WO2020196041A1 - Solid electrolyte composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery - Google Patents

Solid electrolyte composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery Download PDF

Info

Publication number
WO2020196041A1
WO2020196041A1 PCT/JP2020/011506 JP2020011506W WO2020196041A1 WO 2020196041 A1 WO2020196041 A1 WO 2020196041A1 JP 2020011506 W JP2020011506 W JP 2020011506W WO 2020196041 A1 WO2020196041 A1 WO 2020196041A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solid
polymer
solid electrolyte
secondary battery
Prior art date
Application number
PCT/JP2020/011506
Other languages
French (fr)
Japanese (ja)
Inventor
安田 浩司
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020217031954A priority Critical patent/KR20210134748A/en
Priority to JP2021509097A priority patent/JP7096426B2/en
Priority to CN202080023128.3A priority patent/CN113614960A/en
Publication of WO2020196041A1 publication Critical patent/WO2020196041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures

Definitions

  • the present invention relates to a solid electrolyte composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and a method for producing an all-solid-state secondary battery sheet and an all-solid-state secondary battery.
  • the negative electrode, the electrolyte, and the positive electrode are all made of solid, and the safety and reliability, which are the problems of the battery using the organic electrolytic solution, can be greatly improved. It is also said that it will be possible to extend the service life. Further, the all-solid-state secondary battery can have a structure in which electrodes and electrolytes are directly arranged side by side and arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolytic solution, and it is expected to be applied to an electric vehicle, a large storage battery, or the like.
  • any of the constituent layers is a binder composed of the inorganic solid electrolyte or active material and a specific polymer. It has been proposed to form with a material containing particles (binders).
  • Patent Document 1 describes (A) an inorganic solid electrolyte, (B) a polymer having a hydrocarbon polymer segment in the main chain, and the main chain containing at least one specific bond, and (C) a dispersion medium. A solid electrolyte composition containing and is described.
  • the material forming the constituent layer is excellent by dispersing the solid particles in a dispersion medium or the like. It is desirable to show good dispersibility. However, even if a material having good dispersibility is used, in general, in the constituent layer formed of solid particles, the interfacial contact state between the solid particles is insufficient and the interfacial resistance tends to be high. Further, if the binding property between the solid particles by the binder is weak, poor contact between the solid particles occurs.
  • the active material expands and contracts due to charging and discharging, which causes poor contact between the active material layer and the solid electrolyte layer. Further, if the binding property between the solid particles and the current collector is weak, poor contact between the active material layer and the current collector is also caused. When these poor contacts occur, the resistance of the all-solid-state secondary battery increases (battery performance deteriorates).
  • the inorganic solid electrolyte composition described in Patent Document 1 enhances the binding property between solid particles and the binding property between a current collector and solid particles (in addition, the binding property of solid particles may be referred to). , It is possible to impart excellent cycle characteristics to an all-solid secondary battery. However, in recent years, research and development for improving the performance and practical application of electric vehicles have progressed rapidly, and the battery performance required for all-solid-state secondary batteries has also increased. Therefore, there is a demand for the development of an all-solid-state secondary battery that exhibits more excellent battery performance by further improving the binding property of solid particles.
  • the present invention is a solid electrolyte composition exhibiting excellent dispersibility, and by using it as a material constituting a constituent layer of an all-solid secondary battery, the binding property of solid particles is enhanced to form an all-solid secondary battery.
  • An object of the present invention is to provide a solid electrolyte composition capable of imparting excellent battery performance.
  • the present invention also provides a sheet for an all-solid-state secondary battery and an all-solid-state secondary battery, and a sheet for an all-solid-state secondary battery and a method for producing the all-solid-state secondary battery using this solid electrolyte composition. That is the issue.
  • the present inventors have derived from a cyclic compound having an ester bond with a constituent component derived from a hydrocarbon polymer having at least two hydroxy groups or amino groups, or a compound having at least two carboxy groups.
  • a polymer segment having a constituent component and a polymer having a specific bond introduced into the main chain in combination with an inorganic solid electrolyte and a dispersion medium the polymer itself is highly dispersed in the dispersion medium, which is excellent. It has been found that a solid electrolyte composition showing dispersibility can be prepared.
  • this solid electrolyte composition is a constituent layer in which other solid particles including an inorganic solid electrolyte are firmly bonded to each other, and when an active material layer is formed on the surface of the current collector, the solid particles and the current collector are firmly bonded to each other.
  • This solid electrolyte composition has been further studied based on these findings and has been completed.
  • ⁇ 2> The solid electrolyte composition according to ⁇ 1>, wherein the polymer segment contains at least one of a polymer segment represented by the following formula (1) and a polymer segment represented by the formula (2).
  • Ra represents a hydrocarbon polymer chain in the above hydrocarbon polymer.
  • X a is an oxygen atom or -NH-.
  • R 1 represents an aliphatic hydrocarbon group having 3 to 15 carbon atoms.
  • R 2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • n1 is 1 to 100 and n2 is 1 to 10.
  • ⁇ 3> The solid electrolyte composition according to ⁇ 1> or ⁇ 2>, wherein the cyclic compound having an ester bond or the compound having at least two carboxy groups contains a lactone compound.
  • ⁇ 4> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 3>, wherein the polymer is a particulate polymer having an average particle size of 10 to 1000 nm.
  • ⁇ 5> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the polymer segment in the polymer is 5 to 80% by mass.
  • ⁇ 6> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 5>, wherein the polymer comprises at least one of the polymer represented by the following formula (3) and the polymer represented by the formula (4). object.
  • Ra represents a hydrocarbon polymer chain in the above hydrocarbon polymer.
  • X a is an oxygen atom or -NH-.
  • R 1 represents an aliphatic hydrocarbon group having 3 to 15 carbon atoms.
  • R 2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • n1 is 1 to 100 and n2 is 1 to 10.
  • R b1 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aliphatic hydrocarbon group having 1 to 15 carbon atoms, or a group formed by combining two or more of these groups.
  • R b2 represents an alkylene group having 2 to 12 carbon atoms.
  • R b3 represents an alkylene group having at least one functional group selected from the following functional group group (II).
  • R b4 represents an alkylene group having at least one functional group selected from the following functional group group (III).
  • R b5 is a divalent chain having a number average molecular weight of 100 or more, and represents a polyalkylene oxide chain, a polycarbonate chain, a polyester chain or a silicone chain, or a chain formed by combining two or more of these chains.
  • X b2 , X b3 , X b4 and X b5 represent an oxygen atom or -NH-.
  • a, b, c, d, e and f are the molar ratios of each structural component, a is 0.1 to 30 mol%, b is 40 to 60 mol%, and c and e are 0 to 30 mol%, respectively.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.
  • the all-solid secondary layer in which at least one layer of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is a layer composed of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 10> above.
  • battery. ⁇ 13> A method for producing a sheet for an all-solid secondary battery, which forms a film of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 10> above.
  • ⁇ 14> A method for manufacturing an all-solid-state secondary battery, wherein the all-solid-state secondary battery is manufactured through the manufacturing method according to ⁇ 13> above.
  • the solid electrolyte composition of the present invention has excellent dispersibility and can form a sheet or a constituent layer having strong binding properties of solid particles.
  • the sheet for an all-solid-state secondary battery of the present invention exhibits strong binding properties of solid particles, and the all-solid-state secondary battery of the present invention exhibits excellent battery performance.
  • the method for manufacturing the all-solid-state secondary battery sheet and the all-solid-state secondary battery of the present invention can produce the all-solid-state secondary battery sheet and the all-solid-state secondary battery of the present invention exhibiting the above-mentioned excellent characteristics. it can.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the indication of a compound is used to mean that the compound itself, its salt, and its ion are included. Further, it is meant to include a derivative in which a part is changed such as introducing a substituent within a range that does not impair the effect of the present invention.
  • a substituent, a linking group, etc. hereinafter, referred to as a substituent, etc. for which substitution or non-substitution is not specified may mean that the group may have an appropriate substituent.
  • this YYY group includes a mode having a substituent in addition to a mode having no substituent.
  • substituents include, for example, the substituent T described later.
  • the substituents or the like may be the same or different from each other. It means good. Further, even if it is not particularly specified, it means that when a plurality of substituents or the like are adjacent to each other, they may be connected to each other or condensed to form a ring.
  • the solid electrolyte composition of the present invention (also referred to as an inorganic solid electrolyte-containing composition) is an inorganic solid electrolyte having conductivity of ions of a metal belonging to Group 1 or Group 2 of the periodic table, a polymer, and a dispersion medium. And contains.
  • the solid electrolyte composition of the present invention is preferably a slurry in which the inorganic solid electrolyte and the polymer are dispersed in a dispersion medium.
  • the polymer contained in the solid electrolyte layer (hereinafter, may be referred to as a specific polymer) contains a specific polymer segment described later in the main chain and has a specific bond.
  • This polymer has excellent dispersibility in itself in the solid electrolyte composition (dispersion medium), and functions as a dispersant for dispersing solid particles with high dispersibility. Further, this polymer binds solid particles (for example, inorganic solid electrolytes to each other, inorganic solid electrolytes to active substances, active substances to each other) in a sheet or a constituent layer formed of a solid electrolyte composition, and further. It also functions as a binder that binds the current collector and solid particles.
  • the solid electrolyte composition of the present invention is capable of highly dispersing solid particles and exhibits excellent dispersibility.
  • the specific polymer contained in the solid electrolyte composition exhibits high dispersibility with respect to the dispersion medium.
  • the dispersion medium is a hydrophobic dispersion medium described later, a plurality of molecules of a specific polymer are aggregated into particles. At this time, it is considered that the dispersion stability of the particles is enhanced by the polymer segments incorporated in the main chain of each polymer located outside the particles and sterically repelling each other.
  • the polymer segment is a high molecular weight segment containing a specific hydrocarbon polymer, a cyclic compound, or the like as a constituent component, and the steric repulsion effect in the dispersion medium is further improved. Conceivable. Therefore, the solid particles adsorbed on the surface of the specific polymer can be dispersed highly and stably with respect to the dispersion medium, and the solid electrolyte composition of the present invention exhibits excellent dispersibility. In addition, the solid electrolyte composition of the present invention can firmly bind solid particles when formed into a sheet or a constituent layer.
  • the solid electrolyte composition of the present invention can bind solid particles while suppressing the formation of aggregates of the specific polymer, which has high dispersibility of the specific polymer and can be a resistance component.
  • the specific polymer exhibits high dispersibility, it is possible to maintain high dispersibility of solid particles and the like with respect to the dispersion medium when forming the sheet or the constituent layer (excellent dispersion stability of the solid electrolyte composition). .. Therefore, it is considered that the solid particles are excellently bound to the sheet or the constituent layer and contribute to high battery performance.
  • the solid electrolyte composition of the present invention can be preferably used as a molding material for a sheet for an all-solid secondary battery or a solid electrolyte layer or an active material layer for an all-solid secondary battery.
  • the solid electrolyte composition of the present invention is not particularly limited, but the water content (also referred to as water content) is preferably 500 ppm or less, more preferably 200 ppm or less, and further preferably 100 ppm or less. It is preferably 50 ppm or less, and particularly preferably 50 ppm or less.
  • the water content indicates the amount of water contained in the solid electrolyte composition (mass ratio to the solid electrolyte composition). Specifically, the water content is filtered through a 0.02 ⁇ m membrane filter, and Karl Fischer titration is used. It shall be the measured value.
  • the solid electrolyte composition of the present invention contains an inorganic solid electrolyte.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polymer electrolyte typified by polyethylene oxide (PEO), organic typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from electrolyte salts).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is clearly distinguished from the electrolyte or the inorganic electrolyte salts (LiPF 6 , LiBF 4 , Lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) that are dissociated or liberated into cations and anions in the polymer. Will be done.
  • the inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally one having no electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iV) a hydride-based solid electrolyte.
  • a sulfide-based inorganic solid electrolyte is preferable from the viewpoint that a better interface can be formed between the and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte contains sulfur atoms, has ionic conductivity of metals belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (S1).
  • L a1 M b1 P c1 S d1 A e1 (S1)
  • L represents an element selected from Li, Na and K, with Li being preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, more preferably 0 to 1.
  • the d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystal (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized.
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
  • Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2 ).
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ It is 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 -4 S / cm or more, and more preferably 1 ⁇ 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2- LiCl, Li 2 S-P 2 S 5- SnS, Li 2 S-P 2 S 5- Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2 , Li 2 S-Ge
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 -6 S / cm or more, more preferably 5 ⁇ 10 -6 S / cm or more, and 1 ⁇ 10 -5 S / cm or more. It is particularly preferable that it is / cm or more.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7.
  • LLT Li xb Layb Zr zb M bb mb Onb
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn.
  • Xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20. Satisfies.); Li xc Byc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5 , Yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, nc satisfies 0 ⁇ nc ⁇ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si.
  • Li xf Si yf O zf (xf satisfies 1 ⁇ xf ⁇ 5, yf satisfies 0 ⁇ yf ⁇ 3 , zf satisfies 1 ⁇ zf ⁇ 10);.
  • Li xg S yg O zg (xg satisfies 1 ⁇ xg ⁇ 3, yg satisfies 0 ⁇ yg ⁇ 2, zg satisfies 1 ⁇ zg ⁇ 10.
  • Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
  • Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of oxygen of lithium phosphate is replaced with nitrogen
  • LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and one or more elements selected from Au) and the like.
  • LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C and Ga) and the like can also be preferably used.
  • Halide-based inorganic solid electrolyte contains halogen atoms, has the conductivity of ions of metals belonging to Group 1 or Group 2 of the Periodic Table, and has electrons. Insulating compounds are preferred.
  • the halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • the hydride-based inorganic solid electrolyte contains a hydrogen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. A compound having a property is preferable.
  • the hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, and 3 LiBH 4- LiCl.
  • the inorganic solid electrolyte is preferably particles.
  • the particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the particle size of the inorganic solid electrolyte is measured by the following procedure. Inorganic solid electrolyte particles are prepared by diluting 1% by mass of a dispersion in a 20 mL sample bottle with water (heptane in the case of a water-unstable substance).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test.
  • data was captured 50 times using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA) at a temperature of 25 ° C. using a measuring quartz cell. Obtain the volume average particle size.
  • LA-920 trade name, manufactured by HORIBA
  • the inorganic solid electrolyte may contain one kind or two or more kinds.
  • the mass (mg) (grain amount) of the inorganic solid electrolyte per unit area (cm 2 ) of the solid electrolyte layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the amount of the inorganic solid electrolyte is preferably such that the total amount of the active material and the inorganic solid electrolyte is in the above range.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is preferably 50% by mass or more, preferably 70% by mass or more, based on 100% by mass of the solid content, in terms of dispersibility, reduction of interfacial resistance, and binding property.
  • the above is more preferable, and 90% by mass or more is particularly preferable.
  • the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is preferably in the above range of the total content of the active material and the inorganic solid electrolyte.
  • the solid content refers to a component that does not volatilize or evaporate and disappear when the solid electrolyte composition is dried at 170 ° C. for 6 hours under an atmospheric pressure of 1 mmHg and a nitrogen atmosphere. Typically, it refers to a component other than the dispersion medium described later.
  • the specific polymer contained in the solid electrolyte composition of the present invention is a polymer having a polymer segment described later as a constituent component in the main chain and at least one bond selected from the following bond group (I). .. As mentioned above, this particular polymer functions as a binder, more preferably a dispersant. In the solid electrolyte composition of the present invention, the specific polymer may be dissolved in a dispersion medium and contained, but is preferably contained as particles.
  • the main chain of a polymer means a linear molecular chain in which all other molecular chains constituting the polymer can be regarded as a branched chain or a pendant chain with respect to the main chain. Although it depends on the mass average molecular weight of the molecular chain regarded as a branched chain or a pendant chain, the longest chain among the molecular chains constituting the polymer is typically the main chain. However, the functional group of the polymer terminal is not included in the main chain.
  • the bond selected from the bond group (I) is not particularly limited in its introduction position as long as it is contained in the main chain of the polymer, and is included as a bond connecting different constituent components constituting the polymer. , Any of the embodiments contained in the constituents is acceptable, but the embodiment contained as a bond connecting different constituent units is preferable.
  • the ester bond in the bond group (I) means a bond different from the ester bond present in the polymer segment.
  • the bond selected from the above bond group (I) of the specific polymer is preferably an ester bond, an amide bond, a urethane bond, or a urea bond, and more preferably a urethane bond.
  • the imide bond, the ether bond and the carbonate bond are preferably incorporated into the main chain in combination with at least one of an ester bond, an amide bond, a urethane bond and a urea bond.
  • the number of types of the above-mentioned bonds contained in the main chain is not particularly limited, and is preferably 1 to 6 and more preferably 1 to 4. Further, the number of the bonds possessed by the main chain varies depending on the mass average molecular weight, properties, etc. of the polymer, and is not unique and is appropriately determined.
  • Specific polymers having a bond selected from the bond group (I) in the main chain include polyester, polyamide, polyurethane, polyurea, polyimide, polyether and polycarbonate polymers, or copolymers thereof. ..
  • the copolymer may be a block copolymer having each of the above polymers as a segment, or a random copolymer in which each component constituting two or more of the above polymers is randomly bonded.
  • the specific polymer is preferably polyurethane, polyester, polyamide, polyether or polyurea, or a copolymer of two or more of these (sequentially polymerized polymer), and has an ester bond, an imide bond, an ether bond and a carbonate bond in the main chain.
  • Polyurethane, polyester, polyamide or polyurea or a copolymer of two or more of these is preferable.
  • the particular polymer has at least one polymer segment in the main chain as a constituent. Details of the polymer segment will be described later.
  • the number of types of polymer segments contained in the main chain is not particularly limited, but 1 to 3 types are preferable, and 1 type is more preferable.
  • the content of the polymer segment in the specific polymer is not particularly limited, and is appropriately set in consideration of dispersibility and the like.
  • the content (mass%) of the polymer segment is preferably 5 to 80% by mass, preferably 8 to 60%, in terms of the dispersibility and binding property of the solid particles and the battery performance of the solid secondary battery. It is more preferably 10 to 40% by mass, more preferably 10 to 30% by mass, and particularly preferably 10 to 30% by mass.
  • the value of "a (molar ratio)" in the formulas (3) and (4) described later can be applied regardless of the above content (mass%). ..
  • the particular polymer preferably has a functional group for enhancing the wettability or adsorptivity of the solid particles to the surface.
  • the functional group include a functional group that exhibits an interaction such as a hydrogen bond on the surface of the solid particle and a functional group that can form a chemical bond with a group existing on the surface of the solid particle.
  • the following functional group is used. It is more preferable to have at least one functional group selected from group (II).
  • the sulfonic acid group and the phosphoric acid group may be salts thereof, and examples thereof include sodium salts and calcium salts.
  • the alkoxysilyl group may be a silyl group in which the Si atom is substituted with at least one alkoxy group (preferably having 1 to 12 carbon atoms), and other substituents on the Si atom include an alkyl group and an aryl. The group etc. can be mentioned.
  • the alkoxysilyl group for example, the description of the alkoxysilyl group in the substituent T described later can be preferably applied.
  • the group having a condensed ring structure of 3 or more rings is preferably a group having a cholesterol ring structure or a group having a condensed ring structure of 3 or more aromatic rings, and a cholesterol residue or a pyrenyl group is more preferable.
  • the specific polymer has a functional group selected from the functional group group (II) in the constituent components other than the polymer segment.
  • the content of the functional group selected from the functional group group (II) in the specific polymer is not particularly limited, but the functional group selected from the functional group group (II) among all the constituent components constituting the specific polymer is not particularly limited.
  • the proportion of the constituent components having a group is preferably 0 to 50 mol%, preferably 0 to 49 mol%, more preferably 0.1 to 40 mol%, further preferably 1 to 30 mol%, and 3 to 25 mol%. Is particularly preferable.
  • the content on a mass basis includes the same range as the content of the component having the alkylene group R b3 described later.
  • the specific polymer has a functional group (hereinafter, also referred to as a crosslinkable functional group) capable of forming a crosslinked structure by a radical polymerization reaction, a cationic polymerization reaction or an anionic polymerization reaction.
  • a crosslinkable functional group capable of forming a crosslinked structure by a radical polymerization reaction, a cationic polymerization reaction or an anionic polymerization reaction.
  • the crosslinkable functional groups By reacting the crosslinkable functional groups with each other to form a bond, the specific polymer can form a crosslinked structure within the polymer particles or between the polymer particles, and the strength can be improved.
  • the crosslinkable functional group a group having a carbon-carbon unsaturated bond and / or a cyclic ether group is preferable.
  • the group having a carbon-carbon unsaturated bond is a group capable of forming a crosslinked structure by a radical polymerization reaction (that is, a group having a polymerizable carbon-carbon unsaturated bond), and specifically, an alkenyl group.
  • the number of carbon atoms is preferably 2 to 12, more preferably 2 to 8
  • the alkynyl group (the number of carbon atoms is preferably 2 to 12, more preferably 2 to 8)
  • the acryloyl group and the methacryloyl group are preferable. More preferably, a vinyl group, an ethynyl group, an acryloyl group, a methacryloyl group and a 2-trifluoromethylpropenoyl group are mentioned.
  • the cyclic ether group is a group capable of forming a crosslinked structure by a cationic polymerization reaction, and specific examples thereof include an epoxy group and an oxetanyl group. That is, it is preferable that the specific polymer has at least one functional group selected from the following functional group group (III).
  • the specific polymer preferably has the crosslinkable functional group as a constituent component other than the polymer segment.
  • a crosslinkable functional group composed of a carbon atom and a hydrogen atom for example, a vinyl group and a propenyl group
  • the content of the crosslinkable functional group in the specific polymer is not particularly limited, but the ratio of the component having the crosslinkable functional group to all the constituent components constituting the specific polymer is 0 to 0 to.
  • mol% is preferable, 0 to 25 mol% is more preferable, 0 to 20 mol% is further preferable, and 0 to 10 mol% is particularly preferable.
  • Examples of the content on a mass basis include the same range as the content of the constituent component having the alkylene group R b4, which will be described later.
  • the specific polymer having the crosslinkable functional group includes both a form in which the crosslinkable functional group is not crosslinked and a form in which these functional groups are already crosslinked.
  • a polymerization initiator (radical, cation or anionic polymerization initiator) corresponding to each crosslinkable functional group is contained in the solid electrolyte composition of the present invention, and these are polymerized.
  • the reaction may be carried out by an initiator or by a redox reaction during battery operation.
  • the radical polymerization initiator may be either a thermal radical polymerization initiator that is cleaved by heat to generate a starting radical, or a photoradical polymerization initiator that generates a starting radical by light, electron beam, or radiation.
  • commonly used polymerization initiators can be used without particular limitation.
  • Polymer segment This polymer segment condenses a hydrocarbon polymer having a number average molecular weight of 500 or more having at least two hydroxy groups or amino groups described later and a cyclic compound having an ester bond or a compound having at least two carboxy groups described later. It is a segment (component) derived from a polymer obtained by a reaction (polycondensation reaction). This polymer is formed at both ends of the segment by a combination of a group of the hydrocarbon polymer and a cyclic compound having an ester bond (referred to as a cyclic ester compound) or a compound having at least two carboxy groups (carboxylic acid compound). It has a hydroxyl group or an amino group.
  • polyester polyol contains polyester polyol, polyester polyamine, polyamide polyol and polyamide polyamine, and polyester polyol is preferable.
  • the polyester polyol has at least two or more ester bonds and two or more hydroxyl groups in the molecule, and preferably has hydroxyl groups at both ends of the main chain.
  • Polyester polyamines have at least two or more ester bonds and two or more amino groups in the molecule, and preferably have amino groups at both ends of the main chain.
  • the polyamide polyol has at least two or more amide bonds and two or more hydroxyl groups in its molecule, and preferably has hydroxyl groups at both ends of the main chain.
  • Polyamide polyamines have at least two or more amide bonds and two or more amino groups in the molecule, and preferably have amino groups at both ends of the main chain.
  • the polymer segment has the above-mentioned structure in which the hydrogen atoms of the hydroxyl groups or amino groups at both ends of the polymer chain are removed (a structure in which an oxygen or nitrogen atom is a bond with the main chain), which will be described later. It is preferable to include at least one of the polymer segment represented by the formula (1) and the polymer segment represented by the formula (2), and it is more preferable to contain at least one segment represented by the formula (1) described later. ..
  • polymer segment consisting of a hydrocarbon polymer and a cyclic ester compound examples include polyester polyol and polyamide polyol, and the number of ester bonds, amide bonds, hydroxyl groups and the like in the polymer is not particularly limited. However, 2 or more is preferable. Of these, polyester diol is preferable.
  • the bonding mode between the hydrocarbon polymer and the cyclic ester compound is not particularly limited, but when the hydrocarbon polymer and the cyclic ester compound are bifunctional, they are preferably of the BAB type.
  • A is a constituent component derived from a hydrocarbon polymer
  • B is a constituent component derived from a cyclic ester compound. More preferably, it is a polymer in which a ring-opened product of a cyclic ester compound is bonded to each of the two hydroxy groups or amino groups of a hydrocarbon polymer having two hydroxy groups or amino groups via an ester group.
  • the ring-opening compound of the cyclic ester compound bonded to the hydroxy group or the amino group of the hydrocarbon polymer may be a single molecule ring-opening compound, but is usually a ring-opening polymer of this cyclic compound.
  • the average degree of polymerization of the ring-opening polymer is not particularly limited and is appropriately determined according to the molecular weight and the like, and is synonymous with n1 of the following formula (1), for example.
  • the polymer segment composed of the hydrocarbon polymer and the cyclic ester compound is preferably a segment represented by the following formula (1).
  • Ra represents a hydrocarbon polymer chain in a hydrocarbon polymer having at least two hydroxy groups or amino groups and having a number average molecular weight of 500 or more.
  • the hydrocarbon polymer chain has the same meaning as the hydrocarbon polymer chain constituting the hydrocarbon polymer described later.
  • X a are each an atom derived from a hydroxy group or an amino group the hydrocarbon polymer has, an oxygen atom or -NH-. However, the two X a are the same. It is preferable that X a is an oxygen atom (the segment represented by the formula (1) is a polyester polyol segment).
  • Each of R 1 represents an aliphatic hydrocarbon group having 3 to 15 carbon atoms, and an aliphatic hydrocarbon group having 4 to 10 carbon atoms is preferable.
  • the aliphatic hydrocarbon group may be an unsaturated aliphatic hydrocarbon group, but a saturated aliphatic hydrocarbon group (alkylene group) is preferable.
  • Two of R 1 in the formula may be the same or different, but are preferably the same.
  • the number of carbon atoms in R 1 means the minimum number of carbon atoms connecting the oxygen atoms and the carbonyl carbon atom to which R 1 is attached.
  • Each of Ra and R 1 may have a substituent, and examples thereof include a substituent T described later. Preferred substituents of R 1 include alkyl groups.
  • n1 shows a number average degree of polymerization and can improve dispersibility, binding property and battery performance in a well-balanced manner, and is 1 to 100, preferably 1 to 50, and more preferably 1 to 25.
  • the two n1s may be the same or different.
  • the polymer constituting the polymer segment composed of the hydrocarbon polymer and the carboxylic acid compound is a polyester polyol and a polyamide polyamine, and the number of ester bonds, amide bonds, hydroxyl groups and amino groups in the polymer is not particularly limited. 2 or more is preferable. Among them, polyester diol and polyamide diamine are preferable, and diester diol and diamide diamine are preferable.
  • the bonding mode between the hydrocarbon polymer and the carboxylic acid compound is not particularly limited, but when the hydrocarbon polymer and the carboxylic acid compound are bifunctional, the structure is usually (AB) xA type.
  • A is a constituent component derived from a hydrocarbon polymer
  • B is a constituent component derived from a carboxylic acid compound.
  • x is an integer of 1 or more, and the upper limit is appropriately set according to the molecular weight and the like.
  • x is 1, it is an ABA-type diesterdiol or polyamide diamine in which one molecule of a hydrocarbon polymer is bonded to each of the two carboxy groups of the carboxylic acid compound.
  • the polymer segment composed of the hydrocarbon polymer and the carboxylic acid compound is preferably a segment represented by the following formula (2).
  • Ra represents a hydrocarbon polymer chain in a hydrocarbon polymer having at least two hydroxy groups or amino groups and having a number average molecular weight of 500 or more, and R in the formula (1). It is synonymous with a.
  • X a are each an atom derived from a hydroxy group or an amino group the hydrocarbon polymer has, an oxygen atom or -NH-. However, two X a binding to one R a are the same. It is preferable that X a is an oxygen atom (the segment represented by the formula (2) is a polyester polyol segment) or -NH- (the segment represented by the formula (2) is a polyamide polyamine segment). Is also more preferably an oxygen atom.
  • R 2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and an aliphatic hydrocarbon group having 1 to 20 carbon atoms is preferable.
  • the aromatic hydrocarbon group having 6 to 20 carbon atoms is not particularly limited, and the carbon number thereof is as described in the aromatic dicarboxylic acid compound described later.
  • Examples of the aromatic hydrocarbon group include an aromatic residue obtained by removing each hydroxy group from the two carboxy groups from the aromatic dicarboxylic acid compound described later in the aromatic dicarboxylic acid compound.
  • the aliphatic hydrocarbon group having 1 to 20 carbon atoms may be an unsaturated aliphatic hydrocarbon group, but a saturated aliphatic hydrocarbon group (alkylene group) is preferable.
  • the carbon number is as described in the carboxylic acid compound described later.
  • Examples of the aliphatic hydrocarbon group include an aliphatic obtained by removing each hydroxy group from the two carboxy groups from the aliphatic dicarboxylic acid compound described in the carboxylic acid compound described later.
  • the number of carbon atoms in R 2 means the minimum number of carbon atoms connecting the two carbonyl carbon atoms to which R 2 is attached.
  • Each of Ra and R 2 may have a substituent, and examples thereof include a substituent T described later.
  • Preferred substituents of R 2 include a carbonyl group, a sulfonic acid group, a phosphoric acid group, an ether group (alkoxy group, aryloxy group, heterocyclic oxy group) and a halogen atom.
  • n2 indicates a number average degree of polymerization, which is 1 to 10, preferably 1 to 5, and more preferably 1 to 3.
  • the above-mentioned polymer segment may have a constituent component derived from a hydrocarbon polymer having at least two hydroxy groups or amino groups and a constituent component derived from a cyclic ester compound or a carboxylic acid compound, both of which are used.
  • the constituents may be one type or two or more types, respectively.
  • the polymer segment may have components other than the above two components, but it is preferably a segment composed of both of the above components.
  • the affinity for the dispersion medium described later is adjusted (enhanced). be able to. Further increasing the affinity for the dispersion medium can be expected to further improve the dispersibility of a specific polymer in the solid electrolyte composition, and realize the binding property of solid particles and the battery performance of an all-solid secondary battery at a higher level. it can.
  • the number average molecular weight of the polymer segment is not particularly limited, and is preferably more than 500, more preferably 1500 or more, and further preferably 3000 or more.
  • the upper limit is not particularly limited, and is preferably 100,000 or less, more preferably 30,000 or less, and further preferably 10,000 or less.
  • the number average molecular weight can be measured as a standard polystyrene-equivalent number average molecular weight in the same manner as the mass average molecular weight of a specific polymer.
  • a component derived from a hydrocarbon polymer having at least two hydroxy groups or amino groups and having a number average molecular weight of 500 or more is a component constituting the polymer segment.
  • a constituent component formed by a hydrocarbon polymer having at least two hydroxy groups or amino groups and having a number average molecular weight of 500 or more, which is formed by a condensation reaction with a cyclic ester compound or a carboxylic acid compound described later. is there.
  • This constituent component is a residue obtained by removing a hydrogen atom from the hydroxy group or amino group of the above hydrocarbon polymer, and is "-X a- R a- X a- " in the above formulas (1) and (2). "(X a and Ra are as described above).
  • the hydrocarbon polymer forming this constituent has at least two hydroxy groups or at least two amino groups, and preferably has at least two hydroxy groups.
  • the number of hydroxy groups or amino groups contained in the hydrocarbon polymer is not particularly limited, but is preferably 2 to 6, and more preferably 2.
  • the hydrocarbon polymer may have a hydroxy group or an amino group at any position in the main chain, but it is preferable to have them at both ends.
  • This hydrocarbon polymer is a polymer having at least two hydroxy groups or amino groups in the polymer chain of a hydrocarbon polymer obtained by polymerizing (at least two) polymerizable hydrocarbons.
  • This hydrocarbon polymer is an oligomer or polymer composed of carbon atoms and hydrogen atoms, and the number of carbon atoms constituting the hydrocarbon polymer is preferably 30 or more, more preferably 50 or more.
  • the upper limit of the number of carbon atoms constituting the hydrocarbon polymer is not particularly limited, and can be, for example, 3000.
  • the hydrocarbon polymer is preferably a chain (hydrocarbon polymer chain) composed of an aliphatic hydrocarbon whose main chain satisfies the above-mentioned number of carbon atoms, and is preferably an aliphatic saturated hydrocarbon or an aliphatic unsaturated. More preferably, it is a chain made of a polymer (preferably an elastomer) composed of hydrocarbons.
  • the hydrocarbon polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain.
  • diene polymer examples include a styrene-butadiene copolymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer, and ethylene-.
  • IIR butyl rubber
  • non-diene polymer examples include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen-reduced products of the diene polymer.
  • the number average molecular weight of the hydrocarbon polymer having at least two hydroxy groups or amino groups is 500 or more.
  • the number average molecular weight of this polymer is 500 or more, it has an effect of being excellent in its own dispersibility and functioning as a dispersant for dispersing solid particles with high dispersibility.
  • the number average molecular weight is preferably 1000 or more, and more preferably 1500 or more, in that this effect can be further enhanced.
  • the upper limit is not particularly limited, but is preferably less than 100,000, more preferably less than 30,000, and even more preferably less than 10,000.
  • the number average molecular weight can be measured as a standard polystyrene-equivalent number average molecular weight in the same manner as the mass average molecular weight of a specific polymer.
  • hydrocarbon polymers having a hydroxy group or an amino group examples include NISSO-PB series (manufactured by Nippon Soda Co., Ltd.), Claysol series (manufactured by Tomoe Kosan Co., Ltd.), and PolyVEST-HT series (manufactured by Idemitsu Kosan) under the trade names.
  • Poly-bd series manufactured by Idemitsu Kosan Co., Ltd.
  • poly-ip series manufactured by Idemitsu Kosan Co., Ltd.
  • EPOL manufactured by Idemitsu Kosan Co., Ltd.
  • Polytail series manufactured by Mitsubishi Chemical Corporation
  • This component (also referred to as an acid component) is a component that constitutes the polymer segment, and the cyclic ester compound or the carboxylic acid compound has at least two hydroxy groups or amino groups as described above, and is number average. It is a constituent component formed by a condensation reaction with a hydrocarbon polymer having a molecular weight of 500 or more.
  • This acid component is a ring-opened body of the cyclic ester compound or a residue obtained by removing the hydroxy group from the carboxy group of the carboxylic acid compound, and is "-CO-R 1- O-" in the above formula (1).
  • the cyclic ester compound may be a compound having a cyclic structure containing at least one ester bond, and usually a compound having a cyclic structure containing one ester bond (lactone compound) is preferable.
  • lactone compound is not particularly limited, and examples thereof include an aliphatic lactone compound and an aromatic lactone compound, and an aliphatic lactone compound is preferable.
  • the aliphatic lactone compound include compounds having a cyclic structure consisting of an ester bond and an aliphatic group having 3 to 15 carbon atoms (preferably R 1 of the above formula (1)).
  • ⁇ -caprolactone 4-methylcaprolactone, 3,5,5-trimethylcaprolactone, 3,3,5-trimethylcaprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valero
  • lactone and enant lactone examples thereof include lactone and enant lactone.
  • ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -valerolactone are preferable, and ⁇ -caprolactone is more preferable because they are easily available and have high reactivity.
  • the lactone compound may have a substituent, such as ⁇ -valerolactone, and examples thereof include a substituent T described later, and an alkyl group is preferable.
  • the lactone compound may be used alone or in combination of two or more.
  • the carboxylic acid compound may be a compound having at least one carboxy group in the molecule, and a compound having at least two carboxy groups is preferable.
  • the number of carboxylic acids contained in the carboxylic acid compound is not particularly limited, but is preferably 2 to 6, and more preferably 2 (dicarboxylic acid compound).
  • the carboxylic acid compound may have a hydroxy group or an alkoxy group.
  • the carboxylic acid compound is a compound capable of esterifying with the above hydrocarbon polymer, and includes a compound having an alkyl or aryl ester group (for example, a methoxycarbonyl group) instead of the carboxy group.
  • the carboxylic acid compound may be an aliphatic carboxylic acid compound or an aromatic carboxylic acid compound, and an aliphatic carboxylic acid compound is preferable.
  • the dicarboxylic acid compound is not particularly limited, and examples thereof include an aliphatic dicarboxylic acid compound and an aromatic dicarboxylic acid compound.
  • the carbon number of the aliphatic dicarboxylic acid compound (excluding the carbon atom forming the carbonyl) is not particularly limited, but is 1 or more, preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and preferably 4. It is 20 or less, more preferably 16 or less, still more preferably 15 or less, and particularly preferably 14 or less.
  • malonic acid succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,9-nonamethylenedicarboxylic acid, 1,10-decamethylene.
  • examples thereof include dicarboxylic acid, 1,11-undecamethylene dicarboxylic acid and 1,12-dodecamethylene dicarboxylic acid.
  • the number of carbon atoms (excluding the carbon atom forming the carbonyl) of the aromatic dicarboxylic acid compound is not particularly limited, but is preferably 6 to 20, and the upper limit is more preferably 16 or less, still more preferably 14 or less.
  • orthophthalic acid examples include orthophthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, anthracendicarboxylic acid, and phenanthrenedicarboxylic acid.
  • it is preferably an aliphatic dicarboxylic acid compound because it is easily available and has high thermal stability, and more preferably malonic acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid.
  • succinic acid and adipic acid More preferably, succinic acid and adipic acid.
  • the dicarboxylic acid compound can also be used as an anhydride, an ester of an alkyl or aryl, an unsaturated bond halogen substituent, or the like, but does not include use as an imide compound.
  • the carboxylic acid compound may have a substituent, and examples thereof include a substituent T described later.
  • the carboxylic acid compound may be used alone or in combination of two or more.
  • the method for synthesizing the polymer that leads to the polymer segment is not particularly limited, but for example, the above-mentioned hydrocarbon polymer having at least two hydroxy groups or amino groups is condensed (heavy) with a cyclic ester compound or a carboxylic acid compound and a condensation reaction. (Condensation) reaction method can be mentioned.
  • Condensation reaction a known synthetic method (esterification method or amidation method) can be applied without particular limitation.
  • the polyester polyol composed of the above-mentioned hydrocarbon polymer and the cyclic ester compound is synthesized by a method of reacting the hydrocarbon polymer with the cyclic ester compound in the presence of a catalyst such as tetraisopropyl titanate or tetrabutyl titanate in the absence of a solvent.
  • a catalyst such as tetraisopropyl titanate or tetrabutyl titanate in the absence of a solvent.
  • polymer segment examples include, for example, each segment shown in a specific example of the polymer described later, but the present invention is not limited thereto.
  • the polymer segment (each constituent and raw material compound) may have a substituent.
  • the substituent is not particularly limited, but preferably, a group selected from the following substituent T can be mentioned.
  • -Substituent T- Alkyl group preferably an alkyl group having 1 to 20 carbon atoms, for example, methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl group alkenyl group.
  • an alkenyl group having 2 to 20 carbon atoms for example, vinyl, allyl, oleyl, etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, for example, ethynyl, butadynyl, phenylethynyl, etc.
  • a cycloalkyl group having 3 to 20 carbon atoms for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., is used in the present specification to mean that an alkyl group usually includes a cycloalkyl group.
  • An aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), an aralkyl group (preferably having 7 carbon atoms).
  • An aralkyl group of ⁇ 23 eg, benzyl, phenethyl, etc.
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, preferably 5 or 6 having at least one oxygen atom, sulfur atom, nitrogen atom. It is a member ring heterocyclic group.
  • the heterocyclic group includes an aromatic heterocyclic group and an aliphatic heterocyclic group.
  • a tetrahydropyran ring group for example, a tetrahydropyran ring group, a tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-imidazolyl. , 2-Benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, pyrrolidone group, etc.
  • alkoxy group preferably alkoxy group having 1 to 20 carbon atoms, for example, methoxy, ethoxy, isopropyloxy, benzyloxy, etc.
  • aryloxy group preferably Preferably, an aryloxy group having 6 to 26 carbon atoms, for example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc., is used in the present specification to mean an aryloxy group including an aryloxy group.
  • Heterocyclic oxy group group in which an —O— group is bonded to the heterocyclic group
  • alkoxycarbonyl group preferably alkoxycarbonyl group having 2 to 20 carbon atoms, for example, ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • Aryloxycarbonyl group preferably an aryloxycarbonyl group having 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4- Includes methoxyphenoxycarbonyl, etc.
  • amino groups preferably amino groups with 0 to 20 carbon atoms, alkylamino groups, arylamino groups, etc., for example, amino (-NH 2 ), N, N-dimethylamino, N, N- Diethylamino, N-ethylamino, anilino, etc.
  • sulfamoyl groups preferably sulfamo
  • allyloyloxy groups (preferably). Is an allyloxy group having 7 to 23 carbon atoms, for example, benzoyloxy, a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, for example, N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.), acylamino.
  • Groups preferably acylamino groups having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.
  • alkylsulfanyl groups preferably alkylsulfanyl groups having 1 to 20 carbon atoms, such as methylsulfanyl, ethylsulfanyl, isopropyl.
  • aryl sulfanyl groups preferably aryl sulfanyl groups having 6 to 26 carbon atoms, such as phenylsulfanyl, 1-naphthylsulfanyl, 3-methylphenylsulfanyl, 4-methoxyphenylsulfanyl, etc.
  • alkylthio groups Preferably an alkylthio group having 1 to 20 carbon atoms, for example, methylthio, ethylthio, isopropylthio, benzylthio, etc.
  • an arylthio group preferably a carbonyl group.
  • arylthio groups such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc., heterocyclic thiogroups (groups in which -S- group is bonded to the above heterocyclic group), alkyl Sulfonyl groups (preferably alkylsulfonyl groups having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, etc.), arylsulfonyl groups (preferably arylsulfonyl groups having 6 to 22 carbon atoms, such as benzenesulfonyl, etc.), alkylsilyls.
  • alkyl Sulfonyl groups preferably alkylsulfonyl groups having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, etc.
  • Groups preferably alkylsilyl groups having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.
  • arylsilyl groups preferably arylsilyl groups having 6 to 42 carbon atoms, such as triphenylsilyl.
  • Etc. alkoxysilyl group (preferably alkoxysilyl group having 1 to 20 carbon atoms, for example, monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.), aryloxysilyl group (preferably 6 to 42 carbon atoms).
  • aryloxy silyl group for example, triphenyl oxysilyl etc.
  • a phosphinyl group preferably a phosphinyl group having 0 to 20 carbon atoms, for example, -P (R P) 2)
  • sulfo examples thereof include a group (sulfonic acid group), a carboxy group, a hydroxy group, a sulfanyl group, a cyano group, and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.).
  • RP is a hydrogen atom or a substituent (preferably a group selected from the substituent T). Further, each group listed in these substituents T may be further substituted with the above-mentioned substituent T.
  • the alkyl group, alkylene group, alkenyl group, alkenylene group, alkynyl group and / or alkynylene group and the like may be cyclic or chain-like, or may be linear or branched.
  • the specific polymer may have components that can be contained in the above-mentioned various polymers having a bond selected from the above-mentioned bond group (I).
  • a component derived from a low molecular weight polyol compound or a polyamine compound a component derived from a polymer (for example, a polymer chain defined by R 5b described later as a molecular chain), a polyol compound or a polyamine compound can be mentioned. Be done.
  • the specific polymer preferably contains at least one polymer represented by the following formula (3) and one polymer represented by the following formula (4), and preferably contains at least one polymer represented by the following formula (3). Is more preferable.
  • Each component of the polymer represented by each of the following formulas may have one kind or two or more kinds.
  • the bonding mode of the constituent components of the polymer represented by each of the following formulas is not particularly limited, and examples thereof include random bonding, block bonding, and graft bonding.
  • R a, X a, R 1, R 2, n1 and n2 respectively, in the formula (1) and (2), R a, X a, and R 1, R 2, n1 and n2 It is synonymous, and so is the preferred one.
  • R b1 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aliphatic hydrocarbon group having 1 to 15 carbon atoms, or a group formed by combining two or more of these groups.
  • the carbon number of the aliphatic hydrocarbon group that can be taken as R b1 means the minimum number of carbon atoms that connect two nitrogen atoms, and the carbon number of the aromatic hydrocarbon group that can be taken as R b1 is carbon when it is unsubstituted. Means a number.
  • the aliphatic hydrocarbon group having 1 to 15 carbon atoms may be saturated or unsaturated, may be chain-like or cyclic, and may have a branch.
  • a known aliphatic diisosoane compound for example, a group consisting of isophorone
  • 1,1,3-trimethylcyclohexanediyl 1,1,3-trimethylcyclohexanediyl
  • methylenebis (). Cyclohexylene Cyclohexylene
  • the aromatic hydrocarbon group having 6 to 22 carbon atoms include phenylene and naphthalene diyl.
  • a group composed of two or more of the aromatic hydrocarbon group and the aliphatic hydrocarbon group a group composed of two or more of the phenylene group and the aliphatic hydrocarbon group is more preferable, and the total number of carbon
  • the combined group may include a group containing an oxygen atom, a sulfur atom or a nitrogen atom in the molecular chain.
  • biphenylene, an aromatic hydrocarbon group represented by the following formula (M2) can be mentioned, and more specifically, methylenebis (phenylene), phenylenedimethylene and the like can be mentioned.
  • X represents a single bond, -CH 2- , -C (CH 3 ) 2- , -SO 2- , -S-, -CO- or -O-, and is a viewpoint of binding property. Therefore, -CH 2- or -O- is preferable, and -CH 2- is more preferable.
  • the above-mentioned alkyl group and alkylene group exemplified here may be substituted with a substituent T, preferably a halogen atom (more preferably a fluorine atom).
  • RM2 to RM5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable.
  • the substituent which can be taken as RM2 to RM5 is not particularly limited, but for example, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, -OR M6 , -N ( RM6 ) 2 , and so on.
  • -SR M6 ( RM6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom). Can be mentioned.
  • RM6 -N ( RM6 ) 2 includes an alkylamino group (preferably 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms) or an arylamino group (preferably 6 to 40 carbon atoms, 6 to 20 carbon atoms). More preferred).
  • R b1 may have a substituent, and examples thereof include a substituent T described later.
  • R b2 represents an alkylene group having 2 to 12 carbon atoms, and also includes a group formed by combining two or more kinds of alkylene groups.
  • the alkylene group that can be taken as R b2 may be chain-like, cyclic, or may have a branch, and the number of carbon atoms is more preferably 2 to 8 and even more preferably 2 to 6.
  • the carbon number of each alkylene group that can be obtained from R b2 to R b4 means the minimum number of carbon atoms connecting two X bs .
  • alkylene group examples include ethylene, 1,2-propylene, 1,3-propylene, 1,3-butylene, 1,4-butylene, hexylene, octylene, cyclohexylene and the like.
  • the alkylene group that can be taken as R b2 does not have a functional group selected from the functional group group (II) described later and a functional group selected from the functional group group (III) described later.
  • R b3 represents an alkylene group having at least one functional group selected from the following functional group group (II).
  • the alkylene group that can be taken as R b3 may be chain-like, cyclic, or may have a branch, and the number of carbon atoms is preferably 1 to 15, more preferably 1 to 10, and even more preferably 1 to 8.
  • 2-ethylpropylene can be mentioned.
  • the functional group selected from the functional group group (II) below may be bonded to any carbon atom of the alkylene group, but is bonded to the carbon atom constituting the shortest carbon chain to be bonded to the two X b3s. Is preferable.
  • the number of functional groups contained in the alkylene group is not particularly limited, but is preferably 1 to 5, and more preferably 1 or 2.
  • the above functional group group (II) possessed by the above-mentioned specific polymer can be preferably applied.
  • R b3 include 2-ethyl-2-carboxypropylene.
  • R b4 represents an alkylene group having at least one functional group selected from the following functional group group (III).
  • the alkylene group that can be taken as R b4 may be chain-like or cyclic, may have a branch, and has a carbon number of 1 to 15, more preferably 1 to 10, and even more preferably 1 to 8.
  • propylene can be mentioned.
  • the functional group selected from the following functional group group (III) may be bonded to any carbon atom of the alkylene group.
  • the number of functional groups contained in the alkylene group is not particularly limited, but is preferably 1 to 5, and more preferably 1 or 2.
  • the above functional group group (III) possessed by the above-mentioned specific polymer can be preferably applied.
  • the functional group selected from the above group includes a crosslinked form as described above.
  • R b5 is a divalent chain having a number average molecular weight of 100 or more, and represents a polyalkylene oxide chain, a polycarbonate chain, a polyester chain or a silicone chain, or a chain formed by combining two or more of these chains.
  • the number average molecular weight of each of the above chains that can be taken as R b5 is preferably 100 to 100,000, more preferably 100 to 10000, and even more preferably 150 to 5000.
  • the number average molecular weight can be measured as a standard polystyrene-equivalent number average molecular weight in the same manner as the mass average molecular weight of a specific polymer.
  • the polyalkylene oxide chain that can be taken as R b5 is not particularly limited.
  • the carbon number of the alkylene group constituting the alkylene oxide chain is preferably 1 to 10, more preferably 1 to 8, further preferably 1 to 6, and particularly preferably 2 or 3.
  • the total number of repetitions of the alkyleneoxy groups constituting the alkylene oxide chain is preferably 1 to 100, more preferably 3 to 100, and even more preferably 4 to 50.
  • the component having a polyalkylene oxide chain as R b5 may be one kind, but in terms of battery performance, it is preferably two or more kinds, and more preferably two kinds.
  • the combination of the polyalkylene oxide chain is not particularly limited, and for example, it preferably contains an ethylene oxide chain, and examples thereof include a combination of an ethylene oxide chain or a propylene oxide chain and an alkylene oxide chain having 4 or more carbon atoms.
  • the polycarbonate chain that can be taken as R b5 is not particularly limited.
  • the number of carbon atoms of the repeating unit constituting the carbonate chain is preferably 1 to 15, and more preferably 1 to 10.
  • the number of repetitions of the repeating unit constituting the carbonate chain is preferably 4 to 40, more preferably 4 to 20.
  • the polyester chain that can be taken as R b5 means a poly (alkylene-ester) chain or a poly (arylene-ester) chain and does not include the above-mentioned polymer segment.
  • the carbon number of the alkylene group constituting the polyester chain is preferably 1 to 10, more preferably 1 to 8, and the carbon number of the arylene group constituting the polyester chain is preferably 6 to 14, more preferably 6 to 10.
  • the number of repetitions of the repeating unit constituting the polyester chain is preferably 2 to 40, more preferably 2 to 20.
  • the silicone chain that can be taken as R b5 means a chain having a siloxane bond (-Si—O—, Si atom has two organic groups such as an alkyl group and an aryl group), and the number of repetitions of the siloxane bond is 1 to 200 is preferable, and 1 to 100 is more preferable.
  • Each chain that can be taken as R b5 may have a group such as an alkylene group at the end thereof for the convenience of polymer synthesis based on the structure of a commercially available product to be used.
  • the repeating unit constituting each chain Means the total number of repetitions of.
  • examples of the chain formed by combining the above chains that can be taken as R b5 include a chain formed by combining a polyalkylene oxide chain and a polycarbonate chain or a polyester chain, and the polycarbonate chain or polyester is included in the polyalkylene oxide chain.
  • a chain having a chain is preferable.
  • X b2 , X b3 , X b4 and X b5 each represent an oxygen atom or -NH-.
  • the two X b2 , X b3 , X b4 and X b5 may be the same or different, but are preferably the same.
  • the total of c + d + e + f may be 0 mol%, but is preferably not 0 mol%, and more preferably 40 mol% or more.
  • the a is not particularly limited, but is preferably 0.1 to 30 mol%, preferably 0.3 to 20 mol%, in terms of the dispersibility and binding property of the solid particles and the battery performance of the solid secondary battery. More preferably, 0.5 to 15 mol% is further preferable, and 1 to 10 mol% is particularly preferable.
  • b is preferably 40 to 60 mol%, more preferably 43 to 58 mol%, still more preferably 45 to 55 mol%.
  • c is preferably 0 to 30 mol%, more preferably 0 to 25 mol%, further preferably 0 to 20 mol%, and particularly preferably 0 to 15 mol%.
  • d is preferably 0 to 49 mol%, more preferably 0.1 to 40 mol%, further preferably 1 to 30 mol%, and particularly preferably 3 to 25 mol%.
  • e is preferably 0 to 30 mol%, more preferably 0 to 25 mol%, further preferably 0 to 20 mol%, and particularly preferably 0 to 10 mol%.
  • f is preferably 0 to 49 mol%, more preferably 5 to 49 mol%, further preferably 10 to 47 mol%, and particularly preferably 20 to 45 mol%.
  • the content (mass%) of a is as described above.
  • the content (% by mass) of b is not particularly limited, and is preferably 20 to 60% by mass, more preferably 25 to 55% by mass, and even more preferably 30 to 50% by mass.
  • the content (% by mass) of c is not particularly limited, and is preferably 0 to 25% by mass, more preferably 0 to 15% by mass, and even more preferably 0 to 10% by mass.
  • the content (% by mass) of d is not particularly limited, and is preferably 0 to 40% by mass, more preferably 1 to 25% by mass, still more preferably 1 to 15% by mass.
  • the content (% by mass) of e is not particularly limited, and is preferably 0 to 20% by mass, more preferably 0 to 15% by mass, and even more preferably 0 to 10% by mass.
  • the content (% by mass) of f is not particularly limited, and is preferably 0 to 55% by mass, more preferably 10 to 50% by mass, and even more preferably 20 to 40% by mass.
  • the specific polymer is preferably amorphous.
  • amorphous as a polymer typically means that no endothermic peak due to crystal melting is observed when measured at the glass transition temperature.
  • the mass average molecular weight of a particular polymer is not particularly limited. For example, 5000 or more is preferable, 10,000 or more is more preferable, and 20,000 or more is further preferable.
  • the upper limit is preferably 5,000,000 or less, more preferably 500,000 or less, still more preferably 200,000 or less.
  • GPC gel permeation chromatography
  • the value is basically measured by the method of condition 1 or condition 2 (priority) below.
  • an appropriate eluent may be appropriately selected and used depending on the type of polymer (specific polymer, etc.) to be measured.
  • This specific polymer may be a non-crosslinked polymer or a crosslinked polymer. Further, when the cross-linking of a specific polymer proceeds by heating or application of a voltage, the molecular weight may be larger than the above molecular weight. Preferably, the particular polymer has a mass average molecular weight in the above range at the start of use of the all-solid-state secondary battery.
  • the shape of the specific polymer is not particularly limited, but is preferably particulate.
  • the particles may be flat, amorphous, etc., but are preferably spherical or granular.
  • the particle size of the particulate polymer is not particularly limited, but is preferably 10 to 1000 nm. Thereby, the dispersibility of the solid electrolyte composition and the binding property between the solid particles can be improved.
  • the particle size is preferably 20 to 500 nm, more preferably 30 to 300 nm, and even more preferably 50 to 200 nm in that the dispersibility and binding property can be further improved.
  • the particle size of the particulate polymer is the same as that of the inorganic solid electrolyte by appropriately changing the diluting solvent (for example, the same solvent as the polymer dispersion, more specifically, a hydrophobic solvent such as heptane, diisobutylketone, butyl butyrate, etc.). Can be measured.
  • the particle size of the particulate polymer in the constituent layers of the all-solid secondary battery is measured in advance by, for example, disassembling the battery and peeling off the constituent layer containing the particulate polymer, and then measuring the constituent layers. It can be measured by excluding the measured value of the particle size of the particles other than the particulate polymer.
  • the particle size of the particulate polymer can be adjusted, for example, by the type of dispersion medium, the content and content of constituents in the polymer, and the like.
  • the water concentration of the specific polymer is preferably 100 ppm (mass basis) or less. Further, this specific polymer may be crystallized and dried, or the polymer dispersion may be used as it is.
  • the solid electrolyte composition of the present invention may contain a specific polymer alone or in combination of two or more.
  • the content of the specific polymer in the solid electrolyte composition is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and 0. .3% by mass or more is particularly preferable.
  • As the upper limit 10% by mass or less is preferable, 5% by mass or less is more preferable, and 3% by mass or less is further preferable.
  • the mass ratio of the total mass (total mass) of the inorganic solid electrolyte and the active material to the mass of the specific polymer is 1, The range of 000 to 1 is preferable. This ratio is more preferably 500 to 2, and even more preferably 100 to 10.
  • the dispersion medium (dispersion medium) contained in the solid electrolyte composition of the present invention may be any one that disperses or dissolves each of the above components, and preferably one that disperses polymer particles and solid particles.
  • the dispersion medium include various organic solvents. Examples of the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds and the like.
  • the dispersion medium may be either a hydrophobic dispersion medium or a hydrophilic dispersion medium, but a hydrophobic dispersion medium is preferable because it can exhibit excellent dispersibility of the polymer.
  • hydrophobicity generally refers to a property having a low affinity for water, but in the present invention, it further refers to a property having a high affinity for a polymer segment, particularly a hydrocarbon polymer, possessed by the above-mentioned specific polymer. .. Specific examples thereof include dispersion media of aromatic compounds, aliphatic compounds, ketone compounds and ester compounds.
  • each of the above solvents examples include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol can be mentioned.
  • ether compound examples include alkylene glycol (diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.), alkylene glycol monoalkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, etc.).
  • alkylene glycol diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.
  • alkylene glycol monoalkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, etc.
  • amide compound examples include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ⁇ -caprolactam, formamide, N-methylformamide and acetamide. , N-Methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and diisobutyl ketone.
  • Examples of the aromatic compound include aromatic hydrocarbon compounds such as benzene, toluene and xylene.
  • Examples of the aliphatic compound include aliphatic hydrocarbon compounds such as hexane, heptane, octane, and decane.
  • Examples of the nitrile compound include acetonitrile, propionitrile, isobutyronitrile and the like.
  • ester compound examples include ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutyrate and pivalic acid.
  • carboxylic acid ester compounds such as propyl, isopropyl pivalate, butyl pivalate, and isobutyl pivalate.
  • non-aqueous dispersion medium examples include the above aromatic compounds and aliphatic compounds.
  • ether compounds, ketone compounds, aromatic compounds, aliphatic compounds or ester compounds are preferable, and ketone compounds, aliphatic compounds or ester compounds are more preferable.
  • the sulfide-based inorganic solid electrolyte can be handled stably because it does not contain a functional group that is active with respect to the sulfide-based inorganic solid electrolyte.
  • a combination of a sulfide-based inorganic solid electrolyte and an aliphatic compound is preferable.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher at normal pressure (1 atm), and more preferably 70 ° C. or higher.
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the dispersion medium may contain one kind alone or two or more kinds.
  • the content of the dispersion medium in the solid electrolyte composition is not particularly limited and can be appropriately set.
  • 20 to 99% by mass is preferable, 25 to 70% by mass is more preferable, and 30 to 60% by mass is particularly preferable.
  • the solid electrolyte composition of the present invention may also contain an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table.
  • the active material include a positive electrode active material and a negative electrode active material, which will be described below.
  • a solid electrolyte composition containing an active material positive electrode active material or negative electrode active material
  • an electrode layer composition positive electrode layer composition or negative electrode layer composition
  • the positive electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an element that can be composited with Li such as an organic substance or sulfur, or a composite of sulfur and a metal. Examples of the substance, it is preferable to use a transition metal oxide, a transition metal element M a transition metal oxide having (Co, Ni, Fe, Mn , 1 or more elements selected from Cu and V) a more preferred ..
  • the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphoric acid compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound, and the like.
  • transition metal oxide having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
  • LiCoO 2 lithium cobalt oxide [LCO]
  • LiNi 2 O 2 lithium nickel oxide
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 Lithium Nickel Cobalt Oxide [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 Lithium Nickel Manganese Cobalt Oxide [NMC]
  • LiNi 0.5 Mn 0.5 O 2 Lithium manganese nickel oxide
  • (MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4.
  • Examples thereof include cobalt phosphates of the above and monoclinic panocycon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F
  • cobalt fluoride phosphates such as.
  • Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles.
  • the particle size (volume average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m.
  • the particle size of the positive electrode active material particles can be measured in the same manner as the particle size of the above-mentioned inorganic solid electrolyte.
  • a normal crusher or classifier is used to adjust the positive electrode active material to a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling flow jet mill, a sieve, or the like is preferably used.
  • wet pulverization in which an organic solvent such as water or methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size.
  • the classification is not particularly limited, and can be performed using a sieve, a wind power classifier, or the like. Both dry and wet classifications can be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination.
  • the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, still more preferably 40 to 93% by mass, based on 100% by mass of the solid content. , 50-90% by mass is particularly preferable.
  • the negative electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a negative electrode activity capable of forming an alloy with a carbonaceous material, a metal oxide, a metal composite oxide, a single lithium substance, a lithium alloy, or lithium. Examples include substances. Of these, carbonaceous materials, metal composite oxides, or elemental lithium are preferably used from the viewpoint of reliability.
  • An active material that can be alloyed with lithium is preferable in that the capacity of the all-solid-state secondary battery can be increased.
  • a negative electrode active material capable of forming an alloy with lithium can be used as the negative electrode active material. This makes it possible to increase the capacity of the all-solid-state secondary battery and extend the life of the battery.
  • the carbonaceous material used as the negative electrode active material is a material substantially composed of carbon.
  • carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • Examples thereof include carbonic materials obtained by firing a resin.
  • various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polypoly alcohol) -based carbon fibers, lignin carbon fibers, graphitic carbon fibers and activated carbon fibers.
  • carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization. Further, the carbonaceous material preferably has the interplanar spacing or density and the size of crystallites described in JP-A-62-22066, JP-A-2-6856, and JP-A-3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like should be used. You can also.
  • As the carbonaceous material hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the metal or semi-metal element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of storing and releasing lithium, and is a composite of a metal element oxide (metal oxide) and a metal element.
  • metal oxide metal oxide
  • examples thereof include oxides or composite oxides of metal elements and semi-metal elements (collectively referred to as metal composite oxides) and oxides of semi-metal elements (semi-metal oxides).
  • metal composite oxides oxides or composite oxides of metal elements and semi-metal elements
  • oxides of semi-metal elements semi-metal elements
  • amorphous oxides are preferable, and chalcogenides, which are reaction products of metal elements and elements of Group 16 of the Periodic Table, are also preferable.
  • the metalloid element means an element exhibiting properties intermediate between a metalloid element and a non-metalloid element, and usually contains six elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and astatine.
  • Amorphous means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering zone having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and a crystalline diffraction line is used. You may have.
  • the strongest intensity of the crystalline diffraction lines seen at the 2 ⁇ value of 40 ° to 70 ° is 100 times or less of the diffraction line intensity at the apex of the broad scattering band seen at the 2 ⁇ value of 20 ° to 40 °. It is preferable that it is 5 times or less, and it is particularly preferable that it does not have a crystalline diffraction line.
  • the amorphous oxide of the metalloid element or the chalcogenide is more preferable, and the elements of the groups 13 (IIIB) to 15 (VB) of the periodic table (for example).
  • Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) alone or a combination of two or more (composite) oxides, or chalcogenides are particularly preferred.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2.
  • Negative negative active materials that can be used in combination with amorphous oxides such as Sn, Si, and Ge include carbonaceous materials that can occlude and / or release lithium ions or lithium metals, lithium alone, lithium alloys, and lithium.
  • a negative electrode active material that can be alloyed with is preferably mentioned.
  • the oxide of a metal or a metalloid element contains at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the lithium-containing metal composite oxide include lithium oxide and the metal (composite) oxide or a composite oxide of the chalcogenide, more specifically, Li 2 SnO 2.
  • the negative electrode active material for example, a metal oxide, contains a titanium element (titanium oxide).
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • LTO lithium titanate
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
  • the negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery.
  • Such an active material has a large expansion and contraction due to charge and discharge, and the binding property of solid particles is lowered as described above, but in the present invention, a high binding property can be achieved by a specific polymer.
  • Examples of such an active material include a negative electrode active material (alloy) having a silicon element or a tin element, and each metal such as Al and In, and a negative negative active material (silicon element) having a silicon element that enables a higher battery capacity.
  • a silicon element-containing active material having a silicon element content of 50 mol% or more of all the constituent elements is more preferable.
  • a negative electrode containing these negative electrode active materials for example, a Si negative electrode containing a silicon element-containing active material and a Sn negative electrode containing a tin element active material
  • a carbon negative electrode graphite, acetylene black, etc.
  • silicon element-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, and the like (for example,).
  • LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si) or organized active material (eg LaSi 2 / Si), as well as other silicon and tin elements such as SnSiO 3 , SnSiS 3 Examples include active materials containing.
  • SiOx itself can be used as a negative electrode active material (semi-metal oxide), and since Si is generated by the operation of an all-solid-state secondary battery, a negative electrode active material that can be alloyed with lithium (its). It can be used as a precursor substance).
  • the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon element and the tin element.
  • a composite oxide with lithium oxide for example, Li 2 SnO 2 can also be mentioned.
  • the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with silicon is a preferable embodiment as the negative electrode active material.
  • a negative electrode active material that can be alloyed with silicon is a preferable embodiment as the negative electrode active material.
  • the above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and it is further preferable to contain silicon (Si) or a silicon-containing alloy.
  • the chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measuring method and the mass difference of the powder before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the shape of the negative electrode active material is not particularly limited, but it is preferably in the form of particles.
  • the volume average particle size of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 ⁇ m.
  • the volume average particle size of the negative electrode active material particles can be measured in the same manner as the particle size of the inorganic solid electrolyte. In order to obtain a predetermined particle size, a normal crusher or classifier is used as in the case of the positive electrode active material.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 80% by mass based on 100% by mass of the solid content. It is more preferably%, and further preferably 40 to 75% by mass.
  • the negative electrode active material layer when the negative electrode active material layer is formed by charging the secondary battery, instead of the negative electrode active material, a metal belonging to Group 1 or Group 2 of the periodic table generated in the all-solid secondary battery is used. Ions can be used.
  • the negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum oxide, niobate oxide, lithium niobate compound and the like.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
  • the solid electrolyte composition of the present invention may appropriately contain a conductive auxiliary agent, and it is particularly preferable that the silicon atom-containing active material as the negative electrode active material is used in combination with the conductive auxiliary agent.
  • the conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used. For example, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fibers or carbon nanotubes, which are electron conductive materials.
  • It may be a carbon fiber such as graphene or fullerene, a metal powder such as copper or nickel, or a metal fiber, or a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. May be used.
  • metal ions preferably Li belonging to Group 1 or Group 2 of the periodic table when the battery is charged and discharged.
  • a conductive auxiliary agent is one that does not insert and release ions) and does not function as an active material.
  • conductive auxiliary agents those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
  • the conductive auxiliary agent may contain one kind or two or more kinds.
  • the shape of the conductive auxiliary agent is not particularly limited, but is preferably in the form of particles.
  • the content of the conductive auxiliary agent in the solid electrolyte composition is preferably 0 to 10% by mass in the solid content.
  • the solid electrolyte composition of the present invention preferably contains a lithium salt (supporting electrolyte).
  • the lithium salt the lithium salt usually used for this kind of product is preferable, and there is no particular limitation.
  • the lithium salt described in paragraphs 882 to 985 of JP2015-088486 is preferable.
  • the content of the lithium salt is preferably 0.1 part by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the solid electrolyte.
  • the upper limit is preferably 50 parts by mass or less, and more preferably 20 parts by mass or less.
  • the solid electrolyte composition of the present invention may not contain a dispersant other than this polymer, but may contain a dispersant.
  • the dispersant those usually used for all-solid-state secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption, steric repulsion and / or electrostatic repulsion are preferably used.
  • the solid electrolyte composition of the present invention as other components other than the above-mentioned components, appropriately includes an ionic liquid, a thickener, a cross-linking agent (such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization), and polymerization. It can contain initiators (such as those that generate acids or radicals by heat or light), defoaming agents, leveling agents, dehydrating agents, antioxidants and the like.
  • the ionic liquid is contained in order to further improve the ionic conductivity, and known ones can be used without particular limitation. Further, a polymer other than the above polymer, a commonly used binder and the like may be contained.
  • the solid electrolyte composition of the present invention is a mixture of an inorganic solid electrolyte, the above-mentioned specific polymer, a dispersion medium, and optionally a lithium salt, and any other components, for example, by mixing them in various commonly used mixers.
  • a slurry preferably as a slurry.
  • the mixing method is not particularly limited, and the mixture may be mixed all at once or sequentially.
  • the mixing environment is not particularly limited, and examples thereof include under dry air and under an inert gas.
  • the composition for forming an active material layer (composition for an electrode layer) of the present invention can be a dispersion liquid containing highly dispersed solid particles by suppressing reaggregation of solid particles.
  • the sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body capable of forming a constituent layer of an all-solid-state secondary battery, and includes various aspects depending on its use.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery
  • an electrode or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (an electrode for an all-solid secondary battery).
  • Sheet and the like.
  • these various sheets may be collectively referred to as an all-solid-state secondary battery sheet.
  • the solid electrolyte sheet for an all-solid secondary battery of the present invention may be a sheet having a solid electrolyte layer, and even a sheet having a solid electrolyte layer formed on a base material does not have a base material and is a solid electrolyte layer. It may be a sheet formed of.
  • the solid electrolyte sheet for an all-solid secondary battery may have another layer in addition to the solid electrolyte layer. Examples of other layers include a protective layer (release sheet), a current collector, a coat layer, and the like.
  • Examples of the solid electrolyte sheet for an all-solid secondary battery of the present invention include a sheet having a layer composed of the solid electrolyte composition of the present invention, a normal solid electrolyte layer, and a protective layer on a substrate in this order. Be done.
  • the base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include a material described in the current collector described later, a sheet body (plate-shaped body) such as an organic material and an inorganic material.
  • Examples of the organic material include various polymers, and specific examples thereof include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • Examples of the inorganic material include glass and ceramics.
  • composition and layer thickness of the solid electrolyte layer of the sheet for the all-solid-state secondary battery are the same as the composition and layer thickness of the solid electrolyte layer described in the all-solid-state secondary battery of the present invention.
  • the electrode sheet for an all-solid-state secondary battery of the present invention may be an electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector).
  • the sheet may be a sheet that does not have a base material and is formed from an active material layer.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. An embodiment having a layer and an active material layer in this order is also included.
  • the electrode sheet of the present invention may have the other layers described above.
  • the active material layer is preferably formed of the solid electrolyte composition (composition for electrode layer) of the present invention.
  • composition for electrode layer composition for electrode layer
  • the structure and thickness of each layer constituting the electrode sheet of the present invention are the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
  • the all-solid-state secondary battery sheet of the present invention at least one of the solid electrolyte layer and the active material layer is formed of the solid electrolyte composition of the present invention, and the solid particles in this layer are firmly bonded to each other. Further, in the electrode sheet for an all-solid-state secondary battery, the active material layer formed of the solid electrolyte composition of the present invention is firmly bonded to the current collector. In the present invention, an increase in interfacial resistance between solid particles can be effectively suppressed. Therefore, the sheet for an all-solid-state secondary battery of the present invention is suitably used as a sheet capable of forming a constituent layer of an all-solid-state secondary battery. When an all-solid-state secondary battery is manufactured using the sheet for an all-solid-state secondary battery of the present invention, excellent battery performance is exhibited.
  • the method for producing the sheet for an all-solid secondary battery of the present invention is not particularly limited, and can be produced by forming each of the above layers using the solid electrolyte composition of the present invention.
  • a method of forming a film (coating and drying) on a base material or a current collector (which may be via another layer) to form a layer (coating and drying layer) composed of a solid electrolyte composition is preferable.
  • a layer (coating and drying layer) composed of a solid electrolyte composition is preferable.
  • an all-solid-state secondary battery sheet having a base material or a current collector and a coating dry layer can be produced.
  • the coating dry layer is a layer formed by applying the solid electrolyte composition of the present invention and drying the dispersion medium (that is, the solid electrolyte composition of the present invention is used, and the solid of the present invention is used.
  • the dispersion medium may remain as long as the effect of the present invention is not impaired, and the residual amount may be, for example, 3% by mass or less in each layer.
  • each step such as coating and drying will be described in the following method for producing an all-solid-state secondary battery.
  • the coating dry layer obtained as described above can also be pressurized.
  • the pressurizing conditions and the like will be described later in the method for manufacturing an all-solid-state secondary battery.
  • the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
  • the all-solid secondary battery of the present invention has a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer arranged between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is preferably formed on the positive electrode current collector and constitutes the positive electrode.
  • the negative electrode active material layer is preferably formed on the negative electrode current collector to form the negative electrode.
  • At least one layer of the negative electrode active material layer, the positive electrode active material layer and the solid electrolyte layer is preferably formed by the solid electrolyte composition of the present invention, and among them, all the layers are formed by the solid electrolyte composition of the present invention. It is more preferable to be done.
  • the active material layer or the solid electrolyte layer formed of the solid electrolyte composition of the present invention preferably contains the same component species and their content ratios as those in the solid content of the solid electrolyte composition of the present invention. .. If the active material layer or the solid electrolyte layer is not formed by the solid electrolyte composition of the present invention, a known material can be used.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m, respectively, in consideration of the dimensions of a general all-solid-state secondary battery.
  • the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each have a current collector on the opposite side of the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure, but in order to form a dry battery, it should be further enclosed in a suitable housing.
  • the housing may be made of metal or resin (plastic). When a metallic material is used, for example, one made of aluminum alloy or stainless steel can be mentioned. It is preferable that the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
  • FIG. 1 is a sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. ..
  • Each layer is in contact with each other and has an adjacent structure.
  • the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6.
  • a light bulb is used as a model for the operating portion 6, and the light bulb is turned on by electric discharge.
  • the all-solid secondary battery having the layer structure shown in FIG. 1 When the all-solid secondary battery having the layer structure shown in FIG. 1 is placed in a 2032 type coin case, the all-solid secondary battery is referred to as an all-solid secondary battery laminate, and the all-solid secondary battery laminate is referred to as an all-solid secondary battery laminate. Batteries manufactured in a 2032 type coin case are sometimes referred to as all-solid secondary batteries.
  • the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are all formed of the solid electrolyte composition of the present invention.
  • the all-solid-state secondary battery 10 exhibits excellent battery performance.
  • the inorganic solid electrolyte and the specific polymer contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same type or different from each other.
  • either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer.
  • either or both of the positive electrode active material and the negative electrode active material may be collectively referred to as an active material or an electrode active material.
  • the binding property of the solid particles is enhanced, and poor contact between the solid particles and a current collector are obtained. It is possible to suppress the peeling of solid particles from the surface. Further, it is possible to suppress an increase in the interfacial resistance between the solid particles and an increase in the interfacial resistance between the solid particles and the current collector. Therefore, the all-solid-state secondary battery of the present invention exhibits excellent battery performance.
  • the negative electrode active material layer can be a lithium metal layer.
  • the lithium metal layer include a layer formed by depositing or molding a lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like.
  • the thickness of the lithium metal layer can be, for example, 1 to 500 ⁇ m regardless of the thickness of the negative electrode active material layer.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • either or both of the positive electrode current collector and the negative electrode current collector may be collectively referred to as a current collector.
  • a current collector As a material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, the surface of aluminum or stainless steel is treated with carbon, nickel, titanium or silver (a thin film is formed). Of these, aluminum and aluminum alloys are more preferable.
  • As a material for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel.
  • aluminum, copper, copper alloy and stainless steel are more preferable.
  • the shape of the current collector is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or arranged between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. You may. Further, each layer may be composed of a single layer or a plurality of layers.
  • the all-solid-state secondary battery can be manufactured by a conventional method. Specifically, the all-solid-state secondary battery can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention or the like. This makes it possible to manufacture an all-solid-state secondary battery that exhibits excellent battery performance and even smaller electrical resistance. The details will be described below.
  • the solid electrolyte composition of the present invention is appropriately applied onto a base material (for example, a metal foil serving as a current collector) to form a coating film (film formation). It can be manufactured by performing a method including (via) (a method for manufacturing a sheet for an all-solid secondary battery of the present invention).
  • a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode material (composition for a positive electrode layer) on a metal foil which is a positive electrode current collector to form a positive electrode active material layer, and an all-solid rechargeable battery is formed. A positive electrode sheet for a next battery is produced.
  • a solid electrolyte composition for forming the solid electrolyte layer is applied onto the positive electrode active material layer to form the solid electrolyte layer.
  • a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (composition for the negative electrode layer) on the solid electrolyte layer to form a negative electrode active material layer.
  • a negative electrode current collector metal leaf
  • an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer can be obtained. Can be done. This can be enclosed in a housing to obtain a desired all-solid-state secondary battery.
  • a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is superposed to manufacture an all-solid secondary battery. You can also do it.
  • a positive electrode sheet for an all-solid-state secondary battery is produced. Further, a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (composition for a negative electrode layer) on a metal foil which is a negative electrode current collector to form a negative electrode active material layer, and an all-solid rechargeable battery is formed. A negative electrode sheet for the next battery is produced. Next, a solid electrolyte layer is formed on the active material layer of any one of these sheets as described above.
  • the other of the positive electrode sheet for the all-solid secondary battery and the negative electrode sheet for the all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • an all-solid-state secondary battery can be manufactured.
  • the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery and a negative electrode sheet for an all-solid-state secondary battery are produced. Separately from this, the solid electrolyte composition is applied onto the base material to prepare a solid electrolyte sheet for an all-solid secondary battery composed of a solid electrolyte layer.
  • the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery are laminated so as to sandwich the solid electrolyte layer peeled off from the base material. In this way, an all-solid-state secondary battery can be manufactured. Further, as described above, a positive electrode sheet for an all-solid-state secondary battery or a negative electrode sheet for an all-solid-state secondary battery, and a solid electrolyte sheet for an all-solid-state secondary battery are produced. Next, the positive electrode sheet for the all-solid secondary battery or the negative electrode sheet for the all-solid secondary battery and the solid electrolyte sheet for the all-solid secondary battery were brought into contact with the positive electrode active material layer or the negative electrode active material layer and the solid electrolyte layer.
  • the solid electrolyte layer is transferred to the positive electrode sheet for the all-solid-state secondary battery or the negative electrode sheet for the all-solid-state secondary battery. Then, the solid electrolyte layer from which the base material of the solid electrolyte sheet for the all-solid secondary battery is peeled off and the negative electrode sheet for the all-solid secondary battery or the positive electrode sheet for the all-solid secondary battery are separated (the negative electrode active material layer or the negative electrode active material layer on the solid electrolyte layer Pressurize the positive electrode active material layer in contact with each other. In this way, an all-solid-state secondary battery can be manufactured.
  • the pressurizing method and pressurizing conditions in this method are not particularly limited, and the methods and pressurizing conditions described later in the pressurization of the applied composition can be applied.
  • the solid electrolyte composition of the present invention may be used as any one of the composition for the positive electrode layer, the solid electrolyte composition and the composition for the negative electrode layer, and all of them have the solid electrolyte composition of the present invention. It is preferable to use a thing.
  • the solid electrolyte layer or the active material layer is formed by a composition other than the solid electrolyte composition of the present invention, examples of the material include commonly used compositions and the like.
  • it belongs to the first or second group of the periodic table, which is accumulated in the negative electrode current collector by initialization or charging during use, which will be described later, without forming the negative electrode active material layer during the manufacture of the all-solid secondary battery.
  • a negative electrode active material layer can also be formed by combining metal ions with electrons and depositing them as a metal on a negative electrode current collector or the like.
  • the solid electrolyte layer or the like can be formed, for example, by pressure-molding the solid electrolyte composition or the like on a substrate or the active material layer under the pressure conditions described later, or a sheet molded body of the solid electrolyte or the active material. It can also be used.
  • the method for applying the solid electrolyte composition is not particularly limited and can be appropriately selected.
  • coating preferably wet coating
  • spray coating spin coating coating
  • dip coating coating dip coating coating
  • slit coating stripe coating
  • bar coating coating can be mentioned.
  • the solid electrolyte composition may be subjected to a drying treatment after being applied to each of them, or may be subjected to a drying treatment after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C.
  • the dispersion medium can be removed and a solid state (coating dry layer) can be obtained. Further, it is preferable because the temperature is not raised too high and each member of the all-solid-state secondary battery is not damaged. As a result, in the all-solid-state secondary battery, it is possible to obtain excellent overall performance, good binding property, and good ionic conductivity even without pressurization.
  • the solid electrolyte composition of the present invention When the solid electrolyte composition of the present invention is applied and dried as described above, the solid particles are firmly bound to each other, and a coating dry layer having a small interfacial resistance between the solid particles can be formed.
  • each layer or the all-solid-state secondary battery After applying the solid electrolyte composition, superimposing the constituent layers, or preparing the all-solid-state secondary battery. It is also preferable to pressurize the layers in a laminated state.
  • Examples of the pressurizing method include a hydraulic cylinder press machine and the like.
  • the pressing force is not particularly limited, and is generally preferably in the range of 5 to 1500 MPa.
  • the applied solid electrolyte composition may be heated at the same time as pressurization.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It can also be pressed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the inorganic solid electrolyte and the specific polymer coexist, it can be pressed at a temperature higher than the glass transition temperature of the specific polymer.
  • the temperature does not exceed the melting point of the above-mentioned specific polymer.
  • the pressurization may be carried out in a state where the coating solvent or the dispersion medium has been dried in advance, or may be carried out in a state where the solvent or the dispersion medium remains.
  • each composition may be applied at the same time, and the application drying press may be performed simultaneously and / or sequentially. After coating on separate substrates, they may be laminated by transfer.
  • the atmosphere during coating or pressurization is not particularly limited, and may be any of air, dry air (dew point -20 ° C or less), inert gas (for example, argon gas, helium gas, nitrogen gas), etc. It may be.
  • the pressing time may be short (for example, within several hours) and high pressure may be applied, or medium pressure may be applied for a long time (1 day or more).
  • an all-solid-state secondary battery restraint screw tightening pressure, etc.
  • the press pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
  • the press pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part step by step with different pressures.
  • the pressed surface may be smooth or roughened.
  • the all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.
  • the all-solid-state secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, but for example, when mounted on an electronic device, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone. Examples include copying, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, portable tape recorders, radios, backup power supplies, memory cards, etc.
  • Other consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). .. Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
  • the hydrogenated polybutadienediamine was synthesized by reacting acrylonitrile with hydrogenated polybutadiene polyol NISSO-PB GI-1000 by adding a catalytic amount of t-butoxypotassium, and hydrogenating the obtained mixture with Raney nickel.
  • Synthesis Example 10 Synthesis of Polymer D-01
  • Polymer D-01 was synthesized as follows. Synthesized with diphenylmethane diisocyanate (17.5 g), polyethylene glycol 200 (number average molecular weight 200, 13.2 g), in Synthesis Example 1 in a 500 ml three-necked flask equipped with a stirrer, thermometer, reflux condenser and nitrogen gas introduction tube. The polymer PS1 (7.7 g) and tetrahydrofuran (dehydrated product, 149.5 g) were charged and the temperature was raised to 60 ° C. under a nitrogen stream.
  • Neostan U-600 manufactured by Nitto Kasei, 0.08 mg
  • tetrahydrofuran dehydrated product, 4.0 g
  • methanol 1.2 g
  • the mixture was stirred at 60 ° C. for 30 minutes, and then the reaction solution was cooled to obtain a polymer D-01 solution.
  • a dispersion of polymer D-01 was prepared as follows.
  • a 300 ml three-necked flask equipped with a stirrer, a thermometer and a nitrogen gas introduction tube was charged with a polymer D-01 solution (15.0 g) and tetrahydrofuran (dehydrated product, 15.0 g) under a nitrogen stream and at room temperature.
  • a polymer D-01 solution (15.0 g) and tetrahydrofuran (dehydrated product, 15.0 g) under a nitrogen stream and at room temperature.
  • Butyl butyrate (90 g) was gradually added thereto, the obtained mixed solution was distilled off under reduced pressure, and butyl butyrate was added so as to have a solid content concentration of 5%, whereby a dispersion of polymer D-01 was added.
  • Synthesis Examples 11-21 Synthesis of Polymers D-02 to D-12 and Preparation of Dispersion
  • Synthesis Example 1 polymers D-02 to D-12 were used in the same manner as in Synthesis Example 1, except that the compounds leading to the constituents shown in Table 1 were used in the amounts used to be the contents shown in Table 1. Each was synthesized.
  • Synthesis Example 1 Synthesis of Polymer cD-01 and Preparation of Dispersion
  • the polymer cD-01 was synthesized in the same manner as in Synthesis Example 1 except that the compounds leading to the constituents shown in Table 1 were used in the amounts used to be the contents shown in Table 1.
  • Synthesis Example 2 Synthesis of Polymer cD-02 and Preparation of Dispersion
  • the polymer cD-02 was synthesized in the same manner as in Synthesis Example 1 except that the compounds leading to the constituents shown in Table 1 were used in the amounts used to be the contents shown in Table 1.
  • Polymer cD-02 coagulated and settled in butyl butyrate, making it impossible to produce a dispersion of polymer cD-02.
  • the constituent components a to f correspond to the respective constituent components represented by the molar ratios a to f in the above formula (3) or the formula (4). Since the polymers D-01 to D-12 do not have the constituent component c and the constituent component e, the description in Table 1 is omitted. Although GI-1000 of the polymer cD01 does not correspond to the constituent component f, it is described in the constituent component f column for convenience. Further, 1,10-decanediol (DDO) of the polymer cD02 corresponds to the constituent component c, but is described in the constituent component d column for convenience.
  • DDO 1,10-decanediol
  • -Component b- MDI Diphenylmethane diisocyanate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Component c- DDO 1,10-decanediol (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Component d- DMBA 2,2-bis (hydroxymethyl) butyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • -Component f- PEG200 Polyethylene glycol 200 (number average molecular weight 200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • PTMG250 Polytetramethylene glycol (number average molecular weight 250, manufactured by Aldrich)
  • G3450J Polycarbonate diol
  • G3450J (trade name, number average molecular weight 800, manufactured by Asahi Kasei Corporation)
  • GI-1000 Hydrogenated polybutadiene polyol NISSO-PB GI-1000 (
  • Li 2 S lithium sulfide
  • Aldrich Corp. purity> 99.98%
  • Example 1 an all-solid-state secondary battery sheet and an all-solid-state secondary battery having the layer structure shown in FIG. 1 were prepared using the solid electrolyte composition prepared using the polymer D-01 dispersion. , The performance was evaluated. The results are shown in Table 2.
  • composition (slurry) D-01 for the positive electrode layer was prepared.
  • the positive electrode layer composition D-01 prepared above is applied to an aluminum foil having a thickness of 20 ⁇ m as a current collector with a baker-type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and at 80 ° C. for 1 hour. After heating, the composition D-01 for the positive electrode layer was dried by further heating at 110 ° C. for 1 hour.
  • the dried composition D-01 for the positive electrode layer is pressed while heating (120 ° C.) (20 MPa for 1 minute), and the positive electrode active material layer / aluminum foil having a layer thickness of 60 ⁇ m is laminated.
  • a positive electrode sheet D-01 for an all-solid-state secondary battery having a structure was produced.
  • the negative electrode layer composition D-01 obtained above is applied onto a stainless foil having a thickness of 10 ⁇ m by the above baker type applicator, and heated at 80 ° C. for 2 hours to dry the negative electrode layer composition D-01. It was.
  • the dried composition D-01 for the negative electrode layer is pressurized (600 MPa for 1 minute) while heating (120 ° C.) to form a negative electrode active material layer / stainless foil having a layer thickness of 120 ⁇ m.
  • a negative electrode sheet D-01 for an all-solid-state secondary battery having a laminated structure was produced.
  • the prepared solid electrolyte composition D-01 is applied onto the negative electrode active material layer of the prepared negative electrode sheet D-01 for an all-solid secondary battery by the above-mentioned baker type applicator, heated at 80 ° C. for 1 hour, and then further.
  • the solid electrolyte composition D-01 was dried by heating at 110 ° C. for 6 hours.
  • the negative electrode sheet D-01 having the solid electrolyte layer (coating dry layer) formed on the negative electrode active material layer is pressurized (30 MPa, 1 minute) while heating (120 ° C.) using a heat press machine to achieve a layer thickness.
  • a negative electrode sheet D-01 having a laminated structure of a 60 ⁇ m solid electrolyte layer / negative electrode active material layer / stainless foil was prepared. This negative electrode sheet was cut out into a disk shape having a diameter of 15 mm.
  • the positive electrode sheet D-01 for an all-solid-state secondary battery produced above was cut out into a disk shape having a diameter of 13 mm. After the positive electrode active material layer of the positive electrode sheet D-01 for the all-solid secondary battery and the solid electrolyte layer formed on the negative electrode sheet D-01 are arranged (laminated) so as to face each other, they are heated (laminated) using a heat press machine.
  • Examples 2 to 12 No. D-02 to D-12
  • Comparative Example 1 No. cD-01
  • Comparative Example 2 In the preparation of the solid electrolyte composition D-01, the production of the positive electrode sheet D-01 for the all-solid secondary battery, the production of the negative electrode sheet D-01 for the all-solid secondary battery, and the production of the all-solid secondary battery D-01.
  • Negative electrode sheets for solid secondary batteries were prepared, and all-solid secondary battery No. D-02 to D-12 and cD-01 were produced, respectively. Since the polymer dispersion liquid cD-02 could not be prepared, the sheet for the all-solid-state secondary battery and the all-solid-state secondary battery using the polymer cD-02 have not been prepared and evaluated.
  • ⁇ Adhesion test of electrode sheet for all-solid-state secondary battery As a binding test of the positive electrode sheet for an all-solid-state secondary battery, it was evaluated by a bending resistance test (according to JIS K 5600-5-1) using a mandrel testing machine. Specifically, a strip-shaped test piece having a width of 50 mm and a length of 100 mm was cut out from each sheet. Set the active material layer surface of this test piece on the opposite side of the mandrel (the current collector is on the mandrel side) and so that the width direction of the test piece is parallel to the axis of the mandrel, and 180 along the outer peripheral surface of the mandrel.
  • the discharge capacity was measured as the battery performance using the all-solid-state secondary battery manufactured in the same manner as the above ⁇ Manufacturing of the all-solid-state secondary battery D-01> except that the positive electrode sheet prepared as follows was used. .. That is, 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and the solid electrolyte composition shown in Table 2 was 1.9 g in terms of solid content and 12.3 g of butyl butyrate as the total amount of dispersion medium. Was put in.
  • NCA LiNi 0.85 Co 0.10 Al 0.05 O 2
  • acetylene black 0.1 g of acetylene black
  • the temperature was 25.
  • Mixing was continued for 20 minutes at ° C. and a rotation speed of 200 rpm.
  • the composition (slurry) for the positive electrode layer for volume measurement was prepared respectively.
  • the composition for the positive electrode layer prepared above was allowed to stand at 25 ° C. for 2 hours, and then applied to an aluminum foil having a thickness of 20 ⁇ m as a current collector by a baker type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.).
  • the coating was applied, heated at 80 ° C. for 1 hour, and then further heated at 110 ° C. for 1 hour to dry the composition for the positive electrode layer. Then, using a heat press machine, the dried composition for the positive electrode layer is pressed while heating (120 ° C.) (20 MPa, 1 minute) to have a laminated structure of a positive electrode active material layer / aluminum foil having a layer thickness of 60 ⁇ m.
  • Positive electrode sheets for all-solid-state secondary batteries for capacity measurement were prepared. The discharge capacity of each all-solid-state secondary battery manufactured using the positive electrode sheet for the all-solid-state secondary battery was measured by a charge / discharge evaluation device "TOSCAT-3000" (trade name, manufactured by Toyo System Co., Ltd.).
  • the all-solid-state secondary battery was charged with a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 0.2 mA until the battery voltage reached 3.0 V.
  • This charging / discharging was set as one cycle, and charging / discharging was repeated.
  • the discharge capacity of the third cycle was determined.
  • This discharge capacity was converted into a surface area of the positive electrode active material layer per 100 cm 2 , and the discharge capacity of the all-solid secondary battery was determined by the following evaluation criteria. In this test, the pass level is above the evaluation standard "B".
  • C Discharge capacity is 120mAh or more and less than 150mAh
  • the solid electrolyte composition cD-01 in which the polymer cD-01 not containing the polymer segment specified in the present invention is used in combination with the inorganic solid electrolyte and the dispersion medium does not have sufficient dispersibility of the solid electrolyte composition. Further, the binding property of the positive electrode sheet cD-01 and the battery performance (discharge capacity) of the all-solid-state secondary battery cD-01 are not satisfactory.
  • the polymer cD-02 containing a component derived from an alkylene group having a molecular weight of less than 500 instead of a hydrocarbon polymer having a number average molecular weight of 500 or more has extremely poor dispersibility.
  • the binding property of the positive electrode sheet cD-02 and the battery performance (discharge capacity) of the all-solid-state secondary battery cD-02 are sufficient. It turns out that it is not a good thing.
  • Solid particles are highly dispersed and show excellent dispersibility (dispersion stability).
  • solid particles are firmly bound (excellent in binding of solid particles), and these positive electrode sheets are excellent. It can be seen that all of the all-solid-state secondary batteries D-01 to D-12 provided with the above as a constituent layer exhibit high battery performance (discharge capacity).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides: a solid electrolyte composition which contains an inorganic solid electrolyte, a polymer and a dispersion medium, and which is configured such that the polymer has a specific bond in the main chain, while having a polymer segment in the main chain, said polymer segment having a constituent which is derived from a hydrocarbon polymer that has at least two hydroxyl groups or amino groups, while having a number average molecular weight of 500 or more, and a constituent which is derived from a cyclic ester compound or a carboxylic acid compound; a sheet for all-solid-state secondary batteries, which uses this solid electrolyte composition; an all-solid-state secondary battery which uses this solid electrolyte composition; a method for producing a sheet for all-solid-state secondary batteries; and a method for producing an all-solid-state secondary battery.

