WO2021166968A1 - Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery - Google Patents

Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery Download PDF

Info

Publication number
WO2021166968A1
WO2021166968A1 PCT/JP2021/005973 JP2021005973W WO2021166968A1 WO 2021166968 A1 WO2021166968 A1 WO 2021166968A1 JP 2021005973 W JP2021005973 W JP 2021005973W WO 2021166968 A1 WO2021166968 A1 WO 2021166968A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solid electrolyte
polymer
solid
secondary battery
Prior art date
Application number
PCT/JP2021/005973
Other languages
French (fr)
Japanese (ja)
Inventor
陽 串田
安田 浩司
宏顕 望月
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022501941A priority Critical patent/JPWO2021166968A1/ja
Publication of WO2021166968A1 publication Critical patent/WO2021166968A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an inorganic solid electrolyte-containing composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and a method for producing an all-solid-state secondary battery sheet and an all-solid-state secondary battery.
  • the negative electrode, the electrolyte, and the positive electrode are all solid, and the safety and reliability of the battery using the organic electrolyte can be greatly improved. It is also said that it will be possible to extend the service life. Further, the all-solid-state secondary battery can have a structure in which electrodes and electrolytes are directly arranged side by side and arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and it is expected to be applied to an electric vehicle, a large storage battery, or the like.
  • examples of the substance forming the constituent layers such as the solid electrolyte layer, the negative electrode active material layer, and the positive electrode active material layer include an inorganic solid electrolyte, an active material, and a binder (binder). ..
  • the inorganic solid electrolytes oxide-based inorganic solid electrolytes and sulfide-based inorganic solid electrolytes are expected in recent years as electrolyte materials having high ionic conductivity approaching that of organic electrolytes.
  • a material for forming a constituent layer of an all-solid secondary battery (constituent layer forming material)
  • a material containing the above-mentioned inorganic solid electrolyte and the like has been proposed.
  • Patent Document 1 describes a polymer containing a structural unit represented by a specific formula (1) and a hetero atom in the main chain as a constituent layer forming material, and belongs to Group 1 or Group 2 of the Periodic Table.
  • a solid electrolyte composition containing an inorganic solid electrolyte having the conductivity of metal ions is described.
  • a polymer containing a segment in which a plurality of difluoromethylene groups are bonded is described as a structural unit represented by the specific formula (1).
  • R is a hydrogen atom or a monovalent organic.
  • the constituent layer of the all-solid-state secondary battery is usually formed of solid particles such as an inorganic solid electrolyte, an active material, and a conductive auxiliary agent, the interfacial contact state and the binding property between the solid particles are inherently restricted.
  • NS When the interfacial contact state is restricted, an increase in interfacial resistance (decrease in ionic conductivity) is induced, which in turn leads to a decrease in the cycle characteristics of the all-solid-state secondary battery.
  • the binding property between solid particles is weak, the binding state between solid particles is gradually impaired due to the contraction and expansion of the active material (constituent layer) accompanying the charging / discharging (release and absorption of lithium ions) of the all-solid secondary battery.
  • All-solid-state secondary batteries especially all-solid-state secondary batteries for electric vehicles, are urgently required to realize high-power charge / discharge (high-speed charge / discharge) for practical use.
  • High-speed charge / discharge is a battery with cycle characteristics, etc. It causes a significant decrease in performance at an early stage.
  • the constituent layer-forming material has the property of stably maintaining not only the dispersibility of the solid particles immediately after preparation but also the excellent dispersibility of the solid particles immediately after preparation. (Dispersion stability) is also required.
  • the constituent layers are made into a sheet and continuously produced by, for example, a roll-to-roll method, and it is practical that the constituent layers are wound around a roll or the like. Is. In such a continuous production method, it is inevitable that stress such as bending or bending, and further restoration (stretching) acts on the constituent layer, and the solid particles are simply bound to each other with a binder. By itself, defects (chips, cracks, cracks, peeling, etc.) occur. In order to prevent the occurrence of defects in the manufacturing process, the constituent layers are required to strengthen not only the mere binding properties of the solid particles but also the strength (also referred to as film strength) of the entire layer.
  • a binder is used to improve the binding property between solid particles, and the polymer structure constituting the binder has also been studied, and some effect has been obtained.
  • the dispersion stability of the constituent layer forming material, the reduction of battery resistance, and the cycle characteristics, particularly the cycle characteristics for high-speed charge / discharge have been studied. There is room for further improvement of these characteristics.
  • it is not easy to sufficiently strengthen the film strength of the constituent layer because the interfacial contact state and the binding property between the solid particles are restricted in the constituent layer, and it is not easy to sufficiently strengthen the film strength of the constituent layer.
  • the present invention is an inorganic solid electrolyte-containing composition having excellent dispersion stability, and by using it as a material for forming a constituent layer of an all-solid secondary battery, a constituent layer having enhanced film strength can be produced, and battery resistance is increased.
  • An object of the present invention is to provide an inorganic solid electrolyte-containing composition capable of suppressing (increasing ionic conductivity) and achieving excellent cycle characteristics even for high-speed charging / discharging. Further, the present invention provides a method for manufacturing an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet and an all-solid-state secondary battery using this inorganic solid electrolyte-containing composition. The challenge is to provide.
  • the present inventors have introduced a polymer in which a specific bond such as a urethane bond is introduced into a main chain composed of atoms not substituted with fluorine atoms as an inorganic solid electrolyte-containing composition, which is a hydroxyl group.
  • a polymer binder composed of a polymer incorporating a component having a specific functional group such as, etc. together with an inorganic solid electrolyte and a dispersion medium, reaggregation or precipitation of solid particles such as the inorganic solid electrolyte over time is suppressed. It has been found that the dispersion stability of the solid electrolyte-containing composition can be enhanced.
  • this inorganic solid electrolyte-containing composition as a constituent layer forming material, it is possible to form a constituent layer in which the solid particles are firmly bonded to each other as a whole layer while suppressing an increase in the interfacial resistance of the solid particles.
  • the present invention has been further studied based on these findings and has been completed.
  • An inorganic solid electrolyte-containing composition containing an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the Periodic Table, a polymer binder, and a dispersion medium.
  • An inorganic solid electrolyte-containing composition comprising a polymer binder in which the polymer binder is composed of a polymer satisfying the following (P1) and (P2).
  • P1 It is composed of atoms not substituted with fluorine atoms, and has a main chain containing at least one of urethane bond, urea bond and ester bond.
  • P2 Contains a component having at least one functional group selected from the following functional group group.
  • ⁇ Functional group group> Hydroxyl group, primary amino group, secondary amino group, sulfanyl group ⁇ 2> The solid electrolyte-containing composition according to ⁇ 1>, wherein the polymer binder composed of the above polymer is dispersed in a dispersion medium.
  • ⁇ 3> The inorganic solid electrolyte-containing composition according to ⁇ 1> or ⁇ 2>, wherein the polymer binder composed of the above polymer has an average particle size of 1 to 1000 nm.
  • ⁇ 5> The inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the constituent component in the polymer is 0.01 to 50 mol%.
  • the dispersion medium contains a polymer binder composed of a soluble polymer, and the soluble polymer is any one of a (meth) acrylic polymer, a hydrocarbon polymer, a vinyl polymer, and a fluorine polymer.
  • the active material is a negative electrode active material containing a silicon element or a tin element.
  • ⁇ 11> The inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 10>, which contains a conductive auxiliary agent.
  • ⁇ 12> An all-solid-state secondary battery sheet having a layer composed of the inorganic solid electrolyte-containing composition according to any one of ⁇ 1> to ⁇ 11> above.
  • ⁇ 13> An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.
  • ⁇ 15> A method for manufacturing an all-solid-state secondary battery, wherein the all-solid-state secondary battery is manufactured through the manufacturing method according to ⁇ 14> above.
  • the composition containing an inorganic solid electrolyte of the present invention can suppress reaggregation or sedimentation of solid particles such as an inorganic solid electrolyte over time, and can realize excellent dispersion stability.
  • this inorganic solid electrolyte-containing composition as a material for forming a constituent layer, solid particles are uniformly scattered in the constituent layer, and a good contact state between surfaces is maintained to suppress an increase in interfacial resistance.
  • the polymer binder can firmly bind the solid particles to each other as a whole layer.
  • this inorganic solid electrolyte-containing composition can realize a constituent layer exhibiting a strong film strength with low resistance, and the all-solid secondary battery having this constituent layer has low battery resistance (high ionic conductivity) and high speed. Excellent cycle characteristics can be realized even for charging and discharging.
  • the present invention is an inorganic solid electrolyte-containing composition having excellent dispersion stability, and by using it as a material for forming a constituent layer of an all-solid secondary battery, a constituent layer having enhanced film strength can be produced, and battery resistance can be produced. It is possible to provide an inorganic solid electrolyte-containing composition capable of suppressing an increase in the amount of the battery and achieving excellent cycle characteristics even for high-speed charging / discharging.
  • the present invention provides a method for manufacturing an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet and an all-solid-state secondary battery using this inorganic solid electrolyte-containing composition. Can be provided.
  • FIG. 2 is a vertical cross-sectional view schematically showing the coin-type all-solid-state secondary battery produced in the examples.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the indication of a compound is used to mean that the compound itself, its salt, and its ions are included.
  • (meth) acrylic means one or both of acrylic and methacryl. The same applies to (meth) acrylate.
  • substituents or the like may be the same or different from each other.
  • the polymer means a polymer, but is synonymous with a so-called polymer compound.
  • the inorganic solid electrolyte-containing composition of the present invention contains an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, a polymer binder, and a dispersion medium. Details of the polymer binder contained in this inorganic solid electrolyte-containing composition will be described later, but at least one of the polymer binders satisfies the following (P1) with respect to the main chain of the polymer, and the following (P2) with respect to the constituent components constituting the polymer. It is a polymer binder composed (including) of a polymer satisfying the above conditions.
  • (P1) It is composed of atoms not substituted with fluorine atoms, and has a main chain containing at least one of urethane bond, urea bond and ester bond.
  • (P2) Contains a component having at least one functional group selected from the functional group group described later.
  • the content state of the polymer binder and the like are not particularly limited.
  • the polymer binder may or may not be adsorbed on solid particles such as an inorganic solid electrolyte, but the fact that it is adsorbed is the point of dispersibility of the solid particles with respect to the dispersion medium. It is preferable.
  • the adsorption of the polymer binder to solid particles includes not only physical adsorption but also chemical adsorption (adsorption by chemical bond formation, adsorption by electron transfer, etc.).
  • solid particles such as inorganic solid electrolytes (furthermore, coexisting active materials and conductive aids) in a layer formed of at least an inorganic solid electrolyte-containing composition (for example, inorganic solid electrolytes).
  • inorganic solid electrolyte and active material active material to each other
  • the inorganic solid electrolyte-containing composition of the present invention is preferably a slurry in which solid particles are dispersed in a dispersion medium.
  • the polymer binder serves to disperse the solid particles in the dispersion medium.
  • the polymer binder may or may not be dispersed in the dispersion medium (in the solid state), but when it is dispersed, a part thereof is a dispersion medium as long as the effect of the present invention is not impaired. It may be dissolved in.
  • the composition containing an inorganic solid electrolyte of the present invention is excellent in dispersion stability.
  • an inorganic solid electrolyte-containing composition as a constituent layer forming material, an all-solid secondary battery sheet having a constituent layer exhibiting a strong layer strength, and further, high-speed charging in addition to the cycle characteristics for normal charging and discharging. It is possible to realize an all-solid secondary battery that has excellent cycle characteristics against discharge and that suppresses an increase in battery resistance.
  • the active material layer formed on the current collector is formed by the inorganic solid electrolyte-containing composition of the present invention, strong adhesion between the current collector and the active material layer can also be realized, and a cycle can be realized. The characteristics can be further improved.
  • the polymer binder formed of the polymer satisfying the above (P1) and (P2) has the interaction between the polymer binders by the polymer main chain and the interaction with the solid particles by the functional group. It is considered that this is due to the well-balanced expression of. That is, the polymer binder formed of the polymer satisfying the above (P1) and (P2) exhibits an appropriate interaction with solid particles such as an inorganic solid electrolyte in the dispersion medium due to its functional group, and is a solid. It does not adsorb excessively enough to reaggregate and precipitate particles.
  • the solid particles in the inorganic solid electrolyte-containing composition (dispersion medium), the solid particles can be uniformly dispersed while effectively suppressing the reaggregation and precipitation of the solid particles over time, and the inorganic solid electrolyte-containing composition can be prepared. It is considered that the excellent dispersibility of time (uniform dispersibility and dispersion stability) can be maintained for a long period of time.
  • the constituent layer is formed using the above-mentioned inorganic solid electrolyte-containing composition of the present invention exhibiting excellent dispersion stability, when the constituent layer is formed (for example, when the inorganic solid electrolyte-containing composition is applied and when it is dried). ), It is considered that the uneven distribution (transition) of solid particles and the generation of reaggregates or sediments can be suppressed. As a result, it is possible to suppress variations in the contact state of the solid particles in the constituent layer, and the solid particles are uniformly arranged in the constituent layer. Further, since the polymer binder does not excessively adsorb to the solid particles as described above, it is considered that the contact between the surfaces of the solid particles is not significantly hindered.
  • the polymer constituting the polymer binder exhibits an interaction with the solid particles in the constituent layer due to its functional group and binds the solid particles to each other. Furthermore, since this polymer has a specific bond such as a urethane bond in the main chain (satisfying the above (P1)), the interaction between the polymers (polymer binders) (for example, due to hydrogen bond or intermolecular force).
  • an all-solid secondary battery having a constituent layer that suppresses an increase in resistance and exhibits strong film strength is less likely to generate overcurrent during charging and discharging, can prevent deterioration of solid particles, and expands and contracts solid particles. It is possible to effectively suppress the decrease in the interfacial contact state between solid particles (generation of voids) due to the above. Therefore, it has excellent cycle characteristics without causing a significant decrease even if high-speed charging and discharging are repeated as well as normal charging and discharging, and also has high conductivity (ion conductivity, electron conductivity) by suppressing an increase in battery resistance. It is considered that the all-solid-state secondary battery shown can be realized.
  • the active material layer is formed of the inorganic solid electrolyte-containing composition of the present invention
  • the constituent layer is formed while maintaining the highly (uniform) dispersed cathode active material immediately after preparation as described above. Therefore, the polymer binder can come into contact (adhesion) with the surface of the current collector without being hindered by the solid particles that have been preferentially settled.
  • the electrode sheet for an all-solid-state secondary battery in which the active material layer is formed on the current collector with the inorganic solid electrolyte-containing composition of the present invention can realize strong adhesion between the current collector and the active material.
  • the all-solid-state secondary battery in which the active material layer is formed on the current collector with the inorganic solid electrolyte-containing composition of the present invention shows strong adhesion between the current collector and the active material, and further improves the cycle characteristics. Furthermore, in addition to excellent cycle characteristics, improvement in conductivity can be realized.
  • the inorganic solid electrolyte-containing composition of the present invention is a material for forming a solid electrolyte layer or an active material layer of an all-solid secondary battery sheet (including an electrode sheet for an all-solid secondary battery) or an all-solid secondary battery. It can be preferably used as a constituent layer forming material).
  • the constituent layer composed of the inorganic solid electrolyte-containing composition of the present invention exhibits strong film strength, the constituent layer to be produced continuously from the viewpoint of productivity, particularly continuously by the roll-to-roll method, is formed. It can be preferably used as a material. Even in such a continuous production method, it is possible to suppress the occurrence of defects in the constituent layers.
  • a material for forming a negative electrode sheet for an all-solid secondary battery or a negative electrode active material layer containing a negative electrode active material having a large expansion and contraction due to charging and discharging and in this embodiment as well, the battery performance (cycle characteristics, etc.) is deteriorated. Can be suppressed.
  • the inorganic solid electrolyte-containing composition of the present invention is preferably a non-aqueous composition.
  • the non-aqueous composition includes not only a water-free aspect but also a form in which the water content (also referred to as water content) is preferably 500 ppm or less.
  • the water content is more preferably 200 ppm or less, further preferably 100 ppm or less, and particularly preferably 50 ppm or less.
  • the water content indicates the amount of water contained in the inorganic solid electrolyte-containing composition (mass ratio to the inorganic solid electrolyte-containing composition).
  • the mixture is filtered through a 0.02 ⁇ m membrane filter and curled fisher.
  • the value shall be the value measured using titration.
  • the composition containing an inorganic solid electrolyte of the present invention also includes an embodiment containing an active material, a conductive additive, and the like in addition to the inorganic solid electrolyte (the composition of this embodiment is referred to as an electrode composition).
  • the composition of this embodiment is referred to as an electrode composition.
  • the inorganic solid electrolyte-containing composition of the present invention contains an inorganic solid electrolyte.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polyelectrolyte represented by polyethylene oxide (PEO), organic such as lithium bis (trifluoromethanesulfonyl) imide (LiTFSI)). It is clearly distinguished from electrolyte salts).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is clearly distinguished from the electrolyte or inorganic electrolyte salts (LiPF 6 , LiBF 4 , Lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) that are dissociated or liberated into cations and anions in the polymer. Will be done.
  • the inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally one having no electron conductivity.
  • the all-solid-state secondary battery of the present invention is a lithium-ion battery
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iv) a hydride-based inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte is preferable from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte contains sulfur atoms, has ionic conductivity of metals belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (S1).
  • L a1 M b1 P c1 S d1 A e1 (S1)
  • L represents an element selected from Li, Na and K, with Li being preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, more preferably 0 to 1.
  • d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized.
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
  • Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2).
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ It is 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 -4 S / cm or more, and more preferably 1 ⁇ 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 -6 S / cm or more, more preferably 5 ⁇ 10 -6 S / cm or more, and 1 ⁇ 10 -5 S / cm or more. It is particularly preferable that it is / cm or more.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7.
  • LLT Li xb Layb Zr zb M bb mb Onb
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn.
  • Xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20. Satisfy.); Li xc Byc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5 , Yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, nc satisfies 0 ⁇ nc ⁇ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si.
  • Li xf Si yf O zf (xf satisfies 1 ⁇ xf ⁇ 5, yf satisfies 0 ⁇ yf ⁇ 3 , Zf satisfies 1 ⁇ zf ⁇ 10); Li xg S yg O zg (xg satisfies 1 ⁇ xg ⁇ 3, yg satisfies 0 ⁇ yg ⁇ 2, and zg satisfies 1 ⁇ zg ⁇ 10.
  • Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure and the like can be mentioned.
  • Phosphorus compounds containing Li, P and O are also desirable.
  • LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C and Ga) and the like can also be preferably used.
  • the halide-based inorganic solid electrolyte is generally used, contains a halogen atom, and has the conductivity of ions of a metal belonging to Group 1 or Group 2 of the Periodic Table. A compound having an electron insulating property and having an electron insulating property is preferable.
  • the halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • the hydride-based inorganic solid electrolyte is generally used, contains a hydrogen atom, and exhibits ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table. A compound having and having an electron insulating property is preferable.
  • the hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, and 3 LiBH 4- LiCl.
  • the inorganic solid electrolyte is preferably particles.
  • the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the average particle size of the inorganic solid electrolyte is measured by the following procedure. Inorganic solid electrolyte particles are prepared by diluting 1% by mass of a dispersion in a 20 mL sample bottle with water (heptane in the case of a water-unstable substance).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test.
  • data was captured 50 times using a measurement quartz cell at a temperature of 25 ° C. using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA). Obtain the volume average particle size.
  • JIS Japanese Industrial Standards
  • Z 8828 2013 "Grain size analysis-Dynamic light scattering method" as necessary. Five samples are prepared for each level and the average value is adopted.
  • the inorganic solid electrolyte may contain one kind or two or more kinds.
  • the mass (mg) (grain amount) of the inorganic solid electrolyte per unit area (cm 2) of the solid electrolyte layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the amount of the inorganic solid electrolyte is preferably such that the total amount of the active material and the inorganic solid electrolyte is in the above range.
  • the content of the inorganic solid electrolyte in the composition containing the inorganic solid electrolyte is not particularly limited, but is 50% by mass or more at 100% by mass of the solid content in terms of binding property and dispersibility. Is more preferable, 70% by mass or more is more preferable, and 90% by mass or more is particularly preferable. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the content of the inorganic solid electrolyte in the inorganic solid electrolyte-containing composition is such that the total content of the active material and the inorganic solid electrolyte is in the above range. Is preferable.
  • the solid content refers to a component that does not disappear by volatilizing or evaporating when the inorganic solid electrolyte-containing composition is dried at 150 ° C. for 6 hours under an atmospheric pressure of 1 mmHg and a nitrogen atmosphere. .. Typically, it refers to a component other than the dispersion medium described later.
  • the inorganic solid electrolyte-containing composition of the present invention contains a polymer binder.
  • the polymer binder contained in the inorganic solid electrolyte-containing composition of the present invention contains at least one polymer binder (also referred to as a binder used in the present invention) composed of a polymer satisfying the following (P1) and (P2). It may contain one or more polymer binders (also referred to as other binders, the details of which will be described later) other than the binder used in the present invention.
  • one type of binder used in the present invention may be contained as the polymer binder, or a plurality of types may be contained.
  • the polymer binder means a binder composed of a polymer, and includes the polymer itself and a binder formed containing the polymer.
  • the binder used in the present invention contained in the inorganic solid electrolyte-containing composition of the present invention as a polymer binder will be described.
  • the binder used in the present invention is composed of a polymer that satisfies the following (P1) for the main chain of the polymer and the following (P2) for the constituent components constituting the polymer.
  • P1 for the main chain of the polymer
  • P2 for the constituent components constituting the polymer.
  • Such a binder can improve the dispersion stability of the inorganic solid electrolyte-containing composition (slurry) by using it in combination with solid particles such as the inorganic solid electrolyte and a dispersion medium in the inorganic solid electrolyte-containing composition.
  • (P1) It is composed of atoms not substituted with fluorine atoms, and has a main chain containing at least one of urethane bond, urea bond and ester bond.
  • (P2) Contains a component having at least one functional group selected from the following functional group group. ⁇ Functional group group> Hydroxy group, primary amino group, secondary amino group, sulfanilic group
  • the polymer forming the binder used in the present invention is not particularly limited as long as the above (P1) and (P2) are satisfied, and various polymers can be used.
  • the bonding mode (primary structure) of the polymer forming the binder used in the present invention is not particularly limited, and may have any primary structure such as a random structure, a block structure, an alternating structure, and a graft structure.
  • the molecular structure of this polymer is also not particularly limited, and examples thereof include a linear structure and a branched shape (star structure, branched structure), but the molecular structure is preferably linear.
  • the main chain of a polymer means a linear molecular chain in which all other molecular chains constituting the polymer can be regarded as a branched chain or a pendant with respect to the main chain. Although it depends on the mass average molecular weight of the molecular chain regarded as a branched chain or a pendant chain, the longest chain among the molecular chains constituting the polymer is typically the main chain. However, the terminal group of the polymer terminal is not included in the main chain.
  • the atoms constituting the main chain mean each atom forming the atomic chain that becomes the main chain of the polymer, and an atom or an atom group (hydrogen atom, a substituent, etc.) for adjusting the valence of this atom. Furthermore, it does not contain atoms forming a molecular chain that is regarded as a branched chain or a pendant chain.
  • a cyclic structure is included in the main chain, it means all atoms forming the atomic chain of the cyclic structure.
  • the only atom that constitutes the main chain of polyethylene is a carbon atom, and does not contain a hydrogen atom for adjusting the valence of the carbon atom.
  • the side chain of the polymer means a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
  • the polymer forming the binder used in the present invention (sometimes referred to as a binder-forming polymer) satisfies the following (P1) with respect to the main chain of the polymer.
  • P1 A main chain composed of atoms not substituted with fluorine atoms, which has a main chain containing at least one of urethane bond, urea bond and ester bond.
  • the atoms constituting the main chain are not substituted with fluorine atoms (P1-1).
  • the main chain of a polymer usually consists of a molecular chain in which an atom such as a hydrogen atom or an atom having a valence adjusted by bonding an atom or a substituent is continuously bonded, but a binder-forming polymer forms the main chain.
  • the hydrogen atom bonded to the atom is not replaced by a fluorine atom.
  • the atom forming the main chain has an atom or a substituent other than the fluorine atom bonded to it.
  • a fluorine atom may be bonded to an atom other than the atom forming the main chain.
  • the interaction between the binder-forming polymers is enhanced in combination with the satisfaction of (P1-2) described later, and the dispersion of the inorganic solid electrolyte-containing composition is enhanced. Not only the stability can be improved, but also the film strength can be strengthened, and the battery resistance and cycle characteristics can be improved.
  • a main chain formed of atoms not substituted with fluorine atoms for example, a carbon atom in which one hydrogen atom is substituted with a fluorine atom (fluoromethylene group, fluoromethine group, etc.) and two hydrogen atoms are fluorine.
  • Examples thereof include a main chain that does not contain a carbon atom (difluoromethylene group) substituted with an atom, and a main chain that does not contain a molecular chain in which these atoms are linked. More specifically, the main chain described in Patent Document 1 that does not include the structural unit represented by the formula (I) can be mentioned. That is, the main chain of the binder-forming polymer does not contain a specific CF bond.
  • the main chain composed of atoms not substituted with fluorine atoms is one of the atoms constituting the main chain in addition to the embodiment in which all the atoms constituting the main chain are not substituted with fluorine atoms.
  • the range that does not impair the effects of the present invention is not particularly limited, but for example, the molar ratio [F / C] of fluorine atoms to the atoms (usually carbon atoms) forming the main chain of the polymer is less than 0.001. be able to.
  • the molar ratio [F / C] can be specified by the method described in paragraph [0123] of Patent Document 1.
  • Binder-forming polymer a urethane bond (-NR PN COO-), a urea bond (-NR PN CONR PN -) having a backbone comprising at least one binding of and ester bond (-COO-) (P1-2 ).
  • R PN represents a substituent other than a hydrogen atom or a fluorine atom in each bond.
  • the main chain containing at least one of the above-mentioned bonds means that the main chain contains at least one of the above-mentioned bonds, and the number of bonds contained in the main chain is particularly limited. However, it is appropriately determined by the molecular weight of the raw material compound, the molecular weight of the polymer, and the like.
  • the interaction between the binder-forming polymers is strengthened, and only the improvement of the dispersion stability of the main chain inorganic solid electrolyte-containing composition is required.
  • the film strength can be strengthened, and the battery resistance and cycle characteristics can be improved.
  • the atoms forming each of the above bonds the atoms forming the main chain of the polymer are not substituted with fluorine atoms as described above.
  • the nitrogen atom of the urethane bond or the urea bond has a hydrogen atom or a substituent (excluding the fluorine atom) RPN bonded to it, and the hydrogen atom is bonded in that the interaction between the polymer binders is strengthened. That (-NH-group) is preferable.
  • the bond is not particularly limited as long as it is contained in the main chain of the polymer, and may be any of the modes contained in the structural unit (repeating unit) and / or the mode contained as a bond connecting different structural units. .. Further, the above-mentioned bond contained in the main chain is not limited to one type, and may be two or more types. In this case, the binding mode of the main chain is not particularly limited, and may have two or more kinds of bonds at random, and the segmented main chain of a segment having a specific bond and a segment having another bond. It may be a chain.
  • polymers having the above bond in the main chain include polymers such as polyurethane, polyurea, and polyester, or copolymers thereof.
  • the copolymer may be a block copolymer having each of the above polymers as a segment, or a random copolymer in which each component constituting two or more of the above polymers is randomly bonded.
  • the binder-forming polymer satisfies the following (P2) with respect to the constituent components constituting the polymer.
  • (P2) Contains a component having at least one functional group selected from the following functional group group. ⁇ Functional group group> Hydroxy group, primary amino group, secondary amino group, sulfanilic group (mercapto group: -SH) Details of the constituents having at least one functional group selected from the above functional group group will be described later.
  • the binder-forming polymer is not particularly limited as long as it satisfies the above (P1) and (P2), but in addition to the constituent components having a functional group selected from the functional group group described later, the following formula (I-1)
  • a polymer having at least one kind (preferably 2 to 8 kinds, more preferably 2 to 4 kinds) of the constituent components represented by any of (I-4) is preferable.
  • Polymers having such a main chain include, for example, polyurethane, polyurea and polyester. The combination of each component is appropriately selected according to the polymer species.
  • one kind of constituent component in the combination of constituent components means the number of kinds of constituent components represented by any one of the following formulas, and two kinds of one kind of constituent component represented by the following formula are used. Even if it has, it is not interpreted as two kinds of constituents.
  • the binder-forming polymer further contains a component having a functional group selected from the functional group group and a component different from the components represented by any of the following formulas (I-1) to (I-4). You may have.
  • RP1 and RP2 each represent a molecular chain having a molecular weight or mass average molecular weight of 20 or more and 200,000 or less, respectively.
  • the molecular weight of this molecular chain cannot be uniquely determined because it depends on the type and the like, but for example, 30 or more is preferable, 50 or more is more preferable, 100 or more is further preferable, and 150 or more is particularly preferable.
  • the upper limit is preferably 100,000 or less, more preferably 10,000 or less.
  • the molecular weight of the molecular chain is measured for the starting compound before it is incorporated into the main chain of the polymer.
  • the molecular chains that can be taken as RP1 and RP2 are not particularly limited, but are preferably a hydrocarbon chain, a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, more preferably a hydrocarbon chain or a polyalkylene oxide chain, and a hydrocarbon chain.
  • Polyethylene oxide chains or polytetramethylene oxide chains are more preferred.
  • the hydrocarbon chain that can be taken as RP1 and RP2 means a chain of hydrocarbons composed of carbon atoms and hydrogen atoms, and more specifically, at least two compounds composed of carbon atoms and hydrogen atoms. It means a structure in which an atom (for example, a hydrogen atom) or a group (for example, a methyl group) is eliminated.
  • the hydrocarbon chain also includes a chain having a group containing an oxygen atom, a sulfur atom or a nitrogen atom in the chain, for example, a hydrocarbon group represented by the following formula (M2).
  • M2 hydrocarbon group represented by the following formula
  • This hydrocarbon chain may have a carbon-carbon unsaturated bond and may have a ring structure of an aliphatic ring and / or an aromatic ring. That is, the hydrocarbon chain may be any hydrocarbon chain composed of hydrocarbons selected from aliphatic hydrocarbons and aromatic hydrocarbons.
  • Such a hydrocarbon chain may be any one that satisfies the above molecular weight, and both a chain composed of a low molecular weight hydrocarbon group and a hydrocarbon chain composed of a hydrocarbon polymer (also referred to as a hydrocarbon polymer chain).
  • hydrocarbon chains include hydrocarbon chains.
  • a low molecular weight hydrocarbon chain is a chain composed of ordinary (non-polymerizable) hydrocarbon groups, and examples of the hydrocarbon groups include aliphatic or aromatic hydrocarbon groups, and specific examples thereof.
  • Is an alkylene group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms), an arylene group (preferably 6 to 22 carbon atoms, preferably 6 to 14 carbon atoms, 6 to 10 carbon atoms). Is more preferable), or a group consisting of a combination thereof is preferable.
  • This hydrocarbon chain may have a polymerized chain (eg, (meth) acrylic polymer) as a substituent.
  • the aliphatic hydrocarbon group is not particularly limited, and for example, from a hydrogen-reduced product of an aromatic hydrocarbon group represented by the following formula (M2), or a partial structure of a known aliphatic diisosoane compound (for example, from isophorone). Narumoto) and the like.
  • the hydrocarbon group contained in each of the constituent components of each of the examples described later can also be mentioned.
  • the aromatic hydrocarbon group include a hydrocarbon group contained in each of the constituent components described below, and an arylene group (for example, one or more hydrogen atoms from the aryl group mentioned in Substituent Z described later).
  • the removed group specifically a phenylene group, a trilene group or a xylylene group
  • X represents a single bond, -CH 2- , -C (CH 3 ) 2- , -SO 2- , -S-, -CO- or -O-, and is a viewpoint of binding property. Therefore, -CH 2- or -O- is preferable, and -CH 2- is more preferable.
  • the above-mentioned alkylene group and methyl group exemplified here may be substituted with a substituent Z, for example, a halogen atom (excluding a fluorine atom), respectively.
  • RM2 to RM5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable.
  • the substituents that can be taken as RM2 to RM5 are not particularly limited, and examples thereof include a substituent Z described later.
  • an alkyl group having 1 to 20 carbon atoms an alkenyl group having 1 to 20 carbon atoms, and -OR M6.
  • -N ( RM6 ) 2 a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • a halogen excluding a fluorine atom eg, chlorine atoms, bromine atoms
  • the ⁇ N ( RM6 ) 2 is an alkylamino group (preferably 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms) or an arylamino group (preferably 6 to 40 carbon atoms, 6 to 20 carbon atoms). More preferred).
  • a hydrocarbon polymer chain may be a polymer chain in which (at least two) polymerizable hydrocarbons are polymerized, and may be a chain composed of a hydrocarbon polymer having a larger number of carbon atoms than the above-mentioned low molecular weight hydrocarbon chain.
  • the chain is not particularly limited, but is preferably a chain composed of a hydrocarbon polymer composed of 30 or more, more preferably 50 or more carbon atoms.
  • the upper limit of the number of carbon atoms constituting the hydrocarbon polymer is not particularly limited, and may be, for example, 3,000.
  • the hydrocarbon polymer chain is preferably a chain composed of an aliphatic hydrocarbon having a main chain satisfying the above number of carbon atoms, and is composed of an aliphatic saturated hydrocarbon or an aliphatic unsaturated hydrocarbon. It is more preferable that the chain is made of a polymer (preferably an elastomer). Specific examples of the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain.
  • diene polymer examples include a styrene-butadiene polymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer, and ethylene.
  • IIR butyl rubber
  • non-diene polymer examples include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen-reduced products of the above-mentioned diene polymer.
  • the hydrocarbon to be a hydrocarbon chain preferably has a reactive group at its terminal, and more preferably has a polycondensable terminal reactive group.
  • the polycondensation or polyaddition-capable terminal reactive group forms a group bonded to RP1 or RP2 of each of the above formulas by polycondensation or polyaddition.
  • Examples of such a terminal reactive group include an isocinate group, a hydroxy group, a carboxy group, an amino group and an acid anhydride, and a hydroxy group is preferable.
  • hydrocarbon polymers having terminal reactive groups examples include NISSO-PB series (manufactured by Nippon Soda Co., Ltd.), clay sole series (manufactured by Tomoe Kosan Co., Ltd.), and PolyVEST-HT series (manufactured by Ebonic) under the trade names.
  • Poly-bd series manufactured by Idemitsu Kosan Co., Ltd.
  • poly-ip series manufactured by Idemitsu Kosan Co., Ltd.
  • EPOL manufactured by Idemitsu Kosan Co., Ltd.
  • Polytail series manufactured by Mitsubishi Chemical Co., Ltd.
  • polyalkylene oxide chain examples include chains composed of known polyalkyleneoxy groups.
  • the number of carbon atoms of the alkyleneoxy group in the polyalkyleneoxy chain is preferably 1 to 10, more preferably 1 to 6, and 2 to 4 (polyethylene oxy chain, polypropylene oxy chain, polytetra). Methyleneoxy chain) is more preferred.
  • the polyalkyleneoxy chain may be a chain composed of one type of alkyleneoxy group or a chain composed of two or more types of alkyleneoxy groups (for example, a chain composed of an ethyleneoxy group and a propyleneoxy group).
  • Examples of the polycarbonate chain or polyester chain include known chains made of polycarbonate or polyester.
  • the polyalkyleneoxy chain, the polycarbonate chain, or the polyester chain each preferably has an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
  • Polyalkyleneoxy chain can be taken as R P1 and R P2, end of the polycarbonate chain and a polyester chain, appropriately changing the constituents as R P1 and R P2 are represented by the formulas above the embeddable ordinary chemical structure be able to.
  • the polyalkylene oxy chain is incorporated as RP1 or RP2 of the above-mentioned constituents by removing the terminal oxygen atom.
  • RN is a hydrogen atom
  • RN are hydrogen atoms, inside or at the end of the alkyl group contained in the molecular chain. It may have an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms).
  • RP1 and RP2 are preferably divalent molecular chains, but at least one hydrogen atom is substituted with -NH-CO-, -CO-, -O-, -NH-, or the like. It may be a branched molecular chain having a valence of 3 or more.
  • R P1 among the molecular chain is preferably a hydrocarbon is a chain, more preferably a hydrocarbon chain of low molecular weight, more preferably a hydrocarbon chain comprised of hydrocarbon groups aliphatic or aromatic, Hydrocarbon chains consisting of aromatic hydrocarbon groups are particularly preferred.
  • RP2 is preferably a low molecular weight hydrocarbon chain (more preferably an aliphatic hydrocarbon group) or a molecular chain other than a low molecular weight hydrocarbon chain, and is other than a low molecular weight hydrocarbon chain.
  • Molecular chains (more preferably polyalkylene oxide chains) are more preferred.
  • constituent components represented by the above formula (I-1) are shown in the following and Examples.
  • the raw material compound (diisocyanate compound) for deriving the constituent component represented by the above formula (I-1) for example, the diisocyanate compound represented by the formula (M1) described in International Publication No. 2018/20827 and the diisocyanate compound represented by the formula (M1).
  • the constituent component represented by the formula (I-1) and the raw material compound derived from the constituent component are not limited to those described in the following specific examples, examples and the above documents.
  • the raw material compound (carboxylic acid or acid chloride thereof, etc.) that derives the constituents represented by the above formula (I-2) is not particularly limited, and is described in, for example, paragraph [0074] of International Publication No. 2018/020827. , Carboxylic acid or acid chloride compounds and specific examples thereof (eg, adipic acid or an esterified product thereof).
  • the constituents represented by the above formula (I-3) or the formula (I-4) are shown below in the exemplary polymers and examples described later.
  • the raw material compound (diol compound or diamine compound) for deriving the constituent component represented by the above formula (I-3) or formula (I-4) is not particularly limited, and for example, International Publication No. 2018 / Examples of each compound described in No. 020827 and specific examples thereof are given, and dihydroxyoxamid is also mentioned.
  • the constituent components represented by the formula (I-3) or the formula (I-4) and the raw material compounds derived thereto are not limited to those described in the following specific examples, examples and the above documents.
  • the number of repetitions is an integer of 1 or more, and is appropriately set within a range satisfying the molecular weight or the number of carbon atoms of the molecular chain.
  • RP1 and RP2 may each have a substituent.
  • substituent group is not particularly limited, for example, include substituents Z to be described later, the substituents which can take as R M2 are preferably exemplified.
  • atoms a atoms constituting R P1 and R P2 also constitute backbone no fluorine atom as a substituent.
  • the binder-forming polymer is represented by the above formula (I-3) or formula (I-4) in addition to the constituent components represented by the formula (I-1) or the formula (I-2). It is preferable to have a constituent component represented by the formula (I-3), and more preferably to have a constituent component represented by the formula (I-3).
  • the components represented by the formula (I-3) include a component in which RP2 is a chain composed of a low molecular weight hydrocarbon group (preferably a component represented by the following formula (I-3A)).
  • a component in which RP2 is the above-mentioned hydrocarbon polymer chain as a molecular chain preferably a component represented by the following formula (I-3C)
  • a component in which RP2 is the above-mentioned polyalkylene oxide chain as a molecular chain It is preferable to have at least one of (preferably a constituent component represented by the following formula (I-3B)), and the constituent component in which RP2 is the above-mentioned hydrocarbon polymer chain as a molecular chain and R
  • P2 has at least one of the constituent components which is the polyalkylene oxide chain as a molecular chain, and it is further preferable that P2 has both constituent components.
  • the components represented by the formula (I-4) are the same as the components represented by the formula (I-3), but in each of the following formulas (I-3A) to (I-3C). Replace oxygen atom with nitrogen atom.
  • RP1 is as described above.
  • RP2A represents a chain of low molecular weight hydrocarbon groups (preferably an aliphatic hydrocarbon group).
  • RP2B represents a polyalkyleneoxy chain.
  • RP2C represents a hydrocarbon polymer chain.
  • R P2A hydrocarbon group of low molecular weight
  • R P2C hydrocarbon polymer chain which can be taken as a polyalkyleneoxy chain
  • R P2C hydrocarbon polymer chain which can be taken as a polyalkyleneoxy chain
  • R P2B are respectively taken as R P2 in the above formula (I-3) It is synonymous with the aliphatic hydrocarbon groups, polyalkyleneoxy chains and hydrocarbon polymer chains, and the preferred ones are also the same.
  • the binder-forming polymer preferably has a component containing a polyether structure, for example, a component represented by the above formula (I-3B) in the main chain. Of these, those having at least two types of polyether structures in the main chain are more preferable.
  • the action of the polyether structure and the functional group-containing constituents is synergistically expressed, resulting in dispersion stability and a film. Strength and battery performance (resistance and cycle characteristics) can be improved at a high level in a well-balanced manner.
  • the "polyether structure” refers to a structure in which two or more alkyleneoxy groups are linked (also referred to as a polyalkyleneoxy chain or an alkylene oxide chain), for example,-(O-alkylene group) n-.
  • the structure (n indicates the degree of polymerization and is a number of 2 or more) is shown.
  • This "polyether structure” may be a single polyalkyleneoxy chain or a structure derived from a copolymer of at least two polyalkyleneoxy chains (having different chemical structures). In the present invention, it is preferably a single polyalkyleneoxy chain.
  • the "polyether structure” is optionally incorporated into the backbone of the polymer via atoms or linking groups.
