WO2020203545A1 - Composite electrode active material, electrode composition, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery, and methods for manufacturing composite electrode active material, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery - Google Patents

Composite electrode active material, electrode composition, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery, and methods for manufacturing composite electrode active material, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery Download PDF

Info

Publication number
WO2020203545A1
WO2020203545A1 PCT/JP2020/013311 JP2020013311W WO2020203545A1 WO 2020203545 A1 WO2020203545 A1 WO 2020203545A1 JP 2020013311 W JP2020013311 W JP 2020013311W WO 2020203545 A1 WO2020203545 A1 WO 2020203545A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
solid
electrode active
state secondary
Prior art date
Application number
PCT/JP2020/013311
Other languages
French (fr)
Japanese (ja)
Inventor
広 磯島
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021511863A priority Critical patent/JP7061728B2/en
Publication of WO2020203545A1 publication Critical patent/WO2020203545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composite electrode active material, an electrode composition, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery, and a composite electrode active material, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery. Regarding the manufacturing method of.
  • the negative electrode, the electrolyte, and the positive electrode are all made of solid, and the safety and reliability, which are the problems of the battery using the organic electrolytic solution, can be greatly improved. It is also said that it will be possible to extend the service life. Further, the all-solid-state secondary battery can have a structure in which electrodes and electrolytes are directly arranged side by side and arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolytic solution, and it is expected to be applied to an electric vehicle, a large storage battery, or the like.
  • the electrode active material layer of such an all-solid-state secondary battery usually contains an inorganic solid electrolyte and an active material.
  • the active material repeats expansion and contraction by charging and discharging the all-solid-state secondary battery. Therefore, voids are generated between the solid particles (active material, inorganic solid electrolyte, conductive additive, etc.), which causes an increase in battery resistance.
  • an all-solid-state secondary battery for dealing with this problem for example, in Patent Document 1, at least one electrode of a positive electrode and a negative electrode is coated with a coating layer containing a conductive agent and a lithium ion conductive inorganic solid electrolyte. Lithium secondary batteries having active material particles are described. Further, Patent Documents 2 and 3 describe techniques for coating the surface of active material particles used in a lithium ion secondary battery with a solid electrolyte, a conductive material, a lithium ion conductive polymer, or the like.
  • the present inventor has coated the surface of the active material with a coating layer of an inorganic solid electrolyte and a conductive auxiliary agent as an active material for an all-solid secondary battery, and further obtained the coating layer.
  • the electron conduction path and the ion conduction path constructed in this active material are set. It was found that the all-solid-state secondary battery can be provided with excellent battery performance without being interrupted even if the expansion and contraction due to repeated charging and discharging are repeated.
  • the present invention has been further studied based on these findings and has been completed.
  • a composite electrode active material having an active material and a coating layer covering the active material.
  • the coating layer contains an inorganic solid electrolyte and a conductive auxiliary agent,
  • A1 ⁇ B1 formula (I) In the formula, A1 represents the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region A having a thickness of 0.5 ⁇ m outward from the active material contact portion of the coating layer, and B1 is the surface of the coating layer.
  • the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region B having a thickness of 0.5 ⁇ m is shown from the inside to the inside.
  • B1 is 99/1 or less.
  • A1 ⁇ C1 ⁇ B1 equation (IIA) A1 ⁇ C1 ⁇ B1 equation (IIB)
  • A1 and B1 are synonymous with A1 and B1 in the above formula (I).
  • C1 indicates the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region C.
  • ⁇ 4> The composite electrode active material according to any one of ⁇ 1> to ⁇ 3>, wherein the conductive auxiliary agent present in the region B contains fibrous carbon.
  • B1 is 50/50 to 99/1.
  • An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order. At least one layer of the positive electrode active material layer and the negative electrode active material layer is an all-solid-state secondary layer formed of the electrode sheet for an all-solid-state secondary battery according to any one of ⁇ 9> to ⁇ 11>.
  • Next battery. ⁇ 13> The method for producing a composite electrode active material according to any one of ⁇ 1> to ⁇ 5>. It has the following step (1) and the following step (2) to be performed once or multiple times, and the mixing ratio of the inorganic solid electrolyte and the conductive auxiliary agent in the following step (1) and the final step (2) is changed.
  • a method for producing a composite electrode active material wherein a coating layer satisfying the relationship defined by the above formula (I) is formed on the surface of the active material.
  • ⁇ 14> A method for producing an electrode sheet for an all-solid-state secondary battery, which comprises forming a film of the electrode composition according to any one of ⁇ 6> to ⁇ 8>.
  • ⁇ 15> A method for manufacturing an all-solid-state secondary battery, wherein the all-solid-state secondary battery is manufactured through the manufacturing method according to ⁇ 14>.
  • the composite electrode active material of the present invention As a component contained in the electrode active material layer of the all-solid-state secondary battery, excellent battery performance can be imparted to the all-solid-state secondary battery.
  • the electrode composition of the present invention containing the composite electrode active material can impart excellent battery performance to the all-solid secondary battery by using it as a constituent material of the electrode active material layer of the all-solid secondary battery.
  • the electrode sheet for an all-solid-state secondary battery of the present invention contains the above-mentioned composite electrode active material, and by using it as an electrode active material layer of the all-solid-state secondary battery, excellent battery performance can be imparted to the all-solid-state secondary battery.
  • the method for producing the composite electrode active material of the present invention, the electrode sheet for the all-solid secondary battery and the all-solid secondary battery is the composite electrode active material of the present invention exhibiting the above-mentioned excellent characteristics, and the electrode for the all-solid secondary battery. Sheets and all-solid secondary batteries can be manufactured.
  • FIG. 1 is a vertical sectional view schematically showing an all-solid-state secondary battery according to a preferred embodiment of the present invention.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the indication of a compound is used to mean that the compound itself, its salt, and its ions are included.
  • the composite electrode active material of the present invention has an active material and a coating layer for coating the active material.
  • the coating layer contains an inorganic solid electrolyte and a conductive auxiliary agent, and the lithium atoms and carbon atoms contained in the coating layer satisfy the relationship represented by the following formula (I) with respect to the number of atoms.
  • A1 ⁇ B1 (I) In the formula, A1 refers to the number of lithium atoms in the region A having a thickness of 0.5 ⁇ m from the active material contact portion (intersection between the active material and the coating layer) to the outside (opposite side of the active material) of the coating layer.
  • the ratio C / Li of the number of carbon atoms is shown.
  • the coating layer is formed of a particulate inorganic solid electrolyte, a conductive additive, or the like, the surface of the coating layer is usually not flat, but in the present invention, the surface of the coating layer is measured in Examples described later.
  • the composition Li derived from the coating layer solid electrolyte
  • SEM-EDX scanning electron microscope-energy dispersive X-ray spectroscopy
  • C (carbon atom) in the above ratio C / Li is a carbon atom derived from a conductive auxiliary agent
  • Li (lithium atom) is a carbon atom derived from an inorganic solid electrolyte.
  • the ratio C / Li in A1 and B1 is determined by the method described in the section of Examples described later.
  • the composite electrode active material of the present invention exhibits sufficient electron conductivity and ionic conductivity (an electron conduction path and an ionic conduction path are constructed) by the above configuration. Moreover, the electron conductivity and the ionic conductivity (both conduction paths) are maintained even if the active material repeatedly expands and contracts due to charging and discharging of the all-solid-state secondary battery.
  • the coating layer inorganic solid electrolyte, conductive additive, etc.
  • the coating layer is physically (mechanically) adsorbed or adhered to the surface of the active material, or bonded by a chemical bond to the surface. It forms a coating layer of. That is, in the composite electrode active material of the present invention, the active material and the coating layer act as one (preferably coated particles) inextricably linked to solve the problem of the present invention.
  • the coverage of the coating layer on the active material is appropriately set according to the type of the active material, the inorganic solid electrolyte and the conductive auxiliary agent, and both conductivitys. For example, 50% or more is set with respect to the surface area of the active material.
  • the thickness of the coating layer is not particularly limited as long as it exceeds 1 ⁇ m, but can be, for example, more than 1 ⁇ m and 10 ⁇ m or less, preferably more than 1 ⁇ m and 5 ⁇ m or less, and more preferably more than 1 ⁇ m and 3 ⁇ m or less.
  • the thickness of the coating layer can be measured by the method described in Examples described later.
  • the coating layer is formed in a state (mixture) in which the inorganic solid electrolyte and the conductive auxiliary agent, which are the contained components (forming components), are mixed.
  • the coating layer is formed of a mixture of an inorganic solid electrolyte and a conductive auxiliary agent, and the ratio C / Li satisfies the relationship defined by the above formula (I). That is, it is one of the preferable embodiments that the concentrations of the inorganic solid electrolyte and the conductive auxiliary agent are unevenly distributed on the inside and the outside of the coating layer, and the concentrations are inclined along the thickness direction.
  • the mode of the concentration gradient is not particularly limited, but may be a gradual gradient or a gradual gradient.
  • the concentration gradient is not limited to the gradient that increases or decreases from the inside to the outside, and includes a region where the concentration is constant, a region where the concentration decreases, or a region where the concentration increases during the inclination of the increase or decrease. May be good.
  • the above A1 is preferably 45/55 to 1/99, more preferably 35/65 to 1/99, in terms of further improving the high rate characteristics of the all-solid-state secondary battery of the present invention. It is more preferably 20/80 to 5/95.
  • the above B1 may be 99/1 or less in that sufficient ionic conductivity can be secured, and is 50/50 to 99/1 in terms of further improving the high rate characteristics of the all-solid-state secondary battery of the present invention. It is preferably 70/30 to 99/1, more preferably 85/15 to 95/5.
  • the difference between A1 and B1 is not particularly limited, but when the ratio of the number of carbon atoms to the number of lithium atoms is expressed as a percentage, it is preferably 5 to 99%, more preferably 35 to 90%. ..
  • the lithium atoms and carbon atoms contained in the region C between the regions A and B have the following atomic numbers. It is preferable to satisfy the relationship specified by the formula (IIA) or the formula (IIB), and it is preferable to satisfy the relationship specified by the following formula (IIC).
  • A1 and B1 are synonymous with A1 and B1 in the formula (I).
  • C1 indicates the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region C.
  • “Region C” has a thickness of 0.5 ⁇ m (1 ⁇ m in total) from the midpoint of the shortest distance between the active material contact portion and the surface of the coating layer (that is, the thickness of the coating layer) toward the regions A and B, respectively. Means the area having. Therefore, the area C may partially overlap with the area A, and the area C may partially overlap with the area B.
  • C1 is preferably 30/70 to 70/30, more preferably 35/65 to 65/35, in terms of further improving the high rate characteristics of the all-solid-state secondary battery of the present invention. It is more preferably / 60 to 60/40.
  • the difference between A1 and C1 is not particularly limited, but is preferably 15 to 70% and 20 to 55% when the ratio of the number of carbon atoms to the number of lithium atoms is expressed as a percentage. Is more preferable.
  • the difference between C1 and B1 is not particularly limited, but is preferably 15 to 70%, preferably 20 to 55%, when the ratio of the number of carbon atoms to the number of lithium atoms is expressed as a percentage. Is more preferable.
  • the composite electrode active material of the present invention may have a region other than the above region C between the regions A and B.
  • the number of such regions is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 to 2.
  • the other regions may be the same as or different from the regions A to C in terms of the ratio C / Li of the number of carbon atoms to the number of lithium atoms.
  • One of the preferred embodiments is an embodiment in which the ratio C / Li gradually increases from the region A to the region B.
  • the composite electrode active material of the present invention is a coating layer containing an inorganic solid electrolyte and a conductive auxiliary agent, which is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table (hereinafter, "the present invention". It is coated with a coating layer used in the invention.
  • the active material include a positive electrode active material and a negative electrode active material, which will be described below.
  • the positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an element that can be composited with Li such as sulfur, or the like.
  • the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphoric acid compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound, and the like.
  • transition metal oxide having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
  • LiCoO 2 lithium cobalt oxide
  • LiNi 2 O 2 lithium nickel oxide
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 Lithium Nickel Cobalt Aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 Lithium Nickel Manganese Cobalt Oxide [NMC]
  • LiNi 0.5 Mn 0.5 O 2 Lithium manganese nickel oxide
  • (MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4.
  • Examples thereof include cobalt phosphates of the above, and monoclinic panacicon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts such as.
  • Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles.
  • the particle size (volume average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m, and even more preferably 1.5 to 15 ⁇ m.
  • the particle size of the positive electrode active material particles can be measured in the same manner as the particle size of the following inorganic solid electrolyte. A normal crusher or classifier is used to adjust the positive electrode active material to a predetermined particle size.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, or the like is preferably used.
  • wet pulverization in which an organic solvent such as water or methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size.
  • the classification is not particularly limited, and can be performed using a sieve, a wind power classifier, or the like. Both dry and wet classifications can be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material may contain one kind or two or more kinds.
  • the negative electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and examples thereof include a carbonaceous material, a metal oxide, a metal composite oxide, a lithium simple substance, a lithium alloy, and a negative electrode active material capable of forming an alloy with lithium. .. Among them, a carbonaceous material, a metal composite oxide or a simple substance of lithium is preferably used from the viewpoint of reliability.
  • the carbonaceous material used as the negative electrode active material is a material substantially composed of carbon.
  • carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • Examples thereof include carbonic materials obtained by firing a resin.
  • various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polypoly alcohol) -based carbon fibers, lignin carbon fibers, graphitic carbon fibers and activated carbon fibers.
  • carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization. Further, the carbonaceous material preferably has the plane spacing or density and the size of crystallites described in JP-A-62-22066, JP-A-2-6856, and JP-A-3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like should be used. You can also.
  • As the carbonaceous material hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the metal or semi-metal element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of storing and releasing lithium, and is a composite of a metal element oxide (metal oxide) and a metal element.
  • metal oxide metal oxide
  • examples thereof include oxides or composite oxides of metal elements and semi-metal elements (collectively referred to as metal composite oxides) and oxides of semi-metal elements (semi-metal oxides).
  • metal composite oxides oxides or composite oxides of metal elements and semi-metal elements
  • oxides of semi-metal elements semi-metal elements
  • amorphous oxides are preferable, and chalcogenides, which are reaction products of metal elements and elements of Group 16 of the Periodic Table, are also preferable.
  • the semi-metallic element means an element exhibiting properties intermediate between the metallic element and the non-semi-metallic element, and usually contains 6 elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and Astatine.
  • amorphous means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and a crystalline diffraction line is used. You may have.
  • the strongest intensity of the crystalline diffraction lines found at the 2 ⁇ value of 40 ° to 70 ° is 100 times or less the diffraction line intensity at the apex of the broad scattering band seen at the 2 ⁇ value of 20 ° to 40 °. It is preferable that it is 5 times or less, and it is particularly preferable that it does not have a crystalline diffraction line.
  • the amorphous oxide of the semi-metal element or the chalcogenide is more preferable, and the elements of the groups 13 (IIIB) to 15 (VB) of the periodic table (for example).
  • Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) alone or a combination of two or more (composite) oxides, or chalcogenides are particularly preferred.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2.
  • Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include a carbonaceous material capable of occluding and / or releasing lithium ions or lithium metal, lithium alone, and lithium.
  • a negative electrode active material that can be alloyed with an alloy or lithium is preferably used.
  • the oxide of a metal or a metalloid element contains at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the lithium-containing metal composite oxide include lithium oxide and the metal (composite) oxide or a composite oxide of the chalcogenide, more specifically, Li 2 SnO 2.
  • the negative electrode active material for example, a metal oxide, contains a titanium element (titanium oxide).
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • Li 4 Ti 5 O 12 has excellent rapid charge / discharge characteristics due to small volume fluctuations during storage and release of lithium ions, and electrode deterioration is suppressed and lithium ion secondary It is preferable in that the life of the battery can be improved.
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
  • the negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery.
  • Such an active material has a large expansion and contraction due to charging and discharging, and the battery performance tends to deteriorate as described above.
  • the deterioration of the battery performance can be suppressed by coating the negative electrode active material with the coating layer.
  • examples of such an active material include a negative electrode active material (alloy) having a silicon element or a tin element, and each metal such as Al and In, and a negative negative active material (silicon element) having a silicon element that enables a higher battery capacity.
  • a silicon element-containing active material having a silicon element content of 50 mol% or more of all the constituent elements is more preferable.
  • a negative electrode containing these negative electrode active materials Si negative electrode containing a silicon element-containing active material, Sn negative electrode containing an active material containing a tin element, etc.
  • a carbon negative electrode graphite, acetylene black, etc.
  • silicon element-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, and the like (for example,).
  • LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si) or organized active material (eg LaSi 2 / Si), as well as other silicon and tin elements such as SnSiO 3 , SnSiS 3 Examples include active materials containing.
  • SiOx itself can be used as a negative electrode active material (semi-metal oxide), and since Si is generated by the operation of an all-solid-state secondary battery, a negative electrode active material that can be alloyed with lithium (its). It can be used as a precursor substance).
  • the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon element and the tin element.
  • a composite oxide with lithium oxide for example, Li 2 SnO 2 can also be mentioned.
  • the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with silicon is a preferred embodiment as the negative electrode active material.
  • a negative electrode active material that can be alloyed with silicon is a preferred embodiment as the negative electrode active material.
  • the above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and it is further preferable to contain silicon (Si) or a silicon-containing alloy.
  • the chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measuring method and the mass difference of the powder before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the shape of the negative electrode active material is not particularly limited, but it is preferably in the form of particles.
  • the volume average particle size of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 ⁇ m, more preferably 0.5 to 20 ⁇ m, and even more preferably 1.0 to 15 ⁇ m.
  • the volume average particle diameter of the negative electrode active material particles can be measured in the same manner as the average particle diameter of the following inorganic solid electrolyte. In order to obtain a predetermined particle size, a normal crusher or classifier is used as in the case of the positive electrode active material.
  • the negative electrode active material may contain one kind or two or more kinds.
  • the negative electrode active material layer can also be formed by charging the secondary battery.
  • metal ions belonging to Group 1 or Group 2 of the periodic table generated in the all-solid-state secondary battery can be used.
  • the negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide. That is, a surface coating formed of another metal oxide may be provided between the active material and the coating layer.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples include spinel titanate, tantalate oxide, niobate oxide, lithium niobate compound, and the like.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the surface of the particles of the positive electrode active material or the negative electrode active material forming the surface coating may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
  • the coating layer used in the present invention contains an inorganic solid electrolyte.
  • the inorganic solid electrolyte is an inorganic solid electrolyte having a lithium atom
  • the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polymer electrolyte represented by polyethylene oxide (PEO), organic represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from electrolyte salts).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is clearly distinguished from inorganic electrolyte salts (LiPF 6 , LiBF 4 , Lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) that are dissociated or liberated into cations and anions in the electrolyte or polymer. Will be done.
  • the inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally one having no electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iV) a hydride-based solid electrolyte.
  • a sulfide-based inorganic solid electrolyte is preferable from the viewpoint of being able to form a better interface between the and the inorganic solid electrolyte, and further, from the viewpoint of enhancing the adhesion between the coating layer and the active material in mixing with a mixer described later. ..
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom, has ionic conductivity of a metal belonging to Group 1 of the Periodic Table, and has electronic insulation. Is preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (S1).
  • L represents an element selected from Li, Na and K, and at least a part of L represents Li.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, more preferably 0 to 1.
  • the d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystal (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized.
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
  • Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2 ).
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ It is 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 -4 S / cm or more, and more preferably 1 ⁇ 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2- LiCl, Li 2 S-P 2 S 5- SnS, Li 2 S-P 2 S 5- Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2 , Li 2 S-Ge
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains lithium atoms and oxygen atoms, has ionic conductivity of a metal belonging to Group 1 of the Periodic Table, and has electron insulation properties. It is preferable to have.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 -6 S / cm or more, more preferably 5 ⁇ 10 -6 S / cm or more, and 1 ⁇ 10 -5 S / cm or more. It is particularly preferable that it is / cm or more.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7.
  • LLT Li xb Layb Zr zb M bb mb Onb
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn.
  • Xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20. Satisfies.); Li xc Byc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5 , Yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, nc satisfies 0 ⁇ nc ⁇ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si.
  • Li xf Si yf O zf (xf satisfies 1 ⁇ xf ⁇ 5, yf satisfies 0 ⁇ yf ⁇ 3 , zf satisfies 1 ⁇ zf ⁇ 10);.
  • Li xg S yg O zg (xg satisfies 1 ⁇ xg ⁇ 3, yg satisfies 0 ⁇ yg ⁇ 2, zg satisfies 1 ⁇ zg ⁇ 10.
  • Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
  • Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of the oxygen atom of lithium phosphate is replaced with nitrogen
  • LiPOD 1 LiPON in which a part of the oxygen atom of lithium phosphate is replaced with nitrogen
  • LiPOD 1 LiPON in which a part of the oxygen atom of lithium phosphate is replaced with nitrogen
  • LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni).
  • LiA 1 ON A 1 is one or more elements selected from Si, B, Ge, Al, C and Ga
  • Halide-based inorganic solid electrolyte contains halogen atoms, has the conductivity of ions of metals belonging to Group 1 or Group 2 of the Periodic Table, and has electrons. Insulating compounds are preferred.
  • the halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • the hydride-based inorganic solid electrolyte contains a hydrogen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. A compound having a property is preferable.
  • the hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, and 3 LiBH 4- LiCl.
  • the inorganic solid electrolyte is preferably particles.
  • the particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the particle size of the inorganic solid electrolyte is preferably determined in consideration of the particle size of the active material and the conductive additive according to the surface coating state of the active material and the like.
  • the particle size of the inorganic solid electrolyte forming the coating layer is preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m, and preferably 0.2 to 1 ⁇ m. More preferred.
  • the particle size of the inorganic solid electrolyte is preferably smaller than that of the active material, and the difference from the particle size of the active material is not particularly limited, but is preferably 0.5 to 10 ⁇ m, preferably 0.8 to 5 ⁇ m, for example. More preferably.
  • the particle size of the inorganic solid electrolyte is measured by the following procedure.
  • Inorganic solid electrolyte particles are prepared by diluting 1% by mass of a dispersion in a 20 mL sample bottle with water (heptane in the case of a water-unstable substance).
  • the diluted dispersed sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test.
  • data was captured 50 times using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA) at a temperature of 25 ° C. using a measuring quartz cell. Obtain the volume average particle size.
  • JIS Z 8828 2013 “Particle size analysis-Dynamic light scattering method” as necessary. Five samples are prepared for each level and the average value is adopted.
  • the inorganic solid electrolyte may contain one kind or two or more kinds.
  • the content of the inorganic solid electrolyte in the coating layer is not particularly limited, and is set within a range that satisfies the relationship defined by the above formula (I). For example, it is preferably 15 to 99% by mass, more preferably 20 to 95% by mass, based on the total mass of the coating layer.
  • the coating layer used in the present invention appropriately contains a conductive auxiliary agent.
  • the conductive auxiliary agent is not particularly limited as long as it is a substance containing a carbon atom, and a material known as a general conductive auxiliary agent can be used.
  • electron conductive materials such as natural graphite, artificial graphite and other graphite, acetylene black, ketjen black, furnace black and other carbon blacks, needle coke and other amorphous carbon, vapor-grown carbon fibers or carbon nanotubes.
  • a fibrous carbon such as graphene or fullerene
  • a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative
  • a usual conductive auxiliary agent containing no carbon atom such as metal powder such as copper and nickel and metal fiber can be used in combination with the conductive auxiliary agent containing these carbon atoms.
  • the conductive auxiliary agent means one that does not insert and release Li when the battery is charged and discharged, and does not function as an active material. Therefore, among the conductive auxiliary agents, those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
  • the shape of the conductive auxiliary agent is not particularly limited, but for example, it is indefinite, particulate or fibrous, preferably particulate or fibrous, and more preferably fibrous.
  • the coating layer used in the present invention preferably contains fibrous carbon. It is preferable that the shapes of the conductive auxiliaries contained in the regions A and B of the coating layer used in the present invention are different, and in order to further improve the high rate characteristics of the all-solid-state secondary battery, the conductive auxiliaries contained in the region B are fibers. It is preferable that the conductive auxiliary agent contained in the region A is in the form of particles, and the conductive auxiliary agent contained in the region B is preferably in the form of fibers.
  • the volume average particle size of the particulate or fibrous conductive auxiliary agent is preferably determined in consideration of the particle size of the active material and the conductive auxiliary agent according to the surface coating state of the active material and the like. It is preferably 1 to 900 nm, more preferably 5 to 800 nm, and even more preferably 10 to 500 nm.
  • the particle size of the conductive auxiliary agent is preferably smaller than that of the active material, and the difference from the particle size of the active material is not particularly limited, but is preferably 0.1 to 50 ⁇ m, for example, 1 to 15 ⁇ m. Is more preferable.
  • the volume average particle diameter of the particulate or fibrous conductive auxiliary agent can be measured in the same manner as the average particle diameter of the inorganic solid electrolyte.
  • the aspect ratio of the particulate conductive auxiliary agent is preferably 0.5 to 1.5, more preferably 0.8 to 1.2.
  • the aspect ratio of the fibrous conductive auxiliary agent is preferably 2 to 10000, more preferably 10 to 1000.
  • the aspect ratio is determined by, for example, by observing the shape on an SEM image, the line segment having the maximum length among the line segments passing through the center of the conductive auxiliary agent is set as the maximum major axis, and the width orthogonal to the maximum major axis / maximum major axis is used. Can be calculated.
  • the aspect ratio is an arithmetic mean value of 80% of the total number of conductive auxiliaries as 100%.
  • the conductive auxiliary agent may contain one kind or two or more kinds.
  • the content of the conductive auxiliary agent in the coating layer is not particularly limited, and is set within a range that satisfies the relationship defined by the above formula (I). For example, it is preferably 5 to 95% by mass, more preferably 10 to 80% by mass, based on the total mass of the coating layer.
  • the coating layer may contain an inorganic solid electrolyte and a conductive auxiliary agent, and may contain components other than the inorganic solid electrolyte and the conductive auxiliary agent as long as the effects of the present invention are not impaired.
  • the components other than the inorganic solid electrolyte and the conductive auxiliary agent are not particularly limited, but include an ion conductive substance such as a lithium salt or a lithium ion conductive polymer, an electron conductive substance other than the conductive auxiliary agent, and an electrode composition described later. Other components may be mentioned.
  • the coating layer preferably contains no lithium ion conductive polymer (for example, the content in the coating layer is 5% by mass or less).
  • the content of the above components in the coating layer is not particularly limited.
  • the content of the component that does not exhibit ionic conductivity and electron conductivity is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less in the coating layer.
  • the method for producing the composite electrode active material of the present invention is not particularly limited, and examples thereof include a high-speed airflow impact method, a rolling flow coating method (sol-gel method), and a mixing method, and the mixing method is preferable.