Description

固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法A method for producing a solid electrolyte composition, a sheet for an all-solid secondary battery and an all-solid secondary battery, and a sheet for an all-solid secondary battery and an all-solid secondary battery.
 本発明は、固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法に関する。 The present invention relates to a solid electrolyte composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and a method for producing an all-solid-state secondary battery sheet and an all-solid-state secondary battery.
 全固体二次電池は負極、電解質、正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性及び信頼性を大きく改善することができる。また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車又は大型蓄電池等への応用が期待されている。 In the all-solid-state secondary battery, the negative electrode, the electrolyte, and the positive electrode are all made of solid, and the safety and reliability, which are the problems of the battery using the organic electrolytic solution, can be greatly improved. It is also said that it will be possible to extend the service life. Further, the all-solid-state secondary battery can have a structure in which electrodes and electrolytes are directly arranged side by side and arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolytic solution, and it is expected to be applied to an electric vehicle, a large storage battery, or the like.
 このような全固体二次電池において、構成層(無機固体電解質層、負極活物質層、正極活物質層等)のいずれかの層を、無機固体電解質又は活物質と、特定のポリマーからなるバインダー粒子(結着剤)とを含有する材料で形成することが、提案されている。例えば、特許文献1には、(A)無機固体電解質と、(B)炭化水素ポリマーセグメントを主鎖に有し、この主鎖が特定の結合を少なくとも1つ含むポリマーと、(C)分散媒とを含有する固体電解質組成物が記載されている。 In such an all-solid-state secondary battery, any of the constituent layers (inorganic solid electrolyte layer, negative electrode active material layer, positive electrode active material layer, etc.) is a binder composed of the inorganic solid electrolyte or active material and a specific polymer. It has been proposed to form with a material containing particles (binders). For example, Patent Document 1 describes (A) an inorganic solid electrolyte, (B) a polymer having a hydrocarbon polymer segment in the main chain, and the main chain containing at least one specific bond, and (C) a dispersion medium. A solid electrolyte composition containing and is described.
国際公開第2018/020827号International Publication No. 2018/20827
 固体粒子(無機固体電解質、固体粒子、導電助剤等)で全固体二次電池の構成層を形成する場合、構成層を形成する材料は、固体粒子を分散媒等に分散させることにより、優れた分散性を示すことが望ましい。しかし、分散性のよい材料を用いても、一般に、固体粒子で形成した構成層においては、固体粒子間の界面接触状態が不十分で界面抵抗が高くなる傾向にある。更に、バインダーによる固体粒子同士の結着性が弱いと、固体粒子同士の接触不良を起こす。しかも、充放電によって活物質が膨張収縮することにより、活物質層と固体電解質層との接触不良等も生じる。また、固体粒子と集電体との結着性が弱いと、活物質層と集電体との接触不良も引き起こされる。これらの接触不良が起こると、全固体二次電池の抵抗が高くなる(電池性能が低下する)。 When forming a constituent layer of an all-solid secondary battery with solid particles (inorganic solid electrolyte, solid particles, conductive auxiliary agent, etc.), the material forming the constituent layer is excellent by dispersing the solid particles in a dispersion medium or the like. It is desirable to show good dispersibility. However, even if a material having good dispersibility is used, in general, in the constituent layer formed of solid particles, the interfacial contact state between the solid particles is insufficient and the interfacial resistance tends to be high. Further, if the binding property between the solid particles by the binder is weak, poor contact between the solid particles occurs. Moreover, the active material expands and contracts due to charging and discharging, which causes poor contact between the active material layer and the solid electrolyte layer. Further, if the binding property between the solid particles and the current collector is weak, poor contact between the active material layer and the current collector is also caused. When these poor contacts occur, the resistance of the all-solid-state secondary battery increases (battery performance deteriorates).
 特許文献1に記載の無機固体電解質組成物は、固体粒子同士の結着性、集電体と固体粒子の結着性(併せて、固体粒子の結着性ということがある。)を高めて、全固体二次電池に優れたサイクル特性を付与することができる。
 ところが、近年、電気自動車の高性能化、実用化等の研究開発が急速に進行し、全固体二次電池に求められる電池性能も高くなっている。そのため、固体粒子の結着性を更に高める等により、より優れた電池性能を発揮する全固体二次電池の開発が求められている。
The inorganic solid electrolyte composition described in Patent Document 1 enhances the binding property between solid particles and the binding property between a current collector and solid particles (in addition, the binding property of solid particles may be referred to). , It is possible to impart excellent cycle characteristics to an all-solid secondary battery.
However, in recent years, research and development for improving the performance and practical application of electric vehicles have progressed rapidly, and the battery performance required for all-solid-state secondary batteries has also increased. Therefore, there is a demand for the development of an all-solid-state secondary battery that exhibits more excellent battery performance by further improving the binding property of solid particles.
 本発明は、優れた分散性を示す固体電解質組成物であって、全固体二次電池の構成層を構成する材料として用いることにより、固体粒子の結着性を高めて全固体二次電池に優れた電池性能を付与できる固体電解質組成物を提供することを課題とする。また、本発明は、この固体電解質組成物を用いた、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法を提供することを課題とする。 The present invention is a solid electrolyte composition exhibiting excellent dispersibility, and by using it as a material constituting a constituent layer of an all-solid secondary battery, the binding property of solid particles is enhanced to form an all-solid secondary battery. An object of the present invention is to provide a solid electrolyte composition capable of imparting excellent battery performance. The present invention also provides a sheet for an all-solid-state secondary battery and an all-solid-state secondary battery, and a sheet for an all-solid-state secondary battery and a method for producing the all-solid-state secondary battery using this solid electrolyte composition. That is the issue.
 本発明者らは、種々検討を重ねた結果、ヒドロキシ基若しくはアミノ基を少なくとも2つ有する炭化水素重合体に由来する構成成分とエステル結合を有する環状化合物若しくはカルボキシ基を少なくとも2つ有する化合物に由来する構成成分とを有するポリマーセグメント、更に特定の結合を主鎖に導入したポリマーを、無機固体電解質及び分散媒と組み合わせて用いることにより、ポリマー自体が分散媒中に高度に分散して、優れた分散性を示す固体電解質組成物を調製できることを見出した。また、この固体電解質組成物は、無機固体電解質をはじめ他の固体粒子同士、更に活物質層を集電体表面に形成する場合は固体粒子と集電体とを強固に結着させた構成層を形成できることを見出した。更には、この固体電解質組成物を全固体二次電池用シート及び全固体二次電池の構成層の構成材料として用いることにより、全固体二次電池に優れた電池性能を付与できることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。 As a result of various studies, the present inventors have derived from a cyclic compound having an ester bond with a constituent component derived from a hydrocarbon polymer having at least two hydroxy groups or amino groups, or a compound having at least two carboxy groups. By using a polymer segment having a constituent component and a polymer having a specific bond introduced into the main chain in combination with an inorganic solid electrolyte and a dispersion medium, the polymer itself is highly dispersed in the dispersion medium, which is excellent. It has been found that a solid electrolyte composition showing dispersibility can be prepared. Further, this solid electrolyte composition is a constituent layer in which other solid particles including an inorganic solid electrolyte are firmly bonded to each other, and when an active material layer is formed on the surface of the current collector, the solid particles and the current collector are firmly bonded to each other. Was found to be able to form. Furthermore, it has been found that excellent battery performance can be imparted to an all-solid-state secondary battery by using this solid electrolyte composition as a constituent material of a sheet for an all-solid-state secondary battery and a constituent layer of the all-solid-state secondary battery. The present invention has been further studied based on these findings and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、ポリマーと、分散媒とを含有する固体電解質組成物であって、
 ポリマーが、ヒドロキシ基若しくはアミノ基を少なくとも2つ有し、数平均分子量が500以上である炭化水素重合体に由来する構成成分と、エステル結合を有する環状化合物若しくはカルボキシ基を少なくとも2つ有する化合物に由来する構成成分とを有する、酸素若しくは窒素原子を結合部とするポリマーセグメントを主鎖に有し、かつ、下記結合群(I)から選択される結合を主鎖に少なくとも1つ含む、固体電解質組成物。
<結合群(I)>
エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合及びカーボネート結合
That is, the above problem was solved by the following means.
<1> A solid electrolyte composition containing an inorganic solid electrolyte having conductivity of an ion of a metal belonging to Group 1 or Group 2 of the Periodic Table, a polymer, and a dispersion medium.
A polymer having a component derived from a hydrocarbon polymer having at least two hydroxy groups or amino groups and having a number average molecular weight of 500 or more, and a cyclic compound having an ester bond or a compound having at least two carboxy groups. A solid electrolyte having a polymer segment having an oxygen or nitrogen atom as a bond having a constituent component derived from the main chain, and having at least one bond selected from the following bond group (I) in the main chain. Composition.
<Binding group (I)>
Ester bond, amide bond, urethane bond, urea bond, imide bond, ether bond and carbonate bond
<2>ポリマーセグメントが、下記式(1)で表されるポリマーセグメント及び式(2)で表わされるポリマーセグメントの少なくとも1種を含む、<1>に記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000003
 式中、Rは上記炭化水素重合体中の炭化水素ポリマー鎖を示す。
 Xは酸素原子又は-NH-を示す。
 Rは炭素数3~15の脂肪族炭化水素基を示す。
 Rは炭素数6~20の芳香族若しくは炭素数1~20の脂肪族の炭化水素基を示す。
 n1は1~100であり、n2は1~10である。
<2> The solid electrolyte composition according to <1>, wherein the polymer segment contains at least one of a polymer segment represented by the following formula (1) and a polymer segment represented by the formula (2).
Figure JPOXMLDOC01-appb-C000003
In the formula, Ra represents a hydrocarbon polymer chain in the above hydrocarbon polymer.
X a is an oxygen atom or -NH-.
R 1 represents an aliphatic hydrocarbon group having 3 to 15 carbon atoms.
R 2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
n1 is 1 to 100 and n2 is 1 to 10.
<3>エステル結合を有する環状化合物若しくはカルボキシ基を少なくとも2つ有する化合物が、ラクトン化合物を含む<1>又は<2>に記載の固体電解質組成物。
<4>ポリマーが、平均粒径10~1000nmの粒子状ポリマーである<1>~<3>のいずれか1つに記載の固体電解質組成物。
<5>ポリマー中における、ポリマーセグメントの含有量が、5~80質量%である、<1>~<4>のいずれか1つに記載の固体電解質組成物。
<3> The solid electrolyte composition according to <1> or <2>, wherein the cyclic compound having an ester bond or the compound having at least two carboxy groups contains a lactone compound.
<4> The solid electrolyte composition according to any one of <1> to <3>, wherein the polymer is a particulate polymer having an average particle size of 10 to 1000 nm.
<5> The solid electrolyte composition according to any one of <1> to <4>, wherein the content of the polymer segment in the polymer is 5 to 80% by mass.
<6>ポリマーが、下記式(3)で表されるポリマー及び式(4)で表わされるポリマーの少なくとも1種を含む、<1>~<5>のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000004
 式中、Rは上記炭化水素重合体中の炭化水素ポリマー鎖を示す。
 Xは酸素原子又は-NH-を示す。
 Rは炭素数3~15の脂肪族炭化水素基を示す。
 Rは炭素数6~20の芳香族若しくは炭素数1~20の脂肪族の炭化水素基を示す。
 n1は1~100であり、n2は1~10である。
 Rb1は炭素数6~22の芳香族炭化水素基若しくは炭素数1~15の脂肪族炭化水素基、又は、これらの基を2以上組み合わせてなる基を示す。
 Rb2は、炭素数2~12のアルキレン基を示す。
 Rb3は、下記官能基群(II)から選択される官能基を少なくとも1つ有するアルキレン基を示す。
 Rb4は、下記官能基群(III)から選択される官能基を少なくとも1つ有するアルキレン基を示す。
 Rb5は、数平均分子量100以上の2価の鎖であって、ポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖若しくはシリコーン鎖、又は、これらの鎖を2以上組み合わせてなる鎖を示す。
 Xb2、Xb3、Xb4及びXb5は酸素原子又は-NH-を示す。
 a、b、c、d、e及びfは各構造成分のモル比であり、aは0.1~30モル%、bは40~60モル%、c及びeはそれぞれ0~30モル%、d及びfはそれぞれ0~49モル%であり、a+b+c+d+e+f=100モル%である。
<官能基群(II)>
カルボキシ基、スルホン酸基、リン酸基、アミノ基、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基及び3つ以上の環が縮環した基
<官能基群(III)>
炭素-炭素不飽和結合を有する基、エポキシ基及びオキセタニル基
<6> The solid electrolyte composition according to any one of <1> to <5>, wherein the polymer comprises at least one of the polymer represented by the following formula (3) and the polymer represented by the formula (4). object.
Figure JPOXMLDOC01-appb-C000004
In the formula, Ra represents a hydrocarbon polymer chain in the above hydrocarbon polymer.
X a is an oxygen atom or -NH-.
R 1 represents an aliphatic hydrocarbon group having 3 to 15 carbon atoms.
R 2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
n1 is 1 to 100 and n2 is 1 to 10.
R b1 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aliphatic hydrocarbon group having 1 to 15 carbon atoms, or a group formed by combining two or more of these groups.
R b2 represents an alkylene group having 2 to 12 carbon atoms.
R b3 represents an alkylene group having at least one functional group selected from the following functional group group (II).
R b4 represents an alkylene group having at least one functional group selected from the following functional group group (III).
R b5 is a divalent chain having a number average molecular weight of 100 or more, and represents a polyalkylene oxide chain, a polycarbonate chain, a polyester chain or a silicone chain, or a chain formed by combining two or more of these chains.
X b2 , X b3 , X b4 and X b5 represent an oxygen atom or -NH-.
a, b, c, d, e and f are the molar ratios of each structural component, a is 0.1 to 30 mol%, b is 40 to 60 mol%, and c and e are 0 to 30 mol%, respectively. d and f are 0 to 49 mol%, respectively, and a + b + c + d + e + f = 100 mol%.
<Functional group group (II)>
A carboxy group, a sulfonic acid group, a phosphoric acid group, an amino group, a hydroxy group, a sulfanyl group, an isocyanato group, an alkoxysilyl group and a group in which three or more rings are fused <functional group group (III)>
Group with carbon-carbon unsaturated bond, epoxy group and oxetanyl group
<7>ポリマーの含有量が、固体電解質組成物の固形分中、0.001~10質量%である、<1>~<6>のいずれか1つに記載の固体電解質組成物。
<8>無機固体電解質が、下記式(S1)で表される<1>~<7>のいずれか1つに記載の固体電解質組成物。
   La1b1c1d1e1 (S1)
 式中、LはLi、Na及びKから選択される元素を示す。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。
<9>分散媒が、ケトン化合物、脂肪族化合物又はエステル化合物から選ばれる<1>~<8>のいずれか1つに記載の固体電解質組成物。
<10>活物質を含有する、<1>~<9>のいずれか1つに記載の固体電解質組成物。
<11>上記<1>~<10>のいずれか1つに記載の固体電解質組成物で構成した層を有する全固体二次電池用シート。
<12>正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
 正極活物質層、固体電解質層及び負極活物質層の少なくとも1つの層が、上記<1>~<10>のいずれか1つに記載の固体電解質組成物で構成した層である全固体二次電池。
<13>上記<1>~<10>のいずれか1つに記載の固体電解質組成物を製膜する、全固体二次電池用シートの製造方法。
<14>上記<13>に記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。
<7> The solid electrolyte composition according to any one of <1> to <6>, wherein the content of the polymer is 0.001 to 10% by mass in the solid content of the solid electrolyte composition.
<8> The solid electrolyte composition according to any one of <1> to <7>, wherein the inorganic solid electrolyte is represented by the following formula (S1).
L a1 M b1 P c1 S d1 A e1 (S1)
In the formula, L represents an element selected from Li, Na and K. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
<9> The solid electrolyte composition according to any one of <1> to <8>, wherein the dispersion medium is selected from a ketone compound, an aliphatic compound, or an ester compound.
<10> The solid electrolyte composition according to any one of <1> to <9>, which contains an active material.
<11> An all-solid-state secondary battery sheet having a layer composed of the solid electrolyte composition according to any one of <1> to <10> above.
<12> An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.
The all-solid secondary layer in which at least one layer of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is a layer composed of the solid electrolyte composition according to any one of <1> to <10> above. battery.
<13> A method for producing a sheet for an all-solid secondary battery, which forms a film of the solid electrolyte composition according to any one of <1> to <10> above.
<14> A method for manufacturing an all-solid-state secondary battery, wherein the all-solid-state secondary battery is manufactured through the manufacturing method according to <13> above.
 本発明の固体電解質組成物は、分散性に優れており、固体粒子の結着性が強固なシート又は構成層を形成できる。本発明の全固体二次電池用シートは固体粒子の強固な結着性を示し、本発明の全固体二次電池は優れた電池性能を示す。また、本発明の全固体二次電池用シート及び全固体二次電池の製造方法は、上記優れた特性を示す本発明の全固体二次電池用シート及び全固体二次電池を製造することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The solid electrolyte composition of the present invention has excellent dispersibility and can form a sheet or a constituent layer having strong binding properties of solid particles. The sheet for an all-solid-state secondary battery of the present invention exhibits strong binding properties of solid particles, and the all-solid-state secondary battery of the present invention exhibits excellent battery performance. Further, the method for manufacturing the all-solid-state secondary battery sheet and the all-solid-state secondary battery of the present invention can produce the all-solid-state secondary battery sheet and the all-solid-state secondary battery of the present invention exhibiting the above-mentioned excellent characteristics. it can.
The above and other features and advantages of the present invention will become more apparent from the description below, with reference to the accompanying drawings as appropriate.
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。It is a vertical cross-sectional view which shows typically the all-solid-state secondary battery which concerns on a preferable embodiment of this invention. 実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。It is a vertical cross-sectional view which shows typically the all-solid-state secondary battery (coin battery) produced in an Example.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本発明の効果を損なわない範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において、置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本明細書において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、例えば後述する置換基Tが挙げられる。
 本明細書において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present specification, the indication of a compound (for example, when referred to as a compound at the end) is used to mean that the compound itself, its salt, and its ion are included. Further, it is meant to include a derivative in which a part is changed such as introducing a substituent within a range that does not impair the effect of the present invention.
In the present specification, a substituent, a linking group, etc. (hereinafter, referred to as a substituent, etc.) for which substitution or non-substitution is not specified may mean that the group may have an appropriate substituent. Therefore, even if it is simply described as a YYY group in the present specification, this YYY group includes a mode having a substituent in addition to a mode having no substituent. This is also synonymous with compounds that do not specify substitution or no substitution. Preferred substituents include, for example, the substituent T described later.
In the present specification, when there are a plurality of substituents or the like indicated by specific reference numerals, or when a plurality of substituents or the like are specified simultaneously or selectively, the substituents or the like may be the same or different from each other. It means good. Further, even if it is not particularly specified, it means that when a plurality of substituents or the like are adjacent to each other, they may be connected to each other or condensed to form a ring.
[固体電解質組成物]
 本発明の固体電解質組成物(無機固体電解質含有組成物ともいう。)は、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、ポリマーと、分散媒とを含有する。本発明の固体電解質組成物は、無機固体電解質及びポリマーが分散媒中に分散したスラリーであることが好ましい。固体電解質層が含有するポリマー(以下、特定のポリマーということがある。)は、主鎖に、後述する特定のポリマーセグメントを含み、かつ特定の結合を有している。このポリマーは、固体電解質組成物(分散媒)中において、自身の分散性に優れ、固体粒子を高い分散性で分散させる分散剤として機能する。また、このポリマーは、固体電解質組成物で形成したシート又は構成層中において、固体粒子同士(例えば、無機固体電解質同士、無機固体電解質と活物物質、活物質同士)を結着させ、更には集電体と固体粒子とを結着させる結着剤(バインダー)としても機能する。
[Solid electrolyte composition]
The solid electrolyte composition of the present invention (also referred to as an inorganic solid electrolyte-containing composition) is an inorganic solid electrolyte having conductivity of ions of a metal belonging to Group 1 or Group 2 of the periodic table, a polymer, and a dispersion medium. And contains. The solid electrolyte composition of the present invention is preferably a slurry in which the inorganic solid electrolyte and the polymer are dispersed in a dispersion medium. The polymer contained in the solid electrolyte layer (hereinafter, may be referred to as a specific polymer) contains a specific polymer segment described later in the main chain and has a specific bond. This polymer has excellent dispersibility in itself in the solid electrolyte composition (dispersion medium), and functions as a dispersant for dispersing solid particles with high dispersibility. Further, this polymer binds solid particles (for example, inorganic solid electrolytes to each other, inorganic solid electrolytes to active substances, active substances to each other) in a sheet or a constituent layer formed of a solid electrolyte composition, and further. It also functions as a binder that binds the current collector and solid particles.
 本発明の固体電解質組成物は、固体粒子を高度に分散させることができ、優れた分散性を示す。固体電解質組成物に含有される特定のポリマーは分散媒に対して高い分散性を示す。特に分散媒が後述する疎水性の分散媒であると、特定のポリマーは複数分子が凝集して粒子となる。このとき、各ポリマーの主鎖に組み込まれたポリマーセグメントが粒子の外側に位置して互いに立体反発することにより、粒子の分散安定性が高まると考えられる。特にポリマーセグメントは、後述するように、特定の炭化水素重合体及び環状化合物等を構成成分とする高分子量化されたセグメントであり、分散媒中での上記立体反発効果が更に向上していると考えられる。そのため、特定のポリマーが表面に吸着した固体粒子を分散媒に対して高度かつ安定に分散させることができ、本発明の固体電解質組成物は優れた分散性を示す。
 また、本発明の固体電解質組成物は、シート又は構成層としたときに固体粒子を強固に結着させることができる。しかも、この固体電解質組成物で活物質層を集電体表面に形成すると、固体粒子同士の結着に加えて、固体粒子と集電体とを強固に結着させることができる。その結果、本発明の固体電解質組成物を用いて形成したシート又は構成層を備えた全固体二次電池は優れた電池性能を示す。その理由の詳細はまだ明らかではないが、次のように考えられる。すなわち、本発明の固体電解質組成物は、特定のポリマーの分散性が高く、抵抗成分となりうる、特定のポリマーの凝集体の形成を抑えつつ、固体粒子を結着させることができる。また、特定のポリマーが高い分散性を示すため、シート又は構成層の形成に際して、分散媒に対する固体粒子等についても高い分散性を維持することができる(固体電解質組成物の分散安定性に優れる)。そのため、シート又は構成層での、固体粒子の結着性に優れ、高い電池性能に貢献すると考えられる。
The solid electrolyte composition of the present invention is capable of highly dispersing solid particles and exhibits excellent dispersibility. The specific polymer contained in the solid electrolyte composition exhibits high dispersibility with respect to the dispersion medium. In particular, when the dispersion medium is a hydrophobic dispersion medium described later, a plurality of molecules of a specific polymer are aggregated into particles. At this time, it is considered that the dispersion stability of the particles is enhanced by the polymer segments incorporated in the main chain of each polymer located outside the particles and sterically repelling each other. In particular, as will be described later, the polymer segment is a high molecular weight segment containing a specific hydrocarbon polymer, a cyclic compound, or the like as a constituent component, and the steric repulsion effect in the dispersion medium is further improved. Conceivable. Therefore, the solid particles adsorbed on the surface of the specific polymer can be dispersed highly and stably with respect to the dispersion medium, and the solid electrolyte composition of the present invention exhibits excellent dispersibility.
In addition, the solid electrolyte composition of the present invention can firmly bind solid particles when formed into a sheet or a constituent layer. Moreover, when the active material layer is formed on the surface of the current collector with this solid electrolyte composition, the solid particles and the current collector can be firmly bound in addition to the binding between the solid particles. As a result, the all-solid-state secondary battery provided with the sheet or constituent layer formed by using the solid electrolyte composition of the present invention exhibits excellent battery performance. The details of the reason are not yet clear, but it can be considered as follows. That is, the solid electrolyte composition of the present invention can bind solid particles while suppressing the formation of aggregates of the specific polymer, which has high dispersibility of the specific polymer and can be a resistance component. Further, since the specific polymer exhibits high dispersibility, it is possible to maintain high dispersibility of solid particles and the like with respect to the dispersion medium when forming the sheet or the constituent layer (excellent dispersion stability of the solid electrolyte composition). .. Therefore, it is considered that the solid particles are excellently bound to the sheet or the constituent layer and contribute to high battery performance.
 本発明の固体電解質組成物は、全固体二次電池用シート又は全固体二次電池の固体電解質層又は活物質層の成形材料として好ましく用いることができる。 The solid electrolyte composition of the present invention can be preferably used as a molding material for a sheet for an all-solid secondary battery or a solid electrolyte layer or an active material layer for an all-solid secondary battery.
 本発明の固体電解質組成物は、特に制限されないが、含水率(水分含有量ともいう。)が、500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。固体電解質組成物の含水率が少ないと、無機固体電解質の劣化を抑制することができる。含水量は、固体電解質組成物中に含有している水の量(固体電解質組成物に対する質量割合)を示し、具体的には、0.02μmのメンブレンフィルターでろ過し、カールフィッシャー滴定を用いて測定された値とする。 The solid electrolyte composition of the present invention is not particularly limited, but the water content (also referred to as water content) is preferably 500 ppm or less, more preferably 200 ppm or less, and further preferably 100 ppm or less. It is preferably 50 ppm or less, and particularly preferably 50 ppm or less. When the water content of the solid electrolyte composition is low, deterioration of the inorganic solid electrolyte can be suppressed. The water content indicates the amount of water contained in the solid electrolyte composition (mass ratio to the solid electrolyte composition). Specifically, the water content is filtered through a 0.02 μm membrane filter, and Karl Fischer titration is used. It shall be the measured value.
 以下、本発明の固体電解質組成物が含有する成分及び含有しうる成分について説明する。 Hereinafter, the components contained in the solid electrolyte composition of the present invention and the components that can be contained will be described.
<無機固体電解質>
 本発明の固体電解質組成物は、無機固体電解質を含有する。
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンに解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質、(ii)酸化物系無機固体電解質、(iii)ハロゲン化物系無機固体電解質、及び、(iV)水素化物系固体電解質が挙げられ、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましい。
<Inorganic solid electrolyte>
The solid electrolyte composition of the present invention contains an inorganic solid electrolyte.
In the present invention, the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polymer electrolyte typified by polyethylene oxide (PEO), organic typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from electrolyte salts). Further, since the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is clearly distinguished from the electrolyte or the inorganic electrolyte salts (LiPF 6 , LiBF 4 , Lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) that are dissociated or liberated into cations and anions in the polymer. Will be done. The inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally one having no electron conductivity. When the all-solid-state secondary battery of the present invention is a lithium-ion battery, the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
As the inorganic solid electrolyte, a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used. Examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iV) a hydride-based solid electrolyte. A sulfide-based inorganic solid electrolyte is preferable from the viewpoint that a better interface can be formed between the and the inorganic solid electrolyte.
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains sulfur atoms, has ionic conductivity of metals belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.
 硫化物系無機固体電解質としては、例えば、下記式(S1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (S1)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (S1).