  • the constituent component containing the polyether structure is not particularly limited, and examples thereof include a constituent component derived from a polyether polyol such as polyalkylene glycol and a constituent component derived from a polyether polyamine or the like.
  • "at least two kinds" of the polyether structure means a polyether having a chemical structure (alkylene groups) different from each other regardless of the difference in the constituent components forming the main chain and the position incorporated in the main chain. It means that the number of types of structures is at least two, and even if a polyether structure having the same chemical structure is incorporated into different constituent components or a plurality of types are incorporated into one constituent component, 1 Seed.
  • the number of types of the polyether structure contained in the binder-forming polymer is preferably two or more, more preferably two or three, and even more preferably two.
  • Alkyleneoxy group forming a polyether structure is not particularly limited, and for example include polyalkylene oxide chain can take as the R P2, it is preferred that the number of carbon atoms in the alkylene group of the alkylene group is 1 to 6 It is more preferably 2 to 4.
  • the combination of the polyether structures is not particularly limited, but at least two types of polyether structures selected from the polyethylene oxy chain, the polypropylene oxy chain and the polytetramethylene oxy chain are preferable.
  • a combination containing a polyethylene oxy chain and a polypropylene oxy chain or a polytetramethylene oxy chain is more preferable, and a combination containing a polyethylene oxy chain and a polytetramethylene oxy chain is further preferable.
  • the (number average) molecular weight of each of the at least two types of polyether structures is not particularly limited, but is preferably 400 or less, more preferably 350 or less, further preferably 300 or less, and more preferably 250 or less. It is particularly preferable to have.
  • the lower limit of the (number average) molecular weight is not particularly limited, but is actually preferably 100 or more, and more preferably 150 or more.
  • the (number average) molecular weight of at least two types of polyether structures means the sum of the products of the (number average) molecular weight of each polyether structure and the mole fraction.
  • the (number average) molecular weight of each polyether structure is not particularly limited, but is preferably set appropriately within a range satisfying the above-mentioned "number average molecular weight of at least two types of polyether structures".
  • the (number average) molecular weight of each polyether structure is determined by a compound (usually a hydrogen atom bonded to each end) that leads to a component containing the polyether structure (rather than being incorporated into the main chain) by the method described below. It is a value measured for a compound (for example, a polyether polyol described later).
  • the degree of polymerization of each polyether structure is not particularly limited as long as it is 2 or more, and it is preferable that the degree of polymerization is appropriately set within a range satisfying the above-mentioned "number average molecular weight of each polyether structure".
  • the degree of polymerization depends on the number of carbon atoms of the alkyleneoxy group and the like, but is preferably 2 to 10, more preferably 3 to 8, and even more preferably 2 to 5.
  • constituent component containing the polyether structure examples include the constituent component represented by the following formula (I-7).
  • X represents a group containing a single bond, an oxygen atom or a nitrogen atom, or a linking group
  • RP4A and RP4B represent alkylene groups different from each other.
  • n1 and n2 indicate the degree of polymerization.
  • X is appropriately selected according to the terminal group of the alkyleneoxy chain in the above formula. For example, when the end of the alkyleneoxy group is an oxygen atom, it becomes a group containing a single bond or a linking group, and when the end of the alkyleneoxy group is an alkylene group, it becomes a group containing an oxygen atom or a nitrogen atom or a linking group.
  • Examples of the group containing a linking group that can be taken as X include a group consisting of a linking group and a group in which a linking group and an oxygen atom or a nitrogen atom are combined.
  • the linking group is not particularly limited, and examples thereof include a group obtained by further removing one hydrogen atom from each group listed in the substituent Z, and preferably an alkylene group which can be taken as RP4A or RP4B. ..
  • the two Xs in the constituents represented by the above formula (I-7) may be the same or different.
  • the alkylene group that can be taken as RP4A and RP4B is not particularly limited, but is synonymous with the above-mentioned alkylene group in the alkyleneoxy group forming the polyether structure, and the preferred one is also the same.
  • the combination of R P4A and R P4B is synonymous with the combination described in the above-mentioned combination of polyether structures, and the preferred one is also the same.
  • n1 and n2 indicate the degree of polymerization, respectively, n1 is a number of 2 or more, n2 is a number of 0 or more than 1, and can be a number of 2 or more.
  • the component represented by the formula (I-7) is a component containing a single polyalkyleneoxy chain.
  • the main chain of the binder-forming polymer has at least two different constituents represented by the above formula (I-7), preferably two or three types, and more preferably two types. ..
  • the constituent component represented by the formula (I-7) is preferably a constituent component derived from at least two kinds selected from polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol.
  • the (number average) molecular weight of two or more different constituents represented by the formula (I-7) and the (number average) molecular weight of each constituent are the above-mentioned at least two types of polyether structures, respectively. It is synonymous with the (number average) molecular weight of, and the preferred range is also the same.
  • n1 in two or more different constituents represented by the formula (I-7) is appropriately set within a range satisfying the (number average) molecular weight, and has the same meaning as the degree of polymerization of the above-mentioned polyether structure. And the preferred range is the same.
  • the constituent component represented by the formula (I-7) is a constituent component containing a copolymer of two types of polyalkyleneoxy chains.
  • the bonding mode of the two polyalkyleneoxy chains in the copolymer is not particularly limited, and may be a random bond, a block bond, or an alternating bond.
  • the main chain of the binder-forming polymer may have at least one kind of constituent components represented by the above formula (I-7), and preferably one kind.
  • examples of the constituent component represented by the formula (I-7) include a constituent component composed of a polyethylene oxy chain and a copolymer of a polypropylene oxy chain.
  • the (number average) molecular weight of the constituents represented by the formula (I-7) is synonymous with the (number average) molecular weight of at least two of the above-mentioned polyether structures, and the preferable range is also the same. Further, the (number average) molecular weights of the two polyalkyleneoxy chains are synonymous with the (number average) molecular weights of the above-mentioned respective polyether structures, and the preferable ranges are also the same. When having a plurality of the same polyalkyleneoxy chains, the (number average) molecular weight of the polyalkyleneoxy chains shall be the total molecular weight.
  • n1 and n2 are appropriately set within a range satisfying the (number average) molecular weight, respectively, and have the same meaning as the degree of polymerization of the above-mentioned polyether structure, and the preferable range is also the same.
  • the above formula (I-7) defines a component containing two types of polyether structures (alkyleneoxy chains), but in the present invention, the component containing a polyether structure, the above formula (I-7), is used.
  • the constituent component represented may contain three or more types of polyether structures.
  • the binder-forming polymer contains a component having at least one functional group selected from the above-mentioned functional group group (sometimes referred to as a functional group-containing component). Since the binder-forming polymer used in the inorganic solid electrolyte-containing composition satisfies the above-mentioned (P1) and contains a functional group-containing component (P2), only the improvement of the dispersion stability of the inorganic solid electrolyte-containing composition is achieved. In addition, the film strength can be strengthened, and the battery resistance and cycle characteristics can also be improved.
  • the number of functional group-containing constituent components contained in the binder-forming polymer is not particularly limited as long as it is one or more, and may be, for example, 1 to 4, preferably 1 to 2.
  • the functional group contained in the functional group-containing constituent component is a functional group selected from the following functional group group.
  • the hydroxyl group ( ⁇ OH) includes an alcoholic hydroxyl group and a phenolic hydroxyl group, and an alcoholic hydroxyl group is preferable.
  • a primary amino group is preferable to a secondary amino group.
  • the hydroxyl group, each amino group and the sulfanilic group may form a salt.
  • Each functional group means a group represented by the above chemical formula alone, and does not include an embodiment having a partial structure contained in a part of other functional groups.
  • a carboxy group (-CO-OH) is formed by containing a carbonyl group and a hydroxyl group, but the hydroxyl group forming the carboxy group is not interpreted as a hydroxyl group contained in the functional group group.
  • the functional groups selected from the above functional groups are all functional groups containing active hydrogen and exhibit a common action. That is, when these functional groups are present in the composition containing the inorganic solid electrolyte in a state of being incorporated in the binder used in the present invention, they are appropriate for solid particles such as the inorganic solid electrolyte (reaggregation with respect to the solid particles). (To the extent that it does not adsorb excessively enough to precipitate). In addition, in the constituent layers, the interaction is such that solid particles are bound to each other.
  • the functional group exhibiting the above-mentioned common action can be defined by, for example, the negative common logarithm of the acid dissociation constant (Ka): -logKa (pKa), and the pKa is preferably in the range of 1 to 20. The range of ⁇ 16 is more preferable.
  • pKa can be calculated by dropping a 0.01 mL / L sodium hydroxide aqueous solution with respect to the polymer binder aqueous solution and reading the amount of the sodium hydroxide aqueous solution dropped up to the half equivalence point.
  • the functional group selected from the functional group group is preferably a hydroxyl group, a primary amino group or a secondary amino group, and more preferably a hydroxyl group or a primary amino group in terms of adsorptivity to solid particles, particularly an inorganic solid electrolyte or an active material.
  • hydroxyl groups are even more preferred.
  • the functional group means a group introduced into a constituent component of a binder-forming polymer, and specifically, a group incorporated between atoms forming a main chain, and further, an atom forming a main chain.
  • the number of types of the functional groups contained in one functional group-containing component is not particularly limited, and is preferably one or two. Further, the number of the functional groups contained in one functional group-containing component may be at least one, and may be, for example, one to four. The number of functional groups in one functional group-containing component can be determined in consideration of the content of the functional group-containing component in the polymer, which will be described later, but the dispersion stability of the inorganic solid electrolyte-containing composition In this respect, it is preferably two or more, and more preferably two. When one functional group-containing constituent has two or more functional groups, it is preferable that at least one functional group is a hydroxyl group, one functional group is a hydroxyl group, and the other functional group is a primary amino group.
  • the binder-forming polymer of one molecule is not particularly limited as long as the effects of the present invention are not impaired, and the number of functional groups in one functional group-containing constituent component and this functional group are not particularly limited. It is appropriately determined in consideration of the content of the group-containing constituent component in the polymer.
  • the functional group-containing constituent component is not particularly limited as long as it is a constituent component having the above functional group, and is coexisting with a compound that derives a constituent component represented by any of the above formulas (I-1) to (I-4). Examples thereof include constituent components derived from a compound in which the above functional group is introduced into a polymerizable compound.
  • the functional group-containing constituent component may be a high molecular weight component (for example, a component derived from a macromonomer), or may contain a polymerized chain in the chemical structure.
  • the functional group-containing component is, for example, a component derived from a low molecular weight compound having a molecular weight of 400 or less (low molecular weight component), or a component that does not contain a polymer chain in its chemical structure (non-polymerizable component). ) Is preferable in terms of molecular compound, film strength and battery performance.
  • a component in which the above functional group is introduced into a component represented by any of the above formulas (1-1) to (1-4) can be mentioned, and the components represented by the above formulas (1-1) to (1-4) can be mentioned.
  • the linking group is not particularly limited, but is, for example, an alkylene group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms), an alkenylene group (2 to 6 carbon atoms is preferable). and more preferably from 2-3), an arylene group (number of carbon atoms is preferably 6 to 24, more preferably 6 to 10), an oxygen atom, a sulfur atom, an imino group (-NR N -: R N is hydrogen, An alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms is shown), a carbonyl group, a phosphate linking group (-OP (OH) (O) -O-), a phosphonic acid linking group (.
  • a polyalkyleneoxy chain can also be formed by combining an alkylene group and an oxygen atom.
  • an alkylene group or an arylene group, or a group consisting of a combination of an alkylene group, an arylene group, a carbonyl group, an oxygen atom, a sulfur atom and an imino group is preferable, and an alkylene group, an alkylene group, an arylene group, or a carbonyl group is preferable.
  • the number of atoms constituting the linking group which links the closest functional group with respect to R P1 and R P2 constituting atom and R P1 and R P2 is preferably 1 to 36, 1 It is more preferably to 24, and even more preferably 1 to 12.
  • the number of connecting atoms of the linking group is preferably 10 or less, more preferably 8 or less.
  • the lower limit is 1 or more.
  • the linking group may or may not have a substituent. Examples of the substituent which may be possessed include a substituent Z, and a group other than the functional group selected from the above functional group group is preferable.
  • the constituent component into which the functional group is introduced is preferably the constituent component represented by the formula (I-3) or the formula (I-4) among the above-mentioned formulas (1-1) to (1-4).
  • the constituents represented by the formula (I-3) are more preferable.
  • the partial structure (side chain) of the functional group-containing constituent component composed of the linking group and the functional group the partial structure represented by the following formula (F1) has the dispersion stability, film strength and battery performance. It is preferable in terms of balance.
  • This partial structure may be a structure composed of a polymerized chain or a structure containing a polymerized chain, such as a graft polymerized chain for the main chain of a polymer, but a structure not containing the polymerized chain is preferable.
  • L 1 and L 2 each indicate a linking group and are synonymous with the above linking group.
  • L 1 is preferably a —CO— group
  • L 2 is preferably an alkylene group
  • the partial structure represented by the formula (F1) is preferably an alkylosikicarbonyl group.
  • R 1 represents a hydroxyl group or a primary or secondary amino group, which is synonymous with the corresponding group contained in the functional group group. As R 1 , a hydroxyl group or a primary amino group is preferable, and a hydroxyl group is more preferable.
  • R 2 indicates a substituent.
  • the substituent that can be taken as R 2 is not particularly limited, but preferably, each group selected from the following substituent Z, or a group combining a plurality of groups selected from the substituent Z can be mentioned.
  • the group selected from the following substituent Z is not particularly limited, but an alkyl group, an aryl group, a heterocyclic group, or each functional group contained in the above functional group group is preferable.
  • the combined group is not particularly limited, but at least one is preferably a functional group selected from the above functional group group, and an alkyl group, an aryl group or a heterocyclic group selected from the substituent Z and a functional group.
  • a group in combination with is more preferable, and a group in which an alkyl group and a functional group are combined is further preferable.
  • the partial structure represented by the following formula (F2) has a balance of dispersion stability, film strength and battery performance. , More preferred.
  • L 1 represents a linking group, which is synonymous with L 1 in the above formula (F1), and the preferred one is also the same.
  • R 3 represents a substituent and is synonymous with R 2 in the formula (F1) except that it has a carbon atom (methylene group) between it and the carbon atom to which R 1 in the above formula (F1) is bonded. Yes, and the preferred ones are the same.
  • the binder-forming polymer may contain only one type of functional group-containing constituent component, and may contain two or more types. When two or more kinds of functional group-containing constituents are contained, each functional group-containing constituent may have a different chemical structure. For example, a functional group-containing constituent having one functional group and two or more functionals It can include a functional group-containing constituent having a group.
  • the functional group-containing constituents include the constituents contained in the binder-forming polymer described later and the constituents A-1 to A-8 contained in the binder-forming polymer synthesized in the examples.
  • the polymer forming the binder used in the present invention may have a constituent component other than the constituent component represented by any of the above formulas (I-1) to (I-4) and the constituent component having a functional group. good.
  • a constituent component is not particularly limited as long as it can be sequentially polymerized with the raw material compound that derives the constituent component represented by each of the above formulas.
  • the (total) content of the constituents represented by any of the above formulas (I-1) to (I-4) in the binder-forming polymer is not particularly limited, but may be 5 to 95 mol%. It is preferably 5 to 80 mol%, more preferably 10 to 60 mol%.
  • the content of the component having a functional group in the binder-forming polymer shall be 0.01 to 50 mol% in terms of improvement of dispersion stability, enhancement of film strength, improvement of battery resistance and cycle characteristics. Is preferable, 0.05 to 30 mol% is more preferable, and 0.1 to 20 mol% is further preferable.
  • the content of the other constituent components in the binder-forming polymer is not particularly limited, and can be, for example, 50% by mass or less.
  • the content of each component represented by any of the above formulas (I-1) to (I-4) in the binder-forming polymer is not particularly limited, but the binder-forming polymer must satisfy the above (total) content. Preferably, for example, it can be set in the following range. That is, the content of each of the components represented by the formula (I-1) or the formula (I-2) in the binder-forming polymer is not particularly limited and is preferably 10 to 50 mol%, 20 It is more preferably to 50 mol%, further preferably 30 to 50 mol%.
  • the content of each component represented by the formula (I-3) or the formula (I-4) in the binder-forming polymer is not particularly limited and is preferably 0 to 50 mol%, preferably 5 to 45. It is more preferably mol%, and even more preferably 10 to 45 mol%.
  • the component in which RP2 is a chain composed of a low molecular weight hydrocarbon group (for example, represented by the above formula (I-3A)).
  • the content of each of the constituent components in the binder-forming polymer is not particularly limited, and is, for example, preferably 0 to 50 mol%, more preferably 1 to 30 mol%, and 2 to 20 mol%. It is more preferably%, and even more preferably 4 to 25 mol%.
  • the component in which RP2 is the polyalkyleneoxy chain as a molecular chain (for example, represented by the above formula (I-3B)).
  • the content of each of the constituents) in the binder-forming polymer is not particularly limited, and is, for example, preferably 0 to 50 mol%, more preferably 5 to 45 mol%, and 10 to 43 mol%. Is more preferable.
  • the component in which RP2 is the hydrocarbon polymer chain as a molecular chain for example, represented by the above formula (I-3C)
  • the content of each of the constituents) in the binder-forming polymer is not particularly limited, but is preferably, for example, 0 to 50 mol%, more preferably 1 to 45 mol%, and 3 to 40 mol%. It is even more preferably 3 to 30 mol%, particularly preferably 3 to 20 mol%, and most preferably 3 to 10 mol%.
  • the (total) content of the component represented by the formula (I-7) in the binder-forming polymer is not particularly limited, but is set to the content of the component represented by the above formula (I-3B). NS.
  • the binder-forming polymer has a plurality of different constituent components represented by the formula (I-7)
  • the content of each constituent component is appropriately determined within a range satisfying the above (total) content.
  • the content of one constituent preferably a constituent having a polyether structure formed of an alkyleneoxy group having a large molecular weight.
  • Is for example, preferably 5 to 30 mol%, more preferably 10 to 25 mol%, and even more preferably 15 to 20 mol%.
  • the content of the other component is preferably, for example, 10 to 50 mol%, preferably 15 to 40 mol%. It is more preferably present, and further preferably 20 to 30 mol%.
  • the ratio of the content of one component to the other component [one component: the other component] is not particularly limited, but is preferably, for example, 10:90 to 80:20. It is more preferably 20:80 to 70:30.
  • polyurethane has three or more different constituents represented by the formula (I-7)
  • a constituent having a polyether structure formed of an alkyleneoxy group having the smallest molecular weight is used as the other constituent.
  • the other constituents are one of the above constituents.
  • the above-mentioned content of each constituent component shall be the total content.
  • the binder-forming polymer (each constituent component and raw material compound) may have a substituent.
  • the substituent is not particularly limited, but is preferably a group selected from the following substituent Z (however, each functional group included in the above-mentioned functional group group is excluded.
  • the atom forming the main chain of the polymer is fluorine. Atoms are excluded.)
  • -Substituent Z- Alkyl groups preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl groups preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • an alkenyl group having 2 to 20 carbon atoms for example, vinyl, allyl, oleyl, etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, for example, ethynyl, butadynyl, phenylethynyl, etc.
  • a cycloalkyl group having 3 to 20 carbon atoms for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., is usually used in the present specification to include a cycloalkyl group.
  • An aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), an aralkyl group (preferably having 7 carbon atoms).
  • ⁇ 23 aralkyl groups eg, benzyl, phenethyl, etc.
  • heterocyclic groups preferably heterocyclic groups having 2 to 20 carbon atoms, more preferably 5 or 5 having at least one oxygen atom, sulfur atom, nitrogen atom. It is a 6-membered heterocyclic group.
  • the heterocyclic group includes an aromatic heterocyclic group and an aliphatic heterocyclic group.
  • a tetrahydropyran ring group for example, a tetrahydropyran ring group, a tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-. Imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, pyrrolidone group, etc.), alkoxy group (preferably alkoxy group having 1 to 20 carbon atoms, for example, methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy group (Preferably, an aryloxy group having 6 to 26 carbon atoms, for example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc., is used in the present specification to include an aryloxy group.
  • alkoxy group preferably alkoxy group having 1 to 20 carbon atoms, for example, methoxy, ethoxy, isoprop
  • a heterocyclic oxy group (a group in which an —O— group is bonded to the heterocyclic group), an alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, for example, ethoxycarbonyl, 2-ethylhexyloxycarbonyl).
  • aryloxycarbonyl groups preferably aryloxycarbonyl groups with 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-me Thiruphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc.
  • heterocyclic oxycarbonyl group group in which -O-CO- group is bonded to the above heterocyclic group
  • amino group preferably amino group having 0 to 20 carbon atoms, alkyl It contains an amino group and an arylamino group, for example, amino (-NH 2 ), N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anirino, etc.), sulfamoyl group (preferably 0 to 20 carbon atoms).
  • Sulfamoyl group of, for example, N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc. acyl group (alkylcarbonyl group, alkenylcarbonyl group, alkynylcarbonyl group, arylcarbonyl group, heterocyclic carbonyl group, etc.
  • an acyl group having 1 to 20 carbon atoms for example, acetyl, propionyl, butyryl, octanoyl, hexadecanoyl, acryloyl, methacryloyl, crotonoyle, benzoyl, naphthoyl, nicotinoyle, etc., and an acyloxy group (alkylcarbonyloxy group, alkenylcarbonyloxy).
  • heterocyclic thio group group in which -S- group is bonded to the above heterocyclic group
  • alkylsulfonyl group preferably alkylsulfonyl group having 1 to 20 carbon atoms.
  • RP is a hydrogen atom or a substituent (preferably a group selected from the substituent Z). Further, each group listed in these substituents Z may be further substituted with the above-mentioned substituent Z.
  • the alkyl group, alkylene group, alkenyl group, alkenylene group, alkynyl group and / or alkynylene group and the like may be cyclic or chain-like, or may be linear or branched.
  • the binder-forming polymer can be synthesized by selecting a raw material compound by a known method according to the type of bond possessed by the main chain and subjecting the raw material compound to polyaddition or polycondensation.
  • a synthesis method for example, the above-mentioned Patent Documents 1 and 2 can be referred to.
  • the method for incorporating the functional group is not particularly limited, and for example, a method for copolymerizing a compound having a functional group selected from the functional group group, a method using the above-mentioned (producing) polymerization initiator, and a polymer. Examples thereof include a method using a reaction. Specifically, the synthesis method and the like in the examples described later can be mentioned.
  • the binder used in the present invention or the polymer forming the binder used in the present invention preferably has the following physical properties or properties.
  • the water concentration of the binder (polymer) used in the present invention is preferably 100 ppm (mass basis) or less.
  • the binder used in the present invention the polymer may be crystallized and dried, or the binder dispersion liquid used in the present invention may be used as it is.
  • the polymer forming the binder used in the present invention is preferably amorphous.
  • the term "amorphous" as a polymer typically means that no endothermic peak due to crystal melting is observed when measured at the glass transition temperature.
  • the binder used in the present invention may be soluble (dissolved binder) or insoluble in the dispersion medium contained in the inorganic solid electrolyte-containing composition, but is preferably insoluble.
  • the fact that the polymer binder is soluble (dissolved) in the dispersion medium means that the polymer binder is dissolved in the dispersion medium of the inorganic solid electrolyte-containing composition, and for example, in the following solubility measurement. It means that the solubility is 10% or more.
  • the fact that the polymer binder is insoluble in the dispersion medium means that the polymer binder is not dissolved in the dispersion medium of the composition containing an inorganic solid electrolyte and preferably exists in a solid state.
  • the solubility in the dispersion medium can be appropriately set depending on the type of the polymer forming the polymer binder (structure and composition of the polymer chain), the type or content of the functional group of the polymer, the type of the dispersion medium, and the like.
  • the binder used in the present invention is insoluble, it is preferably dispersed in the form of particles in the composition containing the inorganic solid electrolyte of the present invention (also referred to as a particulate binder).
  • the shape of the particles is not particularly limited and may be flat, amorphous or the like, but spherical or granular is preferable.
  • the average particle size of the particulate binder is not particularly limited, but is preferably 1 nm or more, more preferably 5 nm or more, further preferably 10 nm or more, particularly preferably 50 nm or more, and particularly preferably 80 nm. The above is the most preferable.
  • the upper limit is preferably 1700 nm or less, more preferably 1000 nm or less, further preferably 800 nm or less, particularly preferably 600 nm or less, and most preferably 500 nm or less.
  • the average particle size of the particulate binder can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
  • the average particle size of the particulate binder in the constituent layers of the all-solid secondary battery is measured in advance by, for example, disassembling the battery and peeling off the constituent layer containing the particulate binder, and then measuring the constituent layers. The measurement can be performed by excluding the measured value of the particle size of the particles other than the particulate binder.
  • the average particle size of the particulate binder depends on, for example, the synthesis conditions of the polymer constituting the particulate binder, the dispersion method or dispersion conditions in the dispersion medium, the type of the dispersion medium, the content of the constituent components in the polymer, and the like. , Can be adjusted.
  • the polymer forming the binder used in the present invention may be a non-crosslinked polymer or a crosslinked polymer. Further, when the cross-linking of the polymer progresses by heating or application of a voltage, the molecular weight may be larger than the following molecular weight. Preferably, the polymer has a mass average molecular weight in the range described below at the start of use of the all-solid-state secondary battery.
  • the mass average molecular weight of the polymer forming the binder used in the present invention is not particularly limited. For example, 15,000 or more is preferable, 30,000 or more is more preferable, and 50,000 or more is further preferable.
  • the upper limit is substantially 5,000,000 or less, preferably 4,000,000 or less, and more preferably 3,000,000 or less.
  • the molecular weights of the polymer, the polymer chain (polyether structure) and the macromonomer refer to the mass average molecular weight or the number average molecular weight in terms of standard polystyrene by gel permeation chromatography (GPC) unless otherwise specified.
  • GPC gel permeation chromatography
  • condition 1 or condition 2 (priority) method can be basically mentioned.
  • an appropriate eluent may be appropriately selected and used depending on the type of polymer or macromonomer.
  • the polymer contained in the binder used in the present invention include those shown below in addition to those synthesized in Examples, but the present invention is not limited thereto.
  • the number attached to the lower right of the constituent component indicates the content in the polymer, and the unit thereof is mol%, but it can be appropriately changed within the above range.
  • the inorganic solid electrolyte-containing composition of the present invention may contain one or more of the above-mentioned binders used in the present invention as the polymer binder.
  • the inorganic solid electrolyte-containing composition of the present invention may also contain a polymer binder other than the above-mentioned binder used in the present invention as the polymer binder.
  • the polymer constituting the other binder may be a polymer other than the polymer constituting the binder used in the present invention, and examples thereof include various polymers usually used for the constituent layers of the all-solid-state secondary battery. For example, sequential polymerization (polycondensation, polyaddition or addition condensation) polymer such as polyurethane, polyurea, polyamide, polyimide, polyester, polyether, polycarbonate, etc., and further, fluoropolymer (fluorine-containing polymer), hydrocarbon polymer, etc.
  • Examples thereof include chain polymerization polymers such as vinyl polymers and (meth) acrylic polymers.
  • chain polymerization polymers such as vinyl polymers and (meth) acrylic polymers.
  • any of (meth) acrylic polymer, hydrocarbon polymer, vinyl polymer and fluorine polymer is preferable from the viewpoint of dispersion stability of the inorganic solid electrolyte-containing composition.
  • the polymer constituting the other binder may be soluble or insoluble with respect to the dispersion medium in the composition containing the inorganic solid electrolyte, but the solubility can further improve the dispersion stability of the solid particles. It is preferable.
  • the other binder is particularly preferably a polymer composed of a polymer soluble in a dispersion medium in the composition containing an inorganic solid electrolyte, which is any of a (meth) acrylic polymer, a hydrocarbon polymer, a vinyl polymer and a fluorine polymer. It is a binder.
  • the other binder may be one containing one kind or a kind containing a plurality of kinds as the polymer binder. When a plurality of kinds are contained, there is no particular limitation, but 2 to 4 kinds are preferable.
  • polyurethane, polyurea, polyamide, and polyimide polymers that can be taken as sequential polymerization polymers include a polymer having a hard segment and a soft segment described in JP-A-2015-08480 (polymer binder (B)).
  • Each polymer and the like can be mentioned.
  • each polymer and the like described in Japanese Patent Application Laid-Open No. 2015-088486 can be mentioned.
  • the above-mentioned binder-forming polymer which does not contain a functional group-containing component can also be mentioned.
  • the (meth) acrylic polymer at least one (meth) acrylic compound (M1) selected from a (meth) acrylic acid compound, a (meth) acrylic acid ester compound, a (meth) acrylamide compound and a (meth) acrylonitrile compound. ) Is (co) polymerized to obtain a polymer. Further, a (meth) acrylic polymer composed of a copolymer of the (meth) acrylic compound (M1) and another polymerizable compound (M2) is also preferable.
  • the other polymerizable compound (M2) is not particularly limited, and includes styrene compound, vinylnaphthalene compound, vinylcarbazole compound, allyl compound, vinyl ether compound, vinyl ester compound, dialkyl itaconate compound, maleic anhydride and the like. Examples thereof include vinyl compounds such as unsaturated carboxylic acid anhydride. Examples of the vinyl compound include "vinyl-based monomers" described in JP-A-2015-88486.
  • the content of the other polymerizable compound (M2) in the (meth) acrylic polymer is not particularly limited, but can be, for example, less than 50 mol%. Examples of the (meth) acrylic polymer include the polymer described in International Publication No. 2016/132872, in which a macromonomer having a mass average molecular weight of 1,000 or more is incorporated as a side chain component.
  • hydrocarbon polymer examples include polyethylene, polypropylene, natural rubber, polybutadiene, polyisoprene, polystyrene, polystyrene butadiene copolymer, styrene-based thermoplastic elastomer, polybutylene, acrylonitrile butadiene copolymer, or hydrogenation thereof (hydrogen). Chemistry) Polymers can be mentioned.
  • the styrene-based thermoplastic elastomer or its hydride is not particularly limited, and for example, styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), hydride SIS.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SIS hydride SIS
  • Styrene-butadiene-styrene block copolymer SBS
  • hydrogenated SBS SBS
  • styrene-ethylene-ethylene-propylene-styrene block copolymer SEEPS
  • styrene-ethylene-propylene-styrene block copolymer SEPS
  • examples thereof include styrene-butadiene rubber (SBR) and hydride styrene-butadiene rubber (HSBR).
  • the hydrocarbon polymer having no unsaturated group for example, 1,2-butadiene constituent
  • Hydrocarbon-based polymers include those modified with unsaturated carboxylic acid anhydrides and the like.
  • Examples of the vinyl-based polymer include polymers containing, for example, 50 mol% or more of vinyl-based monomers other than the (meth) acrylic compound (M1).
  • Examples of the vinyl-based monomer include the above-mentioned vinyl compounds.
  • Examples of the vinyl polymer include polyvinyl alcohol, polyvinyl acetal, polyvinyl acetate, and a copolymer containing these.
  • this vinyl-based polymer preferably has a constituent component derived from the (meth) acrylic compound (M1) that forms the above-mentioned (meth) acrylic polymer, and further, the above-mentioned macromonomer. It may have a derived component (MM).
  • the content of the constituent component derived from the vinyl-based monomer is preferably the same as the content of the constituent component derived from the (meth) acrylic compound (M1) in the (meth) acrylic polymer.
  • the content of the constituent component derived from the (meth) acrylic compound (M1) is not particularly limited as long as it is less than 50% by mass in the polymer, but is preferably 0 to 30% by mass.
  • fluorine-containing polymer examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP), polyvinylidene fluoride and hexafluoro.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PVdF-HFP a copolymer of polyvinylidene fluoride and hexafluoropropylene
  • PVdF-HFP-TFE a copolymer of propylene and tetrafluoroethylene
  • the copolymerization ratio [PVdF: HFP] (mass ratio) of PVdF and HFP is not particularly limited, but is preferably 9: 1 to 5: 5, and 9: 1 to 7: 3 is adhesive.
  • the copolymerization ratio [PVdF: HFP: TFE] (mass ratio) of PVdF, HFP, and TFE is not particularly limited, but may be 20 to 60:10 to 40: 5 to 30. preferable.
  • the physical characteristics or properties of the other binder and the polymer forming the other binder are basically the same as those of the binder used in the present invention or the polymer forming the binder used in the present invention described above.
  • the polymer forming the other binder is soluble in the dispersion medium contained in the composition containing the inorganic solid electrolyte (the other binder is a soluble binder). There is) is preferable.
  • the inorganic solid electrolyte-containing composition of the present invention may contain one or more other binders as the polymer binder.
  • the polymer binder contained in the inorganic solid electrolyte-containing composition of the present invention may contain at least one binder used in the present invention, and may contain other binders.
  • the polymer binder contains the binder used in the present invention include a mode containing the binder used in the present invention alone, a mode containing two or more kinds of binders used in the present invention, and one or more kinds of binders used in the present invention. Examples thereof include an aspect including one kind or two or more kinds of other binders.
  • the combination of binders is not particularly limited, and preferred combinations of each binder can be mentioned, and urethane bonds are attached to the main chain.
  • a combination of the binder used in the present invention composed of a polymer having the above and another soluble binder composed of any of a (meth) acrylic polymer, a hydrocarbon polymer, a vinyl-based polymer and a fluorine-containing polymer is particularly preferable.
  • the total content of the polymer binder (the binder used in the present invention and other binders) in the inorganic solid electrolyte-containing composition is not particularly limited, but dispersion stability, film strength and battery performance (battery resistance, battery resistance, etc.) In terms of cycle characteristics), it is preferably 0.1 to 10.0% by mass, more preferably 0.2 to 5.0% by mass, and 0.3 to 4.0% by mass. Is more preferable.
  • the (total) content of the polymer binder (the binder used in the present invention and other binders) in the inorganic solid electrolyte-containing composition is 0.1 at a solid content of 100% by mass for the same reason. It is preferably ⁇ 10.0% by mass, more preferably 0.3 to 8% by mass, and even more preferably 0.5 to 7% by mass.
  • the (total) content of the binder used in the present invention in the inorganic solid electrolyte-containing composition is appropriately set within a range that satisfies the total content of the polymer binder.
  • the (total) content is preferably 0.01 to 5% by mass, more preferably 0.05 to 4% by mass, and 0.1 to 3% by mass, based on 100% by mass of solid content. Is more preferable.
  • each content of the binder used in the present invention is appropriately set within a range satisfying the above (total) content of the binder used in the present invention. Is set to.
  • in terms of solid content of 100% by mass it is preferably 0.01 to 5% by mass, more preferably 0.05 to 4% by mass, and even more preferably 0.1 to 3% by mass.
  • the (total) content of the binder used in the present invention may be lower than the content of the other binders, but is preferably the same or higher. .. Thereby, the film strength can be further strengthened without impairing the excellent dispersion stability.
  • the difference (absolute value) between the (total) content of the binder used in the present invention and the content of other binders is not particularly limited, and may be, for example, 0 to 6% by mass. It is possible, 0 to 4% by mass is more preferable, and 0 to 2% by mass is further preferable.
  • the ratio of the (total) content of the binder used in the present invention to the content of other binders in 100% by mass of the solid content ((total) content of the binder used in the present invention / content of other binders). is not particularly limited, but is preferably 1 to 4, more preferably 1 to 2, for example.
  • the content of the other binder in the composition containing the inorganic solid electrolyte is not particularly limited, and is appropriately set within a range that satisfies the total content of the above polymer binder.
  • the content thereof is preferably 0.01 to 4% by mass, more preferably 0.05 to 3% by mass, and 0. It is more preferably 1 to 2% by mass.
  • the total mass)] is preferably in the range of 1,000 to 1. This ratio is more preferably 500 to 2, and even more preferably 100 to 10.
  • the polymer binder is a particulate binder
  • its content is set to a content that does not dissolve in the inorganic solid electrolyte-containing composition in consideration of the solubility of the particulate binder within the range of each of the above contents. Is preferable.
  • the inorganic solid electrolyte-containing composition of the present invention preferably contains a dispersion medium for dispersing each of the above components.
  • the dispersion medium may be an organic compound that is liquid in the environment of use, and examples thereof include various organic solvents. Specifically, an alcohol compound, an ether compound, an amide compound, an amine compound, a ketone compound, and an aromatic compound. , Aliper compounds, nitrile compounds, ester compounds and the like.
  • the dispersion medium may be a non-polar dispersion medium (hydrophobic dispersion medium) or a polar dispersion medium (hydrophilic dispersion medium), but a non-polar dispersion medium is preferable because it can exhibit excellent dispersibility.
  • the non-polar dispersion medium generally refers to a property having a low affinity for water, and in the present invention, for example, an ester compound, a ketone compound, an ether compound, an aromatic compound, an aliphatic compound and the like can be mentioned.
  • Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol can be mentioned.
  • ether compound examples include alkylene glycol (diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.), alkylene glycol monoalkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, etc.).
  • alkylene glycol diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.
  • alkylene glycol monoalkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, etc.
  • amide compound examples include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ⁇ -caprolactam, formamide, N-methylformamide and acetamide. , N-Methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), cyclopentanone, cyclohexanone, cycloheptanone, dipropyl ketone, dibutyl ketone, diisopropyl ketone (DIPK), diisobutyl ketone (DIBK), and isobutyl propyl ketone. , Se-butyl propyl ketone, pentyl propyl ketone, butyl propyl ketone and the like.
  • Examples of the aromatic compound include benzene, toluene, xylene and the like.
  • Examples of the aliphatic compound include hexane, heptane, octane, nonane, decane, dodecane, cyclohexane, methylcyclohexane, ethylcyclohexane, cycloheptane, cyclooctane, decalin, paraffin, gasoline, naphtha, kerosene, and light oil.
  • Examples of the nitrile compound include acetonitrile, propionitrile, isobutyronitrile and the like.
  • ester compound examples include ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutyrate, and pivalic acid.
  • Examples thereof include propyl, isopropyl pivalate, butyl pivalate, and isobutyl pivalate.
  • the ether compound, the ketone compound, the aromatic compound, and the aliphatic compound are highly compatible with the binder used in the present invention and can enhance the dispersion stability of the inorganic solid electrolyte-containing composition.
  • Estelle compounds are preferred, and ester compounds, aliphatic compounds, ketone compounds or ether compounds are more preferred, for example, diisopropyl ether, dibutyl ether, isobutyl ethyl ether, MIBK, DIPK, DIBK, butyl butyrate, butyl acetate, ethylcyclohexane, cyclo. Examples thereof include octane, heptane, and toluene.
  • the number of carbon atoms of the compound constituting the dispersion medium is not particularly limited, and is preferably 2 to 30, more preferably 4 to 20, further preferably 6 to 15, and particularly preferably 7 to 12.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher at normal pressure (1 atm), and more preferably 70 ° C. or higher.
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the inorganic solid electrolyte-containing composition of the present invention may contain at least one type of dispersion medium and may contain two or more types.
  • the content of the dispersion medium in the inorganic solid electrolyte-containing composition is not particularly limited and can be appropriately set.
  • 20 to 80% by mass is preferable, 30 to 70% by mass is more preferable, and 40 to 60% by mass is particularly preferable.
  • the inorganic solid electrolyte-containing composition of the present invention may also contain an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table.
  • the active material include a positive electrode active material and a negative electrode active material, which will be described below.
  • an inorganic solid electrolyte-containing composition containing an active material positive electrode active material or negative electrode active material
  • an electrode composition positive electrode composition or negative electrode composition
  • the positive electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be composited with Li such as sulfur, or the like by decomposing the battery.
  • the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed.
  • the mixing amount is preferably 0 to 30 mol% relative to the amount of the transition metal element M a (100 mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphoric acid compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound and the like.
  • transition metal oxide having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Manganese nickel oxide).
  • LiCoO 2 lithium cobalt oxide
  • LiNi 2 O 2 lithium nickel oxide
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 Lithium Nickel Cobalt Aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 Lithium Nickel Manganese Cobalt Oxide [NMC]
  • LiNi 0.5 Mn 0.5 O 2 Manganese nickel oxide
  • (MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4.
  • Examples thereof include cobalt phosphates of Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate) and other monoclinic panocycon-type vanadium phosphate salts.
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts such as.
  • Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles.
  • the average particle size (volume average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m.
  • the average particle size of the positive electrode active material particles can be measured in the same manner as the average particle size of the above-mentioned inorganic solid electrolyte.
  • a normal crusher or classifier is used to adjust the positive electrode active material to a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, or the like is preferably used.
  • wet pulverization in which a dispersion medium such as water or methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size.
  • the classification is not particularly limited, and can be performed using a sieve, a wind power classifier, or the like. Both dry and wet classifications can be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination.
  • the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the content of the positive electrode active material in the inorganic solid electrolyte-containing composition is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, and 40 to 93% by mass in terms of solid content of 100% by mass. Is more preferable, and 50 to 90% by mass is particularly preferable.
  • the negative electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a negative electrode activity capable of forming an alloy with a carbonaceous material, a metal oxide, a metal composite oxide, a single lithium substance, a lithium alloy, or lithium. Examples include substances. Of these, carbonaceous materials, metal composite oxides, or elemental lithium are preferably used from the viewpoint of reliability.
  • An active material that can be alloyed with lithium is preferable in that the capacity of the all-solid-state secondary battery can be increased.
  • a negative electrode active material capable of forming an alloy with lithium can be used as the negative electrode active material. This makes it possible to increase the capacity of the all-solid-state secondary battery and extend the life of the battery.