  • the method for shifting the ratio C / Li can be applied without particular limitation to a known method. For example, coating by a high-speed airflow impact method by changing the mixing ratio of the inorganic solid electrolyte and the conductive auxiliary agent. Examples include a method of performing rolling flow coating or mixing multiple times.
  • the following step (1) and the following step (2) performed once or a plurality of times are included, and the mixing of the inorganic solid electrolyte and the conductive auxiliary agent in the step (1) and the final step (2) is performed.
  • Examples thereof include a method of forming a coating layer satisfying the relationship defined by the above formula (I) on the surface of the active material by changing the ratio.
  • the number of times the step (2) is performed is not particularly limited as long as it is one or more times, and may be, for example, three times. Considering productivity and the like, 1 to 4 times is preferable, and 1 to 3 times is more preferable.
  • the inorganic solid electrolyte and the conductive auxiliary agent used in the step (2) are materials for newly forming the coating layer, and may be of the same type as the inorganic solid electrolyte and the conductive auxiliary agent (cover layer formed) used in the immediately preceding step. It may be different.
  • the mixing ratio of the inorganic solid electrolyte and the conductive additive (corresponding to the content in the coating layer) to be mixed in the step (2) is such that the mixing ratio of the above step (2) to be performed last is the mixing ratio of the step (1).
  • This change in the mixing ratio is appropriately set according to the mode of the concentration gradient.
  • the mixing ratio is usually set to a value that satisfies the ratio C / Li of A1, B1, C1 and other regions in each of the above formulas.
  • the mixing method in both steps is not particularly limited, and the method described in the method for preparing the electrode composition described later can be applied.
  • One example thereof is a method of mixing an active material or a mixture obtained in the immediately preceding step with an inorganic solid electrolyte and a conductive additive in a ball mill for, for example, 5 to 180 minutes.
  • a method described in Examples described later can be mentioned.
  • the electrode composition of the present invention contains the composite electrode active material of the present invention and a dispersion medium.
  • the electrode composition of the present invention is preferably a slurry in which the composite electrode active material is dispersed in a dispersion medium.
  • the content of the composite electrode active material in the electrode composition is preferably 70% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more, based on the total solid content contained in the electrode composition. It is more preferably 95% by mass or more, and may be 100% by mass.
  • the electrode composition of the present invention can be preferably used as an electrode sheet for an all-solid-state secondary battery or a molding material for an active material layer of an all-solid-state secondary battery.
  • the solid content means a component that does not volatilize or evaporate and disappear when the electrode composition is dried at 170 ° C. for 6 hours under an atmospheric pressure of 1 mmHg and a nitrogen atmosphere. Typically, it refers to a component other than the dispersion medium described later.
  • the composition for electrodes of the present invention is not particularly limited, but the water content (also referred to as water content) is preferably 500 ppm or less, more preferably 200 ppm or less, and further preferably 100 ppm or less. It is preferably 50 ppm or less, and particularly preferably 50 ppm or less.
  • the water content indicates the amount of water contained in the electrode composition (mass ratio to the electrode composition). Specifically, the water content is filtered through a 0.02 ⁇ m membrane filter, and Karl Fischer titration is used. It shall be the measured value.
  • the dispersion medium (dispersion medium) contained in the electrode composition of the present invention may be any one that disperses or dissolves the contained solid content.
  • the dispersion medium include various organic solvents.
  • the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds and the like.
  • each of the above solvents examples include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol can be mentioned.
  • ether compound examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, and dipropylene glycol.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, and dipropylene glycol.
  • Examples of the amide compound include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, and N-.
  • Examples thereof include methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and diisobutyl ketone.
  • Examples of the aromatic compound include aromatic hydrocarbon compounds such as benzene, toluene and xylene.
  • Examples of the aliphatic compound include aliphatic hydrocarbon compounds such as hexane, heptane, octane, and decane.
  • Examples of the nitrile compound include acetonitrile, propyronitrile, isobutyronitrile and the like.
  • ester compound examples include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, butyl pentanate and the like.
  • non-aqueous dispersion medium examples include the above aromatic compounds and aliphatic compounds.
  • ether compounds, ketone compounds, aromatic compounds, aliphatic compounds and ester compounds are preferable, and ketone compounds, aliphatic compounds or ester compounds are more preferable.
  • the sulfide-based inorganic solid electrolyte can be handled stably because it does not contain a functional group that is active with respect to the sulfide-based inorganic solid electrolyte.
  • a combination of a sulfide-based inorganic solid electrolyte and an aliphatic compound is preferable.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher at normal pressure (1 atm), and more preferably 70 ° C. or higher.
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the dispersion medium may contain one kind alone or two or more kinds.
  • the content of the dispersion medium in the electrode composition is not particularly limited and can be appropriately set.
  • 20 to 99% by mass is preferable, 25 to 70% by mass is more preferable, and 30 to 60% by mass is particularly preferable.
  • the electrode composition of the present invention may contain a binder.
  • the binder may be contained in any form, for example, in an electrode composition, an electrode sheet for an all-solid-state secondary battery, or an all-solid-state secondary battery, the binder may be in the form of particles or in an indefinite shape. May be good.
  • the binder is preferably contained in the form of polymer particles. More preferably, it is contained in the form of resin particles containing a macromonomer component.
  • the binder used in the present invention is polymer particles, the polymer forming the polymer particles is not particularly limited. This binder is not particularly limited, and for example, the form of particles made of the following polymer is preferable.
  • fluoropolymer examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic polymer examples include polyethylene, polypropylene, styrene-butadiene rubber (SBR), hydrogenated styrene-butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic polymer examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of the monomers constituting these polymers (preferably copolymers of acrylic acid and methyl acrylate). Be done. Further, a copolymer (copolymer) with other vinyl-based monomers is also preferably used. For example, a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene can be mentioned.
  • the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferable.
  • other polymers include polyurethane, polyurea, polyamide, polyimide, polyester, polyether, polycarbonate, cellulose derivative and the like.
  • acrylic polymers, polyurethanes, polyamides and polyimides are preferable, acrylic polymers, polyurethanes and polyamides are more preferable, and acrylic polymers are particularly preferable.
  • the binder As the polymer constituting the binder, a polymer synthesized or prepared by a conventional method may be used, or a commercially available product may be used.
  • the binder may contain one kind or two or more kinds.
  • the content of the binder in the electrode composition is solid in consideration of reduction of interfacial resistance and maintenance of reduced interfacial resistance when used in an all-solid-state secondary battery.
  • the 100% by mass of the components 0.01% by mass or more is preferable, 0.1% by mass or more is more preferable, and 1% by mass or more is further preferable.
  • the upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less.
  • the electrode composition of the present invention preferably contains a lithium salt (supporting electrolyte).
  • the lithium salt the lithium salt usually used for this kind of product is preferable, and there is no particular limitation.
  • the lithium salt described in paragraphs 882 to 985 of JP2015-088486 is preferable.
  • the content of the lithium salt is preferably 0.1 part by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the composite electrode active material.
  • the upper limit is preferably 50 parts by mass or less, and more preferably 20 parts by mass or less.
  • the composition for electrodes of the present invention may contain a dispersant.
  • a dispersant those usually used for all-solid-state secondary batteries can be appropriately selected and used.
  • compounds intended for particle adsorption, steric repulsion and / or electrostatic repulsion are preferably used.
  • an ionic liquid as components other than the above components, an ionic liquid, a thickener, a cross-linking agent (such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization), polymerization, etc. It can contain initiators (such as those that generate acids or radicals by heat or light), defoaming agents, leveling agents, dehydrating agents, antioxidants and the like.
  • the ionic liquid is contained in order to further improve the ionic conductivity, and known ones can be used without particular limitation.
  • the electrode composition of the present invention can be prepared as a mixture by mixing a composite electrode active material, a dispersion medium, and optionally a binder, a lithium salt, and any other components in various commonly used mixers, for example. It can be prepared preferably as a slurry.
  • the mixing method is not particularly limited, and the mixture may be mixed all at once or sequentially.
  • the mixing environment is not particularly limited, and examples thereof include under dry air and under an inert gas.
  • the electrode sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body capable of forming an electrode active material layer of an all-solid-state secondary battery, and is preferably used for an electrode or a laminate of an electrode and a solid electrolyte layer. Be done.
  • the electrode sheet for an all-solid-state secondary battery of the present invention may be an electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector).
  • the sheet may be a sheet that does not have a base material and is formed from an active material layer.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. An embodiment having a layer and an active material layer in this order is also included.
  • the electrode sheet of the present invention may have the other layers described above.
  • the layer thickness of each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
  • At least one layer of the active material layer contains the composite electrode active material of the present invention.
  • the active material layer containing the composite electrode active material of the present invention most of the composite electrode active material maintains the state of being coated with the active material by the coating layer, and further, the relationship defined by the above formula (I) is greatly increased. It is maintained without damage.
  • a part of the inorganic solid electrolyte and the conductive auxiliary agent forming the coating layer may be removed from the coating layer and exist independently of the composite electrode active material as long as the effects of the present invention are not impaired.
  • the method for producing the electrode sheet for an all-solid-state secondary battery of the present invention is not particularly limited, and the electrode sheet can be produced by forming an active material layer using the electrode composition of the present invention.
  • a method of forming a film (coating and drying) on the current collector (which may be via another layer) to form a layer (coating and drying layer) composed of the electrode composition can be mentioned.
  • an electrode sheet for an all-solid-state secondary battery having a current collector and a coating dry layer can be produced.
  • the coating dry layer is a layer formed by applying the electrode composition of the present invention and drying the dispersion medium (that is, the electrode composition of the present invention is used, and the electrode of the present invention is used.
  • the dispersion medium may remain as long as the effect of the present invention is not impaired, and the residual amount may be, for example, 3% by mass or less in each layer.
  • each step such as coating and drying will be described in the following method for manufacturing an all-solid-state secondary battery.
  • the coating dry layer obtained as described above can also be pressurized.
  • the pressurizing conditions and the like will be described later in the method for manufacturing an all-solid-state secondary battery.
  • the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
  • the all-solid secondary battery of the present invention has a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer arranged between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is preferably formed on the positive electrode current collector to form the positive electrode.
  • the negative electrode active material layer is preferably formed on the negative electrode current collector to form the negative electrode. It is preferable that at least one layer of the negative electrode active material layer and the positive electrode active material layer contains the composite electrode active material of the present invention, and the negative electrode active material layer and the positive electrode active material layer contain the composite electrode active material.
  • the composite electrode active material in the active material layer containing the composite electrode active material of the present invention maintains the state of being coated with the active material by the coating layer, and further, the relationship defined by the above formula (I) is greatly increased. It is maintained without damage.
  • a part of the inorganic solid electrolyte and the conductive auxiliary agent forming the coating layer may be removed from the coating layer and exist independently of the composite electrode active material as long as the effects of the present invention are not impaired.
  • the active material layer is preferably contained in the same component species and the content ratio thereof in the solid content of the electrode composition of the present invention. If one of the active material layers is not formed of the electrode composition of the present invention, a known material can be used.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
  • the thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m, respectively, in consideration of the dimensions of a general all-solid-state secondary battery.
  • the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each have a current collector on the opposite side of the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure, but in order to form a dry battery, it should be further enclosed in a suitable housing.
  • the housing may be made of metal or resin (plastic). When a metallic material is used, for example, one made of aluminum alloy or stainless steel can be mentioned. It is preferable that the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
  • FIG. 1 is a schematic cross-sectional view showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. ..
  • Each layer is in contact with each other and has an adjacent structure.
  • the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6.
  • a light bulb is used as a model for the operating portion 6, and the light bulb is turned on by electric discharge.
  • the all-solid secondary battery When an all-solid secondary battery having the layer structure shown in FIG. 1 is placed in a 2032 type coin case, the all-solid secondary battery is referred to as an all-solid secondary battery electrode sheet, and the all-solid secondary battery electrode sheet is referred to as an all-solid secondary battery electrode sheet. Batteries manufactured in a 2032 type coin case are sometimes referred to as all-solid secondary batteries.
  • both the positive electrode active material layer and the negative electrode active material layer are composed of the electrode sheet for the all-solid-state secondary battery of the present invention, and contain the composite electrode active material of the present invention. There is. Therefore, the all-solid-state secondary battery 10 exhibits excellent battery performance.
  • the composite electrode active material contained in the positive electrode active material layer 4 and the negative electrode active material layer 2 may be of the same type or different from each other. In the present invention, either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer. Further, either or both of the positive electrode active material and the negative electrode active material may be collectively referred to as an active material or an electrode active material.
  • the negative electrode active material layer can be a lithium metal layer.
  • the lithium metal layer include a layer formed by depositing or molding a lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like.
  • the thickness of the lithium metal layer can be, for example, 1 to 500 ⁇ m regardless of the thickness of the negative electrode active material layer.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • either or both of the positive electrode current collector and the negative electrode current collector may be collectively referred to as a current collector.
  • a current collector As a material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, the surface of aluminum or stainless steel is treated with carbon, nickel, titanium or silver (a thin film is formed). Of these, aluminum and aluminum alloys are more preferable.
  • As a material for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel.
  • aluminum, copper, copper alloy and stainless steel are more preferable.
  • the shape of the current collector is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or arranged between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. You may. Further, each layer may be composed of a single layer or a plurality of layers.
  • the all-solid-state secondary battery can be manufactured by a conventional method. Specifically, the all-solid-state secondary battery can be manufactured by forming an active material layer using the electrode composition or the like of the present invention. However, when a base material other than the current collector is used for forming the active material layer, the base material is peeled off from the active material and used for manufacturing an all-solid-state secondary battery. This makes it possible to manufacture an all-solid-state secondary battery that exhibits excellent battery performance and even smaller electrical resistance. The details will be described below.
  • the electrode composition of the present invention is appropriately applied onto a base material (for example, a metal foil serving as a current collector) to form a coating film (film formation). It can be manufactured by performing a method including (via) (a method for manufacturing a sheet for an all-solid-state secondary battery of the present invention).
  • a positive electrode composition is applied onto a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and a positive electrode sheet for an all-solid secondary battery is produced.
  • a solid electrolyte composition for forming the solid electrolyte layer is applied onto the positive electrode active material layer to form the solid electrolyte layer.
  • the composition for the negative electrode is applied on the solid electrolyte layer to form the negative electrode active material layer.
  • a negative electrode current collector metal leaf
  • an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer can be obtained. Can be done. This can be enclosed in a housing to obtain a desired all-solid-state secondary battery.
  • a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is superposed to manufacture an all-solid secondary battery. You can also do it.
  • a positive electrode sheet for an all-solid-state secondary battery is produced. Further, a negative electrode composition is applied onto a metal foil which is a negative electrode current collector to form a negative electrode active material layer, and a negative electrode sheet for an all-solid secondary battery is produced. Next, a solid electrolyte layer is formed on the active material layer of any one of these sheets as described above. Further, the other of the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, an all-solid-state secondary battery can be manufactured.
  • the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery and a negative electrode sheet for an all-solid-state secondary battery are produced. Separately from this, the solid electrolyte composition is applied onto the base material to prepare a solid electrolyte sheet for an all-solid secondary battery composed of a solid electrolyte layer. Further, the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery are laminated so as to sandwich the solid electrolyte layer peeled from the base material. In this way, an all-solid-state secondary battery can be manufactured.
  • the electrode composition of the present invention may be used for any one of the positive electrode composition and the negative electrode composition, and it is preferable to use the electrode composition of the present invention in both cases.
  • each composition is not particularly limited and can be appropriately selected.
  • coating preferably wet coating
  • spray coating spin coating coating
  • dip coating dip coating
  • slit coating stripe coating
  • bar coating coating can be mentioned.
  • each composition may be subjected to a drying treatment after being applied, or may be subjected to a drying treatment after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
  • the dispersion medium By heating in such a temperature range, the dispersion medium can be removed and a solid state (coating dry layer) can be obtained. Further, it is preferable because the temperature is not raised too high and each member of the all-solid-state secondary battery is not damaged. As a result, in an all-solid-state secondary battery, it is possible to obtain excellent overall performance, good binding properties, and good ionic conductivity even without pressurization.
  • the pressurizing method include a hydraulic cylinder press machine and the like.
  • the pressing force is not particularly limited, and is generally preferably in the range of 5 to 1500 MPa.
  • the applied electrode composition may be heated at the same time as pressurization.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It can also be pressed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be carried out in a state where the coating solvent or the dispersion medium has been dried in advance, or may be carried out in a state where the solvent or the dispersion medium remains.
  • each composition may be applied at the same time, and the application drying press may be performed simultaneously and / or sequentially. After applying to separate substrates, they may be laminated by transfer.
  • the atmosphere during pressurization is not particularly limited, and may be any of air, dry air (dew point ⁇ 20 ° C. or lower), inert gas (for example, argon gas, helium gas, nitrogen gas) and the like.
  • the pressing time may be short (for example, within several hours) and high pressure may be applied, or medium pressure may be applied for a long time (1 day or more).
  • an all-solid-state secondary battery restraint screw tightening pressure, etc.
  • the press pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
  • the press pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part step by step with different pressures.
  • the pressed surface may be smooth or roughened.
  • the all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.
  • the all-solid-state secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, but for example, when mounted on an electronic device, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone. Examples include copying, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, etc.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
  • a 40 mass% heptane solution of macromonomer M-1 was prepared as follows.
  • a self-condensate of 12-hydroxystearic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (GPC polystyrene standard number average molecular weight: 2,000) is reacted with glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) and methacrylic as a macromonomer.
  • step (1) is performed using the coating material 1 described in Table 1 below, and then the following step (2) is performed twice using the coating materials 2 and 3 described in Table 1 below.
  • the composite electrode active material No. 1 shown in Table 1 below. 7 was synthesized.
  • -Process (1)- 66 g of zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and 3 g of LPS, 0.2 g of acetylene black as a conductive auxiliary agent, and 10 g of NMC having an average particle size of 5 ⁇ m as an active material were put into a ball mill.
  • the active material 1 having a coating layer containing LPS and a conductive auxiliary agent was obtained by stirring at 370 rpm for 30 minutes at room temperature (trade name: P-7, manufactured by Fritsch) (number of coatings 1).
  • P-7 room temperature
  • the active material 1, 0.05 g of LPS, and 0.4 g of acetylene black are stirred in a ball mill (trade name: P-7, manufactured by Fritsch) at room temperature for 30 minutes at 370 rpm, and the LPS and the conductive additive are stirred.
  • An active material 2 having a coating layer containing the above was obtained (number of coatings 2).
  • the active material 2 0.1 g of LPS, and 0.4 g of acetylene black are stirred in a ball mill (trade name: P-7, manufactured by Fritsch) at room temperature for 30 minutes at 370 rpm, and the LPS and the conductive additive are stirred.
  • step (1a) is performed using the coating material 1 described in Table 1 below, and then the following step (2a) is performed using the coating material 3 described in Table 1 below.
  • No. 1 of the composite electrode active material according to 1. 12 was synthesized.
  • -Step (1a)- 66 g of zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and 3 g of LPS, 0.2 g of acetylene black as a conductive auxiliary agent, and 10 g of NMC having an average particle size of 5 ⁇ m as an active material were put into a ball mill.
  • a composite containing LPS and a conductive auxiliary agent was obtained by stirring with (trade name: P-7, manufactured by Fritsch) at room temperature at 150 rpm for 30 minutes. Then, using a high-speed airflow impact device (NHS-0 (trade name) manufactured by Nara Machinery Co., Ltd.), a coating layer containing LPS and a conductive additive was obtained by undergoing a dry compounding process at 12000 rpm for 5 minutes. The active material 1 to have was obtained (number of coatings 1).
  • composition 1 for Positive Electrode 66 g of zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and the composite electrode active material No. 1 synthesized above was added. 77.0 g, LPS 0.9 g, and heptane 12.3 g as a dispersion medium were added. A container was set on the planetary ball mill P-7, and mixing was continued for 10 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm to prepare a positive electrode composition 1.
  • composition 1 for negative electrode 66 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), 2.8 g of LPS synthesized above, and 12.3 g of heptane as a dispersion medium were put.
  • the container was set on a planetary ball mill P-7 manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours.
  • the positive electrode composition 1 prepared above is placed on an aluminum foil (positive electrode current collector) with an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.) with a basis weight of 30 mg / cm 2. After heating at 80 ° C. for 1 hour, the mixture was further dried at 110 ° C. for 1 hour. Then, using a heat press machine, pressure was applied while heating (120 ° C.) (20 MPa, 1 minute) to prepare a positive electrode sheet having a positive electrode active material layer on the positive electrode current collector.
  • an applicator trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.
  • the negative electrode composition 1 prepared above is placed on a stainless steel (SUS) foil (negative electrode current collector) with an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.) at 15 mg / cm 2
  • an applicator trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.
  • the mixture was applied so as to have a basis weight of, heated at 80 ° C. for 1 hour, and then dried at 110 ° C. for 1 hour. Then, using a heat press machine, pressure was applied while heating (120 ° C.) (20 MPa, 1 minute) to prepare a negative electrode sheet having a negative electrode active material layer on the negative electrode current collector.
  • an all-solid-state secondary battery was prepared as follows.
  • the positive electrode sheet was punched into a disk shape having a diameter of 10 mm ⁇ and placed in a cylinder made of polyethylene terephthalate (PET) having a diameter of 10 mm ⁇ .
  • P PET polyethylene terephthalate
  • 30 mg of the synthesized LPS was placed on the surface of the positive electrode active material layer in the cylinder, and a rod made of SUS having a diameter of 10 mm was inserted through the openings at both ends of the cylinder.
  • the positive electrode current collector side of the positive electrode sheet and the LPS were pressure-formed with a SUS rod at a pressure of 350 MPa to form a solid electrolyte layer.
  • All-solid-state secondary battery No. In the preparation of 1-7, the composite electrode active material No. Instead of No. 7, the composite electrode active material No. All-solid-state secondary batteries No. 1 to 6 and 8 to 24 were used. In the same manner as in 1-7, the all-solid-state secondary battery No. 1-1 to 1-6 and 1 to 8 to 1-24 were prepared.
  • All-solid-state secondary battery No. 1 In the production of 1-7, the all-solid-state secondary battery No. 1 except that the following positive electrode composition 2 and negative electrode composition 2 were used instead of the positive electrode composition 1 and the negative electrode composition 1. In the same manner as in 1-7, the all-solid-state secondary battery No. 1-26 was made.
  • composition 2 for positive electrode 66 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), 2.8 g of LPS synthesized above, and 12.3 g of heptane as a dispersion medium were put.
  • the container was set on a planetary ball mill P-7 manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours.
  • 7.0 g of NMC as an active material was put into a container, and similarly, the container was set in a planetary ball mill P-7 and mixed at a temperature of 25 ° C. and a rotation speed of 200 rpm for 15 minutes to prepare a positive electrode composition 2. ..
  • composition 2 for negative electrode 66 g of zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and the composite electrode active material No. 1 synthesized above was added. 26 7.0 g, LPS 0.9 g, and heptane 12.3 g as a dispersion medium were added. The container was set on the planetary ball mill P-7, and mixing was continued for 10 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm to prepare a negative electrode composition 2.
  • All-solid-state secondary battery No. In the preparation of 1-26, the composite electrode active material No. Instead of 26, the composite electrode active material No. All-solid-state secondary battery No. 1-25 and 1-27-30 were used. In the same manner as in 1-7, the all-solid-state secondary battery No. 1-25 and 1-27-30 were made.
  • the C / Li in each region of the coating layer of the synthesized composite electrode active material was measured as follows.
  • the composite electrode active material powder is pressed at 350 MPa to obtain composite electrode active material powder pellets, and the pellets are cut and used with an ion milling device (Hitachi Seisakusho, IM4000PLUS (trade name)) to accelerate voltage 3 kV and discharge voltage 1.5 V. It was cut out under the conditions of a treatment time of 4 hours and an argon gas flow rate of 0.1 ml / min.
  • the cross section of the composite electrode active material was observed by SEM (Hitachi, MINISCOPE TM3030PLUS (trade name)) at a magnification of 5,000 times.
  • SEM Hitachi, MINISCOPE TM3030PLUS (trade name)
  • the circumferential direction was at four locations with a central angle of 90 °
  • the thickness direction of the composite electrode active material was The C / Li at one location was calculated near the center of each region, and the arithmetic mean value of the values of each region obtained from the 10 composite electrode active materials was adopted.
  • the active material contact surface is composed of SEM-EDX (Hitachi, Ltd., QUANTAX70 (trade name)) (Mn or Al derived from the positive electrode active material, Li derived from the inorganic solid electrolyte in the coating layer, or Si derived from the negative electrode active material.
  • SEM-EDX Haitachi, Ltd., QUANTAX70 (trade name)
  • the portion where Sn and Li) derived from the inorganic solid electrolyte in the coating layer change discontinuously was defined as the contact surface between the active material and the coating layer.
  • the surface of the coating layer was defined as a portion where the composition (Li and voids derived from the inorganic solid electrolyte in the coating layer) changed discontinuously with SEM-EDX.
  • the area A, the area C, and the area B were measured on the same straight line (on one radius).
  • the composite electrode active material maintained C / Li in each region of the coating layer.
  • the composite electrode active material was taken out by disassembling the all-solid-state secondary battery, and the taken-out composite electrode active material was used. And measured in the same manner as above.
  • the composite electrode active material maintained the coverage of the coating layer with respect to the active material of the composite electrode active material.
  • the coverage of the coating layer on the active material of the composite electrode active material in the all-solid-state secondary battery is determined by disassembling the all-solid-state secondary battery, taking out the composite electrode active material, and using the taken-out composite electrode active material. The measurement was performed in the same manner as above.
  • the layer thickness of the coating layer of the synthesized composite electrode active material 10 composite electrode active materials were randomly selected, and for each composite electrode active material, 40 active material contact portions and the coating portion surface were randomly selected.
  • the shortest distance to and from was measured from an image with a magnification of ⁇ 5000 times by cutting out a cross section in the same manner as above and using an SEM (Hitachi Seisakusho, MINISCOPE TM3030PLUS (trade name)), and the arithmetic mean value was adopted.
  • the composite electrode active material maintained the layer thickness of the coating layer of the composite electrode active material.
  • the composite electrode active material was taken out by disassembling the all-solid-state secondary battery, and the taken-out composite electrode active material was used. The measurement was performed in the same manner as above.
  • Discharge capacity retention rate (%) (Discharge capacity (2) / Discharge capacity (1)) x 100