L a1 M b1 P c1 S d1 A e1 (S1)

In the formula, L represents an element selected from Li, Na and K, with Li being preferred. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. a1 is preferably 1 to 9, more preferably 1.5 to 7.5. b1 is preferably 0 to 3, more preferably 0 to 1. The d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5. e1 is preferably 0 to 5, more preferably 0 to 3.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 The composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be non-crystal (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized. For example, Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2 ).
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 In Li-P-S based glass and Li-P-S based glass ceramics, the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ~ It is 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S and P 2 S 5 in this range, the lithium ion conductivity can be made high. Specifically, the lithium ion conductivity can be preferably 1 × 10 -4 S / cm or more, and more preferably 1 × 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 × 10 -1 S / cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 As an example of a specific sulfide-based inorganic solid electrolyte, a combination example of raw materials is shown below. For example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2- LiCl, Li 2 S-P 2 S 5- SnS, Li 2 S-P 2 S 5- Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2- ZnS, Li 2 S-Ga 2 S 3 , Li 2 S-GeS 2- Ga 2 S 3 , Li 2 S-GeS 2- P 2 S 5 , Li 2 S-GeS 2- Sb 2 S 5 , Li 2 S-GeS 2- Al 2 S 3 , Li 2 S-SiS 2 , Li 2 S-Al 2 S 3 , Li 2 S-SiS 2- Al 2 S 3 , Li 2 S-SiS 2- P 2 S 5 , Li 2 S-SiS 2- P Examples thereof include 2 S 5- LiI, Li 2 S-SiS 2- LiI, Li 2 S-SiS 2 -Li 4 SiO 4 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 10 GeP 2 S 12 . However, the mixing ratio of each raw material does not matter. As a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition, for example, an amorphization method can be mentioned. Examples of the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
(Ii) Oxide-based inorganic solid electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
The oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 × 10 -6 S / cm or more, more preferably 5 × 10 -6 S / cm or more, and 1 × 10 -5 S / cm or more. It is particularly preferable that it is / cm or more. The upper limit is not particularly limited, but it is practical that it is 1 × 10 -1 S / cm or less.
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
As a specific example of the compound, for example, Li xa La ya TiO 3 [xa satisfies 0.3 ≦ xa ≦ 0.7, and ya satisfies 0.3 ≦ ya ≦ 0.7. (LLT); Li xb Layb Zr zb M bb mb Onb (M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn. Xb satisfies 5 ≦ xb ≦ 10, yb satisfies 1 ≦ yb ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, and nb satisfies 5 ≦ nb ≦ 20. Satisfies.); Li xc Byc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn. Xc is 0 <xc ≦ 5 , Yc satisfies 0 <yc ≦ 1, zc satisfies 0 <zc ≦ 1, nc satisfies 0 <nc ≦ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si. ad P md O nd (xd satisfies 1 ≦ xd ≦ 3, yd satisfies 0 ≦ yd ≦ 1, zd satisfies 0 ≦ zd ≦ 2, ad satisfies 0 ≦ ad ≦ 1, md is 1 ≦ met md ≦ 7, nd satisfies 3 ≦ nd ≦ 13);. Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, M ee divalent .D ee representing the metal atom represents a combination of halogen atom or two or more halogen atoms);. Li xf Si yf O zf (xf satisfies 1 ≦ xf ≦ 5, yf satisfies 0 <yf ≦ 3 , zf satisfies 1 ≦ zf ≦ 10);. Li xg S yg O zg (xg satisfies 1 ≦ xg ≦ 3, yg satisfies 0 <yg ≦ 2, zg satisfies 1 ≦ zg ≦ 10. ); Li 3 BO 3 ; Li 3 BO 3- Li 2 SO 4 ; Li 2 O-B 2 O 3- P 2 O 5 ; Li 2 O-SiO 2 ; Li 6 BaLa 2 Ta 2 O 12 ; Li 3 PO (4-3 / 2w) N w (w is w <1); Li 3.5 Zn 0.25 GeO 4 having a LISION (Lithium super ionic controller) type crystal structure; La 0.55 having a perovskite type crystal structure Li 0.35 TiO 3 ; LiTi 2 P 3 O 12 having a NASICON (Naturium super ionic controller) type crystal structure; Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Sihy P 3-yh O 12 (xh satisfies 0 ≦ xh ≦ 1, yh satisfies 0 ≦ yh ≦ 1. ); Examples thereof include Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ); LiPON in which a part of oxygen of lithium phosphate is replaced with nitrogen; LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and one or more elements selected from Au) and the like.
Further, LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C and Ga) and the like can also be preferably used.
(iii)ハロゲン化物系無機固体電解質
 ハロゲン化物系無機固体電解質は、ハロゲン原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されないが、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClを好ましい。
(Iii) Halide-based inorganic solid electrolyte The halide-based inorganic solid electrolyte contains halogen atoms, has the conductivity of ions of metals belonging to Group 1 or Group 2 of the Periodic Table, and has electrons. Insulating compounds are preferred.
The halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
(iV)水素化物系無機固体電解質
 水素化物系無機固体電解質は、水素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されないが、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
(IV) Hydride-based Inorganic Solid Electrolyte The hydride-based inorganic solid electrolyte contains a hydrogen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. A compound having a property is preferable.
The hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, and 3 LiBH 4- LiCl.
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の粒子径(体積平均粒子径)は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。
 無機固体電解質の粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散液試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
The inorganic solid electrolyte is preferably particles. In this case, the particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. The upper limit is preferably 100 μm or less, and more preferably 50 μm or less.
The particle size of the inorganic solid electrolyte is measured by the following procedure. Inorganic solid electrolyte particles are prepared by diluting 1% by mass of a dispersion in a 20 mL sample bottle with water (heptane in the case of a water-unstable substance). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test. Using this dispersion sample, data was captured 50 times using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA) at a temperature of 25 ° C. using a measuring quartz cell. Obtain the volume average particle size. For other detailed conditions, etc., refer to the description of JIS Z 8828: 2013 "Particle size analysis-Dynamic light scattering method" as necessary. Five samples are prepared for each level and the average value is adopted.
 無機固体電解質は、1種を含有していても、2種以上を含有していてもよい。
 固体電解質層を形成する場合、固体電解質層の単位面積(cm)当たりの無機固体電解質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 ただし、固体電解質組成物が後述する活物質を含有する場合、無機固体電解質の目付量は、活物質と無機固体電解質との合計量が上記範囲であることが好ましい。
The inorganic solid electrolyte may contain one kind or two or more kinds.
When forming the solid electrolyte layer, the mass (mg) (grain amount) of the inorganic solid electrolyte per unit area (cm 2 ) of the solid electrolyte layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
However, when the solid electrolyte composition contains an active material described later, the amount of the inorganic solid electrolyte is preferably such that the total amount of the active material and the inorganic solid electrolyte is in the above range.
 無機固体電解質の、固体電解質組成物中の含有量は、分散性、界面抵抗の低減及び結着性の点で、固形分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、固体電解質組成物が後述する活物質を含有する場合、固体電解質組成物中の無機固体電解質の含有量は、活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 本明細書において、固形分(固形成分)とは、固体電解質組成物を、1mmHgの気圧下、窒素雰囲気下170℃で6時間乾燥処理したときに、揮発又は蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
The content of the inorganic solid electrolyte in the solid electrolyte composition is preferably 50% by mass or more, preferably 70% by mass or more, based on 100% by mass of the solid content, in terms of dispersibility, reduction of interfacial resistance, and binding property. The above is more preferable, and 90% by mass or more is particularly preferable. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
However, when the solid electrolyte composition contains an active material described later, the content of the inorganic solid electrolyte in the solid electrolyte composition is preferably in the above range of the total content of the active material and the inorganic solid electrolyte.
In the present specification, the solid content (solid component) refers to a component that does not volatilize or evaporate and disappear when the solid electrolyte composition is dried at 170 ° C. for 6 hours under an atmospheric pressure of 1 mmHg and a nitrogen atmosphere. Typically, it refers to a component other than the dispersion medium described later.
<ポリマー>
 本発明の固体電解質組成物が含有する特定のポリマーは、主鎖に、構成成分として後述するポリマーセグメントを有し、かつ下記結合群(I)から選択される結合を少なくとも1つ有するポリマーである。上述のように、この特定のポリマーは、結着剤(バインダー)、更に好ましくは分散剤として、機能する。
 本発明の固体電解質組成物において、特定のポリマーは、分散媒に溶解して含有されていてもよいが、粒子として含有されていることが好ましい。
<結合群(I)>
エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合及びカーボネート結合
<Polymer>
The specific polymer contained in the solid electrolyte composition of the present invention is a polymer having a polymer segment described later as a constituent component in the main chain and at least one bond selected from the following bond group (I). .. As mentioned above, this particular polymer functions as a binder, more preferably a dispersant.
In the solid electrolyte composition of the present invention, the specific polymer may be dissolved in a dispersion medium and contained, but is preferably contained as particles.
<Binding group (I)>
Ester bond, amide bond, urethane bond, urea bond, imide bond, ether bond and carbonate bond
 本発明において、ポリマーの主鎖とは、ポリマーを構成する、それ以外のすべての分子鎖が、主鎖に対して枝分れ鎖若しくはペンダント鎖とみなしうる線状分子鎖をいう。枝分れ鎖若しくはペンダント鎖とみなす分子鎖の質量平均分子量にもよるが、典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖となる。ただし、ポリマー末端が有する官能基は主鎖に含まない。 In the present invention, the main chain of a polymer means a linear molecular chain in which all other molecular chains constituting the polymer can be regarded as a branched chain or a pendant chain with respect to the main chain. Although it depends on the mass average molecular weight of the molecular chain regarded as a branched chain or a pendant chain, the longest chain among the molecular chains constituting the polymer is typically the main chain. However, the functional group of the polymer terminal is not included in the main chain.
 上記結合群(I)から選択される結合は、ポリマーの主鎖中に含まれる限り、その導入位置は特に制限されるものでなく、ポリマーを構成する異なる構成成分同士を繋ぐ結合として含まれる態様、構成成分中に含まれる態様のいずれでもよいが、異なる構成単位同士を繋ぐ結合として含まれる態様が好ましい。この好ましい態様においては、上記結合群(I)中のエステル結合は、ポリマーセグメント中に存在するエステル結合とは異なる結合を意味する。 The bond selected from the bond group (I) is not particularly limited in its introduction position as long as it is contained in the main chain of the polymer, and is included as a bond connecting different constituent components constituting the polymer. , Any of the embodiments contained in the constituents is acceptable, but the embodiment contained as a bond connecting different constituent units is preferable. In this preferred embodiment, the ester bond in the bond group (I) means a bond different from the ester bond present in the polymer segment.
 特定のポリマーが有する上記結合群(I)から選択される結合は、エステル結合、アミド結合、ウレタン結合、ウレア結合が好ましく、ウレタン結合がより好ましい。
 また、イミド結合、エーテル結合及びカーボネート結合は、エステル結合、アミド結合、ウレタン結合及びウレア結合の少なくとも1つと組み合わせて主鎖に組み込まれることが好ましい。
 主鎖が有する上記結合の種類数は、特に制限されず、1~6個が好ましく、1~4個がより好ましい。また主鎖が有する上記結合の数は、ポリマーの質量平均分子量、特性等によって変動するため、一義的ではなく、適宜に決定される。
The bond selected from the above bond group (I) of the specific polymer is preferably an ester bond, an amide bond, a urethane bond, or a urea bond, and more preferably a urethane bond.
Further, the imide bond, the ether bond and the carbonate bond are preferably incorporated into the main chain in combination with at least one of an ester bond, an amide bond, a urethane bond and a urea bond.
The number of types of the above-mentioned bonds contained in the main chain is not particularly limited, and is preferably 1 to 6 and more preferably 1 to 4. Further, the number of the bonds possessed by the main chain varies depending on the mass average molecular weight, properties, etc. of the polymer, and is not unique and is appropriately determined.
 上記結合群(I)から選択される結合を主鎖に有する特定のポリマーとしては、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテル及びポリカーボネートの各ポリマー、又は、これらの共重合体が挙げられる。共重合体は、上記各ポリマーをセグメントとするブロック共重合体、上記各ポリマーのうち2つ以上のポリマーを構成する各構成成分がランダムに結合したランダム共重合体でもよい。
 中でも、特定のポリマーは、ポリウレタン、ポリエステル、ポリアミド、ポリエーテル若しくはポリウレア又はこれら2以上の共重合体(逐次重合ポリマー)が好ましく、主鎖にエステル結合、イミド結合、エーテル結合及びカーボネート結合を有する、ポリウレタン、ポリエステル、ポリアミド若しくはポリウレア又はこれら2以上の共重合体が好ましい。
Specific polymers having a bond selected from the bond group (I) in the main chain include polyester, polyamide, polyurethane, polyurea, polyimide, polyether and polycarbonate polymers, or copolymers thereof. .. The copolymer may be a block copolymer having each of the above polymers as a segment, or a random copolymer in which each component constituting two or more of the above polymers is randomly bonded.
Among them, the specific polymer is preferably polyurethane, polyester, polyamide, polyether or polyurea, or a copolymer of two or more of these (sequentially polymerized polymer), and has an ester bond, an imide bond, an ether bond and a carbonate bond in the main chain. Polyurethane, polyester, polyamide or polyurea or a copolymer of two or more of these is preferable.
 特定のポリマーは、構成成分として、少なくとも1種のポリマーセグメントを主鎖に有している。ポリマーセグメントの詳細は後述する。主鎖が有するポリマーセグメントの種類数は、特に制限されないが、1~3種が好ましく、1種がより好ましい。
 特定のポリマー中の、ポリマーセグメントの含有量は、特に制限されず、分散性等を考慮して、適宜に設定される。例えば、ポリマーセグメントの含有量(質量%)は、固体粒子の分散性及び結着性、更には固体二次電池の電池性能の点で、5~80質量%であることが好ましく、8~60質量%であることがより好ましく、10~40質量%であることが更に好ましく、10~30質量%であることが特に好ましい。なお、ポリマーセグメントの含有量をモル%で規定する場合、上記含有量(質量%)に関わらず、後述する式(3)及び式(4)における「a(モル比)」の値を適用できる。
The particular polymer has at least one polymer segment in the main chain as a constituent. Details of the polymer segment will be described later. The number of types of polymer segments contained in the main chain is not particularly limited, but 1 to 3 types are preferable, and 1 type is more preferable.
The content of the polymer segment in the specific polymer is not particularly limited, and is appropriately set in consideration of dispersibility and the like. For example, the content (mass%) of the polymer segment is preferably 5 to 80% by mass, preferably 8 to 60%, in terms of the dispersibility and binding property of the solid particles and the battery performance of the solid secondary battery. It is more preferably 10 to 40% by mass, more preferably 10 to 30% by mass, and particularly preferably 10 to 30% by mass. When the content of the polymer segment is defined by mol%, the value of "a (molar ratio)" in the formulas (3) and (4) described later can be applied regardless of the above content (mass%). ..
 特定のポリマーは、固体粒子の表面への濡れ性又は吸着性を高めるための官能基を有することが好ましい。官能基としては、固体粒子の表面において水素結合等の相互作用を示す官能基及び固体粒子の表面に存在する基と化学結合を形成し得る官能基が挙げられ、具体的には、下記官能基群(II)から選択される官能基を少なくとも1つ有することがより好ましい。ただし、固体粒子の表面への濡れ性又は吸着性をより効果的に発現する観点からは、官能基同士で結合を形成することが可能な2種以上の官能基を有さないことが好ましい。
<官能基群(II)>
カルボキシ基、スルホン酸基(-SOH)、リン酸基(-PO)、アミノ基(-NH)、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基及び3環以上の縮環構造を有する基
The particular polymer preferably has a functional group for enhancing the wettability or adsorptivity of the solid particles to the surface. Examples of the functional group include a functional group that exhibits an interaction such as a hydrogen bond on the surface of the solid particle and a functional group that can form a chemical bond with a group existing on the surface of the solid particle. Specifically, the following functional group is used. It is more preferable to have at least one functional group selected from group (II). However, from the viewpoint of more effectively exhibiting the wettability or adsorptivity of the solid particles to the surface, it is preferable not to have two or more kinds of functional groups capable of forming a bond between the functional groups.
<Functional group group (II)>
Carboxy group, a sulfonic acid group (-SO 3 H), phosphoric acid group (-PO 4 H 2), amino group (-NH 2), hydroxy group, sulfanyl group, isocyanato group, an alkoxysilyl group and 3 or more rings condensed Group with ring structure
 スルホン酸基及びリン酸基は、その塩でもよく、例えば、ナトリウム塩及びカルシウム塩が挙げられる。
 アルコキシシリル基は、少なくとも一つのアルコキシ基(炭素数は1~12が好ましい。)でSi原子が置換されたシリル基であればよく、Si原子上のその他の置換基としては、アルキル基、アリール基等が挙げられる。アルコキシシリル基としては、例えば、後述の置換基Tにおけるアルコキシシリル基の記載が好ましく適用できる。
 3環以上の縮環構造を有する基は、コレステロール環構造を有する基、又は3環以上の芳香族環が縮環した構造を有する基が好ましく、コレステロール残基又はピレニル基がより好ましい。
The sulfonic acid group and the phosphoric acid group may be salts thereof, and examples thereof include sodium salts and calcium salts.
The alkoxysilyl group may be a silyl group in which the Si atom is substituted with at least one alkoxy group (preferably having 1 to 12 carbon atoms), and other substituents on the Si atom include an alkyl group and an aryl. The group etc. can be mentioned. As the alkoxysilyl group, for example, the description of the alkoxysilyl group in the substituent T described later can be preferably applied.
The group having a condensed ring structure of 3 or more rings is preferably a group having a cholesterol ring structure or a group having a condensed ring structure of 3 or more aromatic rings, and a cholesterol residue or a pyrenyl group is more preferable.
 特定のポリマーは、上記官能基群(II)から選択される官能基をポリマーセグメント以外の構成成分に有することが好ましい。
 特定のポリマー中における官能基群(II)から選択される官能基の含有量は、特に制限されないが、特定のポリマーを構成する全構成成分中、上記官能基群(II)から選択される官能基を有する構成成分の割合は、0~50モル%が好ましく、0~49モル%が好ましく、0.1~40モル%がより好ましく、1~30モル%が更に好ましく、3~25モル%が特に好ましい。質量基準での含有量としては後述するアルキレン基Rb3を有する構成成分の含有量と同じ範囲が挙げられる。
It is preferable that the specific polymer has a functional group selected from the functional group group (II) in the constituent components other than the polymer segment.
The content of the functional group selected from the functional group group (II) in the specific polymer is not particularly limited, but the functional group selected from the functional group group (II) among all the constituent components constituting the specific polymer is not particularly limited. The proportion of the constituent components having a group is preferably 0 to 50 mol%, preferably 0 to 49 mol%, more preferably 0.1 to 40 mol%, further preferably 1 to 30 mol%, and 3 to 25 mol%. Is particularly preferable. The content on a mass basis includes the same range as the content of the component having the alkylene group R b3 described later.
<架橋性官能基>
 特定のポリマーは、ラジカル重合反応、カチオン重合反応又はアニオン重合反応により架橋構造を形成することが可能な官能基(以下、架橋性官能基とも称す。)を有することも好ましい。上記架橋性官能基同士が反応して結合を形成することにより、特定のポリマーは、ポリマー粒子内又はポリマー粒子間で架橋された構造を生じ、強度を向上することができる。
 上記架橋性官能基としては、炭素-炭素不飽和結合を有する基及び/又は環状エーテル基が好ましい。炭素-炭素不飽和結合を有する基は、ラジカル重合反応により架橋構造を形成することが可能な基(すなわち、重合性炭素-炭素不飽和結合を有する基)であり、具体的には、アルケニル基(炭素数は2~12が好ましく、2~8がより好ましい。)、アルキニル基(炭素数は2~12が好ましく、2~8がより好ましい。)、アクリロイル基及びメタクリロイル基が好ましく挙げられ、ビニル基、エチニル基、アクリロイル基、メタクリロイル基及び2-トリフルオロメチルプロペノイル基がより好ましく挙げられる。環状エーテル基は、カチオン重合反応により架橋構造を形成することが可能な基であり、具体的には、エポキシ基及びオキセタニル基が好ましく挙げられる。
 すなわち、特定のポリマーは、下記官能基群(III)から選択される官能基を少なくとも1つ有することが好ましい。
<官能基群(III)>
炭素-炭素不飽和結合を有する基、エポキシ基及びオキセタニル基
 炭素-炭素不飽和結合を有する基は、上記した通りである。
<Crosslinkable functional group>
It is also preferable that the specific polymer has a functional group (hereinafter, also referred to as a crosslinkable functional group) capable of forming a crosslinked structure by a radical polymerization reaction, a cationic polymerization reaction or an anionic polymerization reaction. By reacting the crosslinkable functional groups with each other to form a bond, the specific polymer can form a crosslinked structure within the polymer particles or between the polymer particles, and the strength can be improved.
As the crosslinkable functional group, a group having a carbon-carbon unsaturated bond and / or a cyclic ether group is preferable. The group having a carbon-carbon unsaturated bond is a group capable of forming a crosslinked structure by a radical polymerization reaction (that is, a group having a polymerizable carbon-carbon unsaturated bond), and specifically, an alkenyl group. (The number of carbon atoms is preferably 2 to 12, more preferably 2 to 8), the alkynyl group (the number of carbon atoms is preferably 2 to 12, more preferably 2 to 8), the acryloyl group and the methacryloyl group are preferable. More preferably, a vinyl group, an ethynyl group, an acryloyl group, a methacryloyl group and a 2-trifluoromethylpropenoyl group are mentioned. The cyclic ether group is a group capable of forming a crosslinked structure by a cationic polymerization reaction, and specific examples thereof include an epoxy group and an oxetanyl group.
That is, it is preferable that the specific polymer has at least one functional group selected from the following functional group group (III).
<Functional group group (III)>
Groups having carbon-carbon unsaturated bonds, epoxy groups and oxetanyl groups The groups having carbon-carbon unsaturated bonds are as described above.
 特定のポリマーは、上記架橋性官能基をポリマーセグメント以外の構成成分に有することが好ましい。なお、炭化水素ポリマー中に炭素-炭素不飽和結合を有する場合(例えば、ポリブタジエン構成成分及びポリイソプレン構成成分)、炭素原子及び水素原子から構成される架橋性官能基(例えばビニル基及びプロペニル基)が炭化水素ポリマーセグメント中に存在し得る。
 特定のポリマー中における上記架橋性官能基の含有量は、特に制限されるものではないが、特定のポリマーを構成する全構成成分中、上記架橋性官能基を有する構成成分の割合は、0~30モル%が好ましく、0~25モル%がより好ましく、0~20モル%が更に好ましく、0~10モル%が特に好ましい。質量基準での含有量としては後述するアルキレン基Rb4を有する構成成分の含有量と同じ範囲が挙げられる。
The specific polymer preferably has the crosslinkable functional group as a constituent component other than the polymer segment. When the hydrocarbon polymer has a carbon-carbon unsaturated bond (for example, a polybutadiene component and a polyisoprene component), a crosslinkable functional group composed of a carbon atom and a hydrogen atom (for example, a vinyl group and a propenyl group) Can be present in the hydrocarbon polymer segment.
The content of the crosslinkable functional group in the specific polymer is not particularly limited, but the ratio of the component having the crosslinkable functional group to all the constituent components constituting the specific polymer is 0 to 0 to. 30 mol% is preferable, 0 to 25 mol% is more preferable, 0 to 20 mol% is further preferable, and 0 to 10 mol% is particularly preferable. Examples of the content on a mass basis include the same range as the content of the constituent component having the alkylene group R b4, which will be described later.
 上記架橋性官能基を有する特定のポリマーは、上記架橋性官能基が架橋していないポリマーである形態と、これらの官能基が既に架橋しているポリマーである形態との両形態を包含する。 The specific polymer having the crosslinkable functional group includes both a form in which the crosslinkable functional group is not crosslinked and a form in which these functional groups are already crosslinked.
 上記架橋性官能基同士の反応は、本発明の固体電解質組成物中に、各架橋性官能基に対応する重合開始剤(ラジカル、カチオン又はアニオン重合開始剤)を含有させておき、これらの重合開始剤により反応させてもよく、また、電池駆動時の酸化還元反応により反応させてもよい。なお、ラジカル重合開始剤は、熱によって開裂して開始ラジカルを発生する熱ラジカル重合開始剤、及び、光、電子線又は放射線で開始ラジカルを生成する光ラジカル重合開始剤のいずれでもよい。
 本発明の固体電解質組成物が含有してもよい重合開始剤としては、常用される重合開始剤を特に制限することなく用いることができる。
In the reaction between the crosslinkable functional groups, a polymerization initiator (radical, cation or anionic polymerization initiator) corresponding to each crosslinkable functional group is contained in the solid electrolyte composition of the present invention, and these are polymerized. The reaction may be carried out by an initiator or by a redox reaction during battery operation. The radical polymerization initiator may be either a thermal radical polymerization initiator that is cleaved by heat to generate a starting radical, or a photoradical polymerization initiator that generates a starting radical by light, electron beam, or radiation.
As the polymerization initiator that may be contained in the solid electrolyte composition of the present invention, commonly used polymerization initiators can be used without particular limitation.
(ポリマーセグメント)
 このポリマーセグメントは、後述するヒドロキシ基若しくはアミノ基を少なくとも2つ有する数平均分子量500以上の炭化水素重合体と、後述するエステル結合を有する環状化合物若しくはカルボキシ基を少なくとも2つ有する化合物とを、縮合反応(重縮合反応)して、得られるポリマーに由来するセグメント(構成成分)である。
 このポリマーは、炭化水素重合体が有する基と、エステル結合を有する環状化合物(環状エステル化合物という。)若しくはカルボキシ基を少なくとも2つ有する化合物(カルボン酸化合物)との組み合わせにより、セグメントの両末端に水酸基若しくはアミノ基を有する。例えば、ポリエステルポリオール、ポリエステルポリアミン、ポリアミドポリオール及びポリアミドポリアミンを含み、ポリエステルポリオールが好ましい。
 ポリエステルポリオールは、その分子内に少なくとも2個以上のエステル結合と2個以上の水酸基を有するものであり、好ましくは、主鎖の両末端に水酸基を有するものである。ポリエステルポリアミンは、その分子内に少なくとも2個以上のエステル結合と2個以上のアミノ基を有するものであり、好ましくは、主鎖の両末端にアミノ基を有するものである。ポリアミドポリオールは、その分子内に少なくとも2個以上のアミド結合と2個以上の水酸基を有するものであり、好ましくは、主鎖の両末端に水酸基を有するものである。ポリアミドポリアミンは、その分子内に少なくとも2個以上のアミド結合と2個以上のアミノ基を有するものであり、好ましくは、主鎖の両末端にアミノ基を有するものである。
(Polymer segment)
This polymer segment condenses a hydrocarbon polymer having a number average molecular weight of 500 or more having at least two hydroxy groups or amino groups described later and a cyclic compound having an ester bond or a compound having at least two carboxy groups described later. It is a segment (component) derived from a polymer obtained by a reaction (polycondensation reaction).
This polymer is formed at both ends of the segment by a combination of a group of the hydrocarbon polymer and a cyclic compound having an ester bond (referred to as a cyclic ester compound) or a compound having at least two carboxy groups (carboxylic acid compound). It has a hydroxyl group or an amino group. For example, it contains polyester polyol, polyester polyamine, polyamide polyol and polyamide polyamine, and polyester polyol is preferable.
The polyester polyol has at least two or more ester bonds and two or more hydroxyl groups in the molecule, and preferably has hydroxyl groups at both ends of the main chain. Polyester polyamines have at least two or more ester bonds and two or more amino groups in the molecule, and preferably have amino groups at both ends of the main chain. The polyamide polyol has at least two or more amide bonds and two or more hydroxyl groups in its molecule, and preferably has hydroxyl groups at both ends of the main chain. Polyamide polyamines have at least two or more amide bonds and two or more amino groups in the molecule, and preferably have amino groups at both ends of the main chain.
 ポリマーセグメントは、上述の、ポリマー鎖の両末端に有する水酸基若しくはアミノ基の水素原子が除去された構造(酸素若しくは窒素原子を主鎖との結合部とする構造)を有しており、後述する式(1)で表されるポリマーセグメント及び式(2)で表わされるポリマーセグメントの少なくとも1種を含むことが好ましく、後述する式(1)で表されるセグメントを少なくとも1種含むことがより好ましい。 The polymer segment has the above-mentioned structure in which the hydrogen atoms of the hydroxyl groups or amino groups at both ends of the polymer chain are removed (a structure in which an oxygen or nitrogen atom is a bond with the main chain), which will be described later. It is preferable to include at least one of the polymer segment represented by the formula (1) and the polymer segment represented by the formula (2), and it is more preferable to contain at least one segment represented by the formula (1) described later. ..
 - 炭化水素重合体と環状エステル化合物とからなるポリマーセグメント -
 炭化水素重合体と環状エステル化合物とからなるポリマーセグメントを構成するポリマーとしては、例えばポリエステルポリオール又はポリアミドポリオールが挙げられ、ポリマー中のエステル結合、アミド結合及び水酸基等の数は、それぞれ、特に限定されないが、2以上が好ましい。中でも、ポリエステルジオールが好ましい。炭化水素重合体と環状エステル化合物との結合様式は、特に制限されないが、炭化水素重合体及び環状エステル化合物が2官能である場合、BAB型であることが好ましい。ここで、Aは炭化水素重合体由来の構成成分であり、Bは環状エステル化合物由来の構成成分である。より好ましくは、ヒドロキシ基若しくはアミノ基を2つ有する炭化水素重合体の2つのヒドロキシ基若しくはアミノ基それぞれに環状エステル化合物の開環体がエステル基を介して結合したポリマーである。炭化水素重合体のヒドロキシ基若しくはアミノ基に結合する環状エステル化合物の開環体は、1分子の開環体でもよいが、通常、この環状化合物の開環重合体となる。開環重合体の平均重合度は、特に制限されず、分子量等に応じて適宜に決定され、例えば、下記式(1)のn1と同義である。
-Polymer segment consisting of a hydrocarbon polymer and a cyclic ester compound-
Examples of the polymer constituting the polymer segment composed of the hydrocarbon polymer and the cyclic ester compound include polyester polyol and polyamide polyol, and the number of ester bonds, amide bonds, hydroxyl groups and the like in the polymer is not particularly limited. However, 2 or more is preferable. Of these, polyester diol is preferable. The bonding mode between the hydrocarbon polymer and the cyclic ester compound is not particularly limited, but when the hydrocarbon polymer and the cyclic ester compound are bifunctional, they are preferably of the BAB type. Here, A is a constituent component derived from a hydrocarbon polymer, and B is a constituent component derived from a cyclic ester compound. More preferably, it is a polymer in which a ring-opened product of a cyclic ester compound is bonded to each of the two hydroxy groups or amino groups of a hydrocarbon polymer having two hydroxy groups or amino groups via an ester group. The ring-opening compound of the cyclic ester compound bonded to the hydroxy group or the amino group of the hydrocarbon polymer may be a single molecule ring-opening compound, but is usually a ring-opening polymer of this cyclic compound. The average degree of polymerization of the ring-opening polymer is not particularly limited and is appropriately determined according to the molecular weight and the like, and is synonymous with n1 of the following formula (1), for example.
 炭化水素重合体と環状エステル化合物とからなるポリマーセグメントは、下記式(1)で表されるセグメントが好ましい。
Figure JPOXMLDOC01-appb-C000005
The polymer segment composed of the hydrocarbon polymer and the cyclic ester compound is preferably a segment represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Rは、ヒドロキシ基若しくはアミノ基を少なくとも2つ有し、数平均分子量が500以上である炭化水素重合体中の炭化水素ポリマー鎖を示す。炭化水素ポリマー鎖としては、後述する炭化水素重合体を構成する炭化水素ポリマー鎖と同義である。
 Xは、それぞれ、上記炭化水素重合体が有するヒドロキシ基又はアミノ基に由来する原子であり、酸素原子又は-NH-を示す。ただし、2つのXは同一である。Xは、いずれも酸素原子(式(1)で表されるセグメントがポリエステルポリオールセグメント)であることが好ましい。
 Rは、それぞれ、炭素数3~15の脂肪族炭化水素基を示し、炭素数4~10の脂肪族炭化水素基が好ましい。脂肪族炭化水素基は、不飽和の脂肪族炭化水素基でもよいが、飽和の脂肪族炭化水素基(アルキレン基)が好ましい。式中の2つのRは同一でも異なってもよいが、同一であることが好ましい。Rの炭素数は、Rが結合する酸素原子とカルボニル炭素原子とを結ぶ最小の炭素原子数を意味する。
 R及びRは、それぞれ、置換基を有していてもよく、例えば、後述する置換基Tが挙げられる。Rが有する好ましい置換基としてはアルキル基が挙げられる。
 n1は、それぞれ、数平均重合度を示し、分散性、結着性及び電池性能のバランスよく改善できる点で、1~100であり、1~50が好ましく、1~25がより好ましい。式(1)において、2つのn1は同じであっても異なってもよい。
In the formula (1), Ra represents a hydrocarbon polymer chain in a hydrocarbon polymer having at least two hydroxy groups or amino groups and having a number average molecular weight of 500 or more. The hydrocarbon polymer chain has the same meaning as the hydrocarbon polymer chain constituting the hydrocarbon polymer described later.
X a are each an atom derived from a hydroxy group or an amino group the hydrocarbon polymer has, an oxygen atom or -NH-. However, the two X a are the same. It is preferable that X a is an oxygen atom (the segment represented by the formula (1) is a polyester polyol segment).
Each of R 1 represents an aliphatic hydrocarbon group having 3 to 15 carbon atoms, and an aliphatic hydrocarbon group having 4 to 10 carbon atoms is preferable. The aliphatic hydrocarbon group may be an unsaturated aliphatic hydrocarbon group, but a saturated aliphatic hydrocarbon group (alkylene group) is preferable. Two of R 1 in the formula may be the same or different, but are preferably the same. The number of carbon atoms in R 1 means the minimum number of carbon atoms connecting the oxygen atoms and the carbonyl carbon atom to which R 1 is attached.
Each of Ra and R 1 may have a substituent, and examples thereof include a substituent T described later. Preferred substituents of R 1 include alkyl groups.
Each of n1 shows a number average degree of polymerization and can improve dispersibility, binding property and battery performance in a well-balanced manner, and is 1 to 100, preferably 1 to 50, and more preferably 1 to 25. In equation (1), the two n1s may be the same or different.
 - 炭化水素重合体とカルボン酸化合物とからなるポリマーセグメント -
 炭化水素重合体とカルボン酸化合物とからなるポリマーセグメントを構成するポリマーは、ポリエステルポリオール及びポリアミドポリアミンであり、ポリマー中のエステル結合、アミド結合、水酸基及びアミノ基の数は、それぞれ、特に限定されないが、2以上が好ましい。中でも、ポリエステルジオール及びポリアミドジアミンが好ましく、ジエステルジオール及びジアミドジアミンが好ましい。炭化水素重合体とカルボン酸化合物との結合様式は、特に限定されないが、炭化水素重合体及びカルボン酸化合物が2官能である場合、通常、その構造は(AB)xA型となる。ここで、Aは炭化水素重合体由来の構成成分であり、Bはカルボン酸化合物由来の構成成分である。xは1以上の整数であり、上限は分子量等に応じて適宜に設定される。xが1である場合、カルボン酸化合物の2つのカルボキシ基それぞれに炭化水素重合体が1分子ずつ結合したABA型のジエステルジオール又はポリアミドジアミンである。
-Polymer segment consisting of hydrocarbon polymer and carboxylic acid compound-
The polymer constituting the polymer segment composed of the hydrocarbon polymer and the carboxylic acid compound is a polyester polyol and a polyamide polyamine, and the number of ester bonds, amide bonds, hydroxyl groups and amino groups in the polymer is not particularly limited. 2 or more is preferable. Among them, polyester diol and polyamide diamine are preferable, and diester diol and diamide diamine are preferable. The bonding mode between the hydrocarbon polymer and the carboxylic acid compound is not particularly limited, but when the hydrocarbon polymer and the carboxylic acid compound are bifunctional, the structure is usually (AB) xA type. Here, A is a constituent component derived from a hydrocarbon polymer, and B is a constituent component derived from a carboxylic acid compound. x is an integer of 1 or more, and the upper limit is appropriately set according to the molecular weight and the like. When x is 1, it is an ABA-type diesterdiol or polyamide diamine in which one molecule of a hydrocarbon polymer is bonded to each of the two carboxy groups of the carboxylic acid compound.
 炭化水素重合体とカルボン酸化合物とからなるポリマーセグメントは、下記式(2)で表されるセグメントが好ましい。
Figure JPOXMLDOC01-appb-C000006
The polymer segment composed of the hydrocarbon polymer and the carboxylic acid compound is preferably a segment represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Rは、ヒドロキシ基若しくはアミノ基を少なくとも2つ有し、数平均分子量が500以上である炭化水素重合体中の炭化水素ポリマー鎖を示し、式(1)中のRと同義である。
 Xは、それぞれ、上記炭化水素重合体が有するヒドロキシ基又はアミノ基に由来する原子であり、酸素原子又は-NH-を示す。ただし、1つのRに結合する2つのXは同一である。Xは、いずれも、酸素原子(式(2)で表されるセグメントがポリエステルポリオールセグメント)又は-NH-(式(2)で表されるセグメントがポリアミドポリアミンセグメント)であることが好ましく、いずれも、酸素原子であることがより好ましい。
In the formula (2), Ra represents a hydrocarbon polymer chain in a hydrocarbon polymer having at least two hydroxy groups or amino groups and having a number average molecular weight of 500 or more, and R in the formula (1). It is synonymous with a.
X a are each an atom derived from a hydroxy group or an amino group the hydrocarbon polymer has, an oxygen atom or -NH-. However, two X a binding to one R a are the same. It is preferable that X a is an oxygen atom (the segment represented by the formula (2) is a polyester polyol segment) or -NH- (the segment represented by the formula (2) is a polyamide polyamine segment). Is also more preferably an oxygen atom.
 Rは、炭素数6~20の芳香族若しくは炭素数1~20の脂肪族の炭化水素基を示し、炭素数1~20の脂肪族炭化水素基が好ましい。炭素数6~20の芳香族炭化水素基としては、特に制限されず、その炭素数は、後述する芳香族ジカルボン酸化合物で説明する通りである。この芳香族炭化水素基としては、後述する芳香族ジカルボン酸化合物で説明する芳香族のジカルボン酸化合物から2つのカルボキシ基中の各ヒドロキシ基を除去した芳香族残基が挙げられる。炭素数1~20の脂肪族炭化水素基は、不飽和の脂肪族炭化水素基でもよいが、飽和の脂肪族炭化水素基(アルキレン基)が好ましい。その炭素数は、後述するカルボン酸化合物で説明する通りである。脂肪族炭化水素基としては、例えば、後述するカルボン酸化合物で説明する脂肪族ジカルボン酸化合物から2つのカルボキシ基中の各ヒドロキシ基を除去した脂肪族が挙げられる。Rの炭素数は、Rが結合する2つのカルボニル炭素原子を結ぶ最小の炭素原子数を意味する。
 R及びRは、それぞれ、置換基を有していてもよく、例えば、後述する置換基Tが挙げられる。Rが有する好ましい置換基としては、カルボニル基、スルホン酸基、リン酸基、エーテル基(アルコキシ基、アリールオキシ基、ヘテロ環オキシ基)、ハロゲン原子が挙げられる。
 n2は、数平均重合度を示し、1~10であり、1~5が好ましく、1~3がより好ましい。
R 2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and an aliphatic hydrocarbon group having 1 to 20 carbon atoms is preferable. The aromatic hydrocarbon group having 6 to 20 carbon atoms is not particularly limited, and the carbon number thereof is as described in the aromatic dicarboxylic acid compound described later. Examples of the aromatic hydrocarbon group include an aromatic residue obtained by removing each hydroxy group from the two carboxy groups from the aromatic dicarboxylic acid compound described later in the aromatic dicarboxylic acid compound. The aliphatic hydrocarbon group having 1 to 20 carbon atoms may be an unsaturated aliphatic hydrocarbon group, but a saturated aliphatic hydrocarbon group (alkylene group) is preferable. The carbon number is as described in the carboxylic acid compound described later. Examples of the aliphatic hydrocarbon group include an aliphatic obtained by removing each hydroxy group from the two carboxy groups from the aliphatic dicarboxylic acid compound described in the carboxylic acid compound described later. The number of carbon atoms in R 2 means the minimum number of carbon atoms connecting the two carbonyl carbon atoms to which R 2 is attached.
Each of Ra and R 2 may have a substituent, and examples thereof include a substituent T described later. Preferred substituents of R 2 include a carbonyl group, a sulfonic acid group, a phosphoric acid group, an ether group (alkoxy group, aryloxy group, heterocyclic oxy group) and a halogen atom.
n2 indicates a number average degree of polymerization, which is 1 to 10, preferably 1 to 5, and more preferably 1 to 3.
 上述の、ポリマーセグメントは、ヒドロキシ基若しくはアミノ基を少なくとも2つ有する炭化水素重合体に由来する構成成分と、環状エステル化合物若しくはカルボン酸化合物に由来する構成成分とを有していればよく、両構成成分はそれぞれ1種でも2種以上でもよい。
 本発明において、ポリマーセグメントは、上記両構成成分以外の構成成分を有していてもよいが、上記両構成成分からなるセグメントであることが好ましい。
The above-mentioned polymer segment may have a constituent component derived from a hydrocarbon polymer having at least two hydroxy groups or amino groups and a constituent component derived from a cyclic ester compound or a carboxylic acid compound, both of which are used. The constituents may be one type or two or more types, respectively.
In the present invention, the polymer segment may have components other than the above two components, but it is preferably a segment composed of both of the above components.
 上述の、ポリマーセグメントにおいて、Rと、R若しくはRの化学構造若しくは炭素数等を適宜選択することで、後述する分散媒、とりわけ疎水性の分散媒に対する親和性を調整する(高める)ことができる。分散媒に対する親和性を更に高めると、固体電解質組成物における特定のポリマーの分散性の更なる向上が期待でき、固体粒子の結着性及び全固体二次電池の電池性能をより高い水準で実現できる。 By appropriately selecting Ra and the chemical structure or carbon number of R 1 or R 2 in the polymer segment described above, the affinity for the dispersion medium described later, particularly the hydrophobic dispersion medium, is adjusted (enhanced). be able to. Further increasing the affinity for the dispersion medium can be expected to further improve the dispersibility of a specific polymer in the solid electrolyte composition, and realize the binding property of solid particles and the battery performance of an all-solid secondary battery at a higher level. it can.
 ポリマーセグメントの数平均分子量は、特に制限されず、500を越えていることが好ましく、1500以上であることがより好ましく、3000以上であることが更に好ましい。上限は、特に制限されず、例えば、100,000以下であることが好ましく、30,000以下であることがより好ましく、10,000以下であることが更に好ましい。数平均分子量は、特定のポリマーの質量平均分子量と同様にして、標準ポリスチレン換算の数平均分子量として、測定できる。 The number average molecular weight of the polymer segment is not particularly limited, and is preferably more than 500, more preferably 1500 or more, and further preferably 3000 or more. The upper limit is not particularly limited, and is preferably 100,000 or less, more preferably 30,000 or less, and further preferably 10,000 or less. The number average molecular weight can be measured as a standard polystyrene-equivalent number average molecular weight in the same manner as the mass average molecular weight of a specific polymer.
(ヒドロキシ基若しくはアミノ基を少なくとも2つ有し、数平均分子量が500以上である炭化水素重合体に由来する構成成分)
 ヒドロキシ基若しくはアミノ基を少なくとも2つ有し、数平均分子量が500以上である炭化水素重合体に由来する構成成分(炭化水素重合体構成成分ともいう。)は、上記ポリマーセグメントを構成する構成成分であり、ヒドロキシ基若しくはアミノ基を少なくとも2つ有し、数平均分子量が500以上である炭化水素重合体が、後述する環状エステル化合物若しくはカルボン酸化合物と縮合反応して、形成される構成成分である。この構成成分は、上記炭化水素重合体のヒドロキシ基若しくはアミノ基から水素原子を除去した残基であり、上記式(1)及び式(2)中の「-X-R-X-」(X及びRは上記の通りである。)に相当する。
 この構成成分を形成する炭化水素重合体は、少なくとも2つのヒドロキシ基又は少なくとも2つのアミノ基を有し、少なくとも2つのヒドロキシ基を有することが好ましい。炭化水素重合体が有するヒドロキシ基若しくはアミノ基の数は、特に制限されないが、2~6つが好ましく、2つがより好ましい。炭化水素重合体は、主鎖のいずれの位置にヒドロキシ基若しくはアミノ基を有していてもよいが、両末端に有していることが好ましい。
(Components derived from hydrocarbon polymers having at least two hydroxy or amino groups and having a number average molecular weight of 500 or more)
A component derived from a hydrocarbon polymer having at least two hydroxy groups or amino groups and having a number average molecular weight of 500 or more (also referred to as a hydrocarbon polymer component) is a component constituting the polymer segment. A constituent component formed by a hydrocarbon polymer having at least two hydroxy groups or amino groups and having a number average molecular weight of 500 or more, which is formed by a condensation reaction with a cyclic ester compound or a carboxylic acid compound described later. is there. This constituent component is a residue obtained by removing a hydrogen atom from the hydroxy group or amino group of the above hydrocarbon polymer, and is "-X a- R a- X a- " in the above formulas (1) and (2). "(X a and Ra are as described above).
The hydrocarbon polymer forming this constituent has at least two hydroxy groups or at least two amino groups, and preferably has at least two hydroxy groups. The number of hydroxy groups or amino groups contained in the hydrocarbon polymer is not particularly limited, but is preferably 2 to 6, and more preferably 2. The hydrocarbon polymer may have a hydroxy group or an amino group at any position in the main chain, but it is preferable to have them at both ends.
 - ヒドロキシ基若しくはアミノ基を少なくとも2つ有し、数平均分子量が500以上である炭化水素重合体 -
 この炭化水素重合体は、重合性の炭化水素が(少なくとも2つ)重合してなる炭化水素ポリマーのポリマー鎖に、ヒドロキシ基若しくはアミノ基を少なくとも2つ有する重合体である。
 この炭化水素ポリマーは、炭素原子及び水素原子から構成されるオリゴマー又はポリマーであり、炭化水素ポリマーを構成する炭素原子数は、好ましくは30個以上、より好ましくは50個以上である。炭化水素ポリマーを構成する炭素原子数の上限は、特に制限されず、例えば3000個とすることができる。この炭化水素ポリマーは、主鎖が、上記炭素原子数を満たす、脂肪族炭化水素で構成される炭化水素ポリマーからなる鎖(炭化水素ポリマー鎖)が好ましく、脂肪族飽和炭化水素若しくは脂肪族不飽和炭化水素で構成されるポリマー(好ましくはエラストマー)からなる鎖であることがより好ましい。炭化水素ポリマーとしては、具体的には、主鎖に二重結合を有するジエン系ポリマー、及び、主鎖に二重結合を有しない非ジエン系ポリマーが挙げられる。ジエン系ポリマーとしては、例えば、スチレン-ブタジエン共重合体、スチレン-エチレン-ブタジエン共重合体、イソブチレンとイソプレンの共重合体(好ましくはブチルゴム(IIR))、ブタジエン重合体、イソプレン重合体及びエチレン-プロピレン-ジエン共重合体等が挙げられる。非ジエン系重合体としては、エチレン-プロピレン共重合体及びスチレン-エチレン-ブチレン共重合体等のオレフィン系重合体、並びに、上記ジエン系ポリマーの水素還元物が挙げられる。
-A hydrocarbon polymer having at least two hydroxy or amino groups and having a number average molecular weight of 500 or more-
This hydrocarbon polymer is a polymer having at least two hydroxy groups or amino groups in the polymer chain of a hydrocarbon polymer obtained by polymerizing (at least two) polymerizable hydrocarbons.
This hydrocarbon polymer is an oligomer or polymer composed of carbon atoms and hydrogen atoms, and the number of carbon atoms constituting the hydrocarbon polymer is preferably 30 or more, more preferably 50 or more. The upper limit of the number of carbon atoms constituting the hydrocarbon polymer is not particularly limited, and can be, for example, 3000. The hydrocarbon polymer is preferably a chain (hydrocarbon polymer chain) composed of an aliphatic hydrocarbon whose main chain satisfies the above-mentioned number of carbon atoms, and is preferably an aliphatic saturated hydrocarbon or an aliphatic unsaturated. More preferably, it is a chain made of a polymer (preferably an elastomer) composed of hydrocarbons. Specific examples of the hydrocarbon polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain. Examples of the diene polymer include a styrene-butadiene copolymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer, and ethylene-. Examples include propylene-diene copolymers. Examples of the non-diene polymer include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen-reduced products of the diene polymer.
 ヒドロキシ基若しくはアミノ基を少なくとも2つ有する炭化水素重合体の数平均分子量は500以上である。このポリマーの数平均分子量が500以上であると、自身の分散性に優れ、固体粒子を高い分散性で分散させる分散剤として機能するという効果が得られる。この効果をより高めることができる点で、上記数平均分子量は、1000以上が好ましく、1500以上がより好ましい。上限は、特に制限されないが、例えば、100,000未満が好ましく、30,000未満がより好ましく、10,000未満が更に好ましい。数平均分子量は、特定のポリマーの質量平均分子量と同様にして、標準ポリスチレン換算の数平均分子量として、測定できる。 The number average molecular weight of the hydrocarbon polymer having at least two hydroxy groups or amino groups is 500 or more. When the number average molecular weight of this polymer is 500 or more, it has an effect of being excellent in its own dispersibility and functioning as a dispersant for dispersing solid particles with high dispersibility. The number average molecular weight is preferably 1000 or more, and more preferably 1500 or more, in that this effect can be further enhanced. The upper limit is not particularly limited, but is preferably less than 100,000, more preferably less than 30,000, and even more preferably less than 10,000. The number average molecular weight can be measured as a standard polystyrene-equivalent number average molecular weight in the same manner as the mass average molecular weight of a specific polymer.
 ヒドロキシ基若しくはアミノ基を有する炭化水素重合体としては、例えば、いずれも商品名で、NISSO-PBシリーズ(日本曹達社製)、クレイソールシリーズ(巴工業社製)、PolyVEST-HTシリーズ(エボニック社製)、poly-bdシリーズ(出光興産社製)、poly-ipシリーズ(出光興産社製)、EPOL(出光興産社製)及びポリテールシリーズ(三菱化学社製)等が好適に用いられる。 Examples of hydrocarbon polymers having a hydroxy group or an amino group include NISSO-PB series (manufactured by Nippon Soda Co., Ltd.), Claysol series (manufactured by Tomoe Kosan Co., Ltd.), and PolyVEST-HT series (manufactured by Idemitsu Kosan) under the trade names. , Poly-bd series (manufactured by Idemitsu Kosan Co., Ltd.), poly-ip series (manufactured by Idemitsu Kosan Co., Ltd.), EPOL (manufactured by Idemitsu Kosan Co., Ltd.), Polytail series (manufactured by Mitsubishi Chemical Corporation) and the like are preferably used.
(環状エステル化合物若しくはカルボン酸化合物に由来する構成成分)
 この構成成分(酸構成成分ともいう。)は、上記ポリマーセグメントを構成する構成成分であり、環状エステル化合物若しくはカルボン酸化合物が、上述の、ヒドロキシ基若しくはアミノ基を少なくとも2つ有し、数平均分子量が500以上である炭化水素重合体と縮合反応して、形成される構成成分である。この酸構成成分は、環状エステル化合物の開環体、又は、カルボン酸化合物のカルボキシ基からヒドロキシ基を除去した残基であり、上記式(1)中の「-CO-R-O-」(Rは上記の通りである。)又は上記式(2)中の「-CO-R-CO-」(Rは上記の通りである。)に相当する。
 酸構成成分を形成する、環状エステル化合物及びカルボン酸化合物は、環状エステル化合物が好ましく、下記ラクトン化合物がより好ましい。
(Constituents derived from cyclic ester compounds or carboxylic acid compounds)
This component (also referred to as an acid component) is a component that constitutes the polymer segment, and the cyclic ester compound or the carboxylic acid compound has at least two hydroxy groups or amino groups as described above, and is number average. It is a constituent component formed by a condensation reaction with a hydrocarbon polymer having a molecular weight of 500 or more. This acid component is a ring-opened body of the cyclic ester compound or a residue obtained by removing the hydroxy group from the carboxy group of the carboxylic acid compound, and is "-CO-R 1- O-" in the above formula (1). (R 1 is as described above.) Or corresponds to "-CO-R 2- CO-" (R 2 is as described above) in the above formula (2).
As the cyclic ester compound and the carboxylic acid compound forming the acid constituent, the cyclic ester compound is preferable, and the following lactone compound is more preferable.
 - 環状エステル化合物 -
 環状エステル化合物は、少なくとも1つのエステル結合を含む環状構造を有する化合物であればよく、通常、1つのエステル結合を含む環状構造を有する化合物(ラクトン化合物)が好ましい。
 ラクトン化合物としては、特に制限されず、脂肪族ラクトン化合物、芳香族ラクトン化合物が挙げられ、脂肪族ラクトン化合物が好ましい。脂肪族ラクトン化合物としては、エステル結合と、炭素数3~15の脂肪族基(好ましくは上記式(1)のR)とからなる環状構造を有する化合物が挙げられる。具体的には、ε-カプロラクトン、4-メチルカプロラクトン、3,5,5-トリメチルカプロラクトン、3,3,5-トリメチルカプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトン等が挙げられる。中でも、入手しやすく反応性が高いことから、ε-カプロラクトン、δ-バレロラクトン、γ-バレロラクトンが好ましく、ε-カプロラクトンがより好ましい。
 ラクトン化合物は、γ-バレロラクトン等のように、置換基を有していてもよく、例えば、後述する置換基Tが挙げられ、アルキル基が好ましい。
 ラクトン化合物は、単独で用いても二種以上を用いてもよい。
-Cyclic ester compound-
The cyclic ester compound may be a compound having a cyclic structure containing at least one ester bond, and usually a compound having a cyclic structure containing one ester bond (lactone compound) is preferable.
The lactone compound is not particularly limited, and examples thereof include an aliphatic lactone compound and an aromatic lactone compound, and an aliphatic lactone compound is preferable. Examples of the aliphatic lactone compound include compounds having a cyclic structure consisting of an ester bond and an aliphatic group having 3 to 15 carbon atoms (preferably R 1 of the above formula (1)). Specifically, ε-caprolactone, 4-methylcaprolactone, 3,5,5-trimethylcaprolactone, 3,3,5-trimethylcaprolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone, γ-valero Examples thereof include lactone and enant lactone. Among them, ε-caprolactone, δ-valerolactone, and γ-valerolactone are preferable, and ε-caprolactone is more preferable because they are easily available and have high reactivity.
The lactone compound may have a substituent, such as γ-valerolactone, and examples thereof include a substituent T described later, and an alkyl group is preferable.
The lactone compound may be used alone or in combination of two or more.
 - カルボン酸化合物 -
 カルボン酸化合物は、分子内に少なくとも1つのカルボキシ基を有する化合物であればよく、少なくとも2つのカルボキシ基を有する化合物が好ましい。カルボン酸化合物が有するカルボン酸の数は、特に制限されないが、2~6つが好ましく、2つ(ジカルボン酸化合物)がより好ましい。カルボン酸化合物はヒドロキシ基、アルコキシ基を有していてもよい。本発明において、カルボン酸化合物は、上記炭化水素重合体とエステル化反応可能な化合物であり、カルボキシ基に代えて、アルキル若しくはアリールのエステル基(例えばメトキシカルボニル基)を有している化合物を包含する。
 カルボン酸化合物は、脂肪族カルボン酸化合物でも芳香族カルボン酸化合物でもよく、脂肪族カルボン酸化合物が好ましい。
-Carboxylic acid compound-
The carboxylic acid compound may be a compound having at least one carboxy group in the molecule, and a compound having at least two carboxy groups is preferable. The number of carboxylic acids contained in the carboxylic acid compound is not particularly limited, but is preferably 2 to 6, and more preferably 2 (dicarboxylic acid compound). The carboxylic acid compound may have a hydroxy group or an alkoxy group. In the present invention, the carboxylic acid compound is a compound capable of esterifying with the above hydrocarbon polymer, and includes a compound having an alkyl or aryl ester group (for example, a methoxycarbonyl group) instead of the carboxy group. To do.
The carboxylic acid compound may be an aliphatic carboxylic acid compound or an aromatic carboxylic acid compound, and an aliphatic carboxylic acid compound is preferable.
 ジカルボン酸化合物としては、特に制限されず、脂肪族ジカルボン酸化合物、芳香族ジカルボン酸化合物等が挙げられる。
 脂肪族ジカルボン酸化合物の炭素数(カルボニルを形成する炭素原子を除く。)は、特に限定されないが、1以上、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上であり、好ましくは20以下、より好ましくは16以下、更に好ましくは15以下、特に好ましくは14以下である。具体的には、マロン酸、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,9-ノナメチレンジカルボン酸、1,10-デカメチレンジカルボン酸、1,11-ウンデカメチレンジカルボン酸、1,12-ドデカメチレンジカルボン酸等が挙げられる。
 芳香族ジカルボン酸化合物の炭素数(カルボニルを形成する炭素原子を除く。)、特に限定されないが、好ましくは6~20であり、上限は、より好ましくは16以下、更に好ましくは14以下である。具体的には、オルソフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、アントラセンジカルボン酸、フェナンスレンジカルボン酸等が挙げられる。
 中でも、入手しやすく熱的安定性が高いことから、好ましくは脂肪族ジカルボン酸化合物であり、より好ましくは、マロン酸、コハク酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸であり、更に好ましくは、コハク酸、アジピン酸である。
 ジカルボン酸化合物は、無水物、アルキル若しくはアリールのエステル体、不飽和結合のハロゲン置換体等として用いることもできるが、イミド体としての使用は含まない。
 カルボン酸化合物は、置換基を有していてもよく、例えば、後述する置換基Tが挙げられる。
 カルボン酸化合物は、一種単独で、又は二種以上を用いてもよい。
The dicarboxylic acid compound is not particularly limited, and examples thereof include an aliphatic dicarboxylic acid compound and an aromatic dicarboxylic acid compound.
The carbon number of the aliphatic dicarboxylic acid compound (excluding the carbon atom forming the carbonyl) is not particularly limited, but is 1 or more, preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and preferably 4. It is 20 or less, more preferably 16 or less, still more preferably 15 or less, and particularly preferably 14 or less. Specifically, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,9-nonamethylenedicarboxylic acid, 1,10-decamethylene. Examples thereof include dicarboxylic acid, 1,11-undecamethylene dicarboxylic acid and 1,12-dodecamethylene dicarboxylic acid.
The number of carbon atoms (excluding the carbon atom forming the carbonyl) of the aromatic dicarboxylic acid compound is not particularly limited, but is preferably 6 to 20, and the upper limit is more preferably 16 or less, still more preferably 14 or less. Specific examples thereof include orthophthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, anthracendicarboxylic acid, and phenanthrenedicarboxylic acid.
