not function as an active material is defined as a conductive assistant. Therefore, among the conductive assistants, those that can function as an active material in the active material layer when the battery is charged and discharged are classified as active materials rather than conductive assistants. Whether or not the battery functions as an active material when charged and discharged is not unique and is determined by a combination with the active material.
<リチウム塩>
 本発明の負極用組成物は、リチウム塩(支持電解質)を含有することも好ましい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 本発明の負極用組成物がリチウム塩を含む場合、リチウム塩の含有量は、固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
<Lithium salt>
The composition for a negative electrode of the present invention also preferably contains a lithium salt (supporting electrolyte).
As the lithium salt, a lithium salt usually used for this kind of product is preferable, and there is no particular limitation. For example, lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
When the composition for a negative electrode of the present invention contains a lithium salt, the content of the lithium salt is preferably at least 0.1 part by mass, more preferably at least 5 parts by mass, based on 100 parts by mass of the solid electrolyte. As a maximum, 50 mass parts or less are preferred, and 20 mass parts or less are more preferred.
<分散剤>
 本発明の負極用組成物は、分散剤を含有していてもよい。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発及び/又は静電反発を意図した化合物が好適に使用される。
<Dispersant>
The composition for a negative electrode of the present invention may contain a dispersant. As the dispersant, those commonly used in all solid-state secondary batteries can be appropriately selected and used. Generally, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
<他の添加剤>
 本発明の負極用組成物は、上記各成分以外の他の成分として、所望により、イオン液体、増粘剤、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。イオン液体は、イオン伝導度をより向上させるため含有されるものであり、公知のものを特に制限されることなく用いることができる。
<Other additives>
The composition for a negative electrode of the present invention may further include, if desired, an ionic liquid, a thickener, a crosslinking agent (such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization) as a component other than the above-described components. It may contain an initiator (such as one that generates an acid or a radical by heat or light), an antifoaming agent, a leveling agent, a dehydrating agent, an antioxidant and the like. The ionic liquid is contained for further improving the ionic conductivity, and a known ionic liquid can be used without any particular limitation.
<負極用組成物の調製>
 本発明の負極用組成物は、無機固体電解質、バインダー、負極活物質、分散媒、更に任意の他の成分を、例えば通常用いる各種の混合機で混合することにより、混合物として、好ましくはスラリーとして、調製することができる。
 混合方法は特に制限されず、一括して混合してもよく、順次混合してもよい。混合する環境は特に制限されないが、乾燥空気下又は不活性ガス下等が挙げられる。
 負極用組成物を分散液として調製する場合、バインダーを分散させる方法は、特に制限されず、上記ポリマーの合成法(例えば乳化重合法)、転相乳化法等の公知の乳化法を適用できる。
<Preparation of composition for negative electrode>
The composition for a negative electrode of the present invention, an inorganic solid electrolyte, a binder, a negative electrode active material, a dispersion medium, and any other components, for example, by mixing with various commonly used mixers, as a mixture, preferably as a slurry Can be prepared.
The mixing method is not particularly limited, and they may be mixed at once or may be mixed sequentially. The mixing environment is not particularly limited, and examples thereof include under dry air or under an inert gas.
When the composition for the negative electrode is prepared as a dispersion, the method for dispersing the binder is not particularly limited, and a known emulsification method such as a method for synthesizing the polymer (for example, an emulsion polymerization method) and a phase inversion emulsification method can be applied.
[全固体二次電池用負極シート]
 本発明の全固体二次電池用負極シートは、上述の本発明の負極用組成物で構成した負極活物質層を有している。そのため、本発明の全固体二次電池用負極シートの負極活物質層は抵抗上昇の抑制と膜強度の向上とを高い水準で両立している。更に、負極活物質層は負極集電体とも強固に結着している。このような負極活物質層を備えた本発明の全固体二次電池用負極シートは、全固体二次電池に電池抵抗の低減と高い放電容量を維持できる特性とを付与でき、全固体二次電池の負極活物質層を形成する材料として好ましく用いることができる。
[Negative electrode sheet for all solid state secondary batteries]
The negative electrode sheet for an all-solid secondary battery of the present invention has a negative electrode active material layer composed of the above-described negative electrode composition of the present invention. Therefore, the negative electrode active material layer of the negative electrode sheet for an all solid state secondary battery of the present invention has both a high resistance and a high film strength. Further, the negative electrode active material layer is firmly bound to the negative electrode current collector. The negative electrode sheet for an all-solid secondary battery of the present invention having such a negative electrode active material layer can provide the all-solid secondary battery with characteristics of reducing battery resistance and maintaining a high discharge capacity, It can be preferably used as a material for forming a negative electrode active material layer of a battery.
 本発明の全固体二次電池用負極シート(単に、負極シートということがある。)は、上述の負極活物質層を有するシートであればよく、負極活物質層が基材(負極集電体)上に形成されているシートでも、基材を有さず、負極活物質層から形成されているシートであってもよい。基材としては、負極活物質層を支持できるものであれば特に限定されず、後述する負極集電体で説明する材料、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス、セラミック等が挙げられる。
 本発明の全固体二次電池用負極シートは、通常、負極集電体及び負極活物質層を有するシートであるが、負極集電体、負極活物質層及び固体電解質層をこの順に有する態様、並びに、負極集電体、負極活物質層、固体電解質層及び正極活物質層をこの順に有する態様も含まれる。この負極シートは、保護層(剥離シート)、集電体、コート層等の他の層を有してもよい。
 負極シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。負極シートの負極活物質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の電解質組成物(負極用組成物)の固形分中における各成分の含有量と同義である。
The negative electrode sheet for an all-solid secondary battery of the present invention (may be simply referred to as a negative electrode sheet) may be a sheet having the above-described negative electrode active material layer. ) May be a sheet formed thereon or a sheet having no base material and formed from a negative electrode active material layer. The substrate is not particularly limited as long as it can support the negative electrode active material layer, and includes a sheet (plate-like body) such as a material described below for an anode current collector, an organic material, and an inorganic material. . Examples of the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose. Examples of the inorganic material include glass and ceramic.
The negative electrode sheet for an all-solid-state secondary battery of the present invention is generally a sheet having a negative electrode current collector and a negative electrode active material layer, and has a negative electrode current collector, a negative electrode active material layer and a solid electrolyte layer in this order, In addition, an embodiment having a negative electrode current collector, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer in this order is also included. This negative electrode sheet may have other layers such as a protective layer (release sheet), a current collector, and a coat layer.
The layer thickness of each layer constituting the negative electrode sheet is the same as the layer thickness of each layer described in the all solid state secondary battery described later. The content of each component in the negative electrode active material layer of the negative electrode sheet is not particularly limited, but is preferably the same as the content of each component in the solid content of the electrolyte composition (composition for negative electrode) of the present invention. .
[全固体二次電池用負極シートの製造方法]
 本発明の全固体二次電池用負極シートの製造方法は、特に制限されず、本発明の負極用組成物を製膜して負極活物質層を形成することにより、製造できる。例えば、好ましくは基材上(他の層を介していてもよい。)で、本発明の負極用組成物を製膜(塗布乾燥)して、負極活物質層(塗布乾燥層)を形成する方法が挙げられる。これにより、基材と塗布乾燥層とを有する全固体二次電池用負極シートを作製することができる。ここで、塗布乾燥層とは、本発明の負極用組成物を塗布し、分散媒を乾燥させることにより形成される負極活物質層(すなわち、本発明の負極用組成物を用いてなり、本発明の負極用組成物から分散媒を除去した組成からなる負極活物質層)をいう。塗布乾燥層は、本発明の効果を損なわない限り、乾燥後も分散媒を含有してよく、例えば塗布乾燥層の全質量に対して1質量%以下の含有量で含有(残存)していてもよい。
 本発明の全固体二次電池用負極シートの製造方法において、塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
[Method for producing negative electrode sheet for all-solid secondary battery]
The method for producing the negative electrode sheet for an all-solid secondary battery of the present invention is not particularly limited, and the negative electrode sheet can be produced by forming the negative electrode composition of the present invention into a film to form a negative electrode active material layer. For example, the negative electrode composition of the present invention is preferably formed (coated and dried) on a substrate (may be via another layer) to form a negative electrode active material layer (coated and dried layer). Method. Thereby, a negative electrode sheet for an all-solid secondary battery having a substrate and a coating and drying layer can be produced. Here, the coating dry layer is a negative electrode active material layer formed by applying the negative electrode composition of the present invention and drying the dispersion medium (that is, the negative electrode active material layer formed using the negative electrode composition of the present invention. Negative electrode active material layer having a composition obtained by removing the dispersion medium from the negative electrode composition of the present invention). The dried coating layer may contain a dispersion medium even after drying, as long as the effect of the present invention is not impaired. For example, the coating medium is contained (remaining) in a content of 1% by mass or less based on the total mass of the dried coating layer. Is also good.
In the method for producing a negative electrode sheet for an all-solid secondary battery of the present invention, each step of coating and drying will be described in the following method for producing an all-solid secondary battery.
 本発明の全固体二次電池用負極シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等は、後述する、全固体二次電池の製造方法における条件を適用できるが、加圧力は、例えば3~2000MPaとすることもできる。
 また、本発明の全固体二次電池用負極シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
In the method for producing a negative electrode sheet for an all-solid secondary battery of the present invention, the coated and dried layer obtained as described above may be pressed. As the pressing conditions and the like, the conditions in the method for manufacturing an all-solid secondary battery described below can be applied, but the pressing force may be, for example, 3 to 2000 MPa.
Further, in the method for producing a negative electrode sheet for an all-solid secondary battery of the present invention, the base material, the protective layer (particularly, a release sheet), and the like can be peeled off.
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、好ましくは正極集電体上に形成され、正極を構成する。負極活物質層は、好ましくは負極集電体上に形成され、負極を構成する。
 本発明の全固体二次電池において、負極活物質層は本発明の負極用組成物で形成されることが好ましく、正極活物質層及び固体電解質層は公知の材料、例えば後述する、正極活物質若しくは正極用組成物又は固体電解質組成物等で形成される。本発明の負極用組成物で形成された負極活物質層は、抵抗上昇の抑制と膜強度の向上とを高い水準で両立しており、全固体二次電池が低い電池抵抗と高い放電容量を維持できる特性とを達成することに寄与する。本発明の負極用組成物で形成された負極活物質層は、好ましくは、含有する成分種及びその含有量比について、本発明の負極用組成物の固形分におけるものと同じである。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
[All-solid secondary battery]
The all solid state secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer opposed to the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer. Have. The positive electrode active material layer is preferably formed on a positive electrode current collector and forms a positive electrode. The negative electrode active material layer is preferably formed on a negative electrode current collector to form a negative electrode.
In the all solid state secondary battery of the present invention, the negative electrode active material layer is preferably formed of the composition for a negative electrode of the present invention, and the positive electrode active material layer and the solid electrolyte layer are made of a known material, for example, a positive electrode active material described later. Alternatively, it is formed of a positive electrode composition, a solid electrolyte composition, or the like. The negative electrode active material layer formed of the composition for a negative electrode of the present invention has both a high level of suppression of resistance increase and an improvement in film strength, and the all-solid secondary battery has a low battery resistance and a high discharge capacity. It contributes to achieving maintainable characteristics. The negative electrode active material layer formed of the composition for a negative electrode of the present invention is preferably the same as the solid component of the composition for a negative electrode of the present invention with respect to the types of components contained and the content ratio thereof.
The thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 μm, more preferably 20 μm or more and less than 500 μm, in consideration of the dimensions of a general all solid state secondary battery. In the all solid state secondary battery of the present invention, it is more preferable that at least one of the positive electrode active material layer and the negative electrode active material layer has a thickness of 50 μm or more and less than 500 μm.
〔筐体〕
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
(Housing)
The all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure depending on the application. Is preferred. The housing may be made of metal or resin (plastic). When a metallic material is used, for example, an aluminum alloy or a stainless steel material can be used. It is preferable that the metallic casing is divided into a casing on the positive electrode side and a casing on the negative electrode side, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing short circuit.
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。 Hereinafter, an all-solid secondary battery according to a preferred embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to this.
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。 FIG. 1 is a cross-sectional view schematically illustrating an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 10 of the present embodiment includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. . Each layer is in contact with each other and has an adjacent structure. By employing such a structure, at the time of charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein. On the other hand, at the time of discharging, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6. In the example shown in the figure, a light bulb is employed as a model for the operating part 6, and this is turned on by discharge.
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用電極シートと称し、この全固体二次電池用電極シートを2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。 When the all-solid secondary battery having the layer configuration shown in FIG. 1 is placed in a 2032 type coin case, this all-solid secondary battery is referred to as an all-solid secondary battery electrode sheet, and the all-solid secondary battery electrode sheet is referred to as an all-solid secondary battery electrode sheet. A battery manufactured in a 2032 type coin case is sometimes referred to as an all solid state secondary battery.
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、負極活物質層が本発明の負極用組成物で形成されている。正極活物質層及び固体電解質層は、後述する正極活物質のシート若しくは正極用組成物、又は固体電解質組成物で形成されている。上記負極活物質層を備えた全固体二次電池10は優れた電池性能(低い電池抵抗と高い放電容量を維持できる特性)を示す。
(Positive electrode active material layer, solid electrolyte layer, negative electrode active material layer)
In the all-solid secondary battery 10, the negative electrode active material layer is formed of the negative electrode composition of the present invention. The positive electrode active material layer and the solid electrolyte layer are formed of a positive electrode active material sheet or a positive electrode composition described later, or a solid electrolyte composition. The all-solid-state secondary battery 10 including the negative electrode active material layer exhibits excellent battery performance (characteristics capable of maintaining low battery resistance and high discharge capacity).
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors.
In the present invention, one or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
As the material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, a material obtained by treating a surface of aluminum or stainless steel with carbon, nickel, titanium or silver (forming a thin film) Are preferred, and among them, aluminum and an aluminum alloy are more preferred.
As materials for forming the negative electrode current collector, in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., the surface of aluminum, copper, copper alloy or stainless steel is treated with carbon, nickel, titanium or silver. Preferably, aluminum, copper, copper alloy and stainless steel are more preferred.
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
As the shape of the current collector, a film sheet is usually used, but a net, a punched material, a lath, a porous material, a foam, a molded product of a fiber group, and the like can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. In addition, it is preferable that the surface of the current collector be provided with irregularities by surface treatment.
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層、部材等を適宜介在若しくは配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。 In the present invention, a functional layer, a member, or the like is appropriately interposed or provided between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be. Each layer may be composed of a single layer, or may be composed of multiple layers.
[全固体二次電池の製造]
 全固体二次電池は、常法によって製造でき、好ましくは、全固体二次電池用負極シートの製造方法を介して、製造できる。より具体的には、本発明の負極用組成物等を用いて負極活物質層を形成し、公知の材料を用いて正極活物質層及び固体電解質層を形成することにより、製造できる。
 全固体二次電池の製造に用いる負極用組成物又は全固体二次電池用負極シートは上述の通りである。以下に、全固体二次電池の製造方法において、正極活物質層及び固体電解質層の形成に用いる材料(組成物又はシート)について、簡単に説明する。
[Manufacture of all solid state secondary battery]
The all-solid-state secondary battery can be manufactured by a conventional method, and can be preferably manufactured through a method of manufacturing a negative-electrode sheet for an all-solid-state secondary battery. More specifically, it can be manufactured by forming a negative electrode active material layer using the composition for a negative electrode of the present invention and the like, and forming a positive electrode active material layer and a solid electrolyte layer using known materials.
The composition for the negative electrode or the negative electrode sheet for the all-solid secondary battery used in the production of the all-solid secondary battery is as described above. Hereinafter, a material (composition or sheet) used for forming the positive electrode active material layer and the solid electrolyte layer in the method for manufacturing an all-solid secondary battery will be briefly described.