Abstract

Provided are a composite electrode active material including an active material and a covering layer covering the active material, an electrode composition, an electrode sheet for an all-solid-state secondary battery, and an all-solid-state secondary battery, and methods for manufacturing the composite electrode active material, the electrode sheet for an all-solid-state secondary battery and the all-solid-state secondary battery, wherein: the covering layer contains an inorganic solid electrolyte and a conduction promoting agent; and lithium atoms and carbon atoms contained in the covering layer satisfy a relationship defined by formula (I) in relation to the number of atoms. Formula (I) A1<B1 In the formula, A1 represents the ratio C/Li of the number of carbon atoms to the number of lithium atoms in a region A having a thickness 0.5 μm toward the outside from an active material contacting portion of the covering layer, and B1 represents the ratio C/Li of the number of carbon atoms to the number of lithium atoms in a region B having a thickness 0.5 μm toward the inside from the surface of the covering layer. Here, B1 is at most equal to 99/1.

Description

複合電極活物質、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法Method for manufacturing composite electrode active material, electrode composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and composite electrode active material, electrode sheet for all-solid secondary battery and all-solid secondary battery
 本発明は、複合電極活物質、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法に関する。 The present invention relates to a composite electrode active material, an electrode composition, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery, and a composite electrode active material, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery. Regarding the manufacturing method of.
 全固体二次電池は負極、電解質、正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性及び信頼性を大きく改善することができる。また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車又は大型蓄電池等への応用が期待されている。 In the all-solid-state secondary battery, the negative electrode, the electrolyte, and the positive electrode are all made of solid, and the safety and reliability, which are the problems of the battery using the organic electrolytic solution, can be greatly improved. It is also said that it will be possible to extend the service life. Further, the all-solid-state secondary battery can have a structure in which electrodes and electrolytes are directly arranged side by side and arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolytic solution, and it is expected to be applied to an electric vehicle, a large storage battery, or the like.
 このような全固体二次電池の電極活物質層は、通常、無機固体電解質及び活物質を含有する。活物質は、全固体二次電池の充放電により膨張収縮を繰り返す。そのため、固体粒子(活物質、無機固体電解質、導電助剤等)間に空隙が生じ電池抵抗が上昇する要因となる。この問題に対処するための全固体二次電池として、例えば、特許文献1には、正極および負極の少なくとも一方の電極が、導電剤およびリチウムイオン伝導性無機固体電解質を含む被覆層で被覆された活物質粒子を有するリチウム二次電池が記載されている。
 また、特許文献2及び3には、リチウムイオン二次電池に用いる活物質粒子の表面を、固体電解質、導電材、更にはリチウムイオン伝導性ポリマー等で被覆する技術が記載されている。
The electrode active material layer of such an all-solid-state secondary battery usually contains an inorganic solid electrolyte and an active material. The active material repeats expansion and contraction by charging and discharging the all-solid-state secondary battery. Therefore, voids are generated between the solid particles (active material, inorganic solid electrolyte, conductive additive, etc.), which causes an increase in battery resistance. As an all-solid-state secondary battery for dealing with this problem, for example, in Patent Document 1, at least one electrode of a positive electrode and a negative electrode is coated with a coating layer containing a conductive agent and a lithium ion conductive inorganic solid electrolyte. Lithium secondary batteries having active material particles are described.
Further, Patent Documents 2 and 3 describe techniques for coating the surface of active material particles used in a lithium ion secondary battery with a solid electrolyte, a conductive material, a lithium ion conductive polymer, or the like.
特開2003-059492号公報JP-A-2003-509492 特開2016-66584号公報Japanese Unexamined Patent Publication No. 2016-66584 特開2002-373643号公報Japanese Unexamined Patent Publication No. 2002-373634
 近年、電気自動車の高性能化、実用化等の研究開発が急速に進行し、全固体二次電池に求められる電池性能も高くなっている。リチウムと合金形成可能な負極活物質はイオン伝導度が高く(初期の)電池性能の向上に資する点で着目されているが、その一方で充放電による膨張収縮が大きく上述の問題が発生しやすい。
 かかる状況の下、本発明者が全固体二次電池に用いる活物質について検討を進めたところ、特許文献1~3に記載されているような、導電剤、無機固体電解質、更にはリチウムイオン伝導性ポリマー等で被覆した活物質粒子を用いても、全固体二次電池に優れた電池特性(例えばハイレートでの充放電を繰り返したときの放電容量の維持特性)を付与する点で、まだ十分でないことが分かった。
In recent years, research and development for improving the performance and practical application of electric vehicles have progressed rapidly, and the battery performance required for all-solid-state secondary batteries has also increased. Negative electrode active materials that can be alloyed with lithium have high ionic conductivity and are attracting attention because they contribute to improving (initial) battery performance, but on the other hand, expansion and contraction due to charge and discharge are large and the above problems are likely to occur. ..
Under such circumstances, when the present inventor proceeded with the study on the active material used for the all-solid secondary battery, a conductive agent, an inorganic solid electrolyte, and further lithium ion conduction as described in Patent Documents 1 to 3 were carried out. Even if active material particles coated with a sex polymer or the like are used, it is still sufficient in that it imparts excellent battery characteristics (for example, characteristics for maintaining discharge capacity when charging and discharging at a high rate are repeated) to an all-solid secondary battery. It turned out not.
 本発明は、全固体二次電池の電極活物質層の含有成分として用いることにより、全固体二次電池に優れた電池性能を付与できる複合電極活物質を提供することを課題とする。また、本発明は、この複合電極活物質を用いた、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法を提供することを課題とする。 An object of the present invention is to provide a composite electrode active material capable of imparting excellent battery performance to an all-solid secondary battery by using it as a component contained in an electrode active material layer of the all-solid secondary battery. Further, the present invention uses the composite electrode active material, an electrode composition, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery, and a composite electrode active material and an electrode sheet for an all-solid secondary battery. An object of the present invention is to provide a method for manufacturing an all-solid secondary battery.
 本発明者は、種々検討を重ねた結果、全固体二次電池用の活物質として、無機固体電解質及び導電助剤の被覆層で活物質の表面を被覆したうえで、更に、この被覆層の外側領域のリチウム原子数に対する炭素原子数の比を上記被覆層の内側領域のリチウム原子数に対する炭素原子数の比よりも大きく設定することにより、この活物質に構築した電子伝導パス及びイオン伝導パスが充放電による膨張収縮を繰り返しても途絶されることなく、全固体二次電池に優れた電池性能を付与できることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。 As a result of various studies, the present inventor has coated the surface of the active material with a coating layer of an inorganic solid electrolyte and a conductive auxiliary agent as an active material for an all-solid secondary battery, and further obtained the coating layer. By setting the ratio of the number of carbon atoms to the number of lithium atoms in the outer region larger than the ratio of the number of carbon atoms to the number of lithium atoms in the inner region of the coating layer, the electron conduction path and the ion conduction path constructed in this active material are set. It was found that the all-solid-state secondary battery can be provided with excellent battery performance without being interrupted even if the expansion and contraction due to repeated charging and discharging are repeated. The present invention has been further studied based on these findings and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
<1>
 活物質と、この活物質を被覆する被覆層とを有する複合電極活物質であって、
 上記被覆層が無機固体電解質及び導電助剤を含有し、
 上記被覆層に含まれるリチウム原子及び炭素原子が、原子数について下記式(I)で規定される関係を満たす、複合電極活物質。
            A1<B1   式(I)
 式中、A1は上記被覆層の活物質接触部から外側に向けて厚さ0.5μmの領域A中のリチウム原子数に対する炭素原子数の比C/Liを示し、B1は上記被覆層の表面から内側に向けて厚さ0.5μmの領域B中のリチウム原子数に対する炭素原子数の比C/Liを示す。ただし、B1は99/1以下である。
<2>
 上記領域AとBとの間の領域Cに含まれるリチウム原子及び炭素原子が、原子数について下記式(IIA)又は式(IIB)で規定される関係を満たす、<1>に記載の複合電極活物質。
           A1≦C1<B1   式(IIA)
           A1<C1≦B1   式(IIB)
 式中、A1及びB1は、上記式(I)中のA1及びB1と同義である。C1は、上記領域C中のリチウム原子数に対する炭素原子数の比C/Liを示す。
<3>
 上記導電助剤が繊維状炭素を含む、<1>又は<2>に記載の複合電極活物質。
<4>
 上記領域Bに存在する導電助剤が繊維状炭素を含む、<1>~<3>のいずれか1つに記載の複合電極活物質。
<5>
 上記B1が50/50~99/1である、<1>~<4>のいずれか1つに記載の複合電極活物質。
That is, the above problem was solved by the following means.
<1>
A composite electrode active material having an active material and a coating layer covering the active material.
The coating layer contains an inorganic solid electrolyte and a conductive auxiliary agent,
A composite electrode active material in which lithium atoms and carbon atoms contained in the coating layer satisfy the relationship defined by the following formula (I) with respect to the number of atoms.
A1 <B1 formula (I)
In the formula, A1 represents the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region A having a thickness of 0.5 μm outward from the active material contact portion of the coating layer, and B1 is the surface of the coating layer. The ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region B having a thickness of 0.5 μm is shown from the inside to the inside. However, B1 is 99/1 or less.
<2>
The composite electrode according to <1>, wherein the lithium atom and the carbon atom contained in the region C between the regions A and B satisfy the relationship defined by the following formula (IIA) or formula (IIB) with respect to the number of atoms. Active material.
A1 ≤ C1 <B1 equation (IIA)
A1 <C1 ≤ B1 equation (IIB)
In the formula, A1 and B1 are synonymous with A1 and B1 in the above formula (I). C1 indicates the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region C.
<3>
The composite electrode active material according to <1> or <2>, wherein the conductive auxiliary agent contains fibrous carbon.
<4>
The composite electrode active material according to any one of <1> to <3>, wherein the conductive auxiliary agent present in the region B contains fibrous carbon.
<5>
The composite electrode active material according to any one of <1> to <4>, wherein B1 is 50/50 to 99/1.
<6>
 <1>~<5>のいずれか1つに記載の複合電極活物質、及び分散媒を含む電極用組成物。
<7>
 バインダーを含む、<6>に記載の電極用組成物。
<8>
 上記バインダーが粒子状である、<7>に記載の電極用組成物。
<6>
A composition for an electrode containing the composite electrode active material according to any one of <1> to <5> and a dispersion medium.
<7>
The electrode composition according to <6>, which comprises a binder.
<8>
The electrode composition according to <7>, wherein the binder is in the form of particles.
<9>
 <1>~<5>のいずれか1つに記載の複合電極活物質を含む、全固体二次電池用電極シート。
<10>
 バインダーを含む、<9>に記載の全固体二次電池用電極シート。
<11>
 上記バインダーが粒子状である、<10>に記載の全固体二次電池用電極シート。
<9>
An electrode sheet for an all-solid-state secondary battery containing the composite electrode active material according to any one of <1> to <5>.
<10>
The electrode sheet for an all-solid-state secondary battery according to <9>, which contains a binder.
<11>
The electrode sheet for an all-solid-state secondary battery according to <10>, wherein the binder is in the form of particles.
<12>
 正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
 上記正極活物質層及び上記負極活物質層の少なくとも1つの層が、<9>~<11>のいずれか1つに記載の全固体二次電池用電極シートで構成した層である全固体二次電池。
<13>
 <1>~<5>のいずれか1つに記載の複合電極活物質の製造方法であって、
 下記工程(1)と1回又は複数回行う下記工程(2)とを有し、下記工程(1)と最後に行う下記工程(2)における無機固体電解質及び導電助剤の混合割合を変更して、上記式(I)で規定される関係を満たす被覆層を活物質の表面に形成する、複合電極活物質の製造方法。
 工程(1):活物質、無機固体電解質及び導電助剤を混合する工程
 工程(2):上記工程(1)で得られる混合物と、無機固体電解質及び導電助剤とを混合する工程
<14>
 <6>~<8>のいずれか1つに記載の電極用組成物を製膜することを含む、全固体二次電池用電極シートの製造方法。
<15>
 <14>に記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。
<12>
An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.
At least one layer of the positive electrode active material layer and the negative electrode active material layer is an all-solid-state secondary layer formed of the electrode sheet for an all-solid-state secondary battery according to any one of <9> to <11>. Next battery.
<13>
The method for producing a composite electrode active material according to any one of <1> to <5>.
It has the following step (1) and the following step (2) to be performed once or multiple times, and the mixing ratio of the inorganic solid electrolyte and the conductive auxiliary agent in the following step (1) and the final step (2) is changed. A method for producing a composite electrode active material, wherein a coating layer satisfying the relationship defined by the above formula (I) is formed on the surface of the active material.
Step (1): Mixing the active material, the inorganic solid electrolyte and the conductive auxiliary agent Step (2): Mixing the mixture obtained in the above step (1) with the inorganic solid electrolyte and the conductive auxiliary agent <14>
A method for producing an electrode sheet for an all-solid-state secondary battery, which comprises forming a film of the electrode composition according to any one of <6> to <8>.
<15>
A method for manufacturing an all-solid-state secondary battery, wherein the all-solid-state secondary battery is manufactured through the manufacturing method according to <14>.
 本発明の複合電極活物質は、全固体二次電池の電極活物質層の含有成分として用いることにより、全固体二次電池に優れた電池性能を付与できる。上記複合電極活物質を含む、本発明の電極用組成物は、全固体二次電池の電極活物質層の構成材料として用いることにより、全固体二次電池に優れた電池性能を付与できる。本発明の全固体二次電池用電極シートは、上記複合電極活物質を含み、全固体二次電池の電極活物質層として用いることにより、全固体二次電池に優れた電池性能を付与できる。また、本発明の複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法は、上記優れた特性を示す本発明の複合電極活物質、全固体二次電池用電極シート及び全固体二次電池を製造することができる。 By using the composite electrode active material of the present invention as a component contained in the electrode active material layer of the all-solid-state secondary battery, excellent battery performance can be imparted to the all-solid-state secondary battery. The electrode composition of the present invention containing the composite electrode active material can impart excellent battery performance to the all-solid secondary battery by using it as a constituent material of the electrode active material layer of the all-solid secondary battery. The electrode sheet for an all-solid-state secondary battery of the present invention contains the above-mentioned composite electrode active material, and by using it as an electrode active material layer of the all-solid-state secondary battery, excellent battery performance can be imparted to the all-solid-state secondary battery. Further, the method for producing the composite electrode active material of the present invention, the electrode sheet for the all-solid secondary battery and the all-solid secondary battery is the composite electrode active material of the present invention exhibiting the above-mentioned excellent characteristics, and the electrode for the all-solid secondary battery. Sheets and all-solid secondary batteries can be manufactured.
図1は、本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。FIG. 1 is a vertical sectional view schematically showing an all-solid-state secondary battery according to a preferred embodiment of the present invention.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本発明の効果を損なわない範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present specification, the indication of a compound (for example, when referred to as a compound at the end) is used to mean that the compound itself, its salt, and its ions are included. In addition, it is meant to include a derivative which has been partially changed, such as by introducing a substituent, as long as the effect of the present invention is not impaired.
[複合電極活物質]
 本発明の複合電極活物質は、活物質と、この活物質を被覆する被覆層とを有する。
 上記被覆層が無機固体電解質及び導電助剤を含有し、上記被覆層に含まれるリチウム原子及び炭素原子が、原子数について下記式(I)で表される関係を満たす。
 
               A1<B1   (I)
 
 式中、A1は上記被覆層の活物質接触部(活物質と被覆層との界面)から外側(活物質とは反対側)に向けて厚さ0.5μmの領域A中のリチウム原子数に対する炭素原子数の比C/Liを示す。
 B1は、上記被覆層の表面から内側に向けて厚さ0.5μmの領域B中のリチウム原子数に対する炭素原子数の比C/Liを示し、99/1以下である。ここで、被覆層は粒子状の無機固体電解質及び導電助剤等から形成されるため、被覆層の表面は通常平坦ではないが、本発明において、被覆層の表面を、後述する実施例における測定方法において、活物質と接触しておらず、空隙に露出している面(SEM-EDX(走査型電子顕微鏡-エネルギー分散型X線分光法)にて組成(被覆層固体電解質由来のLi)が不連続に変化する箇所)と定義する。
 上記比C/LiにおけるC(炭素原子)は導電助剤に由来する炭素原子であり、Li(リチウム原子)は無機固体電解質に由来する炭素原子である。
 A1及びB1における比C/Liは、後記実施例の項に記載の方法により決定する。
[Composite electrode active material]
The composite electrode active material of the present invention has an active material and a coating layer for coating the active material.
The coating layer contains an inorganic solid electrolyte and a conductive auxiliary agent, and the lithium atoms and carbon atoms contained in the coating layer satisfy the relationship represented by the following formula (I) with respect to the number of atoms.