  • the carbonaceous material used as the negative electrode active material is a material substantially composed of carbon.
  • carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • a carbonaceous material obtained by calcining a resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polypoly alcohol) -based carbon fibers, lignin carbon fibers, graphitic carbon fibers, and activated carbon fibers.
  • carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization. Further, the carbonaceous material preferably has the plane spacing or density and the size of crystallites described in JP-A-62-22066, JP-A-2-6856, and JP-A-3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like should be used. You can also.
  • As the carbonaceous material hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the metal or semi-metal element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of storing and releasing lithium, and is a composite of the metal element oxide (metal oxide) and the metal element.
  • metal oxide metal oxide
  • examples thereof include oxides or composite oxides of metal elements and semi-metal elements (collectively referred to as metal composite oxides) and oxides of semi-metal elements (semi-metal oxides).
  • metal composite oxides oxides or composite oxides of metal elements and semi-metal elements
  • oxides of semi-metal elements semi-metal elements
  • amorphous oxides are preferable
  • chalcogenides which are reaction products of metal elements and elements of Group 16 of the Periodic Table, are also preferable.
  • the metalloid element means an element exhibiting properties intermediate between a metalloid element and a non-metalloid element, and usually contains six elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and Astatine.
  • amorphous means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and a crystalline diffraction line is used. You may have.
  • the strongest intensity of the crystalline diffraction lines seen at the 2 ⁇ value of 40 ° to 70 ° is 100 times or less of the diffraction line intensity at the apex of the broad scattering band seen at the 2 ⁇ value of 20 ° to 40 °. It is preferable that it is 5 times or less, and it is particularly preferable that it does not have a crystalline diffraction line.
  • the amorphous oxide of the metalloid element or the chalcogenide is more preferable, and the elements of the Group 13 (IIIB) to 15 (VB) of the Periodic Table (for example).
  • Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) alone or a combination of two or more of them (composite) oxide, or chalcogenide is particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2.
  • Negative electrode active materials that can be used in combination with amorphous oxides such as Sn, Si, and Ge include carbonaceous materials that can occlude and / or release lithium ions or lithium metals, lithium alone, lithium alloys, and lithium.
  • a negative electrode active material that can be alloyed with is preferably mentioned.
  • the oxide of a metal or a metalloid element contains at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the lithium-containing metal composite oxide include a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, and more specifically, Li 2 SnO 2.
  • the negative electrode active material for example, a metal oxide, contains a titanium element (titanium oxide).
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • Li 4 Ti 5 O 12 has excellent rapid charge / discharge characteristics because the volume fluctuation during storage and release of lithium ions is small, and deterioration of electrodes is suppressed and lithium ion secondary It is preferable in that the life of the battery can be improved.
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
  • the negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery. Such an active material has a large expansion and contraction due to charging and discharging of an all-solid secondary battery and accelerates a decrease in battery performance such as cycle characteristics.
  • the inorganic solid electrolyte-containing composition of the present invention is used in the above-mentioned present invention. Since it contains a binder, deterioration of battery performance can be suppressed.
  • Examples of such an active material include a (negative electrode) active material having a silicon element or a tin element (alloy, etc.), and metals such as Al and In, and a negative electrode active material having a silicon element that enables a higher battery capacity.
  • a silicon element-containing active material is preferable, and a silicon element-containing active material having a silicon element content of 50 mol% or more of all the constituent elements is more preferable.
  • a negative electrode containing these negative electrode active materials for example, a Si negative electrode containing a silicon element-containing active material, a Sn negative electrode containing a tin element active material, etc.
  • a carbon negative electrode graphite, acetylene black, etc.
  • silicon element-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, and the like (for example,).
  • LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si) or organized active material (eg LaSi 2 / Si), as well as other silicon and tin elements such as SnSiO 3 , SnSiS 3 Examples include active materials containing.
  • SiOx itself can be used as a negative electrode active material (metalloid oxide), and since Si is generated by the operation of an all-solid-state secondary battery, a negative electrode active material that can be alloyed with lithium (its). It can be used as a precursor substance).
  • the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon element and the tin element.
  • a composite oxide with lithium oxide for example, Li 2 SnO 2 can also be mentioned.
  • the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with lithium is a preferred embodiment as the negative electrode active material.
  • a negative electrode active material that can be alloyed with lithium is a preferred embodiment as the negative electrode active material.
  • the above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and it is further preferable to contain silicon (Si) or a silicon-containing alloy.
  • the chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and the mass difference of the powder before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the shape of the negative electrode active material is not particularly limited, but it is preferably in the form of particles.
  • the average particle size (volume average particle size) of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 ⁇ m.
  • the average particle size of the negative electrode active material particles can be measured in the same manner as the average particle size of the above-mentioned inorganic solid electrolyte. In order to obtain a predetermined particle size, a normal crusher or classifier is used as in the case of the positive electrode active material.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the content of the negative electrode active material in the inorganic solid electrolyte-containing composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 30% by mass, based on 100% by mass of the solid content. It is more preferably 80% by mass, and even more preferably 40 to 75% by mass.
  • the negative electrode active material layer when the negative electrode active material layer is formed by charging the secondary battery, instead of the negative electrode active material, a metal belonging to Group 1 or Group 2 of the periodic table generated in the all-solid secondary battery is used. Ions can be used. A negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum oxide, niobate oxide, lithium niobate compound and the like.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
  • the inorganic solid electrolyte-containing composition of the present invention preferably contains a conductive auxiliary agent, and for example, a silicon atom-containing active material as a negative electrode active material is preferably used in combination with a conductive auxiliary agent.
  • the conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used.
  • electron conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fibers or carbon nanotubes.
  • It may be a carbon fiber such as graphene or fullerene, a metal powder such as copper or nickel, or a metal fiber, and a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. May be used.
  • a conductive auxiliary agent is one that does not insert and release ions) and does not function as an active material.
  • conductive auxiliary agents those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
  • the conductive auxiliary agent may contain one kind or two or more kinds.
  • the shape of the conductive auxiliary agent is not particularly limited, but is preferably in the form of particles.
  • the content of the conductive auxiliary agent in the inorganic solid electrolyte-containing composition is preferably 0 to 10% by mass with respect to 100% by mass of the solid content.
  • the inorganic solid electrolyte-containing composition of the present invention preferably contains a lithium salt (supporting electrolyte).
  • the lithium salt the lithium salt usually used for this kind of product is preferable, and there is no particular limitation.
  • the lithium salt described in paragraphs 882 to 985 of JP-A-2015-084886 is preferable.
  • the content of the lithium salt is preferably 0.1 part by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the solid electrolyte.
  • the upper limit is preferably 50 parts by mass or less, more preferably 20 parts by mass or less.
  • the inorganic solid electrolyte-containing composition of the present invention does not have to contain a dispersant other than the binder used in the present invention, but contains a dispersant. You may.
  • the dispersant those usually used for all-solid-state secondary batteries can be appropriately selected and used. Generally, compounds intended for particle adsorption, steric repulsion and / or electrostatic repulsion are preferably used.
  • the composition containing an inorganic solid electrolyte of the present invention contains, as other components other than the above components, an ionic liquid, a thickener, and a cross-linking agent (such as those that undergo a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization).
  • a cross-linking agent such as those that undergo a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization.
  • Polymerization initiators such as those that generate acids or radicals by heat or light
  • defoaming agents leveling agents, dehydrating agents, antioxidants and the like
  • the ionic liquid is contained in order to further improve the ionic conductivity, and known ones can be used without particular limitation.
  • a polymer other than the polymer forming the polymer binder described above, a commonly used binder and the like may be contained.
  • the composition containing an inorganic solid electrolyte of the present invention is an inorganic solid electrolyte, a binder used in the present invention as a polymer binder, a dispersion medium, preferably a polymer binder other than the binder used in the present invention (for example, another binder), and a conductive auxiliary agent.
  • a lithium salt and any other component can be prepared as a mixture, preferably as a slurry, by mixing, for example, with various commonly used mixers.
  • the active material is further mixed.
  • the mixing method is not particularly limited, and the mixture may be mixed all at once or sequentially.
  • the mixing environment is not particularly limited, and examples thereof include under dry air and under an inert gas.
  • the sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body capable of forming a constituent layer of an all-solid-state secondary battery, and includes various aspects depending on its use.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery
  • an electrode or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (an electrode for an all-solid secondary battery).
  • Sheet and the like.
  • these various sheets are collectively referred to as an all-solid-state secondary battery sheet.
  • the solid electrolyte sheet for an all-solid secondary battery of the present invention may be a sheet having a solid electrolyte layer, and even a sheet in which the solid electrolyte layer is formed on a base material does not have a base material and is a solid electrolyte layer. It may be a sheet formed of.
  • the solid electrolyte sheet for an all-solid secondary battery may have another layer in addition to the solid electrolyte layer. Examples of other layers include a protective layer (release sheet), a current collector, a coat layer, and the like.
  • the solid electrolyte sheet for an all-solid secondary battery of the present invention for example, a sheet having a layer composed of the inorganic solid electrolyte-containing composition of the present invention, a normal solid electrolyte layer, and a protective layer on a substrate in this order.
  • the solid electrolyte layer contained in the solid electrolyte sheet for an all-solid secondary battery is preferably formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the content of each component in the solid electrolyte layer is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the inorganic solid electrolyte-containing composition of the present invention.
  • the layer thickness of each layer constituting the solid electrolyte sheet for an all-solid-state secondary battery is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
  • the base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include a material described in the current collector described later, a sheet body (plate-shaped body) such as an organic material and an inorganic material.
  • a material described in the current collector described later a sheet body (plate-shaped body) such as an organic material and an inorganic material.
  • the organic material include various polymers, and specific examples thereof include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • the inorganic material include glass, ceramic and the like.
  • the electrode sheet for an all-solid-state secondary battery of the present invention may be an electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector).
  • the sheet may be a sheet that does not have a base material and is formed from an active material layer.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but has an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. An embodiment having a layer and an active material layer in this order is also included.
  • the solid electrolyte layer and the active material layer of the electrode sheet are preferably formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the content of each component in the solid electrolyte layer or the active material layer is not particularly limited, but preferably, the content of each component in the solid content of the inorganic solid electrolyte-containing composition (electrode composition) of the present invention. Is synonymous with.
  • the layer thickness of each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
  • the electrode sheet of the present invention may have the other layers described above.
  • the all-solid-state secondary battery sheet of the present invention at least one of the solid electrolyte layer and the active material layer is formed of the inorganic solid electrolyte-containing composition of the present invention, and has a constituent layer having low resistance and high film strength. There is. Therefore, by using the sheet for the all-solid-state secondary battery of the present invention as a constituent layer of the all-solid-state secondary battery, excellent cycle characteristics of the all-solid-state secondary battery and low resistance (high conductivity) can be realized. .. Further, even if the sheet for an all-solid-state secondary battery is manufactured by the roll-to-roll method, defects are unlikely to occur in the constituent layers.
  • the electrode sheet for an all-solid-state secondary battery and the all-solid-state secondary battery in which the active material layer is formed of the inorganic solid electrolyte-containing composition of the present invention show strong adhesion between the active material layer and the current collector. , Further improvement of cycle characteristics can be realized. Therefore, the sheet for an all-solid-state secondary battery of the present invention is suitably used as a sheet capable of forming a constituent layer of an all-solid-state secondary battery.
  • the method for producing the sheet for an all-solid secondary battery of the present invention is not particularly limited, and the sheet can be produced by forming each of the above layers using the inorganic solid electrolyte-containing composition of the present invention.
  • a layer (coating and drying layer) composed of an inorganic solid electrolyte-containing composition is preferably formed on a base material or a current collector (which may be via another layer) by forming a film (coating and drying).
  • the method can be mentioned. Thereby, an all-solid-state secondary battery sheet having a base material or a current collector and a coating dry layer can be produced.
  • the coating dry layer is a layer formed by applying the inorganic solid electrolyte-containing composition of the present invention and drying the dispersion medium (that is, the inorganic solid electrolyte-containing composition of the present invention is used.
  • the dispersion medium may remain as long as the effects of the present invention are not impaired, and the residual amount may be, for example, 3% by mass or less in each layer.
  • each step such as coating and drying will be described in the following method for manufacturing an all-solid-state secondary battery.
  • the coating dry layer obtained as described above can also be pressurized.
  • the pressurizing conditions and the like will be described later in the method for manufacturing an all-solid-state secondary battery.
  • the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
  • the method for producing a sheet for an all-solid secondary battery of the present invention is a highly productive production method in which bending and restoration act by using the composition containing an inorganic solid electrolyte of the present invention, and in particular, bending and restoration act repeatedly. Even if it is applied to an industrial manufacturing method (for example, a roll-to-roll method), a constituent layer that maintains a contact state between solid particles can be produced. That is, it is possible to manufacture an all-solid-state secondary battery sheet having a constituent layer having a high film strength and suppressing the occurrence of defects with high productivity.
  • an industrial manufacturing method for example, a roll-to-roll method
  • the all-solid secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer arranged between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is preferably formed on the positive electrode current collector and constitutes the positive electrode.
  • the negative electrode active material layer is preferably formed on the negative electrode current collector to form the negative electrode. It is sufficient that at least one layer of the negative electrode active material layer, the positive electrode active material layer and the solid electrolyte layer is formed of the inorganic solid electrolyte-containing composition of the present invention, and the solid electrolyte layer, or the negative electrode active material layer and the positive electrode active material layer.
  • the composition containing the inorganic solid electrolyte of the present invention is formed of the composition containing the inorganic solid electrolyte of the present invention. It is also one of the preferred embodiments that all layers are formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the active material layer or the solid electrolyte layer formed of the inorganic solid electrolyte-containing composition of the present invention is preferably one in the solid content of the inorganic solid electrolyte-containing composition of the present invention with respect to the component species contained therein and the content ratio thereof. Is the same as.
  • a known material can be used.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
  • the thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m, respectively, in consideration of the dimensions of a general all-solid-state secondary battery. In the all-solid-state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each have a current collector on the opposite side of the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure, but in order to form a dry battery, it should be further enclosed in a suitable housing.
  • the housing may be made of metal or resin (plastic).
  • a metallic material for example, one made of aluminum alloy or stainless steel can be mentioned.
  • the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
  • FIG. 1 is a cross-sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. ..
  • Each layer is in contact with each other and has an adjacent structure.
  • the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6.
  • a light bulb is used as a model for the operating portion 6, and the light bulb is turned on by electric discharge.
  • the all-solid secondary battery having the layer structure shown in FIG. 1 When the all-solid secondary battery having the layer structure shown in FIG. 1 is placed in a 2032 type coin case, the all-solid secondary battery is referred to as an all-solid secondary battery laminate, and the all-solid secondary battery laminate is referred to as an all-solid secondary battery laminate.
  • a battery manufactured in a 2032 type coin case (for example, a coin type all-solid secondary battery shown in FIG. 2) may be referred to as an all-solid secondary battery.
  • the all-solid-state secondary battery 10 In the all-solid-state secondary battery 10, all of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are formed of the inorganic solid electrolyte-containing composition of the present invention.
  • the all-solid-state secondary battery 10 exhibits excellent battery performance.
  • the inorganic solid electrolyte and the polymer binder (binder used in the present invention) contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be of the same type or different from each other.
  • either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer.
  • either or both of the positive electrode active material and the negative electrode active material may be collectively referred to as an active material or an electrode active material.
  • the binder used in the present invention when used in combination with solid particles such as an inorganic solid electrolyte or an active material for the constituent layer, the interface between the solid particles is also caused by bending and restoration during sheet preparation as described above. Can maintain contact. Therefore, even if a sheet for an all-solid-state secondary battery continuously manufactured from an industrial point of view is used, the obtained all-solid-state secondary battery of the present invention can realize high battery performance with low battery resistance and excellent cycle characteristics. ..
  • the negative electrode active material layer can be a lithium metal layer.
  • the lithium metal layer include a layer formed by depositing or molding a lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like.
  • the thickness of the lithium metal layer can be, for example, 1 to 500 ⁇ m regardless of the thickness of the negative electrode active material layer.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • either or both of the positive electrode current collector and the negative electrode current collector may be collectively referred to as a current collector.
  • a current collector As a material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, the surface of aluminum or stainless steel is treated with carbon, nickel, titanium or silver (a thin film is formed). Of these, aluminum and aluminum alloys are more preferable.
  • As a material for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel.
  • aluminum, copper, copper alloy and stainless steel are more preferable.
  • the shape of the current collector is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a layer formed of a known constituent layer-forming material can be applied to the positive electrode active material layer.
  • a functional layer, a member, or the like is appropriately interposed or arranged between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. You may. Further, each layer may be composed of a single layer or a plurality of layers.
  • the all-solid-state secondary battery can be manufactured by a conventional method. Specifically, the all-solid-state secondary battery can be manufactured by forming each of the above layers using the inorganic solid electrolyte-containing composition or the like of the present invention. The details will be described below.
  • the inorganic solid electrolyte-containing composition of the present invention is appropriately applied onto a base material (for example, a metal foil serving as a current collector) to form a coating film (film formation).
  • a method including (via) a step a method for producing a sheet for an all-solid-state secondary battery of the present invention
  • an inorganic solid electrolyte-containing composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil which is a positive electrode current collector to form a positive electrode active material layer, and the entire solid is formed.
  • a positive electrode sheet for a secondary battery is produced.
  • an inorganic solid electrolyte-containing composition for forming the solid electrolyte layer is applied onto the positive electrode active material layer to form the solid electrolyte layer.
  • an inorganic solid electrolyte-containing composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • a negative electrode current collector metal foil
  • an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer can be obtained. Can be done. This can be enclosed in a housing to obtain a desired all-solid-state secondary battery.
  • a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collectors are superposed to manufacture an all-solid secondary battery. You can also do it.
  • a positive electrode sheet for an all-solid-state secondary battery is produced. Further, an inorganic solid electrolyte-containing composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on a metal foil which is a negative electrode current collector to form a negative electrode active material layer, and the entire solid is formed. A negative electrode sheet for a secondary battery is manufactured. Next, a solid electrolyte layer is formed on the active material layer of any one of these sheets as described above.
  • the other of the positive electrode sheet for the all-solid secondary battery and the negative electrode sheet for the all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • an all-solid-state secondary battery can be manufactured.
  • the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery and a negative electrode sheet for an all-solid-state secondary battery are produced. Separately from this, an inorganic solid electrolyte-containing composition is applied onto a base material to prepare a solid electrolyte sheet for an all-solid secondary battery composed of a solid electrolyte layer.
  • the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery are laminated so as to sandwich the solid electrolyte layer peeled off from the base material. In this way, an all-solid-state secondary battery can be manufactured. Further, as described above, a positive electrode sheet for an all-solid-state secondary battery or a negative electrode sheet for an all-solid-state secondary battery, and a solid electrolyte sheet for an all-solid-state secondary battery are produced. Next, the positive electrode sheet for the all-solid secondary battery or the negative electrode sheet for the all-solid secondary battery and the solid electrolyte sheet for the all-solid secondary battery were brought into contact with the positive electrode active material layer or the negative electrode active material layer and the solid electrolyte layer.
  • the solid electrolyte layer is transferred to the positive electrode sheet for the all-solid-state secondary battery or the negative electrode sheet for the all-solid-state secondary battery. Then, the solid electrolyte layer from which the base material of the solid electrolyte sheet for the all-solid secondary battery is peeled off and the negative electrode sheet for the all-solid secondary battery or the positive electrode sheet for the all-solid secondary battery are separated (the negative electrode active material layer or the negative electrode active material layer on the solid electrolyte layer). Pressurize the positive electrode active material layer in contact with each other. In this way, an all-solid-state secondary battery can be manufactured.
  • the pressurizing method and pressurizing conditions in this method are not particularly limited, and the methods and pressurizing conditions described later in the pressurization of the applied composition can be applied.
  • the solid electrolyte layer or the like can be formed, for example, by pressure-molding an inorganic solid electrolyte-containing composition or the like on a substrate or an active material layer under pressure conditions described later, or sheet molding of a solid electrolyte or an active material. You can also use the body.
  • the inorganic solid electrolyte-containing composition of the present invention may be used as any one of the positive electrode composition, the inorganic solid electrolyte-containing composition and the negative electrode composition, and the inorganic solid electrolyte-containing composition, Alternatively, it is preferable to use the inorganic solid electrolyte-containing composition of the present invention for at least one of the positive electrode composition and the negative electrode composition, and the inorganic solid electrolyte-containing composition of the present invention can be used for any of the compositions.
  • the solid electrolyte layer or the active material layer is formed by a composition other than the solid electrolyte composition of the present invention, examples of the material include commonly used compositions and the like.
  • a negative electrode active material layer can also be formed by combining metal ions with electrons and depositing them as a metal on a negative electrode current collector or the like.
  • the method for applying the composition containing an inorganic solid electrolyte is not particularly limited and can be appropriately selected.
  • coating preferably wet coating
  • spray coating spin coating coating
  • dip coating coating dip coating coating
  • slit coating stripe coating
  • bar coating coating can be mentioned.
  • the inorganic solid electrolyte-containing composition may be subjected to a drying treatment after being applied to each of them, or may be subjected to a drying treatment after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher.
  • the upper limit is preferably 300 ° C.
  • the dispersion medium can be removed and a solid state (coating dry layer) can be obtained. Further, it is preferable because the temperature is not raised too high and each member of the all-solid-state secondary battery is not damaged. As a result, in the all-solid-state secondary battery, it is possible to obtain excellent overall performance, good binding property, and good ionic conductivity even without pressurization.
  • a coating and drying layer (inorganic solid electrolyte) exhibiting a strong film strength in which solid particles are firmly bonded to each other while suppressing an increase in interfacial resistance. Layer) can be formed.
  • the pressurizing method include a hydraulic cylinder press machine and the like.
  • the pressing force is not particularly limited, and is generally preferably in the range of 5 to 1500 MPa.
  • the applied inorganic solid electrolyte-containing composition may be heated at the same time as pressurization.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It can also be pressed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be carried out in a state where the coating solvent or the dispersion medium has been dried in advance, or may be carried out in a state where the solvent or the dispersion medium remains.
  • each composition may be applied at the same time, and the application drying press may be performed simultaneously and / or sequentially. After coating on separate substrates, they may be laminated by transfer.
  • the manufacturing process for example, the atmosphere during coating, heating or pressurization, is not particularly limited, and is in air, dry air (dew point -20 ° C or lower), inert gas (for example, argon gas, helium gas, nitrogen). (In gas) or the like.
  • the pressing time may be short (for example, within several hours) and high pressure may be applied, or medium pressure may be applied for a long time (1 day or more).
  • an all-solid-state secondary battery restraint screw tightening pressure, etc.
  • the press pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
  • the press pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part step by step with different pressures.
  • the pressed surface may be smooth or roughened.
  • the all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.
  • the method for producing an all-solid secondary battery of the present invention is a highly productive production method in which bending and restoration act by using the composition containing an inorganic solid electrolyte of the present invention, particularly an industry in which bending and restoration act repeatedly. Even if it is applied to a conventional manufacturing method (for example, a roll-to-roll method), an all-solid secondary battery that realizes the above-mentioned excellent battery performance can be manufactured. That is, the above-mentioned all-solid-state secondary battery having excellent battery performance can be manufactured with high productivity.
  • the all-solid secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, but for example, when mounted on an electronic device, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone. Examples include copying, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, etc.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
  • NISSO-PB GI1000 (trade name, manufactured by Nippon Soda Co., Ltd.) 8.10 g, polyethylene glycol (PEG200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 5.84 g, polytetramethylene glycol (PTMG250, manufactured by Aldrich) in a 500 mL three-necked flask.
  • PTMG250 polytetramethylene glycol
  • Manufactured 7.30 g and 1.47 g of the compound leading to the functional group-containing constituent component A-1 synthesized in Reference Synthesis Example 1 described later were added and dissolved in 103.2 g of tetrahydrofuran (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • a solution obtained by adding 20 g of a 1 M aqueous hydrochloric acid solution was poured into 600 g of acetonitrile, and the obtained polymer was redissolved in THF by removing the supernatant. ) was obtained.
  • 30 g of the above-mentioned polymer S-1 in THF was placed in a 300 mL three-necked flask and stirred at room temperature.
  • 90 g of butyl butyrate was added dropwise thereto over 30 minutes, and then THF was distilled off under reduced pressure. In this way, a binder dispersion liquid S-1 (concentration: 4% by mass) made of the binder-forming polymer S-1 was obtained.
  • a binder-forming polymer S-2 was synthesized to prepare a butyl butyrate dispersion S-2 of a binder composed of this polymer.
  • NISSO-PB GI1000 (trade name, manufactured by Nippon Soda Co., Ltd.) 11.10 g, polyethylene glycol (PEG200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 5.92 g, 1,4-butanediol (1,4-butanediol) in a 500 mL three-necked flask.
  • Synthesis Example 6 Synthesis of Binder-Forming Polymer S-6 and Preparation of Binder Solution S-6
  • a binder is used in the same manner as in Synthesis Example 1, except that a compound that guides each component so that the polymer S-6 has the composition (type and content of components) shown in Table 1 is used.
  • the forming polymer S-6 (polyurethane) was synthesized to obtain a binder solution S-6 (concentration: 4% by mass) composed of the binder forming polymer S-6.
  • Synthesis Example 8 Synthesis of Binder-Forming Polymer S-8 and Preparation of Binder Solution S-8
  • a binder is used in the same manner as in Synthesis Example 1, except that a compound that guides each component so that the polymer S-8 has the composition (type and content of components) shown in Table 1 is used.
  • the forming polymer S-8 (polyurethane) was synthesized to obtain a binder solution S-8 (concentration: 4% by mass) composed of each binder forming polymer.
  • Synthesis Example 11 Synthesis of Polymer S-11 and Preparation of Binder Dispersion Liquid S-11
  • Synthesis Example 2 a binder is used in the same manner as in Synthesis Example 2, except that a compound that guides each component so that the polymer S-11 has the composition (type and content of components) shown in Table 1 is used.
  • the forming polymer S-11 (polyurethane) was synthesized to obtain a binder dispersion liquid S-11 (concentration: 4% by mass) composed of each binder forming polymer.
  • Synthesis Example 12 Synthesis of Polymer S-12 and Preparation of Binder Dispersion Liquid S-12
  • the binder-forming polymer S-12 (polyurethane) was synthesized in the same manner as in Synthesis Example 1 except that PEG200 was replaced with 4.33 g of EDR-176 (manufactured by Huntsman) to form each binder.
  • Table 1 shows the mass average molecular weight of each synthesized polymer and the average particle size of each binder (in Table 1, it is simply referred to as "particle size”. If the binder is a soluble type, it is indicated as "dissolved” in the particle size column). show.
  • the mass average molecular weight of each polymer was measured by the above method (condition 2).
  • the pKa of the functional group in the polymers S-1 to S-12 is in the range of 1 to 20.
  • the component M1 represents a component represented by the above formula (I-1) or formula (I-2). However, with respect to the polymer T-6, the constituent components derived from the carboxylic acid anhydride are exceptionally described.
  • the component M2 represents a component represented by the above formula (I-3B).
  • the constituent components represented by the formula (I-7) having a polyether structure formed of an alkyleneoxy group having a small molecular weight are shown.
  • the constituent components derived from diaminodiphenyl ether (DAPE) are described as an exception.
  • the component M3 represents a component represented by the above formula (I-3B).
  • the constituent components represented by the formula (I-7) having a polyether structure formed of an alkyleneoxy group having a large molecular weight are shown.
  • the constituent components derived from dodecyl methacrylate (LMA) are exceptionally described
  • the constituent components represented by the formula (I-3A) are exceptionally described.
  • the component M4 represents a component represented by the above formula (1-3C).
  • the component M5 represents a component containing the above-mentioned functional group. Exceptionally, the components derived from DMBA are described for the polymer T-5.
  • the obtained solution was poured into 500 g of acetonitrile and the supernatant was removed to obtain a solid substance.
  • a 500 mL three-necked eggplant flask 45 g of the above solid, 80 g of toluene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 23 g of phthalimide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and the mixture was stirred at room temperature for 12 hours. 100 g of ethanol was added to the obtained solution, and the mixture was further stirred at 80 ° C. for 12 hours.
  • the resulting solution was poured into 500 g of acetonitrile and the supernatant was removed to give a solid.
  • Acetonitrile was distilled off under reduced pressure to synthesize a compound leading to component B-1.
  • a binder solution was prepared using a soluble binder as another binder.
  • Preparation Example 1 Synthesis of Vinyl Polymer D-1 and Preparation of Soluble Binder Solution D-1
  • Dodecyl acrylate manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • 14.2 g styrene
  • styrene manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • maleic anhydride manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Preparation Example 2 Synthesis of (meth) acrylic polymer D-2 and preparation of soluble binder solution D-2] To a 100 mL volumetric flask, 36.0 g of hexyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.36 g of the polymerization initiator V-601 (trade name, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added and dissolved in 36 g of butyl butyrate. A monomer solution was prepared. 18 g of butyl butyrate was added to a 300 mL three-necked flask, and the mixture was stirred at 80 ° C., and the above monomer solution was added dropwise over 2 hours.
  • V-601 trade name, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • the synthesized vinyl polymer D-1 and (meth) acrylic polymer D-2 are shown below.
  • the number attached to the lower right of each component indicates the content in the polymer, and the unit is mol%.
  • Maleic anhydride-modified hydrogenated styrene-based thermoplastic elastomer has a mass average molecular weight of 120,000, a styrene / ethylene / butylene ratio of 30/70, and a maleic anhydride-modified amount (content of a component having a maleic anhydride group). ) was 0.4 mol%.
  • Preparation Example 4 Preparation of soluble binder solution UFB composed of fluoropolymer
  • PVdF-HFP Kynar Flex Ultraflex B (trade name, manufactured by Arkema Co., Ltd.) was dissolved in butyl butyrate to prepare a binder solution UFB having a solid content concentration of 3% by mass.
  • the mass average molecular weight of PVdF-HFP was 200,000, and the copolymerization ratio [PVdF: HFP] (mass ratio) was 58:42.
  • Li 2 S lithium sulfide
  • P 2 S diphosphorus pentasulfide
  • Example 1 Each composition shown in Tables 2-1 to 2-3 (collectively referred to as Table 2) was prepared as follows. ⁇ Preparation of composition containing inorganic solid electrolyte> 60 g of zirconia beads having a diameter of 5 mm was put into a zirconia 45 mL container (manufactured by Fritsch), 8.4 g of LPS synthesized in Synthesis Example A, 0.6 g or 0.4 g of the binder dispersion or solution shown in Table 2 (solid). When 0.4 g of the binder dispersion was used, 0.2 g (solid content mass) of the soluble binder solution shown in Table 2 and 11 g of butyl acetate as the dispersion medium were further added.
  • this container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch.
  • Inorganic solid electrolyte-containing compositions (slurries) K-1 to K-16 and Kc-11 to Kc-16 were prepared by mixing at a temperature of 25 ° C. and a rotation speed of 150 rpm for 10 minutes, respectively.
  • composition for positive electrode 60 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), 8 g of LPS synthesized in Synthesis Example A, and 13 g (total amount) of the dispersion medium shown in Table 2 were put.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and stirred at 25 ° C. at a rotation speed of 200 pm for 30 minutes.
  • composition for negative electrode 60 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), 8.0 g or 7.6 g of LPS synthesized in Synthesis Example A, and 0.4 g of the binder dispersion or solution shown in Table 2 ( Solid content mass), when 7.6 g of LPS is used in NK-11 to NK-13, 0.4 g (solid content mass) of the soluble binder solution shown in Table 2 and 17.5 g (solid content mass) of the dispersion medium shown in Table 2 are further added. Total amount) was put in.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 pm for 60 minutes. After that, 9.5 g of the negative electrode active material shown in Table 2 and 1.0 g of VGCF (manufactured by Showa Denko Co., Ltd.) were added as the conductive auxiliary agent, and similarly, the container was set on the planetary ball mill P-7 and the temperature was 25 ° C. , Negative electrode compositions (slurries) NK-1 to NK-13 and NKc21 to NKc26 were prepared by mixing at a rotation speed of 100 rpm for 10 minutes, respectively.
  • the particulate binders in the inorganic solid electrolyte-containing composition, the positive electrode composition, and the negative electrode composition maintained the average particle size in the binder dispersion.
  • LPS LPS synthesized in Synthesis Example A
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2 Si: Silicon (Si, manufactured by Aldrich)
  • Graphite CGB20 (trade name, manufactured by Nippon Graphite Co., Ltd.)
  • AB Acetylene Black VGCF: Carbon Nanotube (manufactured by Showa Denko KK)
  • a solid electrolyte sheet for an all-solid secondary battery (in Table 3). It is referred to as a solid electrolyte sheet.) 101 to 116 and c11 to c16 were prepared, respectively. The film thickness of the solid electrolyte layer was 50 ⁇ m.
  • the positive electrode composition obtained above was applied onto an aluminum foil having a thickness of 20 ⁇ m using a baker-type applicator (trade name: SA-201), and heated at 80 ° C. for 1 hour. Further, the composition was heated at 110 ° C. for 1 hour to dry (remove the dispersion medium) the composition for the positive electrode. Then, using a heat press machine, the dried positive electrode composition is pressurized at 25 ° C. (10 MPa, 1 minute) to provide a positive electrode sheet for an all-solid secondary battery having a positive electrode active material layer having a thickness of 80 ⁇ m (10 MPa, 1 minute). In Table 3, it is referred to as a positive electrode sheet.) 117 to 125 were prepared respectively.
  • the negative electrode composition obtained above was applied onto a copper foil having a thickness of 20 ⁇ m using a baker-type applicator (trade name: SA-201), and heated at 80 ° C. for 1 hour. Then, the composition was further heated at 110 ° C. for 1 hour to dry (remove the dispersion medium) the composition for the negative electrode. Then, using a heat press machine, the dried composition for the negative electrode is pressurized at 25 ° C.
  • the area of the defective part is 0% or more and 10% or less of the total area to be observed
  • C The area of the defective part is 10% or more and 30% or less of the total area to be observed
  • D The area of the defective part However, 30% or more and 50% or less of the total area to be observed
  • E The area of the defective part is 50% or more and 70% or less of the total area to be observed
  • G The area of the defective part exceeded 90% of the total area to be observed.
  • An all-solid-state secondary battery (No. 101) having the layer structure shown in FIG. 1 was produced as follows.
  • 117 the aluminum foil of the solid electrolyte-containing sheet has been peeled off
  • a stainless steel 2032 incorporating a spacer and a washer (not shown in FIG. 2).
  • a lithium foil cut out in a disk shape having a diameter of 15 mm was overlaid on the solid electrolyte layer.
  • the all-solid-state secondary battery manufactured in this manner has the layer structure shown in FIG. 1 (however, the lithium foil corresponds to the negative electrode active material layer 2 and the negative electrode current collector 1).
  • An all-solid secondary battery (No. 110) having the layer structure shown in FIG. 1 was produced as follows. Negative electrode sheet No. for each all-solid-state secondary battery having a solid electrolyte obtained above. 126 (the aluminum foil of the solid electrolyte-containing sheet has been peeled off) is cut out into a disk shape with a diameter of 14.5 mm, and as shown in FIG. 2, a stainless steel 2032 incorporating a spacer and a washer (not shown in FIG. 2). I put it in the mold coin case 11.
  • the positive electrode sheet for the solid-state secondary battery used in the production of the all-solid-state secondary battery was prepared as follows. (Preparation of composition for positive electrode) 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), 2.7 g of LPS synthesized in the above synthesis example A, KYNAR FLEX 2500-20 (trade name, PVdF-HFP: polyfluoridene fluoride).
  • Vinylidene hexafluoropropylene copolymer (manufactured by Arkema) was added in an amount of 0.3 g as a solid content mass, and butyl butyrate was added in an amount of 22 g.
  • This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and stirred at 25 ° C. and a rotation speed of 300 rpm for 60 minutes. After that, 7.0 g of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC) was added as the positive electrode active material, and in the same manner, the container was set in the planetary ball mill P-7, and the temperature was 25 ° C. Mixing was continued at 100 rpm for 5 minutes to prepare a positive electrode composition.
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • the positive electrode composition obtained above is applied onto an aluminum foil (positive electrode current collector) having a thickness of 20 ⁇ m with a baker-type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and heated at 100 ° C. for 2 hours. Then, the composition for the positive electrode was dried (the dispersion medium was removed). Then, using a heat press machine, the dried positive electrode composition is pressurized at 25 ° C. (10 MPa, 1 minute) to prepare a positive electrode sheet for an all-solid secondary battery having a positive electrode active material layer having a thickness of 80 ⁇ m. bottom.
  • a baker-type applicator trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.
  • Ion conductivity measurement> The ionic conductivity of each manufactured all-solid-state secondary battery was measured. Specifically, for each all-solid-state secondary battery, AC impedance was measured from a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz using 1255B FREQUENCY RESPONSE ANALYZER (trade name, manufactured by SOLARTRON) in a constant temperature bath at 30 ° C. As a result, the resistance of the sample for measuring ionic conductivity in the layer thickness direction was determined, and the ionic conductivity was determined by calculating with the following formula (1).
  • Ion conductivity ⁇ (mS / cm) 1000 x sample layer thickness (cm) / [resistance ( ⁇ ) x sample area (cm 2 )]
  • the sample layer thickness is a value obtained by measuring the laminate 12 before putting it in the 2032 type coin case 11 and subtracting the thickness of the current collector (total layer thickness of the solid electrolyte layer and the electrode active material layer). Is.
  • the sample area is the area of the disk-shaped sheet. It was determined which of the following evaluation criteria the obtained ionic conductivity ⁇ was included in. The ionic conductivity ⁇ in this test passed the evaluation standard "D" or higher. The results are shown in Table 4.
  • the inorganic solid electrolyte-containing compositions containing no polymer binder specified in the present invention shown in Comparative Examples Kc11 to Kc16 and NKc21 to NKc26 are all inferior in dispersion stability, and the constituent layer formed of these compositions is a film. The strength was insufficient.
  • the all-solid-state secondary batteries of Comparative Examples c101 to c106 using these compositions do not show sufficient cycle characteristics or ionic conductivity (small battery resistance).
  • the constituent layer formed of this inorganic solid electrolyte-containing composition exhibits strong film strength, and even when applied to an industrial manufacturing method (for example, a roll-to-roll method), the occurrence of defects is effectively suppressed. You can see that it is possible.
  • the all-solid-state secondary battery No. 1 having a layer composed of the above-mentioned inorganic solid electrolyte-containing composition. All of 101 to 122 can realize excellent cycle characteristics and high ionic conductivity (low battery resistance) at a high level even under high-speed charge / discharge conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides: an inorganic solid electrolyte-containing composition which contains an inorganic solid electrolyte, a polymer binder and a dispersion medium, wherein the polymer binder is composed of a polymer that is configured from atoms which are not substituted by fluorine atoms, while having a main chain containing a specific bond such as a urethane bond and containing a constituent that has at least one specific functional group such as a hydroxyl group; a sheet for all-solid-state secondary batteries, said sheet using this inorganic solid electrolyte-containing composition; an all-solid-state secondary battery; a method for producing a sheet for all-solid-state secondary batteries; and a method for producing an all-solid-state secondary battery.