(正極用組成物)
 全固体二次電池の正極活物質層は、例えば、正極用組成物、正極活物質からなるシート等で形成することができる。
 正極用組成物としては、公知の組成物を特に制限されることなく用いることができる。例えば、正極活物質、好ましくは無機固体電解質、バインダー、更には分散媒、適宜に他の添加剤を含有する正極用組成物が挙げられ、好ましくは、無機固体電解質、正極活物質、バインダー及び分散媒を含有する正極用組成物が挙げられる。
 正極用組成物が含有する、無機固体電解質、バインダー、分散媒及び他の添加剤としては、それぞれ、公知のものを特に制限されることなく用いることができ、本発明の負極用組成物におけるものと同じでも異なっていてもよい。正極用組成物が含有するバインダーのうち本発明の負極用組成物が含有する、上記条件A及びBを満たす側鎖を持つ構成成分を有するポリマーからなるバインダーと異なるバインダー(以下、負極用組成物と異なるバインダーということがある。)としては、後述する固体電解質組成物が含有するバインダーが挙げられる。正極用組成物中の、バインダー、分散媒及び他の添加剤の含有量は、それぞれ、本発明の負極用組成物における含有量と同じ範囲に設定できる。
 正極用組成物の、例えば分散状態及び含水率は、本発明の負極用組成物と同じであることが好ましい。
 正極用組成物は、負極用組成物と同様にして調製できる。
(Composition for positive electrode)
The positive electrode active material layer of the all solid state secondary battery can be formed of, for example, a positive electrode composition, a sheet made of the positive electrode active material, or the like.
As the composition for the positive electrode, a known composition can be used without any particular limitation. For example, a positive electrode active material, preferably an inorganic solid electrolyte, a binder, further a dispersion medium, a composition for a positive electrode containing other additives as appropriate, preferably, an inorganic solid electrolyte, a positive electrode active material, a binder and a dispersion And a composition for a positive electrode containing a solvent.
The composition for the positive electrode contains, as the inorganic solid electrolyte, the binder, the dispersion medium and the other additives, each can be used without particular limitation, and those in the negative electrode composition of the present invention May be the same or different. Among the binders contained in the composition for the positive electrode, a binder different from the binder containing the constituent component having the side chain that satisfies the above conditions A and B contained in the composition for the negative electrode of the present invention (hereinafter referred to as the composition for the negative electrode) And a binder different from the above.) May be a binder contained in a solid electrolyte composition described later. The contents of the binder, the dispersion medium and the other additives in the positive electrode composition can be set in the same ranges as the contents in the negative electrode composition of the present invention.
For example, the dispersed state and the water content of the positive electrode composition are preferably the same as those of the negative electrode composition of the present invention.
The composition for the positive electrode can be prepared in the same manner as the composition for the negative electrode.
 - 正極活物質 -
 正極用組成物は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質として正極活物質を含有する。
 正極活物質は、可逆的にリチウムイオンを挿入及び/又は放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、硫黄などのLiと複合化できる元素などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
- Positive electrode active material -
The positive electrode composition contains a positive electrode active material as an active material capable of inserting and releasing ions of a metal belonging to Group 1 or 2 of the periodic table.
It is preferable that the positive electrode active material be capable of reversibly inserting and / or releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an element such as sulfur, which can be combined with Li, or the like.
Among them, a transition metal oxide is preferably used as the positive electrode active material, and a transition metal oxide containing a transition metal element M a (at least one element selected from Co, Ni, Fe, Mn, Cu, and V). Are more preferred. In addition, the transition metal oxide includes an element M b (an element of the first (Ia) group, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P and B). The mixing amount is preferably 0 ~ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, (MD) And (ME) lithium-containing transition metal silicate compounds.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
(MA) As specific examples of the transition metal oxide having a layered rock salt type structure, LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0.1 . 05 O 2 (lithium nickel cobalt aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
(MB) As specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8, and Li 2 2 NiMn 3 O 8 .
Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. And monoclinic nasicon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
(ME) Examples of the lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の平均粒径(球換算平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質粒子の平均粒径は、上記無機固体電解質の平均粒径と同様にして測定できる。正極活物質を所定の粒子径にするには、負極活物質と同様に、通常の粉砕機若しくは分級機が用いられる。
 焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
The shape of the positive electrode active material is not particularly limited, but is preferably particulate. The average particle size (sphere-converted average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 μm. The average particle diameter of the positive electrode active material particles can be measured in the same manner as the above-mentioned average particle diameter of the inorganic solid electrolyte. In order to make the positive electrode active material have a predetermined particle size, an ordinary pulverizer or a classifier is used as in the case of the negative electrode active material.
The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 正極活物質は、負極活物質と同様に、上記表面被覆剤、硫黄若しくはリンで、更には上記活性光線等により、表面被覆されていてもよい。 (4) The positive electrode active material may be surface-coated with the above-mentioned surface coating agent, sulfur or phosphorus, and further with the above-mentioned actinic ray or the like, similarly to the negative electrode active material.
 正極用組成物は、正極活物質を1種含有していても、2種以上を含有していてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの、正極活物質及び無機固体電解質の合計質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
The positive electrode composition may contain one kind of positive electrode active material, or may contain two or more kinds.
When the positive electrode active material layer is formed, the total mass (mg) (weight per unit area) of the positive electrode active material and the inorganic solid electrolyte per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
 正極用組成物中の正極活物質の含有量は、特に制限されず、固形分100質量%において、10~97質量%が好ましく、30~95質量%がより好ましく、40~93質量が更に好ましく、50~90質量%が特に好ましい。
 正極用組成物が無機固体電解質を含有する場合、正極用組成物中の、無機固体電解質と正極活物質との合計含有量は、負極用組成物中の、無機固体電解質と負極活物質との合計含有量と同じ範囲にあることが好ましい。
The content of the positive electrode active material in the positive electrode composition is not particularly limited, and is preferably from 10 to 97% by mass, more preferably from 30 to 95% by mass, and still more preferably from 40 to 93% by mass at a solid content of 100% by mass. , 50 to 90% by mass is particularly preferred.
When the positive electrode composition contains an inorganic solid electrolyte, the total content of the inorganic solid electrolyte and the positive electrode active material in the positive electrode composition is, in the negative electrode composition, the inorganic solid electrolyte and the negative electrode active material. It is preferable that it is in the same range as the total content.
(全固体二次電池用正極シート)
 全固体二次電池の正極活物質層を形成しうる全固体二次電池用正極シートは、負極活物質層に代えて正極活物質層を備えていること、更に負極集電体ではなく正極集電体を適宜に備えていること以外は、本発明の全固体二次電池用負極シートと同じである。全固体二次電池用正極シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。正極シートの正極活物質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の固体電解質組成物(正極用組成物)の固形分中における各成分の含有量と同義である。
 全固体二次電池用正極シートの製造方法も、上記正極用組成物を、適宜に正極集電体を用いること以外は、本発明の全固体二次電池用負極シートと同じである。
(Positive electrode sheet for all solid state secondary batteries)
A positive electrode sheet for an all solid state secondary battery capable of forming a positive electrode active material layer of an all solid state secondary battery includes a positive electrode active material layer instead of a negative electrode active material layer, and further includes a positive electrode collector instead of a negative electrode current collector. It is the same as the negative electrode sheet for an all-solid secondary battery of the present invention, except that an electric conductor is appropriately provided. The layer thickness of each layer constituting the positive electrode sheet for an all-solid secondary battery is the same as the layer thickness of each layer described in the all-solid secondary battery described later. The content of each component in the positive electrode active material layer of the positive electrode sheet is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the solid electrolyte composition (composition for positive electrode) of the present invention. is there.
The method for producing a positive electrode sheet for an all-solid secondary battery is also the same as the method for producing a negative electrode sheet for an all-solid secondary battery of the present invention, except that the above-mentioned composition for a positive electrode is appropriately used with a positive electrode current collector.
(固体電解質組成物)
 全固体二次電池の無機固体電解質層は、例えば、固体電解質組成物等で形成することができる。
 固体電解質組成物としては、公知の組成物を特に制限されることなく用いることができる。例えば、無機固体電解質、好ましくはバインダー、更には分散媒、適宜に他の添加剤を含有する固体電解質組成物が挙げられ、好ましくは、無機固体電解質、バインダー及び分散媒を含有する固体電解質組成物が挙げられる。固体電解質組成物は、通常、活物質を含有しない。
 固体電解質組成物が含有する、無機固体電解質、バインダー、分散媒及び他の添加剤としては、それぞれ、公知のものを特に制限されることなく用いることができ、本発明の負極用組成物におけるものと同じでも異なっていてもよい。
(Solid electrolyte composition)
The inorganic solid electrolyte layer of the all solid state secondary battery can be formed of, for example, a solid electrolyte composition or the like.
As the solid electrolyte composition, a known composition can be used without any particular limitation. For example, an inorganic solid electrolyte, preferably a binder, further a dispersion medium, a solid electrolyte composition containing other additives as appropriate, preferably, a solid electrolyte composition containing an inorganic solid electrolyte, a binder and a dispersion medium Is mentioned. The solid electrolyte composition usually does not contain an active material.
The solid electrolyte composition contains, as the inorganic solid electrolyte, the binder, the dispersion medium and the other additives, each can be used without particular limitation, and those in the negative electrode composition of the present invention. May be the same or different.
 固体電解質組成物が含有するバインダーのうち本発明の負極用組成物と異なるバインダーとしては、全固体二次電池用の固体電解質組成物に通常用いられる各種バインダーを特に制限されずに適用できる。例えば、含フッ素ポリマー、炭化水素基系熱可塑性ポリマー、(メタ)アクリルポリマー、その他のビニル系モノマーとの共重合体(コポリマー)、ポリウレタン、ポリウレア、ポリアミド、ポリイミド、ポリエステル、ポリエーテル、ポリカーボネート、セルロース誘導体ポリマー等の各種ポリマーからなるバインダーが挙げられる。
 含フッ素ポリマーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素基系熱可塑性ポリマーとしては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 (メタ)アクリルポリマーとしては、各種の(メタ)アクリルモノマー、(メタ)アクリルアミドモノマー、及びこれらモノマーの2種以上の共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、その他のビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本願明細書において、コポリマーは、統計コポリマー及び周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
 (メタ)アクリルポリマーとしては、例えば、特開2015-088486号公報に記載の、ポリマー等が挙げられる。また、ポリウレタン、ポリウレア、ポリアミド、ポリイミドの各ポリマーとしては、例えば、特開2015-088480号公報に記載の、ウレタン結合を有するポリマー、ウレア結合を有するポリマー、アミド結合を有するポリマー、イミド結合を有するポリマー等が挙げられる。
Among the binders contained in the solid electrolyte composition, as the binder different from the composition for the negative electrode of the present invention, various binders usually used for the solid electrolyte composition for an all-solid secondary battery can be applied without any particular limitation. For example, fluoropolymers, hydrocarbon-based thermoplastic polymers, (meth) acrylic polymers, copolymers with other vinyl monomers, polyurethane, polyurea, polyamide, polyimide, polyester, polyether, polycarbonate, cellulose Examples of the binder include various polymers such as derivative polymers.
Examples of the fluorine-containing polymer include polytetrafluoroethylene (PTFE), polyvinylene difluoride (PVdF), and a copolymer of polyvinylene difluoride and hexafluoropropylene (PVdF-HFP).
Examples of the hydrocarbon group-based thermoplastic polymer include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
Examples of the (meth) acrylic polymer include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of two or more of these monomers (preferably, copolymers of acrylic acid and methyl acrylate). No.
In addition, copolymers with other vinyl monomers are also preferably used. Examples include a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene. In the present specification, the copolymer may be any of a statistical copolymer and a periodic copolymer, and is preferably a block copolymer.
Examples of the (meth) acrylic polymer include a polymer described in JP-A-2015-088486. Examples of the polyurethane, polyurea, polyamide, and polyimide polymers include, for example, a polymer having a urethane bond, a polymer having a urea bond, a polymer having an amide bond, and a polymer having an imide bond described in JP-A-2015-088480. Polymers and the like.
 固体電解質組成物中の、バインダー、分散媒及び他の添加剤の含有量は、それぞれ、本発明の負極用組成物における含有量と同じ範囲に設定できる。固体電解質組成物中の無機固体電解質の含有量は、分散性、界面抵抗の低減及び結着性の点で、固形分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 固体電解質組成物の、例えば分散状態及び含水率は、本発明の負極用組成物と同じであることが好ましい。
 固体電解質組成物は、負極用組成物と同様にして調製できる。
The content of the binder, the dispersion medium, and the other additives in the solid electrolyte composition can be set in the same range as the content in the negative electrode composition of the present invention. The content of the inorganic solid electrolyte in the solid electrolyte composition is preferably 50% by mass or more and 100% by mass or more, and more preferably 70% by mass or more at a solid content of 100% by mass in view of dispersibility, reduction of interface resistance, and binding property. Is more preferable, and it is particularly preferable that it is 90 mass% or more. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
For example, the solid electrolyte composition preferably has the same dispersion state and water content as the negative electrode composition of the present invention.
The solid electrolyte composition can be prepared in the same manner as the negative electrode composition.
(全固体二次電池用固体電解質シート)
 全固体二次電池の固体電解質層を形成しうる全固体二次電池用固体電解質シートは、固体電解質層を有するシートであればよく、固体電解質層が基材上に形成されているシートでも、基材を有さず、固体電解質層から形成されているシートであってもよい。全固体二次電池用固体電解質シートの固体電解質層は、上述の固体電解質組成物を、負極用組成物と同様に成膜することにより、得ることができる。全固体二次電池用シートの固体電解質層の構成、層厚は、本発明の全固体二次電池において説明する固体電解質層の構成、層厚と同じである。全固体二次電池用固体電解質シートが有する固体電解質層は、本発明の固体電解質組成物で形成されることが好ましい。この固体電解質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の固体電解質組成物の固形分中における各成分の含有量と同義である。全固体二次電池用固体電解質シートは、固体電解質層の他に上述の他の層を有してもよい。
(Solid electrolyte sheet for all-solid secondary battery)
The solid electrolyte sheet for an all-solid secondary battery capable of forming a solid electrolyte layer of an all-solid secondary battery may be a sheet having a solid electrolyte layer, even if the solid electrolyte layer is formed on a substrate, A sheet having no base material and formed from a solid electrolyte layer may be used. The solid electrolyte layer of the solid electrolyte sheet for an all-solid secondary battery can be obtained by forming the above-described solid electrolyte composition into a film in the same manner as the negative electrode composition. The configuration and thickness of the solid electrolyte layer of the sheet for an all-solid secondary battery are the same as the configuration and thickness of the solid electrolyte layer described in the all-solid secondary battery of the present invention. The solid electrolyte layer of the solid electrolyte sheet for an all-solid secondary battery is preferably formed of the solid electrolyte composition of the present invention. The content of each component in the solid electrolyte layer is not particularly limited, but preferably has the same meaning as the content of each component in the solid content of the solid electrolyte composition of the present invention. The solid electrolyte sheet for an all-solid secondary battery may have another layer described above in addition to the solid electrolyte layer.
(全固体二次電池の製造)
 本発明の全固体二次電池は、本発明の負極用組成物を基材(例えば負極集電体となる金属箔)上に、塗布し、塗膜を形成する(製膜する)工程を含む(介する)方法(本発明の全固体二次電池用シートの製造方法)を介して、製造できる。
 例えば、正極集電体である金属箔上に例えば上記正極層用組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に例えば上記固体電解質組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に本発明の負極層用組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。これを筐体に封入して所望の全固体二次電池とすることもできる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
(Manufacture of all-solid secondary batteries)
The all solid state secondary battery of the present invention includes a step of applying the composition for a negative electrode of the present invention on a base material (for example, a metal foil serving as a negative electrode current collector) and forming a coating film (forming a film). (Intermediate) method (the method for producing the sheet for an all solid state secondary battery of the present invention).
For example, the above-described composition for a positive electrode layer is applied on a metal foil as a positive electrode current collector to form a positive electrode active material layer, thereby producing a positive electrode sheet for an all-solid secondary battery. Next, for example, the solid electrolyte composition is applied on the positive electrode active material layer to form a solid electrolyte layer. Further, the composition for a negative electrode layer of the present invention is applied on the solid electrolyte layer to form a negative electrode active material layer. Obtaining an all-solid secondary battery with a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer Can be. This can be sealed in a housing to form a desired all-solid secondary battery.
In addition, by reversing the method of forming each layer, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery. You can also.
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び本発明の全固体二次電池用負極シートをそれぞれ作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び本発明の全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。 Another method is as follows. That is, as described above, the positive electrode sheet for an all-solid secondary battery and the negative electrode sheet for an all-solid secondary battery of the present invention are produced. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Further, the other of the positive electrode sheet for an all-solid secondary battery and the negative electrode sheet for an all-solid secondary battery of the present invention is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. Thus, an all-solid secondary battery can be manufactured.