A1 <B1 (I)

In the formula, A1 refers to the number of lithium atoms in the region A having a thickness of 0.5 μm from the active material contact portion (intersection between the active material and the coating layer) to the outside (opposite side of the active material) of the coating layer. The ratio C / Li of the number of carbon atoms is shown.
B1 shows the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region B having a thickness of 0.5 μm from the surface to the inside of the coating layer, which is 99/1 or less. Here, since the coating layer is formed of a particulate inorganic solid electrolyte, a conductive additive, or the like, the surface of the coating layer is usually not flat, but in the present invention, the surface of the coating layer is measured in Examples described later. In the method, the composition (Li derived from the coating layer solid electrolyte) is formed on the surface (SEM-EDX (scanning electron microscope-energy dispersive X-ray spectroscopy)) that is not in contact with the active material and is exposed to the voids. It is defined as (a part that changes discontinuously).
C (carbon atom) in the above ratio C / Li is a carbon atom derived from a conductive auxiliary agent, and Li (lithium atom) is a carbon atom derived from an inorganic solid electrolyte.
The ratio C / Li in A1 and B1 is determined by the method described in the section of Examples described later.
 本発明の複合電極活物質は、上記構成により、十分な電子伝導性及びイオン伝導性を示す(電子伝導パス及びイオン伝導パスが構築される)。しかも、上記電子導電性及びイオン導電性(両伝導パス)は、全固体二次電池の充放電によって、活物質が膨張収縮を繰り返しても、維持される。 The composite electrode active material of the present invention exhibits sufficient electron conductivity and ionic conductivity (an electron conduction path and an ionic conduction path are constructed) by the above configuration. Moreover, the electron conductivity and the ionic conductivity (both conduction paths) are maintained even if the active material repeatedly expands and contracts due to charging and discharging of the all-solid-state secondary battery.
 本発明の複合電極活物質において、被覆層(無機固体電解質、導電助剤等)は、活物質の表面に物理的(機械的)に吸着若しくは付着し、若しくは化学的結合により結合して、表面の被覆層を形成している。すなわち、本発明の複合電極活物質は、活物質及び被覆層が本発明の課題の解決において密接不可分に一体(好ましくは被覆粒子)となって作用する。活物質に対する被覆層の被覆率は、活物質、無機固体電解質及び導電助剤の種類、両伝導性に応じて適宜に設定されるが、例えば、活物質の表面積に対して、50%以上が好ましく、70%以上がより好ましく、80%以上が更に好ましく、90%以上が特に好ましい。上限は、100%以下に設定される。上記被覆率は後記実施例に記載の方法により測定することができる。
 被覆層の厚さは、1μmを越えれば特に制限されないが、例えば、1μmを越え10μm以下とすることができ、1μmを越え5μm以下が好ましく、1μmを越え3μm以下がより好ましい。被覆層の厚さは、後記実施例に記載の方法により測定することができる。
In the composite electrode active material of the present invention, the coating layer (inorganic solid electrolyte, conductive additive, etc.) is physically (mechanically) adsorbed or adhered to the surface of the active material, or bonded by a chemical bond to the surface. It forms a coating layer of. That is, in the composite electrode active material of the present invention, the active material and the coating layer act as one (preferably coated particles) inextricably linked to solve the problem of the present invention. The coverage of the coating layer on the active material is appropriately set according to the type of the active material, the inorganic solid electrolyte and the conductive auxiliary agent, and both conductivitys. For example, 50% or more is set with respect to the surface area of the active material. Preferably, 70% or more is more preferable, 80% or more is further preferable, and 90% or more is particularly preferable. The upper limit is set to 100% or less. The coverage can be measured by the method described in Examples below.
The thickness of the coating layer is not particularly limited as long as it exceeds 1 μm, but can be, for example, more than 1 μm and 10 μm or less, preferably more than 1 μm and 5 μm or less, and more preferably more than 1 μm and 3 μm or less. The thickness of the coating layer can be measured by the method described in Examples described later.
 本発明において、被覆層は、その含有成分(形成成分)である無機固体電解質及び導電助剤が混合された状態(混合物)で、形成されている。これにより、複合電極活物質(特にその表面)に、電子伝導パス及びイオン伝導パスの両伝導パスを構築できる。 In the present invention, the coating layer is formed in a state (mixture) in which the inorganic solid electrolyte and the conductive auxiliary agent, which are the contained components (forming components), are mixed. As a result, both an electron conduction path and an ionic conduction path can be constructed on the composite electrode active material (particularly the surface thereof).
 上述のように、被覆層は、無機固体電解質及び導電助剤の混合物で形成され、比C/Liが上記式(I)で規定される関係を満たす。すなわち、被覆層の内側と外側とにおいて、無機固体電解質及び導電助剤の濃度が偏在しており、厚さ方向に沿って濃度傾斜していることが好ましい態様の1つである。濃度傾斜の態様は、特に制限されないが、漸次的な傾斜でもよく、段階的な傾斜でもよい。また、濃度傾斜は、内側から外側に向かって増加又は減少する傾斜に限られず、増加又は減少の傾斜途中に、濃度が一定の領域、濃度が減少する領域若しくは濃度が増加する領域を含んでいてもよい。 As described above, the coating layer is formed of a mixture of an inorganic solid electrolyte and a conductive auxiliary agent, and the ratio C / Li satisfies the relationship defined by the above formula (I). That is, it is one of the preferable embodiments that the concentrations of the inorganic solid electrolyte and the conductive auxiliary agent are unevenly distributed on the inside and the outside of the coating layer, and the concentrations are inclined along the thickness direction. The mode of the concentration gradient is not particularly limited, but may be a gradual gradient or a gradual gradient. Further, the concentration gradient is not limited to the gradient that increases or decreases from the inside to the outside, and includes a region where the concentration is constant, a region where the concentration decreases, or a region where the concentration increases during the inclination of the increase or decrease. May be good.
 上記A1は、本発明の全固体二次電池のハイレート特性の更なる向上の点で、45/55~1/99であることが好ましく、35/65~1/99であることがより好ましく、20/80~5/95であることが更に好ましい。
 上記B1は、十分なイオン伝導度を確保できる点で99/1以下であればよく、本発明の全固体二次電池のハイレート特性の更なる向上の点で、50/50~99/1であることが好ましく、70/30~99/1であることがより好ましく、85/15~95/5であることが更に好ましい。
 A1とB1との差は、特に制限されないが、リチウム原子数に対する炭素原子数の比を百分率で表したときに、5~99%であることが好ましく、35~90%であることがより好ましい。
The above A1 is preferably 45/55 to 1/99, more preferably 35/65 to 1/99, in terms of further improving the high rate characteristics of the all-solid-state secondary battery of the present invention. It is more preferably 20/80 to 5/95.
The above B1 may be 99/1 or less in that sufficient ionic conductivity can be secured, and is 50/50 to 99/1 in terms of further improving the high rate characteristics of the all-solid-state secondary battery of the present invention. It is preferably 70/30 to 99/1, more preferably 85/15 to 95/5.
The difference between A1 and B1 is not particularly limited, but when the ratio of the number of carbon atoms to the number of lithium atoms is expressed as a percentage, it is preferably 5 to 99%, more preferably 35 to 90%. ..
 本発明の複合電極活物質は、本発明の全固体二次電池のハイレート特性をより向上させるため、領域AとBとの間の領域Cに含まれるリチウム原子及び炭素原子が、原子数について下記式(IIA)又は式(IIB)で規定される関係を満たすことが好ましく、下記式(IIC)で規定される関係を満たすことが好ましい。
 
              A1≦C1<B1   式(IIA)
              A1<C1≦B1   式(IIB)
              A1<C1<B1   式(IIC)
 
 式中、A1及びB1は、式(I)中のA1及びB1と同義である。C1は、領域C中のリチウム原子数に対する炭素原子数の比C/Liを示す。
In the composite electrode active material of the present invention, in order to further improve the high rate characteristics of the all-solid-state secondary battery of the present invention, the lithium atoms and carbon atoms contained in the region C between the regions A and B have the following atomic numbers. It is preferable to satisfy the relationship specified by the formula (IIA) or the formula (IIB), and it is preferable to satisfy the relationship specified by the following formula (IIC).

A1 ≤ C1 <B1 equation (IIA)
A1 <C1 ≤ B1 equation (IIB)
A1 <C1 <B1 formula (IIC)

In the formula, A1 and B1 are synonymous with A1 and B1 in the formula (I). C1 indicates the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region C.
 「領域C」は、活物質接触部と被覆層の表面との最短距離(すなわち被覆層の厚さ)の中点から領域A及びB側に向かってそれぞれ0.5μm(合計1μm)の厚さを有する領域を意味する。したがって、領域Cは領域Aと一部が重複することがあり、領域Cは領域Bと一部が重複することがある。
 C1は、本発明の全固体二次電池のハイレート特性の更なる向上の点で、30/70~70/30であることが好ましく、35/65~65/35であることがより好ましく、40/60~60/40であることが更に好ましい。
 両式において、A1とC1との差は、特に制限されないが、リチウム原子数に対する炭素原子数の比を百分率で表したときに、15~70%であることが好ましく、20~55%であることがより好ましい。同様に、C1とB1との差は、特に制限されないが、リチウム原子数に対する炭素原子数の比を百分率で表したときに、15~70%であることが好ましく、20~55%であることがより好ましい。
“Region C” has a thickness of 0.5 μm (1 μm in total) from the midpoint of the shortest distance between the active material contact portion and the surface of the coating layer (that is, the thickness of the coating layer) toward the regions A and B, respectively. Means the area having. Therefore, the area C may partially overlap with the area A, and the area C may partially overlap with the area B.
C1 is preferably 30/70 to 70/30, more preferably 35/65 to 65/35, in terms of further improving the high rate characteristics of the all-solid-state secondary battery of the present invention. It is more preferably / 60 to 60/40.
In both equations, the difference between A1 and C1 is not particularly limited, but is preferably 15 to 70% and 20 to 55% when the ratio of the number of carbon atoms to the number of lithium atoms is expressed as a percentage. Is more preferable. Similarly, the difference between C1 and B1 is not particularly limited, but is preferably 15 to 70%, preferably 20 to 55%, when the ratio of the number of carbon atoms to the number of lithium atoms is expressed as a percentage. Is more preferable.
 本発明の複合電極活物質は、領域AとBとの間に、上記領域C以外に、他の領域を有していてもよい。このような領域の数としては、1~5が好ましく、1~3がより好ましく、1~2が更に好ましい。この他の領域は、リチウム原子数に対する炭素原子数の比C/Liについて、領域A~Cと同一であっても異なっていてもよい。好ましい態様の1つは、領域Aから領域Bにかけて段階的に比C/Liが大きくなっている態様である。 The composite electrode active material of the present invention may have a region other than the above region C between the regions A and B. The number of such regions is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 to 2. The other regions may be the same as or different from the regions A to C in terms of the ratio C / Li of the number of carbon atoms to the number of lithium atoms. One of the preferred embodiments is an embodiment in which the ratio C / Li gradually increases from the region A to the region B.
 以下、本発明の複合電極活物質が含有する成分及び含有しうる成分について説明する。 Hereinafter, the components contained and the components that can be contained in the composite electrode active material of the present invention will be described.
<活物質>
 本発明の複合電極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質を無機固体電解質及び導電助剤を含有する被覆層(以下、「本発明に用いられる被覆層」ともいう。)で被覆してなる。活物質としては、以下に説明するが、正極活物質及び負極活物質が挙げられる。
<Active material>
The composite electrode active material of the present invention is a coating layer containing an inorganic solid electrolyte and a conductive auxiliary agent, which is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table (hereinafter, "the present invention". It is coated with a coating layer used in the invention. Examples of the active material include a positive electrode active material and a negative electrode active material, which will be described below.
(正極活物質)
 正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、硫黄などのLiと複合化できる元素などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(Positive electrode active material)
The positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an element that can be composited with Li such as sulfur, or the like.
Among them, as the positive electrode active material, a transition metal oxide having preferably used a transition metal oxide, a transition metal element M a (Co, Ni, Fe , Mn, 1 or more elements selected from Cu and V) the The thing is more preferable. Further, the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed. The mixing amount is preferably 0 ~ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphoric acid compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound, and the like.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
(MA) Specific examples of the transition metal oxide having a layered rock salt structure include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
(MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. Examples thereof include cobalt phosphates of the above, and monoclinic panacicon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts such as.
Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の粒子径(体積平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができ、0.5~20μmであることがより好ましく、1.5~15μmであることが更に好ましい。正極活物質粒子の粒子径は、下記無機固体電解質の粒子径と同様にして測定できる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水又はメタノール等の有機溶媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級は、特に限定はなく、篩、風力分級機などを用いて行うことができる。分級は乾式及び湿式ともに用いることができる。
 焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
The shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles. The particle size (volume average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 μm, more preferably 0.5 to 20 μm, and even more preferably 1.5 to 15 μm. The particle size of the positive electrode active material particles can be measured in the same manner as the particle size of the following inorganic solid electrolyte. A normal crusher or classifier is used to adjust the positive electrode active material to a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, or the like is preferably used. At the time of pulverization, wet pulverization in which an organic solvent such as water or methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size. The classification is not particularly limited, and can be performed using a sieve, a wind power classifier, or the like. Both dry and wet classifications can be used.
The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 正極活物質は、1種を含有していてもよいし、2種以上を含有していてもよい。 The positive electrode active material may contain one kind or two or more kinds.
(負極活物質)
 負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、リチウム単体、リチウム合金、リチウムと合金形成可能な負極活物質等が挙げられる。中でも、炭素質材料、金属複合酸化物又はリチウム単体が信頼性の点から好ましく用いられる。
(Negative electrode active material)
The negative electrode active material is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and examples thereof include a carbonaceous material, a metal oxide, a metal composite oxide, a lithium simple substance, a lithium alloy, and a negative electrode active material capable of forming an alloy with lithium. .. Among them, a carbonaceous material, a metal composite oxide or a simple substance of lithium is preferably used from the viewpoint of reliability.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
The carbonaceous material used as the negative electrode active material is a material substantially composed of carbon. For example, various synthesis of petroleum pitch, carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin. Examples thereof include carbonic materials obtained by firing a resin. Furthermore, various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polypoly alcohol) -based carbon fibers, lignin carbon fibers, graphitic carbon fibers and activated carbon fibers. Kind, mesophase microspheres, graphite whisker, flat graphite and the like can also be mentioned.
These carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization. Further, the carbonaceous material preferably has the plane spacing or density and the size of crystallites described in JP-A-62-22066, JP-A-2-6856, and JP-A-3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like should be used. You can also.
As the carbonaceous material, hard carbon or graphite is preferably used, and graphite is more preferably used.
 負極活物質として適用される金属若しくは半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、金属元素の酸化物(金属酸化物)、金属元素の複合酸化物若しくは金属元素と半金属元素との複合酸化物(纏めて金属複合酸化物という。)、半金属元素の酸化物(半金属酸化物)が挙げられる。これらの酸化物としては、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイドも好ましく挙げられる。本発明において、半金属元素とは、金属元素と非半金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、更にはセレン、ポロニウム及びアスタチンの3元素を含む。また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°~70°に見られる結晶性の回折線の内最も強い強度が、2θ値で20°~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 The metal or semi-metal element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of storing and releasing lithium, and is a composite of a metal element oxide (metal oxide) and a metal element. Examples thereof include oxides or composite oxides of metal elements and semi-metal elements (collectively referred to as metal composite oxides) and oxides of semi-metal elements (semi-metal oxides). As these oxides, amorphous oxides are preferable, and chalcogenides, which are reaction products of metal elements and elements of Group 16 of the Periodic Table, are also preferable. In the present invention, the semi-metallic element means an element exhibiting properties intermediate between the metallic element and the non-semi-metallic element, and usually contains 6 elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and Astatine. Further, "amorphous" means an X-ray diffraction method using CuKα rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2θ value, and a crystalline diffraction line is used. You may have. The strongest intensity of the crystalline diffraction lines found at the 2θ value of 40 ° to 70 ° is 100 times or less the diffraction line intensity at the apex of the broad scattering band seen at the 2θ value of 20 ° to 40 °. It is preferable that it is 5 times or less, and it is particularly preferable that it does not have a crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb又はSbが好ましく挙げられる。
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な負極活物質が好適に挙げられる。
Among the compound group consisting of the amorphous oxide and the chalcogenide, the amorphous oxide of the semi-metal element or the chalcogenide is more preferable, and the elements of the groups 13 (IIIB) to 15 (VB) of the periodic table (for example). , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) alone or a combination of two or more (composite) oxides, or chalcogenides are particularly preferred. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2. O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , GeS, PbS, PbS 2 , Sb 2 S 3 or Sb 2 S 5 is preferably mentioned.
Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include a carbonaceous material capable of occluding and / or releasing lithium ions or lithium metal, lithium alone, and lithium. A negative electrode active material that can be alloyed with an alloy or lithium is preferably used.
 金属若しくは半金属元素の酸化物、とりわけ金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。
 負極活物質、例えば金属酸化物は、チタン元素を含有すること(チタン酸化物)も好ましく挙げられる。具体的には、LiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
It is preferable that the oxide of a metal or a metalloid element, particularly a metal (composite) oxide and the chalcogenide, contains at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. Examples of the lithium-containing metal composite oxide (lithium composite metal oxide) include lithium oxide and the metal (composite) oxide or a composite oxide of the chalcogenide, more specifically, Li 2 SnO 2. Can be mentioned.
It is also preferable that the negative electrode active material, for example, a metal oxide, contains a titanium element (titanium oxide). Specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) has excellent rapid charge / discharge characteristics due to small volume fluctuations during storage and release of lithium ions, and electrode deterioration is suppressed and lithium ion secondary It is preferable in that the life of the battery can be improved.
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。 The lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質は、充放電による膨張収縮が大きく、上述のように電池性能が低下しやすいが、本発明では負極活物質を上記被覆層により被覆することにより電池性能の低下を抑制できる。このような活物質として、ケイ素元素若しくはスズ元素を有する負極活物質(合金)、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素元素を有する負極活物質(ケイ素元素含有活物質)が好ましく、ケイ素元素の含有量が全構成元素の50mol%以上のケイ素元素含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(ケイ素元素含有活物質を含有するSi負極、スズ元素を有する活物質を含有するSn負極等)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素元素含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅、ランタン等を含むケイ素含有合金(例えば、LaSi、VSi、La-Si、Gd-Si、Ni-Si)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素元素及びスズ元素を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な負極活物質(その前駆体物質)として用いることができる。
 スズ元素を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素元素及びスズ元素を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOを挙げることもできる。
The negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery. Such an active material has a large expansion and contraction due to charging and discharging, and the battery performance tends to deteriorate as described above. However, in the present invention, the deterioration of the battery performance can be suppressed by coating the negative electrode active material with the coating layer. Examples of such an active material include a negative electrode active material (alloy) having a silicon element or a tin element, and each metal such as Al and In, and a negative negative active material (silicon element) having a silicon element that enables a higher battery capacity. (Containing active material) is preferable, and a silicon element-containing active material having a silicon element content of 50 mol% or more of all the constituent elements is more preferable.
Generally, a negative electrode containing these negative electrode active materials (Si negative electrode containing a silicon element-containing active material, Sn negative electrode containing an active material containing a tin element, etc.) is used as a carbon negative electrode (graphite, acetylene black, etc.). In comparison, more Li ions can be occluded. That is, the occlusal amount of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery drive time can be lengthened.
Examples of the silicon element-containing active material include silicon materials such as Si and SiOx (0 <x≤1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, and the like (for example,). LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si) or organized active material (eg LaSi 2 / Si), as well as other silicon and tin elements such as SnSiO 3 , SnSiS 3 Examples include active materials containing. In addition, SiOx itself can be used as a negative electrode active material (semi-metal oxide), and since Si is generated by the operation of an all-solid-state secondary battery, a negative electrode active material that can be alloyed with lithium (its). It can be used as a precursor substance).
Examples of the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon element and the tin element. Further, a composite oxide with lithium oxide, for example, Li 2 SnO 2 can also be mentioned.
 本発明においては、上述の負極活物質を特に制限されることなく用いることができるが、電池容量の点では、負極活物質として、リチウムと合金化可能な負極活物質が好ましい態様であり、中でも、上記ケイ素材料又はケイ素含有合金(ケイ素元素を含有する合金)がより好ましく、ケイ素(Si)又はケイ素含有合金を含むことが更に好ましい。 In the present invention, the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with silicon is a preferred embodiment as the negative electrode active material. , The above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and it is further preferable to contain silicon (Si) or a silicon-containing alloy.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measuring method and the mass difference of the powder before and after firing as a simple method.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の体積平均粒子径は、特に制限されないが、0.1~60μmが好ましく、0.5~20μmであることがより好ましく、1.0~15μmであることが更に好ましい。負極活物質粒子の体積平均粒子径は、下記無機固体電解質の平均粒径と同様にして測定できる。所定の粒子径にするには、正極活物質と同様に、通常の粉砕機若しくは分級機が用いられる。 The shape of the negative electrode active material is not particularly limited, but it is preferably in the form of particles. The volume average particle size of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 μm, more preferably 0.5 to 20 μm, and even more preferably 1.0 to 15 μm. The volume average particle diameter of the negative electrode active material particles can be measured in the same manner as the average particle diameter of the following inorganic solid electrolyte. In order to obtain a predetermined particle size, a normal crusher or classifier is used as in the case of the positive electrode active material.
 上記負極活物質は、1種を含有していてもよいし、2種以上を含有していてもよい。 The negative electrode active material may contain one kind or two or more kinds.
 全固体二次電池において、正極活物質として本発明の複合電極活物質を用いる場合、負極活物質層を二次電池の充電により形成することもできる。この場合、上記負極活物質に代えて、全固体二次電池内に発生する周期律表第一族若しくは第二族に属する金属のイオンを用いることができる。このイオンを電子と結合させて金属として析出させることで、負極活物質層を形成できる。 When the composite electrode active material of the present invention is used as the positive electrode active material in the all-solid-state secondary battery, the negative electrode active material layer can also be formed by charging the secondary battery. In this case, instead of the negative electrode active material, metal ions belonging to Group 1 or Group 2 of the periodic table generated in the all-solid-state secondary battery can be used. The negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。すなわち、活物質と被覆層との間に、別の金属酸化物で形成された表面被覆を有していてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の、上記表面被覆を形成する粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
(Coating of active material)
The surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide. That is, a surface coating formed of another metal oxide may be provided between the active material and the coating layer. Examples of the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples include spinel titanate, tantalate oxide, niobate oxide, lithium niobate compound, and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3 , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3, and the like.
Further, the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
Further, the surface of the particles of the positive electrode active material or the negative electrode active material forming the surface coating may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
<無機固体電解質>
 本発明に用いられる被覆層は、無機固体電解質を含有する。
 本発明において、無機固体電解質とは、リチウム原子を有する無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンに解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質、(ii)酸化物系無機固体電解質、(iii)ハロゲン化物系無機固体電解質、及び、(iV)水素化物系固体電解質が挙げられ、活物質と無機固体電解質との間により良好な界面を形成することができる観点、更に、後述する混合機による混合において被覆層と活物質との密着性を高める観点から、硫化物系無機固体電解質が好ましい。
<Inorganic solid electrolyte>
The coating layer used in the present invention contains an inorganic solid electrolyte.
In the present invention, the inorganic solid electrolyte is an inorganic solid electrolyte having a lithium atom, and the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polymer electrolyte represented by polyethylene oxide (PEO), organic represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from electrolyte salts). Further, since the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is clearly distinguished from inorganic electrolyte salts (LiPF 6 , LiBF 4 , Lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) that are dissociated or liberated into cations and anions in the electrolyte or polymer. Will be done. The inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally one having no electron conductivity. When the all-solid-state secondary battery of the present invention is a lithium-ion battery, the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
As the inorganic solid electrolyte, a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used. Examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iV) a hydride-based solid electrolyte. A sulfide-based inorganic solid electrolyte is preferable from the viewpoint of being able to form a better interface between the and the inorganic solid electrolyte, and further, from the viewpoint of enhancing the adhesion between the coating layer and the active material in mixing with a mixer described later. ..
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom, has ionic conductivity of a metal belonging to Group 1 of the Periodic Table, and has electronic insulation. Is preferable. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.
 硫化物系無機固体電解質としては、例えば、下記式(S1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (S1)
 
 式中、LはLi、Na及びKから選択される元素を示し、Lの少なくとも一部はLiを示す。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (S1).