Among them, it is preferably an aliphatic dicarboxylic acid compound because it is easily available and has high thermal stability, and more preferably malonic acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. , More preferably, succinic acid and adipic acid.
The dicarboxylic acid compound can also be used as an anhydride, an ester of an alkyl or aryl, an unsaturated bond halogen substituent, or the like, but does not include use as an imide compound.
The carboxylic acid compound may have a substituent, and examples thereof include a substituent T described later.
The carboxylic acid compound may be used alone or in combination of two or more.
 - ポリマーセグメントの合成 -
 ポリマーセグメントを導くポリマーの合成方法としては、特に限定されないが、例えば、ヒドロキシ基若しくはアミノ基を少なくとも2つ有する上記炭化水素重合体と、環状エステル化合物若しくはカルボン酸化合物と縮合反応とを縮合(重縮合)反応させる方法が挙げられる。縮合反応としては、公知の合成方法(エステル化法又はアミド化法)を特に制限されずに適用できる。例えば、上記炭化水素重合体と環状エステル化合物とからなるポリエステルポリオールは、無溶媒下、テトライソプロピルチタネート又はテトラブチルチタネート等の触媒存在下に、炭化水素重合体と環状エステル化合物を反応させる方法で合成できる。具体的な合成方法として、例えば実施例で説明する合成方法が挙げられる。
-Synthesis of polymer segments-
The method for synthesizing the polymer that leads to the polymer segment is not particularly limited, but for example, the above-mentioned hydrocarbon polymer having at least two hydroxy groups or amino groups is condensed (heavy) with a cyclic ester compound or a carboxylic acid compound and a condensation reaction. (Condensation) reaction method can be mentioned. As the condensation reaction, a known synthetic method (esterification method or amidation method) can be applied without particular limitation. For example, the polyester polyol composed of the above-mentioned hydrocarbon polymer and the cyclic ester compound is synthesized by a method of reacting the hydrocarbon polymer with the cyclic ester compound in the presence of a catalyst such as tetraisopropyl titanate or tetrabutyl titanate in the absence of a solvent. it can. Specific examples of the synthesis method include the synthesis method described in Examples.
 ポリマーセグメントの具体的としては、例えば、後記のポリマーの具体例に示す各セグメントを挙げることができるが、本発明はこれらに限定されない。 Specific examples of the polymer segment include, for example, each segment shown in a specific example of the polymer described later, but the present invention is not limited thereto.
 ポリマーセグメント(各構成成分及び原料化合物)は、置換基を有していてもよい。置換基としては、特に制限されないが、好ましくは下記置換基Tから選択される基が挙げられる。
 - 置換基T -
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、本明細書においてアルキル基というときには通常シクロアルキル基を含む意味であるが、ここでは別記する。)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等、本明細書においてアリールオキシ基というときにはアリーロイルオキシ基を含む意味である。)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルスルファニル基(好ましくは炭素原子数1~20のアルキルスルファニルもと、例えば、メチルスルファニル、エチルスルファニル、イソプロピルスルファニル、ベンジルスルファニル等)、アリールスルファニル基(好ましくは炭素原子数6~26のアリールスルファニル基、例えば、フェニルスルファニル、1-ナフチルスルファニル、3-メチルフェニルスルファニル、4-メトキシフェニルスルファニル等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、スルホ基(スルホン酸基)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Tから選択される基)である。
 また、これらの置換基Tで挙げた各基は、上記置換基Tが更に置換していてもよい。
 上記アルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等は、環状でも鎖状でもよく、また直鎖でも分岐していてもよい。
The polymer segment (each constituent and raw material compound) may have a substituent. The substituent is not particularly limited, but preferably, a group selected from the following substituent T can be mentioned.
-Substituent T-
Alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, for example, methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl group. (Preferably an alkenyl group having 2 to 20 carbon atoms, for example, vinyl, allyl, oleyl, etc.), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms, for example, ethynyl, butadynyl, phenylethynyl, etc.), a cycloalkyl group. (Preferably, a cycloalkyl group having 3 to 20 carbon atoms, for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., is used in the present specification to mean that an alkyl group usually includes a cycloalkyl group. An aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), an aralkyl group (preferably having 7 carbon atoms). An aralkyl group of ~ 23 (eg, benzyl, phenethyl, etc.), a heterocyclic group (preferably a heterocyclic group having 2 to 20 carbon atoms, preferably 5 or 6 having at least one oxygen atom, sulfur atom, nitrogen atom). It is a member ring heterocyclic group. The heterocyclic group includes an aromatic heterocyclic group and an aliphatic heterocyclic group. For example, a tetrahydropyran ring group, a tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-imidazolyl. , 2-Benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, pyrrolidone group, etc.), alkoxy group (preferably alkoxy group having 1 to 20 carbon atoms, for example, methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy group (preferably Preferably, an aryloxy group having 6 to 26 carbon atoms, for example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc., is used in the present specification to mean an aryloxy group including an aryloxy group. ), Heterocyclic oxy group (group in which an —O— group is bonded to the heterocyclic group), alkoxycarbonyl group (preferably alkoxycarbonyl group having 2 to 20 carbon atoms, for example, ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.) ), Aryloxycarbonyl group (preferably an aryloxycarbonyl group having 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4- Includes methoxyphenoxycarbonyl, etc.), amino groups (preferably amino groups with 0 to 20 carbon atoms, alkylamino groups, arylamino groups, etc., for example, amino (-NH 2 ), N, N-dimethylamino, N, N- Diethylamino, N-ethylamino, anilino, etc.), sulfamoyl groups (preferably sulfamoyl groups having 0 to 20 carbon atoms, for example, N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.), acyl groups (alkylcarbonyl). A group, an alkenylcarbonyl group, an alkynylcarbonyl group, an arylcarbonyl group, a heterocyclic carbonyl group, preferably an acyl group having 1 to 20 carbon atoms, for example, acetyl, propionyl, butyryl, octanoyl, hexadecanoyl, acryloyl, methacryloyl, Crotonoyl, benzoyl, naphthoyl, nicotineol, etc.), acyloxy groups (alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, heterocyclic carbonyloxy groups, etc., preferably acyloxy having 1 to 20 carbon atoms. Groups such as acetyloxy, propionyloxy, butyryloxy, octanoyloxy, hexadecanoyloxy, acryloyloxy, methacryloxy, crotonoyloxy, benzoyloxy, naphthoyloxy, nicotineoloxy, etc.), allyloyloxy groups (preferably). Is an allyloxy group having 7 to 23 carbon atoms, for example, benzoyloxy, a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, for example, N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.), acylamino. Groups (preferably acylamino groups having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), alkylsulfanyl groups (preferably alkylsulfanyl groups having 1 to 20 carbon atoms, such as methylsulfanyl, ethylsulfanyl, isopropyl. Sulfanyl, benzyl sulfanyl, etc.), aryl sulfanyl groups (preferably aryl sulfanyl groups having 6 to 26 carbon atoms, such as phenylsulfanyl, 1-naphthylsulfanyl, 3-methylphenylsulfanyl, 4-methoxyphenylsulfanyl, etc.), alkylthio groups. (Preferably an alkylthio group having 1 to 20 carbon atoms, for example, methylthio, ethylthio, isopropylthio, benzylthio, etc.), an arylthio group (preferably a carbonyl group). 6 to 26 arylthio groups such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc., heterocyclic thiogroups (groups in which -S- group is bonded to the above heterocyclic group), alkyl Sulfonyl groups (preferably alkylsulfonyl groups having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, etc.), arylsulfonyl groups (preferably arylsulfonyl groups having 6 to 22 carbon atoms, such as benzenesulfonyl, etc.), alkylsilyls. Groups (preferably alkylsilyl groups having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), arylsilyl groups (preferably arylsilyl groups having 6 to 42 carbon atoms, such as triphenylsilyl). Etc.), alkoxysilyl group (preferably alkoxysilyl group having 1 to 20 carbon atoms, for example, monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.), aryloxysilyl group (preferably 6 to 42 carbon atoms). aryloxy silyl group, for example, triphenyl oxysilyl etc.), a phosphoryl group (preferably a phosphate group having 0 to 20 carbon atoms, for example, -OP (= O) (R P) 2), a phosphonyl group (preferably phosphonyl group having 0 to 20 carbon atoms, for example, -P (= O) (R P) 2), a phosphinyl group (preferably a phosphinyl group having 0 to 20 carbon atoms, for example, -P (R P) 2) , sulfo Examples thereof include a group (sulfonic acid group), a carboxy group, a hydroxy group, a sulfanyl group, a cyano group, and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.). RP is a hydrogen atom or a substituent (preferably a group selected from the substituent T).
Further, each group listed in these substituents T may be further substituted with the above-mentioned substituent T.
The alkyl group, alkylene group, alkenyl group, alkenylene group, alkynyl group and / or alkynylene group and the like may be cyclic or chain-like, or may be linear or branched.
(その他の構成成分)
 特定のポリマーは、上記構成成分及びポリマーセグメントの他に、上記結合群(I)から選択される結合を有する上記各種ポリマーが含みうる構成成分を有していてもよい。例えば、低分子の、ポリオール化合物若しくはポリアミン化合物に由来する構成成分、高分子の(例えば後述するR5bで規定する重合鎖を分子鎖とする)、ポリオール化合物若しくはポリアミン化合物に由来する構成成分が挙げられる。
(Other components)
In addition to the above-mentioned components and polymer segments, the specific polymer may have components that can be contained in the above-mentioned various polymers having a bond selected from the above-mentioned bond group (I). For example, a component derived from a low molecular weight polyol compound or a polyamine compound, a component derived from a polymer (for example, a polymer chain defined by R 5b described later as a molecular chain), a polyol compound or a polyamine compound can be mentioned. Be done.
 特定のポリマーは、下記式(3)で表されるポリマー及び式(4)で表わされるポリマーの少なくとも1種を含むことが好ましく、下記式(3)で表されるポリマーを少なくとも1種含むことがより好ましい。下記の各式で表されるポリマーの各構成成分は、1種有していても2種以上有していてもよい。
 下記の各式で表されるポリマーの構成成分の結合様式は、特に制限されず、例えば、ランダム結合、ブロック結合、グラフト結合等が挙げられる。
The specific polymer preferably contains at least one polymer represented by the following formula (3) and one polymer represented by the following formula (4), and preferably contains at least one polymer represented by the following formula (3). Is more preferable. Each component of the polymer represented by each of the following formulas may have one kind or two or more kinds.
The bonding mode of the constituent components of the polymer represented by each of the following formulas is not particularly limited, and examples thereof include random bonding, block bonding, and graft bonding.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中、R、X、R、R、n1及びn2は、それぞれ、上記式(1)及び式(2)における、R、X、R、R、n1及びn2と同義であり、好ましいものも同じである。 Wherein, R a, X a, R 1, R 2, n1 and n2, respectively, in the formula (1) and (2), R a, X a, and R 1, R 2, n1 and n2 It is synonymous, and so is the preferred one.
 Rb1は炭素数6~22の芳香族炭化水素基又は炭素数1~15の脂肪族炭化水素基、又は、これらの基を2以上組み合わせてなる基を示す。
 Rb1として採りうる脂肪族炭化水素基の炭素数は2つの窒素原子を結ぶ最小の炭素原子数を意味し、Rb1として採りうる芳香族炭化水素基の炭素数は無置換である場合の炭素数を意味する。
 炭素数1~15(好ましくは1~13)の脂肪族炭化水素基は、飽和でも不飽和でもよく、鎖状でも環状でもよく、分岐を有していよく、例えば、上記炭素数のアルキレン基、下記式(M2)で表される芳香族の炭化水素基の水素還元体、公知の脂肪族ジイソソアネート化合物が有する部分構造(例えばイソホロンからなる基)、1,1,3-トリメチルシクロヘキサンジイル、メチレンビス(シクロヘキシレン)が挙げられる。
 炭素数6~22(好ましくは6~14、より好ましくは6~10)の芳香族炭化水素基としては、例えば、フェニレン、ナフタレンジイルが挙げられる。
 また、上記芳香族炭化水素基及び上記脂肪族炭化水素基を2以上組み合わせてなる基としては、フェニレン基及び上記脂肪族炭化水素基を2以上組み合わせてなる基がより好ましく、合計炭素数は7~15が好ましく、8~15がより好ましい。組み合わせてなる基は、分子鎖中に酸素原子、硫黄原子又は窒素原子を含む基を包含してもよい。例えば、ビフェニレン、下記式(M2)で表される芳香族炭化水素基が挙げられ、より具体的には、メチレンビス(フェニレン)、フェニレンジメチレン等が挙げられる。
R b1 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aliphatic hydrocarbon group having 1 to 15 carbon atoms, or a group formed by combining two or more of these groups.
The carbon number of the aliphatic hydrocarbon group that can be taken as R b1 means the minimum number of carbon atoms that connect two nitrogen atoms, and the carbon number of the aromatic hydrocarbon group that can be taken as R b1 is carbon when it is unsubstituted. Means a number.
The aliphatic hydrocarbon group having 1 to 15 carbon atoms (preferably 1 to 13 carbon atoms) may be saturated or unsaturated, may be chain-like or cyclic, and may have a branch. A hydrogen reduced product of an aromatic hydrocarbon group represented by the following formula (M2), a partial structure of a known aliphatic diisosoane compound (for example, a group consisting of isophorone), 1,1,3-trimethylcyclohexanediyl, methylenebis (). Cyclohexylene).
Examples of the aromatic hydrocarbon group having 6 to 22 carbon atoms (preferably 6 to 14, more preferably 6 to 10) include phenylene and naphthalene diyl.
Further, as the group composed of two or more of the aromatic hydrocarbon group and the aliphatic hydrocarbon group, a group composed of two or more of the phenylene group and the aliphatic hydrocarbon group is more preferable, and the total number of carbon atoms is 7. ~ 15 is preferable, and 8 to 15 is more preferable. The combined group may include a group containing an oxygen atom, a sulfur atom or a nitrogen atom in the molecular chain. For example, biphenylene, an aromatic hydrocarbon group represented by the following formula (M2) can be mentioned, and more specifically, methylenebis (phenylene), phenylenedimethylene and the like can be mentioned.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(M2)中、Xは、単結合、-CH-、-C(CH-、-SO-、-S-、-CO-又は-O-を示し、結着性の観点で、-CH-または-O-が好ましく、-CH-がより好ましい。ここで例示した上記アルキル基及びアルキレン基は、置換基T、好ましくはハロゲン原子(より好ましくはフッ素原子)で置換されていてもよい。
 RM2~RM5は、それぞれ、水素原子又は置換基を示し、水素原子が好ましい。RM2~RM5としてとりうる置換基としては、特に制限されないが、例えば、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM6、―N(RM6、-SRM6(RM6は置換基を示し、好ましくは炭素数1~20のアルキル基又は炭素数6~10のアリール基を示す。)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)が挙げられる。―N(RM6としては、アルキルアミノ基(炭素数は、1~20が好ましく、1~6がより好ましい)又はアリールアミノ基(炭素数は、6~40が好ましく、6~20がより好ましい)が挙げられる。
 Rb1は、置換基を有していてもよく、例えば、後述する置換基Tが挙げられる。
In formula (M2), X represents a single bond, -CH 2- , -C (CH 3 ) 2- , -SO 2- , -S-, -CO- or -O-, and is a viewpoint of binding property. Therefore, -CH 2- or -O- is preferable, and -CH 2- is more preferable. The above-mentioned alkyl group and alkylene group exemplified here may be substituted with a substituent T, preferably a halogen atom (more preferably a fluorine atom).
RM2 to RM5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable. The substituent which can be taken as RM2 to RM5 is not particularly limited, but for example, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, -OR M6 , -N ( RM6 ) 2 , and so on. -SR M6 ( RM6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom). Can be mentioned. -N ( RM6 ) 2 includes an alkylamino group (preferably 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms) or an arylamino group (preferably 6 to 40 carbon atoms, 6 to 20 carbon atoms). More preferred).
R b1 may have a substituent, and examples thereof include a substituent T described later.
 Rb2は、炭素数2~12のアルキレン基を示し、2種以上のアルキレン基を組み合わせてなる基も含む。
 Rb2として採りうるアルキレン基としては、鎖状でも環状でもよく、分岐を有していてもよく、炭素数は、2~8がより好ましく、2~6が更に好ましい。Rb2~Rb4して採りうる各アルキレン基の炭素数は2つのXを結ぶ最小の炭素原子数を意味する。
 アルキレン基としては、例えば、エチレン、1,2-プロピレン、1,3-プロピレン、1,3-ブチレン、1,4-ブチレン、へキシレン、オクチレン、シクロヘキシレン等が挙げられる。
 ただし、Rb2として採りうるアルキレン基は、後述する官能基群(II)から選択される官能基及び後述する官能基群(III)から選択される官能基を有さない。
R b2 represents an alkylene group having 2 to 12 carbon atoms, and also includes a group formed by combining two or more kinds of alkylene groups.
The alkylene group that can be taken as R b2 may be chain-like, cyclic, or may have a branch, and the number of carbon atoms is more preferably 2 to 8 and even more preferably 2 to 6. The carbon number of each alkylene group that can be obtained from R b2 to R b4 means the minimum number of carbon atoms connecting two X bs .
Examples of the alkylene group include ethylene, 1,2-propylene, 1,3-propylene, 1,3-butylene, 1,4-butylene, hexylene, octylene, cyclohexylene and the like.
However, the alkylene group that can be taken as R b2 does not have a functional group selected from the functional group group (II) described later and a functional group selected from the functional group group (III) described later.
 Rb3は、下記官能基群(II)から選択される官能基を少なくとも1つ有するアルキレン基を示す。
 Rb3として採りうるアルキレン基としては、鎖状でも環状でもよく、分岐を有していてもよく、炭素数は1~15が好ましく、1~10がより好ましく、1~8が更に好ましい。例えば、2-エチルプロピレンが挙げられる。
 下記官能基群(II)から選択される官能基は、アルキレン基のいずれの炭素原子に結合していてもよいが、2つのXb3と結合する最短の炭素鎖を構成する炭素原子に結合していることが好ましい。アルキレン基が有する官能基の数は、特に限定されないが、1~5個が好ましく、1又は2個がより好ましい。
 Rb3における下記官能基群(II)としては、上述の特定のポリマーが有する上記官能基群(II)を好ましく適用することができる。
 Rb3としては、例えば、2-エチル-2-カルボキシプロピレンが挙げられる。
<官能基群(II)>
カルボキシ基、スルホン酸基、リン酸基、アミノ基、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基及び3つ以上の環が縮環した基
R b3 represents an alkylene group having at least one functional group selected from the following functional group group (II).
The alkylene group that can be taken as R b3 may be chain-like, cyclic, or may have a branch, and the number of carbon atoms is preferably 1 to 15, more preferably 1 to 10, and even more preferably 1 to 8. For example, 2-ethylpropylene can be mentioned.
The functional group selected from the functional group group (II) below may be bonded to any carbon atom of the alkylene group, but is bonded to the carbon atom constituting the shortest carbon chain to be bonded to the two X b3s. Is preferable. The number of functional groups contained in the alkylene group is not particularly limited, but is preferably 1 to 5, and more preferably 1 or 2.
As the following functional group group (II) in R b3, the above functional group group (II) possessed by the above-mentioned specific polymer can be preferably applied.
Examples of R b3 include 2-ethyl-2-carboxypropylene.
<Functional group group (II)>
A carboxy group, a sulfonic acid group, a phosphoric acid group, an amino group, a hydroxy group, a sulfanyl group, an isocyanato group, an alkoxysilyl group and a group in which three or more rings are fused.
 Rb4は、下記官能基群(III)から選択される官能基を少なくとも1つ有するアルキレン基を示す。
 Rb4として採りうるアルキレン基としては、鎖状でも環状でもよく、分岐を有していてもよく、炭素数は1~15が好ましく、1~10がより好ましく、1~8が更に好ましい。例えば、プロピレンが挙げられる。
 下記官能基群(III)から選択される官能基は、アルキレン基のいずれの炭素原子に結合していてもよい。アルキレン基が有する官能基の数は、特に限定されないが、1~5個が好ましく、1又は2個がより好ましい。
 Rb4における下記官能基群(III)としては、上述の特定のポリマーが有する上記官能基群(III)を好ましく適用することができる。
<官能基群(III)>
炭素-炭素不飽和結合を有する基、エポキシ基及びオキセタニル基
 なお、上記群から選択される官能基は、上述のように、架橋した形態を含む。
R b4 represents an alkylene group having at least one functional group selected from the following functional group group (III).
The alkylene group that can be taken as R b4 may be chain-like or cyclic, may have a branch, and has a carbon number of 1 to 15, more preferably 1 to 10, and even more preferably 1 to 8. For example, propylene can be mentioned.
The functional group selected from the following functional group group (III) may be bonded to any carbon atom of the alkylene group. The number of functional groups contained in the alkylene group is not particularly limited, but is preferably 1 to 5, and more preferably 1 or 2.
As the following functional group group (III) in R b4, the above functional group group (III) possessed by the above-mentioned specific polymer can be preferably applied.
<Functional group group (III)>
Group having carbon-carbon unsaturated bond, epoxy group and oxetanyl group The functional group selected from the above group includes a crosslinked form as described above.
 Rb5は、数平均分子量100以上の2価の鎖であって、ポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖若しくはシリコーン鎖、又は、これらの鎖を2以上組み合わせてなる鎖を示す。
 Rb5として採りうる上記各鎖の数平均分子量は、100~100000が好ましく、100~10000がより好ましく、150~5000が更に好ましい。数平均分子量は、特定のポリマーの質量平均分子量と同様にして、標準ポリスチレン換算の数平均分子量として、測定できる。
R b5 is a divalent chain having a number average molecular weight of 100 or more, and represents a polyalkylene oxide chain, a polycarbonate chain, a polyester chain or a silicone chain, or a chain formed by combining two or more of these chains.
The number average molecular weight of each of the above chains that can be taken as R b5 is preferably 100 to 100,000, more preferably 100 to 10000, and even more preferably 150 to 5000. The number average molecular weight can be measured as a standard polystyrene-equivalent number average molecular weight in the same manner as the mass average molecular weight of a specific polymer.
 Rb5として採りうるポリアルキレンオキシド鎖は、特に制限されない。アルキレンオキシド鎖を構成するアルキレン基の炭素数は、1~10が好ましく、1~8がより好ましく、1~6が更に好ましく、2又は3が特に好ましい態様の1つである。アルキレンオキシド鎖を構成するアルキレンオキシ基の合計繰り返し数は、1~100が好ましく、3~100がより好ましく、4~50が更に好ましい。Rb5としてポリアルキレンオキシド鎖を有する構成成分は、1種でもよいが、電池性能の点で、2種以上であることが好ましく、2種であることがより好ましい。この場合、ポリアルキレンオキシド鎖の組み合わせは特に制限されず、例えば、エチレンオキシド鎖を含むことが好ましく、エチレンオキシド鎖若しくはプロピレンオキシド鎖と炭素数4以上のアルキレンオキシド鎖との組み合わせが挙げられる。
 Rb5として採りうるポリカーボネート鎖は、特に制限されない。カーボネート鎖を構成する繰り返し単位の炭素数は、1~15が好ましく、1~10がより好ましい。カーボネート鎖を構成する繰り返し単位の繰り返し数は、4~40が好ましく、4~20がより好ましい。
 Rb5として採りうるポリエステル鎖は、ポリ(アルキレン-エステル)鎖又はポリ(アリーレン-エステル)鎖を意味し、上述のポリマーセグメントを包含しない。ポリエステル鎖を構成するアルキレン基の炭素数は、1~10が好ましく、1~8がより好ましく、ポリエステル鎖を構成するアリーレン基の炭素数は、6~14が好ましく、6~10がより好ましい。ポリエステル鎖を構成する繰り返し単位の繰り返し数は、2~40が好ましく、2~20がより好ましい。
 Rb5として採りうるシリコーン鎖は、シロキサン結合(-Si-O-、Si原子はアルキル基、アリール基等の有機基を2つ有する。)を有する鎖を意味し、シロキサン結合の繰り返し数は、1~200が好ましく、1~100がより好ましい。
The polyalkylene oxide chain that can be taken as R b5 is not particularly limited. The carbon number of the alkylene group constituting the alkylene oxide chain is preferably 1 to 10, more preferably 1 to 8, further preferably 1 to 6, and particularly preferably 2 or 3. The total number of repetitions of the alkyleneoxy groups constituting the alkylene oxide chain is preferably 1 to 100, more preferably 3 to 100, and even more preferably 4 to 50. The component having a polyalkylene oxide chain as R b5 may be one kind, but in terms of battery performance, it is preferably two or more kinds, and more preferably two kinds. In this case, the combination of the polyalkylene oxide chain is not particularly limited, and for example, it preferably contains an ethylene oxide chain, and examples thereof include a combination of an ethylene oxide chain or a propylene oxide chain and an alkylene oxide chain having 4 or more carbon atoms.
The polycarbonate chain that can be taken as R b5 is not particularly limited. The number of carbon atoms of the repeating unit constituting the carbonate chain is preferably 1 to 15, and more preferably 1 to 10. The number of repetitions of the repeating unit constituting the carbonate chain is preferably 4 to 40, more preferably 4 to 20.
The polyester chain that can be taken as R b5 means a poly (alkylene-ester) chain or a poly (arylene-ester) chain and does not include the above-mentioned polymer segment. The carbon number of the alkylene group constituting the polyester chain is preferably 1 to 10, more preferably 1 to 8, and the carbon number of the arylene group constituting the polyester chain is preferably 6 to 14, more preferably 6 to 10. The number of repetitions of the repeating unit constituting the polyester chain is preferably 2 to 40, more preferably 2 to 20.
The silicone chain that can be taken as R b5 means a chain having a siloxane bond (-Si—O—, Si atom has two organic groups such as an alkyl group and an aryl group), and the number of repetitions of the siloxane bond is 1 to 200 is preferable, and 1 to 100 is more preferable.
 Rb5として採りうる各鎖は、使用する市販品の構造等に基づくポリマー合成の都合上、その末端にアルキレン基等の基を有していてもよい。
 Rb5として採りうる各鎖において、鎖を構成する繰り返し単位の合計繰り返し数とは、異なる構造の鎖(例えば、ポリエチレンオキシド鎖とポリプロピレンオキシド鎖)を有する場合には、各鎖を構成する繰り返し単位の繰り返し数の合計を意味する。
 また、Rb5として採りうる、上記鎖を組み合わせてなる鎖としては、例えば、ポリアルキレンオキシド鎖とポリカーボネート鎖又はポリエステル鎖とを組み合わせてなる鎖が挙げられ、ポリアルキレンオキシド鎖中にポリカーボネート鎖又はポリエステル鎖を有する鎖が好ましい。
Each chain that can be taken as R b5 may have a group such as an alkylene group at the end thereof for the convenience of polymer synthesis based on the structure of a commercially available product to be used.
In each chain that can be taken as R b5 , when the chain has a structure different from the total number of repeating units constituting the chain (for example, polyethylene oxide chain and polypropylene oxide chain), the repeating unit constituting each chain Means the total number of repetitions of.
Further, examples of the chain formed by combining the above chains that can be taken as R b5 include a chain formed by combining a polyalkylene oxide chain and a polycarbonate chain or a polyester chain, and the polycarbonate chain or polyester is included in the polyalkylene oxide chain. A chain having a chain is preferable.
 Xb2、Xb3、Xb4及びXb5は、それぞれ、酸素原子又は-NH-を示す。
 各構成成分において、2つ有するXb2、Xb3、Xb4及びXb5は、それぞれ、同一でも異なってもよいが、同一であることが好ましい。
X b2 , X b3 , X b4 and X b5 each represent an oxygen atom or -NH-.
In each component, the two X b2 , X b3 , X b4 and X b5 may be the same or different, but are preferably the same.
 a、b、c、d、e及びfは、各構造成分のモル比を示し、a+b+c+d+e+f=100モル%である。c+d+e+fの合計は、0モル%であってもよいが、0モル%ではないことが好ましく、40モル%以上であることがより好ましい。
 aとしては、特に制限されないが、固体粒子の分散性及び結着性、更には固体二次電池の電池性能の点で、0.1~30モル%が好ましく、0.3~20モル%がより好ましく、0.5~15モル%が更に好ましく、1~10モル%が特に好ましい。
 bは、40~60モル%が好ましく、43~58モル%がより好ましく、45~55モル%が更に好ましい。
 cは、0~30モル%が好ましく、0~25モル%がより好ましく、0~20モル%が更に好ましく、0~15モル%が特に好ましい。
 dは、0~49モル%が好ましく、0.1~40モル%がより好ましく、1~30モル%が更に好ましく、3~25モル%が特に好ましい。
 eは、0~30モル%が好ましく、0~25モル%がより好ましく、0~20モル%が更に好ましく、0~10モル%が特に好ましい。
 fは、0~49モル%が好ましく、5~49モル%がより好ましく、10~47モル%が更に好ましく、20~45モル%が特に好ましい。
a, b, c, d, e and f indicate the molar ratio of each structural component, and a + b + c + d + e + f = 100 mol%. The total of c + d + e + f may be 0 mol%, but is preferably not 0 mol%, and more preferably 40 mol% or more.
The a is not particularly limited, but is preferably 0.1 to 30 mol%, preferably 0.3 to 20 mol%, in terms of the dispersibility and binding property of the solid particles and the battery performance of the solid secondary battery. More preferably, 0.5 to 15 mol% is further preferable, and 1 to 10 mol% is particularly preferable.
b is preferably 40 to 60 mol%, more preferably 43 to 58 mol%, still more preferably 45 to 55 mol%.
c is preferably 0 to 30 mol%, more preferably 0 to 25 mol%, further preferably 0 to 20 mol%, and particularly preferably 0 to 15 mol%.
d is preferably 0 to 49 mol%, more preferably 0.1 to 40 mol%, further preferably 1 to 30 mol%, and particularly preferably 3 to 25 mol%.
e is preferably 0 to 30 mol%, more preferably 0 to 25 mol%, further preferably 0 to 20 mol%, and particularly preferably 0 to 10 mol%.
f is preferably 0 to 49 mol%, more preferably 5 to 49 mol%, further preferably 10 to 47 mol%, and particularly preferably 20 to 45 mol%.
 上記モル比a~fを含有量(質量%)で規定すると、以下の範囲が好ましく、合計で100質量%となる。
 aの含有量(質量%)は上述の通りである。
 bの含有量(質量%)は、特に制限されず、20~60質量%が好ましく、25~55質量%がより好ましく、30~50質量%が更に好ましい。
 cの含有量(質量%)は、特に制限されず、0~25質量%が好ましく、0~15質量%がより好ましく、0~10質量%が更に好ましい。
 dの含有量(質量%)は、特に制限されず、0~40質量%が好ましく、1~25質量%がより好ましく、1~15質量%が更に好ましい。
 eの含有量(質量%)は、特に制限されず、0~20質量%が好ましく、0~15質量%がより好ましく、0~10質量%が更に好ましい。
 fの含有量(質量%)は、特に制限されず、0~55質量%が好ましく、10~50質量%がより好ましく、20~40質量%が更に好ましい。
When the molar ratios a to f are defined by the content (mass%), the following range is preferable, and the total is 100% by mass.
The content (mass%) of a is as described above.
The content (% by mass) of b is not particularly limited, and is preferably 20 to 60% by mass, more preferably 25 to 55% by mass, and even more preferably 30 to 50% by mass.
The content (% by mass) of c is not particularly limited, and is preferably 0 to 25% by mass, more preferably 0 to 15% by mass, and even more preferably 0 to 10% by mass.
The content (% by mass) of d is not particularly limited, and is preferably 0 to 40% by mass, more preferably 1 to 25% by mass, still more preferably 1 to 15% by mass.
The content (% by mass) of e is not particularly limited, and is preferably 0 to 20% by mass, more preferably 0 to 15% by mass, and even more preferably 0 to 10% by mass.
The content (% by mass) of f is not particularly limited, and is preferably 0 to 55% by mass, more preferably 10 to 50% by mass, and even more preferably 20 to 40% by mass.
 特定のポリマーは、非晶質であることが好ましい。本発明において、ポリマーが「非晶質」であるとは、典型的には、ガラス転移温度で測定したときに結晶融解に起因する吸熱ピークが見られないことをいう。 The specific polymer is preferably amorphous. In the present invention, the term "amorphous" as a polymer typically means that no endothermic peak due to crystal melting is observed when measured at the glass transition temperature.
 特定のポリマーの質量平均分子量は、特に制限されない。例えば、5000以上が好ましく、10,000以上がより好ましく、20,000以上が更に好ましい。上限としては、5,000,000以下が好ましく、500,000以下がより好ましく、200,000以下が更に好ましい。
-分子量の測定-
 本発明において、質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量を計測する。測定法としては、基本として下記条件1又は条件2(優先)の方法により測定した値とする。ただし、測定する重合体(特定のポリマー等)の種類によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-Hを2本つなげる
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000をつないだカラムを用いる
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
The mass average molecular weight of a particular polymer is not particularly limited. For example, 5000 or more is preferable, 10,000 or more is more preferable, and 20,000 or more is further preferable. The upper limit is preferably 5,000,000 or less, more preferably 500,000 or less, still more preferably 200,000 or less.
-Measurement of molecular weight-
In the present invention, the mass average molecular weight is measured by gel permeation chromatography (GPC) in terms of standard polystyrene. As a measurement method, the value is basically measured by the method of condition 1 or condition 2 (priority) below. However, an appropriate eluent may be appropriately selected and used depending on the type of polymer (specific polymer, etc.) to be measured.
(Condition 1)
Column: Connect two TOSOH TSKgel Super AWM-H Carrier: 10 mM LiBr / N-methylpyrrolidone Measurement temperature: 40 ° C.
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector (condition 2)
Column: Use a column connected with TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, TOSOH TSKgel Super HZ2000 Carrier: tetrahydrofuran Measurement temperature: 40 ° C.
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
 この特定のポリマーは、非架橋ポリマーであっても架橋ポリマーであってもよい。また、加熱又は電圧の印加によって特定のポリマーの架橋が進行した場合には、上記分子量より大きな分子量となっていてもよい。好ましくは、全固体二次電池の使用開始時に特定のポリマーが上記範囲の質量平均分子量であることである。 This specific polymer may be a non-crosslinked polymer or a crosslinked polymer. Further, when the cross-linking of a specific polymer proceeds by heating or application of a voltage, the molecular weight may be larger than the above molecular weight. Preferably, the particular polymer has a mass average molecular weight in the above range at the start of use of the all-solid-state secondary battery.
 特定のポリマーの形状は、特に制限されないが、粒子状であることが好ましい。粒子状は、偏平状、無定形等であってもよいが、球状若しくは顆粒状が好ましい。粒子状ポリマーの粒子径は、特に制限されないが、10~1000nmであることが好ましい。これにより、固体電解質組成物の分散性と固体粒子間等の結着性とを改善できる。分散性、結着性を更に改善できる点で、粒子径は、20~500nmが好ましく、30~300nmがより好ましく、50~200nmが更に好ましい。粒子状ポリマーの粒子径は、希釈溶媒を適宜変更することで(例えばポリマー分散液と同じ溶媒、より具体的にはヘプタン、ジイソブチルケトン、酪酸ブチル等の疎水性の溶媒)無機固体電解質と同様にして測定できる。
 なお、全固体二次電池の構成層における粒子状ポリマーの粒子径は、例えば、電池を分解して粒子状ポリマーを含有する構成層を剥がした後、その構成層について測定を行い、予め測定していた粒子状ポリマー以外の粒子の粒子径の測定値を排除することにより、測定することができる。
 粒子状ポリマーの粒子径は、例えば、分散媒の種類、ポリマー中の構成成分の含有量及び含有量等により、調整できる。
The shape of the specific polymer is not particularly limited, but is preferably particulate. The particles may be flat, amorphous, etc., but are preferably spherical or granular. The particle size of the particulate polymer is not particularly limited, but is preferably 10 to 1000 nm. Thereby, the dispersibility of the solid electrolyte composition and the binding property between the solid particles can be improved. The particle size is preferably 20 to 500 nm, more preferably 30 to 300 nm, and even more preferably 50 to 200 nm in that the dispersibility and binding property can be further improved. The particle size of the particulate polymer is the same as that of the inorganic solid electrolyte by appropriately changing the diluting solvent (for example, the same solvent as the polymer dispersion, more specifically, a hydrophobic solvent such as heptane, diisobutylketone, butyl butyrate, etc.). Can be measured.
The particle size of the particulate polymer in the constituent layers of the all-solid secondary battery is measured in advance by, for example, disassembling the battery and peeling off the constituent layer containing the particulate polymer, and then measuring the constituent layers. It can be measured by excluding the measured value of the particle size of the particles other than the particulate polymer.
The particle size of the particulate polymer can be adjusted, for example, by the type of dispersion medium, the content and content of constituents in the polymer, and the like.
 特定のポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。また、この特定のポリマーは、晶析させて乾燥させてもよく、ポリマー分散液をそのまま用いてもよい。 The water concentration of the specific polymer is preferably 100 ppm (mass basis) or less. Further, this specific polymer may be crystallized and dried, or the polymer dispersion may be used as it is.
 - 特定のポリマーの合成方法 -
 特定のポリマーの合成方法は、公知の重合方法を特に制限されずに適用できる。例えば、実施例で説明する重合方法が挙げられる。
 合成に用いる化合物としては、例えば、特許文献1に記載の各化合物が挙げられる。
-Method of synthesizing a specific polymer-
As a method for synthesizing a specific polymer, a known polymerization method can be applied without particular limitation. For example, the polymerization method described in Examples can be mentioned.
Examples of the compound used for the synthesis include each compound described in Patent Document 1.
 以下に、特定のポリマーの具体例を挙げるが、本発明はこれらに限定されない。
 各具体例においては、特定のポリマーを構成する構成成分を示し、そのモル比は適宜に設定される。
Specific examples of specific polymers are given below, but the present invention is not limited thereto.
In each specific example, the constituent components constituting a specific polymer are shown, and the molar ratio thereof is appropriately set.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明の固体電解質組成物は、特定のポリマーを1種単独で含有していても、2種以上含有していてもよい。
 固体電解質組成物中の、特定のポリマーの含有量は、その固形分中、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.3質量%以上が特に好ましい。上限としては、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましい。特定のポリマーを上記の範囲で用いることにより、より一層効果的に固体粒子の結着性を高めることができ、更には電池性能を向上できる。
 本発明では、特定のポリマーの質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/特定のポリマーの質量]は、1,000~1の範囲が好ましい。この比率は更に500~2がより好ましく、100~10が更に好ましい。
The solid electrolyte composition of the present invention may contain a specific polymer alone or in combination of two or more.
The content of the specific polymer in the solid electrolyte composition is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and 0. .3% by mass or more is particularly preferable. As the upper limit, 10% by mass or less is preferable, 5% by mass or less is more preferable, and 3% by mass or less is further preferable. By using a specific polymer in the above range, the binding property of solid particles can be enhanced more effectively, and the battery performance can be further improved.
In the present invention, the mass ratio of the total mass (total mass) of the inorganic solid electrolyte and the active material to the mass of the specific polymer [(mass of the inorganic solid electrolyte + mass of the active material) / mass of the specific polymer] is 1, The range of 000 to 1 is preferable. This ratio is more preferably 500 to 2, and even more preferably 100 to 10.
<分散媒>
 本発明の固体電解質組成物が含有する分散媒(分散媒体)は、上記の各成分を分散又は溶解させるものであればよく、ポリマーの粒子及び固体粒子を分散させるものが好ましい。分散媒としては、例えば、各種の有機溶媒が挙げられる。有機溶媒としては、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等の各溶媒が挙げられる。
 分散媒としては、疎水性の分散媒でも親水性の分散媒でもよいが、上記ポリマーの優れた分散性を発現できる点で、疎水性の分散媒が好ましい。本発明において、疎水性とは、一般に水に対する親和性が低い性質をいうが、本発明においては、更に上述の特定のポリマーが有するポリマーセグメント、とりわけ炭化水素重合体に対する親和性が高い性質をいう。具体的には、芳香族化合物、脂肪族化合物、ケトン化合物又はエステル化合物の各分散媒が挙げられる。
<Dispersion medium>
The dispersion medium (dispersion medium) contained in the solid electrolyte composition of the present invention may be any one that disperses or dissolves each of the above components, and preferably one that disperses polymer particles and solid particles. Examples of the dispersion medium include various organic solvents. Examples of the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds and the like.
The dispersion medium may be either a hydrophobic dispersion medium or a hydrophilic dispersion medium, but a hydrophobic dispersion medium is preferable because it can exhibit excellent dispersibility of the polymer. In the present invention, hydrophobicity generally refers to a property having a low affinity for water, but in the present invention, it further refers to a property having a high affinity for a polymer segment, particularly a hydrocarbon polymer, possessed by the above-mentioned specific polymer. .. Specific examples thereof include dispersion media of aromatic compounds, aliphatic compounds, ketone compounds and ester compounds.
 上記各溶媒の具体例を以下に示す。
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
Specific examples of each of the above solvents are shown below.
Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol can be mentioned.
 エーテル化合物としては、例えば、アルキレングリコール(ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール等)、アルキレングリコールモノアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。 Examples of the ether compound include alkylene glycol (diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.), alkylene glycol monoalkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, etc.). Dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dialkyl ether (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ether (tetrahydrofuran, dioxane (1,2-, 1,2-, etc.) (Including each isomer of 1,3- and 1,4-), etc.).
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。 Examples of the amide compound include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ε-caprolactam, formamide, N-methylformamide and acetamide. , N-Methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素化合物が挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどの脂肪族炭化水素化合物が挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピオニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ペンタン酸ブチル、イソ酪酸エチル、イソ酪酸プロピル、イソ酪酸イソプロピル、イソ酪酸イソブチル、ピバル酸プロピル、ピバル酸イソプロピル、ピバル酸ブチル、ピバル酸イソブチルなどのカルボン酸エステル化合物等が挙げられる。
 非水系分散媒としては、上記芳香族化合物、脂肪族化合物等が挙げられる。
Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and diisobutyl ketone.
Examples of the aromatic compound include aromatic hydrocarbon compounds such as benzene, toluene and xylene.
Examples of the aliphatic compound include aliphatic hydrocarbon compounds such as hexane, heptane, octane, and decane.
Examples of the nitrile compound include acetonitrile, propionitrile, isobutyronitrile and the like.
Examples of the ester compound include ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutyrate and pivalic acid. Examples thereof include carboxylic acid ester compounds such as propyl, isopropyl pivalate, butyl pivalate, and isobutyl pivalate.
Examples of the non-aqueous dispersion medium include the above aromatic compounds and aliphatic compounds.
 本発明においては、中でも、エーテル化合物、ケトン化合物、芳香族化合物、脂肪族化合物又はエステル化合物が好ましく、ケトン化合物、脂肪族化合物又はエステル化合物が更に好ましい。本発明においては、硫化物系無機固体電解質を用いて、更に上記の特定の有機溶媒を選定することが好ましい。この組み合わせを選定することにより、硫化物系無機固体電解質に対して活性な官能基が含まれないため硫化物系無機固体電解質を安定に取り扱える。特に硫化物系無機固体電解質と脂肪族化合物との組み合わせが好ましい。 In the present invention, among them, ether compounds, ketone compounds, aromatic compounds, aliphatic compounds or ester compounds are preferable, and ketone compounds, aliphatic compounds or ester compounds are more preferable. In the present invention, it is preferable to further select the above-mentioned specific organic solvent by using a sulfide-based inorganic solid electrolyte. By selecting this combination, the sulfide-based inorganic solid electrolyte can be handled stably because it does not contain a functional group that is active with respect to the sulfide-based inorganic solid electrolyte. In particular, a combination of a sulfide-based inorganic solid electrolyte and an aliphatic compound is preferable.
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。
 上記分散媒は、1種を単独で含有していても、2種以上を含有していてもよい。
The dispersion medium preferably has a boiling point of 50 ° C. or higher at normal pressure (1 atm), and more preferably 70 ° C. or higher. The upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
The dispersion medium may contain one kind alone or two or more kinds.
 本発明において、固体電解質組成物中の、分散媒の含有量は、特に制限されず適宜に設定することができる。例えば、固体電解質組成物中、20~99質量%が好ましく、25~70質量%がより好ましく、30~60質量%が特に好ましい。 In the present invention, the content of the dispersion medium in the solid electrolyte composition is not particularly limited and can be appropriately set. For example, in the solid electrolyte composition, 20 to 99% by mass is preferable, 25 to 70% by mass is more preferable, and 30 to 60% by mass is particularly preferable.
<活物質>
 本発明の固体電解質組成物には、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質を含有することもできる。活物質としては、以下に説明するが、正極活物質及び負極活物質が挙げられる。
 本発明において、活物質(正極活物質又は負極活物質)を含有する固体電解質組成物を電極層用組成物(正極層用組成物又は負極層用組成物)ということがある。
<Active material>
The solid electrolyte composition of the present invention may also contain an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table. Examples of the active material include a positive electrode active material and a negative electrode active material, which will be described below.
In the present invention, a solid electrolyte composition containing an active material (positive electrode active material or negative electrode active material) may be referred to as an electrode layer composition (positive electrode layer composition or negative electrode layer composition).
(正極活物質)
 正極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であり、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(Positive electrode active material)
The positive electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an element that can be composited with Li such as an organic substance or sulfur, or a composite of sulfur and a metal. Examples of the substance, it is preferable to use a transition metal oxide, a transition metal element M a transition metal oxide having (Co, Ni, Fe, Mn , 1 or more elements selected from Cu and V) a more preferred .. Further, the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed. The mixing amount is preferably 0 ~ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphoric acid compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound, and the like.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
(MA) Specific examples of the transition metal oxide having a layered rock salt structure include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickel oxide).
(MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. Examples thereof include cobalt phosphates of the above and monoclinic panocycon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Examples of cobalt fluoride phosphates such as.
Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の粒子径(体積平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質粒子の粒子径は、上記無機固体電解質の粒子径と同様にして測定できる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水又はメタノール等の有機溶媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級は、特に限定はなく、篩、風力分級機などを用いて行うことができる。分級は乾式及び湿式ともに用いることができる。
 焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
The shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles. The particle size (volume average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 μm. The particle size of the positive electrode active material particles can be measured in the same manner as the particle size of the above-mentioned inorganic solid electrolyte. A normal crusher or classifier is used to adjust the positive electrode active material to a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling flow jet mill, a sieve, or the like is preferably used. At the time of pulverization, wet pulverization in which an organic solvent such as water or methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size. The classification is not particularly limited, and can be performed using a sieve, a wind power classifier, or the like. Both dry and wet classifications can be used.
The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
As the positive electrode active material, one type may be used alone, or two or more types may be used in combination.
When the positive electrode active material layer is formed, the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
 正極活物質の、固体電解質組成物中における含有量は特に制限されず、固形分100質量%において、10~97質量%が好ましく、30~95質量%がより好ましく、40~93質量が更に好ましく、50~90質量%が特に好ましい。 The content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, still more preferably 40 to 93% by mass, based on 100% by mass of the solid content. , 50-90% by mass is particularly preferable.
(負極活物質)
 負極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であり、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、リチウム単体、リチウム合金、リチウムと合金形成可能(合金化可能)な負極活物質等が挙げられる。中でも、炭素質材料、金属複合酸化物又はリチウム単体が信頼性の点から好ましく用いられる。全固体二次電池の大容量化が可能となる点では、リチウムと合金化可能な活物質が好ましい。本発明の固体電解質組成物で形成した構成層は固体粒子同士が強固に結着しているため、負極活物質としてリチウムと合金形成可能な負極活物質を用いることができる。これにより、全固体二次電池の大容量化と電池の長寿命化とが可能となる。
(Negative electrode active material)
The negative electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and is a negative electrode activity capable of forming an alloy with a carbonaceous material, a metal oxide, a metal composite oxide, a single lithium substance, a lithium alloy, or lithium. Examples include substances. Of these, carbonaceous materials, metal composite oxides, or elemental lithium are preferably used from the viewpoint of reliability. An active material that can be alloyed with lithium is preferable in that the capacity of the all-solid-state secondary battery can be increased. Since the solid particles are firmly bonded to each other in the constituent layer formed of the solid electrolyte composition of the present invention, a negative electrode active material capable of forming an alloy with lithium can be used as the negative electrode active material. This makes it possible to increase the capacity of the all-solid-state secondary battery and extend the life of the battery.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
The carbonaceous material used as the negative electrode active material is a material substantially composed of carbon. For example, various synthesis of petroleum pitch, carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin. Examples thereof include carbonic materials obtained by firing a resin. Furthermore, various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polypoly alcohol) -based carbon fibers, lignin carbon fibers, graphitic carbon fibers and activated carbon fibers. Kind, mesophase microspheres, graphite whisker, flat graphite and the like can also be mentioned.
These carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization. Further, the carbonaceous material preferably has the interplanar spacing or density and the size of crystallites described in JP-A-62-22066, JP-A-2-6856, and JP-A-3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like should be used. You can also.
As the carbonaceous material, hard carbon or graphite is preferably used, and graphite is more preferably used.
 負極活物質として適用される金属若しくは半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、金属元素の酸化物(金属酸化物)、金属元素の複合酸化物若しくは金属元素と半金属元素との複合酸化物(纏めて金属複合酸化物という。)、半金属元素の酸化物(半金属酸化物)が挙げられる。これらの酸化物としては、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイドも好ましく挙げられる。本発明において、半金属元素とは、金属元素と非半金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、更にはセレン、ポロニウム及びアスタチンの3元素を含む。また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°~70°に見られる結晶性の回折線の内最も強い強度が、2θ値で20°~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 The metal or semi-metal element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of storing and releasing lithium, and is a composite of a metal element oxide (metal oxide) and a metal element. Examples thereof include oxides or composite oxides of metal elements and semi-metal elements (collectively referred to as metal composite oxides) and oxides of semi-metal elements (semi-metal oxides). As these oxides, amorphous oxides are preferable, and chalcogenides, which are reaction products of metal elements and elements of Group 16 of the Periodic Table, are also preferable. In the present invention, the metalloid element means an element exhibiting properties intermediate between a metalloid element and a non-metalloid element, and usually contains six elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and astatine. Amorphous means an X-ray diffraction method using CuKα rays, which has a broad scattering zone having an apex in a region of 20 ° to 40 ° in 2θ value, and a crystalline diffraction line is used. You may have. The strongest intensity of the crystalline diffraction lines seen at the 2θ value of 40 ° to 70 ° is 100 times or less of the diffraction line intensity at the apex of the broad scattering band seen at the 2θ value of 20 ° to 40 °. It is preferable that it is 5 times or less, and it is particularly preferable that it does not have a crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb又はSbが好ましく挙げられる。
 Sn、Si、Geを中心とする非晶質酸化物に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な負極活物質が好適に挙げられる。
Among the compound group consisting of the amorphous oxide and the chalcogenide, the amorphous oxide of the metalloid element or the chalcogenide is more preferable, and the elements of the groups 13 (IIIB) to 15 (VB) of the periodic table (for example). , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) alone or a combination of two or more (composite) oxides, or chalcogenides are particularly preferred. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2. O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , GeS, PbS, PbS 2 , Sb 2 S 3 or Sb 2 S 5 is preferably mentioned.
Negative negative active materials that can be used in combination with amorphous oxides such as Sn, Si, and Ge include carbonaceous materials that can occlude and / or release lithium ions or lithium metals, lithium alone, lithium alloys, and lithium. A negative electrode active material that can be alloyed with is preferably mentioned.
 金属若しくは半金属元素の酸化物、とりわけ金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。
 負極活物質、例えば金属酸化物は、チタン元素を含有すること(チタン酸化物)も好ましい。具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
It is preferable that the oxide of a metal or a metalloid element, particularly a metal (composite) oxide and the chalcogenide, contains at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. Examples of the lithium-containing metal composite oxide (lithium composite metal oxide) include lithium oxide and the metal (composite) oxide or a composite oxide of the chalcogenide, more specifically, Li 2 SnO 2. Can be mentioned.
It is also preferable that the negative electrode active material, for example, a metal oxide, contains a titanium element (titanium oxide). Specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) has excellent rapid charge / discharge characteristics due to small volume fluctuations during storage and release of lithium ions, and electrode deterioration is suppressed, resulting in a lithium ion secondary battery. It is preferable in that the life of the battery can be improved.
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。 The lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質は、充放電による膨張収縮が大きく、上述のように固体粒子の結着性が低下するが、本発明では特定のポリマーにより高い結着性を達成できる。このような活物質として、ケイ素元素若しくはスズ元素を有する負極活物質(合金)、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素元素を有する負極活物質(ケイ素元素含有活物質)が好ましく、ケイ素元素の含有量が全構成元素の50mol%以上のケイ素元素含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(例えば、ケイ素元素含有活物質を含有するSi負極、スズ元素を有する活物質を含有するSn負極)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量(エネルギー密度)を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素元素含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅、ランタン等を含むケイ素含有合金(例えば、LaSi、VSi、La-Si、Gd-Si、Ni-Si)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素元素及びスズ元素を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な負極活物質(その前駆体物質)として用いることができる。