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び本発明の全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 更に、上記のようにして、全固体二次電池用正極シート又は全固体二次電池用負極シート、及び全固体二次電池用固体電解質シートを作製する。次いで、全固体二次電池用正極シート又は全固体二次電池用負極シートと全固体二次電池用固体電解質シートとを、正極活物質層又は負極活物質層と固体電解質層とを接触させた状態に、重ねて、加圧する。こうして、全固体二次電池用正極シート又は全固体二次電池用負極シートに固体電解質層を転写する。その後、全固体二次電池用固体電解質シートの基材を剥離した固体電解質層と全固体二次電池用負極シート又は全固体二次電池用正極シートとを(固体電解質層に負極活物質層又は正極活物質層を接触させた状態に)重ねて加圧する。このようにして、全固体二次電池を製造することができる。
Another method is as follows. That is, as described above, the positive electrode sheet for an all-solid secondary battery and the negative electrode sheet for an all-solid secondary battery of the present invention are produced. Separately, a solid electrolyte composition is applied on a substrate to prepare a solid electrolyte sheet for an all-solid secondary battery. Further, the positive electrode sheet for an all-solid secondary battery and the negative electrode sheet for an all-solid secondary battery are laminated so as to sandwich the solid electrolyte layer peeled off from the base material. Thus, an all-solid secondary battery can be manufactured.
Further, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are prepared as described above. Subsequently, the all-solid secondary battery positive electrode sheet or the all-solid secondary battery negative electrode sheet and the all-solid secondary battery solid electrolyte sheet were brought into contact with the positive electrode active material layer or the negative electrode active material layer and the solid electrolyte layer. In the state, it overlaps and pressurizes. Thus, the solid electrolyte layer is transferred to the positive electrode sheet for an all-solid secondary battery or the negative electrode sheet for an all-solid secondary battery. Thereafter, the solid electrolyte layer from which the base material of the solid electrolyte sheet for an all-solid secondary battery was peeled off and the negative electrode sheet for an all-solid secondary battery or the positive electrode sheet for an all-solid secondary battery were added (a negative electrode active material layer or The positive electrode active material layer is contacted (in a state of being in contact with the positive electrode active material layer) and pressurized. Thus, an all-solid secondary battery can be manufactured.
 上記の製造方法においては、負極活物質層の形成に本発明の負極用組成物又は本発明の全固体二次電池用負極シートを用いる。
 固体電解質層等は、例えば基板若しくは活物質層上で、固体電解質組成物等を後述する加圧条件下で加圧成形して形成することもできるし、固体電解質又は活物質のシート成形体を用いることもできる。
In the above manufacturing method, the composition for a negative electrode of the present invention or the negative electrode sheet for an all-solid secondary battery of the present invention is used for forming a negative electrode active material layer.
The solid electrolyte layer or the like can be formed by, for example, pressing a solid electrolyte composition or the like under pressure conditions described below on a substrate or an active material layer, or forming a sheet formed body of the solid electrolyte or the active material. It can also be used.
<各層の形成(成膜)>
 本発明の負極用組成物等の各組成物の塗布方法は特に制限されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 このとき、各組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に制限されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。
<Formation of each layer (film formation)>
The method for applying each composition such as the composition for a negative electrode of the present invention is not particularly limited and can be appropriately selected. Examples include coating (preferably wet coating), spray coating, spin coating, dip coating, slit coating, stripe coating, and bar coating.
At this time, each composition may be subjected to a drying treatment after being applied, or may be subjected to a drying treatment after being applied in a multilayer manner. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, even more preferably 80 ° C. or higher. The upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower. By heating in such a temperature range, the dispersion medium can be removed, and a solid state (coated dry layer) can be obtained. Further, it is preferable because the temperature is not set too high and each member of the all solid state secondary battery is not damaged.
 上記のようにして、本発明の負極用組成物を塗布乾燥すると、固体粒子が強固に結着し、更に固体粒子間の界面抵抗が小さな、塗布乾燥層を形成することができる。 (4) As described above, when the composition for a negative electrode of the present invention is applied and dried, solid particles are firmly bound, and further, an applied dry layer having low interface resistance between solid particles can be formed.
 塗布した各組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては特に制限されず、一般的には5MPa以上とすることができ、50~1500MPaの範囲であることが好ましい。
 また、塗布した各組成物は、加圧と同時に加熱してもよい。加熱温度としては特に制限されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。一方、無機固体電解質とバインダーが共存する場合、バインダーを形成するポリマーのガラス転移温度よりも高い温度でプレスすることもできる。ただし、一般的にはこのポリマーの融点を越えない温度である。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
It is preferable that each layer or the all-solid secondary battery is pressurized after preparing the applied composition or the all-solid secondary battery. It is also preferable to apply pressure in a state where the respective layers are stacked. Examples of the pressurizing method include a hydraulic cylinder press. The pressure is not particularly limited, and can be generally 5 MPa or more, preferably in the range of 50 to 1500 MPa.
Each of the applied compositions may be heated simultaneously with the application of pressure. The heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. Pressing can be performed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte. On the other hand, when the inorganic solid electrolyte and the binder coexist, pressing can be performed at a temperature higher than the glass transition temperature of the polymer forming the binder. However, it is generally a temperature not exceeding the melting point of the polymer.
Pressurization may be performed in a state where the coating solvent or the dispersion medium is dried in advance, or may be performed in a state where the solvent or the dispersion medium remains.
In addition, each composition may be applied simultaneously, and the application and drying press may be performed simultaneously and / or sequentially. After coating on separate substrates, they may be laminated by transfer.
 加圧中の雰囲気としては特に制限されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は層厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The atmosphere during pressurization is not particularly limited, and may be any of air, dry air (dew point −20 ° C. or less), inert gas (eg, argon gas, helium gas, and nitrogen gas).
As for the pressing time, a high pressure may be applied in a short time (for example, within several hours), or a medium pressure may be applied for a long time (one day or more). In the case of an all-solid secondary battery other than the all-solid secondary battery sheet, for example, in the case of an all-solid secondary battery, an all-solid secondary battery restraint (such as a screw tightening pressure) can be used to keep applying a moderate pressure.
The pressing pressure may be uniform or different with respect to a pressure-receiving portion such as a sheet surface.
The pressing pressure can be changed according to the area or the layer thickness of the pressed portion. The same part can be changed stepwise with different pressures.
The press surface may be smooth or rough.
 上記固体電解質層を活物質層に転写する方法において、転写条件は特に制限されず、上記「各層の形成(成膜)」で説明した条件を適用できる。 In the method of transferring the solid electrolyte layer to the active material layer, the transfer conditions are not particularly limited, and the conditions described in the above “Formation of Each Layer (Film Formation)” can be applied.
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を解放することにより、行うことができる。
<Initialization>
It is preferable that the all-solid-state secondary battery manufactured as described above be initialized after manufacturing or before use. The initialization is not particularly limited. For example, the initialization can be performed by performing initial charge and discharge in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all solid state secondary battery is reached.
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源などが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[Use of all-solid-state secondary battery]
The all solid state secondary battery of the present invention can be applied to various uses. There is no particular limitation on the application mode. For example, when mounted on an electronic device, a notebook computer, pen input computer, mobile computer, electronic book player, mobile phone, cordless phone handset, pager, handy terminal, mobile fax, mobile phone Copy, portable printer, headphone stereo, video movie, liquid crystal television, handy cleaner, portable CD, mini disk, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, etc. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game machines, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder fir machines, etc.). Furthermore, it can be used for various military purposes and space applications. Further, it can be combined with a solar cell.
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。本発明において「室温」とは25℃を意味する。 本 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention should not be construed as being limited thereto. In the following examples, “parts” and “%” representing compositions are based on mass unless otherwise specified. In the present invention, “room temperature” means 25 ° C.
 表1に示す組成の各ポリマーを以下のようにして合成した。
1.バインダー分散液又はバインダー溶液の調製例(ポリマーの合成例)
[合成例1:バインダー分散液S-1の調製]
 200mL3つ口フラスコに、下記構成成分A-1を導くジオール化合物1.33gと、NISSO-PB GI-1000(商品名、日本曹達社製)12.6gとを加え、THF(テトラヒドロフラン)71gに溶解した。この溶液に、ジフェニルメタンジイソシアネート3.8gを加えて60℃で撹拌し、均一に溶解させた。得られた溶液に、ネオスタンU-600(商品名、日東化成社製)270mgを添加して60℃で5時間攪伴し、粘性ポリマー溶液を得た。このポリマー溶液にメタノール0.6gを加えてポリマー末端を封止して、重合反応を停止し、ポリマーS-1の20質量%THF溶液(ポリマー溶液)を得た。
 次に、上記で得られたポリマー溶液を350rpmで撹拌しながら、ヘプタン96gを1時間かけて滴下し、ポリマーS-1の乳化液を得た。窒素フローしながらこの乳化液を85℃で120分加熱した。得られた残留物後にヘプタン50gを加えて更に85℃で60分加熱した。この操作を4回繰り返し、THFを除去した。こうして、ポリマーS-1からなるバインダーの10質量%ヘプタン分散液を得た。
Each polymer having the composition shown in Table 1 was synthesized as follows.
1. Preparation example of binder dispersion or binder solution (Synthesis example of polymer)
[Synthesis Example 1: Preparation of binder dispersion S-1]
In a 200 mL three-necked flask, 1.33 g of a diol compound leading to the following component A-1 and 12.6 g of NISSO-PB GI-1000 (trade name, manufactured by Nippon Soda Co., Ltd.) were added, and dissolved in 71 g of THF (tetrahydrofuran). did. To this solution, 3.8 g of diphenylmethane diisocyanate was added, stirred at 60 ° C., and uniformly dissolved. 270 mg of Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) was added to the obtained solution, followed by stirring at 60 ° C. for 5 hours to obtain a viscous polymer solution. 0.6 g of methanol was added to the polymer solution to seal the terminal of the polymer, and the polymerization reaction was stopped to obtain a 20% by mass THF solution (polymer solution) of the polymer S-1.
Next, 96 g of heptane was added dropwise over 1 hour while stirring the polymer solution obtained above at 350 rpm to obtain an emulsion of the polymer S-1. This emulsion was heated at 85 ° C. for 120 minutes while flowing nitrogen. After the obtained residue, 50 g of heptane was added, and the mixture was further heated at 85 ° C for 60 minutes. This operation was repeated four times to remove THF. Thus, a 10% by mass heptane dispersion of a binder composed of the polymer S-1 was obtained.
[合成例2~16:バインダー分散液S-1~S-15及びS-17の調製]
 合成例1において、表1に示す各構成成分を導く原料化合物を表1に示す使用量(モル%)で用いたこと以外は合成例1と同様にして、ポリマーS-1~S-15及びS-17からなるバインダーの分散液S-1~S-15及びS-17をそれぞれ調製した。
[Synthesis Examples 2 to 16: Preparation of binder dispersions S-1 to S-15 and S-17]
In Synthesis Example 1, polymers S-1 to S-15 and polymers S-1 to S-15 were synthesized in the same manner as in Synthesis Example 1 except that the starting compounds for deriving the components shown in Table 1 were used in the amounts (mol%) shown in Table 1. Dispersions S-1 to S-15 and S-17 of a binder composed of S-17 were respectively prepared.
[合成例17:バインダー溶液S-16の調製]
 合成例1において、表1に示す各構成成分を導く原料化合物を表1に示す使用量(モル%)で用いたこと以外は合成例1と同様にして、ポリマーS-16の溶液S-16を調製した。
[Synthesis Example 17: Preparation of binder solution S-16]
In Synthesis Example 1, a solution S-16 of a polymer S-16 was prepared in the same manner as in Synthesis Example 1 except that the starting compounds for deriving the components shown in Table 1 were used in the amounts (mol%) shown in Table 1. Was prepared.
[合成例18~21:バインダー分散液T-1~T-4の調製]
 合成例1において、表1に示す各構成成分を導く原料化合物を表1に示す使用量(モル%)で用いたこと以外は合成例1と同様にして、ポリマーT-1~T-4からなるバインダーの分散液T-1~T-4をそれぞれ調製した。
[Synthesis Examples 18 to 21: Preparation of Binder Dispersions T-1 to T-4]
In Synthesis Example 1, polymers T-1 to T-4 were prepared in the same manner as in Synthesis Example 1 except that the starting compounds for deriving the components shown in Table 1 were used in the amounts (mol%) shown in Table 1. Dispersions T-1 to T-4 were prepared respectively.
<バインダー分散液中の粒子状バインダーの平均粒径の測定>
 バインダー分散液について、粒子状バインダーの平均粒径を、上記無機固体電解質の平均粒径の測定法と同様にして、測定した。その結果を表1に示す。
 なお、バインダー溶液S-16は、バインダーが分散液に溶解しているため、平均粒径を測定できず、表中「溶解」と表記した。
<Measurement of average particle size of particulate binder in binder dispersion>
For the binder dispersion, the average particle size of the particulate binder was measured in the same manner as in the method for measuring the average particle size of the inorganic solid electrolyte. Table 1 shows the results.
In the binder solution S-16, since the binder was dissolved in the dispersion, the average particle size could not be measured, and the result was described as "dissolved" in the table.
<ポリマーの質量平均分子量の測定>
 合成したポリマーの質量平均分子量を、上記方法(条件2)により、測定した。その結果を表1に示す。
<Measurement of mass average molecular weight of polymer>
The mass average molecular weight of the synthesized polymer was measured by the above method (condition 2). Table 1 shows the results.
 上記各ポリマーが有する構成成分を下記に示し、この構成成分を導く化合物の合成方法を説明する。各構造式において、Meはメチルを示す。
Figure JPOXMLDOC01-appb-C000006
The constituent components of each of the above polymers are shown below, and a method for synthesizing a compound that leads to the constituent components will be described. In each structural formula, Me represents methyl.
Figure JPOXMLDOC01-appb-C000006
[参考合成例1:構成成分A-6を導くジオール化合物の合成]
 200mL3つ口フラスコに、α-チオグリセロール(東京化成工業社製)35.3gと、エチレングリコールモノアセトアセタートモノメタクリラート(東京化成工業社製)50.0gとを加え、混合した。この溶液に、トリエチルアミン(和光純薬社製)0.50gを加えて室温で4時間撹拌して、溶液を得た。この溶液を酢酸エチル80gで希釈し、水100mLで1回、飽和食塩水150mLで5回洗浄した。洗浄した溶液に硫酸ナトリウムを投入して乾燥し、ひだ折りろ過で硫酸ナトリウムを除去した後、溶媒を減圧留去した。こうして、構成成分A-6を導くジオール化合物を得た。収率は81%であった。
[Reference Synthesis Example 1: Synthesis of diol compound leading to component A-6]
In a 200 mL three-necked flask, 35.3 g of α-thioglycerol (manufactured by Tokyo Chemical Industry) and 50.0 g of ethylene glycol monoacetoacetate monomethacrylate (manufactured by Tokyo Chemical Industry) were added and mixed. To this solution, 0.50 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred at room temperature for 4 hours to obtain a solution. This solution was diluted with 80 g of ethyl acetate, and washed once with 100 mL of water and five times with 150 mL of saturated saline. Sodium sulfate was added to the washed solution and dried, and after removing sodium sulfate by fold-fold filtration, the solvent was distilled off under reduced pressure. Thus, a diol compound leading to the component A-6 was obtained. The yield was 81%.
[参考合成例2~7:構成成分A-1、A-2、A-4、A-5、A-7及びT-1を導く化合物の合成]
 参考合成例1において、エチレングリコールモノアセトアセタートモノメタクリラートに代えて各構成成分の側鎖を導く化合物を等モル量用いたこと以外は、参考合成例1と同様にして、構成成分A-1、A-2、A-4、A-5、A-7及びT-1を導くジオール化合物をそれぞれ合成した。
[Reference Synthesis Examples 2 to 7: Synthesis of Compounds Leading to Components A-1, A-2, A-4, A-5, A-7 and T-1]
In Reference Synthesis Example 1, component A- Diol compounds leading to 1, A-2, A-4, A-5, A-7 and T-1 were synthesized respectively.
[参考合成例8:構成成分A-3を導くジオール化合物の合成]
 3L3つ口フラスコに、2,2-ビス(ヒドロキシメチル)酪酸(東京化成工業社製)140gと、アセトン(和光純薬社製)1400g、ピリジニウム パラトルエンスルホナート(和光純薬社製)1.4gを加え、溶液を調製した。この溶液を60℃で攪拌しながら1時間加熱した。室温に冷却後、溶媒を留去することで2,2-ビス(ヒドロキシメチル)酪酸のアセタール保護体を得た。収率は98%であった。
 500mL3つ口フラスコに、上記アセタール保護体20g、12-ヒドロキシステアリン酸メチル(和光純薬社製)45g、ジシクロヘキシルカルボジイミド(和光純薬社製)23g、4-ジメチルアミノピリジン(和光純薬社製)0.4gを加え、ジクロロメタン(和光純薬社製)200gに溶解させた。この溶液を室温で攪拌しながら4時間加熱した後、1M塩酸溶液200mLを加え1時間攪拌した。この溶液を水100mLで2回、飽和食塩水150mLで1回洗浄した。洗浄した溶液に硫酸ナトリウムを投入して乾燥し、ひだ折りろ過で硫酸ナトリウムを除去した後、溶媒を減圧留去した。こうして、構成成分A-3を導くジオール化合物を得た。収率は88%であった。
[Reference Synthesis Example 8: Synthesis of diol compound leading to component A-3]
In a 3 L three-necked flask, 140 g of 2,2-bis (hydroxymethyl) butyric acid (manufactured by Tokyo Chemical Industry), 1400 g of acetone (manufactured by Wako Pure Chemical Industries), and pyridinium paratoluenesulfonate (manufactured by Wako Pure Chemical Industries) 1. 4 g was added to prepare a solution. The solution was heated at 60 ° C. with stirring for 1 hour. After cooling to room temperature, the solvent was distilled off to obtain a protected acetal of 2,2-bis (hydroxymethyl) butyric acid. The yield was 98%.
In a 500 mL three-necked flask, 20 g of the protected acetal, 45 g of methyl 12-hydroxystearate (manufactured by Wako Pure Chemical Industries), 23 g of dicyclohexylcarbodiimide (manufactured by Wako Pure Chemical Industries), and 4-dimethylaminopyridine (manufactured by Wako Pure Chemical Industries) 0.4 g was added and dissolved in 200 g of dichloromethane (manufactured by Wako Pure Chemical Industries, Ltd.). After heating this solution for 4 hours while stirring at room temperature, 200 mL of a 1M hydrochloric acid solution was added and stirred for 1 hour. This solution was washed twice with 100 mL of water and once with 150 mL of saturated saline. Sodium sulfate was added to the washed solution and dried, and after removing sodium sulfate by fold-fold filtration, the solvent was distilled off under reduced pressure. Thus, a diol compound leading to the component A-3 was obtained. The yield was 88%.
[参考合成例9:構成成分T-3を導くジオール化合物の合成]
 1L3つ口フラスコに、グリセロール(東京化成工業社製)50gと、アセトン(和光純薬社製)500g、ピリジニウム パラトルエンスルホナート(和光純薬社製)0.5gを加え、溶液を作製した。この溶液を60℃で攪拌しながら1時間加熱した。室温に冷却後、溶媒を留去することでグリセロールのアセタール保護体を得た。収率は99%であった。
 500mL3つ口フラスコに、上記アセタール保護体20g、メタクリル酸(東京化成工業社製)32g、ジシクロヘキシルカルボジイミド(和光純薬社製)25g、4-ジメチルアミノピリジン(和光純薬社製)0.4gを加え、ジクロロメタン(和光純薬社製)200gに溶解させた。この溶液を室温で攪拌しながら4時間加熱した後、1M塩酸溶液200mLを加え1時間攪拌した。この溶液を水100mLで2回、飽和食塩水150mLで1回洗浄した。洗浄した溶液に硫酸ナトリウムを投入して乾燥し、ひだ折りろ過で硫酸ナトリウムを除去した後、溶媒を減圧留去した。こうして、構成成分T-3を導くジオール化合物を合成した。収率は68%であった。
[Reference Synthesis Example 9: Synthesis of diol compound leading to constituent component T-3]