Description

無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法Method for manufacturing inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet and all-solid-state secondary battery, and all-solid-state secondary battery sheet and all-solid-state secondary battery
 本発明は、無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法に関する。 The present invention relates to an inorganic solid electrolyte-containing composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and a method for producing an all-solid-state secondary battery sheet and an all-solid-state secondary battery.
 全固体二次電池は負極、電解質、正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性及び信頼性を大きく改善することができる。また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車又は大型蓄電池等への応用が期待されている。 In the all-solid-state secondary battery, the negative electrode, the electrolyte, and the positive electrode are all solid, and the safety and reliability of the battery using the organic electrolyte can be greatly improved. It is also said that it will be possible to extend the service life. Further, the all-solid-state secondary battery can have a structure in which electrodes and electrolytes are directly arranged side by side and arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and it is expected to be applied to an electric vehicle, a large storage battery, or the like.
 このような全固体二次電池において、固体電解質層、負極活物質層、正極活物質層等の構成層を形成する物質として、無機固体電解質、活物質、バインダー(結着剤)等が挙げられる。無機固体電解質のなかでも酸化物系無機固体電解質及び硫化物系無機固体電解質は、近年、有機電解液に迫る高いイオン伝導度を有する電解質材料として期待されている。
 全固体二次電池の構成層を形成する材料(構成層形成材料)として、上述の無機固体電解質等を含有する材料が提案されている。例えば、特許文献1には、構成層形成材料として、主鎖に特定の式(1)で表される構造単位及びヘテロ原子を含有するポリマーと、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質とを含有する固体電解質組成物が記載されている。特許文献1に記載の上記ポリマーとしては、例えば、上記特定の式(1)で表される構造単位として、ジフルオロメチレン基が複数結合してなるセグメントを含有するポリマーが記載されている。また、特許文献2には、
元素として少なくともリチウム、硫黄及びリンを含む硫化物系固体電解質と、ハードセグメント及びソフトセグメントを有し、かつ-C(O)NR-で表されるカルバミド基(Rは水素原子又は1価の有機基)を有するポリマーとを含有する硫化物系固体電解質組成物が記載されている。
In such an all-solid secondary battery, examples of the substance forming the constituent layers such as the solid electrolyte layer, the negative electrode active material layer, and the positive electrode active material layer include an inorganic solid electrolyte, an active material, and a binder (binder). .. Among the inorganic solid electrolytes, oxide-based inorganic solid electrolytes and sulfide-based inorganic solid electrolytes are expected in recent years as electrolyte materials having high ionic conductivity approaching that of organic electrolytes.
As a material for forming a constituent layer of an all-solid secondary battery (constituent layer forming material), a material containing the above-mentioned inorganic solid electrolyte and the like has been proposed. For example, Patent Document 1 describes a polymer containing a structural unit represented by a specific formula (1) and a hetero atom in the main chain as a constituent layer forming material, and belongs to Group 1 or Group 2 of the Periodic Table. A solid electrolyte composition containing an inorganic solid electrolyte having the conductivity of metal ions is described. As the polymer described in Patent Document 1, for example, a polymer containing a segment in which a plurality of difluoromethylene groups are bonded is described as a structural unit represented by the specific formula (1). Further, in Patent Document 2,
A sulfide-based solid electrolyte containing at least lithium, sulfur and phosphorus as elements, and a carbamide group having a hard segment and a soft segment and represented by -C (O) NR- (R is a hydrogen atom or a monovalent organic). A sulfide-based solid electrolyte composition containing a polymer having a group) is described.
特開2016-139512号公報Japanese Unexamined Patent Publication No. 2016-139512 特開2016-181448号公報Japanese Unexamined Patent Publication No. 2016-181448
 全固体二次電池の構成層は、通常、無機固体電解質、活物質、導電助剤等の固体粒子で形成されるため、固体粒子同士の界面接触状態及び結着性は、本来的に制約される。界面接触状態が制約されると、界面抵抗の上昇(イオン伝導度の低下)を誘起し、ひいては全固体二次電池のサイクル特性の低下を招く。一方、固体粒子同士の結着性が弱いと、全固体二次電池の充放電(リチウムイオンの放出吸収)に伴う活物質(構成層)の収縮膨張による固体粒子同士の結着状態が次第に損なわれ(接触不良が惹起され)、電池抵抗が増大し、サイクル特性が低下する。全固体二次電池、とりわけ電気自動車用全固体二次電池は実用化に向けて高出力での充放電(高速充放電)の実現が急務とされるが、高速充放電はサイクル特性等の電池性能を早期かつ顕著に低下させる要因となる。 Since the constituent layer of the all-solid-state secondary battery is usually formed of solid particles such as an inorganic solid electrolyte, an active material, and a conductive auxiliary agent, the interfacial contact state and the binding property between the solid particles are inherently restricted. NS. When the interfacial contact state is restricted, an increase in interfacial resistance (decrease in ionic conductivity) is induced, which in turn leads to a decrease in the cycle characteristics of the all-solid-state secondary battery. On the other hand, if the binding property between solid particles is weak, the binding state between solid particles is gradually impaired due to the contraction and expansion of the active material (constituent layer) accompanying the charging / discharging (release and absorption of lithium ions) of the all-solid secondary battery. This (causes poor contact) increases battery resistance and reduces cycle characteristics. All-solid-state secondary batteries, especially all-solid-state secondary batteries for electric vehicles, are urgently required to realize high-power charge / discharge (high-speed charge / discharge) for practical use. High-speed charge / discharge is a battery with cycle characteristics, etc. It causes a significant decrease in performance at an early stage.
 電池抵抗の増大は、固体粒子同士の界面接触状態及び結着性の低下だけでなく、構成層中に固体粒子が不均一に存在(配置)していることも要因の1つとなる。そのため、構成層を構成層形成材料で形成する場合、構成層形成材料には、調製直後の固体粒子の分散性だけではなく、調製直後の固体粒子の優れた分散性を安定して維持する特性(分散安定性)も要求される。 One of the factors for the increase in battery resistance is not only the interfacial contact state between solid particles and the decrease in binding property, but also the non-uniform presence (arrangement) of solid particles in the constituent layer. Therefore, when the constituent layer is formed of the constituent layer-forming material, the constituent layer-forming material has the property of stably maintaining not only the dispersibility of the solid particles immediately after preparation but also the excellent dispersibility of the solid particles immediately after preparation. (Dispersion stability) is also required.
 また、全固体二次電池の工業的製造の見地から、構成層はシート状にして例えばロール トゥ ロール法等により連続的に作製されることが好ましく、ロール等に巻回されることが実際的である。このような連続的な作製方法では、構成層に、屈曲若しくは湾曲、更には復元(引き伸ばし)等の応力が構成層に作用することは避けられず、バインダーで固体粒子同士を単に結着させただけでは、欠陥(欠け、割れ、ヒビ、剥がれ等)が発生する。製造過程での欠陥の発生を防止するため、構成層には、固体粒子同士の単なる結着性だけでなく、層全体としての強度(膜強度ともいう。)の強化が求められる。 Further, from the viewpoint of industrial production of all-solid-state secondary batteries, it is preferable that the constituent layers are made into a sheet and continuously produced by, for example, a roll-to-roll method, and it is practical that the constituent layers are wound around a roll or the like. Is. In such a continuous production method, it is inevitable that stress such as bending or bending, and further restoration (stretching) acts on the constituent layer, and the solid particles are simply bound to each other with a binder. By itself, defects (chips, cracks, cracks, peeling, etc.) occur. In order to prevent the occurrence of defects in the manufacturing process, the constituent layers are required to strengthen not only the mere binding properties of the solid particles but also the strength (also referred to as film strength) of the entire layer.
 特許文献1及び2に記載のように、固体粒子同士の結着性向上のためにバインダーが用いられ、バインダーを構成するポリマー構造の検討もなされており、ある程度の効果が得られている。しかし、特許文献1及び2等に具体的に記載されている構造を有するポリマーでは、構成層形成材料の分散安定性、電池抵抗の低減、及びサイクル特性、とりわけ高速充放電に対するサイクル特性について検討されてなく、これら特性の更なる改善に検討の余地がある。そもそも、上述のように構成層は固体粒子同士の界面接触状態及び結着性が制約されているため構成層の膜強度を十分に強化することは容易ではなく、全固体二次電池の工業的製造への適用実現は急務である。 As described in Patent Documents 1 and 2, a binder is used to improve the binding property between solid particles, and the polymer structure constituting the binder has also been studied, and some effect has been obtained. However, in the polymer having the structure specifically described in Patent Documents 1 and 2, the dispersion stability of the constituent layer forming material, the reduction of battery resistance, and the cycle characteristics, particularly the cycle characteristics for high-speed charge / discharge, have been studied. There is room for further improvement of these characteristics. In the first place, as described above, it is not easy to sufficiently strengthen the film strength of the constituent layer because the interfacial contact state and the binding property between the solid particles are restricted in the constituent layer, and it is not easy to sufficiently strengthen the film strength of the constituent layer. There is an urgent need to realize application to manufacturing.
 本発明は、分散安定性に優れた無機固体電解質含有組成物であって、全固体二次電池の構成層形成材料として用いることにより、膜強度を強化した構成層を作製でき、電池抵抗の上昇抑制(イオン伝導度の増大)と高速充放電に対しても優れたサイクル特性とを実現できる無機固体電解質含有組成物を提供することを課題とする。また、本発明は、この無機固体電解質含有組成物を用いた、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法を提供することを課題とする。 The present invention is an inorganic solid electrolyte-containing composition having excellent dispersion stability, and by using it as a material for forming a constituent layer of an all-solid secondary battery, a constituent layer having enhanced film strength can be produced, and battery resistance is increased. An object of the present invention is to provide an inorganic solid electrolyte-containing composition capable of suppressing (increasing ionic conductivity) and achieving excellent cycle characteristics even for high-speed charging / discharging. Further, the present invention provides a method for manufacturing an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet and an all-solid-state secondary battery using this inorganic solid electrolyte-containing composition. The challenge is to provide.
 本発明者らは、種々検討を重ねた結果、無機固体電解質含有組成物として、フッ素原子で置換されていない原子で構成した主鎖にウレタン結合等の特定の結合を導入したポリマーであって水酸基等の特定の官能基を有する構成成分を組み込んだポリマーで構成したポリマーバインダーを、無機固体電解質及び分散媒とともに併用することにより、無機固体電解質等の固体粒子の経時による再凝集若しくは沈降等を抑制でき、固体電解質含有組成物の分散安定性を高めることができることを見出した。更に、この無機固体電解質含有組成物を構成層形成材料として用いることにより、固体粒子の界面抵抗の上昇を抑制しながら、固体粒子同士を層全体として強固に結着させた構成層を形成でき、電池抵抗の上昇抑制と高速充放電に対しても優れたサイクル特性を実現可能な全固体二次電池を製造できること、を見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。 As a result of various studies, the present inventors have introduced a polymer in which a specific bond such as a urethane bond is introduced into a main chain composed of atoms not substituted with fluorine atoms as an inorganic solid electrolyte-containing composition, which is a hydroxyl group. By using a polymer binder composed of a polymer incorporating a component having a specific functional group such as, etc. together with an inorganic solid electrolyte and a dispersion medium, reaggregation or precipitation of solid particles such as the inorganic solid electrolyte over time is suppressed. It has been found that the dispersion stability of the solid electrolyte-containing composition can be enhanced. Further, by using this inorganic solid electrolyte-containing composition as a constituent layer forming material, it is possible to form a constituent layer in which the solid particles are firmly bonded to each other as a whole layer while suppressing an increase in the interfacial resistance of the solid particles. We have found that it is possible to manufacture an all-solid secondary battery that can suppress an increase in battery resistance and realize excellent cycle characteristics even for high-speed charging and discharging. The present invention has been further studied based on these findings and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、ポリマーバインダーと、分散媒とを含有する無機固体電解質含有組成物であって、
 ポリマーバインダーが、下記(P1)及び(P2)を満たすポリマーで構成されたポリマーバインダーを含む、無機固体電解質含有組成物。
(P1)フッ素原子で置換されていない原子で構成され、かつウレタン結合、ウレア結合及びエステル結合のうちの少なくとも1つの結合を含む主鎖を有する。
(P2)下記官能基群から選択される官能基を少なくとも1つ有する構成成分を含む。
 <官能基群>
 水酸基、1級アミノ基、2級アミノ基、スルファニル基
<2>上記ポリマーで構成されたポリマーバインダーが分散媒に分散している<1>に記載の固体電解質含有組成物。
<3>上記ポリマーで構成されたポリマーバインダーの平均粒子径が1~1000nmである、<1>又は<2>に記載の無機固体電解質含有組成物。
<4>構成成分が上記官能基を2つ以上有する、<1>~<3>のいずれか1つに記載の無機固体電解質含有組成物。
<5>構成成分の、ポリマー中の含有率が0.01~50モル%である、<1>~<4>のいずれか1つに記載の無機固体電解質含有組成物。
That is, the above problem was solved by the following means.
<1> An inorganic solid electrolyte-containing composition containing an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the Periodic Table, a polymer binder, and a dispersion medium.
An inorganic solid electrolyte-containing composition comprising a polymer binder in which the polymer binder is composed of a polymer satisfying the following (P1) and (P2).
(P1) It is composed of atoms not substituted with fluorine atoms, and has a main chain containing at least one of urethane bond, urea bond and ester bond.
(P2) Contains a component having at least one functional group selected from the following functional group group.
<Functional group group>
Hydroxyl group, primary amino group, secondary amino group, sulfanyl group <2> The solid electrolyte-containing composition according to <1>, wherein the polymer binder composed of the above polymer is dispersed in a dispersion medium.
<3> The inorganic solid electrolyte-containing composition according to <1> or <2>, wherein the polymer binder composed of the above polymer has an average particle size of 1 to 1000 nm.
<4> The inorganic solid electrolyte-containing composition according to any one of <1> to <3>, wherein the constituent component has two or more of the above functional groups.
<5> The inorganic solid electrolyte-containing composition according to any one of <1> to <4>, wherein the content of the constituent component in the polymer is 0.01 to 50 mol%.
<6>構成成分が下記式(F1)で表される部分構造を有する、<1>~<5>のいずれか1つに記載の無機固体電解質含有組成物。
Figure JPOXMLDOC01-appb-C000003
 式(F1)中、L及びLは連結基を示し、Rは水酸基又は1級若しくは2級アミノ基を示し、Rは置換基を示す。
<6> The inorganic solid electrolyte-containing composition according to any one of <1> to <5>, wherein the constituent component has a partial structure represented by the following formula (F1).
Figure JPOXMLDOC01-appb-C000003
In formula (F1), L 1 and L 2 represent a linking group, R 1 represents a hydroxyl group or a primary or secondary amino group, and R 2 represents a substituent.
<7>構成成分が下記式(F2)で表される部分構造を有する、<1>~<6>のいずれか1つに記載の無機固体電解質含有組成物。
Figure JPOXMLDOC01-appb-C000004
 式(F2)中、Lは連結基を示し、Rは置換基を示す。
<7> The inorganic solid electrolyte-containing composition according to any one of <1> to <6>, wherein the constituent component has a partial structure represented by the following formula (F2).
Figure JPOXMLDOC01-appb-C000004
In formula (F2), L 1 represents a linking group and R 3 represents a substituent.
<8>分散媒に可溶性のポリマーで構成されたポリマーバインダーを含有し、可溶性のポリマーが(メタ)アクリルポリマー、炭化水素系ポリマー、ビニル系ポリマー及びフッ素系ポリマーのいずれかである、<1>~<7>のいずれか1つに記載の無機固体電解質含有組成物。
<9>活物質を含有する、<1>~<8>のいずれか1つに記載の無機固体電解質含有組成物。
<10>活物質がケイ素元素又はスズ元素を含有する負極活物質である、<9>に記載の無機固体電解質含有組成物。
<11>導電助剤を含有する、<1>~<10>のいずれか1つに記載の無機固体電解質含有組成物。
<12>上記<1>~<11>のいずれか1つに記載の無機固体電解質含有組成物で構成した層を有する全固体二次電池用シート。
<13>正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
 正極活物質層、固体電解質層及び負極活物質層の少なくとも1つの層が、<1>~<11>のいずれか1つに記載の無機固体電解質含有組成物で構成した層である、全固体二次電池。
<14>上記<1>~<11>のいずれか1つに記載の無機固体電解質含有組成物を製膜する、全固体二次電池用シートの製造方法。
<15>上記<14>に記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。
<8> The dispersion medium contains a polymer binder composed of a soluble polymer, and the soluble polymer is any one of a (meth) acrylic polymer, a hydrocarbon polymer, a vinyl polymer, and a fluorine polymer. <1> The composition containing an inorganic solid polymer according to any one of <7>.
<9> The inorganic solid electrolyte-containing composition according to any one of <1> to <8>, which contains an active material.
<10> The inorganic solid electrolyte-containing composition according to <9>, wherein the active material is a negative electrode active material containing a silicon element or a tin element.
<11> The inorganic solid electrolyte-containing composition according to any one of <1> to <10>, which contains a conductive auxiliary agent.
<12> An all-solid-state secondary battery sheet having a layer composed of the inorganic solid electrolyte-containing composition according to any one of <1> to <11> above.
<13> An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.
An all-solid-state layer in which at least one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is a layer composed of the inorganic solid electrolyte-containing composition according to any one of <1> to <11>. Secondary battery.
<14> A method for producing a sheet for an all-solid secondary battery, which forms a film of the inorganic solid electrolyte-containing composition according to any one of <1> to <11> above.
<15> A method for manufacturing an all-solid-state secondary battery, wherein the all-solid-state secondary battery is manufactured through the manufacturing method according to <14> above.
 本発明の無機固体電解質含有組成物は、無機固体電解質等の固体粒子の経時による再凝集若しくは沈降等が抑制され、優れた分散安定性を実現できる。この無機固体電解質含有組成物は、構成層形成材料として用いられることにより、構成層中において、固体粒子が一様に散在するとともに表面同士の良好な接触状態を維持して界面抵抗の上昇を抑制でき、しかもポリマーバインダーにより固体粒子同士を層全体として強固に結着させることができると考えられる。その結果、この無機固体電解質含有組成物は、低抵抗で強固な膜強度を示す構成層を実現でき、この構成層を有する全固体二次電池に低い電池抵抗(高いイオン伝導度)と、高速充放電に対しても優れたサイクル特性を実現できる。
 すなわち、本発明は、分散安定性に優れた無機固体電解質含有組成物であって、全固体二次電池の構成層形成材料として用いることにより、膜強度を強化した構成層を作製でき、電池抵抗の上昇抑制と高速充放電に対しても優れたサイクル特性とを実現できる無機固体電解質含有組成物を提供できる。また、本発明は、この無機固体電解質含有組成物を用いた、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法を提供できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The composition containing an inorganic solid electrolyte of the present invention can suppress reaggregation or sedimentation of solid particles such as an inorganic solid electrolyte over time, and can realize excellent dispersion stability. By using this inorganic solid electrolyte-containing composition as a material for forming a constituent layer, solid particles are uniformly scattered in the constituent layer, and a good contact state between surfaces is maintained to suppress an increase in interfacial resistance. Moreover, it is considered that the polymer binder can firmly bind the solid particles to each other as a whole layer. As a result, this inorganic solid electrolyte-containing composition can realize a constituent layer exhibiting a strong film strength with low resistance, and the all-solid secondary battery having this constituent layer has low battery resistance (high ionic conductivity) and high speed. Excellent cycle characteristics can be realized even for charging and discharging.
That is, the present invention is an inorganic solid electrolyte-containing composition having excellent dispersion stability, and by using it as a material for forming a constituent layer of an all-solid secondary battery, a constituent layer having enhanced film strength can be produced, and battery resistance can be produced. It is possible to provide an inorganic solid electrolyte-containing composition capable of suppressing an increase in the amount of the battery and achieving excellent cycle characteristics even for high-speed charging / discharging. Further, the present invention provides a method for manufacturing an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet and an all-solid-state secondary battery using this inorganic solid electrolyte-containing composition. Can be provided.
The above and other features and advantages of the present invention will become more apparent from the description below, with reference to the accompanying drawings as appropriate.
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。It is a vertical sectional view which shows typically the all-solid-state secondary battery which concerns on a preferable embodiment of this invention. 図2は実施例で作製したコイン型全固体二次電池を模式的に示す縦断面図である。FIG. 2 is a vertical cross-sectional view schematically showing the coin-type all-solid-state secondary battery produced in the examples.
 本発明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本発明の効果を損なわない範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本発明において、(メタ)アクリルとは、アクリル及びメタアクリルの一方又は両方を意味する。(メタ)アクリレートについても同様である。
 本発明において、置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本発明において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、例えば後述する置換基Zが挙げられる。
 本発明において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 本発明において、ポリマーは、重合体を意味するが、いわゆる高分子化合物と同義である。
In the present invention, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present invention, the indication of a compound (for example, when it is referred to as a compound at the end) is used to mean that the compound itself, its salt, and its ions are included. In addition, it is meant to include a derivative which has been partially changed, such as by introducing a substituent, as long as the effect of the present invention is not impaired.
In the present invention, (meth) acrylic means one or both of acrylic and methacryl. The same applies to (meth) acrylate.
In the present invention, a substituent, a linking group, etc. (hereinafter referred to as a substituent, etc.) for which substitution or non-substitution is not specified may have an appropriate substituent in the group. Therefore, in the present invention, even if it is simply described as a YYY group, this YYY group includes a mode having a substituent in addition to a mode having no substituent. This is also synonymous with compounds that do not specify substitution or non-substitution. Preferred substituents include, for example, Substituent Z, which will be described later.
In the present invention, when there are a plurality of substituents or the like indicated by specific reference numerals, or when a plurality of substituents or the like are specified simultaneously or selectively, the substituents or the like may be the same or different from each other. Means that. Further, even if it is not particularly specified, it means that when a plurality of substituents or the like are adjacent to each other, they may be connected to each other or condensed to form a ring.
In the present invention, the polymer means a polymer, but is synonymous with a so-called polymer compound.
[無機固体電解質含有組成物]
 本発明の無機固体電解質含有組成物は、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、ポリマーバインダーと、分散媒とを含有する。
 この無機固体電解質含有組成物が含有するポリマーバインダーの詳細は後述するが、ポリマーバインダーの少なくとも1種は、ポリマーの主鎖について下記(P1)を満たし、ポリマーを構成する構成成分について下記(P2)を満たすポリマーで構成された(含む)ポリマーバインダーである。
(P1)フッ素原子で置換されていない原子で構成され、かつウレタン結合、ウレア結合及びエステル結合のうちの少なくとも1つの結合を含む主鎖を有する。
(P2)後述する官能基群から選択される官能基を少なくとも1つ有する構成成分を含む。
[Inorganic solid electrolyte-containing composition]
The inorganic solid electrolyte-containing composition of the present invention contains an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, a polymer binder, and a dispersion medium.
Details of the polymer binder contained in this inorganic solid electrolyte-containing composition will be described later, but at least one of the polymer binders satisfies the following (P1) with respect to the main chain of the polymer, and the following (P2) with respect to the constituent components constituting the polymer. It is a polymer binder composed (including) of a polymer satisfying the above conditions.
(P1) It is composed of atoms not substituted with fluorine atoms, and has a main chain containing at least one of urethane bond, urea bond and ester bond.
(P2) Contains a component having at least one functional group selected from the functional group group described later.
 本発明の無機固体電解質含有組成物において、ポリマーバインダーの含有状態等は、特に制限されない。例えば、無機固体電解質含有組成物中において、ポリマーバインダーは無機固体電解質等の固体粒子に吸着していてもいなくてもよいが、吸着していることが、固体粒子の分散媒に対する分散性の点で、好ましい。ここで、ポリマーバインダーの固体粒子に対する吸着は、物理的吸着だけでなく、化学的吸着(化学結合形成による吸着、電子の授受による吸着等)も含む。
 一方、ポリマーバインダーは、少なくとも無機固体電解質含有組成物で形成した層中において、無機固体電解質(更には、共存しうる、活物質、導電助剤)等の固体粒子同士(例えば、無機固体電解質同士、無機固体電解質と活物物質、活物質同士)を結着させる結着剤として、機能する。更には、集電体と固体粒子とを結着させる結着剤として機能することもある。
 本発明の無機固体電解質含有組成物は、固体粒子が分散媒中に分散したスラリーであることが好ましい。この場合、ポリマーバインダーは、固体粒子を分散媒中に分散させる機能を果たす。また、ポリマーバインダー(ポリマー)は、分散媒中に(固体状態で)分散していてもいなくてもよいが、分散している場合、本発明の効果を損なわない範囲でその一部が分散媒に溶解していてもよい。
In the inorganic solid electrolyte-containing composition of the present invention, the content state of the polymer binder and the like are not particularly limited. For example, in the composition containing an inorganic solid electrolyte, the polymer binder may or may not be adsorbed on solid particles such as an inorganic solid electrolyte, but the fact that it is adsorbed is the point of dispersibility of the solid particles with respect to the dispersion medium. It is preferable. Here, the adsorption of the polymer binder to solid particles includes not only physical adsorption but also chemical adsorption (adsorption by chemical bond formation, adsorption by electron transfer, etc.).
On the other hand, in the polymer binder, solid particles such as inorganic solid electrolytes (furthermore, coexisting active materials and conductive aids) in a layer formed of at least an inorganic solid electrolyte-containing composition (for example, inorganic solid electrolytes). , Inorganic solid electrolyte and active material, active material to each other) functions as a binder. Furthermore, it may function as a binder that binds the current collector and the solid particles.
The inorganic solid electrolyte-containing composition of the present invention is preferably a slurry in which solid particles are dispersed in a dispersion medium. In this case, the polymer binder serves to disperse the solid particles in the dispersion medium. Further, the polymer binder (polymer) may or may not be dispersed in the dispersion medium (in the solid state), but when it is dispersed, a part thereof is a dispersion medium as long as the effect of the present invention is not impaired. It may be dissolved in.
 本発明の無機固体電解質含有組成物は分散安定性に優れる。この無機固体電解質含有組成物を構成層形成材料として用いることにより、強固な層強度を示す構成層を有する全固体二次電池用シート、更には、通常の充放電に対するサイクル特性に加えて高速充放電に対するサイクル特性にも優れ、かつ電池抵抗の上昇が抑制された全固体二次電池を実現できる。
 集電体上に形成される活物質層を本発明の無機固体電解質含有組成物で形成する態様においては、集電体と活物質層との強固な密着性をも実現することができ、サイクル特性の更なる向上を図ることができる。
The composition containing an inorganic solid electrolyte of the present invention is excellent in dispersion stability. By using this inorganic solid electrolyte-containing composition as a constituent layer forming material, an all-solid secondary battery sheet having a constituent layer exhibiting a strong layer strength, and further, high-speed charging in addition to the cycle characteristics for normal charging and discharging. It is possible to realize an all-solid secondary battery that has excellent cycle characteristics against discharge and that suppresses an increase in battery resistance.
In the embodiment in which the active material layer formed on the current collector is formed by the inorganic solid electrolyte-containing composition of the present invention, strong adhesion between the current collector and the active material layer can also be realized, and a cycle can be realized. The characteristics can be further improved.
 その理由の詳細はまだ明らかではないが、上記(P1)及び(P2)を満たすポリマーで形成されたポリマーバインダーが、ポリマー主鎖によるポリマーバインダー同士の相互作用と、官能基による固体粒子に対する相互作用とをバランスよく発現することによるものと考えられる。
 すなわち、上記(P1)及び(P2)を満たすポリマーで形成されたポリマーバインダーは、その官能基により、分散媒中において、無機固体電解質等の固体粒子に対して適度な相互作用を示して、固体粒子に対して再凝集、沈殿させるほど過度に吸着しない。そのため、無機固体電解質含有組成物(分散媒)中において、固体粒子の経時による再凝集及び沈殿を効果的に抑制しながら固体粒子を一様に分散させることができ、無機固体電解質含有組成物調製時の優れた分散性(均一分散性及び分散安定性)を長期に亘って維持できる、と考えられる。
Although the details of the reason are not yet clear, the polymer binder formed of the polymer satisfying the above (P1) and (P2) has the interaction between the polymer binders by the polymer main chain and the interaction with the solid particles by the functional group. It is considered that this is due to the well-balanced expression of.
That is, the polymer binder formed of the polymer satisfying the above (P1) and (P2) exhibits an appropriate interaction with solid particles such as an inorganic solid electrolyte in the dispersion medium due to its functional group, and is a solid. It does not adsorb excessively enough to reaggregate and precipitate particles. Therefore, in the inorganic solid electrolyte-containing composition (dispersion medium), the solid particles can be uniformly dispersed while effectively suppressing the reaggregation and precipitation of the solid particles over time, and the inorganic solid electrolyte-containing composition can be prepared. It is considered that the excellent dispersibility of time (uniform dispersibility and dispersion stability) can be maintained for a long period of time.
 上述の優れた分散安定性を示す本発明の無機固体電解質含有組成物を用いて構成層を形成すると、構成層の成膜時(例えば、無機固体電解質含有組成物の塗布時、更には乾燥時)においても、固体粒子の偏在(変移)、更には再凝集物若しくは沈降物等の発生を抑制できると考えられる。これにより、構成層中の固体粒子の接触状態のバラツキを抑えることができ、構成層中に固体粒子が一様に配置される。また、ポリマーバインダーは上述のように固体粒子に過度に吸着しないから、固体粒子の表面同士の接触を大きく阻害しないと考えられる。これらにより、固体粒子間の界面抵抗、更には構成層の抵抗の上昇を抑制できる。
 一方、ポリマーバインダーを構成するポリマーは、その官能基により、構成層中においては、固体粒子に対して相互作用を示して固体粒子同士を結着させると考えられる。更に、このポリマーは主鎖中にウレタン結合等の特定の結合を有している(上記(P1)を満たす)から、ポリマー(ポリマーバインダー)同士の相互作用(例えば、水素結合、分子間力による相互作用)が高まって、固体粒子を適度に吸着した状態でポリマーバインダー同士も強固に結着し、固体粒子同士のポリマーバインダーによる結着を補強すると考えられる。これらにより、固体粒子同士を層全体として強固な結着力で結着させて高い膜強度を達成できる。しかも、構成層の作製時等にも固体粒子同士の接触状態を維持できる。こうして、低抵抗(高伝導度)で強固な膜強度を示す構成層を有する全固体二次電池用シートを実現できる。
When the constituent layer is formed using the above-mentioned inorganic solid electrolyte-containing composition of the present invention exhibiting excellent dispersion stability, when the constituent layer is formed (for example, when the inorganic solid electrolyte-containing composition is applied and when it is dried). ), It is considered that the uneven distribution (transition) of solid particles and the generation of reaggregates or sediments can be suppressed. As a result, it is possible to suppress variations in the contact state of the solid particles in the constituent layer, and the solid particles are uniformly arranged in the constituent layer. Further, since the polymer binder does not excessively adsorb to the solid particles as described above, it is considered that the contact between the surfaces of the solid particles is not significantly hindered. As a result, it is possible to suppress an increase in the interfacial resistance between the solid particles and the resistance of the constituent layers.
On the other hand, it is considered that the polymer constituting the polymer binder exhibits an interaction with the solid particles in the constituent layer due to its functional group and binds the solid particles to each other. Furthermore, since this polymer has a specific bond such as a urethane bond in the main chain (satisfying the above (P1)), the interaction between the polymers (polymer binders) (for example, due to hydrogen bond or intermolecular force). It is considered that the interaction) is enhanced and the polymer binders are firmly bonded to each other in a state where the solid particles are appropriately adsorbed to reinforce the bonding of the solid particles by the polymer binder. As a result, high film strength can be achieved by binding the solid particles to each other with a strong binding force as the entire layer. Moreover, the contact state between the solid particles can be maintained even when the constituent layers are produced. In this way, it is possible to realize an all-solid-state secondary battery sheet having a constituent layer that exhibits low resistance (high conductivity) and strong film strength.
 また、抵抗上昇が抑制され、強固な膜強度を示す構成層を備えた全固体二次電池は、充放電時に、過電流が発生しにくく固体粒子の劣化を防止できるうえ、固体粒子の膨張収縮による固体粒子同士の界面接触状態の低下(空隙の発生)を効果的に抑制できる。そのため、通常の充放電はもちろん高速充放電を繰り返しても大幅な低下を招くことなく優れたサイクル特性、更には電池抵抗の上昇を抑えて高い伝導度(イオン伝導度、電子伝導度)をも示す全固体二次電池を実現できると考えられる。 In addition, an all-solid secondary battery having a constituent layer that suppresses an increase in resistance and exhibits strong film strength is less likely to generate overcurrent during charging and discharging, can prevent deterioration of solid particles, and expands and contracts solid particles. It is possible to effectively suppress the decrease in the interfacial contact state between solid particles (generation of voids) due to the above. Therefore, it has excellent cycle characteristics without causing a significant decrease even if high-speed charging and discharging are repeated as well as normal charging and discharging, and also has high conductivity (ion conductivity, electron conductivity) by suppressing an increase in battery resistance. It is considered that the all-solid-state secondary battery shown can be realized.
 活物質層を本発明の無機固体電解質含有組成物で形成する場合、上述のように、調製直後の高度(均一)な分散正極活物質を維持したままで構成層が形成されると考えられる。そのため、優先的に沈降等した固体粒子によってポリマーバインダーの集電体表面への接触(密着)が阻害されることなく、ポリマーバインダーが集電体表面と接触(密着)できる。これにより、集電体上に活物質層を本発明の無機固体電解質含有組成物で形成した全固体二次電池用電極シートは集電体と活物質との強固な密着性を実現できる。また集電体上に活物質層を本発明の無機固体電解質含有組成物で形成した全固体二次電池は、集電体と活物質との強固な密着性を示してサイクル特性の更なる向上、更には優れたサイクル特性に加えて伝導度の向上を実現できる。 When the active material layer is formed of the inorganic solid electrolyte-containing composition of the present invention, it is considered that the constituent layer is formed while maintaining the highly (uniform) dispersed cathode active material immediately after preparation as described above. Therefore, the polymer binder can come into contact (adhesion) with the surface of the current collector without being hindered by the solid particles that have been preferentially settled. As a result, the electrode sheet for an all-solid-state secondary battery in which the active material layer is formed on the current collector with the inorganic solid electrolyte-containing composition of the present invention can realize strong adhesion between the current collector and the active material. Further, the all-solid-state secondary battery in which the active material layer is formed on the current collector with the inorganic solid electrolyte-containing composition of the present invention shows strong adhesion between the current collector and the active material, and further improves the cycle characteristics. Furthermore, in addition to excellent cycle characteristics, improvement in conductivity can be realized.
 本発明の無機固体電解質含有組成物は、全固体二次電池用シート(全固体二次電池用電極シートを含む。)又は全固体二次電池の、固体電解質層又は活物質層の形成材料(構成層形成材料)として好ましく用いることができる。特に、本発明の無機固体電解質含有組成物で構成した構成層は強固な膜強度を示すから、生産性の観点から連続的に、とりわけロール トゥ ロール法で連続的に、作製する構成層の形成材料として好ましく用いることができる。このような連続的な生産方法においても、構成層に欠陥が発生することを抑制できる。更に、充放電による膨張収縮が大きい負極活物質を含む全固体二次電池用負極シート又は負極活物質層の形成材料として好ましく用いることができ、この態様においても電池性能(サイクル特性等)の低下を抑制できる。 The inorganic solid electrolyte-containing composition of the present invention is a material for forming a solid electrolyte layer or an active material layer of an all-solid secondary battery sheet (including an electrode sheet for an all-solid secondary battery) or an all-solid secondary battery. It can be preferably used as a constituent layer forming material). In particular, since the constituent layer composed of the inorganic solid electrolyte-containing composition of the present invention exhibits strong film strength, the constituent layer to be produced continuously from the viewpoint of productivity, particularly continuously by the roll-to-roll method, is formed. It can be preferably used as a material. Even in such a continuous production method, it is possible to suppress the occurrence of defects in the constituent layers. Further, it can be preferably used as a material for forming a negative electrode sheet for an all-solid secondary battery or a negative electrode active material layer containing a negative electrode active material having a large expansion and contraction due to charging and discharging, and in this embodiment as well, the battery performance (cycle characteristics, etc.) is deteriorated. Can be suppressed.
 本発明の無機固体電解質含有組成物は非水系組成物であることが好ましい。本発明において、非水系組成物とは、水分を含有しない態様に加えて、含水率(水分含有量ともいう。)が好ましくは500ppm以下である形態をも包含する。非水系組成物において、含水率は、200ppm以下であることがより好ましく、100ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。無機固体電解質含有組成物が非水系組成物であると、無機固体電解質の劣化を抑制することができる。含水量は、無機固体電解質含有組成物中に含有している水の量(無機固体電解質含有組成物に対する質量割合)を示し、具体的には、0.02μmのメンブレンフィルターでろ過し、カールフィッシャー滴定を用いて測定された値とする。 The inorganic solid electrolyte-containing composition of the present invention is preferably a non-aqueous composition. In the present invention, the non-aqueous composition includes not only a water-free aspect but also a form in which the water content (also referred to as water content) is preferably 500 ppm or less. In the non-aqueous composition, the water content is more preferably 200 ppm or less, further preferably 100 ppm or less, and particularly preferably 50 ppm or less. When the composition containing the inorganic solid electrolyte is a non-aqueous composition, deterioration of the inorganic solid electrolyte can be suppressed. The water content indicates the amount of water contained in the inorganic solid electrolyte-containing composition (mass ratio to the inorganic solid electrolyte-containing composition). Specifically, the mixture is filtered through a 0.02 μm membrane filter and curled fisher. The value shall be the value measured using titration.
 本発明の無機固体電解質含有組成物は、無機固体電解質に加えて、活物質、更には導電助剤等を含有する態様も包含する(この態様の組成物を電極用組成物という。)。
 以下、本発明の無機固体電解質含有組成物が含有する成分及び含有しうる成分について説明する。
The composition containing an inorganic solid electrolyte of the present invention also includes an embodiment containing an active material, a conductive additive, and the like in addition to the inorganic solid electrolyte (the composition of this embodiment is referred to as an electrode composition).
Hereinafter, the components contained in the inorganic solid electrolyte-containing composition of the present invention and the components that can be contained will be described.
<無機固体電解質>
 本発明の無機固体電解質含有組成物は、無機固体電解質を含有する。
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンに解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
<Inorganic solid electrolyte>
The inorganic solid electrolyte-containing composition of the present invention contains an inorganic solid electrolyte.
In the present invention, the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of transferring ions inside the solid electrolyte. Since it does not contain organic substances as the main ionic conductive material, it is an organic solid electrolyte (polyelectrolyte represented by polyethylene oxide (PEO), organic such as lithium bis (trifluoromethanesulfonyl) imide (LiTFSI)). It is clearly distinguished from electrolyte salts). Further, since the inorganic solid electrolyte is a solid in a steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is clearly distinguished from the electrolyte or inorganic electrolyte salts (LiPF 6 , LiBF 4 , Lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) that are dissociated or liberated into cations and anions in the polymer. Will be done. The inorganic solid electrolyte is not particularly limited as long as it has the ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is generally one having no electron conductivity. When the all-solid-state secondary battery of the present invention is a lithium-ion battery, the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。例えば、無機固体電解質としては、(i)硫化物系無機固体電解質、(ii)酸化物系無機固体電解質、(iii)ハロゲン化物系無機固体電解質、及び、(iv)水素化物系無機固体電解質が挙げられ、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましい。 As the above-mentioned inorganic solid electrolyte, a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used. For example, examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iv) a hydride-based inorganic solid electrolyte. The sulfide-based inorganic solid electrolyte is preferable from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains sulfur atoms, has ionic conductivity of metals belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P may be used depending on the purpose or case. It may contain elements.
 硫化物系無機固体電解質としては、例えば、下記式(S1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (S1)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (S1).