 スズ元素を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素元素及びスズ元素を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOを挙げることもできる。
The negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery. Such an active material has a large expansion and contraction due to charge and discharge, and the binding property of solid particles is lowered as described above, but in the present invention, a high binding property can be achieved by a specific polymer. Examples of such an active material include a negative electrode active material (alloy) having a silicon element or a tin element, and each metal such as Al and In, and a negative negative active material (silicon element) having a silicon element that enables a higher battery capacity. (Containing active material) is preferable, and a silicon element-containing active material having a silicon element content of 50 mol% or more of all the constituent elements is more preferable.
Generally, a negative electrode containing these negative electrode active materials (for example, a Si negative electrode containing a silicon element-containing active material and a Sn negative electrode containing a tin element active material) is a carbon negative electrode (graphite, acetylene black, etc.). It can store more Li ions than the above. That is, the amount of Li ions occluded per unit mass increases. Therefore, the battery capacity (energy density) can be increased. As a result, there is an advantage that the battery drive time can be lengthened.
Examples of the silicon element-containing active material include silicon materials such as Si and SiOx (0 <x≤1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, and the like (for example,). LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si) or organized active material (eg LaSi 2 / Si), as well as other silicon and tin elements such as SnSiO 3 , SnSiS 3 Examples include active materials containing. In addition, SiOx itself can be used as a negative electrode active material (semi-metal oxide), and since Si is generated by the operation of an all-solid-state secondary battery, a negative electrode active material that can be alloyed with lithium (its). It can be used as a precursor substance).
Examples of the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon element and the tin element. Further, a composite oxide with lithium oxide, for example, Li 2 SnO 2 can also be mentioned.
 本発明においては、上述の負極活物質を特に制限されることなく用いることができるが、電池容量の点では、負極活物質として、リチウムと合金化可能な負極活物質が好ましい態様であり、中でも、上記ケイ素材料又はケイ素含有合金(ケイ素元素を含有する合金)がより好ましく、ケイ素(Si)又はケイ素含有合金を含むことが更に好ましい。 In the present invention, the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with silicon is a preferable embodiment as the negative electrode active material. , The above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and it is further preferable to contain silicon (Si) or a silicon-containing alloy.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measuring method and the mass difference of the powder before and after firing as a simple method.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の体積平均粒子径は、特に制限されないが、0.1~60μmが好ましい。負極活物質粒子の体積平均粒子径は、上記無機固体電解質の粒子径と同様にして測定できる。所定の粒子径にするには、正極活物質と同様に、通常の粉砕機若しくは分級機が用いられる。 The shape of the negative electrode active material is not particularly limited, but it is preferably in the form of particles. The volume average particle size of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 μm. The volume average particle size of the negative electrode active material particles can be measured in the same manner as the particle size of the inorganic solid electrolyte. In order to obtain a predetermined particle size, a normal crusher or classifier is used as in the case of the positive electrode active material.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
The negative electrode active material may be used alone or in combination of two or more.
When the negative electrode active material layer is formed, the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
 負極活物質の、固体電解質組成物中における含有量は特に制限されず、固形分100質量%において、10~90質量%であることが好ましく、20~85質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることが更に好ましい。 The content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 80% by mass based on 100% by mass of the solid content. It is more preferably%, and further preferably 40 to 75% by mass.
 本発明において、負極活物質層を二次電池の充電により形成する場合、上記負極活物質に代えて、全固体二次電池内に発生する周期律表第一族若しくは第二族に属する金属のイオンを用いることができる。このイオンを電子と結合させて金属として析出させることで、負極活物質層を形成できる。 In the present invention, when the negative electrode active material layer is formed by charging the secondary battery, instead of the negative electrode active material, a metal belonging to Group 1 or Group 2 of the periodic table generated in the all-solid secondary battery is used. Ions can be used. The negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
(Coating of active material)
The surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide. Examples of the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum oxide, niobate oxide, lithium niobate compound and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 and LiTaO 3 , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3, and the like.
Further, the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
Further, the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
<導電助剤>
 本発明の固体電解質組成物は、導電助剤を適宜含有してもよく、特に負極活物質としてのケイ素原子含有活物質は導電助剤と併用されることが好ましい。
 導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。
 本発明において、活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際に周期律表第一族若しくは第二族に属する金属のイオン(好ましくはLiイオン)の挿入と放出が起きず、活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
<Conductive aid>
The solid electrolyte composition of the present invention may appropriately contain a conductive auxiliary agent, and it is particularly preferable that the silicon atom-containing active material as the negative electrode active material is used in combination with the conductive auxiliary agent.
The conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used. For example, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fibers or carbon nanotubes, which are electron conductive materials. It may be a carbon fiber such as graphene or fullerene, a metal powder such as copper or nickel, or a metal fiber, or a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. May be used.
In the present invention, when the active material and the conductive auxiliary agent are used in combination, among the above conductive auxiliary agents, metal ions (preferably Li) belonging to Group 1 or Group 2 of the periodic table when the battery is charged and discharged. A conductive auxiliary agent is one that does not insert and release ions) and does not function as an active material. Therefore, among the conductive auxiliary agents, those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
 導電助剤は、1種を含有していてもよいし、2種以上を含有していてもよい。
 導電助剤の形状は、特に制限されないが、粒子状が好ましい。
 本発明の固体電解質組成物が導電助剤を含む場合、固体電解質組成物中の導電助剤の含有量は、固形分中、0~10質量%が好ましい。
The conductive auxiliary agent may contain one kind or two or more kinds.
The shape of the conductive auxiliary agent is not particularly limited, but is preferably in the form of particles.
When the solid electrolyte composition of the present invention contains a conductive auxiliary agent, the content of the conductive auxiliary agent in the solid electrolyte composition is preferably 0 to 10% by mass in the solid content.
<リチウム塩>
 本発明の固体電解質組成物は、リチウム塩(支持電解質)を含有することも好ましい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 本発明の固体電解質組成物がリチウム塩を含む場合、リチウム塩の含有量は、固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
<Lithium salt>
The solid electrolyte composition of the present invention preferably contains a lithium salt (supporting electrolyte).
As the lithium salt, the lithium salt usually used for this kind of product is preferable, and there is no particular limitation. For example, the lithium salt described in paragraphs 882 to 985 of JP2015-088486 is preferable.
When the solid electrolyte composition of the present invention contains a lithium salt, the content of the lithium salt is preferably 0.1 part by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the solid electrolyte. The upper limit is preferably 50 parts by mass or less, and more preferably 20 parts by mass or less.
<分散剤>
 本発明の固体電解質組成物は、特定のポリマーが分散剤としても機能するため、このポリマー以外の分散剤を含有していなくてもよいが、分散剤を含有してもよい。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発及び/又は静電反発を意図した化合物が好適に使用される。
<Dispersant>
Since the specific polymer also functions as a dispersant, the solid electrolyte composition of the present invention may not contain a dispersant other than this polymer, but may contain a dispersant. As the dispersant, those usually used for all-solid-state secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption, steric repulsion and / or electrostatic repulsion are preferably used.
<他の添加剤>
 本発明の固体電解質組成物は、上記各成分以外の他の成分として、適宜に、イオン液体、増粘剤、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。イオン液体は、イオン伝導度をより向上させるため含有されるものであり、公知のものを特に制限されることなく用いることができる。また、上記ポリマー以外のポリマー、通常用いられる結着剤等を含有していてもよい。
<Other additives>
The solid electrolyte composition of the present invention, as other components other than the above-mentioned components, appropriately includes an ionic liquid, a thickener, a cross-linking agent (such as one that undergoes a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization), and polymerization. It can contain initiators (such as those that generate acids or radicals by heat or light), defoaming agents, leveling agents, dehydrating agents, antioxidants and the like. The ionic liquid is contained in order to further improve the ionic conductivity, and known ones can be used without particular limitation. Further, a polymer other than the above polymer, a commonly used binder and the like may be contained.
(固体電解質組成物の調製)
 本発明の固体電解質組成物は、無機固体電解質、上記特定のポリマー、分散媒、更には適宜に、リチウム塩、任意の他の成分を、例えば通常用いる各種の混合機で混合することにより、混合物として、好ましくはスラリーとして、調製することができる。
 混合方法は特に制限されず、一括して混合してもよく、順次混合してもよい。混合する環境は特に制限されないが、乾燥空気下又は不活性ガス下等が挙げられる。
 本発明の活物質層形成用組成物(電極層用組成物)は、固体粒子の再凝集を抑えて、高度に分散した固体粒子を含有した分散液とすることができる。
(Preparation of solid electrolyte composition)
The solid electrolyte composition of the present invention is a mixture of an inorganic solid electrolyte, the above-mentioned specific polymer, a dispersion medium, and optionally a lithium salt, and any other components, for example, by mixing them in various commonly used mixers. As a slurry, preferably as a slurry.
The mixing method is not particularly limited, and the mixture may be mixed all at once or sequentially. The mixing environment is not particularly limited, and examples thereof include under dry air and under an inert gas.
The composition for forming an active material layer (composition for an electrode layer) of the present invention can be a dispersion liquid containing highly dispersed solid particles by suppressing reaggregation of solid particles.
[全固体二次電池用シート]
 本発明の全固体二次電池用シートは、全固体二次電池の構成層を形成しうるシート状成形体であって、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう。)、電極、又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
[Sheet for all-solid-state secondary battery]
The sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body capable of forming a constituent layer of an all-solid-state secondary battery, and includes various aspects depending on its use. For example, a sheet preferably used for a solid electrolyte layer (also referred to as a solid electrolyte sheet for an all-solid secondary battery), an electrode, or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (an electrode for an all-solid secondary battery). Sheet) and the like. In the present invention, these various sheets may be collectively referred to as an all-solid-state secondary battery sheet.
 本発明の全固体二次電池用固体電解質シートは、固体電解質層を有するシートであればよく、固体電解質層が基材上に形成されているシートでも、基材を有さず、固体電解質層から形成されているシートであってもよい。全固体二次電池用固体電解質シートは、固体電解質層の他に他の層を有してもよい。他の層としては、例えば、保護層(剥離シート)、集電体、コート層等が挙げられる。
 本発明の全固体二次電池用固体電解質シートとして、例えば、基材上に、本発明の固体電解質組成物で構成した層、通常固体電解質層と、保護層とをこの順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後述する集電体で説明する材料、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス、セラミック等が挙げられる。
The solid electrolyte sheet for an all-solid secondary battery of the present invention may be a sheet having a solid electrolyte layer, and even a sheet having a solid electrolyte layer formed on a base material does not have a base material and is a solid electrolyte layer. It may be a sheet formed of. The solid electrolyte sheet for an all-solid secondary battery may have another layer in addition to the solid electrolyte layer. Examples of other layers include a protective layer (release sheet), a current collector, a coat layer, and the like.
Examples of the solid electrolyte sheet for an all-solid secondary battery of the present invention include a sheet having a layer composed of the solid electrolyte composition of the present invention, a normal solid electrolyte layer, and a protective layer on a substrate in this order. Be done.
The base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include a material described in the current collector described later, a sheet body (plate-shaped body) such as an organic material and an inorganic material. Examples of the organic material include various polymers, and specific examples thereof include polyethylene terephthalate, polypropylene, polyethylene, and cellulose. Examples of the inorganic material include glass and ceramics.
 全固体二次電池用シートの固体電解質層の構成、層厚は、本発明の全固体二次電池において説明する固体電解質層の構成、層厚と同じである。 The composition and layer thickness of the solid electrolyte layer of the sheet for the all-solid-state secondary battery are the same as the composition and layer thickness of the solid electrolyte layer described in the all-solid-state secondary battery of the present invention.
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、活物質層から形成されているシートであってもよい。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。本発明の電極シートは上述の他の層を有してもよい。活物質層は、本発明の固体電解質組成物(電極層用組成物)で形成されることが好ましい。本発明の電極シートを構成する各層の構成、層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。 The electrode sheet for an all-solid-state secondary battery of the present invention (also simply referred to as "electrode sheet") may be an electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector). The sheet may be a sheet that does not have a base material and is formed from an active material layer. This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. An embodiment having a layer and an active material layer in this order is also included. The electrode sheet of the present invention may have the other layers described above. The active material layer is preferably formed of the solid electrolyte composition (composition for electrode layer) of the present invention. The structure and thickness of each layer constituting the electrode sheet of the present invention are the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
 本発明の全固体二次電池用シートは、固体電解質層及び活物質層の少なくとも1層が本発明の固体電解質組成物で形成され、この層における固体粒子同士が強固に結着している。また、全固体二次電池用電極シートにおいて本発明の固体電解質組成物で形成された活物質層は、集電体とも強固に結着している。本発明においては、固体粒子間の界面抵抗の上昇を効果的に抑えることもできる。したがって、本発明の全固体二次電池用シートは、全固体二次電池の構成層を形成しうるシートとして好適に用いられる。
 本発明の全固体二次電池用シートを用いて全固体二次電池を製造すると、優れた電池性能を示す。
In the all-solid-state secondary battery sheet of the present invention, at least one of the solid electrolyte layer and the active material layer is formed of the solid electrolyte composition of the present invention, and the solid particles in this layer are firmly bonded to each other. Further, in the electrode sheet for an all-solid-state secondary battery, the active material layer formed of the solid electrolyte composition of the present invention is firmly bonded to the current collector. In the present invention, an increase in interfacial resistance between solid particles can be effectively suppressed. Therefore, the sheet for an all-solid-state secondary battery of the present invention is suitably used as a sheet capable of forming a constituent layer of an all-solid-state secondary battery.
When an all-solid-state secondary battery is manufactured using the sheet for an all-solid-state secondary battery of the present invention, excellent battery performance is exhibited.
[全固体二次電池用シートの製造方法]
 本発明の全固体二次電池用シートの製造方法は、特に制限されず、本発明の固体電解質組成物を用いて、上記の各層を形成することにより、製造できる。例えば、好ましくは基材若しくは集電体上(他の層を介していてもよい。)に、製膜(塗布乾燥)して固体電解質組成物からなる層(塗布乾燥層)を形成する方法が挙げられる。これにより、基材若しくは集電体と、塗布乾燥層とを有する全固体二次電池用シートを作製することができる。ここで、塗布乾燥層とは、本発明の固体電解質組成物を塗布し、分散媒を乾燥させることにより形成される層(すなわち、本発明の固体電解質組成物を用いてなり、本発明の固体電解質組成物から分散媒を除去した組成からなる層)をいう。活物質層及び塗布乾燥層は、本発明の効果を損なわない範囲であれば分散媒が残存していてもよく、残存量としては、例えば、各層中、3質量%以下とすることができる。
 本発明の全固体二次電池用シートの製造方法において、塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
[Manufacturing method of all-solid-state secondary battery sheet]
The method for producing the sheet for an all-solid secondary battery of the present invention is not particularly limited, and can be produced by forming each of the above layers using the solid electrolyte composition of the present invention. For example, a method of forming a film (coating and drying) on a base material or a current collector (which may be via another layer) to form a layer (coating and drying layer) composed of a solid electrolyte composition is preferable. Can be mentioned. Thereby, an all-solid-state secondary battery sheet having a base material or a current collector and a coating dry layer can be produced. Here, the coating dry layer is a layer formed by applying the solid electrolyte composition of the present invention and drying the dispersion medium (that is, the solid electrolyte composition of the present invention is used, and the solid of the present invention is used. A layer having a composition obtained by removing a dispersion medium from an electrolyte composition). In the active material layer and the coating dry layer, the dispersion medium may remain as long as the effect of the present invention is not impaired, and the residual amount may be, for example, 3% by mass or less in each layer.
In the method for producing a sheet for an all-solid-state secondary battery of the present invention, each step such as coating and drying will be described in the following method for producing an all-solid-state secondary battery.
 本発明の全固体二次電池用シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等については、後述する、全固体二次電池の製造方法において説明する。
 また、本発明の全固体二次電池用シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
In the method for producing a sheet for an all-solid-state secondary battery of the present invention, the coating dry layer obtained as described above can also be pressurized. The pressurizing conditions and the like will be described later in the method for manufacturing an all-solid-state secondary battery.
Further, in the method for producing a sheet for an all-solid-state secondary battery of the present invention, the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、好ましくは正極集電体上に形成され、正極を構成する。負極活物質層は、好ましくは負極集電体上に形成され、負極を構成する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物で形成されることが好ましく、中でも、全ての層が本発明の固体電解質組成物で形成されることがより好ましい。本発明の固体電解質組成物で形成された活物質層又は固体電解質層は、好ましくは、含有する成分種及びその含有量比について、本発明の固体電解質組成物の固形分におけるものと同じである。なお、活物質層又は固体電解質層が本発明の固体電解質組成物で形成されない場合、公知の材料を用いることができる。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
[All-solid-state secondary battery]
The all-solid secondary battery of the present invention has a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer arranged between the positive electrode active material layer and the negative electrode active material layer. Have. The positive electrode active material layer is preferably formed on the positive electrode current collector and constitutes the positive electrode. The negative electrode active material layer is preferably formed on the negative electrode current collector to form the negative electrode.
At least one layer of the negative electrode active material layer, the positive electrode active material layer and the solid electrolyte layer is preferably formed by the solid electrolyte composition of the present invention, and among them, all the layers are formed by the solid electrolyte composition of the present invention. It is more preferable to be done. The active material layer or the solid electrolyte layer formed of the solid electrolyte composition of the present invention preferably contains the same component species and their content ratios as those in the solid content of the solid electrolyte composition of the present invention. .. If the active material layer or the solid electrolyte layer is not formed by the solid electrolyte composition of the present invention, a known material can be used.
The thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 μm, more preferably 20 μm or more and less than 500 μm, respectively, in consideration of the dimensions of a general all-solid-state secondary battery. In the all-solid-state secondary battery of the present invention, the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is more preferably 50 μm or more and less than 500 μm.
The positive electrode active material layer and the negative electrode active material layer may each have a current collector on the opposite side of the solid electrolyte layer.
〔筐体〕
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[Case]
Depending on the application, the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure, but in order to form a dry battery, it should be further enclosed in a suitable housing. Is preferable. The housing may be made of metal or resin (plastic). When a metallic material is used, for example, one made of aluminum alloy or stainless steel can be mentioned. It is preferable that the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。 The all-solid-state secondary battery according to the preferred embodiment of the present invention will be described below with reference to FIG. 1, but the present invention is not limited thereto.
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。 FIG. 1 is a sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. .. Each layer is in contact with each other and has an adjacent structure. By adopting such a structure, during charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated there. On the other hand, at the time of discharge, the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6. In the illustrated example, a light bulb is used as a model for the operating portion 6, and the light bulb is turned on by electric discharge.
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用積層体と称し、この全固体二次電池用積層体を2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。 When the all-solid secondary battery having the layer structure shown in FIG. 1 is placed in a 2032 type coin case, the all-solid secondary battery is referred to as an all-solid secondary battery laminate, and the all-solid secondary battery laminate is referred to as an all-solid secondary battery laminate. Batteries manufactured in a 2032 type coin case are sometimes referred to as all-solid secondary batteries.
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれも本発明の固体電解質組成物で形成されている。この全固体二次電池10は優れた電池性能を示す。正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及び特定のポリマーは、それぞれ、互いに同種であっても異種であってもよい。
 本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
(Positive electrode active material layer, solid electrolyte layer, negative electrode active material layer)
In the all-solid-state secondary battery 10, the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are all formed of the solid electrolyte composition of the present invention. The all-solid-state secondary battery 10 exhibits excellent battery performance. The inorganic solid electrolyte and the specific polymer contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same type or different from each other.
In the present invention, either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer. Further, either or both of the positive electrode active material and the negative electrode active material may be collectively referred to as an active material or an electrode active material.
 本発明において、上記特定のポリマーを無機固体電解質又は活物質等の固体粒子と組み合わせて用いると、上述のように、固体粒子の結着性を高めて、固体粒子同士の接触不良、集電体からの固体粒子の剥がれを抑えることができる。更に、固体粒子間の界面抵抗の上昇、固体粒子と集電体の界面抵抗の上昇を抑えることもできる。そのため、本発明の全固体二次電池は優れた電池性能を示す。 In the present invention, when the above-mentioned specific polymer is used in combination with solid particles such as an inorganic solid electrolyte or an active material, the binding property of the solid particles is enhanced, and poor contact between the solid particles and a current collector are obtained. It is possible to suppress the peeling of solid particles from the surface. Further, it is possible to suppress an increase in the interfacial resistance between the solid particles and an increase in the interfacial resistance between the solid particles and the current collector. Therefore, the all-solid-state secondary battery of the present invention exhibits excellent battery performance.
 全固体二次電池10においては、負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1~500μmとすることができる。 In the all-solid-state secondary battery 10, the negative electrode active material layer can be a lithium metal layer. Examples of the lithium metal layer include a layer formed by depositing or molding a lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like. The thickness of the lithium metal layer can be, for example, 1 to 500 μm regardless of the thickness of the negative electrode active material layer.
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be collectively referred to as a current collector.
As a material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, the surface of aluminum or stainless steel is treated with carbon, nickel, titanium or silver (a thin film is formed). Of these, aluminum and aluminum alloys are more preferable.
As a material for forming the negative electrode current collector, in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel. Preferably, aluminum, copper, copper alloy and stainless steel are more preferable.
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
The shape of the current collector is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, or the like can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層、部材等を適宜介在若しくは配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。 In the present invention, a functional layer, a member, or the like is appropriately interposed or arranged between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. You may. Further, each layer may be composed of a single layer or a plurality of layers.
[全固体二次電池の製造]
 全固体二次電池は、常法によって、製造できる。具体的には、全固体二次電池は、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。これにより、優れた電池性能を示し、更に小さな電気抵抗を示す全固体二次電池を製造できる。以下、詳述する。
[Manufacturing of all-solid-state secondary batteries]
The all-solid-state secondary battery can be manufactured by a conventional method. Specifically, the all-solid-state secondary battery can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention or the like. This makes it possible to manufacture an all-solid-state secondary battery that exhibits excellent battery performance and even smaller electrical resistance. The details will be described below.
 本発明の全固体二次電池は、本発明の固体電解質組成物を、適宜基材(例えば、集電体となる金属箔)上に、塗布し、塗膜を形成する(製膜する)工程を含む(介する)方法(本発明の全固体二次電池用シートの製造方法)を行って、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極層用組成物)として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用材料(負極層用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。これを筐体に封入して所望の全固体二次電池とすることもできる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
In the all-solid secondary battery of the present invention, the solid electrolyte composition of the present invention is appropriately applied onto a base material (for example, a metal foil serving as a current collector) to form a coating film (film formation). It can be manufactured by performing a method including (via) (a method for manufacturing a sheet for an all-solid secondary battery of the present invention).
For example, a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode material (composition for a positive electrode layer) on a metal foil which is a positive electrode current collector to form a positive electrode active material layer, and an all-solid rechargeable battery is formed. A positive electrode sheet for a next battery is produced. Next, a solid electrolyte composition for forming the solid electrolyte layer is applied onto the positive electrode active material layer to form the solid electrolyte layer. Further, a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (composition for the negative electrode layer) on the solid electrolyte layer to form a negative electrode active material layer. By superimposing a negative electrode current collector (metal leaf) on the negative electrode active material layer, an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer can be obtained. Can be done. This can be enclosed in a housing to obtain a desired all-solid-state secondary battery.
Further, by reversing the forming method of each layer, a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is superposed to manufacture an all-solid secondary battery. You can also do it.
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極層用組成物)として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 更に、上記のようにして、全固体二次電池用正極シート又は全固体二次電池用負極シート、及び全固体二次電池用固体電解質シートを作製する。次いで、全固体二次電池用正極シート又は全固体二次電池用負極シートと全固体二次電池用固体電解質シートとを、正極活物質層又は負極活物質層と固体電解質層とを接触させた状態に、重ねて、加圧する。こうして、全固体二次電池用正極シート又は全固体二次電池用負極シートに固体電解質層を転写する。その後、全固体二次電池用固体電解質シートの基材を剥離した固体電解質層と全固体二次電池用負極シート又は全固体二次電池用正極シートとを(固体電解質層に負極活物質層又は正極活物質層を接触させた状態に)重ねて加圧する。こうして、全固体二次電池を製造することができる。この方法における加圧方法及び加圧条件等は、特に制限されず、後述する、塗布した組成物の加圧において説明する方法及び加圧条件等を適用できる。
As another method, the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery is produced. Further, a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (composition for a negative electrode layer) on a metal foil which is a negative electrode current collector to form a negative electrode active material layer, and an all-solid rechargeable battery is formed. A negative electrode sheet for the next battery is produced. Next, a solid electrolyte layer is formed on the active material layer of any one of these sheets as described above. Further, the other of the positive electrode sheet for the all-solid secondary battery and the negative electrode sheet for the all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, an all-solid-state secondary battery can be manufactured.
As another method, the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery and a negative electrode sheet for an all-solid-state secondary battery are produced. Separately from this, the solid electrolyte composition is applied onto the base material to prepare a solid electrolyte sheet for an all-solid secondary battery composed of a solid electrolyte layer. Further, the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery are laminated so as to sandwich the solid electrolyte layer peeled off from the base material. In this way, an all-solid-state secondary battery can be manufactured.
Further, as described above, a positive electrode sheet for an all-solid-state secondary battery or a negative electrode sheet for an all-solid-state secondary battery, and a solid electrolyte sheet for an all-solid-state secondary battery are produced. Next, the positive electrode sheet for the all-solid secondary battery or the negative electrode sheet for the all-solid secondary battery and the solid electrolyte sheet for the all-solid secondary battery were brought into contact with the positive electrode active material layer or the negative electrode active material layer and the solid electrolyte layer. Overlay and pressurize in the state. In this way, the solid electrolyte layer is transferred to the positive electrode sheet for the all-solid-state secondary battery or the negative electrode sheet for the all-solid-state secondary battery. Then, the solid electrolyte layer from which the base material of the solid electrolyte sheet for the all-solid secondary battery is peeled off and the negative electrode sheet for the all-solid secondary battery or the positive electrode sheet for the all-solid secondary battery are separated (the negative electrode active material layer or the negative electrode active material layer on the solid electrolyte layer Pressurize the positive electrode active material layer in contact with each other. In this way, an all-solid-state secondary battery can be manufactured. The pressurizing method and pressurizing conditions in this method are not particularly limited, and the methods and pressurizing conditions described later in the pressurization of the applied composition can be applied.
 上記の製造方法においては、正極層用組成物、固体電解質組成物及び負極層用組成物のいずれか1つに本発明の固体電解質組成物を用いればよく、いずれも、本発明の固体電解質組成物を用いることが好ましい。
本発明の固体電解質組成物以外の組成物で固体電解質層又は活物質層を形成する場合、その材料としては、通常用いられる組成物等が挙げられる。また、全固体二次電池の製造時に負極活物質層を形成せずに、後述する初期化若しくは使用時の充電で負極集電体に蓄積した、周期律表第一族若しくは第二族に属する金属のイオンを電子と結合させて、金属として負極集電体等の上に析出させることにより、負極活物質層を形成することもできる。
 固体電解質層等は、例えば基板若しくは活物質層上で、固体電解質組成物等を後述する加圧条件下で加圧成形して形成することもできるし、固体電解質又は活物質のシート成形体を用いることもできる。
In the above production method, the solid electrolyte composition of the present invention may be used as any one of the composition for the positive electrode layer, the solid electrolyte composition and the composition for the negative electrode layer, and all of them have the solid electrolyte composition of the present invention. It is preferable to use a thing.
When the solid electrolyte layer or the active material layer is formed by a composition other than the solid electrolyte composition of the present invention, examples of the material include commonly used compositions and the like. In addition, it belongs to the first or second group of the periodic table, which is accumulated in the negative electrode current collector by initialization or charging during use, which will be described later, without forming the negative electrode active material layer during the manufacture of the all-solid secondary battery. A negative electrode active material layer can also be formed by combining metal ions with electrons and depositing them as a metal on a negative electrode current collector or the like.
The solid electrolyte layer or the like can be formed, for example, by pressure-molding the solid electrolyte composition or the like on a substrate or the active material layer under the pressure conditions described later, or a sheet molded body of the solid electrolyte or the active material. It can also be used.
<各層の形成(成膜)>
 固体電解質組成物の塗布方法は特に制限されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート塗布、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に制限されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性と、非加圧でも良好なイオン伝導度を得ることができる。
<Formation of each layer (deposition)>
The method for applying the solid electrolyte composition is not particularly limited and can be appropriately selected. For example, coating (preferably wet coating), spray coating, spin coating coating, dip coating coating, slit coating, stripe coating, bar coating coating can be mentioned.
At this time, the solid electrolyte composition may be subjected to a drying treatment after being applied to each of them, or may be subjected to a drying treatment after being applied in multiple layers. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher. The upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower. By heating in such a temperature range, the dispersion medium can be removed and a solid state (coating dry layer) can be obtained. Further, it is preferable because the temperature is not raised too high and each member of the all-solid-state secondary battery is not damaged. As a result, in the all-solid-state secondary battery, it is possible to obtain excellent overall performance, good binding property, and good ionic conductivity even without pressurization.
 上記のようにして、本発明の固体電解質組成物を塗布乾燥すると、固体粒子が強固に結着し、更に固体粒子間の界面抵抗が小さな、塗布乾燥層を形成することができる。 When the solid electrolyte composition of the present invention is applied and dried as described above, the solid particles are firmly bound to each other, and a coating dry layer having a small interfacial resistance between the solid particles can be formed.
 固体電解質組成物を塗布した後、構成層を重ね合わせた後、又は全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては特に制限されず、一般的には5~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては特に制限されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。一方、無機固体電解質と特定のポリマーが共存する場合、特定のポリマーのガラス転移温度よりも高い温度でプレスすることもできる。ただし、一般的には上述の特定のポリマーの融点を越えない温度である。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
It is preferable to pressurize each layer or the all-solid-state secondary battery after applying the solid electrolyte composition, superimposing the constituent layers, or preparing the all-solid-state secondary battery. It is also preferable to pressurize the layers in a laminated state. Examples of the pressurizing method include a hydraulic cylinder press machine and the like. The pressing force is not particularly limited, and is generally preferably in the range of 5 to 1500 MPa.
Further, the applied solid electrolyte composition may be heated at the same time as pressurization. The heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It can also be pressed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte. On the other hand, when the inorganic solid electrolyte and the specific polymer coexist, it can be pressed at a temperature higher than the glass transition temperature of the specific polymer. However, in general, the temperature does not exceed the melting point of the above-mentioned specific polymer.
The pressurization may be carried out in a state where the coating solvent or the dispersion medium has been dried in advance, or may be carried out in a state where the solvent or the dispersion medium remains.
In addition, each composition may be applied at the same time, and the application drying press may be performed simultaneously and / or sequentially. After coating on separate substrates, they may be laminated by transfer.
 塗布中若しくは加圧中の雰囲気としては、特に制限されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The atmosphere during coating or pressurization is not particularly limited, and may be any of air, dry air (dew point -20 ° C or less), inert gas (for example, argon gas, helium gas, nitrogen gas), etc. It may be.
The pressing time may be short (for example, within several hours) and high pressure may be applied, or medium pressure may be applied for a long time (1 day or more). In the case of an all-solid-state secondary battery other than the all-solid-state secondary battery sheet, for example, in the case of an all-solid-state secondary battery, an all-solid-state secondary battery restraint (screw tightening pressure, etc.) can be used in order to continue applying a medium pressure.
The press pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
The press pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part step by step with different pressures.
The pressed surface may be smooth or roughened.
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を解放することにより、行うことができる。
<Initialization>
The all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[Applications for all-solid-state secondary batteries]
The all-solid-state secondary battery of the present invention can be applied to various applications. The application mode is not particularly limited, but for example, when mounted on an electronic device, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone. Examples include copying, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, portable tape recorders, radios, backup power supplies, memory cards, etc. Other consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). .. Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。本発明において「室温」とは25℃を意味する。 The present invention will be described in more detail below based on examples, but the present invention is not construed as being limited thereto. In the following examples, "parts" and "%" representing the composition are based on mass unless otherwise specified. In the present invention, "room temperature" means 25 ° C.
1.実施例及び比較例に用いるポリマーの合成
 ポリマーD-01~D-12は上記した通りである。比較例に用いるポリマーcD-01及びcD-02を下に示す。
1. 1. Synthesis of Polymers Used in Examples and Comparative Examples Polymers D-01 to D-12 are as described above. The polymers cD-01 and cD-02 used in Comparative Examples are shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[合成例1:ポリマーセグメントを導くポリマーPS1(ポリマーD-01、D-06、D-07、D-08用)の合成]
 撹拌機、温度計、還流冷却管及び窒素ガス導入管を備えた200ミリリットル三口フラスコに、水添ポリブタジエンポリオールNISSO-PB GI-1000(商品名、数平均分子量1500、日本曹達社製)(30.0g)、ε-カプロラクトン(50.2g)及びテトラブチルオルトチタネート(10mg)を仕込んで、窒素気流下で190℃まで昇温し、7時間撹拌した。その後、反応液を冷却して、式(1)で表されるセグメントを導くポリマーPS1を合成した。
[Synthesis Example 1: Synthesis of Polymer PS1 (for Polymers D-01, D-06, D-07, D-08) that leads to a polymer segment]
In a 200 ml three-necked flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen gas introduction tube, a hydrogenated polybutadiene polyol NISSO-PB GI-1000 (trade name, number average molecular weight 1500, manufactured by Nippon Soda Co., Ltd.) (30. 0 g), ε-caprolactone (50.2 g) and tetrabutyl orthotitanate (10 mg) were charged, the temperature was raised to 190 ° C. under a nitrogen stream, and the mixture was stirred for 7 hours. Then, the reaction solution was cooled to synthesize the polymer PS1 which leads to the segment represented by the formula (1).
[合成例2、3:ポリマーセグメントを導くポリマーPS2、PS3(ポリマーD-02、D-03用)の合成]
 合成例1の合成において、ε-カプロラクトンを、上記化学式に示した各ポリマーD-02、D-03に対応する環状ラクトン化合物に変更し、適宜にそれらの使用量と触媒の使用量を変更したこと以外は、合成例1と同様にして、式(1)で表されるセグメントを導くポリマーPS2及びPS3をそれぞれ合成した。
[Synthesis Examples 2 and 3: Synthesis of Polymers PS2 and PS3 (for Polymers D-02 and D-03) Leading Polymer Segments]
In the synthesis of Synthesis Example 1, ε-caprolactone was changed to a cyclic lactone compound corresponding to each of the polymers D-02 and D-03 shown in the above chemical formula, and the amounts used thereof and the amount of the catalyst used were appropriately changed. Except for this, the polymers PS2 and PS3, which lead to the segments represented by the formula (1), were synthesized in the same manner as in Synthesis Example 1.
[合成例4:ポリマーセグメントを導くポリマーPS4(ポリマーD-04用)の合成]
 撹拌機、温度計、ディーンスタークを備えた還流冷却管及び窒素ガス導入管を備えた200ミリリットル三口フラスコに、水添ポリブタジエンポリオールNISSO-PB GI-1000(商品名)(30.0g)、アジピン酸ジメチル(1.7g)及びテトラブチルオルトチタネート(10mg)を仕込んで、窒素気流下で190℃まで昇温し、7時間撹拌した。その後、反応液を冷却して、式(2)で表されるセグメントを導くポリマーPS4を合成した。
[Synthesis Example 4: Synthesis of Polymer PS4 (for Polymer D-04) Leading Polymer Segment]
Hydrogenated polybutadiene polyol NISSO-PB GI-1000 (trade name) (30.0 g), adipate in a 200 ml three-necked flask equipped with a reflux condenser equipped with a stirrer, thermometer, Dean Stark and a nitrogen gas introduction tube. Dimethyl (1.7 g) and tetrabutyl orthotitanate (10 mg) were charged, the temperature was raised to 190 ° C. under a nitrogen stream, and the mixture was stirred for 7 hours. Then, the reaction solution was cooled to synthesize the polymer PS4 which leads to the segment represented by the formula (2).
[合成例5:ポリマーセグメントを導くポリマーPS5(ポリマーD-05用)の合成]
 合成例4の合成において、アジピン酸ジメチルを、上記化学式に示した各ポリマーD-05に対応するジカルボン酸ジエステル化合物に変更し、適宜にその使用量と触媒の使用量を変更したこと以外は、合成例4と同様にして、式(2)で表されるセグメントを導くポリマーPS5を合成した。
[Synthesis Example 5: Synthesis of Polymer PS5 (for Polymer D-05) Leading Polymer Segment]
In the synthesis of Synthesis Example 4, dimethyl adipate was changed to a dicarboxylic acid diester compound corresponding to each polymer D-05 shown in the above chemical formula, and the amount used and the amount used of the catalyst were changed as appropriate. In the same manner as in Synthesis Example 4, the polymer PS5 leading to the segment represented by the formula (2) was synthesized.
[合成例6:ポリマーセグメントを導くポリマーPS6(ポリマーD-09用)の合成]
 合成例1の合成において、水添ポリブタジエンポリオールを、上記化学式に示した各ポリマーD-09に対応する水添ポリブタジエンジアミンに変更し、適宜にその使用量と触媒の使用量を変更したこと以外は、合成例1と同様にして、式(1)で表されるセグメントを導くポリマーPS6を合成した。なお、水添ポリブタジエンジアミンは、水添ポリブタジエンポリオールNISSO-PB GI-1000にアクリロニトリルを触媒量のt-ブトキシカリウムを加えることにより反応させ、得られた混合物をラネーニッケルにより水素還元することにより合成した。
[Synthesis Example 6: Synthesis of Polymer PS6 (for Polymer D-09) Leading Polymer Segment]
In the synthesis of Synthesis Example 1, the hydrogenated polybutadiene polyol was changed to the hydrogenated polybutadienediamine corresponding to each polymer D-09 shown in the above chemical formula, and the amount used and the amount of the catalyst used were changed as appropriate. , A polymer PS6 for deriving the segment represented by the formula (1) was synthesized in the same manner as in Synthesis Example 1. The hydrogenated polybutadienediamine was synthesized by reacting acrylonitrile with hydrogenated polybutadiene polyol NISSO-PB GI-1000 by adding a catalytic amount of t-butoxypotassium, and hydrogenating the obtained mixture with Raney nickel.
[合成例7、8及び9:ポリマーセグメントを導くポリマーPS7、PS8及びPS9(ポリマーD-10、D-11、D-12用)の合成]
 合成例1の合成において、ε-カプロラクトンの使用量を、上記化学式に示した各ポリマーに対応する量に変更し、適宜に触媒の使用量を変更したこと以外は、合成例1と同様にして、式(1)で表されるセグメントを導く、ポリマーPS7、PS8及びPS9をそれぞれ合成した。
[Synthesis Examples 7, 8 and 9: Synthesis of Polymers PS7, PS8 and PS9 (for Polymers D-10, D-11, D-12) Leading Polymer Segments]
In the synthesis of Synthesis Example 1, the amount of ε-caprolactone used was changed to the amount corresponding to each polymer shown in the above chemical formula, and the amount of catalyst used was changed as appropriate, in the same manner as in Synthesis Example 1. , PS7, PS8 and PS9, which lead to the segment represented by the formula (1), were synthesized, respectively.
[合成例10:ポリマーD-01の合成]
 ポリマーD-01を以下のようにして合成した。
 撹拌機、温度計、還流冷却管及び窒素ガス導入管を備えた500ミリリットル三口フラスコに、ジフェニルメタンジイソシアネート(17.5g)、ポリエチレングリコール200(数平均分子量200、13.2g)、合成例1で合成したポリマーPS1(7.7g)及びテトラヒドロフラン(脱水品、149.5g)を仕込んで、窒素気流下で60℃まで昇温した。次いで、ビスマス系触媒としてネオスタンU-600(日東化成製、0.08mg)及びテトラヒドロフラン(脱水品、4.0g)を加え、60℃で5時間撹拌した。その後、メタノール(1.2g)を加え、60℃で30分撹拌した後、反応液を冷却して、ポリマーD-01溶液を得た。
 次いで、ポリマーD-01の分散液を以下のようにして調製した。
 撹拌機、温度計及び窒素ガス導入管を備えた300ミリリットル三口フラスコに、ポリマーD-01溶液(15.0g)及びテトラヒドロフラン(脱水品、15.0g)を仕込んで、窒素気流下、室温の条件で撹拌した。そこへ、酪酸ブチル(90g)を除々に加え、得られた混合液を減圧下溶媒留去し、固形分濃度5%となるように酪酸ブチルを添加することで、ポリマーD-01の分散液を調製した。
[Synthesis Example 10: Synthesis of Polymer D-01]
Polymer D-01 was synthesized as follows.
Synthesized with diphenylmethane diisocyanate (17.5 g), polyethylene glycol 200 (number average molecular weight 200, 13.2 g), in Synthesis Example 1 in a 500 ml three-necked flask equipped with a stirrer, thermometer, reflux condenser and nitrogen gas introduction tube. The polymer PS1 (7.7 g) and tetrahydrofuran (dehydrated product, 149.5 g) were charged and the temperature was raised to 60 ° C. under a nitrogen stream. Next, Neostan U-600 (manufactured by Nitto Kasei, 0.08 mg) and tetrahydrofuran (dehydrated product, 4.0 g) were added as bismuth-based catalysts, and the mixture was stirred at 60 ° C. for 5 hours. Then, methanol (1.2 g) was added, and the mixture was stirred at 60 ° C. for 30 minutes, and then the reaction solution was cooled to obtain a polymer D-01 solution.
Next, a dispersion of polymer D-01 was prepared as follows.
A 300 ml three-necked flask equipped with a stirrer, a thermometer and a nitrogen gas introduction tube was charged with a polymer D-01 solution (15.0 g) and tetrahydrofuran (dehydrated product, 15.0 g) under a nitrogen stream and at room temperature. Was stirred with. Butyl butyrate (90 g) was gradually added thereto, the obtained mixed solution was distilled off under reduced pressure, and butyl butyrate was added so as to have a solid content concentration of 5%, whereby a dispersion of polymer D-01 was added. Was prepared.
[合成例11~21:ポリマーD-02~D-12の合成及び分散液の調製]
 合成例1において、表1に示す各構成成分を導く化合物を表1に示す含有量となる使用量で用いたこと以外は、合成例1と同様にして、ポリマーD-02~D-12をそれぞれ合成した。
[Synthesis Examples 11-21: Synthesis of Polymers D-02 to D-12 and Preparation of Dispersion]
In Synthesis Example 1, polymers D-02 to D-12 were used in the same manner as in Synthesis Example 1, except that the compounds leading to the constituents shown in Table 1 were used in the amounts used to be the contents shown in Table 1. Each was synthesized.
[比較合成例1:ポリマーcD-01の合成及び分散液の調製]
 合成例1において、表1に示す各構成成分を導く化合物を表1に示す含有量となる使用量で用いたこと以外は、合成例1と同様にして、ポリマーcD-01を合成した。
[Comparative Synthesis Example 1: Synthesis of Polymer cD-01 and Preparation of Dispersion]
In Synthesis Example 1, the polymer cD-01 was synthesized in the same manner as in Synthesis Example 1 except that the compounds leading to the constituents shown in Table 1 were used in the amounts used to be the contents shown in Table 1.
[比較合成例2:ポリマーcD-02の合成及び分散液の調製]
 合成例1において、表1に示す各構成成分を導く化合物を表1に示す含有量となる使用量で用いたこと以外は、合成例1と同様にして、ポリマーcD-02を合成した。
 ポリマーcD-02は酪酸ブチル中で凝集沈降して、ポリマーcD-02の分散液を製できなかった。
[Comparative Synthesis Example 2: Synthesis of Polymer cD-02 and Preparation of Dispersion]
In Synthesis Example 1, the polymer cD-02 was synthesized in the same manner as in Synthesis Example 1 except that the compounds leading to the constituents shown in Table 1 were used in the amounts used to be the contents shown in Table 1.
Polymer cD-02 coagulated and settled in butyl butyrate, making it impossible to produce a dispersion of polymer cD-02.
 合成した各ポリマーの質量平均分子量及びポリマーセグメント(構成成分a)の数平均分子量を上記方法(条件2)により測定した。また、各ポリマーの粒子径を上記方法により測定した。結果を表1に示した。
 表1に、各ポリマー(ポリマーセグメントを除く)が有する結合群(I)から選択される結合を示す。
The mass average molecular weight of each of the synthesized polymers and the number average molecular weight of the polymer segments (component a) were measured by the above method (condition 2). In addition, the particle size of each polymer was measured by the above method. The results are shown in Table 1.
Table 1 shows the bonds selected from the bond group (I) of each polymer (excluding the polymer segment).
 表1において、構成成分a~fは、上記式(3)又は式(4)におけるモル比a~fで示される各構成成分に相当する。ポリマーD-01~D-12は構成成分c及び構成成分eを有していないので表1の記載を省略する。なお、ポリマーcD01のGI-1000は構成成分fに相当しないが、便宜上、構成成分f欄に記載する。また、ポリマーcD02の1,10-デカンジオール(DDO)は構成成分cに相当するが、便宜上、構成成分d欄に記載する。 In Table 1, the constituent components a to f correspond to the respective constituent components represented by the molar ratios a to f in the above formula (3) or the formula (4). Since the polymers D-01 to D-12 do not have the constituent component c and the constituent component e, the description in Table 1 is omitted. Although GI-1000 of the polymer cD01 does not correspond to the constituent component f, it is described in the constituent component f column for convenience. Further, 1,10-decanediol (DDO) of the polymer cD02 corresponds to the constituent component c, but is described in the constituent component d column for convenience.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<表の略号>
 表中、構成成分及び架橋剤欄中の「-」は該当する構成成分を有していないことを示す。
 表中、構成成分a~f欄には、各構成単位を導く化合物名を下記の略号で示した。
 - 構成成分a -
 PS1~PS9:上記合成例1~9で合成したポリマーPS1~PS9
 - 構成成分b -
MDI:ジフェニルメタンジイソシアネート(富士フイルム和光純薬社製)
 - 構成成分c -
DDO:1,10-デカンジオール(東京化成工業社製)
 - 構成成分d -
DMBA:2,2-ビス(ヒドロキシメチル)酪酸(東京化成工業社製)
 - 構成成分f -
PEG200:ポリエチレングリコール200(数平均分子量200、富士フイルム和光純薬社製)
PTMG250:ポリテトラメチレングリコール(数平均分子量250、アルドリッチ社製)
G3450J:ポリカーボネートジオールG3450J(商品名、数平均分子量800、旭化成社製)
 - 他の構成成分 -
GI-1000:水添ポリブタジエンポリオールNISSO-PB GI-1000(商品名、数平均分子量1500、日本曹達社製)
 