L a1 M b1 P c1 S d1 A e1 (S1)

In the formula, L represents an element selected from Li, Na and K, and at least a part of L represents Li. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. a1 is preferably 1 to 9, more preferably 1.5 to 7.5. b1 is preferably 0 to 3, more preferably 0 to 1. The d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5. e1 is preferably 0 to 5, more preferably 0 to 3.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 The composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be non-crystal (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized. For example, Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2 ).
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 In Li-P-S based glass and Li-P-S based glass ceramics, the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ~ It is 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S and P 2 S 5 in this range, the lithium ion conductivity can be made high. Specifically, the lithium ion conductivity can be preferably 1 × 10 -4 S / cm or more, and more preferably 1 × 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 × 10 -1 S / cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 As an example of a specific sulfide-based inorganic solid electrolyte, an example of combining raw materials is shown below. For example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2- LiCl, Li 2 S-P 2 S 5- SnS, Li 2 S-P 2 S 5- Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2- ZnS, Li 2 S-Ga 2 S 3 , Li 2 S-GeS 2- Ga 2 S 3 , Li 2 S-GeS 2- P 2 S 5 , Li 2 S-GeS 2- Sb 2 S 5 , Li 2 S-GeS 2- Al 2 S 3 , Li 2 S-SiS 2 , Li 2 S-Al 2 S 3 , Li 2 S-SiS 2- Al 2 S 3 , Li 2 S-SiS 2- P 2 S 5 , Li 2 S-SiS 2- P Examples thereof include 2 S 5- LiI, Li 2 S-SiS 2- LiI, Li 2 S-SiS 2 -Li 4 SiO 4 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 10 GeP 2 S 12 . However, the mixing ratio of each raw material does not matter. As a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition, for example, an amorphization method can be mentioned. Examples of the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、リチウム原子及び酸素原子を含有し、かつ、周期律表第1族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
(Ii) Oxide-based inorganic solid electrolyte The oxide-based inorganic solid electrolyte contains lithium atoms and oxygen atoms, has ionic conductivity of a metal belonging to Group 1 of the Periodic Table, and has electron insulation properties. It is preferable to have.
The oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 × 10 -6 S / cm or more, more preferably 5 × 10 -6 S / cm or more, and 1 × 10 -5 S / cm or more. It is particularly preferable that it is / cm or more. The upper limit is not particularly limited, but it is practical that it is 1 × 10 -1 S / cm or less.
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素原子の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
As a specific compound example, for example, Li xa La ya TiO 3 [xa satisfies 0.3 ≦ xa ≦ 0.7, and ya satisfies 0.3 ≦ ya ≦ 0.7. (LLT); Li xb Layb Zr zb M bb mb Onb (M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn. Xb satisfies 5 ≦ xb ≦ 10, yb satisfies 1 ≦ yb ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, and nb satisfies 5 ≦ nb ≦ 20. Satisfies.); Li xc Byc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn. Xc is 0 <xc ≦ 5 , Yc satisfies 0 <yc ≦ 1, zc satisfies 0 <zc ≦ 1, nc satisfies 0 <nc ≦ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si. ad P md O nd (xd satisfies 1 ≦ xd ≦ 3, yd satisfies 0 ≦ yd ≦ 1, zd satisfies 0 ≦ zd ≦ 2, ad satisfies 0 ≦ ad ≦ 1, md is 1 ≦ met md ≦ 7, nd satisfies 3 ≦ nd ≦ 13);. Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, M ee divalent .D ee representing the metal atom represents a combination of halogen atom or two or more halogen atoms);. Li xf Si yf O zf (xf satisfies 1 ≦ xf ≦ 5, yf satisfies 0 <yf ≦ 3 , zf satisfies 1 ≦ zf ≦ 10);. Li xg S yg O zg (xg satisfies 1 ≦ xg ≦ 3, yg satisfies 0 <yg ≦ 2, zg satisfies 1 ≦ zg ≦ 10. ); Li 3 BO 3 ; Li 3 BO 3- Li 2 SO 4 ; Li 2 O-B 2 O 3- P 2 O 5 ; Li 2 O-SiO 2 ; Li 6 BaLa 2 Ta 2 O 12 ; Li 3 PO (4-3 / 2w) N w (w is w <1); Li 3.5 Zn 0.25 GeO 4 having a LISION (Lithium super ionic controller) type crystal structure; La 0.55 having a perovskite type crystal structure Li 0.35 TiO 3 ; LiTi 2 P 3 O 12 having a NASICON (Naturium super ionic controller) type crystal structure; Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Sihy 3-yh O 12 (xh satisfies 0 ≦ xh ≦ 1, yh satisfies 0 ≦ yh ≦ 1. ); Examples thereof include Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ); LiPON in which a part of the oxygen atom of lithium phosphate is replaced with nitrogen; LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni). , Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and one or more elements selected from Au) and the like.
Further, LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C and Ga) and the like can also be preferably used.
(iii)ハロゲン化物系無機固体電解質
 ハロゲン化物系無機固体電解質は、ハロゲン原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されないが、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClを好ましい。
(Iii) Halide-based inorganic solid electrolyte The halide-based inorganic solid electrolyte contains halogen atoms, has the conductivity of ions of metals belonging to Group 1 or Group 2 of the Periodic Table, and has electrons. Insulating compounds are preferred.
The halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
(iV)水素化物系無機固体電解質
 水素化物系無機固体電解質は、水素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されないが、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
(IV) Hydride-based Inorganic Solid Electrolyte The hydride-based inorganic solid electrolyte contains a hydrogen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. A compound having a property is preferable.
The hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, and 3 LiBH 4- LiCl.
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の粒子径(体積平均粒子径)は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。
 本発明において、無機固体電解質の粒子径は、活物質の表面被覆状態等に応じて、活物質及び導電助剤の粒子径等を考慮して、決定されることが好ましい。被覆層を形成する無機固体電解質の粒子径は、上記範囲の中でも、0.1~5μmであることが好ましく、0.1~3μmであることがより好ましく、0.2~1μmであることが更に好ましい。
 無機固体電解質の粒子径は活物質よりも小さいことが好ましく、活物質の粒子径との差は、特に制限されないが、例えば、0.5~10μmであることが好ましく、0.8~5μmであることがより好ましい。
 無機固体電解質の粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
The inorganic solid electrolyte is preferably particles. In this case, the particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. The upper limit is preferably 100 μm or less, and more preferably 50 μm or less.
In the present invention, the particle size of the inorganic solid electrolyte is preferably determined in consideration of the particle size of the active material and the conductive additive according to the surface coating state of the active material and the like. Within the above range, the particle size of the inorganic solid electrolyte forming the coating layer is preferably 0.1 to 5 μm, more preferably 0.1 to 3 μm, and preferably 0.2 to 1 μm. More preferred.
The particle size of the inorganic solid electrolyte is preferably smaller than that of the active material, and the difference from the particle size of the active material is not particularly limited, but is preferably 0.5 to 10 μm, preferably 0.8 to 5 μm, for example. More preferably.
The particle size of the inorganic solid electrolyte is measured by the following procedure. Inorganic solid electrolyte particles are prepared by diluting 1% by mass of a dispersion in a 20 mL sample bottle with water (heptane in the case of a water-unstable substance). The diluted dispersed sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test. Using this dispersion sample, data was captured 50 times using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA) at a temperature of 25 ° C. using a measuring quartz cell. Obtain the volume average particle size. For other detailed conditions, etc., refer to the description of JIS Z 8828: 2013 “Particle size analysis-Dynamic light scattering method” as necessary. Five samples are prepared for each level and the average value is adopted.
 無機固体電解質は、1種を含有していてもよいし、2種以上を含有していてもよい。
 無機固体電解質の被覆層中の含有量は、特に制限されず、上記式(I)で規定される関係を満たす範囲に設定される。例えば、被覆層全体の質量に対して、15~99質量%であることが好ましく、20~95質量%であることがより好ましい。
The inorganic solid electrolyte may contain one kind or two or more kinds.
The content of the inorganic solid electrolyte in the coating layer is not particularly limited, and is set within a range that satisfies the relationship defined by the above formula (I). For example, it is preferably 15 to 99% by mass, more preferably 20 to 95% by mass, based on the total mass of the coating layer.
<導電助剤>
 本発明に用いられる被覆層は、導電助剤を適宜含有する。
 導電助剤としては、炭素原子を含有する物質であれば特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの繊維状炭素、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。本発明においては、これら炭素原子を含有する導電助剤に対して銅、ニッケルなどの金属粉、金属繊維等の炭素原子を含有しない通常の導電助剤を併用できる。
 本発明において、導電助剤とは、電池を充放電した際にLiの挿入と放出が起きず、活物質として機能しないものをいう。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
<Conductive aid>
The coating layer used in the present invention appropriately contains a conductive auxiliary agent.
The conductive auxiliary agent is not particularly limited as long as it is a substance containing a carbon atom, and a material known as a general conductive auxiliary agent can be used. For example, electron conductive materials such as natural graphite, artificial graphite and other graphite, acetylene black, ketjen black, furnace black and other carbon blacks, needle coke and other amorphous carbon, vapor-grown carbon fibers or carbon nanotubes. It may be a fibrous carbon such as graphene or fullerene, or a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative may be used. In the present invention, a usual conductive auxiliary agent containing no carbon atom such as metal powder such as copper and nickel and metal fiber can be used in combination with the conductive auxiliary agent containing these carbon atoms.
In the present invention, the conductive auxiliary agent means one that does not insert and release Li when the battery is charged and discharged, and does not function as an active material. Therefore, among the conductive auxiliary agents, those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
 導電助剤の形状は、特に制限されないが、例えば、不定形状、粒子状又は繊維状であり、粒子状又は繊維状が好ましく、繊維状がより好ましい。本発明に用いられる被覆層は、繊維状炭素を含有することが好ましい。本発明に用いられる被覆層の領域AとBに含まれる導電助剤の形状が異なることが好ましく、全固体二次電池のハイレート特性をより向上させるため、領域Bに含まれる導電助剤が繊維状であることが好ましく、領域Aに含まれる導電助剤が粒子状であり、領域Bに含まれる導電助剤が繊維状であることがより好ましい。 The shape of the conductive auxiliary agent is not particularly limited, but for example, it is indefinite, particulate or fibrous, preferably particulate or fibrous, and more preferably fibrous. The coating layer used in the present invention preferably contains fibrous carbon. It is preferable that the shapes of the conductive auxiliaries contained in the regions A and B of the coating layer used in the present invention are different, and in order to further improve the high rate characteristics of the all-solid-state secondary battery, the conductive auxiliaries contained in the region B are fibers. It is preferable that the conductive auxiliary agent contained in the region A is in the form of particles, and the conductive auxiliary agent contained in the region B is preferably in the form of fibers.
 粒子状又は繊維状の導電助剤の体積平均粒子径は、活物質の表面被覆状態等に応じて、活物質及び導電助剤の粒子径等を考慮して、決定されることが好ましい。1~900nmであることが好ましく、5~800nmであることがより好ましく、10~500nmであることが更に好ましい。導電助剤の粒子径は活物質よりも小さいことが好ましく、活物質の粒子径との差は、特に制限されないが、例えば、0.1~50μmであることが好ましく、1~15μmであることがより好ましい。
 粒子状又は繊維状の導電助剤の体積平均粒子径は、上記無機固体電解質の平均粒径と同様にして測定できる。
The volume average particle size of the particulate or fibrous conductive auxiliary agent is preferably determined in consideration of the particle size of the active material and the conductive auxiliary agent according to the surface coating state of the active material and the like. It is preferably 1 to 900 nm, more preferably 5 to 800 nm, and even more preferably 10 to 500 nm. The particle size of the conductive auxiliary agent is preferably smaller than that of the active material, and the difference from the particle size of the active material is not particularly limited, but is preferably 0.1 to 50 μm, for example, 1 to 15 μm. Is more preferable.
The volume average particle diameter of the particulate or fibrous conductive auxiliary agent can be measured in the same manner as the average particle diameter of the inorganic solid electrolyte.
 粒子状の導電助剤のアスペクト比は、0.5~1.5が好ましく、0.8~1.2がより好ましい。一方、繊維状の導電助剤のアスペクト比は、2~10000が好ましく、10~1000がより好ましい。アスペクト比は、例えばSEM画像にて形状を観察することにより、導電助剤の中心部を通る線分のうち最大の長さの線分を最大長径とし、最大長径/最大長径に直交する幅によって算出することができる。なお、上記アスペクト比は、全導電助剤の個数を100%として、そのうちの80%のアスペクト比の算術平均値とする。 The aspect ratio of the particulate conductive auxiliary agent is preferably 0.5 to 1.5, more preferably 0.8 to 1.2. On the other hand, the aspect ratio of the fibrous conductive auxiliary agent is preferably 2 to 10000, more preferably 10 to 1000. The aspect ratio is determined by, for example, by observing the shape on an SEM image, the line segment having the maximum length among the line segments passing through the center of the conductive auxiliary agent is set as the maximum major axis, and the width orthogonal to the maximum major axis / maximum major axis is used. Can be calculated. The aspect ratio is an arithmetic mean value of 80% of the total number of conductive auxiliaries as 100%.
 導電助剤は、1種を含有していてもよいし、2種以上を含有していてもよい。
 導電助剤の被覆層中の含有量は、特に制限されず、上記式(I)で規定される関係を満たす範囲に設定される。例えば、被覆層全体の質量に対して、5~95質量%であることが好ましく、10~80質量%であることがより好ましい。
The conductive auxiliary agent may contain one kind or two or more kinds.
The content of the conductive auxiliary agent in the coating layer is not particularly limited, and is set within a range that satisfies the relationship defined by the above formula (I). For example, it is preferably 5 to 95% by mass, more preferably 10 to 80% by mass, based on the total mass of the coating layer.
<無機固体電解質及び導電助剤以外の成分>
 被覆層は、無機固体電解質及び導電助剤を含有していればよく、本発明の効果を損なわない範囲で無機固体電解質及び導電助剤以外の成分を含有していてもよい。無機固体電解質及び導電助剤以外の成分としては、特に制限されないが、リチウム塩若しくはリチウムイオン伝導ポリマー等のイオン伝導性物質、導電助剤以外の電子導電性物質、後述する電極用組成物が含有してもよい他の成分等が挙げられる。被覆層はリチウムイオン伝導ポリマーを含有しない形態(例えば、被覆層中の含有量が5質量%以下、)が好ましい。
 被覆層中の上記成分の含有量は、特に制限されない。特にイオン伝導性及び電子伝導性を示さない成分の含有量は、被覆層中、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。
<Components other than inorganic solid electrolytes and conductive aids>
The coating layer may contain an inorganic solid electrolyte and a conductive auxiliary agent, and may contain components other than the inorganic solid electrolyte and the conductive auxiliary agent as long as the effects of the present invention are not impaired. The components other than the inorganic solid electrolyte and the conductive auxiliary agent are not particularly limited, but include an ion conductive substance such as a lithium salt or a lithium ion conductive polymer, an electron conductive substance other than the conductive auxiliary agent, and an electrode composition described later. Other components may be mentioned. The coating layer preferably contains no lithium ion conductive polymer (for example, the content in the coating layer is 5% by mass or less).
The content of the above components in the coating layer is not particularly limited. In particular, the content of the component that does not exhibit ionic conductivity and electron conductivity is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less in the coating layer.
(複合電極活物質の製造方法)
 本発明の複合電極活物質の製造方法は、特に制限されないが、高速気流中衝撃法、転動流動コーティング法(ゾルゲル法)、混合法等が挙げられ、混合法が好ましい。
 上記比C/Liを偏移させる方法は、公知の方法を特に制限されることなく適用でき、例えば、無機固体電解質及び導電助剤の混合比を変更して、高速気流中衝撃法によるコーティング、転動流動コーティング又は混合を複数回行う方法が挙げられる。
 好ましい製造方法として下記工程(1)と、1回又は複数回行う下記工程(2)とを有し、工程(1)と最後に行う上記工程(2)における無機固体電解質及び導電助剤の混合割合を変更して、上記式(I)で規定される関係を満たす被覆層を活物質の表面に形成する方法が挙げられる。
 
工程(1):活物質、無機固体電解質及び導電助剤を混合する工程
工程(2):工程(1)で得られる混合物と、無機固体電解質及び導電助剤とを混合する工程
(Manufacturing method of composite electrode active material)
The method for producing the composite electrode active material of the present invention is not particularly limited, and examples thereof include a high-speed airflow impact method, a rolling flow coating method (sol-gel method), and a mixing method, and the mixing method is preferable.
The method for shifting the ratio C / Li can be applied without particular limitation to a known method. For example, coating by a high-speed airflow impact method by changing the mixing ratio of the inorganic solid electrolyte and the conductive auxiliary agent. Examples include a method of performing rolling flow coating or mixing multiple times.
As a preferable production method, the following step (1) and the following step (2) performed once or a plurality of times are included, and the mixing of the inorganic solid electrolyte and the conductive auxiliary agent in the step (1) and the final step (2) is performed. Examples thereof include a method of forming a coating layer satisfying the relationship defined by the above formula (I) on the surface of the active material by changing the ratio.