To a 1 L three-necked flask were added 50 g of glycerol (manufactured by Tokyo Chemical Industry), 500 g of acetone (manufactured by Wako Pure Chemical Industries), and 0.5 g of pyridinium paratoluenesulfonate (manufactured by Wako Pure Chemical Industries) to prepare a solution. The solution was heated at 60 ° C. with stirring for 1 hour. After cooling to room temperature, the solvent was distilled off to obtain a protected glycerol acetal. The yield was 99%.
In a 500 mL three-necked flask, 20 g of the above protected acetal, 32 g of methacrylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 25 g of dicyclohexylcarbodiimide (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.4 g of 4-dimethylaminopyridine (manufactured by Wako Pure Chemical Industries, Ltd.) In addition, it was dissolved in 200 g of dichloromethane (manufactured by Wako Pure Chemical Industries, Ltd.). After heating this solution for 4 hours while stirring at room temperature, 200 mL of a 1M hydrochloric acid solution was added and stirred for 1 hour. This solution was washed twice with 100 mL of water and once with 150 mL of saturated saline. Sodium sulfate was added to the washed solution and dried, and after removing sodium sulfate by fold-fold filtration, the solvent was distilled off under reduced pressure. Thus, a diol compound leading to the component T-3 was synthesized. The yield was 68%.
 構成成分T-2を導くジオール化合物(2,2-ビス(ヒドロキシメチル)酪酸メチル)は市販品(東京化成工業社製)を用いた。 市 販 A commercially available product (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used as the diol compound (methyl 2,2-bis (hydroxymethyl) butyrate) leading to the component T-2.
[参考合成例10:構成成分D-1を導くマクロモノマーの合成]
 還流冷却管、ガス導入コックを付した1Lの三口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に室温から80℃に昇温した。攪拌しているトルエン中に、別容器にて調製した液(下記処方α)を2時間かけて滴下し、80℃で2時間攪拌した。その後、V-601(和光純薬工業社製)を0.2質量部添加し、更に95℃で2時間攪拌した。攪拌後95℃に保った溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業社製)を0.025質量部、メタクリル酸グリシジル(和光純薬工業社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業社製)を2.5質量部加えて120℃で3時間攪拌した。得られた混合物を室温まで冷却した後、メタノールに加えて沈殿させ、沈殿物をろ取し、メタノールで2回洗浄後、ヘプタン300質量部を加えて溶解させた。得られた溶液を減圧留去して、マクロモノマーD-1の溶液を得た。固形分濃度は40.1%、質量平均分子量は10,000であった。得られたマクロモノマーD-1の構造を以下に示す。
 (処方α)
 メタクリル酸ドデシル(和光純薬工業社製)      150質量部
 メタクリル酸メチル(和光純薬工業社製)        59質量部
 3-メルカプトプロピオン酸(東京化成工業社製)     2質量部
 V-601 (和光純薬工業社製)          2.5質量部
[Reference Synthesis Example 10: Synthesis of Macromonomer Leading to Component D-1]
190 parts by mass of toluene was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, nitrogen gas was introduced at a flow rate of 200 mL / min for 10 minutes, and the temperature was raised from room temperature to 80 ° C. A liquid (formulation α described below) prepared in a separate container was dropped into stirring toluene over 2 hours, and the mixture was stirred at 80 ° C for 2 hours. Thereafter, 0.2 parts by mass of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further stirred at 95 ° C. for 2 hours. 0.025 parts by mass of 2,2,6,6-tetramethylpiperidine-1-oxyl (manufactured by Tokyo Chemical Industry Co., Ltd.) and glycidyl methacrylate (manufactured by Wako Pure Chemical Industries) were added to the solution kept at 95 ° C. after stirring. 13 parts by mass and 2.5 parts by mass of tetrabutylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, followed by stirring at 120 ° C. for 3 hours. After the obtained mixture was cooled to room temperature, it was added to methanol for precipitation. The precipitate was collected by filtration, washed twice with methanol, and dissolved by adding 300 parts by mass of heptane. The obtained solution was distilled off under reduced pressure to obtain a solution of macromonomer D-1. The solid content concentration was 40.1%, and the mass average molecular weight was 10,000. The structure of the obtained macromonomer D-1 is shown below.
(Prescription α)
Dodecyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 150 parts by mass Methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 59 parts by mass 3-mercaptopropionic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 2 parts by mass V-601 (Wako Pure Chemical Industries, Ltd.) 2.5 mass parts
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上述のようにして調製したバインダー分散液又は溶液について、各ポリマーの組成を下記表1に示す。
 表1に示す構成成分M1~M4はそれぞれ以下の通りである。
 構成成分M1は、上記式(I-1)で表される構成成分である。
 構成成分M2は、上記式(I-3)又は式(I-4)で表される構成成分であって、RP2が脂肪族の炭化水素基である構成成分ある。
 構成成分M3は、上記式(I-3)で表される構成成分であって、特定の側鎖を持つ構成成分ある。
 構成成分M4は、上記式(I-3)で表される構成成分であって、RP2が上記分子鎖ある構成成分ある。
The composition of each polymer in the binder dispersion or solution prepared as described above is shown in Table 1 below.
The components M1 to M4 shown in Table 1 are as follows.
The constituent component M1 is a constituent component represented by the above formula (I-1).
The constituent component M2 is a constituent component represented by the above formula (I-3) or (I-4), wherein RP2 is an aliphatic hydrocarbon group.
The constituent component M3 is a constituent component represented by the above formula (I-3) and has a specific side chain.
The constituent component M4 is a constituent component represented by the above formula (I-3), in which RP2 has the above-mentioned molecular chain.
 表1において、「存在位置」は、ポリマーの側鎖において、カルボニル基、チオカルボニル基又はホスホリル基の炭素原子又はリン原子の位置を示す。具体的には、ポリマーの側鎖を形成する最も長い分子鎖において、主鎖を構成する原子に結合する原子を始点とする原子の連結数を示す。なお、上記カルボニル基等を複数有する場合には、複数の連結数を、「/」を介して、併記した。
 なお、表1の「構成成分M4」欄において「NISSO-PB GI1000/PEG200」及び「20/10」は、NISSO-PB GI1000とPEG200とを、20モル%及び10モル%の含有量で、併用していたことを示す。
 また、バインダー分散液T-3は、バインダーを形成するポリマーとしてアクリル系ポリマーを用いたものであり、このポリマーの構成成分は表1の「構成成分M1」~「構成成分M4に対応するものではないが、便宜上、表1の各構成成分欄に順に記載した。
In Table 1, “position” indicates the position of a carbon atom or a phosphorus atom of a carbonyl group, a thiocarbonyl group or a phosphoryl group in a side chain of the polymer. Specifically, in the longest molecular chain forming the side chain of the polymer, the number of connected atoms starting from an atom bonded to an atom constituting the main chain is shown. In the case where the compound has a plurality of the above carbonyl groups and the like, the number of the plurality of the bonds is also described through “/”.
In the column of “Component M4” in Table 1, “NISSO-PB GI1000 / PEG200” and “20/10” indicate that NISSO-PB GI1000 and PEG200 are used in combination at a content of 20 mol% and 10 mol%. Indicates that you were.
The binder dispersion T-3 uses an acrylic polymer as a polymer forming the binder. The components of the polymer are those corresponding to “Component M1” to “Component M4” in Table 1. Although not shown, for convenience, it is described in each component column of Table 1 in order.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <表の略号>
 表中、構成成分M1、M2及びM4欄には、各構成単位を導く化合物名を略号で示した。
 MDI:ジフェニルメタンジイソシアネート
 H12MDI:ジシクロヘキシルメタン-4,4’-ジイソシアネート
 DGMEM:ジエチレングリコールモノメチルエーテルメタクリラート
 HEOA:N,N’-ビス(2-ヒドロキシエチル)オキサミド
 DAB:1,4-ジアミノブタン
 AEHS:こはく酸モノ(2-アクリロイルオキシエチル)
 EGMEM:エチレングリコールモノアセトアセタートモノメタクリラート
 NISSO-PB GI1000:両末端水酸基水素化ポリブタジエン(質量平均分子量:1500、日本曹達社製)
 EPOL:水酸基末端液状ポリオレフィン(水酸基末端液状ポリイソプレンの水添物、質量平均分子量:3300、出光興産社製)
 ODD:1,18-オクタデカンジオール
 PEG200:ポリエチレングリコール200(質量平均分子量:200、和光純薬社製)
 D-1:上記で合成したマクロモノマーD-1
<Abbreviation of table>
In the table, columns of the constituent components M1, M2 and M4 are represented by abbreviations of the names of the compounds that lead to the respective constituent units.
MDI: diphenylmethane diisocyanate H12 MDI: dicyclohexylmethane-4,4′-diisocyanate DGMEM: diethylene glycol monomethyl ether methacrylate HEOA: N, N′-bis (2-hydroxyethyl) oxamide DAB: 1,4-diaminobutane AEHS: monosuccinic acid (2-acryloyloxyethyl)
EGMEM: ethylene glycol monoacetoacetate monomethacrylate NISSO-PB GI1000: hydroxyl-terminated polybutadiene at both ends (mass average molecular weight: 1500, manufactured by Nippon Soda Co., Ltd.)
EPOL: hydroxyl-terminated liquid polyolefin (hydrogenated product of hydroxyl-terminated liquid polyisoprene, mass average molecular weight: 3300, manufactured by Idemitsu Kosan Co., Ltd.)
ODD: 1,18-octadecanediol PEG200: polyethylene glycol 200 (mass average molecular weight: 200, manufactured by Wako Pure Chemical Industries, Ltd.)
D-1: Macromonomer D-1 synthesized above
2.硫化物系無機固体電解質の合成
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235、及び、A.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li/P/Sガラス、以下、LPSということがある。)6.20gを得た。平均粒径は2μmであった。
2. Synthesis of sulfide-based inorganic solid electrolyte Ohtomo, A .; Hayashi, M .; Tatsusumisago, Y .; Tsuchida, S .; Hama, K .; Kawamoto, Journal of Power Sources, 233, (2013), pp 231-235; Hayashi, S .; Hama, H .; Morimoto, M .; Tatsusumisago, T .; Minami, Chem. Lett. , (2001), pp872-873.
Specifically, in a glove box under an argon atmosphere (dew point -70 ° C.), 2.42 g of lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%) and diphosphorus pentasulfide (P 2 S) were used. 5, Aldrich Co., purity> 99%) 3.90 g were weighed, charged into an agate mortar, using an agate pestle and mixed for 5 minutes. The mixing ratio of Li 2 S and P 2 S 5 was Li 2 S: P 2 S 5 = 75: 25 in molar ratio.
66 g of zirconia beads having a diameter of 5 mm were charged into a 45-mL zirconia container (manufactured by Fritsch), and the entire mixture of lithium sulfide and diphosphorus pentasulfide was charged therein, and the container was completely sealed under an argon atmosphere. A container was set in a planetary ball mill P-7 (trade name, manufactured by Fritsch), and mechanical milling was performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a sulfide-based inorganic solid electrolyte (Li / P / S glass, hereinafter sometimes referred to as LPS.) 6.20 g was obtained. The average particle size was 2 μm.
[実施例]
 本実施例では、バインダー分散液又はバインダー溶液を用いて調製した負極用組成物を用いて、全固体二次電池用負極シート、及び図1に示す層構成を有する全固体二次電池を作製して、その性能を評価した。その結果を表2に示す。
[Example]
In this example, a negative electrode sheet for an all-solid secondary battery and an all-solid secondary battery having the layer configuration shown in FIG. 1 were prepared using the negative electrode composition prepared using the binder dispersion or the binder solution. To evaluate its performance. Table 2 shows the results.
<負極用組成物の調製>
(負極活物質層No.11~31及びc11~c14の調製)
 ジルコニア製250mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成したLPSを20g、表2に示すバインダー分散液(バインダー溶液)2.0g(固形分質量換算)、及び表2に示す分散媒を48g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数150rpmで10分間攪拌した。その後、表2に示す負極活物質27g、更に導電助剤としてカーボンナノチューブVGCF(商品名、繊維径:150nm、昭和電工社製)を表2に示す含有量(使用量)で投入し、再びこの容器を遊星ボールミルP-7に容器をセットして、25℃、回転数100rpmで5分間混合を続けた。このようにして、負極用組成物No.11~31及びc11~c14をそれぞれ調製した。
<Preparation of composition for negative electrode>
(Preparation of Anode Active Material Layer Nos. 11 to 31 and c11 to c14)
180 zirconia beads having a diameter of 5 mm were put into a 250-mL zirconia container (manufactured by Fritsch), 20 g of the synthesized LPS, 2.0 g of a binder dispersion (binder solution) shown in Table 2 (in terms of solid content mass), And 48 g of the dispersion medium shown in Table 2. The container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch Inc., and stirred at 25 ° C. for 10 minutes at a rotation speed of 150 rpm. After that, 27 g of the negative electrode active material shown in Table 2 and further, carbon nanotubes VGCF (trade name, fiber diameter: 150 nm, manufactured by Showa Denko KK) as the conductive assistant were added at the contents (amount used) shown in Table 2, and again. The container was set in a planetary ball mill P-7, and mixing was continued at 25 ° C. and a rotation number of 100 rpm for 5 minutes. Thus, the composition for negative electrode No. 11 to 31 and c11 to c14 were prepared respectively.
(負極活物質層No.32~34の調製)
 負極用組成物No.11の調製において、固体電解質層、バインダー分散液、負極活物質及び導電助剤の含有量(使用量)を表2に示す値に変更したこと以外は負極用組成物No.11の調製と同様にして、負極活物質層No.32~34をそれぞれ調製した。
(Preparation of Negative Electrode Active Material Layer Nos. 32 to 34)
Composition No. for negative electrode In the preparation of negative electrode composition No. 11, the content (use amount) of the solid electrolyte layer, the binder dispersion, the negative electrode active material and the conductive additive was changed to the values shown in Table 2. 11 in the same manner as in the preparation of negative electrode active material layer No. 11 32-34 were prepared respectively.
<全固体二次電池用負極シートの作製>
 上記で得られた各負極用組成物を、厚み20μmの銅箔(負極集電体)上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、80℃で2時間加熱し、負極用組成物を乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた負極用組成物(負極用組成物の塗布乾燥層)を25℃で加圧(10MPa、1分)して、層厚80μmの負極活物質層を有する全固体二次電池用負極シートNo.11~34及びc11~c14をそれぞれ作製した。
<Preparation of negative electrode sheet for all-solid secondary battery>
Each of the negative electrode compositions obtained above was applied on a copper foil (negative electrode current collector) having a thickness of 20 μm using a baker-type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.). The mixture was heated for a period of time to dry the negative electrode composition (removing the dispersion medium). Thereafter, the dried negative electrode composition (the dried layer coated with the negative electrode composition) was pressed at 25 ° C. (10 MPa, 1 minute) using a heat press machine to form a negative electrode active material layer having a layer thickness of 80 μm. Negative electrode sheet for all solid state secondary batteries 11 to 34 and c11 to c14 were produced, respectively.
<固体電解質組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS4.85g、ポリビニレンジフルオリド(PVdF、固形分質量換算)0.15g、及び分散媒としてヘプタンを16.0g投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットし、温度25℃、回転数150rpmで10分間混合を続けて、固体電解質組成物を調製した。
<全固体二次電池用固体電解質シートの作製>
 次いで、得られた各固体電解質組成物を、厚み20μmのアルミニウム箔上に、上記ベーカー式アプリケーターにより塗布し、80℃で2時間加熱し、固体電解質組成物を乾燥させた。その後、ヒートプレス機を用いて、乾燥させた固体電解質組成物(固体電解質組成物の塗布乾燥層)を、120℃の温度及び600MPaの圧力で10秒間加熱及び加圧して、全固体二次電池用固体電解質シートを作製した。固体電解質層の層厚は50μmであった。
<Preparation of solid electrolyte composition>
180 zirconia beads having a diameter of 5 mm were put into a 45 mL zirconia container (manufactured by Fritsch), and 4.85 g of LPS synthesized above, 0.15 g of polyvinylidene fluoride (PVdF, solid content conversion), and a dispersion medium And 16.0 g of heptane was charged. Thereafter, the container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixing was continued at a temperature of 25 ° C. and a rotation speed of 150 rpm for 10 minutes to prepare a solid electrolyte composition.
<Preparation of solid electrolyte sheet for all-solid secondary battery>
Next, each of the obtained solid electrolyte compositions was applied on a 20-μm-thick aluminum foil by the above-mentioned baker-type applicator, and heated at 80 ° C. for 2 hours to dry the solid electrolyte compositions. Thereafter, using a heat press machine, the dried solid electrolyte composition (the dried layer coated with the solid electrolyte composition) is heated and pressed at a temperature of 120 ° C. and a pressure of 600 MPa for 10 seconds, and the all solid secondary battery is heated. A solid electrolyte sheet for use was produced. The layer thickness of the solid electrolyte layer was 50 μm.
<固体電解質層を備えた全固体二次電池用負極シートの作製>
 作製した各全固体二次電池用負極シートの負極活物質層上に、上記で作製した全固体二次電池用固体電解質シートを固体電解質層が負極活物質層に接するように重ね、プレス機を用いて、25℃の温度及び50MPaの圧力で加圧して、固体電解質層を全固体二次電池用負極シートに転写(積層)した後に、更に25℃の温度及び600MPaの圧力で加圧した。その後、固体電解質シートのアルミニウム箔を剥がして、層厚50μmの固体電解質層を備えた全固体二次電池用負極シート(固体電解質層付全固体二次電池用負極シート)No.11~34及びc11~c14をそれぞれ作製した。各シートの負極活物質層の層厚は55μmとなった。
<Preparation of negative electrode sheet for solid-state secondary battery provided with solid electrolyte layer>
On the negative electrode active material layer of each of the prepared all-solid secondary battery negative electrode sheets, the above-prepared all-solid secondary battery solid electrolyte sheet was stacked so that the solid electrolyte layer was in contact with the negative electrode active material layer, and a press was used. After applying (pressing) at a temperature of 25 ° C. and a pressure of 50 MPa to transfer (stack) the solid electrolyte layer to the negative electrode sheet for an all-solid secondary battery, the pressure was further increased at a temperature of 25 ° C. and a pressure of 600 MPa. Thereafter, the aluminum foil of the solid electrolyte sheet was peeled off, and a negative electrode sheet for an all-solid secondary battery provided with a solid electrolyte layer having a layer thickness of 50 μm (a negative electrode sheet for an all-solid secondary battery with a solid electrolyte layer) No. 1 was obtained. 11 to 34 and c11 to c14 were produced, respectively. The thickness of the negative electrode active material layer of each sheet was 55 μm.
<全固体二次電池の製造>
 作製した各固体電解質層付全固体二次電池用負極シート(全固体二次電池用固体電解質シートのアルミニウム箔は剥離済み)を、それぞれ、直径14.5mmの円板状に切り出し、図2に示すように、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れて、固体電解質層上に、シート形状のNMC(LiNi1/3Co1/3Mn1/3)正極層(正極活物質層、層厚70μm)を重ねた。その上に更にステンレス鋼箔(正極集電体)を重ねて、全固体二次電池用積層体12(ステンレス鋼箔-NMC正極層-固体電解質層-負極活物質層-銅箔からなる積層体)を形成した。その後、2032型コインケース11をかしめることで、試料No.11~34及びc11~c14の、図2に示す試験用全固体二次電池(コイン電池)13をそれぞれ製造した。このようにして製造した試験用全固体二次電池13は、図1に示す層構成を有している。
<Manufacture of all-solid secondary batteries>
Each of the prepared negative electrode sheets for an all-solid secondary battery with a solid electrolyte layer (the aluminum foil of the solid electrolyte sheet for an all-solid secondary battery was peeled off) was cut into a disc shape having a diameter of 14.5 mm, and FIG. As shown in the figure, the sheet is placed in a stainless steel 2032 type coin case 11 incorporating a spacer and a washer (not shown in FIG. 2), and a sheet-shaped NMC (LiNi 1/3 Co 1/3 Mn) is placed on the solid electrolyte layer. 1/3 O 2 ) positive electrode layer (positive electrode active material layer, layer thickness 70 μm) was stacked. A stainless steel foil (positive electrode current collector) is further laminated thereon, and a laminate 12 for an all-solid-state secondary battery (a laminate composed of stainless steel foil-NMC positive electrode layer-solid electrolyte layer-negative electrode active material layer-copper foil) ) Formed. After that, by caulking the 2032 type coin case 11, the sample No. Test solid-state secondary batteries (coin batteries) 13 shown in FIG. 2 of Nos. 11 to 34 and c11 to c14 were produced, respectively. The test all solid state secondary battery 13 manufactured in this way has the layer configuration shown in FIG.
[試験例1:放電容量維持率の評価]
 上記のようにして作製した全固体二次電池No.11~34及びc11~c14について、その放電容量維持率を測定して、サイクル特性を評価した。
 具体的には、各全固体二次電池の放電容量維持率を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により測定した。充電は、電流密度0.1mA/cmで電池電圧が3.6Vに達するまで行った。放電は、電流密度0.1mA/cmで電池電圧が2.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして3サイクル充放電を繰り返して、全固体二次電池を初期化した。
 初期化後の全固体二次電池について、上記充放電条件と同一の条件で、繰り返し充放電を行った。初期化後の充放電1サイクル目の放電容量(初期放電容量)を100%としたときに、放電容量維持率(初期放電容量に対する放電容量)が80%に達した際の充放電サイクル数が、下記評価ランクのいずれに含まれるかにより、サイクル特性を評価した。
 本試験において、充放電サイクル数が多いほど、負極活物質層中の固体粒子同士、更には固体粒子と負極集電体とが強固に結着している(負極活物質層が強い膜強度を発現している)ことを示し、評価ランク「D」以上が合格である。
 