 「結合群(I)」欄において、Uはウレタン結合を、Eはエーテル結合を、Cはカーボネート結合を示す。ポリマーが複数の結合を有する場合「/」を用いて併記した。すなわち、U/Eはポリマーがウレタン結合及びエーテル結合を有していることを示す。
 また、「構成成分f」欄において、2種以上の構成成分を含有する場合、構成成分の略号及び含有量を「/」を用いて併記した。
<Table abbreviation>
In the table, "-" in the components and cross-linking agent column indicates that the components do not have the corresponding components.
In the table, the names of compounds leading to each constituent unit are indicated by the following abbreviations in the constituent components a to f columns.
-Component a-
PS1 to PS9: Polymers PS1 to PS9 synthesized in the above synthesis examples 1 to 9.
-Component b-
MDI: Diphenylmethane diisocyanate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
-Component c-
DDO: 1,10-decanediol (manufactured by Tokyo Chemical Industry Co., Ltd.)
-Component d-
DMBA: 2,2-bis (hydroxymethyl) butyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
-Component f-
PEG200: Polyethylene glycol 200 (number average molecular weight 200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
PTMG250: Polytetramethylene glycol (number average molecular weight 250, manufactured by Aldrich)
G3450J: Polycarbonate diol G3450J (trade name, number average molecular weight 800, manufactured by Asahi Kasei Corporation)
-Other components-
GI-1000: Hydrogenated polybutadiene polyol NISSO-PB GI-1000 (trade name, number average molecular weight 1500, manufactured by Nippon Soda Corporation)