Step (1): Step of mixing the active material, the inorganic solid electrolyte and the conductive auxiliary agent Step (2): Step of mixing the mixture obtained in the step (1) with the inorganic solid electrolyte and the conductive auxiliary agent.
 工程(2)を行う回数は1回以上であれば特に制限されず、例えば、3回とすることができる。生産性等を考慮すると、1~4回が好ましく、1回~3回がより好ましい。
 工程(2)で用いる無機固体電解質及び導電助剤は、新たに被覆層を形成する材料であり、直前に行った工程で用いた無機固体電解質及び導電助剤(被覆層形成済)と同種でも異種でもよい。
 工程(2)で混合する無機固体電解質と導電助剤との混合比(被覆層中の含有量に相当)は、最後に行う上記工程(2)の混合比が工程(1)の混合比と異なっていればよく、工程ごとに異なっていてもよい。この混合比の変更は、上記濃度傾斜の態様に応じて適宜に設定される。混合比は、通常、上記各式における、A1、B1、C1、更には他の領域の比C/Liを満たす値に設定される。
The number of times the step (2) is performed is not particularly limited as long as it is one or more times, and may be, for example, three times. Considering productivity and the like, 1 to 4 times is preferable, and 1 to 3 times is more preferable.
The inorganic solid electrolyte and the conductive auxiliary agent used in the step (2) are materials for newly forming the coating layer, and may be of the same type as the inorganic solid electrolyte and the conductive auxiliary agent (cover layer formed) used in the immediately preceding step. It may be different.
The mixing ratio of the inorganic solid electrolyte and the conductive additive (corresponding to the content in the coating layer) to be mixed in the step (2) is such that the mixing ratio of the above step (2) to be performed last is the mixing ratio of the step (1). It may be different, and may be different for each process. This change in the mixing ratio is appropriately set according to the mode of the concentration gradient. The mixing ratio is usually set to a value that satisfies the ratio C / Li of A1, B1, C1 and other regions in each of the above formulas.
 両工程における混合方法は、特に制限されず、後述する電極用組成物の調製方法で説明する方法を適用できる。その一例として、活物質又は直前に行った工程で得られる混合物と、無機固体電解質及び導電助剤とを、例えば、5~180分間ボールミルで混合する方法が挙げられる。具体的には、後述する実施例で説明する方法が挙げられる。 The mixing method in both steps is not particularly limited, and the method described in the method for preparing the electrode composition described later can be applied. One example thereof is a method of mixing an active material or a mixture obtained in the immediately preceding step with an inorganic solid electrolyte and a conductive additive in a ball mill for, for example, 5 to 180 minutes. Specifically, a method described in Examples described later can be mentioned.
[電極用組成物]
 本発明の電極用組成物は、本発明の複合電極活物質と、分散媒とを含有する。本発明の電極用組成物は、複合電極活物質が分散媒中に分散したスラリーであることが好ましい。
 電極用組成物中の複合電極活物質の含有量は、電極用組成物が含有する全固形分中、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%であってもよい。
 本発明の電極用組成物は、全固体二次電池用電極シート又は全固体二次電池の活物質層の成形材料として好ましく用いることができる。
[Composition for electrodes]
The electrode composition of the present invention contains the composite electrode active material of the present invention and a dispersion medium. The electrode composition of the present invention is preferably a slurry in which the composite electrode active material is dispersed in a dispersion medium.
The content of the composite electrode active material in the electrode composition is preferably 70% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more, based on the total solid content contained in the electrode composition. It is more preferably 95% by mass or more, and may be 100% by mass.
The electrode composition of the present invention can be preferably used as an electrode sheet for an all-solid-state secondary battery or a molding material for an active material layer of an all-solid-state secondary battery.
 本明細書において、固形分(固形成分)とは、電極用組成物を、1mmHgの気圧下、窒素雰囲気下170℃で6時間乾燥処理したときに、揮発又は蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。 In the present specification, the solid content (solid component) means a component that does not volatilize or evaporate and disappear when the electrode composition is dried at 170 ° C. for 6 hours under an atmospheric pressure of 1 mmHg and a nitrogen atmosphere. Typically, it refers to a component other than the dispersion medium described later.
 本発明の電極用組成物は、特に制限されないが、含水率(水分含有量ともいう。)が、500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。電極用組成物の含水率が少ないと、無機固体電解質の劣化を抑制することができる。含水量は、電極用組成物中に含有している水の量(電極用組成物に対する質量割合)を示し、具体的には、0.02μmのメンブレンフィルターでろ過し、カールフィッシャー滴定を用いて測定された値とする。 The composition for electrodes of the present invention is not particularly limited, but the water content (also referred to as water content) is preferably 500 ppm or less, more preferably 200 ppm or less, and further preferably 100 ppm or less. It is preferably 50 ppm or less, and particularly preferably 50 ppm or less. When the water content of the electrode composition is low, deterioration of the inorganic solid electrolyte can be suppressed. The water content indicates the amount of water contained in the electrode composition (mass ratio to the electrode composition). Specifically, the water content is filtered through a 0.02 μm membrane filter, and Karl Fischer titration is used. It shall be the measured value.
<分散媒>
 本発明の電極用組成物が含有する分散媒(分散媒体)は、含有する固形分を分散又は溶解させるものであればよい。分散媒としては、例えば、各種の有機溶媒が挙げられる。有機溶媒としては、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等の各溶媒が挙げられる。
<Dispersion medium>
The dispersion medium (dispersion medium) contained in the electrode composition of the present invention may be any one that disperses or dissolves the contained solid content. Examples of the dispersion medium include various organic solvents. Examples of the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds and the like.
 上記各溶媒の具体例を以下に示す。
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
Specific examples of each of the above solvents are shown below.
Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol can be mentioned.
 エーテル化合物としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。 Examples of the ether compound include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, and dipropylene glycol. Monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dialkyl ether (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ether (tetrahydrofuran, dioxane (1,2-, 1,3, etc.) -And each isomer of 1,4-), etc.) can be mentioned.
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。 Examples of the amide compound include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, and N-. Examples thereof include methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素化合物が挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどの脂肪族炭化水素化合物が挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピロニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸ブチル、ペンタン酸ブチルなどが挙げられる。
 非水系分散媒としては、上記芳香族化合物、脂肪族化合物等が挙げられる。
Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and diisobutyl ketone.
Examples of the aromatic compound include aromatic hydrocarbon compounds such as benzene, toluene and xylene.
Examples of the aliphatic compound include aliphatic hydrocarbon compounds such as hexane, heptane, octane, and decane.
Examples of the nitrile compound include acetonitrile, propyronitrile, isobutyronitrile and the like.
Examples of the ester compound include ethyl acetate, butyl acetate, propyl acetate, butyl butyrate, butyl pentanate and the like.
Examples of the non-aqueous dispersion medium include the above aromatic compounds and aliphatic compounds.
 本発明においては、中でも、エーテル化合物、ケトン化合物、芳香族化合物、脂肪族化合物、エステル化合物が好ましく、ケトン化合物、脂肪族化合物又はエステル化合物が更に好ましい。本発明においては、硫化物系無機固体電解質を用いて、更に上記の特定の有機溶媒を選定することが好ましい。この組み合わせを選定することにより、硫化物系無機固体電解質に対して活性な官能基が含まれないため硫化物系無機固体電解質を安定に取り扱える。特に硫化物系無機固体電解質と脂肪族化合物との組み合わせが好ましい。 In the present invention, among them, ether compounds, ketone compounds, aromatic compounds, aliphatic compounds and ester compounds are preferable, and ketone compounds, aliphatic compounds or ester compounds are more preferable. In the present invention, it is preferable to further select the above-mentioned specific organic solvent by using a sulfide-based inorganic solid electrolyte. By selecting this combination, the sulfide-based inorganic solid electrolyte can be handled stably because it does not contain a functional group that is active with respect to the sulfide-based inorganic solid electrolyte. In particular, a combination of a sulfide-based inorganic solid electrolyte and an aliphatic compound is preferable.
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。
 上記分散媒は、1種を単独で含有していても、2種以上を含有していてもよい。
The dispersion medium preferably has a boiling point of 50 ° C. or higher at normal pressure (1 atm), and more preferably 70 ° C. or higher. The upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
The dispersion medium may contain one kind alone or two or more kinds.
 本発明において、電極用組成物中の、分散媒の含有量は、特に制限されず適宜に設定することができる。例えば、電極用組成物中、20~99質量%が好ましく、25~70質量%がより好ましく、30~60質量%が特に好ましい。 In the present invention, the content of the dispersion medium in the electrode composition is not particularly limited and can be appropriately set. For example, in the composition for electrodes, 20 to 99% by mass is preferable, 25 to 70% by mass is more preferable, and 30 to 60% by mass is particularly preferable.
<バインダー>
 本発明の電極用組成物は、バインダーを含有していてもよい。バインダーは、どのような形態で含有していてもよく、例えば、電極用組成物、全固体二次電池用電極シート又は全固体二次電池中において、粒子状であっても不定形状であってもよい。バインダーは、ポリマー粒子の形態で含有していることが好ましい。より好ましくは、マクロモノマー成分を含有した樹脂粒子の形態で含有している。
 本発明で使用するバインダーがポリマー粒子である場合、このポリマー粒子を形成するポリマーは特に限定されない。
 このバインダーは、特に制限はなく、例えば、下記のポリマーからなる粒子の形態が好ましい。
<Binder>
The electrode composition of the present invention may contain a binder. The binder may be contained in any form, for example, in an electrode composition, an electrode sheet for an all-solid-state secondary battery, or an all-solid-state secondary battery, the binder may be in the form of particles or in an indefinite shape. May be good. The binder is preferably contained in the form of polymer particles. More preferably, it is contained in the form of resin particles containing a macromonomer component.
When the binder used in the present invention is polymer particles, the polymer forming the polymer particles is not particularly limited.
This binder is not particularly limited, and for example, the form of particles made of the following polymer is preferable.
 含フッ素ポリマーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性ポリマーとしては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 アクリルポリマーとしては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、及びこれらポリマーを構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、そのほかのビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本発明において、コポリマーは、統計コポリマー及び周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
 その他のポリマーとしては、例えば、ポリウレタン、ポリウレア、ポリアミド、ポリイミド、ポリエステル、ポリエーテル、ポリカーボネート、セルロース誘導体等が挙げられる。
 これらの中でも、アクリルポリマー、ポリウレタン、ポリアミド及びポリイミドが好ましく、アクリルポリマー、ポリウレタン及びポリアミドがより好ましく、アクリルポリマーが特に好ましい。
Examples of the fluoropolymer include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
Examples of the hydrocarbon-based thermoplastic polymer include polyethylene, polypropylene, styrene-butadiene rubber (SBR), hydrogenated styrene-butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
Examples of the acrylic polymer include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of the monomers constituting these polymers (preferably copolymers of acrylic acid and methyl acrylate). Be done.
Further, a copolymer (copolymer) with other vinyl-based monomers is also preferably used. For example, a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene can be mentioned. In the present invention, the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferable.
Examples of other polymers include polyurethane, polyurea, polyamide, polyimide, polyester, polyether, polycarbonate, cellulose derivative and the like.
Among these, acrylic polymers, polyurethanes, polyamides and polyimides are preferable, acrylic polymers, polyurethanes and polyamides are more preferable, and acrylic polymers are particularly preferable.
 バインダーを構成するポリマーは、常法により合成ないし調製したものを用いてもよく、市販品を用いてもよい。
 バインダーは、1種を含有していてもよいし、2種以上を含有していてもよい。
As the polymer constituting the binder, a polymer synthesized or prepared by a conventional method may be used, or a commercially available product may be used.
The binder may contain one kind or two or more kinds.
 電極用組成物がバインダーを含有する場合、バインダーの電極用組成物中の含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮すると、固形成分100質量%中、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上が更に好ましい。上限としては、電池特性の観点から、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。 When the electrode composition contains a binder, the content of the binder in the electrode composition is solid in consideration of reduction of interfacial resistance and maintenance of reduced interfacial resistance when used in an all-solid-state secondary battery. Of the 100% by mass of the components, 0.01% by mass or more is preferable, 0.1% by mass or more is more preferable, and 1% by mass or more is further preferable. From the viewpoint of battery characteristics, the upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less.
<リチウム塩>
 本発明の電極用組成物は、リチウム塩(支持電解質)を含有することも好ましい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486号公報の段落0082~0085記載のリチウム塩が好ましい。
 本発明の電極用組成物がリチウム塩を含む場合、リチウム塩の含有量は、複合電極活物質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
<Lithium salt>
The electrode composition of the present invention preferably contains a lithium salt (supporting electrolyte).
As the lithium salt, the lithium salt usually used for this kind of product is preferable, and there is no particular limitation. For example, the lithium salt described in paragraphs 882 to 985 of JP2015-088486 is preferable.
When the composition for an electrode of the present invention contains a lithium salt, the content of the lithium salt is preferably 0.1 part by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the composite electrode active material. The upper limit is preferably 50 parts by mass or less, and more preferably 20 parts by mass or less.
<分散剤>
 本発明の電極用組成物は分散剤を含有してもよい。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発及び/又は静電反発を意図した化合物が好適に使用される。
<Dispersant>
The composition for electrodes of the present invention may contain a dispersant. As the dispersant, those usually used for all-solid-state secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption, steric repulsion and / or electrostatic repulsion are preferably used.
<他の添加剤>
 本発明の電極用組成物は、上記各成分以外の他の成分として、適宜に、イオン液体、増粘剤、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。イオン液体は、イオン伝導度をより向上させるため含有されるものであり、公知のものを特に制限されることなく用いることができる。
<Other additives>
In the electrode composition of the present invention, as components other than the above components, an ionic liquid, a thickener, a cross-linking agent (such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization), polymerization, etc. It can contain initiators (such as those that generate acids or radicals by heat or light), defoaming agents, leveling agents, dehydrating agents, antioxidants and the like. The ionic liquid is contained in order to further improve the ionic conductivity, and known ones can be used without particular limitation.
(電極用組成物の調製)
 本発明の電極用組成物は、複合電極活物質、分散媒、更には適宜に、バインダー、リチウム塩、任意の他の成分を、例えば通常用いる各種の混合機で混合することにより、混合物として、好ましくはスラリーとして、調製することができる。
 混合方法は特に制限されず、一括して混合してもよく、順次混合してもよい。混合する環境は特に制限されないが、乾燥空気下又は不活性ガス下等が挙げられる。
(Preparation of composition for electrodes)
The electrode composition of the present invention can be prepared as a mixture by mixing a composite electrode active material, a dispersion medium, and optionally a binder, a lithium salt, and any other components in various commonly used mixers, for example. It can be prepared preferably as a slurry.
The mixing method is not particularly limited, and the mixture may be mixed all at once or sequentially. The mixing environment is not particularly limited, and examples thereof include under dry air and under an inert gas.
[全固体二次電池用電極シート]
 本発明の全固体二次電池用電極シートは、全固体二次電池の電極活物質層を形成しうるシート状成形体であって、電極、又は電極と固体電解質層との積層体に好ましく用いられる。
[Electrode sheet for all-solid-state secondary battery]
The electrode sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body capable of forming an electrode active material layer of an all-solid-state secondary battery, and is preferably used for an electrode or a laminate of an electrode and a solid electrolyte layer. Be done.
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、活物質層から形成されているシートであってもよい。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。本発明の電極シートは上述の他の層を有してもよい。本発明の電極シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。 The electrode sheet for an all-solid-state secondary battery of the present invention (also simply referred to as "electrode sheet") may be an electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector). The sheet may be a sheet that does not have a base material and is formed from an active material layer. This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. An embodiment having a layer and an active material layer in this order is also included. The electrode sheet of the present invention may have the other layers described above. The layer thickness of each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
 本発明の全固体二次電池用シートは、活物質層の少なくとも1層が本発明の複合電極活物質を含有する。本発明の複合電極活物質を含有する活物質層において、複合電極活物質のほとんどが被覆層による活物質の被覆状態を維持しており、更には上記式(I)で規定される関係を大きく損なわず、維持している。被覆層を形成している無機固体電解質及び導電助剤の一部は本発明の効果を損なわない範囲で被覆層から脱落して複合電極活物質と独立に存在していてもよい。これにより、本発明の全固体二次電池用電極シートを用いて全固体二次電池を製造すると、優れた電池性能を示す。 In the sheet for an all-solid-state secondary battery of the present invention, at least one layer of the active material layer contains the composite electrode active material of the present invention. In the active material layer containing the composite electrode active material of the present invention, most of the composite electrode active material maintains the state of being coated with the active material by the coating layer, and further, the relationship defined by the above formula (I) is greatly increased. It is maintained without damage. A part of the inorganic solid electrolyte and the conductive auxiliary agent forming the coating layer may be removed from the coating layer and exist independently of the composite electrode active material as long as the effects of the present invention are not impaired. As a result, when an all-solid-state secondary battery is manufactured using the electrode sheet for the all-solid-state secondary battery of the present invention, excellent battery performance is exhibited.
[全固体二次電池用電極シートの製造方法]
 本発明の全固体二次電池用電極シートの製造方法は、特に制限されず、本発明の電極用組成物を用いて、活物質層を形成することにより、製造できる。例えば、好ましくは集電体上(他の層を介していてもよい。)に、製膜(塗布乾燥)して電極用組成物からなる層(塗布乾燥層)を形成する方法が挙げられる。これにより、集電体と、塗布乾燥層とを有する全固体二次電池用電極シートを作製することができる。ここで、塗布乾燥層とは、本発明の電極用組成物を塗布し、分散媒を乾燥させることにより形成される層(すなわち、本発明の電極用組成物を用いてなり、本発明の電極用組成物から分散媒を除去した組成からなる層)をいう。活物質層は、本発明の効果を損なわない範囲であれば分散媒が残存していてもよく、残存量としては、例えば、各層中、3質量%以下とすることができる。
 本発明の全固体二次電池用電極シートの製造方法において、塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
[Manufacturing method of electrode sheet for all-solid-state secondary battery]
The method for producing the electrode sheet for an all-solid-state secondary battery of the present invention is not particularly limited, and the electrode sheet can be produced by forming an active material layer using the electrode composition of the present invention. For example, preferably, a method of forming a film (coating and drying) on the current collector (which may be via another layer) to form a layer (coating and drying layer) composed of the electrode composition can be mentioned. As a result, an electrode sheet for an all-solid-state secondary battery having a current collector and a coating dry layer can be produced. Here, the coating dry layer is a layer formed by applying the electrode composition of the present invention and drying the dispersion medium (that is, the electrode composition of the present invention is used, and the electrode of the present invention is used. A layer having a composition obtained by removing the dispersion medium from the composition for use). In the active material layer, the dispersion medium may remain as long as the effect of the present invention is not impaired, and the residual amount may be, for example, 3% by mass or less in each layer.
In the method for manufacturing an electrode sheet for an all-solid-state secondary battery of the present invention, each step such as coating and drying will be described in the following method for manufacturing an all-solid-state secondary battery.
 本発明の全固体二次電池用電極シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等については、後述する、全固体二次電池の製造方法において説明する。
 また、本発明の全固体二次電池用電極シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
In the method for producing an electrode sheet for an all-solid-state secondary battery of the present invention, the coating dry layer obtained as described above can also be pressurized. The pressurizing conditions and the like will be described later in the method for manufacturing an all-solid-state secondary battery.
Further, in the method for producing an electrode sheet for an all-solid-state secondary battery of the present invention, the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、好ましくは正極集電体上に形成され、正極を構成する。負極活物質層は、好ましくは負極集電体上に形成され、負極を構成する。
 負極活物質層及び正極活物質層の少なくとも1つの層は、本発明の複合電極活物質を含有し、負極活物質層及び正極活物質層が複合電極活物質を含有することが好ましい。本発明の複合電極活物質を含有する活物質層中における複合電極活物質のほとんどが被覆層による活物質の被覆状態を維持しており、更には上記式(I)で規定される関係を大きく損なわず、維持している。被覆層を形成している無機固体電解質及び導電助剤の一部は本発明の効果を損なわない範囲で被覆層から脱落して複合電極活物質と独立に存在していてもよい。また、この活物質層は、好ましくは、含有する成分種及びその含有量比について、本発明の電極用組成物の固形分におけるものと同じである。なお、活物質層の一方が本発明の電極用組成物で形成されない場合、公知の材料を用いることができる。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
[All-solid-state secondary battery]
The all-solid secondary battery of the present invention has a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer arranged between the positive electrode active material layer and the negative electrode active material layer. Have. The positive electrode active material layer is preferably formed on the positive electrode current collector to form the positive electrode. The negative electrode active material layer is preferably formed on the negative electrode current collector to form the negative electrode.
It is preferable that at least one layer of the negative electrode active material layer and the positive electrode active material layer contains the composite electrode active material of the present invention, and the negative electrode active material layer and the positive electrode active material layer contain the composite electrode active material. Most of the composite electrode active material in the active material layer containing the composite electrode active material of the present invention maintains the state of being coated with the active material by the coating layer, and further, the relationship defined by the above formula (I) is greatly increased. It is maintained without damage. A part of the inorganic solid electrolyte and the conductive auxiliary agent forming the coating layer may be removed from the coating layer and exist independently of the composite electrode active material as long as the effects of the present invention are not impaired. Further, the active material layer is preferably contained in the same component species and the content ratio thereof in the solid content of the electrode composition of the present invention. If one of the active material layers is not formed of the electrode composition of the present invention, a known material can be used.
The thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 μm, more preferably 20 μm or more and less than 500 μm, respectively, in consideration of the dimensions of a general all-solid-state secondary battery. In the all-solid-state secondary battery of the present invention, the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is more preferably 50 μm or more and less than 500 μm.
The positive electrode active material layer and the negative electrode active material layer may each have a current collector on the opposite side of the solid electrolyte layer.
〔筐体〕
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[Case]
Depending on the application, the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure, but in order to form a dry battery, it should be further enclosed in a suitable housing. Is preferable. The housing may be made of metal or resin (plastic). When a metallic material is used, for example, one made of aluminum alloy or stainless steel can be mentioned. It is preferable that the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。 The all-solid-state secondary battery according to the preferred embodiment of the present invention will be described below with reference to FIG. 1, but the present invention is not limited thereto.
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。 FIG. 1 is a schematic cross-sectional view showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. .. Each layer is in contact with each other and has an adjacent structure. By adopting such a structure, during charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated there. On the other hand, at the time of discharge, the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6. In the illustrated example, a light bulb is used as a model for the operating portion 6, and the light bulb is turned on by electric discharge.
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用電極シートと称し、この全固体二次電池用電極シートを2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。 When an all-solid secondary battery having the layer structure shown in FIG. 1 is placed in a 2032 type coin case, the all-solid secondary battery is referred to as an all-solid secondary battery electrode sheet, and the all-solid secondary battery electrode sheet is referred to as an all-solid secondary battery electrode sheet. Batteries manufactured in a 2032 type coin case are sometimes referred to as all-solid secondary batteries.
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層及び負極活物質層のいずれも、本発明の全固体二次電池用電極シートで構成されており、本発明の複合電極活物質を含有している。そのため、この全固体二次電池10は優れた電池性能を示す。正極活物質層4及び負極活物質層2が含有する複合電極活物質は、互いに同種であっても異種であってもよい。
 本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
(Positive electrode active material layer, solid electrolyte layer, negative electrode active material layer)
In the all-solid-state secondary battery 10, both the positive electrode active material layer and the negative electrode active material layer are composed of the electrode sheet for the all-solid-state secondary battery of the present invention, and contain the composite electrode active material of the present invention. There is. Therefore, the all-solid-state secondary battery 10 exhibits excellent battery performance. The composite electrode active material contained in the positive electrode active material layer 4 and the negative electrode active material layer 2 may be of the same type or different from each other.
In the present invention, either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer. Further, either or both of the positive electrode active material and the negative electrode active material may be collectively referred to as an active material or an electrode active material.
 全固体二次電池10においては、負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1~500μmとすることができる。 In the all-solid-state secondary battery 10, the negative electrode active material layer can be a lithium metal layer. Examples of the lithium metal layer include a layer formed by depositing or molding a lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like. The thickness of the lithium metal layer can be, for example, 1 to 500 μm regardless of the thickness of the negative electrode active material layer.
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be collectively referred to as a current collector.
As a material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, the surface of aluminum or stainless steel is treated with carbon, nickel, titanium or silver (a thin film is formed). Of these, aluminum and aluminum alloys are more preferable.
As a material for forming the negative electrode current collector, in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel. Preferably, aluminum, copper, copper alloy and stainless steel are more preferable.
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
The shape of the current collector is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, or the like can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層、部材等を適宜介在若しくは配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。 In the present invention, a functional layer, a member, or the like is appropriately interposed or arranged between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. You may. Further, each layer may be composed of a single layer or a plurality of layers.
[全固体二次電池の製造]
 全固体二次電池は、常法によって、製造できる。具体的には、全固体二次電池は、本発明の電極用組成物等を用いて、活物質層を形成することにより、製造できる。ただし、活物質層の形成に際して集電体以外の基材を用いた場合には、活物質から基材を剥離して、全固体二次電池の製造に用いる。これにより、優れた電池性能を示し、更に小さな電気抵抗を示す全固体二次電池を製造できる。以下、詳述する。
[Manufacturing of all-solid-state secondary batteries]
The all-solid-state secondary battery can be manufactured by a conventional method. Specifically, the all-solid-state secondary battery can be manufactured by forming an active material layer using the electrode composition or the like of the present invention. However, when a base material other than the current collector is used for forming the active material layer, the base material is peeled off from the active material and used for manufacturing an all-solid-state secondary battery. This makes it possible to manufacture an all-solid-state secondary battery that exhibits excellent battery performance and even smaller electrical resistance. The details will be described below.
 本発明の全固体二次電池は、本発明の電極用組成物を、適宜基材(例えば、集電体となる金属箔)上に、塗布し、塗膜を形成する(製膜する)工程を含む(介する)方法(本発明の全固体二次電池用シートの製造方法)を行って、製造できる。
 例えば、正極集電体である金属箔上に、正極用組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。これを筐体に封入して所望の全固体二次電池とすることもできる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
In the all-solid-state secondary battery of the present invention, the electrode composition of the present invention is appropriately applied onto a base material (for example, a metal foil serving as a current collector) to form a coating film (film formation). It can be manufactured by performing a method including (via) (a method for manufacturing a sheet for an all-solid-state secondary battery of the present invention).
For example, a positive electrode composition is applied onto a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and a positive electrode sheet for an all-solid secondary battery is produced. Next, a solid electrolyte composition for forming the solid electrolyte layer is applied onto the positive electrode active material layer to form the solid electrolyte layer. Further, the composition for the negative electrode is applied on the solid electrolyte layer to form the negative electrode active material layer. By superimposing a negative electrode current collector (metal leaf) on the negative electrode active material layer, an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer can be obtained. Can be done. This can be enclosed in a housing to obtain a desired all-solid-state secondary battery.
Further, by reversing the forming method of each layer, a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is superposed to manufacture an all-solid secondary battery. You can also do it.
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
As another method, the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery is produced. Further, a negative electrode composition is applied onto a metal foil which is a negative electrode current collector to form a negative electrode active material layer, and a negative electrode sheet for an all-solid secondary battery is produced. Next, a solid electrolyte layer is formed on the active material layer of any one of these sheets as described above. Further, the other of the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, an all-solid-state secondary battery can be manufactured.
As another method, the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery and a negative electrode sheet for an all-solid-state secondary battery are produced. Separately from this, the solid electrolyte composition is applied onto the base material to prepare a solid electrolyte sheet for an all-solid secondary battery composed of a solid electrolyte layer. Further, the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery are laminated so as to sandwich the solid electrolyte layer peeled from the base material. In this way, an all-solid-state secondary battery can be manufactured.
 上記の製造方法においては、正極用組成物及び負極用組成物のいずれか1つに本発明の電極用組成物を用いればよく、いずれも、本発明の電極用組成物を用いることが好ましい。 In the above-mentioned production method, the electrode composition of the present invention may be used for any one of the positive electrode composition and the negative electrode composition, and it is preferable to use the electrode composition of the present invention in both cases.
<各層の形成(成膜)>