 -放電容量維持率の評価ランク-
 A: 500サイクル以上
 B: 300サイクル以上、500サイクル未満
 C: 200サイクル以上、300サイクル未満
 D: 100サイクル以上、200サイクル未満
 E:  50サイクル以上、100サイクル未満
 F:  50サイクル未満
 
 なお、全固体二次電池No.11~34の初期放電容量は、いずれも、全固体二次電池として機能するのに十分な値を示した。
[Test Example 1: Evaluation of discharge capacity retention ratio]
The all-solid-state secondary battery No. produced as described above. With respect to 11 to 34 and c11 to c14, the discharge capacity retention ratio was measured to evaluate the cycle characteristics.
Specifically, the discharge capacity retention ratio of each all solid state secondary battery was measured by a charge / discharge evaluation device: TOSCAT-3000 (trade name, manufactured by Toyo System Co., Ltd.). Charging was performed at a current density of 0.1 mA / cm 2 until the battery voltage reached 3.6 V. The discharge was performed at a current density of 0.1 mA / cm 2 until the battery voltage reached 2.5 V. This one charge and one discharge was defined as one charge / discharge cycle, and three cycles of charge / discharge were repeated to initialize the all solid state secondary battery.
The initialized all-solid-state secondary battery was repeatedly charged and discharged under the same charging and discharging conditions as described above. When the discharge capacity (initial discharge capacity) in the first charge / discharge cycle after initialization is 100%, the number of charge / discharge cycles when the discharge capacity retention ratio (discharge capacity with respect to the initial discharge capacity) reaches 80% is as follows. The cycle characteristics were evaluated according to which of the following evaluation ranks was included.
In this test, the larger the number of charge / discharge cycles, the stronger the solid particles in the negative electrode active material layer were bonded to each other, and moreover, the solid particles and the negative electrode current collector were bonded. Is expressed), and the evaluation rank “D” or higher is a pass.