In the "bond group (I)" column, U indicates a urethane bond, E indicates an ether bond, and C indicates a carbonate bond. When the polymer has multiple bonds, it is described together using "/". That is, U / E indicates that the polymer has a urethane bond and an ether bond.
In addition, in the "component f" column, when two or more types of components are contained, the abbreviations and contents of the components are described together using "/".
2.硫化物系無機固体電解質の合成
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235、及び、A.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li/P/Sガラス、以下、LPSと表記することがある。)6.20gを得た。
2. 2. Synthesis of sulfide-based inorganic solid electrolytes Sulfide-based inorganic solid electrolytes are described in T.I. Ohtomo, A. Hayashi, M. et al. Tassumisago, Y. et al. Tsuchida, S.A. Hama, K.K. Kawamoto, Journal of Power Sources, 233, (2013), pp231-235, and A.M. Hayashi, S.A. Hama, H.M. Morimoto, M.D. Tassumisago, T. et al. Minami, Chem. Lett. , (2001), pp872-873, was synthesized with reference to the non-patent documents.
Specifically, in a glove box under an argon atmosphere (dew point -70 ° C.), lithium sulfide (Li 2 S, Aldrich Corp., purity> 99.98%) 2.42 g and diphosphorus pentasulfide (P 2 S 5. Aldrich, purity> 99%) 3.90 g was weighed, placed in an agate mortar, and mixed for 5 minutes using an agate mortar. The mixing ratio of Li 2 S and P 2 S 5 was Li 2 S: P 2 S 5 = 75: 25 in terms of molar ratio.
66 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), and the entire amount of the above mixture of lithium sulfide and diphosphorus pentasulfide was put into the container, and the container was completely sealed under an argon atmosphere. A container is set in a planetary ball mill P-7 (trade name, manufactured by Fritsch) manufactured by Fritsch, and mechanical milling is performed at a temperature of 25 ° C. at a rotation speed of 510 rpm for 20 hours to produce a sulfide-based inorganic solid electrolyte of yellow powder. (Li / P / S glass, hereinafter may be referred to as LPS.) 6.20 g was obtained.
[実施例1]
 実施例1では、ポリマーD-01分散液を用いて調製した固体電解質組成物を用いて、全固体二次電池用シート、及び図1に示す層構成を有する全固体二次電池を作製して、その性能を評価した。その結果を表2に示す。
<固体電解質組成物D-01の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS9.5g、分散媒として酪酸ブチル2.5gを投入した。その後、ポリマーD-01分散液を固形分相当で0.5g投入し、遊星ボールミルP-7(商品名、フリッチュ社製)にセットした。温度25℃、回転数300rpmで3時間混合を続け、固体電解質組成物D-01を調製した。
[Example 1]
In Example 1, an all-solid-state secondary battery sheet and an all-solid-state secondary battery having the layer structure shown in FIG. 1 were prepared using the solid electrolyte composition prepared using the polymer D-01 dispersion. , The performance was evaluated. The results are shown in Table 2.
<Preparation of solid electrolyte composition D-01>
180 zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), 9.5 g of LPS synthesized above, and 2.5 g of butyl butyrate as a dispersion medium were put. Then, 0.5 g of the polymer D-01 dispersion liquid equivalent to the solid content was added and set in a planetary ball mill P-7 (trade name, manufactured by Fritsch). Mixing was continued for 3 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm to prepare a solid electrolyte composition D-01.
<全固体二次電池用正極シートD-01の作製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で調製した固体電解質組成物D-01を固形分相当で1.9g、分散媒総量として酪酸ブチル12.3gを投入した。更に、そこへ、正極活物質としてNCA(LiNi0.85Co0.10Al0.05)8.0g、アセチレンブラック0.1gを投入し、遊星ボールミルP-7にセットし、温度25℃、回転数200rpmで20分間混合を続けた。こうして、正極層用組成物(スラリー)D-01を調製した。
 上記で調製した正極層用組成物D-01を、集電体として厚み20μmのアルミニウム箔に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、80℃で1時間加熱後、更に110℃で1時間加熱して、正極層用組成物D-01を乾燥させた。その後、ヒートプレス機を用いて、乾燥させた正極層用組成物D-01を加熱(120℃)しながら加圧し(20MPa、1分間)、層厚60μmの正極活物質層/アルミニウム箔の積層構造を有する全固体二次電池用正極シートD-01を作製した。
<Manufacture of positive electrode sheet D-01 for all-solid-state secondary battery>
180 zirconia beads having a diameter of 5 mm were placed in a 45 mL container made of zirconia (manufactured by Fritsch), and the solid electrolyte composition D-01 prepared above was 1.9 g in terms of solid content and butyl butyrate as the total amount of dispersion medium. 3 g was added. Further, 8.0 g of NCA (LiNi 0.85 Co 0.10 Al 0.05 O 2 ) and 0.1 g of acetylene black were added thereto as the positive electrode active material, set in the planetary ball mill P-7, and the temperature was 25. Mixing was continued for 20 minutes at ° C. and a rotation speed of 200 rpm. In this way, the composition (slurry) D-01 for the positive electrode layer was prepared.
The positive electrode layer composition D-01 prepared above is applied to an aluminum foil having a thickness of 20 μm as a current collector with a baker-type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and at 80 ° C. for 1 hour. After heating, the composition D-01 for the positive electrode layer was dried by further heating at 110 ° C. for 1 hour. Then, using a heat press machine, the dried composition D-01 for the positive electrode layer is pressed while heating (120 ° C.) (20 MPa for 1 minute), and the positive electrode active material layer / aluminum foil having a layer thickness of 60 μm is laminated. A positive electrode sheet D-01 for an all-solid-state secondary battery having a structure was produced.
<全固体二次電池用負極シートD-01の作製>
 次いで、ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で調製した固体電解質組成物D-01を固形分相当で5.0g、分散媒として酪酸ブチル12.3gを投入した。その後、この容器を遊星ボールミルP-7(商品名、フリッチュ社製)にセットし、温度25℃で、回転数300rpmで3時間攪拌した。その後、負極活物質として黒鉛5.0gを投入し、再びこの容器を遊星ボールミルP-7にセットし、温度25℃、回転数100rpmで15分間混合を続けた。このようにして、負極層用組成物(スラリー)D-01得た。
 上記で得られた負極層用組成物D-01を、厚み10μmのステンレス箔上に、上記ベーカー式アプリケーターにより塗布し、80℃2時間加熱して、負極層用組成物D-01を乾燥させた。その後、ヒートプレス機を用いて、乾燥させた負極層用組成物D-01を加熱(120℃)しながら加圧(600MPa、1分間)し、層厚120μmの負極活物質層/ステンレス箔の積層構造を有する全固体二次電池用負極シートD-01を作製した。
<Manufacture of negative electrode sheet D-01 for all-solid-state secondary battery>
Next, 180 zirconia beads having a diameter of 5 mm were placed in a 45 mL container made of zirconia (manufactured by Fritsch), and 5.0 g of the solid electrolyte composition D-01 prepared above was added as a dispersion medium, and butyl butyrate 12 as a dispersion medium. .3 g was added. Then, this container was set in a planetary ball mill P-7 (trade name, manufactured by Fritsch), and the mixture was stirred at a temperature of 25 ° C. and a rotation speed of 300 rpm for 3 hours. Then, 5.0 g of graphite was added as the negative electrode active material, and this container was set in the planetary ball mill P-7 again, and mixing was continued for 15 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm. In this way, the composition (slurry) D-01 for the negative electrode layer was obtained.
The negative electrode layer composition D-01 obtained above is applied onto a stainless foil having a thickness of 10 μm by the above baker type applicator, and heated at 80 ° C. for 2 hours to dry the negative electrode layer composition D-01. It was. Then, using a heat press machine, the dried composition D-01 for the negative electrode layer is pressurized (600 MPa for 1 minute) while heating (120 ° C.) to form a negative electrode active material layer / stainless foil having a layer thickness of 120 μm. A negative electrode sheet D-01 for an all-solid-state secondary battery having a laminated structure was produced.
<全固体二次電池D-01の製造>
 作製した全固体二次電池用負極シートD-01の負極活物質層の上に、調製した固体電解質組成物D-01を、上記ベーカー式アプリケーターにより塗布し、80℃で1時間加熱後、更に110℃で6時間加熱し、固体電解質組成物D-01を乾燥させた。負極活物質層上に固体電解質層(塗布乾燥層)を形成した負極シートD-01を、ヒートプレス機を用いて、加熱(120℃)しながら加圧(30MPa、1分間)し、層厚60μmの固体電解質層/負極活物質層/ステンレス箔の積層構造を有する負極シートD-01を作製した。
 この負極シートを直径15mmの円板状に切り出した。他方、上記で作製した全固体二次電池用正極シートD-01を、直径13mmの円板状に切り出した。全固体二次電池用正極シートD-01の正極活物質層と、負極シートD-01に形成した固体電解質層とが向かい合うように配置(積層)した後に、ヒートプレス機を用いて、加熱(120℃)しながら加圧(40MPa、1分間)し、アルミ箔/正極活物質層/固体電解質層/負極活物質層/ステンレス箔の積層構造を有する全固体二次電池用積層体を作製した。
 次いで、このようにして作製した全固体二次電池用積層体12をスペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れ、2032型コインケース11をかしめることで、図2に符号13で示す全固体二次電池D-01を製造した。
<Manufacturing of all-solid-state secondary battery D-01>
The prepared solid electrolyte composition D-01 is applied onto the negative electrode active material layer of the prepared negative electrode sheet D-01 for an all-solid secondary battery by the above-mentioned baker type applicator, heated at 80 ° C. for 1 hour, and then further. The solid electrolyte composition D-01 was dried by heating at 110 ° C. for 6 hours. The negative electrode sheet D-01 having the solid electrolyte layer (coating dry layer) formed on the negative electrode active material layer is pressurized (30 MPa, 1 minute) while heating (120 ° C.) using a heat press machine to achieve a layer thickness. A negative electrode sheet D-01 having a laminated structure of a 60 μm solid electrolyte layer / negative electrode active material layer / stainless foil was prepared.
This negative electrode sheet was cut out into a disk shape having a diameter of 15 mm. On the other hand, the positive electrode sheet D-01 for an all-solid-state secondary battery produced above was cut out into a disk shape having a diameter of 13 mm. After the positive electrode active material layer of the positive electrode sheet D-01 for the all-solid secondary battery and the solid electrolyte layer formed on the negative electrode sheet D-01 are arranged (laminated) so as to face each other, they are heated (laminated) using a heat press machine. Pressurization (40 MPa, 1 minute) while (120 ° C.) was performed to prepare a laminate for an all-solid secondary battery having a laminated structure of aluminum foil / positive electrode active material layer / solid electrolyte layer / negative electrode active material layer / stainless foil. ..
Next, the all-solid-state secondary battery laminate 12 thus produced is placed in a stainless steel 2032 type coin case 11 incorporating a spacer and a washer (not shown in FIG. 2), and the 2032 type coin case 11 is inserted. By tightening, the all-solid-state secondary battery D-01 shown by reference numeral 13 in FIG. 2 was manufactured.
[実施例2~12(No.D-02~D-12)、比較例1(No.cD-01)及び比較例2]
 固体電解質組成物D-01の調製、全固体二次電池用正極シートD-01の作製、全固体二次電池用負極シートD-01の作製及び全固体二次電池D-01の製造それぞれにおいて、ポリマーD-01分散液に代えて表2に示すポリマー分散液を用いて調製した各組成物を用いたこと以外は、実施例1と同様にして、全固体二次電池用正極シート及び全固体二次電池用負極シートをそれぞれ作製して、全固体二次電池No.D-02~D-12及びcD-01をそれぞれ製造した。
 ポリマー分散液cD-02は調製できなかったため、ポリマーcD-02を用いた全固体二次電池用シート及び全固体二次電池の作製及び評価をしていない。
[Examples 2 to 12 (No. D-02 to D-12), Comparative Example 1 (No. cD-01), and Comparative Example 2]
In the preparation of the solid electrolyte composition D-01, the production of the positive electrode sheet D-01 for the all-solid secondary battery, the production of the negative electrode sheet D-01 for the all-solid secondary battery, and the production of the all-solid secondary battery D-01. , All the positive electrode sheets for all-solid secondary batteries and all in the same manner as in Example 1 except that each composition prepared by using the polymer dispersion shown in Table 2 was used instead of the polymer D-01 dispersion. Negative electrode sheets for solid secondary batteries were prepared, and all-solid secondary battery No. D-02 to D-12 and cD-01 were produced, respectively.
Since the polymer dispersion liquid cD-02 could not be prepared, the sheet for the all-solid-state secondary battery and the all-solid-state secondary battery using the polymer cD-02 have not been prepared and evaluated.
<固体電解質組成物の分散性試験>
 上述のようにして調製した各固体電解質組成物を、遊星ボールミルP-7から分けとり、直径10mmの透明なガラス管に、高さ3cmまで充填した。これを25℃の環境下で48時間静置した。その後、組成物の相分離状態及び相分離の程度(分散安定性)を、以下の評価基準で判定した。本試験において、評価基準「C」以上が合格レベルである。
 -評価基準-
 A:分層(相分離)が発生した箇所(上澄層との界面)が液面より2mm未満である場合
 B:分層が発生した箇所が液面より2mm以上、4mm未満である場合
 C:分層が発生した箇所が液面より4mm以上、7mm未満である場合
 D:分層が発生した箇所が液面より7mm以上、10mm未満である場合
<Dispersibility test of solid electrolyte composition>
Each solid electrolyte composition prepared as described above was separated from the planetary ball mill P-7 and filled in a transparent glass tube having a diameter of 10 mm to a height of 3 cm. This was allowed to stand in an environment of 25 ° C. for 48 hours. Then, the phase separation state of the composition and the degree of phase separation (dispersion stability) were judged by the following evaluation criteria. In this test, the evaluation standard "C" or higher is the passing level.
-Evaluation criteria-
A: When the location where layer separation (phase separation) occurs (interface with the supernatant layer) is less than 2 mm from the liquid surface B: When the location where layer separation occurs is 2 mm or more and less than 4 mm from the liquid surface C : When the part where the layer separation occurs is 4 mm or more and less than 7 mm from the liquid level D: When the part where the layer separation occurs is 7 mm or more and less than 10 mm from the liquid level
<全固体二次電池用電極シートの結着性試験>
 全固体二次電池用正極シートの結着性試験として、マンドレル試験機を用いた耐屈曲性試験(JIS K 5600-5-1に準拠)により、評価した。具体的には、各シートから、幅50mm、長さ100mmの短冊状の試験片を切り出した。この試験片の活物質層面をマンドレルとは逆側(集電体をマンドレル側)に、かつ試験片の幅方向がマンドレルの軸に平行となるようにセットし、マンドレルの外周面に沿って180°屈曲(1回)させた後、活物質層にヒビ及び割れが生じているか否かを観察した。この屈曲試験は、まず、直径32mmのマンドレルを用いて行い、ヒビ及び割れのいずれも発生していない場合、マンドレルの直径(単位mm)を、25、20、16、12、10、8、6、5、3、2と徐々に小さくしていき、最初にヒビ及び/又は割れが発生したマンドレルの直径を記録した。このヒビ及び割れが最初に発生した直径(欠陥発生径)が下記評価基準のいずれに含まれるかにより、結着性を評価した。本発明において、欠陥発生径が小さいほど固体粒子の結着性が強固であることを示し、評価基準「B」以上が合格レベルである。
<Adhesion test of electrode sheet for all-solid-state secondary battery>
As a binding test of the positive electrode sheet for an all-solid-state secondary battery, it was evaluated by a bending resistance test (according to JIS K 5600-5-1) using a mandrel testing machine. Specifically, a strip-shaped test piece having a width of 50 mm and a length of 100 mm was cut out from each sheet. Set the active material layer surface of this test piece on the opposite side of the mandrel (the current collector is on the mandrel side) and so that the width direction of the test piece is parallel to the axis of the mandrel, and 180 along the outer peripheral surface of the mandrel. After bending (once), it was observed whether or not the active material layer had cracks and cracks. This bending test is first performed using a mandrel having a diameter of 32 mm, and if neither cracks nor cracks occur, the diameter (unit: mm) of the mandrel is set to 25, 20, 16, 12, 10, 8, 6 The diameter was gradually reduced to 5, 3 and 2, and the diameter of the mandrel where the crack and / or crack first occurred was recorded. The binding property was evaluated based on which of the following evaluation criteria included the diameter at which the cracks and cracks first occurred (defect generation diameter). In the present invention, the smaller the defect generation diameter, the stronger the binding property of the solid particles, and the evaluation standard "B" or higher is the pass level.
-評価基準-
 AA:2mm
 A :3mm
 B :5mm又は6mm
 C :8mm以上
-Evaluation criteria-
AA: 2mm
A: 3 mm
B: 5 mm or 6 mm
C: 8 mm or more
(電池性能(放電容量)の測定)
 以下のように作製した正極シートを用いた以外は、上述の<全固体二次電池D-01の製造>と同様にして作製した全固体二次電池を用いて電池性能として放電容量を測定した。
 すなわち、ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、表2に示す固体電解質組成物を固形分相当で1.9g、分散媒総量として酪酸ブチル12.3gを投入した。更に、そこへ、正極活物質としてNCA(LiNi0.85Co0.10Al0.05)8.0g、アセチレンブラック0.1gを投入し、遊星ボールミルP-7にセットし、温度25℃、回転数200rpmで20分間混合を続けた。こうして、容量測定用の正極層用組成物(スラリー)をそれぞれ調製した。
 次いで、上記で調製した正極層用組成物を25℃で2時間静置した後、集電体として厚み20μmのアルミニウム箔に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、80℃で1時間加熱後、更に110℃で1時間加熱して、正極層用組成物を乾燥させた。その後、ヒートプレス機を用いて、乾燥させた正極層用組成物を加熱(120℃)しながら加圧し(20MPa、1分間)、層厚60μmの正極活物質層/アルミニウム箔の積層構造を有する、容量測定用の全固体二次電池用正極シートをそれぞれ作製した。
 この全固体二次電池用正極シートを用いて製造した各全固体二次電池の放電容量を、充放電評価装置「TOSCAT-3000」(商品名、東洋システム社製)により、測定した。全固体二次電池を電池電圧が4.2Vになるまで電流値0.2mAで充電した後、電池電圧が3.0Vになるまで電流値0.2mAで放電した。この充放電を1サイクルとして充放電を繰り返し行った。この充放電サイクルにおいて、3サイクル目の放電容量を求めた。この放電容量を、正極活物質層の表面積が100cm当たりに換算し、全固体二次電池の放電容量として、以下の評価基準で判定した。本試験において、評価基準「B」以上が合格レベルである。
 -評価基準-
 AA:放電容量が200mAh以上
 A :放電容量が180mAh以上、200mAh未満
 B :放電容量が150mAh以上、180mAh未満
 C :放電容量が120mAh以上、150mAh未満
(Measurement of battery performance (discharge capacity))
The discharge capacity was measured as the battery performance using the all-solid-state secondary battery manufactured in the same manner as the above <Manufacturing of the all-solid-state secondary battery D-01> except that the positive electrode sheet prepared as follows was used. ..
That is, 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), and the solid electrolyte composition shown in Table 2 was 1.9 g in terms of solid content and 12.3 g of butyl butyrate as the total amount of dispersion medium. Was put in. Further, 8.0 g of NCA (LiNi 0.85 Co 0.10 Al 0.05 O 2 ) and 0.1 g of acetylene black were added thereto as the positive electrode active material, set in the planetary ball mill P-7, and the temperature was 25. Mixing was continued for 20 minutes at ° C. and a rotation speed of 200 rpm. In this way, the composition (slurry) for the positive electrode layer for volume measurement was prepared respectively.
Next, the composition for the positive electrode layer prepared above was allowed to stand at 25 ° C. for 2 hours, and then applied to an aluminum foil having a thickness of 20 μm as a current collector by a baker type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.). The coating was applied, heated at 80 ° C. for 1 hour, and then further heated at 110 ° C. for 1 hour to dry the composition for the positive electrode layer. Then, using a heat press machine, the dried composition for the positive electrode layer is pressed while heating (120 ° C.) (20 MPa, 1 minute) to have a laminated structure of a positive electrode active material layer / aluminum foil having a layer thickness of 60 μm. , Positive electrode sheets for all-solid-state secondary batteries for capacity measurement were prepared.
The discharge capacity of each all-solid-state secondary battery manufactured using the positive electrode sheet for the all-solid-state secondary battery was measured by a charge / discharge evaluation device "TOSCAT-3000" (trade name, manufactured by Toyo System Co., Ltd.). The all-solid-state secondary battery was charged with a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 0.2 mA until the battery voltage reached 3.0 V. This charging / discharging was set as one cycle, and charging / discharging was repeated. In this charge / discharge cycle, the discharge capacity of the third cycle was determined. This discharge capacity was converted into a surface area of the positive electrode active material layer per 100 cm 2 , and the discharge capacity of the all-solid secondary battery was determined by the following evaluation criteria. In this test, the pass level is above the evaluation standard "B".
-Evaluation criteria-
AA: Discharge capacity is 200mAh or more A: Discharge capacity is 180mAh or more and less than 200mAh B: Discharge capacity is 150mAh or more and less than 180mAh C: Discharge capacity is 120mAh or more and less than 150mAh
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表2に示す結果から次のことが分かる。
 すなわち、本発明で規定するポリマーセグメントを構成成分としないポリマーcD-01を無機固体電解質及び分散媒と併用した固体電解質組成物cD-01は、固体電解質組成物の分散性が十分ではない。更に、正極シートcD-01の結着性及び全固体二次電池cD-01の電池性能(放電容量)も満足できるものではない。
 数平均分子量が500以上である炭化水素重合体に代えて分子量が500未満であるアルキレン基に由来する構成成分を含むポリマーcD-02は自身の分散性が著しく悪い。そのため、ポリマーcD-02を用いて正極シート及び全固体二次電池を製造したとしても、正極シートcD-02の結着性及び全固体二次電池cD-02の電池性能(放電容量)は十分なものではないことが分かる。
The following can be seen from the results shown in Table 2.
That is, the solid electrolyte composition cD-01 in which the polymer cD-01 not containing the polymer segment specified in the present invention is used in combination with the inorganic solid electrolyte and the dispersion medium does not have sufficient dispersibility of the solid electrolyte composition. Further, the binding property of the positive electrode sheet cD-01 and the battery performance (discharge capacity) of the all-solid-state secondary battery cD-01 are not satisfactory.
The polymer cD-02 containing a component derived from an alkylene group having a molecular weight of less than 500 instead of a hydrocarbon polymer having a number average molecular weight of 500 or more has extremely poor dispersibility. Therefore, even if the positive electrode sheet and the all-solid-state secondary battery are manufactured using the polymer cD-02, the binding property of the positive electrode sheet cD-02 and the battery performance (discharge capacity) of the all-solid-state secondary battery cD-02 are sufficient. It turns out that it is not a good thing.
 これに対して、本発明で規定するポリマーセグメントを構成成分として有するポリマーD-01~D-12を無機固体電解質及び分散媒と併用した固体電解質組成物D-01~D-12は、いずれも、固体粒子が高度に分散しており、優れた分散性(分散安定性)を示している。また、これらの固体電解質組成物で作製した正極シートD-01~D-12は、いずれも、固体粒子が強固に結着されており(固体粒子の結着性に優れ)、これらの正極シートを構成層として備えた全固体二次電池D-01~D-12はいずれも高い電池性能(放電容量)を示すことが分かる。
 上記結果から、固体電解質層及び活物質層に含有する特定のポリマーが異なる場合、更には固体電解質層及び活物質層の少なくとも1層に特定のポリマーを含有すると、上述の効果が発現することが分かる。
On the other hand, the solid electrolyte compositions D-01 to D-12 in which the polymers D-01 to D-12 having the polymer segment defined in the present invention in combination with the inorganic solid electrolyte and the dispersion medium are all used. , Solid particles are highly dispersed and show excellent dispersibility (dispersion stability). Further, in each of the positive electrode sheets D-01 to D-12 produced from these solid electrolyte compositions, solid particles are firmly bound (excellent in binding of solid particles), and these positive electrode sheets are excellent. It can be seen that all of the all-solid-state secondary batteries D-01 to D-12 provided with the above as a constituent layer exhibit high battery performance (discharge capacity).
From the above results, when the specific polymer contained in the solid electrolyte layer and the active material layer is different, and when the specific polymer is contained in at least one layer of the solid electrolyte layer and the active material layer, the above-mentioned effect can be exhibited. I understand.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 Although the present invention has been described with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, and contrary to the spirit and scope of the invention set forth in the appended claims. I think that it should be widely interpreted without.
 本願は、2019年3月28日に日本国で特許出願された特願2019-062800に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2019-062800, which was filed for patent in Japan on March 28, 2019, which is referred to herein and is described herein. Import as a part.
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 コインケース
12 全固体二次電池用積層体
13 全固体二次電池(コイン電池)
1 Negative electrode current collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part 10 All-solid secondary battery 11 Coin case 12 All-solid secondary battery laminate 13 All-solid secondary Battery (coin battery)