L a1 M b1 P c1 S d1 A e1 (S1)

In the formula, L represents an element selected from Li, Na and K, with Li being preferred. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. a1 is preferably 1 to 9, more preferably 1.5 to 7.5. b1 is preferably 0 to 3, more preferably 0 to 1. d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5. e1 is preferably 0 to 5, more preferably 0 to 3.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 The composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized. For example, Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2).
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 In Li-P-S based glass and Li-P-S based glass ceramics, the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ~ It is 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S and P 2 S 5 in this range, the lithium ion conductivity can be made high. Specifically, the lithium ion conductivity can be preferably 1 × 10 -4 S / cm or more, and more preferably 1 × 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 × 10 -1 S / cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 As an example of a specific sulfide-based inorganic solid electrolyte, an example of combining raw materials is shown below. For example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2 S-GeS 2 -ZnS, Li 2 S-Ga 2 S 3 , Li 2 S-GeS 2- Ga 2 S 3 , Li 2 S-GeS 2- P 2 S 5 , Li 2 S-GeS 2- Sb 2 S 5 , Li 2 S-GeS 2- Al 2 S 3 , Li 2 S-SiS 2 , Li 2 S-Al 2 S 3 , Li 2 S-SiS 2- Al 2 S 3 , Li 2 S-SiS 2- P 2 S 5 , Li 2 S-SiS 2- P 2 S 5 -LiI, Li 2 S -SiS 2 -LiI, such as Li 2 S-SiS 2 -Li 4 SiO 4, Li 2 S-SiS 2 -Li 3 PO 4, Li 10 GeP 2 S 12 and the like. However, the mixing ratio of each raw material does not matter. As a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition, for example, an amorphization method can be mentioned. Examples of the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
(Ii) Oxide-based Inorganic Solid Electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and is electronically insulated. Those having sex are preferable.
The oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 × 10 -6 S / cm or more, more preferably 5 × 10 -6 S / cm or more, and 1 × 10 -5 S / cm or more. It is particularly preferable that it is / cm or more. The upper limit is not particularly limited, but it is practical that it is 1 × 10 -1 S / cm or less.
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素元素の一部を窒素元素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
As a specific example of the compound, for example, Li xa La ya TiO 3 [xa satisfies 0.3 ≦ xa ≦ 0.7, and ya satisfies 0.3 ≦ ya ≦ 0.7. (LLT); Li xb Layb Zr zb M bb mb Onb (M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn. Xb satisfies 5 ≦ xb ≦ 10, yb satisfies 1 ≦ yb ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, and nb satisfies 5 ≦ nb ≦ 20. Satisfy.); Li xc Byc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn. Xc is 0 <xc ≦ 5 , Yc satisfies 0 <yc ≦ 1, zc satisfies 0 <zc ≦ 1, nc satisfies 0 <nc ≦ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si. ad P md O nd (xd satisfies 1 ≦ xd ≦ 3, yd satisfies 0 ≦ yd ≦ 1, zd satisfies 0 ≦ zd ≦ 2, ad satisfies 0 ≦ ad ≦ 1, md is 1 ≦ met md ≦ 7, nd satisfies 3 ≦ nd ≦ 13);. Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, M ee divalent .D ee representing the metal atom represents a combination of halogen atom or two or more halogen atoms);. Li xf Si yf O zf (xf satisfies 1 ≦ xf ≦ 5, yf satisfies 0 <yf ≦ 3 , Zf satisfies 1 ≦ zf ≦ 10); Li xg S yg O zg (xg satisfies 1 ≦ xg ≦ 3, yg satisfies 0 <yg ≦ 2, and zg satisfies 1 ≦ zg ≦ 10. ); Li 3 BO 3 ; Li 3 BO 3- Li 2 SO 4 ; Li 2 O-B 2 O 3- P 2 O 5 ; Li 2 O-SiO 2 ; Li 6 BaLa 2 Ta 2 O 12 ; Li 3 PO (4-3 / 2w) N w (w is w <1); Li 3.5 Zn 0.25 GeO 4 having a LISION (Lithium super ionic controller) type crystal structure ; La 0.55 having a perovskite type crystal structure Li 0.35 TiO 3 ; LiTi 2 P 3 O 12 having a NASICON (Naturium super ionic controller) type crystal structure; Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Sihy P 3-yh O 12 (xh satisfies 0 ≦ xh ≦ 1, yh satisfies 0 ≦ yh ≦ 1. ); Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure and the like can be mentioned.
Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ); LiPON in which a part of the oxygen element of lithium phosphate is replaced with a nitrogen element; LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, It is one or more elements selected from Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and Au) and the like.
Further, LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C and Ga) and the like can also be preferably used.
(iii)ハロゲン化物系無機固体電解質
 ハロゲン化物系無機固体電解質は、一般に用いられるものであり、ハロゲン原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されないが、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClが好ましい。
(Iii) Halide-based Inorganic Solid Electrolyte The halide-based inorganic solid electrolyte is generally used, contains a halogen atom, and has the conductivity of ions of a metal belonging to Group 1 or Group 2 of the Periodic Table. A compound having an electron insulating property and having an electron insulating property is preferable.
The halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
(iv)水素化物系無機固体電解質
 水素化物系無機固体電解質は、一般に用いられるものであり、水素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されないが、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
(Iv) Hydride-based Inorganic Solid Electrolyte The hydride-based inorganic solid electrolyte is generally used, contains a hydrogen atom, and exhibits ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table. A compound having and having an electron insulating property is preferable.
The hydride-based inorganic solid electrolyte is not particularly limited, and examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, and 3 LiBH 4- LiCl.
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の平均粒子径(体積平均粒子径)は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。
 無機固体電解質の平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散液試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要により日本産業規格(JIS) Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
The inorganic solid electrolyte is preferably particles. In this case, the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. The upper limit is preferably 100 μm or less, and more preferably 50 μm or less.
The average particle size of the inorganic solid electrolyte is measured by the following procedure. Inorganic solid electrolyte particles are prepared by diluting 1% by mass of a dispersion in a 20 mL sample bottle with water (heptane in the case of a water-unstable substance). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately after that, it is used for the test. Using this dispersion sample, data was captured 50 times using a measurement quartz cell at a temperature of 25 ° C. using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA). Obtain the volume average particle size. For other detailed conditions, etc., refer to the description of Japanese Industrial Standards (JIS) Z 8828: 2013 "Grain size analysis-Dynamic light scattering method" as necessary. Five samples are prepared for each level and the average value is adopted.
 無機固体電解質は、1種を含有していても、2種以上を含有していてもよい。
 固体電解質層を形成する場合、固体電解質層の単位面積(cm)当たりの無機固体電解質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 ただし、無機固体電解質含有組成物が後述する活物質を含有する場合、無機固体電解質の目付量は、活物質と無機固体電解質との合計量が上記範囲であることが好ましい。
The inorganic solid electrolyte may contain one kind or two or more kinds.
When forming the solid electrolyte layer, the mass (mg) (grain amount) of the inorganic solid electrolyte per unit area (cm 2) of the solid electrolyte layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
However, when the composition containing the inorganic solid electrolyte contains an active material described later, the amount of the inorganic solid electrolyte is preferably such that the total amount of the active material and the inorganic solid electrolyte is in the above range.
 無機固体電解質の、無機固体電解質含有組成物中の含有量は、特に制限されないが、結着性の点、更には分散性の点で、固形分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、無機固体電解質含有組成物が後述する活物質を含有する場合、無機固体電解質含有組成物中の無機固体電解質の含有量は、活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 本発明において、固形分(固形成分)とは、無機固体電解質含有組成物を、1mmHgの気圧下、窒素雰囲気下150℃で6時間乾燥処理したときに、揮発若しくは蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
The content of the inorganic solid electrolyte in the composition containing the inorganic solid electrolyte is not particularly limited, but is 50% by mass or more at 100% by mass of the solid content in terms of binding property and dispersibility. Is more preferable, 70% by mass or more is more preferable, and 90% by mass or more is particularly preferable. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
However, when the inorganic solid electrolyte-containing composition contains an active material described later, the content of the inorganic solid electrolyte in the inorganic solid electrolyte-containing composition is such that the total content of the active material and the inorganic solid electrolyte is in the above range. Is preferable.
In the present invention, the solid content (solid component) refers to a component that does not disappear by volatilizing or evaporating when the inorganic solid electrolyte-containing composition is dried at 150 ° C. for 6 hours under an atmospheric pressure of 1 mmHg and a nitrogen atmosphere. .. Typically, it refers to a component other than the dispersion medium described later.
<ポリマーバインダー>
 本発明の無機固体電解質含有組成物はポリマーバインダーを含有する。本発明の無機固体電解質含有組成物が含有するポリマーバインダーは、下記(P1)及び(P2)を満たすポリマーで構成されたポリマーバインダー(本発明に用いるバインダーともいう。)を少なくとも1種含んでいればよく、本発明に用いるバインダー以外のポリマーバインダー(その他のバインダーともいい、詳細は後述する。)を1種又は2種以上含んでいてもよい。
 本発明の無機固体電解質含有組成物において、ポリマーバインダーとして本発明に用いるバインダーを1種含有するものでも、複数種含有するものでもよい。複数含有する場合、特に制限されないが、2~4種であることが好ましい。
 本発明において、ポリマーバインダーは、ポリマーで構成されたバインダーを意味し、ポリマーそのもの、及びポリマーを含んで形成されたバインダーを包含する。
<Polymer binder>
The inorganic solid electrolyte-containing composition of the present invention contains a polymer binder. The polymer binder contained in the inorganic solid electrolyte-containing composition of the present invention contains at least one polymer binder (also referred to as a binder used in the present invention) composed of a polymer satisfying the following (P1) and (P2). It may contain one or more polymer binders (also referred to as other binders, the details of which will be described later) other than the binder used in the present invention.
In the inorganic solid electrolyte-containing composition of the present invention, one type of binder used in the present invention may be contained as the polymer binder, or a plurality of types may be contained. When a plurality of kinds are contained, there is no particular limitation, but 2 to 4 kinds are preferable.
In the present invention, the polymer binder means a binder composed of a polymer, and includes the polymer itself and a binder formed containing the polymer.
(本発明に用いるバインダー)
 本発明の無機固体電解質含有組成物がポリマーバインダーとして含有する本発明に用いるバインダーについて説明する。
 本発明に用いるバインダーは、ポリマーの主鎖について下記(P1)を満たし、ポリマーを構成する構成成分について下記(P2)を満たすポリマーで構成されている。このようなバインダーは、無機固体電解質含有組成物において無機固体電解質等の固体粒子及び分散媒と併用することにより、無機固体電解質含有組成物(スラリー)の分散安定性を改善できる。また、強固な膜強度の構成層を形成でき、全固体二次電池に電池抵抗の低減とサイクル特性の向上とを実現できる。
(P1)フッ素原子で置換されていない原子で構成され、かつウレタン結合、ウレア結合及びエステル結合のうちの少なくとも1つの結合を含む主鎖を有する。
(P2)下記官能基群から選択される官能基を少なくとも1つ有する構成成分を含む。
 <官能基群>
 水酸基、1級アミノ基、2級アミノ基、スルファニル基
(Binder used in the present invention)
The binder used in the present invention contained in the inorganic solid electrolyte-containing composition of the present invention as a polymer binder will be described.
The binder used in the present invention is composed of a polymer that satisfies the following (P1) for the main chain of the polymer and the following (P2) for the constituent components constituting the polymer. Such a binder can improve the dispersion stability of the inorganic solid electrolyte-containing composition (slurry) by using it in combination with solid particles such as the inorganic solid electrolyte and a dispersion medium in the inorganic solid electrolyte-containing composition. Further, a constituent layer having a strong film strength can be formed, and it is possible to reduce the battery resistance and improve the cycle characteristics of the all-solid-state secondary battery.
(P1) It is composed of atoms not substituted with fluorine atoms, and has a main chain containing at least one of urethane bond, urea bond and ester bond.
(P2) Contains a component having at least one functional group selected from the following functional group group.
<Functional group group>
Hydroxy group, primary amino group, secondary amino group, sulfanilic group
 - 本発明に用いるバインダーを形成するポリマー -
 本発明に用いるバインダーを形成するポリマーは、上記(P1)及び(P2)を満たす限り、特に制限されず、各種のポリマーを用いることができる。
 本発明に用いるバインダーを形成するポリマーの結合様式(一次構造)は、特に制限されず、ランダム構造、ブロック構造、交互構造、グラフト構造等のいずれの一次構造をもとりうる。また、このポリマーの分子構造も、特に制限されず、直鎖状、分岐状(スター構造、ブランチ構造)等が挙げられるが、直鎖状であることが好ましい。
 本発明において、ポリマーの主鎖とは、ポリマーを構成する、それ以外のすべての分子鎖が、主鎖に対して枝分れ鎖若しくはペンダントとみなしうる線状分子鎖をいう。枝分れ鎖若しくはペンダント鎖とみなす分子鎖の質量平均分子量にもよるが、典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖となる。ただし、ポリマー末端が有する末端基は主鎖に含まない。また、主鎖を構成する原子とは、ポリマーの主鎖となる原子鎖を形成する各原子を意味し、この原子の価数を調整するための原子又は原子群(水素原子又は置換基等)、更には枝分れ鎖若しくはペンダント鎖とみなす分子鎖を形成する原子を含まない。なお、主鎖中に環状構造が含まれる場合、環状構造の原子鎖を形成するすべて原子を意味する。例えば、ポリエチレンの主鎖を構成する原子は炭素原子のみであり、炭素原子の価数を調整するための水素原子を含まない。
 本発明において、ポリマーの側鎖とは、主鎖以外の分子鎖をいい、短分子鎖及び長分子鎖を含む。
-Polymer forming the binder used in the present invention-
The polymer forming the binder used in the present invention is not particularly limited as long as the above (P1) and (P2) are satisfied, and various polymers can be used.
The bonding mode (primary structure) of the polymer forming the binder used in the present invention is not particularly limited, and may have any primary structure such as a random structure, a block structure, an alternating structure, and a graft structure. The molecular structure of this polymer is also not particularly limited, and examples thereof include a linear structure and a branched shape (star structure, branched structure), but the molecular structure is preferably linear.
In the present invention, the main chain of a polymer means a linear molecular chain in which all other molecular chains constituting the polymer can be regarded as a branched chain or a pendant with respect to the main chain. Although it depends on the mass average molecular weight of the molecular chain regarded as a branched chain or a pendant chain, the longest chain among the molecular chains constituting the polymer is typically the main chain. However, the terminal group of the polymer terminal is not included in the main chain. In addition, the atoms constituting the main chain mean each atom forming the atomic chain that becomes the main chain of the polymer, and an atom or an atom group (hydrogen atom, a substituent, etc.) for adjusting the valence of this atom. Furthermore, it does not contain atoms forming a molecular chain that is regarded as a branched chain or a pendant chain. When a cyclic structure is included in the main chain, it means all atoms forming the atomic chain of the cyclic structure. For example, the only atom that constitutes the main chain of polyethylene is a carbon atom, and does not contain a hydrogen atom for adjusting the valence of the carbon atom.
In the present invention, the side chain of the polymer means a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
 本発明に用いるバインダーを形成するポリマー(バインダー形成ポリマーということがある。)は、ポリマーの主鎖について下記(P1)を満たす。
 
(P1)フッ素原子で置換されていない原子で構成された主鎖であって、ウレタン結合、ウレア結合及びエステル結合のうちの少なくとも1つの結合を含む主鎖を有する。
 
The polymer forming the binder used in the present invention (sometimes referred to as a binder-forming polymer) satisfies the following (P1) with respect to the main chain of the polymer.

(P1) A main chain composed of atoms not substituted with fluorine atoms, which has a main chain containing at least one of urethane bond, urea bond and ester bond.
 バインダー形成ポリマーは、主鎖を構成する原子がフッ素原子で置換されていない(P1-1)。ポリマーの主鎖は、通常、水素原子等の原子又は置換基が結合して価数が調整された原子が連続して結合した分子鎖からなるが、バインダー形成ポリマーは、その主鎖を形成する原子に結合している水素原子がフッ素原子で置換されていない。換言すると、主鎖を形成する原子はフッ素原子以外の、原子若しくは置換基が結合している。なお、主鎖を形成する原子以外の原子はフッ素原子が結合していてもよい。
 主鎖がフッ素原子で置換されていない原子で形成されていると、後述する(P1-2)を満たすことと相まって、バインダー形成ポリマー同士の相互作用が強化され、無機固体電解質含有組成物の分散安定性の改善だけでなく、膜強度を強化でき、電池抵抗及びサイクル特性をも改善できる。
 フッ素原子で置換されていない原子で形成されている主鎖としては、例えば、1つの水素原子がフッ素原子で置換された炭素原子(フルオロメチレン基、フルオロメチン基等)、2つの水素原子がフッ素原子で置換された炭素原子(ジフルオロメチレン基)等を含まない主鎖、更に、これらの原子が連結した分子鎖を含まない主鎖等が挙げられる。より具体的には、特許文献1に記載の、式(I)で表される構造単位を含まない主鎖が挙げられる。すなわち、バインダー形成ポリマーの主鎖は、特異的なC-F結合を含んでいない。
 本発明において、フッ素原子で置換されていない原子で構成された主鎖とは、主鎖を構成するすべての原子がフッ素原子で置換されていない態様に加えて、主鎖を構成する原子の一部が本発明の効果を損なわない範囲においてフッ素原子で置換されている態様を包含する。本発明の効果を損なわない範囲としては、特に制限されないが、例えば、ポリマーの主鎖を形成する原子(通常炭素原子)に対するフッ素原子のモル比[F/C]では、0.001未満とすることができる。モル比[F/C]は、特許文献1の段落[0123]に記載の方法により特定できる。
In the binder-forming polymer, the atoms constituting the main chain are not substituted with fluorine atoms (P1-1). The main chain of a polymer usually consists of a molecular chain in which an atom such as a hydrogen atom or an atom having a valence adjusted by bonding an atom or a substituent is continuously bonded, but a binder-forming polymer forms the main chain. The hydrogen atom bonded to the atom is not replaced by a fluorine atom. In other words, the atom forming the main chain has an atom or a substituent other than the fluorine atom bonded to it. A fluorine atom may be bonded to an atom other than the atom forming the main chain.
When the main chain is formed of atoms not substituted with fluorine atoms, the interaction between the binder-forming polymers is enhanced in combination with the satisfaction of (P1-2) described later, and the dispersion of the inorganic solid electrolyte-containing composition is enhanced. Not only the stability can be improved, but also the film strength can be strengthened, and the battery resistance and cycle characteristics can be improved.
As a main chain formed of atoms not substituted with fluorine atoms, for example, a carbon atom in which one hydrogen atom is substituted with a fluorine atom (fluoromethylene group, fluoromethine group, etc.) and two hydrogen atoms are fluorine. Examples thereof include a main chain that does not contain a carbon atom (difluoromethylene group) substituted with an atom, and a main chain that does not contain a molecular chain in which these atoms are linked. More specifically, the main chain described in Patent Document 1 that does not include the structural unit represented by the formula (I) can be mentioned. That is, the main chain of the binder-forming polymer does not contain a specific CF bond.
In the present invention, the main chain composed of atoms not substituted with fluorine atoms is one of the atoms constituting the main chain in addition to the embodiment in which all the atoms constituting the main chain are not substituted with fluorine atoms. This includes an embodiment in which the portion is substituted with a fluorine atom as long as the effect of the present invention is not impaired. The range that does not impair the effects of the present invention is not particularly limited, but for example, the molar ratio [F / C] of fluorine atoms to the atoms (usually carbon atoms) forming the main chain of the polymer is less than 0.001. be able to. The molar ratio [F / C] can be specified by the method described in paragraph [0123] of Patent Document 1.
 バインダー形成ポリマーは、ウレタン結合(-NRPNCOO-)、ウレア結合(-NRPNCONRPN-)及びエステル結合(-COO-)のうちの少なくとも1つの結合を含む主鎖を有する(P1-2)。RPNは各結合においてそれぞれ水素原子又はフッ素原子以外の置換基を示す。
 本発明において、上記結合のうち少なくとも1つの結合を含む主鎖とは、主鎖が上記結合のうち少なくとも1種の結合を含むことを意味し、主鎖中に含まれる結合の数は特に制限されず、原料化合物の分子量及びポリマーの分子量等により適宜に決定される。主鎖が上述の(P1-1)を満たしたうえで上記結合を含んでいると、バインダー形成ポリマー同士の相互作用が強化され、主鎖無機固体電解質含有組成物の分散安定性の改善だけでなく、膜強度を強化でき、電池抵抗及びサイクル特性をも改善できる。
 上記各結合を形成する原子のうちポリマーの主鎖を形成する原子は上述のようにフッ素原子で置換されていない。例えば、ウレタン結合又はウレア結合の窒素原子は水素原子又は置換基(フッ素原子を除く)RPNが結合しており、ポリマーバインダー同士の相互作用が強固になる点で、水素原子が結合していること(-NH-基)が好ましい。
Binder-forming polymer, a urethane bond (-NR PN COO-), a urea bond (-NR PN CONR PN -) having a backbone comprising at least one binding of and ester bond (-COO-) (P1-2 ). R PN represents a substituent other than a hydrogen atom or a fluorine atom in each bond.
In the present invention, the main chain containing at least one of the above-mentioned bonds means that the main chain contains at least one of the above-mentioned bonds, and the number of bonds contained in the main chain is particularly limited. However, it is appropriately determined by the molecular weight of the raw material compound, the molecular weight of the polymer, and the like. When the main chain satisfies the above (P1-1) and contains the above bond, the interaction between the binder-forming polymers is strengthened, and only the improvement of the dispersion stability of the main chain inorganic solid electrolyte-containing composition is required. The film strength can be strengthened, and the battery resistance and cycle characteristics can be improved.
Of the atoms forming each of the above bonds, the atoms forming the main chain of the polymer are not substituted with fluorine atoms as described above. For example, the nitrogen atom of the urethane bond or the urea bond has a hydrogen atom or a substituent (excluding the fluorine atom) RPN bonded to it, and the hydrogen atom is bonded in that the interaction between the polymer binders is strengthened. That (-NH-group) is preferable.
 上記結合は、ポリマーの主鎖中に含まれる限り特に制限されるものでなく、構成単位(繰り返し単位)中に含まれる態様及び/又は異なる構成単位同士を繋ぐ結合として含まれる態様のいずれでもよい。また、主鎖に含まれる上記結合は、1種に限定されず、2種以上であってもよい。この場合、主鎖の結合様式は、特に制限されず、2種以上の結合をランダムに有していてもよく、特定の結合を有するセグメントと他の結合を有するセグメントとのセグメント化された主鎖でもよい。 The bond is not particularly limited as long as it is contained in the main chain of the polymer, and may be any of the modes contained in the structural unit (repeating unit) and / or the mode contained as a bond connecting different structural units. .. Further, the above-mentioned bond contained in the main chain is not limited to one type, and may be two or more types. In this case, the binding mode of the main chain is not particularly limited, and may have two or more kinds of bonds at random, and the segmented main chain of a segment having a specific bond and a segment having another bond. It may be a chain.
 上記結合を主鎖に有するポリマーとしては、例えば、ポリウレタン、ポリウレア、ポリエステル等のポリマー、又は、これらの共重合体が挙げられる。共重合体は、上記各ポリマーをセグメントとするブロック共重合体、上記各ポリマーのうち2つ以上のポリマーを構成する各構成成分がランダムに結合したランダム共重合体でもよい。 Examples of the polymer having the above bond in the main chain include polymers such as polyurethane, polyurea, and polyester, or copolymers thereof. The copolymer may be a block copolymer having each of the above polymers as a segment, or a random copolymer in which each component constituting two or more of the above polymers is randomly bonded.
 バインダー形成ポリマーは、ポリマーを構成する構成成分について下記(P2)を満たす。
(P2)下記官能基群から選択される官能基を少なくとも1つ有する構成成分を含む。
 <官能基群>
 水酸基、1級アミノ基、2級アミノ基、スルファニル基(メルカプト基:-SH)
 
 上記官能基群から選択される官能基を少なくとも1つ有する構成成分の詳細は後述する。
The binder-forming polymer satisfies the following (P2) with respect to the constituent components constituting the polymer.
(P2) Contains a component having at least one functional group selected from the following functional group group.
<Functional group group>
Hydroxy group, primary amino group, secondary amino group, sulfanilic group (mercapto group: -SH)