-Discharge capacity maintenance rate evaluation rank-
A: 500 cycles or more B: 300 cycles or more and less than 500 cycles C: 200 cycles or more and less than 300 cycles D: 100 cycles or more and less than 200 cycles E: 50 cycles or more and less than 100 cycles F: Less than 50 cycles
In addition, all solid-state secondary battery No. Each of the initial discharge capacities of 11 to 34 showed a value sufficient to function as an all-solid secondary battery.
[試験例2:イオン伝導度測定]
 上記で作製した各固体電解質層付全固体二次電池用負極シート(全固体二次電池用固体電解質シートのアルミニウム箔は剥離済み)を、それぞれ、直径14.5mmの円板状に2枚切り出した。切り出した2枚の円盤状シートの固体電解質層同士を貼り合わせて、全固体二次電池用積層体(銅箔-負極活物質層-固体電解質層-負極活物質層-銅箔からなる積層体)12を作製した。この全固体二次電池用積層体12をイオン伝導度測定用試験体として、スペーサーとワッシャー(図2に示しない)を組み込んで、ステンレス製の2032型コインケース11に入れた。2032型コインケース11をかしめることで、8ニュートン(N)の力で締め付けられた、図2に示す構成を有する試験用全固体二次電池13を作製した。
[Test Example 2: Ion conductivity measurement]
Each of the negative electrode sheets for an all-solid secondary battery with a solid electrolyte layer prepared above (the aluminum foil of the solid electrolyte sheet for an all-solid secondary battery has been peeled off) is cut into two discs each having a diameter of 14.5 mm. Was. The solid electrolyte layers of the two disc-shaped sheets cut out are attached to each other to form a laminate for an all-solid-state secondary battery (copper foil-negative electrode active material layer-solid electrolyte layer-negative electrode active material layer-copper laminate ) 12 was produced. This all-solid-state secondary battery laminate 12 was placed in a stainless steel 2032 type coin case 11 incorporating a spacer and a washer (not shown in FIG. 2) as a test body for ion conductivity measurement. By caulking the 2032 type coin case 11, a test all-solid secondary battery 13 having a configuration shown in FIG. 2 and having been tightened with a force of 8 Newton (N) was produced.
 イオン伝導度測定用試験体として得られた試験用全固体二次電池13を用いて、イオン伝導度を測定した。具体的には、試験用全固体二次電池13について、30℃の恒温槽中、1255B FREQUENCY RESPONSE ANALYZER(商品名、SOLARTRON社製)を用いて、電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより、貼り合わせた固体電解質層付全固体二次電池用負極シートの層厚方向の抵抗を求め、下記式(1)により計算して、イオン伝導度を求めた。
 