Claims (14)

  1.  周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、ポリマーと、分散媒とを含有する固体電解質組成物であって、
     前記ポリマーが、ヒドロキシ基若しくはアミノ基を少なくとも2つ有し、数平均分子量が500以上である炭化水素重合体に由来する構成成分と、エステル結合を有する環状化合物若しくはカルボキシ基を少なくとも2つ有する化合物に由来する構成成分とを有する、酸素若しくは窒素原子を結合部とするポリマーセグメントを主鎖に有し、かつ、下記結合群(I)から選択される結合を主鎖に少なくとも1つ含む、固体電解質組成物。
    <結合群(I)>
    エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合及びカーボネート結合
    A solid electrolyte composition containing an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the Periodic Table, a polymer, and a dispersion medium.
    The polymer has at least two hydroxy or amino groups, a component derived from a hydrocarbon polymer having a number average molecular weight of 500 or more, and a cyclic compound having an ester bond or a compound having at least two carboxy groups. A solid having a polymer segment having an oxygen or nitrogen atom as a bond having a constituent component derived from the above, and having at least one bond selected from the following bond group (I) in the main chain. Polymer composition.
    <Binding group (I)>
    Ester bond, amide bond, urethane bond, urea bond, imide bond, ether bond and carbonate bond
  2.  前記ポリマーセグメントが、下記式(1)で表されるポリマーセグメント及び式(2)で表わされるポリマーセグメントの少なくとも1種を含む、請求項1に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、Rは前記炭化水素重合体中の炭化水素ポリマー鎖を示す。
     Xは酸素原子又は-NH-を示す。
     Rは炭素数3~15の脂肪族炭化水素基を示す。
     Rは炭素数6~20の芳香族若しくは炭素数1~20の脂肪族の炭化水素基を示す。
     n1は1~100であり、n2は1~10である。
    The solid electrolyte composition according to claim 1, wherein the polymer segment contains at least one of a polymer segment represented by the following formula (1) and a polymer segment represented by the formula (2).
    Figure JPOXMLDOC01-appb-C000001
    In the formula, Ra represents a hydrocarbon polymer chain in the hydrocarbon polymer.
    X a is an oxygen atom or -NH-.
    R 1 represents an aliphatic hydrocarbon group having 3 to 15 carbon atoms.
    R 2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
    n1 is 1 to 100 and n2 is 1 to 10.
  3.  前記エステル結合を有する環状化合物若しくはカルボキシ基を少なくとも2つ有する化合物が、ラクトン化合物を含む請求項1又は2に記載の固体電解質組成物。 The solid electrolyte composition according to claim 1 or 2, wherein the cyclic compound having an ester bond or the compound having at least two carboxy groups contains a lactone compound.
  4.  前記ポリマーが、平均粒径10~1000nmの粒子状ポリマーである請求項1~3のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 3, wherein the polymer is a particulate polymer having an average particle size of 10 to 1000 nm.
  5.  前記ポリマー中における、前記ポリマーセグメントの含有量が、5~80質量%である、請求項1~4のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 4, wherein the content of the polymer segment in the polymer is 5 to 80% by mass.
  6.  前記ポリマーが、下記式(3)で表されるポリマー及び式(4)で表わされるポリマーの少なくとも1種を含む、請求項1~5のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000002
     式中、Rは前記炭化水素重合体中の炭化水素ポリマー鎖を示す。
     Xは酸素原子又は-NH-を示す。
     Rは炭素数3~15の脂肪族炭化水素基を示す。
     Rは炭素数6~20の芳香族若しくは炭素数1~20の脂肪族の炭化水素基を示す。
     n1は1~100であり、n2は1~10である。
     Rb1は炭素数6~22の芳香族炭化水素基若しくは炭素数1~15の脂肪族炭化水素基、又は、これらの基を2以上組み合わせてなる基を示す。
     Rb2は、炭素数2~12のアルキレン基を示す。
     Rb3は、下記官能基群(II)から選択される官能基を少なくとも1つ有するアルキレン基を示す。
     Rb4は、下記官能基群(III)から選択される官能基を少なくとも1つ有するアルキレン基を示す。
     Rb5は、数平均分子量100以上の2価の鎖であって、ポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖若しくはシリコーン鎖、又は、これらの鎖を2以上組み合わせてなる鎖を示す。
     Xb2、Xb3、Xb4及びXb5は酸素原子又は-NH-を示す。
     a、b、c、d、e及びfは各構造成分のモル比であり、aは0.1~30モル%、bは40~60モル%、c及びeはそれぞれ0~30モル%、d及びfはそれぞれ0~49モル%であり、a+b+c+d+e+f=100モル%である。
    <官能基群(II)>
    カルボキシ基、スルホン酸基、リン酸基、アミノ基、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基及び3つ以上の環が縮環した基
    <官能基群(III)>
    炭素-炭素不飽和結合を有する基、エポキシ基及びオキセタニル基
    The solid electrolyte composition according to any one of claims 1 to 5, wherein the polymer comprises at least one of a polymer represented by the following formula (3) and a polymer represented by the formula (4).
    Figure JPOXMLDOC01-appb-C000002
    In the formula, Ra represents a hydrocarbon polymer chain in the hydrocarbon polymer.
    X a is an oxygen atom or -NH-.
    R 1 represents an aliphatic hydrocarbon group having 3 to 15 carbon atoms.
    R 2 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
    n1 is 1 to 100 and n2 is 1 to 10.
    R b1 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aliphatic hydrocarbon group having 1 to 15 carbon atoms, or a group formed by combining two or more of these groups.
    R b2 represents an alkylene group having 2 to 12 carbon atoms.
    R b3 represents an alkylene group having at least one functional group selected from the following functional group group (II).
    R b4 represents an alkylene group having at least one functional group selected from the following functional group group (III).
    R b5 is a divalent chain having a number average molecular weight of 100 or more, and represents a polyalkylene oxide chain, a polycarbonate chain, a polyester chain or a silicone chain, or a chain formed by combining two or more of these chains.
    X b2 , X b3 , X b4 and X b5 represent an oxygen atom or -NH-.
    a, b, c, d, e and f are the molar ratios of each structural component, a is 0.1 to 30 mol%, b is 40 to 60 mol%, and c and e are 0 to 30 mol%, respectively. d and f are 0 to 49 mol%, respectively, and a + b + c + d + e + f = 100 mol%.
    <Functional group group (II)>
    A carboxy group, a sulfonic acid group, a phosphoric acid group, an amino group, a hydroxy group, a sulfanyl group, an isocyanato group, an alkoxysilyl group and a group in which three or more rings are fused <functional group group (III)>
    Group with carbon-carbon unsaturated bond, epoxy group and oxetanyl group
  7.  前記ポリマーの含有量が、前記固体電解質組成物の固形分中、0.001~10質量%である、請求項1~6のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 6, wherein the content of the polymer is 0.001 to 10% by mass in the solid content of the solid electrolyte composition.
  8.  前記無機固体電解質が、下記式(S1)で表される請求項1~7のいずれか1項に記載の固体電解質組成物。
       La1b1c1d1e1 (S1)
     式中、LはLi、Na及びKから選択される元素を示す。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。
    The solid electrolyte composition according to any one of claims 1 to 7, wherein the inorganic solid electrolyte is represented by the following formula (S1).
    L a1 M b1 P c1 S d1 A e1 (S1)
    In the formula, L represents an element selected from Li, Na and K. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  9.  前記分散媒が、ケトン化合物、脂肪族化合物又はエステル化合物から選ばれる請求項1~8のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 8, wherein the dispersion medium is selected from a ketone compound, an aliphatic compound or an ester compound.
  10.  活物質を含有する、請求項1~9のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 9, which contains an active material.
  11.  請求項1~10のいずれか1項に記載の固体電解質組成物で構成した層を有する全固体二次電池用シート。 A sheet for an all-solid secondary battery having a layer composed of the solid electrolyte composition according to any one of claims 1 to 10.
  12.  正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
     前記正極活物質層、前記固体電解質層及び前記負極活物質層の少なくとも1つの層が、請求項1~10のいずれか1項に記載の固体電解質組成物で構成した層である全固体二次電池。
    An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.
    The all-solid secondary layer in which at least one layer of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is a layer composed of the solid electrolyte composition according to any one of claims 1 to 10. battery.
  13.  請求項1~10のいずれか1項に記載の固体電解質組成物を製膜する、全固体二次電池用シートの製造方法。 A method for producing a sheet for an all-solid secondary battery, which forms a film of the solid electrolyte composition according to any one of claims 1 to 10.
  14.  請求項13に記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。 A method for manufacturing an all-solid-state secondary battery, which manufactures an all-solid-state secondary battery through the manufacturing method according to claim 13.
PCT/JP2020/011506 2019-03-28 2020-03-16 Solid electrolyte composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery WO2020196041A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217031954A KR20210134748A (en) 2019-03-28 2020-03-16 Solid electrolyte composition, all-solid-state secondary battery sheet and all-solid-state secondary battery, and all-solid-state secondary battery sheet and all-solid-state secondary battery manufacturing method
JP2021509097A JP7096426B2 (en) 2019-03-28 2020-03-16 A method for producing a solid electrolyte composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet and an all-solid-state secondary battery.
CN202080023128.3A CN113614960A (en) 2019-03-28 2020-03-16 Solid electrolyte composition, sheet for all-solid-state secondary battery, sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019062800 2019-03-28
JP2019-062800 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196041A1 true WO2020196041A1 (en) 2020-10-01

Family

ID=72610171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011506 WO2020196041A1 (en) 2019-03-28 2020-03-16 Solid electrolyte composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery

Country Status (4)

Country Link
JP (1) JP7096426B2 (en)
KR (1) KR20210134748A (en)
CN (1) CN113614960A (en)
WO (1) WO2020196041A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113583208A (en) * 2021-07-14 2021-11-02 华中科技大学 Polycaprolactone-based polymer electrolyte with self-repairing and shape memory characteristics and preparation thereof
WO2022071392A1 (en) * 2020-09-30 2022-04-07 富士フイルム株式会社 Inorganic solid electrolyte–containing composition, sheet for all-solid secondary battery, and all-solid secondary battery, and methods for manufacturing sheet for all-solid secondary battery and all-solid secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116589649B (en) * 2023-07-14 2023-12-22 宁德时代新能源科技股份有限公司 Polymer, preparation method, dispersing agent, positive electrode slurry, positive electrode plate, secondary battery and electricity utilization device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020827A1 (en) * 2016-07-26 2018-02-01 富士フイルム株式会社 Solid electrolyte composition, solid-electrolyte-containing sheet and all-solid-state secondary battery, production method for solid-electrolyte-containing sheet and all-solid-state secondary battery, segmented polymer, and non-aqueous-solvent dispersion of polymer and segmented polymer
WO2018151118A1 (en) * 2017-02-16 2018-08-23 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet and method for producing same, all-solid secondary battery and method for producing same, and polymer and non-aqueous solvent dispersion thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759377B1 (en) * 2005-04-21 2007-09-19 삼성에스디아이 주식회사 Rechargeable lithium battery
JP6840776B2 (en) * 2017-02-13 2021-03-10 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet and its production method, all-solid secondary battery and its production method, and polymer and its non-aqueous solvent dispersion and diol compound.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020827A1 (en) * 2016-07-26 2018-02-01 富士フイルム株式会社 Solid electrolyte composition, solid-electrolyte-containing sheet and all-solid-state secondary battery, production method for solid-electrolyte-containing sheet and all-solid-state secondary battery, segmented polymer, and non-aqueous-solvent dispersion of polymer and segmented polymer
WO2018151118A1 (en) * 2017-02-16 2018-08-23 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet and method for producing same, all-solid secondary battery and method for producing same, and polymer and non-aqueous solvent dispersion thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071392A1 (en) * 2020-09-30 2022-04-07 富士フイルム株式会社 Inorganic solid electrolyte–containing composition, sheet for all-solid secondary battery, and all-solid secondary battery, and methods for manufacturing sheet for all-solid secondary battery and all-solid secondary battery
CN113583208A (en) * 2021-07-14 2021-11-02 华中科技大学 Polycaprolactone-based polymer electrolyte with self-repairing and shape memory characteristics and preparation thereof

Also Published As

Publication number Publication date
CN113614960A (en) 2021-11-05
KR20210134748A (en) 2021-11-10
JP7096426B2 (en) 2022-07-05
JPWO2020196041A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP7104800B2 (en) Manufacturing method of all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery and its manufacturing method
JP7372340B2 (en) Inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet and all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery
WO2021039948A1 (en) Method for producing electrode composition, method for manufacturing electrode sheet for all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
WO2021039950A1 (en) Inorganic solid electrolyte-containing composition, sheet for solid-state secondary batteries, solid-state secondary battery, and methods for producing solid-state secondary battery and sheet for solid-state secondary batteries
WO2020196041A1 (en) Solid electrolyte composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2021060541A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid secondary batteries, electrode sheet for all-solid secondary batteries, all-solid secondary battery, method for manufacturing sheet for all-solid secondary batteries, and method for manufacturing all-solid secondary battery
JP7165747B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
US20220140395A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for sheet for all-solid state secondary battery and all-solid state secondary battery
JP6972374B2 (en) A method for manufacturing a solid electrolyte composition, an all-solid secondary battery sheet, an all-solid secondary battery electrode sheet and an all-solid secondary battery, and an all-solid secondary battery sheet and an all-solid secondary battery.
WO2021166968A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2021085549A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary battery and all-solid-state secondary battery, and methods for manufacturing sheet for all-solid-state secondary battery and for manufacturing all-solid-state secondary battery
WO2020203545A1 (en) Composite electrode active material, electrode composition, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery, and methods for manufacturing composite electrode active material, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery
WO2021039949A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary battery, all-solid-state secondary battery, and methods for manufacturing sheet for all-solid-state secondary battery and all-solid-state secondary battery
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP6670641B2 (en) Electrode material, electrode sheet for all-solid secondary battery and all-solid secondary battery using the same, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
WO2023054425A1 (en) Electrode composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and methods for producing electrode composition, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery
JPWO2020075749A1 (en) Solid electrolyte composition, all-solid-state secondary battery sheet, all-solid-state secondary battery electrode sheet and all-solid-state secondary battery
JP7078801B2 (en) Manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery, as well as all-solid-state secondary battery sheet and all-solid-state secondary battery
WO2021020031A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary batteries and all-solid-state secondary battery
WO2022065477A1 (en) Inorganic solid electrolyte-containing composition, sheet for solid-state secondary batteries, solid-state secondary battery, and methods for producing sheet for solid-state secondary batteries and solid-state secondary battery
US20240162483A1 (en) Sheet for electrode and all-solid state secondary battery, and manufacturing methods for sheet for electrode, electrode sheet, and all-solid state secondary battery
JP7245847B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
WO2021193826A1 (en) Inorganic-solid-electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery sheet and all solid-state secondary battery
JP7407286B2 (en) Inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet and all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery
WO2021060542A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509097

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031954

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20779300

Country of ref document: EP

Kind code of ref document: A1