 各組成物の塗布方法は特に制限されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 このとき、各組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に制限されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性と、非加圧でも良好なイオン伝導度を得ることができる。
<Formation of each layer (deposition)>
The application method of each composition is not particularly limited and can be appropriately selected. For example, coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, bar coating coating can be mentioned.
At this time, each composition may be subjected to a drying treatment after being applied, or may be subjected to a drying treatment after being applied in multiple layers. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher. The upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower. By heating in such a temperature range, the dispersion medium can be removed and a solid state (coating dry layer) can be obtained. Further, it is preferable because the temperature is not raised too high and each member of the all-solid-state secondary battery is not damaged. As a result, in an all-solid-state secondary battery, it is possible to obtain excellent overall performance, good binding properties, and good ionic conductivity even without pressurization.
 塗布した電極用組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては特に制限されず、一般的には5~1500MPaの範囲であることが好ましい。
 また、塗布した電極用組成物は、加圧と同時に加熱してもよい。加熱温度としては特に制限されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
It is preferable to pressurize each layer or the all-solid-state secondary battery after preparing the coated electrode composition or the all-solid-state secondary battery. It is also preferable to pressurize the layers in a laminated state. Examples of the pressurizing method include a hydraulic cylinder press machine and the like. The pressing force is not particularly limited, and is generally preferably in the range of 5 to 1500 MPa.
Further, the applied electrode composition may be heated at the same time as pressurization. The heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It can also be pressed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
The pressurization may be carried out in a state where the coating solvent or the dispersion medium has been dried in advance, or may be carried out in a state where the solvent or the dispersion medium remains.
In addition, each composition may be applied at the same time, and the application drying press may be performed simultaneously and / or sequentially. After applying to separate substrates, they may be laminated by transfer.
 加圧中の雰囲気としては特に制限されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The atmosphere during pressurization is not particularly limited, and may be any of air, dry air (dew point −20 ° C. or lower), inert gas (for example, argon gas, helium gas, nitrogen gas) and the like.
The pressing time may be short (for example, within several hours) and high pressure may be applied, or medium pressure may be applied for a long time (1 day or more). In the case of an all-solid-state secondary battery other than the all-solid-state secondary battery sheet, for example, in the case of an all-solid-state secondary battery, an all-solid-state secondary battery restraint (screw tightening pressure, etc.) can be used in order to continue applying a medium pressure.
The press pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
The press pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part step by step with different pressures.
The pressed surface may be smooth or roughened.
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
<Initialization>
The all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源などが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[Applications for all-solid-state secondary batteries]
The all-solid-state secondary battery of the present invention can be applied to various applications. The application mode is not particularly limited, but for example, when mounted on an electronic device, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone. Examples include copying, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, etc. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。本発明において「室温」とは25℃を意味する。 The present invention will be described in more detail below based on examples, but the present invention is not construed as being limited thereto. In the following examples, "parts" and "%" representing the composition are based on mass unless otherwise specified. In the present invention, "room temperature" means 25 ° C.
<硫化物系無機固体電解質の合成>
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、乳鉢に投入した。LiS及びPはモル比でLiS:P=75:25とした。メノウ製乳鉢上において、メノウ製乳棒を用いて、5分間混合した。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、25℃で、回転数510rpmで20時間メカニカルミリングを行うことで黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、LPS)6.20gを得た。平均粒径は2.6μmであった。
<Sulfide-based inorganic solid electrolyte synthesis>
As a sulfide-based inorganic solid electrolyte, T.I. Ohtomo, A. Hayashi, M. et al. Tassumisago, Y. et al. Tsuchida, S.A. Hama, K.K. Kawamoto, Journal of Power Sources, 233, (2013), pp231-235 and A. et al. Hayashi, S.A. Hama, H.M. Morimoto, M.D. Tassumisago, T. et al. Minami, Chem. Lett. , (2001), pp872-873, Li-PS-based glass was synthesized with reference to non-patent documents.
Specifically, in a glove box under an argon atmosphere (dew point -70 ° C.), lithium sulfide (Li 2 S, Aldrich Corp., purity> 99.98%) 2.42 g, diphosphorus pentasulfide (P 2 S 5. Aldrich, purity> 99%) 3.90 g was weighed and put into a mortar. The molar ratios of Li 2 S and P 2 S 5 were Li 2 S: P 2 S 5 = 75: 25. On the agate mortar, the mixture was mixed for 5 minutes using an agate pestle.
66 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), the whole amount of the above mixture was put into the container, and the container was sealed under an argon atmosphere. A container is set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mechanical milling is performed at 25 ° C. at a rotation speed of 510 rpm for 20 hours to produce a yellow powder sulfide-based inorganic solid electrolyte (Li-PS). System glass, LPS) 6.20 g was obtained. The average particle size was 2.6 μm.
<バインダAの合成>
 還流冷却管、ガス導入コックを付した2L三口フラスコに、後述のようにして調製したマクロモノマーM-1の40質量%ヘプタン溶液 7.2g、アクリル酸メチル(富士フイルム和光純薬工業社製) 12.4g、アクリル酸(富士フイルム和光純薬工業社製) 6.7g、ヘプタン(富士フイルム和光純薬工業社製) 207g、アゾイソブチロニトリル 1.4gを添加し、流速200mL/minにて窒素ガスを10分間導入した後に、100℃に昇温した。別容器にて調製した液(マクロモノマーM-1の40質量%ヘプタン溶液 93.1g、アクリル酸メチル 222.8g、アクリル酸 120.0g、ヘプタン 300.0g、アゾイソブチロニトリル 2.1gを混合した液)を4時間かけて滴下した。滴下完了後、アゾイソブチロニトリル 0.5gを添加した。その後100℃で2時間攪拌した後、室温まで冷却し、ろ過することでバインダAの分散液を得た。固形成分濃度は39.2%であった。平均粒径は150nmであった。
<Synthesis of binder A>
In a 2L three-necked flask equipped with a reflux condenser and a gas introduction cock, 7.2 g of a 40% by mass heptane solution of macromonomer M-1 prepared as described below, methyl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) Add 12.4 g, acrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 6.7 g, heptane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 207 g, and azoisobutyronitrile 1.4 g to a flow rate of 200 mL / min. After introducing nitrogen gas for 10 minutes, the temperature was raised to 100 ° C. Liquid prepared in a separate container (40 mass% heptane solution of macromonomer M-1 93.1 g, methyl acrylate 222.8 g, acrylic acid 120.0 g, heptane 300.0 g, azoisobutyronitrile 2.1 g The mixed solution) was added dropwise over 4 hours. After the dropping was completed, 0.5 g of azoisobutyronitrile was added. Then, after stirring at 100 ° C. for 2 hours, the mixture was cooled to room temperature and filtered to obtain a dispersion of binder A. The solid component concentration was 39.2%. The average particle size was 150 nm.
 マクロモノマーM-1の40質量%ヘプタン溶液は以下のようにして調製した。
 12-ヒドロキシステアリン酸(富士フイルム和光純薬工業社製)の自己縮合体(GPCポリスチレンスタンダード数平均分子量:2,000)にグリシジルメタクリレート(東京化成工業社製)を反応させマクロモノマーとしてそれをメタクリル酸メチルとグリシジルメタクリレート(東京化成工業社製)と1:0.99:0.01(モル比)の割合で重合したポリマーにアクリル酸(富士フイルム和光純薬工業社製)を反応させたマクロモノマーM-1を得た。このマクロモノマーM-1のSP値は9.3、数平均分子量は11000であった。
A 40 mass% heptane solution of macromonomer M-1 was prepared as follows.
A self-condensate of 12-hydroxystearic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (GPC polystyrene standard number average molecular weight: 2,000) is reacted with glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) and methacrylic as a macromonomer. Macro by reacting acrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with a polymer polymerized at a ratio of 1: 0.99: 0.01 (molar ratio) with methyl acid and glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) Monomer M-1 was obtained. The SP value of this macromonomer M-1 was 9.3, and the number average molecular weight was 11000.
<複合電極活物質の合成>
(ボールミル方式)
 以下のようにして、後記表1に記載の被覆原料1を用いて下記工程(1)行い、次いで、後記表1に記載の被覆原料2及び3を用いて下記工程(2)を2回行って、後記表1に記載の複合電極活物質No.7を合成した。
 - 工程(1) -
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、LPS 3gと、導電助剤としてアセチレンブラック 0.2gと、活物質として平均粒径5μmのNMC 10gとを、ボールミル(商品名:P-7、フリッチュ社製)で室温下、370rpmで30分間撹拌して、LPS及び導電助剤を含む被覆層を有する活物質1を得た(被覆回数1)。
 - 工程(2) -
 この活物質1と、LPS 0.05gと、アセチレンブラック 0.4gとを、ボールミル(商品名:P-7、フリッチュ社製)で室温下、370rpmで30分間撹拌して、LPS及び導電助剤を含む被覆層を有する活物質2を得た(被覆回数2)。
 この活物質2と、LPS 0.1gと、アセチレンブラック 0.4gとを、ボールミル(商品名:P-7、フリッチュ社製)で室温下、370rpmで30分間撹拌して、LPS及び導電助剤を含む被覆層を有する複合電極活物質No.7を得た(被覆回数3)。
<Synthesis of composite electrode active material>
(Ball mill method)
In the following manner, the following step (1) is performed using the coating material 1 described in Table 1 below, and then the following step (2) is performed twice using the coating materials 2 and 3 described in Table 1 below. The composite electrode active material No. 1 shown in Table 1 below. 7 was synthesized.
-Process (1)-
66 g of zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and 3 g of LPS, 0.2 g of acetylene black as a conductive auxiliary agent, and 10 g of NMC having an average particle size of 5 μm as an active material were put into a ball mill. The active material 1 having a coating layer containing LPS and a conductive auxiliary agent was obtained by stirring at 370 rpm for 30 minutes at room temperature (trade name: P-7, manufactured by Fritsch) (number of coatings 1).
-Process (2)-
The active material 1, 0.05 g of LPS, and 0.4 g of acetylene black are stirred in a ball mill (trade name: P-7, manufactured by Fritsch) at room temperature for 30 minutes at 370 rpm, and the LPS and the conductive additive are stirred. An active material 2 having a coating layer containing the above was obtained (number of coatings 2).
The active material 2, 0.1 g of LPS, and 0.4 g of acetylene black are stirred in a ball mill (trade name: P-7, manufactured by Fritsch) at room temperature for 30 minutes at 370 rpm, and the LPS and the conductive additive are stirred. Composite electrode active material No. 1 having a coating layer containing 7 was obtained (number of coatings 3).
 複合電極活物質No.7の合成において、後記表1の組成及び被覆回数を採用したこと以外は、複合電極活物質No.7と同様にして、後記表1に記載の複合電極活物質No.7及び12以外の複合電極活物質を合成した。 Composite electrode active material No. In the synthesis of No. 7, the composite electrode active material No. 1 was used, except that the composition and the number of coatings shown in Table 1 below were adopted. In the same manner as in No. 7, the composite electrode active material No. 1 shown in Table 1 below. Composite electrode active materials other than 7 and 12 were synthesized.
(高速気流中衝撃方式)
 以下のようにして、後記表1に記載の被覆原料1を用いて下記工程(1a)行い、次いで、後記表1に記載の被覆原料3を用いて下記工程(2a)を行って、後記表1に記載の複合電極活物質No.12を合成した。
- 工程(1a) -
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、LPS 3gと、導電助剤としてアセチレンブラック 0.2gと、活物質として平均粒径5μmのNMC 10gとを、ボールミル(商品名:P-7、フリッチュ社製)で室温下、150rpmで30分間撹拌して、LPS及び導電助剤を含む複合体を得た。その後、高速気流中衝撃装置(奈良機械製作所社製NHS-0(商品名))を用いて、12000rpm、5分間の乾式複合化処理工程を経ることで、LPS及び導電助剤を含む被覆層を有する活物質1を得た(被覆回数1)。
- 工程(2a) -
 この活物質1と、LPS 0.1gと、アセチレンブラック 0.4gとを、ボールミル(商品名:P-7、フリッチュ社製)で室温下、150rpmで30分間撹拌して、LPS及び導電助剤を含む複合体を得た。その後、高速気流中衝撃装置(奈良機械製作所社製NHS-0(商品名))を用いて、12000rpm、5分間の乾式複合化処理工程を経ることで(被覆回数2)、LPS及び導電助剤を含む被覆層を有する複合電極活物質No.12を得た。
(High-speed airflow impact method)
The following step (1a) is performed using the coating material 1 described in Table 1 below, and then the following step (2a) is performed using the coating material 3 described in Table 1 below. No. 1 of the composite electrode active material according to 1. 12 was synthesized.
-Step (1a)-
66 g of zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and 3 g of LPS, 0.2 g of acetylene black as a conductive auxiliary agent, and 10 g of NMC having an average particle size of 5 μm as an active material were put into a ball mill. A composite containing LPS and a conductive auxiliary agent was obtained by stirring with (trade name: P-7, manufactured by Fritsch) at room temperature at 150 rpm for 30 minutes. Then, using a high-speed airflow impact device (NHS-0 (trade name) manufactured by Nara Machinery Co., Ltd.), a coating layer containing LPS and a conductive additive was obtained by undergoing a dry compounding process at 12000 rpm for 5 minutes. The active material 1 to have was obtained (number of coatings 1).
-Step (2a)-
The active material 1, LPS 0.1 g, and acetylene black 0.4 g are stirred in a ball mill (trade name: P-7, manufactured by Fritsch) at room temperature for 30 minutes at 150 rpm, and the LPS and the conductive additive are stirred. A complex containing the above was obtained. After that, using a high-speed airflow impact device (NHS-0 (trade name) manufactured by Nara Machinery Co., Ltd.), a dry compounding process of 12000 rpm for 5 minutes was performed (number of coatings 2), LPS and conductive auxiliary agent. Composite electrode active material No. 1 having a coating layer containing I got twelve.
<全固体二次電池の作製>
 以下のようにして、図1に示す層構成を有する全固体二次電池No.1-7を作製した。
<Manufacturing of all-solid-state secondary battery>
As shown below, the all-solid-state secondary battery No. 1 having the layer structure shown in FIG. 1-7 was prepared.
(正極用組成物1の調製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記で合成した複合電極活物質No.7 7.0g、LPS 0.9g、分散媒としてヘプタン 12.3gを投入した。遊星ボールミルP-7に容器をセットし、温度25℃、回転数100rpmで10分間混合を続け、正極用組成物1を調製した。
(Preparation of Composition 1 for Positive Electrode)
66 g of zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and the composite electrode active material No. 1 synthesized above was added. 77.0 g, LPS 0.9 g, and heptane 12.3 g as a dispersion medium were added. A container was set on the planetary ball mill P-7, and mixing was continued for 10 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm to prepare a positive electrode composition 1.
(負極用組成物1の調製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記で合成したLPS 2.8g、分散媒としてヘプタン 12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてCGB20(商品名、日本黒鉛社製)7.0gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け負極用組成物1を調製した。
(Preparation of composition 1 for negative electrode)
66 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), 2.8 g of LPS synthesized above, and 12.3 g of heptane as a dispersion medium were put. The container was set on a planetary ball mill P-7 manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours. After that, 7.0 g of CGB20 (trade name, manufactured by Nippon Graphite Co., Ltd.) was put into a container as an active material, and similarly, the container was set on a planetary ball mill P-7 and mixed at a temperature of 25 ° C. and a rotation speed of 200 rpm for 15 minutes. Subsequently, the composition 1 for the negative electrode was prepared.
(正極シートの作製)
 上記で調製した正極用組成物1を、アルミ箔(正極集電体)上に、アプリケータ(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により30mg/cmの目付量となるように塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(20MPa、1分間)、正極集電体上に正極活物質層を有する正極シートを作製した。
(Preparation of positive electrode sheet)
The positive electrode composition 1 prepared above is placed on an aluminum foil (positive electrode current collector) with an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.) with a basis weight of 30 mg / cm 2. After heating at 80 ° C. for 1 hour, the mixture was further dried at 110 ° C. for 1 hour. Then, using a heat press machine, pressure was applied while heating (120 ° C.) (20 MPa, 1 minute) to prepare a positive electrode sheet having a positive electrode active material layer on the positive electrode current collector.
(負極シートの作製)
 上記で調製した負極用組成物1を、ステンレス鋼(SUS)箔(負極集電体)上に、アプリケータ(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により15mg/cmの目付量となるように塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(20MPa、1分間)、負極集電体上に負極活物質層を有する負極シートを作製した。
(Preparation of negative electrode sheet)
The negative electrode composition 1 prepared above is placed on a stainless steel (SUS) foil (negative electrode current collector) with an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.) at 15 mg / cm 2 The mixture was applied so as to have a basis weight of, heated at 80 ° C. for 1 hour, and then dried at 110 ° C. for 1 hour. Then, using a heat press machine, pressure was applied while heating (120 ° C.) (20 MPa, 1 minute) to prepare a negative electrode sheet having a negative electrode active material layer on the negative electrode current collector.
 作製した正極シートおよび負極シートを用いて、以下のように全固体二次電池を作製した。
 正極シートを直径10mmφの円盤状に打ち抜き、10mmφのポリエチレンテレフタレート(PET)製の円筒に入れた。円筒内の正極活物質層の表面上に上記合成したLPSを30mg入れて、円筒の両端開口部から10mmφのSUS製の棒を挿入した。正極シートの正極集電体側とLPSを、SUS製棒により350MPaの圧力で加圧形成して固体電解質層を形成した。その後、固体電解質層側に配置したSUS製棒を一旦外し、直径10mmφの円盤状に打ち抜いた負極シートを、円筒内の固体電解質層の上に挿入した。外していたSUS製棒を円筒内に再度挿入し、50MPaの圧力をかけた状態で固定した。このようにしてアルミ箔(厚さ20μm)-正極活物質層(厚さ100μm)-硫化物系無機固体電解質層(厚さ200μm)-負極活物質層(厚さ30μm)-SUS箔(厚さ20μm)の構成を有する全固体二次電池を得た。
Using the prepared positive electrode sheet and negative electrode sheet, an all-solid-state secondary battery was prepared as follows.
The positive electrode sheet was punched into a disk shape having a diameter of 10 mmφ and placed in a cylinder made of polyethylene terephthalate (PET) having a diameter of 10 mmφ. 30 mg of the synthesized LPS was placed on the surface of the positive electrode active material layer in the cylinder, and a rod made of SUS having a diameter of 10 mm was inserted through the openings at both ends of the cylinder. The positive electrode current collector side of the positive electrode sheet and the LPS were pressure-formed with a SUS rod at a pressure of 350 MPa to form a solid electrolyte layer. Then, the SUS rod arranged on the solid electrolyte layer side was once removed, and a disc-shaped negative electrode sheet having a diameter of 10 mmφ was inserted onto the solid electrolyte layer in the cylinder. The removed SUS rod was reinserted into the cylinder and fixed under a pressure of 50 MPa. In this way, aluminum foil (thickness 20 μm) -positive electrode active material layer (thickness 100 μm) -sulfide-based inorganic solid electrolyte layer (thickness 200 μm) -negative electrode active material layer (thickness 30 μm) -SUS foil (thickness) An all-solid-state secondary battery having a composition of 20 μm) was obtained.
 全固体二次電池No.1-7の作製において、複合電極活物質No.7に代えて、複合電極活物質No.1~6及び8~24を用いたこと以外は、全固体二次電池No.1-7と同様にして、全固体二次電池No.1-1~1-6及1-び8~1-24を作製した。 All-solid-state secondary battery No. In the preparation of 1-7, the composite electrode active material No. Instead of No. 7, the composite electrode active material No. All-solid-state secondary batteries No. 1 to 6 and 8 to 24 were used. In the same manner as in 1-7, the all-solid-state secondary battery No. 1-1 to 1-6 and 1 to 8 to 1-24 were prepared.
 全固体二次電池No.1-7の作製において、正極用組成物1及び負極用組成物1に代えて、下記正極用組成物2及び負極用組成物2を用いたこと以外は、全固体二次電池No.1-7と同様にして、全固体二次電池No.1-26を作製した。 All-solid-state secondary battery No. In the production of 1-7, the all-solid-state secondary battery No. 1 except that the following positive electrode composition 2 and negative electrode composition 2 were used instead of the positive electrode composition 1 and the negative electrode composition 1. In the same manner as in 1-7, the all-solid-state secondary battery No. 1-26 was made.
(正極用組成物2の調製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記で合成したLPS 2.8g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてNMC 7.0gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け正極用組成物2を調製した。
(Preparation of composition 2 for positive electrode)
66 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), 2.8 g of LPS synthesized above, and 12.3 g of heptane as a dispersion medium were put. The container was set on a planetary ball mill P-7 manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours. Then, 7.0 g of NMC as an active material was put into a container, and similarly, the container was set in a planetary ball mill P-7 and mixed at a temperature of 25 ° C. and a rotation speed of 200 rpm for 15 minutes to prepare a positive electrode composition 2. ..
(負極用組成物2の調製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記で合成した複合電極活物質No.26 7.0g、LPSを0.9g、分散媒としてヘプタン 12.3gを投入した。遊星ボールミルP-7に容器をセットし、温度25℃、回転数100rpmで10分間混合を続け、負極用組成物2を調製した。
(Preparation of composition 2 for negative electrode)
66 g of zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and the composite electrode active material No. 1 synthesized above was added. 26 7.0 g, LPS 0.9 g, and heptane 12.3 g as a dispersion medium were added. The container was set on the planetary ball mill P-7, and mixing was continued for 10 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm to prepare a negative electrode composition 2.
 全固体二次電池No.1-26の作製において、複合電極活物質No.26に代えて、複合電極活物質No.1-25及び1-27~30を用いたこと以外は、全固体二次電池No.1-7と同様にして、全固体二次電池No.1-25及び1-27~30を作製した。 All-solid-state secondary battery No. In the preparation of 1-26, the composite electrode active material No. Instead of 26, the composite electrode active material No. All-solid-state secondary battery No. 1-25 and 1-27-30 were used. In the same manner as in 1-7, the all-solid-state secondary battery No. 1-25 and 1-27-30 were made.
<リチウム原子数に対する炭素原子数の比C/Li>
 上記合成した複合電極活物質の被覆層の各領域におけるC/Liは以下のようにして測定した。
 複合電極活物質粉末を350MPaでプレスし複合電極活物質粉末ペレットを得て、このペレットを割断しイオンミリング装置(日立製作所、IM4000PLUS(商品名))で、加速電圧3kV、放電電圧1.5V、処理時間4時間、アルゴンガスフローレート0.1ml/minの条件で切り出した。複合電極活物質断面をSEM(日立製作所、MINISCOPE TM3030PLUS(商品名))にて倍率×5000倍で観察した。各領域の測定値は、無作為に複合電極活物質10個を選択し、各複合電極活物質について、周方向は中心角90°間隔で4か所、複合電極活物質の厚さ方向については各領域の中心近傍で1か所のC/Liを算出して、10個の複合電極活物質から得られた各領域の値の算術平均値を採用した。
 活物質接触面は、SEM-EDX(日立製作所、QUANTAX70(商品名))にて組成(正極活物質由来のMn若しくはAlと被覆層中の無機固体電解質由来のLi又は負極活物質由来のSiやSnと被覆層中の無機固体電解質由来のLi)が不連続に変化する箇所を活物質と被覆層の接触面とした。被覆層表面は、SEM-EDXにて組成(被覆層中の無機固体電解質由来のLiと空隙)が不連続に変化する箇所を被覆層の表面とした。なお、領域A、領域C、領域Bは同一直線上で測定した(1つの半径上)。
<Ratio of carbon atoms to lithium atoms C / Li>
The C / Li in each region of the coating layer of the synthesized composite electrode active material was measured as follows.
The composite electrode active material powder is pressed at 350 MPa to obtain composite electrode active material powder pellets, and the pellets are cut and used with an ion milling device (Hitachi Seisakusho, IM4000PLUS (trade name)) to accelerate voltage 3 kV and discharge voltage 1.5 V. It was cut out under the conditions of a treatment time of 4 hours and an argon gas flow rate of 0.1 ml / min. The cross section of the composite electrode active material was observed by SEM (Hitachi, MINISCOPE TM3030PLUS (trade name)) at a magnification of 5,000 times. For the measured values in each region, 10 composite electrode active materials were randomly selected, and for each composite electrode active material, the circumferential direction was at four locations with a central angle of 90 °, and the thickness direction of the composite electrode active material was The C / Li at one location was calculated near the center of each region, and the arithmetic mean value of the values of each region obtained from the 10 composite electrode active materials was adopted.
The active material contact surface is composed of SEM-EDX (Hitachi, Ltd., QUANTAX70 (trade name)) (Mn or Al derived from the positive electrode active material, Li derived from the inorganic solid electrolyte in the coating layer, or Si derived from the negative electrode active material. The portion where Sn and Li) derived from the inorganic solid electrolyte in the coating layer change discontinuously was defined as the contact surface between the active material and the coating layer. The surface of the coating layer was defined as a portion where the composition (Li and voids derived from the inorganic solid electrolyte in the coating layer) changed discontinuously with SEM-EDX. The area A, the area C, and the area B were measured on the same straight line (on one radius).
 全固体二次電池中で複合電極活物質は、被覆層の各領域におけるC/Liを維持していた。なお、全固体二次電池中での複合電極活物質の被覆層の各領域におけるC/Liは、全固体二次電池を分解して複合電極活物質を取り出し、取り出した複合電極活物質を用いて上記と同様にして測定した。 In the all-solid-state secondary battery, the composite electrode active material maintained C / Li in each region of the coating layer. For C / Li in each region of the coating layer of the composite electrode active material in the all-solid-state secondary battery, the composite electrode active material was taken out by disassembling the all-solid-state secondary battery, and the taken-out composite electrode active material was used. And measured in the same manner as above.
 上記合成した複合電極活物質の活物質に対する被覆層の被覆率は以下のようにして算出した。
 10個の複合電極活物質を無作為に選び、各複合電極活物質について、活物質接触部の周長Xと、被覆されていない部分の領域の長さsとを測定し、下記式から被覆率を算出して、10個の複合電極活物質から得られた値の算術平均値を採用した。
          被覆率(%)=100×(X-s)/X
The coverage of the coating layer on the active material of the composite electrode active material synthesized above was calculated as follows.
Ten composite electrode active materials were randomly selected, and for each composite electrode active material, the circumference X of the active material contact portion and the length s of the uncoated portion region were measured, and the composite electrode active material was coated from the following formula. The rate was calculated and the arithmetic mean value of the values obtained from the 10 composite electrode active materials was adopted.
Coverage (%) = 100 x (X-s) / X
 全固体二次電池中で複合電極活物質は、複合電極活物質の活物質に対する被覆層の被覆率を維持していた。なお、全固体二次電池中での複合電極活物質の活物質に対する被覆層の被覆率は、全固体二次電池を分解して複合電極活物質を取り出し、取り出した複合電極活物質を用いて上記と同様にして測定した。 In the all-solid-state secondary battery, the composite electrode active material maintained the coverage of the coating layer with respect to the active material of the composite electrode active material. The coverage of the coating layer on the active material of the composite electrode active material in the all-solid-state secondary battery is determined by disassembling the all-solid-state secondary battery, taking out the composite electrode active material, and using the taken-out composite electrode active material. The measurement was performed in the same manner as above.
 上記合成した複合電極活物質の被覆層の層厚は、10個の複合電極活物質を無作為に選び、各複合電極活物質について、無作為に40か所の活物質接触部と被覆部表面との最短距離を、上記と同様に断面を切り出しSEM(日立製作所、MINISCOPE TM3030PLUS(商品名))にて倍率×5000倍の画像から測定し、その算術平均値を採用した。 For the layer thickness of the coating layer of the synthesized composite electrode active material, 10 composite electrode active materials were randomly selected, and for each composite electrode active material, 40 active material contact portions and the coating portion surface were randomly selected. The shortest distance to and from was measured from an image with a magnification of × 5000 times by cutting out a cross section in the same manner as above and using an SEM (Hitachi Seisakusho, MINISCOPE TM3030PLUS (trade name)), and the arithmetic mean value was adopted.
 全固体二次電池中で複合電極活物質は、複合電極活物質の被覆層の層厚を維持していた。なお、全固体二次電池中での複合電極活物質の被覆層の各領域における層厚は、全固体二次電池を分解して複合電極活物質を取り出し、取り出した複合電極活物質を用いて上記と同様にして測定した。 In the all-solid-state secondary battery, the composite electrode active material maintained the layer thickness of the coating layer of the composite electrode active material. For the layer thickness in each region of the coating layer of the composite electrode active material in the all-solid-state secondary battery, the composite electrode active material was taken out by disassembling the all-solid-state secondary battery, and the taken-out composite electrode active material was used. The measurement was performed in the same manner as above.
<電池特性の評価(ハイレート特性試験)>
 上記で作製した全固体二次電池を用い、30℃の環境下、充電電流値0.13mA及び放電電流値0.13mAの条件で4.3V~3.0Vの充放電を1回行った(初期化した)。
 その後、ハイレート特性試験として、25℃の環境下、充放電電流値3.9mAの条件で4.3V~3.0Vの充放電を行った。
 初期化の放電時の放電容量(1)と4.3V~3.0Vの充放電の放電時の放電容量(2)とを測定し、下記式により放電容量維持率を測定し、この放電容量維持率を下記評価基準にあてはめハイレート特性を評価した。「E」以上が本試験の合格である。
<Evaluation of battery characteristics (high rate characteristic test)>
Using the all-solid-state secondary battery produced above, charging / discharging of 4.3 V to 3.0 V was performed once under the conditions of a charging current value of 0.13 mA and a discharge current value of 0.13 mA in an environment of 30 ° C. ( Initialized).
Then, as a high-rate characteristic test, charging / discharging was performed at 4.3 V to 3.0 V under the condition of a charge / discharge current value of 3.9 mA in an environment of 25 ° C.
The discharge capacity (1) at the time of initialization discharge and the discharge capacity (2) at the time of discharge of 4.3V to 3.0V are measured, and the discharge capacity retention rate is measured by the following formula, and this discharge capacity is measured. The high rate characteristics were evaluated by applying the maintenance rate to the following evaluation criteria. "E" or higher is the pass of this test.
放電容量維持率(%)=(放電容量(2)/放電容量(1))×100 Discharge capacity retention rate (%) = (Discharge capacity (2) / Discharge capacity (1)) x 100
-評価基準-
AA:70%以上80%未満
A:60%以上70%未満
B:50%以上60%未満
C:40%以上50%未満
D:30%以上40%未満
E:20%以上30%未満
F:15%以上20%未満
G:0%以上15%未満
-Evaluation criteria-
AA: 70% or more and less than 80% A: 60% or more and less than 70% B: 50% or more and less than 60% C: 40% or more and less than 50% D: 30% or more and less than 40% E: 20% or more and less than 30% F: 15% or more and less than 20% G: 0% or more and less than 15%
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<表の注>
No.1~30:複合電極活物質のNo.を示す。
No.1-1~1-30:全固体二次電池のNo.を示す。
SE:無機固体電解質
NMC:LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム)、豊島製作所社製、平均粒径5.0μm
NCA:LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム)、日本化学産業社製、平均粒径6.0μm
Si:Alfa Aesar社製、平均粒径3.0μm
Sn:Alfa Aesar社製、平均粒径3.5μm
LLZ:LiLaZr12、豊島製作所社製、平均粒径1.3μm
AB:アセチレンブラック、デンカ社製、平均粒径40nm、アスペクト比1.0
VGCF:気相成長炭素繊維、昭和電工社製、平均粒径1.2μm、アスペクト比11
CNT:カーボンナノチューブ、Alfa Aesar社製、平均粒径1μm、アスペクト比100
Li-435:商品名、デンカ社製アセチレンブラック、平均粒径23nm、アスペクト比1.2
HSBR:水添スチレンブタジエンゴム
<Note to table>
No. 1 to 30: No. 1 of the composite electrode active material. Is shown.
No. 1-1 to 1-30: No. 1 of the all-solid-state secondary battery. Is shown.
SE: Inorganic solid electrolyte NMC: LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide), manufactured by Toshima Manufacturing Co., Ltd., average particle size 5.0 μm
NCA: LiNi 0.85 Co 0.10 Al 0.05 O 2 (lithium nickel cobalt aluminate), manufactured by Nihon Kagaku Sangyo Co., Ltd., average particle size 6.0 μm
Si: Alfa Aesar, average particle size 3.0 μm
Sn: Made by Alfa Aesar, average particle size 3.5 μm
LLZ: Li 7 La 3 Zr 2 O 12 , manufactured by Toshima Manufacturing Co., Ltd., average particle size 1.3 μm
AB: Acetylene Black, manufactured by Denka, average particle size 40 nm, aspect ratio 1.0
VGCF: Vapor-grown carbon fiber, manufactured by Showa Denko, average particle size 1.2 μm, aspect ratio 11
CNT: Carbon nanotube, manufactured by Alfa Aesar, average particle size 1 μm, aspect ratio 100
Li-435: Product name, Denka acetylene black, average particle size 23 nm, aspect ratio 1.2
HSBR: Hydrogenated styrene-butadiene rubber
 表1から明らかなように、本発明の規定を満たさない複合電極活物質を用いた全固体二次電池はいずれもハイレート特性試験が不合格であった。
 これに対して、本発明の複合電極活物質を用いた全固体二次電池はいずれもハイレート特性試験が合格であった。また、例えば、全固体二次電池No.11の結果から、領域Bに存在する導電助剤が繊維状炭素を含むことで、電池性能がより向上することがわかる。
As is clear from Table 1, all the all-solid-state secondary batteries using the composite electrode active material that do not meet the provisions of the present invention failed the high-rate characteristic test.
On the other hand, all the all-solid-state secondary batteries using the composite electrode active material of the present invention passed the high-rate characteristic test. Further, for example, the all-solid-state secondary battery No. From the result of No. 11, it can be seen that the battery performance is further improved when the conductive auxiliary agent present in the region B contains fibrous carbon.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 Although the present invention has been described with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, and contrary to the spirit and scope of the invention set forth in the appended claims. I think that it should be widely interpreted without.
 本願は、2019年3月29日に日本国で特許出願された特願2019-067059に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2019-667059 filed in Japan on March 29, 2019, which is referred to herein and is described herein. Import as a part.
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
1 Negative electrode current collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part 10 All-solid-state secondary battery