 式(1):イオン伝導度σ(mS/cm)=
  1000×試料層厚(cm)/[抵抗(Ω)×試料面積(cm)]
 
 式(1)において、試料層厚は、全固体二次電池用積層体12を2032型コインケース11に入れる前に測定し、2枚の銅箔の厚みを差し引いた値(固体電解質層及び負極活物質層の合計層厚)である。試料面積は、直径14.5mmの円板状シートの面積である。
The ionic conductivity was measured using the test all-solid secondary battery 13 obtained as the ionic conductivity measurement test body. Specifically, the AC impedance of the test all solid secondary battery 13 was measured in a thermostat at 30 ° C. using a 1255B FREQUENCY RESPONSE ANALYZER (trade name, manufactured by SOLARTRON) at a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz. did. Thereby, the resistance in the layer thickness direction of the bonded negative electrode sheet for an all-solid secondary battery with a solid electrolyte layer was obtained, and the ion conductivity was calculated by the following equation (1).

Formula (1): Ion conductivity σ (mS / cm) =
1000 × sample layer thickness (cm) / [resistance (Ω) × sample area (cm 2 )]

In the formula (1), the sample layer thickness is measured before the all-solid-state rechargeable battery laminate 12 is put in the 2032-type coin case 11, and the value obtained by subtracting the thickness of the two copper foils (the solid electrolyte layer and the negative electrode). (Total thickness of active material layers). The sample area is the area of a disc-shaped sheet having a diameter of 14.5 mm.
 得られたイオン伝導度が下記評価ランクのいずれに含まれるかを判定した。
 本試験におけるイオン伝導度は、評価ランク「D」以上が合格である。
 
 -イオン伝導度の評価ランク-
 A:0.60≦σ
 B:0.50≦σ<0.60
 C:0.40≦σ<0.50
 D:0.30≦σ<0.40
 E:0.20≦σ<0.30
 F:     σ<0.20
It was determined which of the following evaluation ranks contained the obtained ion conductivity.
Regarding the ionic conductivity in this test, an evaluation rank “D” or higher passes.