Details of the constituents having at least one functional group selected from the above functional group group will be described later.
 (式(I-1)~(I-4)のいずれかで表される構成成分)
 バインダー形成ポリマーは、上記(P1)及び(P2)を満たすものあれば特に制限されないが、後述する、官能基群から選択される官能基を有する構成成分に加えて、下記式(I-1)~(I-4)のいずれかで表される構成成分を1種以上(好ましくは2~8種、より好ましくは2~4種)有するポリマーが好ましい。このような主鎖を有するポリマーとしては、例えば、ポリウレタン、ポリウレア及びポリエステルが挙げられる。各構成成分の組み合わせは、ポリマー種に応じて適宜に選択される。本発明において、構成成分の組み合わせにおける1種の構成成分とは、下記のいずれか1つの式で表される構成成分の種類数を意味し、1つの下記式で表される構成成分を2種有していても、2種の構成成分とは解釈しない。
 バインダー形成ポリマーは、更に、官能基群から選択される官能基を有する構成成分及び下記式(I-1)~(I-4)のいずれかで表される構成成分とは別の構成成分を有していてもよい。
(Components represented by any of formulas (I-1) to (I-4))
The binder-forming polymer is not particularly limited as long as it satisfies the above (P1) and (P2), but in addition to the constituent components having a functional group selected from the functional group group described later, the following formula (I-1) A polymer having at least one kind (preferably 2 to 8 kinds, more preferably 2 to 4 kinds) of the constituent components represented by any of (I-4) is preferable. Polymers having such a main chain include, for example, polyurethane, polyurea and polyester. The combination of each component is appropriately selected according to the polymer species. In the present invention, one kind of constituent component in the combination of constituent components means the number of kinds of constituent components represented by any one of the following formulas, and two kinds of one kind of constituent component represented by the following formula are used. Even if it has, it is not interpreted as two kinds of constituents.
The binder-forming polymer further contains a component having a functional group selected from the functional group group and a component different from the components represented by any of the following formulas (I-1) to (I-4). You may have.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、RP1及びRP2は、それぞれ、分子量又は質量平均分子量が20以上200,000以下の分子鎖を示す。この分子鎖の分子量は、その種類等によるので一義的に決定できないが、例えば、30以上が好ましく、50以上がより好ましく、100以上が更に好ましく、150以上が特に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましい。分子鎖の分子量は、ポリマーの主鎖に組み込む前の原料化合物について測定する。
 RP1及びRP2としてとりうる上記分子鎖は、特に制限されないが、炭化水素鎖、ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖が好ましく、炭化水素鎖又はポリアルキレンオキシド鎖がより好ましく、炭化水素鎖、ポリエチレンオキシド鎖又はポリテトラメチレンオキシド鎖が更に好ましい。
In the formula, RP1 and RP2 each represent a molecular chain having a molecular weight or mass average molecular weight of 20 or more and 200,000 or less, respectively. The molecular weight of this molecular chain cannot be uniquely determined because it depends on the type and the like, but for example, 30 or more is preferable, 50 or more is more preferable, 100 or more is further preferable, and 150 or more is particularly preferable. The upper limit is preferably 100,000 or less, more preferably 10,000 or less. The molecular weight of the molecular chain is measured for the starting compound before it is incorporated into the main chain of the polymer.
The molecular chains that can be taken as RP1 and RP2 are not particularly limited, but are preferably a hydrocarbon chain, a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, more preferably a hydrocarbon chain or a polyalkylene oxide chain, and a hydrocarbon chain. , Polyethylene oxide chains or polytetramethylene oxide chains are more preferred.
 RP1及びRP2としてとりうる炭化水素鎖は、炭素原子及び水素原子から構成される炭化水素の鎖を意味し、より具体的には、炭素原子及び水素原子から構成される化合物の少なくとも2つの原子(例えば水素原子)又は基(例えばメチル基)が脱離した構造を意味する。ただし、本発明において、炭化水素鎖は、例えば下記式(M2)で表される炭化水素基のように、鎖中に酸素原子、硫黄原子又は窒素原子を含む基を有する鎖も包含する。炭化水素鎖の末端に有し得る末端基は炭化水素鎖には含まれないものとする。この炭化水素鎖は、炭素-炭素不飽和結合を有していてもよく、脂肪族環及び/又は芳香族環の環構造を有していてもよい。すなわち、炭化水素鎖は、脂肪族炭化水素及び芳香族炭化水素から選択される炭化水素で構成される炭化水素鎖であればよい。 The hydrocarbon chain that can be taken as RP1 and RP2 means a chain of hydrocarbons composed of carbon atoms and hydrogen atoms, and more specifically, at least two compounds composed of carbon atoms and hydrogen atoms. It means a structure in which an atom (for example, a hydrogen atom) or a group (for example, a methyl group) is eliminated. However, in the present invention, the hydrocarbon chain also includes a chain having a group containing an oxygen atom, a sulfur atom or a nitrogen atom in the chain, for example, a hydrocarbon group represented by the following formula (M2). The terminal group that can be contained at the end of the hydrocarbon chain shall not be included in the hydrocarbon chain. This hydrocarbon chain may have a carbon-carbon unsaturated bond and may have a ring structure of an aliphatic ring and / or an aromatic ring. That is, the hydrocarbon chain may be any hydrocarbon chain composed of hydrocarbons selected from aliphatic hydrocarbons and aromatic hydrocarbons.
 このような炭化水素鎖としては、上記分子量を満たすものであればよく、低分子量の炭化水素基からなる鎖と、炭化水素ポリマーからなる炭化水素鎖(炭化水素ポリマー鎖ともいう。)との両炭化水素鎖を包含する。
 低分子量の炭化水素鎖は、通常の(非重合性の)炭化水素基からなる鎖であり、この炭化水素基としては、例えば、脂肪族若しくは芳香族の炭化水素基が挙げられ、具体的には、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリーレン基(炭素数は6~22が好ましく、6~14が好ましく、6~10がより好ましい)、又はこれらの組み合わせからなる基が好ましい。RP2としてとりうる低分子量の炭化水素鎖を形成する炭化水素基としては、アルキレン基がより好ましく、炭素数2~6のアルキレン基が更に好ましく、炭素数2又は3のアルキレン基が特に好ましい。この炭化水素鎖は置換基として重合鎖(例えば(メタ)アクリルポリマー)を有していてもよい。
Such a hydrocarbon chain may be any one that satisfies the above molecular weight, and both a chain composed of a low molecular weight hydrocarbon group and a hydrocarbon chain composed of a hydrocarbon polymer (also referred to as a hydrocarbon polymer chain). Includes hydrocarbon chains.
A low molecular weight hydrocarbon chain is a chain composed of ordinary (non-polymerizable) hydrocarbon groups, and examples of the hydrocarbon groups include aliphatic or aromatic hydrocarbon groups, and specific examples thereof. Is an alkylene group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms), an arylene group (preferably 6 to 22 carbon atoms, preferably 6 to 14 carbon atoms, 6 to 10 carbon atoms). Is more preferable), or a group consisting of a combination thereof is preferable. The hydrocarbon group forming the hydrocarbon chain of the low molecular weight that can be taken as R P2, and more preferably an alkylene group, more preferably an alkylene group having 2 to 6 carbon atoms, particularly preferably an alkylene group having 2 or 3 carbon atoms. This hydrocarbon chain may have a polymerized chain (eg, (meth) acrylic polymer) as a substituent.
 脂肪族の炭化水素基としては、特に制限されず、例えば、下記式(M2)で表される芳香族の炭化水素基の水素還元体、公知の脂肪族ジイソソアネート化合物が有する部分構造(例えばイソホロンからなる基)等が挙げられる。また、後掲する各例示の構成成分が有する炭化水素基も挙げられる。
 芳香族の炭化水素基は、例えば、後掲する各例示の構成成分が有する炭化水素基が挙げられ、アリーレン基(例えば、後述する置換基Zで挙げたアリール基から更に水素原子を1つ以上除去した基、具体的にはフェニレン基、トリレン基若しくはキシリレン基)又は下記式(M2)で表される炭化水素基が好ましい。
The aliphatic hydrocarbon group is not particularly limited, and for example, from a hydrogen-reduced product of an aromatic hydrocarbon group represented by the following formula (M2), or a partial structure of a known aliphatic diisosoane compound (for example, from isophorone). Narumoto) and the like. In addition, the hydrocarbon group contained in each of the constituent components of each of the examples described later can also be mentioned.
Examples of the aromatic hydrocarbon group include a hydrocarbon group contained in each of the constituent components described below, and an arylene group (for example, one or more hydrogen atoms from the aryl group mentioned in Substituent Z described later). The removed group, specifically a phenylene group, a trilene group or a xylylene group) or a hydrocarbon group represented by the following formula (M2) is preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(M2)中、Xは、単結合、-CH-、-C(CH-、-SO-、-S-、-CO-又は-O-を示し、結着性の観点で、-CH-または-O-が好ましく、-CH-がより好ましい。ここで例示した上記アルキレン基及びメチル基は、それぞれ、置換基Z、例えばハロゲン原子(フッ素原子を除く。)で置換されていてもよい。
 RM2~RM5は、それぞれ、水素原子又は置換基を示し、水素原子が好ましい。RM2~RM5としてとりうる置換基としては、特に制限されず、後述する置換基Zが挙げられ、例えば、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM6、-N(RM6、-SRM6(RM6は置換基を示し、好ましくは炭素数1~20のアルキル基又は炭素数6~10のアリール基を示す。)、フッ素原子を除くハロゲン原子(例えば、塩素原子、臭素原子)が好ましく挙げられる。-N(RM6としては、アルキルアミノ基(炭素数は、1~20が好ましく、1~6がより好ましい)又はアリールアミノ基(炭素数は、6~40が好ましく、6~20がより好ましい)が挙げられる。
In formula (M2), X represents a single bond, -CH 2- , -C (CH 3 ) 2- , -SO 2- , -S-, -CO- or -O-, and is a viewpoint of binding property. Therefore, -CH 2- or -O- is preferable, and -CH 2- is more preferable. The above-mentioned alkylene group and methyl group exemplified here may be substituted with a substituent Z, for example, a halogen atom (excluding a fluorine atom), respectively.
RM2 to RM5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable. The substituents that can be taken as RM2 to RM5 are not particularly limited, and examples thereof include a substituent Z described later. For example, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and -OR M6. , -N ( RM6 ) 2 , -SR M6 ( RM6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), a halogen excluding a fluorine atom. Atoms (eg, chlorine atoms, bromine atoms) are preferred. The −N ( RM6 ) 2 is an alkylamino group (preferably 1 to 20 carbon atoms, more preferably 1 to 6 carbon atoms) or an arylamino group (preferably 6 to 40 carbon atoms, 6 to 20 carbon atoms). More preferred).
 炭化水素ポリマー鎖は、重合性の炭化水素が(少なくとも2つ)重合してなるポリマー鎖であって、上述の低分子量の炭化水素鎖よりも炭素原子数が大きい炭化水素ポリマーからなる鎖であれば特に制限されないが、好ましくは30個以上、より好ましくは50個以上の炭素原子から構成される炭化水素ポリマーからなる鎖である。炭化水素ポリマーを構成する炭素原子数の上限は、特に制限されず、例えば3,000個とすることができる。この炭化水素ポリマー鎖は、主鎖が、上記炭素原子数を満たす、脂肪族炭化水素で構成される炭化水素ポリマーからなる鎖が好ましく、脂肪族飽和炭化水素若しくは脂肪族不飽和炭化水素で構成される重合体(好ましくはエラストマー)からなる鎖であることがより好ましい。重合体としては、具体的には、主鎖に二重結合を有するジエン系重合体、及び、主鎖に二重結合を有しない非ジエン系重合体が挙げられる。ジエン系重合体としては、例えば、スチレン-ブタジエン共重合体、スチレン-エチレン-ブタジエン共重合体、イソブチレンとイソプレンの共重合体(好ましくはブチルゴム(IIR))、ブタジエン重合体、イソプレン重合体及びエチレン-プロピレン-ジエン共重合体等が挙げられる。非ジエン系重合体としては、エチレン-プロピレン共重合体及びスチレン-エチレン-ブチレン共重合体等のオレフィン系重合体、並びに、上記ジエン系重合体の水素還元物が挙げられる。 A hydrocarbon polymer chain may be a polymer chain in which (at least two) polymerizable hydrocarbons are polymerized, and may be a chain composed of a hydrocarbon polymer having a larger number of carbon atoms than the above-mentioned low molecular weight hydrocarbon chain. The chain is not particularly limited, but is preferably a chain composed of a hydrocarbon polymer composed of 30 or more, more preferably 50 or more carbon atoms. The upper limit of the number of carbon atoms constituting the hydrocarbon polymer is not particularly limited, and may be, for example, 3,000. The hydrocarbon polymer chain is preferably a chain composed of an aliphatic hydrocarbon having a main chain satisfying the above number of carbon atoms, and is composed of an aliphatic saturated hydrocarbon or an aliphatic unsaturated hydrocarbon. It is more preferable that the chain is made of a polymer (preferably an elastomer). Specific examples of the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain. Examples of the diene polymer include a styrene-butadiene polymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer, and ethylene. -Propylene-diene copolymer and the like can be mentioned. Examples of the non-diene polymer include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen-reduced products of the above-mentioned diene polymer.
 炭化水素鎖となる炭化水素は、その末端に反応性基を有することが好ましく、縮重合可能な末端反応性基を有することがより好ましい。縮重合又は重付加可能な末端反応性基は、縮重合又は重付加することにより、上記各式のRP1又はRP2に結合する基を形成する。このような末端反応性基としては、イソシネート基、ヒドロキシ基、カルボキシ基、アミノ基及び酸無水物等が挙げられ、中でもヒドロキシ基が好ましい。
 末端反応性基を有する炭化水素ポリマーとしては、例えば、いずれも商品名で、NISSO-PBシリーズ(日本曹達社製)、クレイソールシリーズ(巴工業社製)、PolyVEST-HTシリーズ(エボニック社製)、poly-bdシリーズ(出光興産社製)、poly-ipシリーズ(出光興産社製)、EPOL(出光興産社製)及びポリテールシリーズ(三菱化学社製)等が好適に用いられる。
The hydrocarbon to be a hydrocarbon chain preferably has a reactive group at its terminal, and more preferably has a polycondensable terminal reactive group. The polycondensation or polyaddition-capable terminal reactive group forms a group bonded to RP1 or RP2 of each of the above formulas by polycondensation or polyaddition. Examples of such a terminal reactive group include an isocinate group, a hydroxy group, a carboxy group, an amino group and an acid anhydride, and a hydroxy group is preferable.
Examples of hydrocarbon polymers having terminal reactive groups include NISSO-PB series (manufactured by Nippon Soda Co., Ltd.), clay sole series (manufactured by Tomoe Kosan Co., Ltd.), and PolyVEST-HT series (manufactured by Ebonic) under the trade names. , Poly-bd series (manufactured by Idemitsu Kosan Co., Ltd.), poly-ip series (manufactured by Idemitsu Kosan Co., Ltd.), EPOL (manufactured by Idemitsu Kosan Co., Ltd.), Polytail series (manufactured by Mitsubishi Chemical Co., Ltd.) and the like are preferably used.
 ポリアルキレンオキシド鎖(ポリアルキレンオキシ鎖)としては、公知のポリアルキレンオキシ基からなる鎖が挙げられる。ポリアルキレンオキシ鎖中のアルキレンオキシ基の炭素数は、1~10であることが好ましく、1~6であることがより好ましく、2~4であること(ポリエチレンオキシ鎖、ポリプロピレンオキシ鎖、ポリテトラメチレンオキシ鎖)が更に好ましい。ポリアルキレンオキシ鎖は、1種のアルキレンオキシ基からなる鎖でもよく、2種以上のアルキレンオキシ基からなる鎖(例えば、エチレンオキシ基及びプロピレンオキシ基からなる鎖)でもよい。
 ポリカーボネート鎖又はポリエステル鎖としては、公知のポリカーボネート又はポリエステルからなる鎖が挙げられる。
 ポリアルキレンオキシ鎖、ポリカーボネート鎖又はポリエステル鎖は、それぞれ、末端にアルキル基(炭素数は1~12が好ましく、1~6がより好ましい)を有することが好ましい。
 RP1及びRP2としてとりうるポリアルキレンオキシ鎖、ポリカーボネート鎖及びポリエステル鎖の末端は、RP1及びRP2として上記各式で表される構成成分に組み込み可能な通常の化学構造に適宜に変更することができる。例えば、ポリアルキレンオキシ鎖は末端酸素原子が取り除かれて上記構成成分のRP1又はRP2として組み込まれる。
Examples of the polyalkylene oxide chain (polyalkyleneoxy chain) include chains composed of known polyalkyleneoxy groups. The number of carbon atoms of the alkyleneoxy group in the polyalkyleneoxy chain is preferably 1 to 10, more preferably 1 to 6, and 2 to 4 (polyethylene oxy chain, polypropylene oxy chain, polytetra). Methyleneoxy chain) is more preferred. The polyalkyleneoxy chain may be a chain composed of one type of alkyleneoxy group or a chain composed of two or more types of alkyleneoxy groups (for example, a chain composed of an ethyleneoxy group and a propyleneoxy group).
Examples of the polycarbonate chain or polyester chain include known chains made of polycarbonate or polyester.
The polyalkyleneoxy chain, the polycarbonate chain, or the polyester chain each preferably has an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
Polyalkyleneoxy chain can be taken as R P1 and R P2, end of the polycarbonate chain and a polyester chain, appropriately changing the constituents as R P1 and R P2 are represented by the formulas above the embeddable ordinary chemical structure be able to. For example, the polyalkylene oxy chain is incorporated as RP1 or RP2 of the above-mentioned constituents by removing the terminal oxygen atom.
 分子鎖が含むアルキル基の内部若しくは末端に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NR:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)を有していてもよい。
 上記各式において、RP1及びRP2は2価の分子鎖であることが好ましいが、少なくとも1つの水素原子が-NH-CO-、-CO-、-O-又は-NH-等で置換されて、3価以上の分岐状の分子鎖となっていてもよい。
An ether group (-O-), a thioether group (-S-), a carbonyl group (> C = O), an imino group (> NR N : RN is a hydrogen atom, and RN are hydrogen atoms, inside or at the end of the alkyl group contained in the molecular chain. It may have an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms).
In each of the above formulas, RP1 and RP2 are preferably divalent molecular chains, but at least one hydrogen atom is substituted with -NH-CO-, -CO-, -O-, -NH-, or the like. It may be a branched molecular chain having a valence of 3 or more.
 RP1は、上記分子鎖の中でも、炭化水素鎖であることが好ましく、低分子量の炭化水素鎖であることがより好ましく、脂肪族若しくは芳香族の炭化水素基からなる炭化水素鎖が更に好ましく、芳香族の炭化水素基からなる炭化水素鎖が特に好ましい。
 RP2は、上記分子鎖の中でも、低分子量の炭化水素鎖(より好ましくは脂肪族の炭化水素基)、又は低分子量の炭化水素鎖以外の分子鎖が好ましく、低分子量の炭化水素鎖以外の分子鎖(更に好ましくはポリアルキレンオキシド鎖)がより好ましい。
R P1, among the molecular chain is preferably a hydrocarbon is a chain, more preferably a hydrocarbon chain of low molecular weight, more preferably a hydrocarbon chain comprised of hydrocarbon groups aliphatic or aromatic, Hydrocarbon chains consisting of aromatic hydrocarbon groups are particularly preferred.
Among the above molecular chains, RP2 is preferably a low molecular weight hydrocarbon chain (more preferably an aliphatic hydrocarbon group) or a molecular chain other than a low molecular weight hydrocarbon chain, and is other than a low molecular weight hydrocarbon chain. Molecular chains (more preferably polyalkylene oxide chains) are more preferred.
 上記式(I-1)で表される構成成分の具体例を下記及び実施例に示す。また、上記式(I-1)で表される構成成分を導く原料化合物(ジイソシアネート化合物)としては、例えば、国際公開第2018/020827号に記載の、式(M1)で表されるジイソシアネート化合物及びその具体例、更にはポリメリック4,4’-ジフェニルメタンジイソシアネート等が挙げられる。なお、本発明において、式(I-1)で表される構成成分及びこれを導く原料化合物は下記具体例、実施例及び上記文献に記載のものに限定されない。 Specific examples of the constituent components represented by the above formula (I-1) are shown in the following and Examples. Further, as the raw material compound (diisocyanate compound) for deriving the constituent component represented by the above formula (I-1), for example, the diisocyanate compound represented by the formula (M1) described in International Publication No. 2018/20827 and the diisocyanate compound represented by the formula (M1). Specific examples thereof include polypeptide 4,4'-diphenylmethane diisocyanate and the like. In the present invention, the constituent component represented by the formula (I-1) and the raw material compound derived from the constituent component are not limited to those described in the following specific examples, examples and the above documents.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(I-2)で表される構成成分を導く原料化合物(カルボン酸若しくはその酸クロリド等)は、特に制限されず、例えば、国際公開第2018/020827号の段落[0074]に記載の、カルボン酸又は酸クロリドの化合物及びその具体例(例えばアジピン酸若しくはそのエステル化物)が挙げられる。 The raw material compound (carboxylic acid or acid chloride thereof, etc.) that derives the constituents represented by the above formula (I-2) is not particularly limited, and is described in, for example, paragraph [0074] of International Publication No. 2018/020827. , Carboxylic acid or acid chloride compounds and specific examples thereof (eg, adipic acid or an esterified product thereof).
 上記式(I-3)又は式(I-4)で表される構成成分の具体例を以下、後掲する例示ポリマー及び実施例等に示す。また、上記式(I-3)又は式(I-4)で表される構成成分を導く原料化合物(ジオール化合物又はジアミン化合物)としては、それぞれ、特に制限されず、例えば、国際公開第2018/020827号に記載の各化合物及びその具体例が挙げられ、更にジヒドロキシオキサミドも挙げられる。なお、本発明において、式(I-3)又は式(I-4)で表される構成成分及びこれを導く原料化合物は下記具体例、実施例及び上記文献に記載のものに限定されない。
 なお、下記具体例において、構成成分中に繰り返し構造を有する場合、その繰り返し数は1以上の整数であり、上記分子鎖の分子量又は炭素原子数を満たす範囲で適宜に設定される。
Specific examples of the constituents represented by the above formula (I-3) or the formula (I-4) are shown below in the exemplary polymers and examples described later. Further, the raw material compound (diol compound or diamine compound) for deriving the constituent component represented by the above formula (I-3) or formula (I-4) is not particularly limited, and for example, International Publication No. 2018 / Examples of each compound described in No. 020827 and specific examples thereof are given, and dihydroxyoxamid is also mentioned. In the present invention, the constituent components represented by the formula (I-3) or the formula (I-4) and the raw material compounds derived thereto are not limited to those described in the following specific examples, examples and the above documents.
In the following specific example, when the constituent has a repeating structure, the number of repetitions is an integer of 1 or more, and is appropriately set within a range satisfying the molecular weight or the number of carbon atoms of the molecular chain.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 RP1及びRP2は、それぞれ、置換基を有していてもよい。この置換基としては、特に制限されず、例えば、後述する置換基Zが挙げられ、RM2として採りうる上記置換基が好適に挙げられる。なお、RP1及びRP2を構成する原子であって主鎖をも構成する原子は置換基としてフッ素原子を有さない。 RP1 and RP2 may each have a substituent. Examples of the substituent group is not particularly limited, for example, include substituents Z to be described later, the substituents which can take as R M2 are preferably exemplified. Incidentally, atoms a atoms constituting R P1 and R P2 also constitute backbone no fluorine atom as a substituent.
 バインダー形成ポリマーは、下記に示すように、式(I-1)又は式(I-2)で表される構成成分に加えて、上記式(I-3)又は式(I-4)で表される構成成分を有することが好ましく、式(I-3)で表される構成成分を有することがより好ましい。式(I-3)で表される構成成分としては、RP2が低分子量の炭化水素基からなる鎖である構成成分(好ましくは下記式(I-3A)で表される構成成分)と、RP2が分子鎖として上記の炭化水素ポリマー鎖である構成成分(好ましくは下記式(I-3C)で表される構成成分)と、RP2が分子鎖として上記ポリアルキレンオキシド鎖である構成成分(好ましくは下記式(I-3B)で表される構成成分)との少なくとも1種を有していることが好ましく、RP2が分子鎖として上記の炭化水素ポリマー鎖である構成成分と、RP2が分子鎖として上記ポリアルキレンオキシド鎖である構成成分との少なくとも1種を有していることがより好ましく、両構成成分を有していることが更に好ましい。式(I-4)で表される構成成分についても式(I-3)で表される構成成分と同様であるが、下記式(I-3A)~式(I-3C)の各式において酸素原子を窒素原子に置き換える。 As shown below, the binder-forming polymer is represented by the above formula (I-3) or formula (I-4) in addition to the constituent components represented by the formula (I-1) or the formula (I-2). It is preferable to have a constituent component represented by the formula (I-3), and more preferably to have a constituent component represented by the formula (I-3). The components represented by the formula (I-3) include a component in which RP2 is a chain composed of a low molecular weight hydrocarbon group (preferably a component represented by the following formula (I-3A)). A component in which RP2 is the above-mentioned hydrocarbon polymer chain as a molecular chain (preferably a component represented by the following formula (I-3C)) and a component in which RP2 is the above-mentioned polyalkylene oxide chain as a molecular chain. It is preferable to have at least one of (preferably a constituent component represented by the following formula (I-3B)), and the constituent component in which RP2 is the above-mentioned hydrocarbon polymer chain as a molecular chain and R It is more preferable that P2 has at least one of the constituent components which is the polyalkylene oxide chain as a molecular chain, and it is further preferable that P2 has both constituent components. The components represented by the formula (I-4) are the same as the components represented by the formula (I-3), but in each of the following formulas (I-3A) to (I-3C). Replace oxygen atom with nitrogen atom.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(I-1)において、RP1は上述の通りである。式(I-3A)において、RP2Aは低分子量の炭化水素基からなる鎖(好ましくは脂肪族の炭化水素基)を示す。式(I-3B)において、RP2Bはポリアルキレンオキシ鎖を示す。式(I-3C)において、RP2Cは炭化水素ポリマー鎖を示す。RP2Aとしてとりうる低分子量の炭化水素基からなる鎖、RP2Bとしてとりうるポリアルキレンオキシ鎖及びRP2Cとしてとりうる炭化水素ポリマー鎖は、それぞれ、上記式(I-3)におけるRP2としてとりうる脂肪族の炭化水素基、ポリアルキレンオキシ鎖及び炭化水素ポリマー鎖と同義であり、好ましいものも同じである。 In formula (I-1), RP1 is as described above. In formula (I-3A), RP2A represents a chain of low molecular weight hydrocarbon groups (preferably an aliphatic hydrocarbon group). In formula (I-3B), RP2B represents a polyalkyleneoxy chain. In formula (I-3C), RP2C represents a hydrocarbon polymer chain. Chain composed of a hydrocarbon group of low molecular weight that can be taken as R P2A, hydrocarbon polymer chain which can be taken as a polyalkyleneoxy chain and R P2C can take as R P2B are respectively taken as R P2 in the above formula (I-3) It is synonymous with the aliphatic hydrocarbon groups, polyalkyleneoxy chains and hydrocarbon polymer chains, and the preferred ones are also the same.
 バインダー形成ポリマーは、ポリエーテル構造を含む構成成分、例えば上記式(I-3B)で表される構成成分を主鎖に有することが好ましい。なかでも少なくとも2種のポリエーテル構造を主鎖に有するものがより好ましい。少なくとも2種のポリエーテル構造を主鎖に有するポリマーに上述の官能基含有構成成分を組み込むと、ポリエーテル構造と官能基含有構成成分との作用が相乗的に発現して、分散安定性、膜強度、電池性能(抵抗及びサイクル特性)を高い水準でバランスよく改善できる。
 本発明において、「ポリエーテル構造」とは、2以上のアルキレンオキシ基が連結してなる構造(ポリアルキレンオキシ鎖又はアルキレンオキシド鎖ともいう)をいい、例えば、-(O-アルキレン基)n-構造(nは重合度を示し、2以上の数である。)を示す。
 この「ポリエーテル構造」は、単独のポリアルキレンオキシ鎖であってもよく、(化学構造が異なる)少なくとも2種のポリアルキレンオキシ鎖の共重合物に由来する構造であってもよい。本発明においては、単独のポリアルキレンオキシ鎖であることが好ましい。
 「ポリエーテル構造」は、適宜、原子又は連結基を介して、ポリマーの主鎖に組み込まれる。このときの原子及び連結基としては、後述する式(I-7)のXで挙げたものと同義である。
 ポリエーテル構造を含む構成成分としては、特に制限されず、ポリアルキレングリコール等のポリエーテルポリオールに由来する構成成分、ポリエーテルポリアミン等に由来する構成成分が挙げられる。
The binder-forming polymer preferably has a component containing a polyether structure, for example, a component represented by the above formula (I-3B) in the main chain. Of these, those having at least two types of polyether structures in the main chain are more preferable. When the above-mentioned functional group-containing constituents are incorporated into a polymer having at least two types of polyether structures in the main chain, the action of the polyether structure and the functional group-containing constituents is synergistically expressed, resulting in dispersion stability and a film. Strength and battery performance (resistance and cycle characteristics) can be improved at a high level in a well-balanced manner.
In the present invention, the "polyether structure" refers to a structure in which two or more alkyleneoxy groups are linked (also referred to as a polyalkyleneoxy chain or an alkylene oxide chain), for example,-(O-alkylene group) n-. The structure (n indicates the degree of polymerization and is a number of 2 or more) is shown.
This "polyether structure" may be a single polyalkyleneoxy chain or a structure derived from a copolymer of at least two polyalkyleneoxy chains (having different chemical structures). In the present invention, it is preferably a single polyalkyleneoxy chain.
The "polyether structure" is optionally incorporated into the backbone of the polymer via atoms or linking groups. The atom and the linking group at this time have the same meaning as those listed with X in the formula (I-7) described later.
The constituent component containing the polyether structure is not particularly limited, and examples thereof include a constituent component derived from a polyether polyol such as polyalkylene glycol and a constituent component derived from a polyether polyamine or the like.
 本発明において、ポリエーテル構造について「少なくとも2種」とは、主鎖を形成する構成成分の異同及び主鎖中に組み込まれる位置に関わらず、(アルキレン基が)互いに異なる化学構造を持つポリエーテル構造の種類数が少なくとも2種であること意味し、同一の化学構造を持つポリエーテル構造は、異なる構成成分に組み込まれていても、また1つの構成成分中に複数組み込まれていても、1種とする。
 バインダー形成ポリマーが有するポリエーテル構造の種類数は、2種以上であることが好ましく、2種若しくは3種であることがより好ましく、2種であることが更に好ましい。
In the present invention, "at least two kinds" of the polyether structure means a polyether having a chemical structure (alkylene groups) different from each other regardless of the difference in the constituent components forming the main chain and the position incorporated in the main chain. It means that the number of types of structures is at least two, and even if a polyether structure having the same chemical structure is incorporated into different constituent components or a plurality of types are incorporated into one constituent component, 1 Seed.
The number of types of the polyether structure contained in the binder-forming polymer is preferably two or more, more preferably two or three, and even more preferably two.
 ポリエーテル構造を形成するアルキレンオキシ基は、特に制限されず、例えば上記RP2として採りうるポリアルキレンオキシド鎖が挙げられ、アルキレンオキシ基中のアルキレン基の炭素数は1~6であることが好ましく、2~4であることがより好ましい。
 ポリエーテル構造の組み合わせとしては、特に制限されないが、ポリエチレンオキシ鎖、ポリプロピレンオキシ鎖及びポリテトラメチレンオキシ鎖から選ばれる少なくとも2種のポリエーテル構造が好ましい。ポリエチレンオキシ鎖と、ポリプロピレンオキシ鎖又はポリテトラメチレンオキシ鎖とを含む組み合わせがより好ましく、ポリエチレンオキシ鎖とポリテトラメチレンオキシ鎖とを含む組み合わせが更に好ましい。
Alkyleneoxy group forming a polyether structure is not particularly limited, and for example include polyalkylene oxide chain can take as the R P2, it is preferred that the number of carbon atoms in the alkylene group of the alkylene group is 1 to 6 It is more preferably 2 to 4.
The combination of the polyether structures is not particularly limited, but at least two types of polyether structures selected from the polyethylene oxy chain, the polypropylene oxy chain and the polytetramethylene oxy chain are preferable. A combination containing a polyethylene oxy chain and a polypropylene oxy chain or a polytetramethylene oxy chain is more preferable, and a combination containing a polyethylene oxy chain and a polytetramethylene oxy chain is further preferable.
 少なくとも2種の各ポリエーテル構造の(数平均)分子量は、特に制限されないが、400以下であることが好ましく、350以下であることがより好ましく、300以下であることが更に好ましく、250以下であることが特に好ましい。(数平均)分子量の下限は、特に制限されないが、実際的には100以上であることが好ましく、150以上であることがより好ましい。本発明において、少なくとも2種のポリエーテル構造の(数平均)分子量とは、各ポリエーテル構造の(数平均)分子量とモル分率との積の総和を意味する。各ポリエーテル構造の(数平均)分子量は、特に制限されないが、上述の「少なくとも2種のポリエーテル構造の数平均分子量」を満たす範囲内で適宜に設定されることが好ましい。各ポリエーテル構造の(数平均)分子量は、後述する方法により、(主鎖に組み込まれた状態ではなく)ポリエーテル構造を含む構成成分を導く化合物(通常、各端部に水素原子が結合した化合物、例えば後述するポリエーテルポリオール)について測定した値とする。
 また、各ポリエーテル構造の重合度は、2以上であれば特に制限されず、上述の「各ポリエーテル構造の数平均分子量」を満たす範囲内で適宜に設定されることが好ましい。重合度は、アルキレンオキシ基の炭素数等にもよるが、例えば、2~10であることが好ましく、3~8であることがより好ましく、2~5であることが更に好ましい。
The (number average) molecular weight of each of the at least two types of polyether structures is not particularly limited, but is preferably 400 or less, more preferably 350 or less, further preferably 300 or less, and more preferably 250 or less. It is particularly preferable to have. The lower limit of the (number average) molecular weight is not particularly limited, but is actually preferably 100 or more, and more preferably 150 or more. In the present invention, the (number average) molecular weight of at least two types of polyether structures means the sum of the products of the (number average) molecular weight of each polyether structure and the mole fraction. The (number average) molecular weight of each polyether structure is not particularly limited, but is preferably set appropriately within a range satisfying the above-mentioned "number average molecular weight of at least two types of polyether structures". The (number average) molecular weight of each polyether structure is determined by a compound (usually a hydrogen atom bonded to each end) that leads to a component containing the polyether structure (rather than being incorporated into the main chain) by the method described below. It is a value measured for a compound (for example, a polyether polyol described later).
Further, the degree of polymerization of each polyether structure is not particularly limited as long as it is 2 or more, and it is preferable that the degree of polymerization is appropriately set within a range satisfying the above-mentioned "number average molecular weight of each polyether structure". The degree of polymerization depends on the number of carbon atoms of the alkyleneoxy group and the like, but is preferably 2 to 10, more preferably 3 to 8, and even more preferably 2 to 5.
 ポリエーテル構造を含む構成成分としては、例えば、下記式(I-7)で表される構成成分が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Examples of the constituent component containing the polyether structure include the constituent component represented by the following formula (I-7).
Figure JPOXMLDOC01-appb-C000010
 式中、Xは、単結合、酸素原子若しくは窒素原子、又は連結基を含む基を示し、RP4A及びRP4Bは互いに異なるアルキレン基を示す。n1及びn2は重合度を示す。
 Xは、上記式中のアルキレンオキシ鎖の末端基に応じて適宜に選択される。例えば、アルキレンオキシ基の末端が酸素原子である場合、単結合又は連結基を含む基となり、アルキレンオキシ基の末端がアルキレン基である場合、酸素原子若しくは窒素原子又は連結基を含む基となる。Xとして採りうる連結基を含む基としては、連結基からなる基と、連結基及び酸素原子又は窒素原子を組み合わせた基とが挙げられる。この連結基としては、特に制限されないが、例えば、置換基Zで挙げた各基から水素原子を更に1個除去した基が挙げられ、好ましくはRP4A若しくはRP4Bとして採りうるアルキレン基が挙げられる。上記式(I-7)で表される構成成分における2つのXは同一でも異なっていてもよい。
In the formula, X represents a group containing a single bond, an oxygen atom or a nitrogen atom, or a linking group, and RP4A and RP4B represent alkylene groups different from each other. n1 and n2 indicate the degree of polymerization.
X is appropriately selected according to the terminal group of the alkyleneoxy chain in the above formula. For example, when the end of the alkyleneoxy group is an oxygen atom, it becomes a group containing a single bond or a linking group, and when the end of the alkyleneoxy group is an alkylene group, it becomes a group containing an oxygen atom or a nitrogen atom or a linking group. Examples of the group containing a linking group that can be taken as X include a group consisting of a linking group and a group in which a linking group and an oxygen atom or a nitrogen atom are combined. The linking group is not particularly limited, and examples thereof include a group obtained by further removing one hydrogen atom from each group listed in the substituent Z, and preferably an alkylene group which can be taken as RP4A or RP4B. .. The two Xs in the constituents represented by the above formula (I-7) may be the same or different.
 RP4A及びRP4Bとして採りうるアルキレン基は、特に制限されないが、上述の、ポリエーテル構造を形成するアルキレンオキシ基中のアルキレン基と同義であり、好ましいものも同じである。RP4AとRP4Bとの組み合わせとしては、上述の、ポリエーテル構造の組み合わせで説明した組み合わせと同義であり、好ましいものも同じである。 The alkylene group that can be taken as RP4A and RP4B is not particularly limited, but is synonymous with the above-mentioned alkylene group in the alkyleneoxy group forming the polyether structure, and the preferred one is also the same. The combination of R P4A and R P4B is synonymous with the combination described in the above-mentioned combination of polyether structures, and the preferred one is also the same.
 n1及びn2は、それぞれ、重合度を示し、n1は2以上の数であり、n2は0又は1を超える数であり、2以上の数とすることもできる。
 n2が0である場合、式(I-7)で表される構成成分は、単独のポリアルキレンオキシ鎖を含む構成成分となる。この形態において、バインダー形成ポリマーの主鎖は、上記式(I-7)で表される異なる構成成分を少なくとも2種有し、2種若しくは3種有することが好ましく、2種有することがより好ましい。この形態において、式(I-7)で表される構成成分は、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレンエーテルグリコールから選ばれる少なくとも2種に由来する構成成分であることが好ましい。また、n2が1を超える数である式(I-7)で表される構成成分を有していてもよい。
 この態様において、式(I-7)で表される2種以上の異なる構成成分の(数平均)分子量、各構成成分の(数平均)分子量は、それぞれ、上述の少なくとも2種のポリエーテル構造の(数平均)分子量と同義であり、好ましい範囲も同じである。また、式(I-7)で表される2種以上の異なる構成成分におけるn1は、それぞれ、(数平均)分子量を満たす範囲内で適宜に設定され、上述のポリエーテル構造の重合度と同義であり、好ましい範囲も同じである。
n1 and n2 indicate the degree of polymerization, respectively, n1 is a number of 2 or more, n2 is a number of 0 or more than 1, and can be a number of 2 or more.
When n2 is 0, the component represented by the formula (I-7) is a component containing a single polyalkyleneoxy chain. In this form, the main chain of the binder-forming polymer has at least two different constituents represented by the above formula (I-7), preferably two or three types, and more preferably two types. .. In this form, the constituent component represented by the formula (I-7) is preferably a constituent component derived from at least two kinds selected from polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol. Further, it may have a constituent component represented by the formula (I-7) in which n2 is a number exceeding 1.
In this embodiment, the (number average) molecular weight of two or more different constituents represented by the formula (I-7) and the (number average) molecular weight of each constituent are the above-mentioned at least two types of polyether structures, respectively. It is synonymous with the (number average) molecular weight of, and the preferred range is also the same. Further, n1 in two or more different constituents represented by the formula (I-7) is appropriately set within a range satisfying the (number average) molecular weight, and has the same meaning as the degree of polymerization of the above-mentioned polyether structure. And the preferred range is the same.
 n2が1を超える数である場合、式(I-7)で表される構成成分は、2種のポリアルキレンオキシ鎖の共重合物を含む構成成分となる。共重合物における2つのポリアルキレンオキシ鎖の結合様式は、特に制限されず、ランダム結合でもブロック結合でも交互結合でもよい。この形態において、バインダー形成ポリマーの主鎖は、上記式(I-7)で表される構成成分を少なくとも1種有していればよく、1種有することが好ましい。この形態において、式(I-7)で表される構成成分としては、例えば、ポリエチレンオキシ鎖及びポリプロピレンオキシ鎖の共重合体からなる構成成分が挙げられる。
 式(I-7)で表される構成成分の(数平均)分子量は、上述の少なくとも2種のポリエーテル構造の(数平均)分子量と同義であり、好ましい範囲も同じである。また、2つのポリアルキレンオキシ鎖の(数平均)分子量は、それぞれ、上述の各ポリエーテル構造の(数平均)分子量と同義であり、好ましい範囲も同じである。同一のポリアルキレンオキシ鎖を複数有する場合、ポリアルキレンオキシ鎖の(数平均)分子量は合計分子量とする。更に、n1及びn2は、それぞれ、(数平均)分子量を満たす範囲内で適宜に設定され、上述のポリエーテル構造の重合度と同義であり、好ましい範囲も同じである。
When n2 is a number exceeding 1, the constituent component represented by the formula (I-7) is a constituent component containing a copolymer of two types of polyalkyleneoxy chains. The bonding mode of the two polyalkyleneoxy chains in the copolymer is not particularly limited, and may be a random bond, a block bond, or an alternating bond. In this form, the main chain of the binder-forming polymer may have at least one kind of constituent components represented by the above formula (I-7), and preferably one kind. In this form, examples of the constituent component represented by the formula (I-7) include a constituent component composed of a polyethylene oxy chain and a copolymer of a polypropylene oxy chain.
The (number average) molecular weight of the constituents represented by the formula (I-7) is synonymous with the (number average) molecular weight of at least two of the above-mentioned polyether structures, and the preferable range is also the same. Further, the (number average) molecular weights of the two polyalkyleneoxy chains are synonymous with the (number average) molecular weights of the above-mentioned respective polyether structures, and the preferable ranges are also the same. When having a plurality of the same polyalkyleneoxy chains, the (number average) molecular weight of the polyalkyleneoxy chains shall be the total molecular weight. Further, n1 and n2 are appropriately set within a range satisfying the (number average) molecular weight, respectively, and have the same meaning as the degree of polymerization of the above-mentioned polyether structure, and the preferable range is also the same.
 上記式(I-7)は2種のポリエーテル構造(アルキレンオキシ鎖)を含む構成成分を規定しているが、本発明において、ポリエーテル構造を含む構成成分、上記式(I-7)で表される構成成分は、3種以上のポリエーテル構造を含んでいてもよい。 The above formula (I-7) defines a component containing two types of polyether structures (alkyleneoxy chains), but in the present invention, the component containing a polyether structure, the above formula (I-7), is used. The constituent component represented may contain three or more types of polyether structures.
 上記式(I-7)で表される構成成分の具体例を以下に示すが、本発明はこれに限定されない。下記具体例において、アルキレンオキシ基の重合度を省略するが、上記した範囲で設定される。
Figure JPOXMLDOC01-appb-C000011
Specific examples of the constituents represented by the above formula (I-7) are shown below, but the present invention is not limited thereto. In the following specific example, the degree of polymerization of the alkyleneoxy group is omitted, but it is set within the above range.
Figure JPOXMLDOC01-appb-C000011
 - 官能基群から選択される官能基を有する構成成分 -
 バインダー形成ポリマーは、上述の官能基群から選択される官能基を少なくとも1つ有する構成成分(官能基含有構成成分ということがある。)を含んでいる。無機固体電解質含有組成物に用いるバインダー形成ポリマーが上述の(P1)を満たしたうえで官能基含有構成成分を含んでいること(P2)により、無機固体電解質含有組成物の分散安定性の改善だけでなく、膜強度を強化でき、電池抵抗及びサイクル特性をも改善できる。バインダー形成ポリマーが含む官能基含有構成成分の数は、1つ以上であれば特に制限されず、例えば1~4つとすることができ、1~2つが好ましい。
-Components having functional groups selected from the functional group group-
The binder-forming polymer contains a component having at least one functional group selected from the above-mentioned functional group group (sometimes referred to as a functional group-containing component). Since the binder-forming polymer used in the inorganic solid electrolyte-containing composition satisfies the above-mentioned (P1) and contains a functional group-containing component (P2), only the improvement of the dispersion stability of the inorganic solid electrolyte-containing composition is achieved. In addition, the film strength can be strengthened, and the battery resistance and cycle characteristics can also be improved. The number of functional group-containing constituent components contained in the binder-forming polymer is not particularly limited as long as it is one or more, and may be, for example, 1 to 4, preferably 1 to 2.
 官能基含有構成成分が有する官能基は、下記官能基群から選択される官能基である。
 
 <官能基群>
 水酸基、1級アミノ基、2級アミノ基、スルファニル基(メルカプト基:-SH)
 
 水酸基(-OH)は、アルコール性水酸基及びフェノール性水酸基を含み、アルコール性水酸基が好ましい。1級アミノ基は無置換アミノ基(-NH)を意味し、2級アミノ基は一置換アミノ基(-NRH:Rは置換基を表す。)又は無置換イミノ基(-NH-、ただし、=NHは除く。)を含み、無置換イミノ基が好ましい。アミノ基としては、2級アミノ基よりも1級アミノ基が好ましい。水酸基、各アミノ基及びスルファニル基は塩を形成していてもよい。
 各官能基は、単独で上記化学式で表される基を意味し、他の官能基の一部に含まれる部分構造となる態様を含まない。例えば、カルボキシ基(-CO-OH)はカルボニル基と水酸基とを含んで形成されるが、カルボキシ基を形成する水酸基は上記官能基群に含まれる水酸基とは解釈しない。
The functional group contained in the functional group-containing constituent component is a functional group selected from the following functional group group.

<Functional group group>
Hydroxy group, primary amino group, secondary amino group, sulfanilic group (mercapto group: -SH)