Claims (15)

  1.  活物質と、当該活物質を被覆する被覆層とを有する複合電極活物質であって、
     前記被覆層が無機固体電解質及び導電助剤を含有し、
     前記被覆層に含まれるリチウム原子及び炭素原子が、原子数について下記式(I)で規定される関係を満たす、複合電極活物質。
                A1<B1   式(I)
     式中、A1は前記被覆層の活物質接触部から外側に向けて厚さ0.5μmの領域A中のリチウム原子数に対する炭素原子数の比C/Liを示し、B1は前記被覆層の表面から内側に向けて厚さ0.5μmの領域B中のリチウム原子数に対する炭素原子数の比C/Liを示す。ただし、B1は99/1以下である。
    A composite electrode active material having an active material and a coating layer covering the active material.
    The coating layer contains an inorganic solid electrolyte and a conductive auxiliary agent,
    A composite electrode active material in which lithium atoms and carbon atoms contained in the coating layer satisfy the relationship defined by the following formula (I) with respect to the number of atoms.
    A1 <B1 formula (I)
    In the formula, A1 represents the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region A having a thickness of 0.5 μm outward from the active material contact portion of the coating layer, and B1 is the surface of the coating layer. The ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region B having a thickness of 0.5 μm is shown from the inside to the inside. However, B1 is 99/1 or less.
  2.  前記領域AとBとの間の領域Cに含まれるリチウム原子及び炭素原子が、原子数について下記式(IIA)又は式(IIB)で規定される関係を満たす、請求項1に記載の複合電極活物質。
               A1≦C1<B1   式(IIA)
               A1<C1≦B1   式(IIB)
     式中、A1及びB1は、前記式(I)中のA1及びB1と同義である。C1は、前記領域C中のリチウム原子数に対する炭素原子数の比C/Liを示す。
    The composite electrode according to claim 1, wherein the lithium atom and the carbon atom contained in the region C between the regions A and B satisfy the relationship defined by the following formula (IIA) or formula (IIB) with respect to the number of atoms. Active material.
    A1 ≤ C1 <B1 equation (IIA)
    A1 <C1 ≤ B1 equation (IIB)
    In the formula, A1 and B1 are synonymous with A1 and B1 in the formula (I). C1 indicates the ratio C / Li of the number of carbon atoms to the number of lithium atoms in the region C.
  3.  前記導電助剤が繊維状炭素を含む、請求項1又は2に記載の複合電極活物質。 The composite electrode active material according to claim 1 or 2, wherein the conductive auxiliary agent contains fibrous carbon.
  4.  前記領域Bに存在する導電助剤が繊維状炭素を含む、請求項1~3のいずれか1項に記載の複合電極活物質。 The composite electrode active material according to any one of claims 1 to 3, wherein the conductive auxiliary agent present in the region B contains fibrous carbon.
  5.  前記B1が50/50~99/1である、請求項1~4のいずれか1項に記載の複合電極活物質。 The composite electrode active material according to any one of claims 1 to 4, wherein B1 is 50/50 to 99/1.
  6.  請求項1~5のいずれか1項に記載の複合電極活物質、及び分散媒を含む電極用組成物。 A composition for an electrode containing the composite electrode active material according to any one of claims 1 to 5 and a dispersion medium.
  7.  バインダーを含む、請求項6に記載の電極用組成物。 The electrode composition according to claim 6, which comprises a binder.
  8.  前記バインダーが粒子状である、請求項7に記載の電極用組成物。 The electrode composition according to claim 7, wherein the binder is in the form of particles.
  9.  請求項1~5のいずれか1項に記載の複合電極活物質を含む、全固体二次電池用電極シート。 An electrode sheet for an all-solid-state secondary battery containing the composite electrode active material according to any one of claims 1 to 5.
  10.  バインダーを含む、請求項9に記載の全固体二次電池用電極シート。 The electrode sheet for an all-solid-state secondary battery according to claim 9, which includes a binder.
  11.  前記バインダーが粒子状である、請求項10に記載の全固体二次電池用電極シート。 The electrode sheet for an all-solid-state secondary battery according to claim 10, wherein the binder is in the form of particles.
  12.  正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
     前記正極活物質層及び前記負極活物質層の少なくとも1つの層が、請求項9~11のいずれか1項に記載の全固体二次電池用電極シートで構成した層である全固体二次電池。
    An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.
    An all-solid-state secondary battery in which at least one layer of the positive electrode active material layer and the negative electrode active material layer is a layer composed of the electrode sheet for an all-solid-state secondary battery according to any one of claims 9 to 11. ..
  13.  請求項1~5のいずれか1項に記載の複合電極活物質の製造方法であって、
     下記工程(1)と1回又は複数回行う下記工程(2)とを有し、下記工程(1)と最後に行う下記工程(2)における無機固体電解質及び導電助剤の混合割合を変更して、前記式(I)で規定される関係を満たす被覆層を活物質の表面に形成する、複合電極活物質の製造方法。
     工程(1):活物質、無機固体電解質及び導電助剤を混合する工程
     工程(2):前記工程(1)で得られる混合物と、無機固体電解質及び導電助剤とを混合する工程
    The method for producing a composite electrode active material according to any one of claims 1 to 5.
    It has the following step (1) and the following step (2) to be performed once or multiple times, and the mixing ratio of the inorganic solid electrolyte and the conductive auxiliary agent in the following step (1) and the final step (2) is changed. A method for producing a composite electrode active material, wherein a coating layer satisfying the relationship defined by the formula (I) is formed on the surface of the active material.
    Step (1): Mixing the active material, the inorganic solid electrolyte and the conductive auxiliary agent Step (2): Mixing the mixture obtained in the above step (1) with the inorganic solid electrolyte and the conductive auxiliary agent.
  14.  請求項6~8のいずれか1項に記載の電極用組成物を製膜することを含む、全固体二次電池用電極シートの製造方法。 A method for producing an electrode sheet for an all-solid-state secondary battery, which comprises forming a film of the electrode composition according to any one of claims 6 to 8.
  15.  請求項14に記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。 A method for manufacturing an all-solid-state secondary battery, which manufactures an all-solid-state secondary battery through the manufacturing method according to claim 14.
PCT/JP2020/013311 2019-03-29 2020-03-25 Composite electrode active material, electrode composition, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery, and methods for manufacturing composite electrode active material, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery WO2020203545A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511863A JP7061728B2 (en) 2019-03-29 2020-03-25 Method for manufacturing composite electrode active material, electrode composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and composite electrode active material, electrode sheet for all-solid secondary battery and all-solid secondary battery.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067059 2019-03-29
JP2019067059 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203545A1 true WO2020203545A1 (en) 2020-10-08

Family

ID=72667759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013311 WO2020203545A1 (en) 2019-03-29 2020-03-25 Composite electrode active material, electrode composition, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery, and methods for manufacturing composite electrode active material, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery

Country Status (2)

Country Link
JP (1) JP7061728B2 (en)
WO (1) WO2020203545A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132303A1 (en) * 2022-01-04 2023-07-13 パナソニックホールディングス株式会社 Positive electrode material and battery
WO2023182513A1 (en) * 2022-03-25 2023-09-28 株式会社村田製作所 Solid-state battery package

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373643A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2003059492A (en) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
WO2012157046A1 (en) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 Electrode body, all-solid cell, and method for manufacturing coated active material
WO2013073214A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Electrolyte-coated positive electrode active material particles, all-solid-state battery, and production method for electrolyte-coated positive electrode active material particles
WO2013121642A1 (en) * 2012-02-17 2013-08-22 ソニー株式会社 Secondary cell, method for manufacturing secondary cell, electrode for secondary cell, and electronic device
JP2014216241A (en) * 2013-04-26 2014-11-17 住友大阪セメント株式会社 Electrode material, electrode, and lithium ion battery
JP2016066584A (en) * 2014-05-09 2016-04-28 ソニー株式会社 Electrode, method of producing the same, battery, and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373643A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2003059492A (en) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
WO2012157046A1 (en) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 Electrode body, all-solid cell, and method for manufacturing coated active material
WO2013073214A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Electrolyte-coated positive electrode active material particles, all-solid-state battery, and production method for electrolyte-coated positive electrode active material particles
WO2013121642A1 (en) * 2012-02-17 2013-08-22 ソニー株式会社 Secondary cell, method for manufacturing secondary cell, electrode for secondary cell, and electronic device
JP2014216241A (en) * 2013-04-26 2014-11-17 住友大阪セメント株式会社 Electrode material, electrode, and lithium ion battery
JP2016066584A (en) * 2014-05-09 2016-04-28 ソニー株式会社 Electrode, method of producing the same, battery, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132303A1 (en) * 2022-01-04 2023-07-13 パナソニックホールディングス株式会社 Positive electrode material and battery
WO2023182513A1 (en) * 2022-03-25 2023-09-28 株式会社村田製作所 Solid-state battery package

Also Published As

Publication number Publication date
JP7061728B2 (en) 2022-04-28
JPWO2020203545A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP6969004B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
KR102449641B1 (en) All-solid-state secondary battery and manufacturing method thereof
JP6893253B2 (en) A method for producing a solid electrolyte composition, a solid electrolyte-containing sheet, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery, and a solid electrolyte-containing sheet and an all-solid secondary battery.
JP6942810B2 (en) A method for producing a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid-state secondary battery, and a solid electrolyte-containing sheet and an all-solid-state secondary battery.
JP7177944B2 (en) Method for producing electrode composition, method for producing electrode sheet for all-solid secondary battery, and method for producing all-solid secondary battery
JP7165747B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
JP6948474B2 (en) Negative electrode sheet for all-solid-state secondary batteries and all-solid-state secondary batteries
JP7320062B2 (en) Composition containing inorganic solid electrolyte, sheet for all-solid secondary battery, electrode sheet for all-solid secondary battery and all-solid secondary battery, and method for producing sheet for all-solid secondary battery and all-solid secondary battery
WO2020196041A1 (en) Solid electrolyte composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP7064613B2 (en) Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery
JP6972374B2 (en) A method for manufacturing a solid electrolyte composition, an all-solid secondary battery sheet, an all-solid secondary battery electrode sheet and an all-solid secondary battery, and an all-solid secondary battery sheet and an all-solid secondary battery.
JPWO2019097903A1 (en) A method for producing a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid secondary battery, and a solid electrolyte-containing sheet and an all-solid secondary battery.
WO2020203545A1 (en) Composite electrode active material, electrode composition, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery, and methods for manufacturing composite electrode active material, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP6670641B2 (en) Electrode material, electrode sheet for all-solid secondary battery and all-solid secondary battery using the same, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
JP6899486B2 (en) Electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
JP7008080B2 (en) Method for manufacturing solid electrolyte composition, solid electrolyte-containing sheet and all-solid-state secondary battery, and solid electrolyte-containing sheet and all-solid-state secondary battery
WO2023054425A1 (en) Electrode composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and methods for producing electrode composition, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery
JP7448657B2 (en) All-solid-state secondary battery sheet and all-solid-state secondary battery manufacturing method, all-solid-state secondary battery sheet and all-solid-state secondary battery
JPWO2019203334A1 (en) A method for producing a solid electrolyte composition, an all-solid-state secondary battery sheet, and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet or an all-solid-state secondary battery.
JP7078801B2 (en) Manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery, as well as all-solid-state secondary battery sheet and all-solid-state secondary battery
JP7245847B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
WO2023054455A1 (en) Sheet for electrode, all-solid secondary battery, and methods for producing sheet for electrode, electrode sheet, and all-solid secondary battery
WO2021020031A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary batteries and all-solid-state secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511863

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20785096

Country of ref document: EP

Kind code of ref document: A1