-Ion conductivity evaluation rank-
A: 0.60 ≦ σ
B: 0.50 ≦ σ <0.60
C: 0.40 ≦ σ <0.50
D: 0.30 ≦ σ <0.40
E: 0.20 ≦ σ <0.30
F: σ <0.20
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 <表の注>
 表2において、「含有量」はいずれも負極用組成物中における各成分の含有量(質量%)を示し、括弧内の数値は負極用組成物中の固形成分100質量%に対する含有量(質量%)を示す。
 <表の略号>
 LPS:上記で合成したLi/P/Sガラス
 LLT:Li0.33La0.55TiO(平均粒径3.25μm、豊島製作所製)
 Si:Siパウダー(APS:1~5μm、Alfa Aesar社製)
 黒鉛:CGB20(商品名、平均粒径20μm、日本黒鉛社製)
 Sn:スズパウダー(平均粒径10μm、アルドリッチ社製)
 VGCF:カーボンナノチューブ(昭和電工社製)
<Notes in the table>
In Table 2, "content" indicates the content (% by mass) of each component in the negative electrode composition, and the numerical value in parentheses indicates the content (% by mass) relative to 100% by mass of the solid component in the negative electrode composition. %).
<Abbreviation of table>
LPS: Li / P / S glass synthesized above LLT: Li 0.33 La 0.55 TiO 3 (average particle size 3.25 μm, manufactured by Toshima Seisakusho)
Si: Si powder (APS: 1 to 5 μm, manufactured by Alfa Aesar)
Graphite: CGB20 (trade name, average particle size 20 μm, manufactured by Nippon Graphite Co., Ltd.)
Sn: Tin powder (average particle size 10 μm, manufactured by Aldrich)
VGCF: carbon nanotube (manufactured by Showa Denko KK)
 表2に示す結果から次のことが分かる。
 試料No.c11~c14に用いたバインダーは本発明で規定するポリマー以外のポリマーからなるバインダーである。これらバインダーを負極用組成物のバインダーとして用いると、イオン伝導度が低く、サイクル特性も十分ではないことがわかる。
 試料No.c11~c14に用いたバインダーは、順に、ヒドロキシ基が結合したカルボニル基(カルボキシ基)を有する構成単位を含むポリマーからなるバインダー、主鎖に直接結合したカルボニル基を有する構成単位を含むポリマーからなるバインダー、アクリルポリマーからなるバインダー、及び、主鎖を構成する原子から3原子離れた位置にカルボニル基を有する構成単位を含むポリマーからなるバインダーである。
 これに対して、負極用組成物のバインダーとして本発明で規定するポリマーからなるバインダーを用いると、高いイオン伝導度を示し、サイクル特性にも優れる。そのため、これら負極用組成物で形成した負極活物質層を備えた全固体二次電池は、電池抵抗が低く、高い放電容量を維持できる特性を示す。特に、負極活物質としてシリコン粉末を用いても、電池抵抗の上昇を効果的に抑えつつも、放電容量維持率を大幅に改善できる。
The following can be seen from the results shown in Table 2.
Sample No. The binder used in c11 to c14 is a binder made of a polymer other than the polymer specified in the present invention. When these binders are used as the binder of the composition for the negative electrode, the ionic conductivity is low and the cycle characteristics are not sufficient.
Sample No. The binder used for c11 to c14 is, in order, a binder composed of a polymer having a structural unit having a carbonyl group (carboxy group) bonded to a hydroxy group, and a polymer having a structural unit having a carbonyl group bonded directly to the main chain. A binder made of a binder, a binder made of an acrylic polymer, and a binder made of a polymer containing a constituent unit having a carbonyl group at a position three atoms away from the atoms constituting the main chain.
On the other hand, when a binder made of the polymer specified in the present invention is used as a binder of the composition for a negative electrode, high ion conductivity is exhibited and cycle characteristics are excellent. Therefore, an all-solid-state secondary battery including the negative electrode active material layer formed using the negative electrode composition has characteristics of low battery resistance and high discharge capacity. In particular, even when silicon powder is used as the negative electrode active material, the discharge capacity retention rate can be significantly improved while effectively suppressing an increase in battery resistance.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 Although the present invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and contradict the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted broadly without.
 本願は、2018年9月27日に日本国で特許出願された特願2018-182798に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims the priority based on Japanese Patent Application No. 2018-182798 filed in Japan on September 27, 2018, which is hereby incorporated by reference. Capture as a part.
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 コインケース
12 全固体二次電池用積層体
13 試験用全固体二次電池(イオン伝導度測定用試験体)
DESCRIPTION OF SYMBOLS 1 Negative electrode current collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part 10 All-solid secondary battery 11 Coin case 12 All-solid secondary battery laminate 13 All solids for test Secondary battery (Test body for measuring ion conductivity)

Claims (13)

  1.  周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、ポリマーからなるバインダーと、負極活物質と、分散媒とを含有する、全固体二次電池の負極用組成物であって、
     前記ポリマーが、アミド結合、ウレア結合及びウレタン結合からなる群より選択される少なくとも一つの結合を主鎖に有し、かつ、
     下記条件A及びB:
      [条件A]主鎖を構成する原子から4原子以上離れた鎖構造部に、カルボニル基、チオカルボニル基及びホスホリル基からなる群より選択される少なくとも1つの基を有する
      [条件B]前記基はヒドロキシ基と結合していない
    を満たす側鎖を持つ構成成分を有するポリマーを含む、負極用組成物。
    A negative electrode of an all-solid secondary battery including an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, a binder made of a polymer, a negative electrode active material, and a dispersion medium. A composition for
    The polymer has at least one bond selected from the group consisting of an amide bond, a urea bond, and a urethane bond in a main chain, and
    The following conditions A and B:
    [Condition A] At least one group selected from the group consisting of a carbonyl group, a thiocarbonyl group, and a phosphoryl group is provided in a chain structure at least four atoms away from the atoms constituting the main chain. [Condition B] The group is A composition for a negative electrode, comprising a polymer having a constituent component having a side chain that is not bonded to a hydroxy group.
  2.  前記ポリマー中の、前記構成成分の含有量が5~40質量%である、請求項1に記載の負極用組成物。 負極 The negative electrode composition according to claim 1, wherein the content of the constituent component in the polymer is 5 to 40% by mass.
  3.  前記構成成分において、前記鎖構造部の全質量Wに対する前記基の合計質量Wの割合[W/W]が0.05以上である、請求項1又は2に記載の負極用組成物。 In the components, the proportion of the total weight W G of the base relative to the total weight W S of the chain structure portion [W G / W S] is 0.05 or more, the composition for a negative electrode according to claim 1 or 2 Stuff.
  4.  前記負極活物質が、リチウムと合金化可能な活物質である、請求項1~3のいずれか1項に記載の負極用組成物。 負極 The negative electrode composition according to any one of claims 1 to 3, wherein the negative electrode active material is an active material that can be alloyed with lithium.
  5.  前記、リチウムと合金化可能な活物質が、構成元素にSi元素を含むケイ素系負極活物質である、請求項4に記載の負極用組成物。 The negative electrode composition according to claim 4, wherein the active material capable of being alloyed with lithium is a silicon-based negative electrode active material containing a Si element as a constituent element.
  6.  前記側鎖が、下記式(I)~(III)のいずれかで表される部分構造を有する、請求項1~5のいずれか1項に記載の負極用組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、L~Lは連結基を示し、R及びRは置換基を示す。
    The negative electrode composition according to any one of claims 1 to 5, wherein the side chain has a partial structure represented by any of the following formulas (I) to (III).
    Figure JPOXMLDOC01-appb-C000001
    In the formula, L 1 to L 4 represent a linking group, and R 1 and R 2 represent a substituent.
  7.  前記バインダーが、前記分散媒中に分散している、請求項1~6のいずれか1項に記載の負極用組成物。 The negative electrode composition according to any one of claims 1 to 6, wherein the binder is dispersed in the dispersion medium.
  8.  導電助剤を含有する、請求項1~7のいずれか1項に記載の負極用組成物。 (8) The composition for a negative electrode according to any one of (1) to (7), further comprising a conductive additive.
  9.  前記無機固体電解質が、硫化物系固体電解質である請求項1~8のいずれか1項に記載の負極用組成物。 The composition for a negative electrode according to any one of claims 1 to 8, wherein the inorganic solid electrolyte is a sulfide-based solid electrolyte.
  10.  請求項1~9のいずれか1項に記載の負極用組成物で構成した負極活物質層を有する全固体二次電池用負極シート。 A negative electrode sheet for an all-solid secondary battery having a negative electrode active material layer composed of the negative electrode composition according to any one of claims 1 to 9.
  11.  正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
     前記負極活物質層が、請求項1~9のいずれか1項に記載の負極用組成物で構成した負極活物質層である全固体二次電池。
    An all-solid secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order,
    An all-solid secondary battery in which the negative electrode active material layer is a negative electrode active material layer composed of the negative electrode composition according to any one of claims 1 to 9.
  12.  請求項1~9のいずれか1項に記載の負極用組成物を製膜する、全固体二次電池用負極シートの製造方法。 A method for producing a negative electrode sheet for an all-solid secondary battery, comprising forming the negative electrode composition according to any one of claims 1 to 9 into a film.
  13.  請求項12に記載の製造方法を介して全固体二次電池を製造する、全固体二次電池の製造方法。 A method for manufacturing an all-solid secondary battery, which manufactures an all-solid secondary battery through the manufacturing method according to claim 12.
PCT/JP2019/037485 2018-09-27 2019-09-25 Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery WO2020067108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549265A JPWO2020067108A1 (en) 2018-09-27 2019-09-25 A method for producing a negative composition for an all-solid secondary battery, a negative sheet for an all-solid secondary battery and an all-solid secondary battery, and a negative sheet for an all-solid secondary battery and an all-solid secondary battery.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182798 2018-09-27
JP2018-182798 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020067108A1 true WO2020067108A1 (en) 2020-04-02

Family

ID=69952883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037485 WO2020067108A1 (en) 2018-09-27 2019-09-25 Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery

Country Status (2)

Country Link
JP (1) JPWO2020067108A1 (en)
WO (1) WO2020067108A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4064406A1 (en) * 2021-03-24 2022-09-28 Samsung Electronics Co., Ltd. All-solid secondary battery
KR20230093889A (en) 2021-12-20 2023-06-27 창원대학교 산학협력단 All-solid-state battery with high chemo-mechanical stability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130832A1 (en) * 2016-01-28 2017-08-03 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for manufacturing all-solid-state secondary battery
WO2018151118A1 (en) * 2017-02-16 2018-08-23 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet and method for producing same, all-solid secondary battery and method for producing same, and polymer and non-aqueous solvent dispersion thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130832A1 (en) * 2016-01-28 2017-08-03 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for manufacturing all-solid-state secondary battery
WO2018151118A1 (en) * 2017-02-16 2018-08-23 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet and method for producing same, all-solid secondary battery and method for producing same, and polymer and non-aqueous solvent dispersion thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4064406A1 (en) * 2021-03-24 2022-09-28 Samsung Electronics Co., Ltd. All-solid secondary battery
KR20230093889A (en) 2021-12-20 2023-06-27 창원대학교 산학협력단 All-solid-state battery with high chemo-mechanical stability

Also Published As

Publication number Publication date
JPWO2020067108A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2017099248A1 (en) Solid electrolyte composition, binder particle, all-solid secondary battery sheet, all-solid secondary battery electrode sheet and all-solid secondary battery, and production method therefor
WO2017141735A1 (en) Solid electrolytic composition, electrode sheet for full-solid secondary batteries, full-solid secondary battery, and method for manufacturing electrode sheet for full-solid secondary batteries and full-solid secondary battery
JP6621443B2 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
WO2020036055A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all solid state secondary battery, and all solid state secondary battery
US11552332B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
CN114144907B (en) Method for producing composition for electrode, method for producing electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP6985516B2 (en) A method for producing a solid electrolyte composition, a solid electrolyte-containing sheet, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery, a solid electrolyte-containing sheet and an all-solid secondary battery, and a method for producing a particulate binder.
JP7373577B2 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid secondary battery, electrode sheet for all-solid secondary battery, and all-solid secondary battery, and manufacturing method of sheet for all-solid secondary battery and all-solid secondary battery
US20200235426A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
WO2020196041A1 (en) Solid electrolyte composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP6972374B2 (en) A method for manufacturing a solid electrolyte composition, an all-solid secondary battery sheet, an all-solid secondary battery electrode sheet and an all-solid secondary battery, and an all-solid secondary battery sheet and an all-solid secondary battery.
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2020203545A1 (en) Composite electrode active material, electrode composition, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery, and methods for manufacturing composite electrode active material, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery
WO2020129802A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet and method for producing all-solid-state secondary battery
WO2020075749A1 (en) Solid electrolyte composition, sheet for solid-state secondary battery, electrode sheet for solid-state secondary battery, and solid-state secondary battery
JP7008080B2 (en) Method for manufacturing solid electrolyte composition, solid electrolyte-containing sheet and all-solid-state secondary battery, and solid electrolyte-containing sheet and all-solid-state secondary battery
WO2023054425A1 (en) Electrode composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and methods for producing electrode composition, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery
JP6673785B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and method for producing solid electrolyte-containing sheet and all-solid secondary battery
JP7245847B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
JP7096367B2 (en) A method for manufacturing a solid electrolyte composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet or an all-solid-state secondary battery.
WO2021020031A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary batteries and all-solid-state secondary battery
WO2022202495A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary battery and method for producing all-solid-state secondary battery
WO2021193826A1 (en) Inorganic-solid-electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery sheet and all solid-state secondary battery
CN117642891A (en) Electrode composition, electrode sheet for all-solid-state secondary battery, electrode composition, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
CN117716524A (en) Electrode sheet and all-solid-state secondary battery, and method for manufacturing electrode sheet, electrode sheet and all-solid-state secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867380

Country of ref document: EP

Kind code of ref document: A1