The hydroxyl group (−OH) includes an alcoholic hydroxyl group and a phenolic hydroxyl group, and an alcoholic hydroxyl group is preferable. The primary amino group means an unsubstituted amino group (-NH 2 ), and the secondary amino group is a monosubstituted amino group (-NRH: R represents a substituent) or an unsubstituted imino group (-NH-, but wherever , = NH is excluded.), And an unsubstituted imino group is preferable. As the amino group, a primary amino group is preferable to a secondary amino group. The hydroxyl group, each amino group and the sulfanilic group may form a salt.
Each functional group means a group represented by the above chemical formula alone, and does not include an embodiment having a partial structure contained in a part of other functional groups. For example, a carboxy group (-CO-OH) is formed by containing a carbonyl group and a hydroxyl group, but the hydroxyl group forming the carboxy group is not interpreted as a hydroxyl group contained in the functional group group.
 上記官能基群から選択される官能基は、いずれも、活性水素を含む官能基であり、共通の作用を示す。すなわち、これらの官能基は、本発明に用いるバインダーに組み込まれた状態で無機固体電解質含有組成物中に存在すると、無機固体電解質等の固体粒子に対して適度な(固体粒子に対して再凝集、沈殿させるほど過度に吸着しない程度の)相互作用を示す。また、構成層中においては、固体粒子同士を結着させる程度の相互作用を示す。
 上記共通の作用を示す官能基は、例えば、酸解離定数(Ka)の負の常用対数:-logKa(pKa)等で規定することもでき、pKaとしては、1~20の範囲が好ましく、8~16の範囲がより好ましい。pKaは、ポリマーバインダーの水溶液に対して0.01mоl/Lの水酸化ナトリウム水溶液を滴下し、半当量点までに滴下した水酸化ナトリウム水溶液の量を読み取ることで算出できる。
The functional groups selected from the above functional groups are all functional groups containing active hydrogen and exhibit a common action. That is, when these functional groups are present in the composition containing the inorganic solid electrolyte in a state of being incorporated in the binder used in the present invention, they are appropriate for solid particles such as the inorganic solid electrolyte (reaggregation with respect to the solid particles). (To the extent that it does not adsorb excessively enough to precipitate). In addition, in the constituent layers, the interaction is such that solid particles are bound to each other.
The functional group exhibiting the above-mentioned common action can be defined by, for example, the negative common logarithm of the acid dissociation constant (Ka): -logKa (pKa), and the pKa is preferably in the range of 1 to 20. The range of ~ 16 is more preferable. pKa can be calculated by dropping a 0.01 mL / L sodium hydroxide aqueous solution with respect to the polymer binder aqueous solution and reading the amount of the sodium hydroxide aqueous solution dropped up to the half equivalence point.
 官能基群から選択される官能基は、固体粒子、特に無機固体電解質又は活物質に対する吸着性の点で、水酸基、1級アミノ基又は2級アミノ基が好ましく、水酸基又は1級アミノ基がより好ましく、水酸基が更に好ましい。 The functional group selected from the functional group group is preferably a hydroxyl group, a primary amino group or a secondary amino group, and more preferably a hydroxyl group or a primary amino group in terms of adsorptivity to solid particles, particularly an inorganic solid electrolyte or an active material. Preferably, hydroxyl groups are even more preferred.
 上記官能基は、バインダー形成ポリマーを構成する構成成分に導入されている基を意味し、具体的には、主鎖を形成する原子間に組み込まれた基、更には、主鎖を形成する原子に直接、好ましくは連結基を介して結合した基を意味する。すなわち、上記官能基は、上記(P1-2)で規定する各結合を形成する基(例えば、ウレタン結合若しくはウレア結合中のイミノ基:-NH-)を包含せず、また主鎖の端部に存在する末端官能基を包含しない。 The functional group means a group introduced into a constituent component of a binder-forming polymer, and specifically, a group incorporated between atoms forming a main chain, and further, an atom forming a main chain. Means a group attached directly to, preferably via a linking group. That is, the functional group does not include the group forming each bond specified in (P1-2) above (for example, the imino group in the urethane bond or the urea bond: -NH-), and the end of the main chain. Does not include the terminal functional groups present in.
 1つの官能基含有構成成分が有する上記官能基の種類数は、特に限定されず、1種又は2種であることが好ましい。また、1つの官能基含有構成成分が有する上記官能基の数は、少なくとも1つであればよく、例えば1~4つとすることができる。1つの官能基含有構成成分中の官能基の数は、後述する、官能基含有構成成分のポリマー中の含有量を考慮して決定することもできるが、無機固体電解質含有組成物の分散安定性の点で、好ましくは2つ以上であり、2つがより好ましい。1つの官能基含有構成成分が2つ以上の官能基を有する場合、少なくとも1つの官能基が水酸基であることが好ましく、1つの官能基が水酸基であり、もう1つの官能基が1級アミノ基又は水酸基であることがより好ましく、すべての官能基が水酸基であることが更に好ましい。
 なお、1分子のバインダー形成ポリマー全体が有する官能基の平均数は、本発明の効果を損なわない範囲であれば特に限定されず、1つの官能基含有構成成分中の官能基の数とこの官能基含有構成成分のポリマー中の含有量を考慮して適宜に決定される。
The number of types of the functional groups contained in one functional group-containing component is not particularly limited, and is preferably one or two. Further, the number of the functional groups contained in one functional group-containing component may be at least one, and may be, for example, one to four. The number of functional groups in one functional group-containing component can be determined in consideration of the content of the functional group-containing component in the polymer, which will be described later, but the dispersion stability of the inorganic solid electrolyte-containing composition In this respect, it is preferably two or more, and more preferably two. When one functional group-containing constituent has two or more functional groups, it is preferable that at least one functional group is a hydroxyl group, one functional group is a hydroxyl group, and the other functional group is a primary amino group. Alternatively, it is more preferably a hydroxyl group, and it is further preferable that all functional groups are hydroxyl groups.
The average number of functional groups contained in the entire binder-forming polymer of one molecule is not particularly limited as long as the effects of the present invention are not impaired, and the number of functional groups in one functional group-containing constituent component and this functional group are not particularly limited. It is appropriately determined in consideration of the content of the group-containing constituent component in the polymer.
 官能基含有構成成分は、上記官能基を有する構成成分であれば特に制限されず、上記式(I-1)~式(I-4)のいずれかで表される構成成分を導く化合物と共重合可能な化合物に上記官能基を導入した化合物に由来する構成成分が挙げられる。
 官能基含有構成成分は、高分子量成分(例えばマクロモノマーに由来する構成成分)でもよく、また化学構造中に重合鎖を含んでいてもよい。本発明において、官能基含有構成成分は、例えば分子量が400以下の低分子化合物に由来する構成成分(低分子量構成成分)、化学構造中に重合鎖を含んでいない構成成分(非重合性構成成分)が、分子化合物、膜強度及び電池性能の点で、好ましい。
 例えば、上述の式(1-1)~式(1-4)のいずれかで表される構成成分に上記官能基を導入した構成成分が挙げられ、式(1-1)~式(1-4)中のRP1及びRP2に直接又は連結基を介して上記官能基(好ましくは水酸基又は1級アミノ基)を導入した構成成分、及び、各式のRP1及びRP2の構造中に上記官能基(好ましくは無置換イミノ基)を組み込んだ構成成分(例えば後掲する構成成分A-7)等が好ましく挙げられる。
The functional group-containing constituent component is not particularly limited as long as it is a constituent component having the above functional group, and is coexisting with a compound that derives a constituent component represented by any of the above formulas (I-1) to (I-4). Examples thereof include constituent components derived from a compound in which the above functional group is introduced into a polymerizable compound.
The functional group-containing constituent component may be a high molecular weight component (for example, a component derived from a macromonomer), or may contain a polymerized chain in the chemical structure. In the present invention, the functional group-containing component is, for example, a component derived from a low molecular weight compound having a molecular weight of 400 or less (low molecular weight component), or a component that does not contain a polymer chain in its chemical structure (non-polymerizable component). ) Is preferable in terms of molecular compound, film strength and battery performance.
For example, a component in which the above functional group is introduced into a component represented by any of the above formulas (1-1) to (1-4) can be mentioned, and the components represented by the above formulas (1-1) to (1-4) can be mentioned. 4) In the constituent components in which the above functional group (preferably a hydroxyl group or a primary amino group) is introduced into RP1 and RP2 directly or via a linking group, and in the structure of RP1 and RP2 of each formula. A constituent component (for example, constituent component A-7 described later) incorporating the above functional group (preferably an unsubstituted imino group) and the like are preferably mentioned.
 上記連結基としては、特に制限されないが、例えば、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルケニレン基(炭素数は2~6が好ましく、2~3がより好ましい)、アリーレン基(炭素数は6~24が好ましく、6~10がより好ましい)、酸素原子、硫黄原子、イミノ基(-NR-:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基を示す。)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はこれらの組み合わせに係る基等が挙げられる。アルキレン基と酸素原子とを組み合わせてポリアルキレンオキシ鎖を形成することもできる。連結基としては、アルキレン基若しくはアリーレン基、又は、アルキレン基、アリーレン基、カルボニル基、酸素原子、硫黄原子及びイミノ基を組み合わせてなる基が好ましく、アルキレン基、又は、アルキレン基、アリーレン基、カルボニル基、酸素原子及びイミノ基を組み合わせてなる基がより好ましく、アルキレン基、又は、-CO-O-基、-CO-N(R)-基(Rは上記の通りである。)を含む基が更に好ましく、-CO-O-アルキレン-基又は-CO-N(R)-アルキレン-基(Rは上記の通りである。)が特に好ましい。
 本発明において、RP1及びRP2を構成する原子とRP1及びRP2に対して最も近い官能基とを連結する連結基を構成する原子の数は、1~36であることが好ましく、1~24であることがより好ましく、1~12であることが更に好ましい。連結基の連結原子数は10以下であることが好ましく、8以下であることがより好ましい。下限としては、1以上である。上記連結原子数とは所定の構造部間を結ぶ最少の原子数をいう。例えば、-C(=O)-O-CH-の場合、連結基を構成する原子の数は6となるが、連結原子数は3となる。
 連結基は、置換基を有していてもいなくてもよい。有していてもよい置換基としては、例えば、置換基Zが挙げられ、上記官能基群から選択される官能基以外の基が好ましい。
The linking group is not particularly limited, but is, for example, an alkylene group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms), an alkenylene group (2 to 6 carbon atoms is preferable). and more preferably from 2-3), an arylene group (number of carbon atoms is preferably 6 to 24, more preferably 6 to 10), an oxygen atom, a sulfur atom, an imino group (-NR N -: R N is hydrogen, An alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms is shown), a carbonyl group, a phosphate linking group (-OP (OH) (O) -O-), a phosphonic acid linking group (. -P (OH) (O) -O-), or a group related to a combination thereof and the like can be mentioned. A polyalkyleneoxy chain can also be formed by combining an alkylene group and an oxygen atom. As the linking group, an alkylene group or an arylene group, or a group consisting of a combination of an alkylene group, an arylene group, a carbonyl group, an oxygen atom, a sulfur atom and an imino group is preferable, and an alkylene group, an alkylene group, an arylene group, or a carbonyl group is preferable. group, more preferably comprising a combination of an oxygen atom and an imino group group, an alkylene group, or, -CO-O-group, -CO-N (R N) - based on (R N are as defined above.) more preferably a group containing, -CO-O-alkylene - or -CO-N (R N) - alkylene - group (. R N are as defined above) are particularly preferred.
In the present invention, the number of atoms constituting the linking group which links the closest functional group with respect to R P1 and R P2 constituting atom and R P1 and R P2 is preferably 1 to 36, 1 It is more preferably to 24, and even more preferably 1 to 12. The number of connecting atoms of the linking group is preferably 10 or less, more preferably 8 or less. The lower limit is 1 or more. The number of connected atoms is the minimum number of atoms connecting a predetermined structural part. For example, in the case of -C (= O) -O-CH 2- , the number of atoms constituting the linking group is 6, but the number of linking atoms is 3.
The linking group may or may not have a substituent. Examples of the substituent which may be possessed include a substituent Z, and a group other than the functional group selected from the above functional group group is preferable.
 上記官能基が導入される構成成分は、上述の式(1-1)~式(1-4)のなかでも式(I-3)又は式(I-4)で表される構成成分が好ましく、式(I-3)で表される構成成分の中でも、上述の式(I-3A)で表される構成成分がより好ましい。 The constituent component into which the functional group is introduced is preferably the constituent component represented by the formula (I-3) or the formula (I-4) among the above-mentioned formulas (1-1) to (1-4). , Among the constituents represented by the formula (I-3), the constituents represented by the above formula (I-3A) are more preferable.
 官能基含有構成成分が有する、上記連結基と上記官能基とからなる部分構造(側鎖)としては、下記式(F1)で表される部分構造が、分散安定性、膜強度及び電池性能のバランスの点で、好ましい。この部分構造は、例えば、ポリマーの主鎖に対するグラフト重合鎖等のように、重合鎖からなる構造でも重合鎖を含む構造でもよいが、重合鎖を含まない構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
As the partial structure (side chain) of the functional group-containing constituent component composed of the linking group and the functional group, the partial structure represented by the following formula (F1) has the dispersion stability, film strength and battery performance. It is preferable in terms of balance. This partial structure may be a structure composed of a polymerized chain or a structure containing a polymerized chain, such as a graft polymerized chain for the main chain of a polymer, but a structure not containing the polymerized chain is preferable.
Figure JPOXMLDOC01-appb-C000012
 式(F1)において、L及びLはそれぞれ連結基を示し、上記連結基と同義である。ただし、Lは-CO-基が好ましく、Lはアルキレン基が好ましく、例えば、式(F1)で表される部分構造はアルキルオシキカルボニル基であることが好ましい。
 Rは水酸基又は1級若しくは2級アミノ基を示し、それぞれ上記官能基群に含まれる対応する基と同義である。Rとしては水酸基又は1級アミノ基が好ましく、水酸基がより好ましい。
 Rは置換基を示す。Rとしてとりうる置換基としては、特に制限されないが、好ましくは、下記置換基Zから選択される各基、又は置換基Zから選択される複数の基を組み合わせた基が挙げられる。下記置換基Zから選択される基としては、特に制限されないが、アルキル基、アリール基、ヘテロ環基、又は上記官能基群に含まれる各官能基が好ましい。組み合わせた基としては、特に制限されないが、少なくとも1つは上記官能基群から選択される官能基であることが好ましく、置換基Zから選択されるアルキル基、アリール基若しくはヘテロ環基と官能基とを組み合わせた基(官能基を有するアルキル基、官能基を有するアリール基又は官能基を有するヘテロ環基)がより好ましく、アルキル基と官能基とを組み合わせた基が更に好ましい。
In the formula (F1), L 1 and L 2 each indicate a linking group and are synonymous with the above linking group. However, L 1 is preferably a —CO— group, L 2 is preferably an alkylene group, and for example, the partial structure represented by the formula (F1) is preferably an alkylosikicarbonyl group.
R 1 represents a hydroxyl group or a primary or secondary amino group, which is synonymous with the corresponding group contained in the functional group group. As R 1 , a hydroxyl group or a primary amino group is preferable, and a hydroxyl group is more preferable.
R 2 indicates a substituent. The substituent that can be taken as R 2 is not particularly limited, but preferably, each group selected from the following substituent Z, or a group combining a plurality of groups selected from the substituent Z can be mentioned. The group selected from the following substituent Z is not particularly limited, but an alkyl group, an aryl group, a heterocyclic group, or each functional group contained in the above functional group group is preferable. The combined group is not particularly limited, but at least one is preferably a functional group selected from the above functional group group, and an alkyl group, an aryl group or a heterocyclic group selected from the substituent Z and a functional group. A group in combination with (an alkyl group having a functional group, an aryl group having a functional group or a heterocyclic group having a functional group) is more preferable, and a group in which an alkyl group and a functional group are combined is further preferable.
 官能基含有構成成分が有する、上記連結基と上記官能基とからなる部分構造としては、下記式(F2)で表される部分構造が、分散安定性、膜強度及び電池性能のバランスの点で、より好ましい。
Figure JPOXMLDOC01-appb-C000013
As a partial structure composed of the linking group and the functional group contained in the functional group-containing constituent component, the partial structure represented by the following formula (F2) has a balance of dispersion stability, film strength and battery performance. , More preferred.
Figure JPOXMLDOC01-appb-C000013
 式(F2)において、Lは連結基を示し、上記式(F1)のLと同義であり、好ましいものも同じである。
 Rは置換基を示し、上記式(F1)におけるRが結合する炭素原子との間に炭素原子(メチレン基)を有していること以外は、式(F1)のRと同義であり、好ましいものも同じである。
In the formula (F2), L 1 represents a linking group, which is synonymous with L 1 in the above formula (F1), and the preferred one is also the same.
R 3 represents a substituent and is synonymous with R 2 in the formula (F1) except that it has a carbon atom (methylene group) between it and the carbon atom to which R 1 in the above formula (F1) is bonded. Yes, and the preferred ones are the same.
 バインダー形成ポリマーは、官能基含有構成成分を1種含有していればよく、2種以上を含有していてもよい。2種以上の官能基含有構成成分を含有する場合、各官能基含有構成成分は化学構造が異なるものであればよく、例えば、1つの官能基を有する官能基含有構成成分と2つ以上の官能基を有する官能基含有構成成分とを含むことができる。 The binder-forming polymer may contain only one type of functional group-containing constituent component, and may contain two or more types. When two or more kinds of functional group-containing constituents are contained, each functional group-containing constituent may have a different chemical structure. For example, a functional group-containing constituent having one functional group and two or more functionals It can include a functional group-containing constituent having a group.
 官能基含有構成成分の具体例としては、後掲するバインダー形成ポリマーが含有する構成成分及び実施例で合成したバインダー形成ポリマーが含有する構成成分A-1~A-8が挙げられる。 Specific examples of the functional group-containing constituents include the constituents contained in the binder-forming polymer described later and the constituents A-1 to A-8 contained in the binder-forming polymer synthesized in the examples.
(その他の構成成分)
 本発明に用いるバインダーを形成するポリマーは、上記式(I-1)~(I-4)のいずれかで表される構成成分及び官能基を有する構成成分以外の構成成分を有していてもよい。このような構成成分は、上記各式で表される構成成分を導く原料化合物と逐次重合可能なものであれば特に制限されない。
(Other components)
The polymer forming the binder used in the present invention may have a constituent component other than the constituent component represented by any of the above formulas (I-1) to (I-4) and the constituent component having a functional group. good. Such a constituent component is not particularly limited as long as it can be sequentially polymerized with the raw material compound that derives the constituent component represented by each of the above formulas.
 バインダー形成ポリマー中の、上記式(I-1)~(I-4)のいずれかで表される構成成分の(合計)含有量は、特に限定されないが、5~95モル%であることが好ましく、5~80モル%であることがより好ましく、10~60モル%であることが更に好ましい。
 バインダー形成ポリマー中の、上記官能基を有する構成成分の含有量は、分散安定性の改善、膜強度の強化、電池抵抗及びサイクル特性の改善の点で、0.01~50モル%であることが好ましく、0.05~30モル%がより好ましく、0.1~20モル%が更に好ましい。
 バインダー形成ポリマー中の、上記その他の構成成分の含有量は、特に限定されず、例えば、50質量%以下とすることができる。
The (total) content of the constituents represented by any of the above formulas (I-1) to (I-4) in the binder-forming polymer is not particularly limited, but may be 5 to 95 mol%. It is preferably 5 to 80 mol%, more preferably 10 to 60 mol%.
The content of the component having a functional group in the binder-forming polymer shall be 0.01 to 50 mol% in terms of improvement of dispersion stability, enhancement of film strength, improvement of battery resistance and cycle characteristics. Is preferable, 0.05 to 30 mol% is more preferable, and 0.1 to 20 mol% is further preferable.
The content of the other constituent components in the binder-forming polymer is not particularly limited, and can be, for example, 50% by mass or less.
 バインダー形成ポリマーが上記式(I-1)~式(I-4)のいずれかで表される構成成分の各含有量は、特に制限されないが、上記(合計)含有量を満たしていることが好ましく、例えば、以下の範囲に設定できる。
 すなわち、バインダー形成ポリマー中の、式(I-1)又は式(I-2)で表される構成成分の各含有量は、特に制限されず、10~50モル%であることが好ましく、20~50モル%であることがより好ましく、30~50モル%であることが更に好ましい。
 バインダー形成ポリマー中の、式(I-3)又は式(I-4)で表される構成成分の各含有量は、特に制限されず、0~50モル%であることが好ましく、5~45モル%であることがより好ましく、10~45モル%であることが更に好ましい。
The content of each component represented by any of the above formulas (I-1) to (I-4) in the binder-forming polymer is not particularly limited, but the binder-forming polymer must satisfy the above (total) content. Preferably, for example, it can be set in the following range.
That is, the content of each of the components represented by the formula (I-1) or the formula (I-2) in the binder-forming polymer is not particularly limited and is preferably 10 to 50 mol%, 20 It is more preferably to 50 mol%, further preferably 30 to 50 mol%.
The content of each component represented by the formula (I-3) or the formula (I-4) in the binder-forming polymer is not particularly limited and is preferably 0 to 50 mol%, preferably 5 to 45. It is more preferably mol%, and even more preferably 10 to 45 mol%.
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が低分子量の炭化水素基からなる鎖である構成成分(例えば上記式(I-3A)で表される構成成分)の、バインダー形成ポリマー中の各含有量は、特に制限されず、例えば、0~50モル%であることが好ましく、1~30モル%であることがより好ましく、2~20モル%であることが更に好ましく、4~25モル%であることが更に好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が分子鎖として上記ポリアルキレンオキシ鎖である構成成分(例えば上記式(I-3B)で表される構成成分)の、バインダー形成ポリマー中の各含有量は、特に制限されず、例えば、0~50モル%であることが好ましく、5~45モル%であることがより好ましく、10~43モル%であることが更に好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が分子鎖として上記炭化水素ポリマー鎖である構成成分(例えば上記式(I-3C)で表される構成成分)の、バインダー形成ポリマー中の各含有量は、特に制限されないが、例えば、0~50モル%であることが好ましく、1~45モル%であることがより好ましく、3~40モル%であることがより一層好ましく、3~30モル%であることが更に好ましく、3~20モル%であることが特に好ましく、3~10モル%であることが最も好ましい。
Among the components represented by the formula (I-3) or the formula (I-4), the component in which RP2 is a chain composed of a low molecular weight hydrocarbon group (for example, represented by the above formula (I-3A)). The content of each of the constituent components in the binder-forming polymer is not particularly limited, and is, for example, preferably 0 to 50 mol%, more preferably 1 to 30 mol%, and 2 to 20 mol%. It is more preferably%, and even more preferably 4 to 25 mol%.
Among the components represented by the formula (I-3) or the formula (I-4), the component in which RP2 is the polyalkyleneoxy chain as a molecular chain (for example, represented by the above formula (I-3B)). The content of each of the constituents) in the binder-forming polymer is not particularly limited, and is, for example, preferably 0 to 50 mol%, more preferably 5 to 45 mol%, and 10 to 43 mol%. Is more preferable.
Among the components represented by the formula (I-3) or the formula (I-4), the component in which RP2 is the hydrocarbon polymer chain as a molecular chain (for example, represented by the above formula (I-3C)). The content of each of the constituents) in the binder-forming polymer is not particularly limited, but is preferably, for example, 0 to 50 mol%, more preferably 1 to 45 mol%, and 3 to 40 mol%. It is even more preferably 3 to 30 mol%, particularly preferably 3 to 20 mol%, and most preferably 3 to 10 mol%.
 式(I-7)で表される構成成分の、バインダー形成ポリマー中の(合計)含有量は、特に制限されないが、上記式(I-3B)で表される構成成分の含有量に設定される。
 バインダー形成ポリマーが式(I-7)で表される異なる構成成分を複数有する場合、各構成成分の含有量は、上記(合計)含有量を満たす範囲内で適宜に決定される。例えば、式(I-7)で表される異なる構成成分を2種有する場合、一方の構成成分(好ましくは、分子量が大きなアルキレンオキシ基で形成されたポリエーテル構造を有する構成成分)の含有量は、例えば、5~30モル%であることが好ましく、10~25モル%であることがより好ましく、15~20モル%であることが更に好ましい。他方の構成成分(好ましくは、分子量が小さなアルキレンオキシ基で形成されたポリエーテル構造を有する構成成分)の含有量は、例えば、10~50モル%であることが好ましく、15~40モル%であることがより好ましく、20~30モル%であることが更に好ましい。また、一方の構成成分と他方の構成成分との含有量の比[一方の構成成分:他方の構成成分]は、特に制限されないが、例えば、10:90~80:20であることが好ましく、20:80~70:30であることがより好ましい。
 一方、ポリウレタンが式(I-7)で表される異なる構成成分を3種以上有する場合、分子量が最も小さなアルキレンオキシ基で形成されたポリエーテル構造を有する構成成分を上記他方の構成成分とし、それ以外の構成成分を上記一方の構成成分とする。
The (total) content of the component represented by the formula (I-7) in the binder-forming polymer is not particularly limited, but is set to the content of the component represented by the above formula (I-3B). NS.
When the binder-forming polymer has a plurality of different constituent components represented by the formula (I-7), the content of each constituent component is appropriately determined within a range satisfying the above (total) content. For example, when it has two different constituents represented by the formula (I-7), the content of one constituent (preferably a constituent having a polyether structure formed of an alkyleneoxy group having a large molecular weight). Is, for example, preferably 5 to 30 mol%, more preferably 10 to 25 mol%, and even more preferably 15 to 20 mol%. The content of the other component (preferably a component having a polyether structure formed of an alkyleneoxy group having a small molecular weight) is preferably, for example, 10 to 50 mol%, preferably 15 to 40 mol%. It is more preferably present, and further preferably 20 to 30 mol%. The ratio of the content of one component to the other component [one component: the other component] is not particularly limited, but is preferably, for example, 10:90 to 80:20. It is more preferably 20:80 to 70:30.
On the other hand, when polyurethane has three or more different constituents represented by the formula (I-7), a constituent having a polyether structure formed of an alkyleneoxy group having the smallest molecular weight is used as the other constituent. The other constituents are one of the above constituents.
 なお、バインダー形成ポリマーが各式で表される構成成分を複数有する場合、各構成成分の上記含有量は合計含有量とする。 When the binder-forming polymer has a plurality of constituent components represented by each formula, the above-mentioned content of each constituent component shall be the total content.
 バインダー形成ポリマー(各構成成分及び原料化合物)は、置換基を有していてもよい。置換基としては、特に制限されないが、好ましくは下記置換基Zから選択される基(ただし、上述の官能基群に含まれる各官能基を除く。またポリマーの主鎖を形成する原子についてはフッ素原子を除く。)が挙げられ、好ましくは、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、ヘテロ環基、アリール基、アルコキシシリル基、(メタ)アクリロイルオキシ基、3環以上の縮環構造を有する基、又はエーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合を含む基以外の官能基が挙げられる。 The binder-forming polymer (each constituent component and raw material compound) may have a substituent. The substituent is not particularly limited, but is preferably a group selected from the following substituent Z (however, each functional group included in the above-mentioned functional group group is excluded. The atom forming the main chain of the polymer is fluorine. Atoms are excluded.), Preferably, a carboxy group, a sulfo group, a phosphate group, a phosphonic acid group, a heterocyclic group, an aryl group, an alkoxysilyl group, a (meth) acryloyloxy group, and a condensed ring having three or more rings. Examples thereof include a group having a structure, or a functional group other than a group containing an ether bond, an ester bond, an amide bond, a urethane bond, and a urea bond.
 - 置換基Z -
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、本明細書においてアルキル基というときには通常シクロアルキル基を含む意味であるが、ここでは別記する。)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、より好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等、本明細書においてアリールオキシ基というときにはアリーロイルオキシ基を含む意味である。)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル、ドデシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、ヘテロ環オキシカルボニル基(上記ヘテロ環基に-O-CO-基が結合した基)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、ホスホン酸基(好ましくは炭素数0~20のホスホン酸基、例えば、-PO(OR)、スルホ基(スルホン酸基)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Zから選択される基)である。
 また、これらの置換基Zで挙げた各基は、上記置換基Zが更に置換していてもよい。
 上記アルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等は、環状でも鎖状でもよく、また直鎖でも分岐していてもよい。
-Substituent Z-
Alkyl groups (preferably alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl groups. (Preferably an alkenyl group having 2 to 20 carbon atoms, for example, vinyl, allyl, oleyl, etc.), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms, for example, ethynyl, butadynyl, phenylethynyl, etc.), a cycloalkyl group. (Preferably, a cycloalkyl group having 3 to 20 carbon atoms, for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., is usually used in the present specification to include a cycloalkyl group. An aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), an aralkyl group (preferably having 7 carbon atoms). ~ 23 aralkyl groups (eg, benzyl, phenethyl, etc.), heterocyclic groups (preferably heterocyclic groups having 2 to 20 carbon atoms, more preferably 5 or 5 having at least one oxygen atom, sulfur atom, nitrogen atom. It is a 6-membered heterocyclic group. The heterocyclic group includes an aromatic heterocyclic group and an aliphatic heterocyclic group. For example, a tetrahydropyran ring group, a tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-. Imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, pyrrolidone group, etc.), alkoxy group (preferably alkoxy group having 1 to 20 carbon atoms, for example, methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy group (Preferably, an aryloxy group having 6 to 26 carbon atoms, for example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc., is used in the present specification to include an aryloxy group. There is), a heterocyclic oxy group (a group in which an —O— group is bonded to the heterocyclic group), an alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, for example, ethoxycarbonyl, 2-ethylhexyloxycarbonyl). , Dodecyloxycarbonyl, etc.), aryloxycarbonyl groups (preferably aryloxycarbonyl groups with 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-me Thiruphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc.), heterocyclic oxycarbonyl group (group in which -O-CO- group is bonded to the above heterocyclic group), amino group (preferably amino group having 0 to 20 carbon atoms, alkyl It contains an amino group and an arylamino group, for example, amino (-NH 2 ), N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anirino, etc.), sulfamoyl group (preferably 0 to 20 carbon atoms). Sulfamoyl group of, for example, N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.), acyl group (alkylcarbonyl group, alkenylcarbonyl group, alkynylcarbonyl group, arylcarbonyl group, heterocyclic carbonyl group, etc. Preferably, an acyl group having 1 to 20 carbon atoms, for example, acetyl, propionyl, butyryl, octanoyl, hexadecanoyl, acryloyl, methacryloyl, crotonoyle, benzoyl, naphthoyl, nicotinoyle, etc., and an acyloxy group (alkylcarbonyloxy group, alkenylcarbonyloxy). A group, an alkynylcarbonyloxy group, an arylcarbonyloxy group, a heterocyclic carbonyloxy group, preferably an acyloxy group having 1 to 20 carbon atoms, for example, acetyloxy, propionyloxy, butyryloxy, octanoyloxy, hexadecanoyloxy, Acryloyloxy, methacryloyloxy, crotonoyloxy, benzoyloxy, naphthoyloxy, nicotinoyyloxy, etc.), allylloyloxy groups (preferably allylloyloxy groups having 7 to 23 carbon atoms, for example, benzoyloxy, etc.), carbamoyl groups (Preferably a carbamoyl group having 1 to 20 carbon atoms, for example, N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.), an acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, for example, acetylamino, benzoylamino, etc.) ), Alkylthio groups (preferably alkylthio groups having 1 to 20 carbon atoms, such as methylthio, ethylthio, isopropylthio, benzylthio, etc.), arylthio groups (preferably arylthio groups having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio). , 3-Methylphenylthio, 4-methoxyphenylthio, etc.), heterocyclic thio group (group in which -S- group is bonded to the above heterocyclic group), alkylsulfonyl group (preferably alkylsulfonyl group having 1 to 20 carbon atoms). , For example, methylsulfonyl, ethyls Luhonyl, etc.), arylsulfonyl groups (preferably arylsulfonyl groups having 6 to 22 carbon atoms, such as benzenesulfonyl), alkylsilyl groups (preferably alkylsilyl groups having 1 to 20 carbon atoms, for example, monomethylsilyl, dimethylsilyl, etc.) , Trimethylsilyl, triethylsilyl, etc.), arylsilyl group (preferably arylsilyl group having 6 to 42 carbon atoms, for example, triphenylsilyl, etc.), alkoxysilyl group (preferably alkoxysilyl group having 1 to 20 carbon atoms, for example, Monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.), aryloxysilyl group (preferably aryloxysilyl group having 6 to 42 carbon atoms, for example, triphenyloxysilyl group, etc.), phosphoryl group (preferably carbon) number 0-20 phosphate groups, for example, -OP (= O) (R P) 2), a phosphonyl group (preferably a phosphonyl group having 0-20 carbon atoms, for example, -P (= O) (R P) 2), a phosphinyl group (preferably a phosphinyl group having 0 to 20 carbon atoms, for example, -P (R P) 2), phosphonic acid groups (preferably phosphonic acid groups having 0 to 20 carbon atoms, e.g., -PO (OR P ) 2 ), sulfo group (sulfonic acid group), carboxy group, hydroxy group, sulfanyl group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.) can be mentioned. RP is a hydrogen atom or a substituent (preferably a group selected from the substituent Z).
Further, each group listed in these substituents Z may be further substituted with the above-mentioned substituent Z.
The alkyl group, alkylene group, alkenyl group, alkenylene group, alkynyl group and / or alkynylene group and the like may be cyclic or chain-like, or may be linear or branched.
 バインダー形成ポリマーは、主鎖が有する結合の種類に応じて公知の方法により原料化合物を選択し、原料化合物を重付加又は縮重合等して、合成することができる。合成方法としては、例えば、上記特許文献1及び2を参照できる。
 官能基を組み込む方法としては、特に制限されず、例えば、官能基群から選択される官能基を有する化合物を共重合する方法、上記官能基を有する(生じる)重合開始剤を用いる方法、高分子反応を利用する方法等が挙げられる。具体的には、後述する実施例における合成方法等が挙げられる。
The binder-forming polymer can be synthesized by selecting a raw material compound by a known method according to the type of bond possessed by the main chain and subjecting the raw material compound to polyaddition or polycondensation. As the synthesis method, for example, the above-mentioned Patent Documents 1 and 2 can be referred to.
The method for incorporating the functional group is not particularly limited, and for example, a method for copolymerizing a compound having a functional group selected from the functional group group, a method using the above-mentioned (producing) polymerization initiator, and a polymer. Examples thereof include a method using a reaction. Specifically, the synthesis method and the like in the examples described later can be mentioned.
(本発明に用いるバインダー又は本発明に用いるバインダーを形成するポリマーの物性若しくは特性等)
 上記本発明に用いるバインダー、又は本発明に用いるバインダーを形成するポリマーは下記物性若しくは特性等を有することが好ましい。
 本発明に用いるバインダー(ポリマー)の水分濃度は、100ppm(質量基準)以下が好ましい。また、この本発明に用いるバインダーは、ポリマーを晶析させて乾燥させてもよく、本発明に用いるバインダー分散液をそのまま用いてもよい。
 本発明に用いるバインダーを形成するポリマーは、非晶質であることが好ましい。本発明において、ポリマーが「非晶質」であるとは、典型的には、ガラス転移温度で測定したときに結晶融解に起因する吸熱ピークが見られないことをいう。
(Physical characteristics or properties of the binder used in the present invention or the polymer forming the binder used in the present invention)
The binder used in the present invention or the polymer forming the binder used in the present invention preferably has the following physical properties or properties.
The water concentration of the binder (polymer) used in the present invention is preferably 100 ppm (mass basis) or less. Further, as the binder used in the present invention, the polymer may be crystallized and dried, or the binder dispersion liquid used in the present invention may be used as it is.
The polymer forming the binder used in the present invention is preferably amorphous. In the present invention, the term "amorphous" as a polymer typically means that no endothermic peak due to crystal melting is observed when measured at the glass transition temperature.
 本発明に用いるバインダーは、無機固体電解質含有組成物が含有する分散媒に対して可溶性(溶解型バインダー)でも不溶性でもよいが、不溶性であることが好ましい。
 本発明において、ポリマーバインダーが分散媒に対して可溶性(溶解している)とは、無機固体電解質含有組成物の分散媒にポリマーバインダーが溶解していることを意味し、例えば、下記溶解度測定において溶解度が10%以上であることをいう。一方、ポリマーバインダーが分散媒に対して不溶性とは、無機固体電解質含有組成物の分散媒にポリマーバインダーが溶解せず、好ましくは固体状態で存在していることを意味し、例えば、下記溶解度測定において溶解度が10%未満であることをいう。
 本発明において、分散媒に対する溶解度は、ポリマーバインダーを形成するポリマーの種類(ポリマー鎖の構造及び組成)、ポリマーが有する官能基の種類若しくは含有量、分散媒の種類等により、適宜に設定できる。
(溶解度の測定方法)
 測定対象とするポリマーバインダーをガラス瓶内に規定量秤量し、そこへ無機固体電解質含有組成物が含有する分散媒100gを添加し、25℃の温度下、ミックスローター上において80rpmの回転速度で24時間攪拌する。こうして得られた24時間攪拌後の混合液の透過率を以下条件により測定する。この試験(透過率測定)をバインダー溶解量(上記規定量)を変更して行い、透過率が99.8%となる上限濃度X(質量%)をバインダーの上記分散媒に対する溶解度とする。
<透過率測定条件>
 動的光散乱(DLS)測定
 装置:大塚電子製DLS測定装置 DLS-8000
 レーザ波長、出力:488nm/100mW
 サンプルセル:NMR管
The binder used in the present invention may be soluble (dissolved binder) or insoluble in the dispersion medium contained in the inorganic solid electrolyte-containing composition, but is preferably insoluble.
In the present invention, the fact that the polymer binder is soluble (dissolved) in the dispersion medium means that the polymer binder is dissolved in the dispersion medium of the inorganic solid electrolyte-containing composition, and for example, in the following solubility measurement. It means that the solubility is 10% or more. On the other hand, the fact that the polymer binder is insoluble in the dispersion medium means that the polymer binder is not dissolved in the dispersion medium of the composition containing an inorganic solid electrolyte and preferably exists in a solid state. For example, the following solubility measurement is performed. It means that the solubility is less than 10%.
In the present invention, the solubility in the dispersion medium can be appropriately set depending on the type of the polymer forming the polymer binder (structure and composition of the polymer chain), the type or content of the functional group of the polymer, the type of the dispersion medium, and the like.
(Measurement method of solubility)
A specified amount of the polymer binder to be measured is weighed in a glass bottle, 100 g of the dispersion medium contained in the composition containing an inorganic solid electrolyte is added thereto, and the mixture rotor is placed on a mix rotor at a rotation speed of 80 rpm for 24 hours at a temperature of 25 ° C. Stir. The transmittance of the mixed solution after stirring for 24 hours thus obtained is measured under the following conditions. This test (transmittance measurement) is performed by changing the amount of the binder dissolved (the above-specified amount), and the upper limit concentration X (mass%) at which the transmittance is 99.8% is defined as the solubility of the binder in the above dispersion medium.
<Transmittance measurement conditions>
Dynamic Light Scattering (DLS) Measuring Device: Otsuka Electronics DLS Measuring Device DLS-8000
Laser wavelength, output: 488 nm / 100 mW
Sample cell: NMR tube
 本発明に用いるバインダーが不溶性である場合、本発明の無機固体電解質含有組成物中において、粒子状で分散していること(粒子状バインダーともいう。)が好ましい。
 粒子の形状は、特に制限されず、偏平状、無定形等であってもよいが、球状若しくは顆粒状が好ましい。粒子状バインダーの平均粒子径は、特に制限されないが、1nm以上であることが好ましく、5nm以上であることがより好ましく、10nm以上であることが更に好ましく、50nm以上であることが特に好ましく、80nm以上であることが最も好ましい。上限値としては、1700nm以下であることが好ましく、1000nm以下であることがより好ましく、800nm以下であることが更に好ましく、600nm以下であることが特に好ましく、500nm以下であることが最も好ましい。
 粒子状バインダーの平均粒子径は、上記無機固体電解質の平均粒子径と同様にして測定できる。
 なお、全固体二次電池の構成層における粒子状バインダーの平均粒子径は、例えば、電池を分解して粒子状バインダーを含有する構成層を剥がした後、その構成層について測定を行い、予め測定していた粒子状バインダー以外の粒子の粒子径の測定値を排除することにより、測定することができる。
 粒子状バインダーの平均粒子径は、例えば、粒子状バインダーを構成するポリマーの合成条件、分散媒への分散方法若しくは分散条件、更には、分散媒の種類、ポリマー中の構成成分の含有量等により、調整できる。
When the binder used in the present invention is insoluble, it is preferably dispersed in the form of particles in the composition containing the inorganic solid electrolyte of the present invention (also referred to as a particulate binder).
The shape of the particles is not particularly limited and may be flat, amorphous or the like, but spherical or granular is preferable. The average particle size of the particulate binder is not particularly limited, but is preferably 1 nm or more, more preferably 5 nm or more, further preferably 10 nm or more, particularly preferably 50 nm or more, and particularly preferably 80 nm. The above is the most preferable. The upper limit is preferably 1700 nm or less, more preferably 1000 nm or less, further preferably 800 nm or less, particularly preferably 600 nm or less, and most preferably 500 nm or less.
The average particle size of the particulate binder can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
The average particle size of the particulate binder in the constituent layers of the all-solid secondary battery is measured in advance by, for example, disassembling the battery and peeling off the constituent layer containing the particulate binder, and then measuring the constituent layers. The measurement can be performed by excluding the measured value of the particle size of the particles other than the particulate binder.
The average particle size of the particulate binder depends on, for example, the synthesis conditions of the polymer constituting the particulate binder, the dispersion method or dispersion conditions in the dispersion medium, the type of the dispersion medium, the content of the constituent components in the polymer, and the like. , Can be adjusted.
 本発明に用いるバインダーを形成するポリマーは、非架橋ポリマーであっても架橋ポリマーであってもよい。また、加熱又は電圧の印加によってポリマーの架橋が進行した場合には、下記分子量より大きな分子量となっていてもよい。好ましくは、全固体二次電池の使用開始時にポリマーが後述する範囲の質量平均分子量であることである。 The polymer forming the binder used in the present invention may be a non-crosslinked polymer or a crosslinked polymer. Further, when the cross-linking of the polymer progresses by heating or application of a voltage, the molecular weight may be larger than the following molecular weight. Preferably, the polymer has a mass average molecular weight in the range described below at the start of use of the all-solid-state secondary battery.
 本発明に用いるバインダーを形成するポリマーの質量平均分子量は、特に制限されない。例えば、15,000以上が好ましく、30,000以上がより好ましく、50,000以上が更に好ましい。上限としては、5,000,000以下が実質的であるが、4,000,000以下が好ましく、3,000,000以下がより好ましい。 The mass average molecular weight of the polymer forming the binder used in the present invention is not particularly limited. For example, 15,000 or more is preferable, 30,000 or more is more preferable, and 50,000 or more is further preferable. The upper limit is substantially 5,000,000 or less, preferably 4,000,000 or less, and more preferably 3,000,000 or less.
 (分子量の測定)
 本発明において、ポリマー、ポリマー鎖(ポリエーテル構造)及びマクロモノマーの分子量については、特に断らない限り、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量又は数平均分子量をいう。その測定法としては、基本として下記条件1又は条件2(優先)の方法が挙げられる。ただし、ポリマー又はマクロモノマーの種類によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-H(商品名、東ソー社製)を2本つなげる
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000(いずれも商品名、東ソー社製)をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(Measurement of molecular weight)
In the present invention, the molecular weights of the polymer, the polymer chain (polyether structure) and the macromonomer refer to the mass average molecular weight or the number average molecular weight in terms of standard polystyrene by gel permeation chromatography (GPC) unless otherwise specified. As the measurement method, the following condition 1 or condition 2 (priority) method can be basically mentioned. However, an appropriate eluent may be appropriately selected and used depending on the type of polymer or macromonomer.
(Condition 1)
Column: Connect two TOSOH TSKgel Super AWM-H (trade name, manufactured by Tosoh Corporation) Carrier: 10 mM LiBr / N-methylpyrrolidone Measurement temperature: 40 ° C.
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector (condition 2)
Column: A column connected with TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, and TOSOH TSKgel Super HZ2000 (all trade names, manufactured by Tosoh Corporation) is used.
Carrier: tetrahydrofuran Measurement temperature: 40 ° C
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
 本発明に用いるバインダーに含まれるポリマーの具体例としては、実施例で合成した以外にも下記に示すものを挙げることができるが、本発明はこれらに限定されない。各具体例中、構成成分の右下に付した数字はポリマー中の含有量を示し、その単位はモル%であるが、好ましくは上記した範囲内で、適宜に変更できる。 Specific examples of the polymer contained in the binder used in the present invention include those shown below in addition to those synthesized in Examples, but the present invention is not limited thereto. In each specific example, the number attached to the lower right of the constituent component indicates the content in the polymer, and the unit thereof is mol%, but it can be appropriately changed within the above range.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明の無機固体電解質含有組成物は、ポリマーバインダーとして上述の本発明に用いるバインダーを1種含有しても複数種含有してもよい。 The inorganic solid electrolyte-containing composition of the present invention may contain one or more of the above-mentioned binders used in the present invention as the polymer binder.
(その他のバインダー)
 本発明の無機固体電解質含有組成物は、ポリマーバインダーとして、上述の本発明に用いるバインダー以外のポリマーバインダーを含有することもできる。その他のバインダーを構成するポリマーは、本発明に用いるバインダーを構成するポリマー以外のポリマーであればよく、全固体二次電池の構成層に通常用いられる各種ポリマーが挙げられる。例えば、ポリウレタン、ポリウレア、ポリアミド、ポリイミド、ポリエステル、ポリエーテル、ポリカーボネート等の逐次重合(重縮合、重付加若しくは付加縮合)系ポリマー、更には、フッ素系ポリマー(含フッ素ポリマー)、炭化水素系ポリマー、ビニル系ポリマー、(メタ)アクリルポリマー等の連鎖重合系ポリマーが挙げられる。なかでも、無機固体電解質含有組成物の分散安定性の点で、(メタ)アクリルポリマー、炭化水素系ポリマー、ビニル系ポリマー及びフッ素系ポリマーのいずれかであることが好ましい。
 その他のバインダーを構成するポリマーは、無機固体電解質含有組成物中の分散媒に対して可溶性であても不溶性であってもよいが、可溶性であることが固体粒子の分散安定性を更に向上できる点で、好ましい。
 その他のバインダーは、特に好ましくは、(メタ)アクリルポリマー、炭化水素系ポリマー、ビニル系ポリマー及びフッ素系ポリマーのいずれかで無機固体電解質含有組成物中の分散媒に可溶性のポリマーで構成されたポリマーバインダーである。
 その他のバインダーは、ポリマーバインダーとして、1種含有するものでも、複数種含有するものでもよい。複数含有する場合、特に制限されないが、2~4種であることが好ましい。
(Other binders)
The inorganic solid electrolyte-containing composition of the present invention may also contain a polymer binder other than the above-mentioned binder used in the present invention as the polymer binder. The polymer constituting the other binder may be a polymer other than the polymer constituting the binder used in the present invention, and examples thereof include various polymers usually used for the constituent layers of the all-solid-state secondary battery. For example, sequential polymerization (polycondensation, polyaddition or addition condensation) polymer such as polyurethane, polyurea, polyamide, polyimide, polyester, polyether, polycarbonate, etc., and further, fluoropolymer (fluorine-containing polymer), hydrocarbon polymer, etc. Examples thereof include chain polymerization polymers such as vinyl polymers and (meth) acrylic polymers. Among them, any of (meth) acrylic polymer, hydrocarbon polymer, vinyl polymer and fluorine polymer is preferable from the viewpoint of dispersion stability of the inorganic solid electrolyte-containing composition.
The polymer constituting the other binder may be soluble or insoluble with respect to the dispersion medium in the composition containing the inorganic solid electrolyte, but the solubility can further improve the dispersion stability of the solid particles. It is preferable.
The other binder is particularly preferably a polymer composed of a polymer soluble in a dispersion medium in the composition containing an inorganic solid electrolyte, which is any of a (meth) acrylic polymer, a hydrocarbon polymer, a vinyl polymer and a fluorine polymer. It is a binder.
The other binder may be one containing one kind or a kind containing a plurality of kinds as the polymer binder. When a plurality of kinds are contained, there is no particular limitation, but 2 to 4 kinds are preferable.
 逐次重合系ポリマーとしてとりうる、ポリウレタン、ポリウレア、ポリアミド、ポリイミドの各ポリマーとしては、例えば、特開2015-088480号公報に記載のハードセグメントとソフトセグメントとを有するポリマー(高分子バインダー(B))、国際公開第2018/147051号に記載の、特定の式で表される構成成分を少なくとも1種有するバインダーを形成するポリマー、国際公開第2018/020827号及び国際公開第2015/046313号に記載の各ポリマー等を挙げることができる。更に、特開2015-088486号公報に記載の各ポリマー等を挙げることができる。また、上述のバインダー形成ポリマーであって官能基含有構成成分を含まないポリマーも挙げられる。 Examples of the polyurethane, polyurea, polyamide, and polyimide polymers that can be taken as sequential polymerization polymers include a polymer having a hard segment and a soft segment described in JP-A-2015-08480 (polymer binder (B)). , A polymer forming a binder having at least one component represented by a specific formula, which is described in WO2018 / 147051, and is described in WO2018 / 02827 and WO2015 / 046313. Each polymer and the like can be mentioned. Further, each polymer and the like described in Japanese Patent Application Laid-Open No. 2015-088486 can be mentioned. Further, the above-mentioned binder-forming polymer which does not contain a functional group-containing component can also be mentioned.
 (メタ)アクリルポリマーとしては、(メタ)アクリル酸化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリルアミド化合物及び(メタ)アクリルニトリル化合物から選択される少なくとも1種の(メタ)アクリル化合物(M1)を(共)重合して得られるポリマーが好ましい。また、(メタ)アクリル化合物(M1)とその他の重合性化合物(M2)との共重合体からなる(メタ)アクリルポリマーも好ましい。その他の重合性化合物(M2)としては、特に制限されず、スチレン化合物、ビニルナフタレン化合物、ビニルカルバゾール化合物、アリル化合物、ビニルエーテル化合物、ビニルエステル化合物、イタコン酸ジアルキル化合物、更には、無水マレイン酸等の不飽和カルボン酸無水物等のビニル化合物が挙げられる。ビニル化合物としては、例えば、特開2015-88486号公報に記載の「ビニル系モノマー」が挙げられる。
 (メタ)アクリルポリマー中におけるその他の重合性化合物(M2)の含有量は、特に制限されないが、例えば50モル%未満とすることができる。
 (メタ)アクリルポリマーとしては、例えば、国際公開第2016/132872号に記載の、側鎖成分として質量平均分子量1,000以上のマクロモノマーが組み込まれたポリマーが挙げられる。
As the (meth) acrylic polymer, at least one (meth) acrylic compound (M1) selected from a (meth) acrylic acid compound, a (meth) acrylic acid ester compound, a (meth) acrylamide compound and a (meth) acrylonitrile compound. ) Is (co) polymerized to obtain a polymer. Further, a (meth) acrylic polymer composed of a copolymer of the (meth) acrylic compound (M1) and another polymerizable compound (M2) is also preferable. The other polymerizable compound (M2) is not particularly limited, and includes styrene compound, vinylnaphthalene compound, vinylcarbazole compound, allyl compound, vinyl ether compound, vinyl ester compound, dialkyl itaconate compound, maleic anhydride and the like. Examples thereof include vinyl compounds such as unsaturated carboxylic acid anhydride. Examples of the vinyl compound include "vinyl-based monomers" described in JP-A-2015-88486.
The content of the other polymerizable compound (M2) in the (meth) acrylic polymer is not particularly limited, but can be, for example, less than 50 mol%.
Examples of the (meth) acrylic polymer include the polymer described in International Publication No. 2016/132872, in which a macromonomer having a mass average molecular weight of 1,000 or more is incorporated as a side chain component.
 炭化水素系ポリマーとしては、例えば、ポリエチレン、ポリプロピレン、天然ゴム、ポリブタジエン、ポリイソプレン、ポリスチレン、ポリスチレンブタジエン共重合体、スチレン系熱可塑性エラストマー、ポリブチレン、アクリロニトリルブタジエン共重合体、又はこれらの水添(水素化)ポリマーが挙げられる。スチレン系熱可塑性エラストマー又はその水素化物としては、特に制限されないが、例えば、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、水素化SIS、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素化SBS、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-ブタジエンゴム(SBR)、水素化スチレン-ブタジエンゴム(HSBR)等が挙げられる。本発明において、炭化水素系ポリマーは、主鎖に結合する不飽和基(例えば1,2-ブタジエン構成成分)を有しないものが化学架橋の形成を抑制できる点で好ましい。
 炭化水素系ポリマーには不飽和カルボン酸無水物等で変性されたものを包含する。
Examples of the hydrocarbon polymer include polyethylene, polypropylene, natural rubber, polybutadiene, polyisoprene, polystyrene, polystyrene butadiene copolymer, styrene-based thermoplastic elastomer, polybutylene, acrylonitrile butadiene copolymer, or hydrogenation thereof (hydrogen). Chemistry) Polymers can be mentioned. The styrene-based thermoplastic elastomer or its hydride is not particularly limited, and for example, styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), hydride SIS. , Styrene-butadiene-styrene block copolymer (SBS), hydrogenated SBS, styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), styrene-ethylene-propylene-styrene block copolymer (SEPS), Examples thereof include styrene-butadiene rubber (SBR) and hydride styrene-butadiene rubber (HSBR). In the present invention, the hydrocarbon polymer having no unsaturated group (for example, 1,2-butadiene constituent) bonded to the main chain is preferable in that the formation of chemical crosslinks can be suppressed.
Hydrocarbon-based polymers include those modified with unsaturated carboxylic acid anhydrides and the like.
 ビニル系ポリマーとしては、(メタ)アクリル化合物(M1)以外のビニル系モノマーを例えば50モル%以上含有するポリマーが挙げられる。ビニル系モノマーとしては、上記ビニル化合物等が挙げられる。ビニル系ポリマーとしては、例えば、ポリビニルアルコール、ポリビニルアセタール、ポリ酢酸ビニル、又はこれらを含む共重合体等が挙げられる。
 このビニル系ポリマーは、ビニル系モノマー由来の構成成分以外に、上述の(メタ)アクリルポリマーを形成する(メタ)アクリル化合物(M1)由来の構成成分を有することも好ましく、更に上述のマクロモノマーに由来する構成成分(MM)を有していてもよい。ビニル系モノマー由来の構成成分の含有量は、(メタ)アクリルポリマーにおける(メタ)アクリル化合物(M1)由来の構成成分の含有量と同じであることが好ましい。(メタ)アクリル化合物(M1)由来の構成成分の含有量は、ポリマー中、50質量%未満であれば特に制限されないが、0~30質量%であることが好ましい。
Examples of the vinyl-based polymer include polymers containing, for example, 50 mol% or more of vinyl-based monomers other than the (meth) acrylic compound (M1). Examples of the vinyl-based monomer include the above-mentioned vinyl compounds. Examples of the vinyl polymer include polyvinyl alcohol, polyvinyl acetal, polyvinyl acetate, and a copolymer containing these.
In addition to the constituent components derived from the vinyl-based monomer, this vinyl-based polymer preferably has a constituent component derived from the (meth) acrylic compound (M1) that forms the above-mentioned (meth) acrylic polymer, and further, the above-mentioned macromonomer. It may have a derived component (MM). The content of the constituent component derived from the vinyl-based monomer is preferably the same as the content of the constituent component derived from the (meth) acrylic compound (M1) in the (meth) acrylic polymer. The content of the constituent component derived from the (meth) acrylic compound (M1) is not particularly limited as long as it is less than 50% by mass in the polymer, but is preferably 0 to 30% by mass.
 含フッ素ポリマーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンジフルオリド(PVdF)、ポリビニリデンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)、ポリビニリデンジフルオリドとヘキサフルオロプロピレンとテトラフルオロエチレンの共重合体(PVdF-HFP-TFE)が挙げられる。PVdF-HFPにおいて、PVdFとHFPとの共重合比[PVdF:HFP](質量比)は、特に限定されないが、9:1~5:5が好ましく、9:1~7:3が密着性の観点からより好ましい。PVdF-HFP-TFEにおいて、PVdFとHFPとTFEとの共重合比[PVdF:HFP:TFE](質量比)は、特に限定されないが、20~60:10~40:5~30であることが好ましい。 Examples of the fluorine-containing polymer include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP), polyvinylidene fluoride and hexafluoro. A copolymer of propylene and tetrafluoroethylene (PVdF-HFP-TFE) can be mentioned. In PVdF-HFP, the copolymerization ratio [PVdF: HFP] (mass ratio) of PVdF and HFP is not particularly limited, but is preferably 9: 1 to 5: 5, and 9: 1 to 7: 3 is adhesive. More preferable from the viewpoint. In PVdF-HFP-TFE, the copolymerization ratio [PVdF: HFP: TFE] (mass ratio) of PVdF, HFP, and TFE is not particularly limited, but may be 20 to 60:10 to 40: 5 to 30. preferable.
 その他のバインダー、及びその他のバインダーを形成するポリマーの物性若しくは特性等は、上述した、本発明に用いるバインダー又は本発明に用いるバインダーを形成するポリマーの物性若しくは特性等と基本的に同様である。
 ただし、固体粒子の分散安定性を更に向上できる点からは、その他のバインダーを形成するポリマーは無機固体電解質含有組成物が含有する分散媒に対して可溶性であること(その他のバインダーが可溶性バインダーであること)が好ましい。
The physical characteristics or properties of the other binder and the polymer forming the other binder are basically the same as those of the binder used in the present invention or the polymer forming the binder used in the present invention described above.
However, from the viewpoint of further improving the dispersion stability of the solid particles, the polymer forming the other binder is soluble in the dispersion medium contained in the composition containing the inorganic solid electrolyte (the other binder is a soluble binder). There is) is preferable.
 本発明の無機固体電解質含有組成物は、ポリマーバインダーとしてその他のバインダーを1種含有しても複数種含有してもよい。 The inorganic solid electrolyte-containing composition of the present invention may contain one or more other binders as the polymer binder.
(ポリマーバインダーの組み合わせ)
 本発明の無機固体電解質含有組成物が含有するポリマーバインダーは、上述のように、本発明に用いるバインダーを少なくとも1種含んでいればよく、その他のバインダーを含んでいてもよい。
 ポリマーバインダーが本発明に用いるバインダーを含む態様としては、本発明に用いるバインダーを単独で含む態様、本発明に用いるバインダーを2種以上含む態様、1種又は2種以上の本発明に用いるバインダーと1種又は2種以上のその他のバインダーとを含む態様等が挙げられる。
 本発明に用いるバインダーとその他のバインダーとを含む態様において、バインダー(ポリマーバインダーを構成するポリマー)の組み合わせは、特に制限されず、各バインダーの好ましいもの同士の組み合わせが挙げられ、主鎖にウレタン結合を有するポリマーで構成された本発明に用いるバインダーと、(メタ)アクリルポリマー、炭化水素ポリマー、ビニル系ポリマー及び含フッ素ポリマーのいずれかで構成された可溶性のその他のバインダーとの組み合わせが特に好ましい。
(Combination of polymer binder)
As described above, the polymer binder contained in the inorganic solid electrolyte-containing composition of the present invention may contain at least one binder used in the present invention, and may contain other binders.
Examples of the embodiment in which the polymer binder contains the binder used in the present invention include a mode containing the binder used in the present invention alone, a mode containing two or more kinds of binders used in the present invention, and one or more kinds of binders used in the present invention. Examples thereof include an aspect including one kind or two or more kinds of other binders.
In the embodiment including the binder used in the present invention and other binders, the combination of binders (polymers constituting the polymer binder) is not particularly limited, and preferred combinations of each binder can be mentioned, and urethane bonds are attached to the main chain. A combination of the binder used in the present invention composed of a polymer having the above and another soluble binder composed of any of a (meth) acrylic polymer, a hydrocarbon polymer, a vinyl-based polymer and a fluorine-containing polymer is particularly preferable.
(ポリマーバインダーの含有量)
 本発明において、ポリマーバインダー(本発明に用いるバインダー及びその他のバインダー)の、無機固体電解質含有組成物中の総含有量は、特に制限されないが、分散安定性、膜強度及び電池性能(電池抵抗、サイクル特性)の点で、0.1~10.0質量%であることが好ましく、0.2~5.0質量%であることがより好ましく、0.3~4.0質量%であることが更に好ましい。本発明において、ポリマーバインダー(本発明に用いるバインダー及びその他のバインダー)の、無機固体電解質含有組成物中の(合計)含有量は、固形分100質量%においては、同様に理由から、0.1~10.0質量%であることが好ましく、0.3~8質量%であることがより好ましく、0.5~7質量%であることが更に好ましい。
(Content of polymer binder)
In the present invention, the total content of the polymer binder (the binder used in the present invention and other binders) in the inorganic solid electrolyte-containing composition is not particularly limited, but dispersion stability, film strength and battery performance (battery resistance, battery resistance, etc.) In terms of cycle characteristics), it is preferably 0.1 to 10.0% by mass, more preferably 0.2 to 5.0% by mass, and 0.3 to 4.0% by mass. Is more preferable. In the present invention, the (total) content of the polymer binder (the binder used in the present invention and other binders) in the inorganic solid electrolyte-containing composition is 0.1 at a solid content of 100% by mass for the same reason. It is preferably ~ 10.0% by mass, more preferably 0.3 to 8% by mass, and even more preferably 0.5 to 7% by mass.
 本発明に用いるバインダーの、無機固体電解質含有組成物中の(合計)含有量は、上記ポリマーバインダーの総含有量を満たす範囲内に適宜に設定される。例えば、(合計)含有量は、固形分100質量%において、0.01~5質量%であることが好ましく、0.05~4質量%であることがより好ましく、0.1~3質量%であることが更に好ましい。
 また、無機固体電解質含有組成物が本発明に用いるバインダーを2種以上含有する場合、本発明に用いるバインダーの各含有量は、本発明に用いるバインダーの上記(合計)含有量を満たす範囲で適宜に設定される。例えば、固形分100質量%において、0.01~5質量%であることが好ましく、0.05~4質量%であることがより好ましく、0.1~3質量%であることが更に好ましい。
The (total) content of the binder used in the present invention in the inorganic solid electrolyte-containing composition is appropriately set within a range that satisfies the total content of the polymer binder. For example, the (total) content is preferably 0.01 to 5% by mass, more preferably 0.05 to 4% by mass, and 0.1 to 3% by mass, based on 100% by mass of solid content. Is more preferable.
When the inorganic solid electrolyte-containing composition contains two or more kinds of binders used in the present invention, each content of the binder used in the present invention is appropriately set within a range satisfying the above (total) content of the binder used in the present invention. Is set to. For example, in terms of solid content of 100% by mass, it is preferably 0.01 to 5% by mass, more preferably 0.05 to 4% by mass, and even more preferably 0.1 to 3% by mass.
 無機固体電解質含有組成物がその他のバインダーを含有する場合、本発明に用いるバインダーの(合計)含有量は、その他のバインダーの含有量に対して、低くてもよいが、同じか高いことが好ましい。これにより、優れた分散安定性を損なわずに、膜強度を更に強化できる。固形分100質量%において、本発明に用いるバインダーの(合計)含有量とその他のバインダーの含有量との差(絶対値)は、特に制限されず、例えば、0~6質量%とすることができ、0~4質量%がより好ましく、0~2質量%が更に好ましい。また、固形分100質量%において、本発明に用いるバインダーの(合計)含有量とその他のバインダーの含有量との比(本発明に用いるバインダーの(合計)含有量/その他のバインダーの含有量)は、特に制限されないが、例えば、1~4であることが好ましく、1~2であることがより好ましい。 When the inorganic solid electrolyte-containing composition contains other binders, the (total) content of the binder used in the present invention may be lower than the content of the other binders, but is preferably the same or higher. .. Thereby, the film strength can be further strengthened without impairing the excellent dispersion stability. With respect to the solid content of 100% by mass, the difference (absolute value) between the (total) content of the binder used in the present invention and the content of other binders is not particularly limited, and may be, for example, 0 to 6% by mass. It is possible, 0 to 4% by mass is more preferable, and 0 to 2% by mass is further preferable. Further, the ratio of the (total) content of the binder used in the present invention to the content of other binders in 100% by mass of the solid content ((total) content of the binder used in the present invention / content of other binders). Is not particularly limited, but is preferably 1 to 4, more preferably 1 to 2, for example.
 その他のバインダーの、無機固体電解質含有組成物中の含有量は、特に制限されず、上記のポリマーバインダーの総含有量を満たす範囲で適宜に設定される。その含有量は、分散安定性の点で、例えば、固形分100質量%において、0.01~4質量%であることが好ましく、0.05~3質量%であることがより好ましく、0.1~2質量%であることが更に好ましい。 The content of the other binder in the composition containing the inorganic solid electrolyte is not particularly limited, and is appropriately set within a range that satisfies the total content of the above polymer binder. In terms of dispersion stability, the content thereof is preferably 0.01 to 4% by mass, more preferably 0.05 to 3% by mass, and 0. It is more preferably 1 to 2% by mass.
 本発明において、固形分100質量%中、ポリマーバインダーの総質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/(ポリマーバインダーの総質量)]は、1,000~1の範囲が好ましい。この比率は更に500~2がより好ましく、100~10が更に好ましい。 In the present invention, the mass ratio of the total mass (total mass) of the inorganic solid electrolyte and the active material to the total mass of the polymer binder in 100% by mass of the solid content [(mass of the inorganic solid electrolyte + mass of the active material) / (polymer binder). The total mass)] is preferably in the range of 1,000 to 1. This ratio is more preferably 500 to 2, and even more preferably 100 to 10.
 なお、ポリマーバインダーが粒子状バインダーである場合、その含有量は、上記各含有量の範囲内において、粒子状バインダーの溶解度を考慮して無機固体電解質含有組成物中で溶解しない含有量に設定されることが好ましい。 When the polymer binder is a particulate binder, its content is set to a content that does not dissolve in the inorganic solid electrolyte-containing composition in consideration of the solubility of the particulate binder within the range of each of the above contents. Is preferable.
<分散媒>
 本発明の無機固体電解質含有組成物は、上記の各成分を分散させる分散媒を含有することが好ましい。
 分散媒としては、使用環境において液状を示す有機化合物であればよく、例えば、各種有機溶媒が挙げられ、具体的には、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等が挙げられる。
 分散媒としては、非極性分散媒(疎水性の分散媒)でも極性分散媒(親水性の分散媒)でもよいが、優れた分散性を発現できる点で、非極性分散媒が好ましい。非極性分散媒とは、一般に水に対する親和性が低い性質をいうが、本発明においては、例えば、エステル化合物、ケトン化合物、エーテル化合物、芳香族化合物、脂肪族化合物等が挙げられる。
<Dispersion medium>
The inorganic solid electrolyte-containing composition of the present invention preferably contains a dispersion medium for dispersing each of the above components.
The dispersion medium may be an organic compound that is liquid in the environment of use, and examples thereof include various organic solvents. Specifically, an alcohol compound, an ether compound, an amide compound, an amine compound, a ketone compound, and an aromatic compound. , Aliper compounds, nitrile compounds, ester compounds and the like.
The dispersion medium may be a non-polar dispersion medium (hydrophobic dispersion medium) or a polar dispersion medium (hydrophilic dispersion medium), but a non-polar dispersion medium is preferable because it can exhibit excellent dispersibility. The non-polar dispersion medium generally refers to a property having a low affinity for water, and in the present invention, for example, an ester compound, a ketone compound, an ether compound, an aromatic compound, an aliphatic compound and the like can be mentioned.
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。 Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol can be mentioned.
 エーテル化合物としては、例えば、アルキレングリコール(ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール等)、アルキレングリコールモノアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等)、アルキレングリコールジアルキルエーテル(エチレングリコールジメチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。 Examples of the ether compound include alkylene glycol (diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.), alkylene glycol monoalkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, etc.). Dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, etc.), alkylene glycol dialkyl ether (ethylene glycol dimethyl ether, etc.), dialkyl ether (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ether (tetrahydrofuran, tetrahydrofuran, etc.) Dioxane (including 1,2-, 1,3- and 1,4-isomers) and the like) can be mentioned.
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。 Examples of the amide compound include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ε-caprolactam, formamide, N-methylformamide and acetamide. , N-Methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、ジプロピルケトン、ジブチルケトン、ジイソプロピルケトン(DIPK)、ジイソブチルケトン(DIBK)、イソブチルプロピルケトン、sec-ブチルプロピルケトン、ペンチルプロピルケトン、ブチルプロピルケトンなどが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、パラフィン、ガソリン、ナフサ、灯油、軽油等が挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピオニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ペンタン酸ブチル、イソ酪酸エチル、イソ酪酸プロピル、イソ酪酸イソプロピル、イソ酪酸イソブチル、ピバル酸プロピル、ピバル酸イソプロピル、ピバル酸ブチル、ピバル酸イソブチルなどが挙げられる。
Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
Examples of the ketone compound include acetone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), cyclopentanone, cyclohexanone, cycloheptanone, dipropyl ketone, dibutyl ketone, diisopropyl ketone (DIPK), diisobutyl ketone (DIBK), and isobutyl propyl ketone. , Se-butyl propyl ketone, pentyl propyl ketone, butyl propyl ketone and the like.
Examples of the aromatic compound include benzene, toluene, xylene and the like.
Examples of the aliphatic compound include hexane, heptane, octane, nonane, decane, dodecane, cyclohexane, methylcyclohexane, ethylcyclohexane, cycloheptane, cyclooctane, decalin, paraffin, gasoline, naphtha, kerosene, and light oil.
Examples of the nitrile compound include acetonitrile, propionitrile, isobutyronitrile and the like.
Examples of the ester compound include ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutyrate, and pivalic acid. Examples thereof include propyl, isopropyl pivalate, butyl pivalate, and isobutyl pivalate.
 本発明においては、上述の本発明に用いるバインダーとの相溶性が高く、無機固体電解質含有組成物の分散安定性を高めることができる点で、エーテル化合物、ケトン化合物、芳香族化合物、脂肪族化合物、エステル化合物が好ましく、エステル化合物、脂肪族化合物、ケトン化合物又はエーテル化合物がより好ましく、例えば、ジイソプロピルエーテル、ジブチルエーテル、イソブチルエチルエーテル、MIBK、DIPK、DIBK、酪酸ブチル、酢酸ブチル、エチルシクロヘキサン、シクロオクタン、ヘプタン、トルエン等が挙げられる。 In the present invention, the ether compound, the ketone compound, the aromatic compound, and the aliphatic compound are highly compatible with the binder used in the present invention and can enhance the dispersion stability of the inorganic solid electrolyte-containing composition. , Estelle compounds are preferred, and ester compounds, aliphatic compounds, ketone compounds or ether compounds are more preferred, for example, diisopropyl ether, dibutyl ether, isobutyl ethyl ether, MIBK, DIPK, DIBK, butyl butyrate, butyl acetate, ethylcyclohexane, cyclo. Examples thereof include octane, heptane, and toluene.
 分散媒を構成する化合物の炭素数は特に制限されず、2~30が好ましく、4~20がより好ましく、6~15が更に好ましく、7~12が特に好ましい。 The number of carbon atoms of the compound constituting the dispersion medium is not particularly limited, and is preferably 2 to 30, more preferably 4 to 20, further preferably 6 to 15, and particularly preferably 7 to 12.
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。 The dispersion medium preferably has a boiling point of 50 ° C. or higher at normal pressure (1 atm), and more preferably 70 ° C. or higher. The upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
 本発明の無機固体電解質含有組成物は、分散媒を少なくとも1種含有していればよく、2種以上含有してもよい。
 本発明において、無機固体電解質含有組成物中の、分散媒の含有量は、特に制限されず適宜に設定することができる。例えば、無機固体電解質含有組成物中、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
The inorganic solid electrolyte-containing composition of the present invention may contain at least one type of dispersion medium and may contain two or more types.
In the present invention, the content of the dispersion medium in the inorganic solid electrolyte-containing composition is not particularly limited and can be appropriately set. For example, in the composition containing an inorganic solid electrolyte, 20 to 80% by mass is preferable, 30 to 70% by mass is more preferable, and 40 to 60% by mass is particularly preferable.
<活物質>
 本発明の無機固体電解質含有組成物には、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質を含有することもできる。活物質としては、以下に説明するが、正極活物質及び負極活物質が挙げられる。
 本発明において、活物質(正極活物質又は負極活物質)を含有する無機固体電解質含有組成物を電極用組成物(正極用組成物又は負極用組成物)ということがある。
<Active material>
The inorganic solid electrolyte-containing composition of the present invention may also contain an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table. Examples of the active material include a positive electrode active material and a negative electrode active material, which will be described below.
In the present invention, an inorganic solid electrolyte-containing composition containing an active material (positive electrode active material or negative electrode active material) may be referred to as an electrode composition (positive electrode composition or negative electrode composition).
(正極活物質)
 正極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であり、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく電池を分解して、遷移金属酸化物、又は、有機物、硫黄などのLiと複合化できる元素などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100モル%)に対して0~30モル%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(Positive electrode active material)
The positive electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be composited with Li such as sulfur, or the like by decomposing the battery.
Among them, as the positive electrode active material, a transition metal oxide having preferably used a transition metal oxide, a transition metal element M a (Co, Ni, Fe , Mn, 1 or more elements selected from Cu and V) the The thing is more preferable. Further, the 1 (Ia) group elements of the transition metal oxide to elemental M b (Table metal periodic other than lithium, the elements of the 2 (IIa) group, Al, Ga, In, Ge , Sn, Pb, Elements such as Sb, Bi, Si, P and B) may be mixed. The mixing amount is preferably 0 to 30 mol% relative to the amount of the transition metal element M a (100 mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphoric acid compound, and (MD). ) Lithium-containing transition metal halide phosphoric acid compound, (ME) lithium-containing transition metal silicic acid compound and the like.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
(MA) Specific examples of the transition metal oxide having a layered rock salt structure include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (Lithium Nickel Cobalt Aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Lithium Nickel Manganese Cobalt Oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Manganese nickel oxide).
(MB) Specific examples of the transition metal oxide having a spinel structure, LiMn 2 O 4 (LMO) , LiCoMnO 4, Li 2 FeMn 3 O 8, Li 2 CuMn 3 O 8, Li 2 CrMn 3 O 8 and Li 2 Nimn 3 O 8 can be mentioned.
Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. Examples thereof include cobalt phosphates of Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate) and other monoclinic panocycon-type vanadium phosphate salts.
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Fluorophosphate cobalts such as.
Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の平均粒子径(体積平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質粒子の平均粒子径は、上記無機固体電解質の平均粒子径と同様にして測定できる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水又はメタノール等の分散媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級は、特に限定はなく、篩、風力分級機などを用いて行うことができる。分級は乾式及び湿式ともに用いることができる。
 焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
The shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles. The average particle size (volume average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 μm. The average particle size of the positive electrode active material particles can be measured in the same manner as the average particle size of the above-mentioned inorganic solid electrolyte. A normal crusher or classifier is used to adjust the positive electrode active material to a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill, a sieve, or the like is preferably used. At the time of pulverization, wet pulverization in which a dispersion medium such as water or methanol coexists can also be performed. It is preferable to perform classification in order to obtain a desired particle size. The classification is not particularly limited, and can be performed using a sieve, a wind power classifier, or the like. Both dry and wet classifications can be used.
The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
As the positive electrode active material, one type may be used alone, or two or more types may be used in combination.
When forming the positive electrode active material layer, the mass (mg) (grain amount) of the positive electrode active material per unit area (cm 2) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
 正極活物質の、無機固体電解質含有組成物中における含有量は特に制限されず、固形分100質量%において、10~97質量%が好ましく、30~95質量%がより好ましく、40~93質量%が更に好ましく、50~90質量%が特に好ましい。 The content of the positive electrode active material in the inorganic solid electrolyte-containing composition is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, and 40 to 93% by mass in terms of solid content of 100% by mass. Is more preferable, and 50 to 90% by mass is particularly preferable.
(負極活物質)
 負極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であり、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、リチウム単体、リチウム合金、リチウムと合金形成可能(合金化可能)な負極活物質等が挙げられる。中でも、炭素質材料、金属複合酸化物又はリチウム単体が信頼性の点から好ましく用いられる。全固体二次電池の大容量化が可能となる点では、リチウムと合金化可能な活物質が好ましい。本発明の固体電解質組成物で形成した構成層は固体粒子同士の強固な結着状態を維持できるため、負極活物質としてリチウムと合金形成可能な負極活物質を用いることができる。これにより、全固体二次電池の大容量化と電池の長寿命化とが可能となる。
(Negative electrode active material)
The negative electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and is a negative electrode activity capable of forming an alloy with a carbonaceous material, a metal oxide, a metal composite oxide, a single lithium substance, a lithium alloy, or lithium. Examples include substances. Of these, carbonaceous materials, metal composite oxides, or elemental lithium are preferably used from the viewpoint of reliability. An active material that can be alloyed with lithium is preferable in that the capacity of the all-solid-state secondary battery can be increased. Since the constituent layer formed of the solid electrolyte composition of the present invention can maintain a strong bonded state between the solid particles, a negative electrode active material capable of forming an alloy with lithium can be used as the negative electrode active material. This makes it possible to increase the capacity of the all-solid-state secondary battery and extend the life of the battery.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
The carbonaceous material used as the negative electrode active material is a material substantially composed of carbon. For example, various synthesis of petroleum pitch, carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin. A carbonaceous material obtained by calcining a resin can be mentioned. Furthermore, various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polypoly alcohol) -based carbon fibers, lignin carbon fibers, graphitic carbon fibers, and activated carbon fibers. Kind, mesophase microspheres, graphite whisker, flat graphite and the like can also be mentioned.
These carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization. Further, the carbonaceous material preferably has the plane spacing or density and the size of crystallites described in JP-A-62-22066, JP-A-2-6856, and JP-A-3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like should be used. You can also.
As the carbonaceous material, hard carbon or graphite is preferably used, and graphite is more preferably used.
 負極活物質として適用される金属若しくは半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、金属元素の酸化物(金属酸化物)、金属元素の複合酸化物若しくは金属元素と半金属元素との複合酸化物(纏めて金属複合酸化物という。)、半金属元素の酸化物(半金属酸化物)が挙げられる。これらの酸化物としては、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイドも好ましく挙げられる。本発明において、半金属元素とは、金属元素と非半金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、更にはセレン、ポロニウム及びアスタチンの3元素を含む。また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°~70°に見られる結晶性の回折線の内最も強い強度が、2θ値で20°~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 The metal or semi-metal element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of storing and releasing lithium, and is a composite of the metal element oxide (metal oxide) and the metal element. Examples thereof include oxides or composite oxides of metal elements and semi-metal elements (collectively referred to as metal composite oxides) and oxides of semi-metal elements (semi-metal oxides). As these oxides, amorphous oxides are preferable, and chalcogenides, which are reaction products of metal elements and elements of Group 16 of the Periodic Table, are also preferable. In the present invention, the metalloid element means an element exhibiting properties intermediate between a metalloid element and a non-metalloid element, and usually contains six elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and Astatine. Further, "amorphous" means an X-ray diffraction method using CuKα rays, which has a broad scattering band having an apex in a region of 20 ° to 40 ° in 2θ value, and a crystalline diffraction line is used. You may have. The strongest intensity of the crystalline diffraction lines seen at the 2θ value of 40 ° to 70 ° is 100 times or less of the diffraction line intensity at the apex of the broad scattering band seen at the 2θ value of 20 ° to 40 °. It is preferable that it is 5 times or less, and it is particularly preferable that it does not have a crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb又はSbが好ましく挙げられる。
 Sn、Si、Geを中心とする非晶質酸化物に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な負極活物質が好適に挙げられる。
Among the compound group consisting of the amorphous oxide and the chalcogenide, the amorphous oxide of the metalloid element or the chalcogenide is more preferable, and the elements of the Group 13 (IIIB) to 15 (VB) of the Periodic Table (for example). , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) alone or a combination of two or more of them (composite) oxide, or chalcogenide is particularly preferable. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2. O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , GeS, PbS, PbS 2 , Sb 2 S 3 or Sb 2 S 5 is preferably mentioned.
Negative electrode active materials that can be used in combination with amorphous oxides such as Sn, Si, and Ge include carbonaceous materials that can occlude and / or release lithium ions or lithium metals, lithium alone, lithium alloys, and lithium. A negative electrode active material that can be alloyed with is preferably mentioned.
 金属若しくは半金属元素の酸化物、とりわけ金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。
 負極活物質、例えば金属酸化物は、チタン元素を含有すること(チタン酸化物)も好ましく挙げられる。具体的には、LiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
It is preferable that the oxide of a metal or a metalloid element, particularly a metal (composite) oxide and the chalcogenide, contains at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. Examples of the lithium-containing metal composite oxide (lithium composite metal oxide) include a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, and more specifically, Li 2 SnO 2. Can be mentioned.
It is also preferable that the negative electrode active material, for example, a metal oxide, contains a titanium element (titanium oxide). Specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) has excellent rapid charge / discharge characteristics because the volume fluctuation during storage and release of lithium ions is small, and deterioration of electrodes is suppressed and lithium ion secondary It is preferable in that the life of the battery can be improved.
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。 The lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質は、全固体二次電池の充放電による膨張収縮が大きく、サイクル特性等の電池性能の低下を加速させるが、本発明の無機固体電解質含有組成物は上述の本発明に用いるバインダーを含有するため、電池性能の低下を抑制できる。このような活物質として、ケイ素元素若しくはスズ元素を有する(負極)活物質(合金等)、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素元素を有する負極活物質(ケイ素元素含有活物質)が好ましく、ケイ素元素の含有量が全構成元素の50モル%以上のケイ素元素含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(例えば、ケイ素元素含有活物質を含有するSi負極、スズ元素を有する活物質を含有するSn負極等)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量(エネルギー密度)を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素元素含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅、ランタン等を含むケイ素含有合金(例えば、LaSi、VSi、La-Si、Gd-Si、Ni-Si)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素元素及びスズ元素を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な負極活物質(その前駆体物質)として用いることができる。
 スズ元素を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素元素及びスズ元素を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOを挙げることもできる。
The negative electrode active material that can be alloyed with lithium is not particularly limited as long as it is usually used as the negative electrode active material of the secondary battery. Such an active material has a large expansion and contraction due to charging and discharging of an all-solid secondary battery and accelerates a decrease in battery performance such as cycle characteristics. However, the inorganic solid electrolyte-containing composition of the present invention is used in the above-mentioned present invention. Since it contains a binder, deterioration of battery performance can be suppressed. Examples of such an active material include a (negative electrode) active material having a silicon element or a tin element (alloy, etc.), and metals such as Al and In, and a negative electrode active material having a silicon element that enables a higher battery capacity. (Silicon element-containing active material) is preferable, and a silicon element-containing active material having a silicon element content of 50 mol% or more of all the constituent elements is more preferable.
Generally, a negative electrode containing these negative electrode active materials (for example, a Si negative electrode containing a silicon element-containing active material, a Sn negative electrode containing a tin element active material, etc.) is a carbon negative electrode (graphite, acetylene black, etc.). ), More Li ions can be occluded. That is, the amount of Li ions occluded per unit mass increases. Therefore, the battery capacity (energy density) can be increased. As a result, there is an advantage that the battery drive time can be lengthened.
Examples of the silicon element-containing active material include silicon materials such as Si and SiOx (0 <x≤1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, and the like (for example,). LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si) or organized active material (eg LaSi 2 / Si), as well as other silicon and tin elements such as SnSiO 3 , SnSiS 3 Examples include active materials containing. In addition, SiOx itself can be used as a negative electrode active material (metalloid oxide), and since Si is generated by the operation of an all-solid-state secondary battery, a negative electrode active material that can be alloyed with lithium (its). It can be used as a precursor substance).
Examples of the negative electrode active material having a tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the silicon element and the tin element. Further, a composite oxide with lithium oxide, for example, Li 2 SnO 2 can also be mentioned.
 本発明においては、上述の負極活物質を特に制限されることなく用いることができるが、電池容量の点では、負極活物質として、リチウムと合金化可能な負極活物質が好ましい態様であり、中でも、上記ケイ素材料又はケイ素含有合金(ケイ素元素を含有する合金)がより好ましく、ケイ素(Si)又はケイ素含有合金を含むことが更に好ましい。 In the present invention, the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with lithium is a preferred embodiment as the negative electrode active material. , The above-mentioned silicon material or silicon-containing alloy (alloy containing a silicon element) is more preferable, and it is further preferable to contain silicon (Si) or a silicon-containing alloy.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from the inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and the mass difference of the powder before and after firing as a simple method.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径(体積平均粒子径)は、特に制限されないが、0.1~60μmが好ましい。負極活物質粒子の平均粒子径は、上記無機固体電解質の平均粒子径と同様にして測定できる。所定の粒子径にするには、正極活物質と同様に、通常の粉砕機若しくは分級機が用いられる。 The shape of the negative electrode active material is not particularly limited, but it is preferably in the form of particles. The average particle size (volume average particle size) of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 μm. The average particle size of the negative electrode active material particles can be measured in the same manner as the average particle size of the above-mentioned inorganic solid electrolyte. In order to obtain a predetermined particle size, a normal crusher or classifier is used as in the case of the positive electrode active material.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
The negative electrode active material may be used alone or in combination of two or more.
When the negative electrode active material layer is formed, the mass (mg) (grain amount) of the negative electrode active material per unit area (cm 2) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
 負極活物質の、無機固体電解質含有組成物中における含有量は特に制限されず、固形分100質量%において、10~90質量%であることが好ましく、20~85質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることが更に好ましい。 The content of the negative electrode active material in the inorganic solid electrolyte-containing composition is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 30% by mass, based on 100% by mass of the solid content. It is more preferably 80% by mass, and even more preferably 40 to 75% by mass.
 本発明において、負極活物質層を二次電池の充電により形成する場合、上記負極活物質に代えて、全固体二次電池内に発生する周期律表第一族若しくは第二族に属する金属のイオンを用いることができる。このイオンを電子と結合させて金属として析出させることで、負極活物質層を形成できる。 In the present invention, when the negative electrode active material layer is formed by charging the secondary battery, instead of the negative electrode active material, a metal belonging to Group 1 or Group 2 of the periodic table generated in the all-solid secondary battery is used. Ions can be used. A negative electrode active material layer can be formed by combining these ions with electrons and precipitating them as a metal.
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
(Coating of active material)
The surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide. Examples of the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum oxide, niobate oxide, lithium niobate compound and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 and LiTaO 3 , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TIO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3, and the like.
Further, the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
Further, the surface of the positive electrode active material or the particle surface of the negative electrode active material may be surface-treated with active light rays or an active gas (plasma or the like) before and after the surface coating.
<導電助剤>
 本発明の無機固体電解質含有組成物は、導電助剤を含有していることが好ましく、例えば、負極活物質としてのケイ素原子含有活物質は導電助剤と併用されることが好ましい。
 導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。
 本発明において、活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際に周期律表第一族若しくは第二族に属する金属のイオン(好ましくはLiイオン)の挿入と放出が起きず、活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
<Conductive aid>
The inorganic solid electrolyte-containing composition of the present invention preferably contains a conductive auxiliary agent, and for example, a silicon atom-containing active material as a negative electrode active material is preferably used in combination with a conductive auxiliary agent.
The conductive auxiliary agent is not particularly limited, and those known as general conductive auxiliary agents can be used. For example, electron conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fibers or carbon nanotubes. It may be a carbon fiber such as graphene or fullerene, a metal powder such as copper or nickel, or a metal fiber, and a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polyphenylene derivative. May be used.
In the present invention, when the active material and the conductive auxiliary agent are used in combination, among the above conductive auxiliary agents, metal ions (preferably Li) belonging to the first group or the second group of the periodic table when the battery is charged and discharged. A conductive auxiliary agent is one that does not insert and release ions) and does not function as an active material. Therefore, among the conductive auxiliary agents, those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials instead of conductive auxiliary agents. Whether or not the battery functions as an active material when it is charged and discharged is not unique and is determined by the combination with the active material.
 導電助剤は、1種を含有していてもよいし、2種以上を含有していてもよい。
 導電助剤の形状は、特に制限されないが、粒子状が好ましい。
 本発明の無機固体電解質含有組成物が導電助剤を含む場合、無機固体電解質含有組成物中の導電助剤の含有量は、固形分100質量%において、0~10質量%が好ましい。
The conductive auxiliary agent may contain one kind or two or more kinds.
The shape of the conductive auxiliary agent is not particularly limited, but is preferably in the form of particles.
When the inorganic solid electrolyte-containing composition of the present invention contains a conductive auxiliary agent, the content of the conductive auxiliary agent in the inorganic solid electrolyte-containing composition is preferably 0 to 10% by mass with respect to 100% by mass of the solid content.
<リチウム塩>
 本発明の無機固体電解質含有組成物は、リチウム塩(支持電解質)を含有することも好ましい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 本発明の無機固体電解質含有組成物がリチウム塩を含む場合、リチウム塩の含有量は、固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
<Lithium salt>
The inorganic solid electrolyte-containing composition of the present invention preferably contains a lithium salt (supporting electrolyte).
As the lithium salt, the lithium salt usually used for this kind of product is preferable, and there is no particular limitation. For example, the lithium salt described in paragraphs 882 to 985 of JP-A-2015-084886 is preferable.
When the inorganic solid electrolyte-containing composition of the present invention contains a lithium salt, the content of the lithium salt is preferably 0.1 part by mass or more, more preferably 5 parts by mass or more, based on 100 parts by mass of the solid electrolyte. The upper limit is preferably 50 parts by mass or less, more preferably 20 parts by mass or less.
<分散剤>
 本発明の無機固体電解質含有組成物は、上述の本発明に用いるバインダーが分散剤として機能するため、本発明に用いるバインダー以外の分散剤を含有していなくてもよいが、分散剤を含有してもよい。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発及び/又は静電反発を意図した化合物が好適に使用される。
<Dispersant>
Since the binder used in the present invention described above functions as a dispersant, the inorganic solid electrolyte-containing composition of the present invention does not have to contain a dispersant other than the binder used in the present invention, but contains a dispersant. You may. As the dispersant, those usually used for all-solid-state secondary batteries can be appropriately selected and used. Generally, compounds intended for particle adsorption, steric repulsion and / or electrostatic repulsion are preferably used.
<他の添加剤>
 本発明の無機固体電解質含有組成物は、上記各成分以外の他の成分として、適宜に、イオン液体、増粘剤、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。イオン液体は、イオン伝導度をより向上させるため含有されるものであり、公知のものを特に制限されることなく用いることができる。また、上述のポリマーバインダーを形成するポリマー以外のポリマー、通常用いられる結着剤等を含有していてもよい。
<Other additives>
The composition containing an inorganic solid electrolyte of the present invention contains, as other components other than the above components, an ionic liquid, a thickener, and a cross-linking agent (such as those that undergo a cross-linking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization). , Polymerization initiators (such as those that generate acids or radicals by heat or light), defoaming agents, leveling agents, dehydrating agents, antioxidants and the like can be contained. The ionic liquid is contained in order to further improve the ionic conductivity, and known ones can be used without particular limitation. Further, a polymer other than the polymer forming the polymer binder described above, a commonly used binder and the like may be contained.
(無機固体電解質含有組成物の調製)
 本発明の無機固体電解質含有組成物は、無機固体電解質、ポリマーバインダーとして上記本発明に用いるバインダー、分散媒、好ましくは、本発明に用いるバインダー以外のポリマーバインダー(例えばその他のバインダー)、導電助剤、更には適宜に、リチウム塩、任意の他の成分を、例えば通常用いる各種の混合機で混合することにより、混合物として、好ましくはスラリーとして、調製することができる。電極用組成物の場合は更に活物質を混合する。
 混合方法は特に制限されず、一括して混合してもよく、順次混合してもよい。混合する環境は特に制限されないが、乾燥空気下又は不活性ガス下等が挙げられる。
(Preparation of Inorganic Solid Electrolyte-Containing Composition)
The composition containing an inorganic solid electrolyte of the present invention is an inorganic solid electrolyte, a binder used in the present invention as a polymer binder, a dispersion medium, preferably a polymer binder other than the binder used in the present invention (for example, another binder), and a conductive auxiliary agent. Further, as appropriate, a lithium salt and any other component can be prepared as a mixture, preferably as a slurry, by mixing, for example, with various commonly used mixers. In the case of the electrode composition, the active material is further mixed.
The mixing method is not particularly limited, and the mixture may be mixed all at once or sequentially. The mixing environment is not particularly limited, and examples thereof include under dry air and under an inert gas.
[全固体二次電池用シート]
 本発明の全固体二次電池用シートは、全固体二次電池の構成層を形成しうるシート状成形体であって、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう。)、電極、又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートという。
[Sheet for all-solid-state secondary battery]
The sheet for an all-solid-state secondary battery of the present invention is a sheet-like molded body capable of forming a constituent layer of an all-solid-state secondary battery, and includes various aspects depending on its use. For example, a sheet preferably used for a solid electrolyte layer (also referred to as a solid electrolyte sheet for an all-solid secondary battery), an electrode, or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (an electrode for an all-solid secondary battery). Sheet) and the like. In the present invention, these various sheets are collectively referred to as an all-solid-state secondary battery sheet.
 本発明の全固体二次電池用固体電解質シートは、固体電解質層を有するシートであればよく、固体電解質層が基材上に形成されているシートでも、基材を有さず、固体電解質層から形成されているシートであってもよい。全固体二次電池用固体電解質シートは、固体電解質層の他に他の層を有してもよい。他の層としては、例えば、保護層(剥離シート)、集電体、コート層等が挙げられる。
 本発明の全固体二次電池用固体電解質シートとして、例えば、基材上に、本発明の無機固体電解質含有組成物で構成した層、通常固体電解質層と、保護層とをこの順で有するシートが挙げられる。全固体二次電池用固体電解質シートが有する固体電解質層は、本発明の無機固体電解質含有組成物で形成されることが好ましい。この固体電解質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の無機固体電解質含有組成物の固形分中における各成分の含有量と同義である。全固体二次電池用固体電解質シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。
The solid electrolyte sheet for an all-solid secondary battery of the present invention may be a sheet having a solid electrolyte layer, and even a sheet in which the solid electrolyte layer is formed on a base material does not have a base material and is a solid electrolyte layer. It may be a sheet formed of. The solid electrolyte sheet for an all-solid secondary battery may have another layer in addition to the solid electrolyte layer. Examples of other layers include a protective layer (release sheet), a current collector, a coat layer, and the like.
As the solid electrolyte sheet for an all-solid secondary battery of the present invention, for example, a sheet having a layer composed of the inorganic solid electrolyte-containing composition of the present invention, a normal solid electrolyte layer, and a protective layer on a substrate in this order. Can be mentioned. The solid electrolyte layer contained in the solid electrolyte sheet for an all-solid secondary battery is preferably formed of the inorganic solid electrolyte-containing composition of the present invention. The content of each component in the solid electrolyte layer is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the inorganic solid electrolyte-containing composition of the present invention. The layer thickness of each layer constituting the solid electrolyte sheet for an all-solid-state secondary battery is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later.
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後述する集電体で説明する材料、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス、セラミック等が挙げられる。 The base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include a material described in the current collector described later, a sheet body (plate-shaped body) such as an organic material and an inorganic material. Examples of the organic material include various polymers, and specific examples thereof include polyethylene terephthalate, polypropylene, polyethylene, and cellulose. Examples of the inorganic material include glass, ceramic and the like.
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、活物質層から形成されているシートであってもよい。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。電極シートが有する固体電解質層及び活物質層は、本発明の無機固体電解質含有組成物で形成されることが好ましい。この固体電解質層又は活物質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の無機固体電解質含有組成物(電極用組成物)の固形分中における各成分の含有量と同義である。本発明の電極シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。本発明の電極シートは上述の他の層を有してもよい。 The electrode sheet for an all-solid-state secondary battery of the present invention (also simply referred to as “electrode sheet”) may be an electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector). The sheet may be a sheet that does not have a base material and is formed from an active material layer. This electrode sheet is usually a sheet having a current collector and an active material layer, but has an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. An embodiment having a layer and an active material layer in this order is also included. The solid electrolyte layer and the active material layer of the electrode sheet are preferably formed of the inorganic solid electrolyte-containing composition of the present invention. The content of each component in the solid electrolyte layer or the active material layer is not particularly limited, but preferably, the content of each component in the solid content of the inorganic solid electrolyte-containing composition (electrode composition) of the present invention. Is synonymous with. The layer thickness of each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid-state secondary battery described later. The electrode sheet of the present invention may have the other layers described above.
 本発明の全固体二次電池用シートは、固体電解質層及び活物質層の少なくとも1層が本発明の無機固体電解質含有組成物で形成され、低抵抗で高い膜強度の構成層を有している。そのため、本発明の全固体二次電池用シートは、全固体二次電池の構成層として用いることにより、全固体二次電池の優れたサイクル特性、更には低抵抗(高伝導度)を実現できる。また、全固体二次電池用シートをロール トゥ ロール法により製造しても、構成層に欠陥が生じにくい。更には、活物質層を本発明の無機固体電解質含有組成物で形成した全固体二次電池用電極シート及び全固体二次電池は、活物質層と集電体とが強固な密着性を示し、サイクル特性の更なる向上を実現できる。したがって、本発明の全固体二次電池用シートは、全固体二次電池の構成層を形成しうるシートとして好適に用いられる。 In the all-solid-state secondary battery sheet of the present invention, at least one of the solid electrolyte layer and the active material layer is formed of the inorganic solid electrolyte-containing composition of the present invention, and has a constituent layer having low resistance and high film strength. There is. Therefore, by using the sheet for the all-solid-state secondary battery of the present invention as a constituent layer of the all-solid-state secondary battery, excellent cycle characteristics of the all-solid-state secondary battery and low resistance (high conductivity) can be realized. .. Further, even if the sheet for an all-solid-state secondary battery is manufactured by the roll-to-roll method, defects are unlikely to occur in the constituent layers. Furthermore, the electrode sheet for an all-solid-state secondary battery and the all-solid-state secondary battery in which the active material layer is formed of the inorganic solid electrolyte-containing composition of the present invention show strong adhesion between the active material layer and the current collector. , Further improvement of cycle characteristics can be realized. Therefore, the sheet for an all-solid-state secondary battery of the present invention is suitably used as a sheet capable of forming a constituent layer of an all-solid-state secondary battery.
[全固体二次電池用シートの製造方法]
 本発明の全固体二次電池用シートの製造方法は、特に制限されず、本発明の無機固体電解質含有組成物を用いて、上記の各層を形成することにより、製造できる。例えば、好ましくは基材若しくは集電体上(他の層を介していてもよい。)に、製膜(塗布乾燥)して無機固体電解質含有組成物からなる層(塗布乾燥層)を形成する方法が挙げられる。これにより、基材若しくは集電体と、塗布乾燥層とを有する全固体二次電池用シートを作製することができる。特に、本発明の無機固体電解質含有組成物を集電体上で製膜して全固体二次電池用シートを作製すると、集電体と活物質層との密着を強固にできる。ここで、塗布乾燥層とは、本発明の無機固体電解質含有組成物を塗布し、分散媒を乾燥させることにより形成される層(すなわち、本発明の無機固体電解質含有組成物を用いてなり、本発明の無機固体電解質含有組成物から分散媒を除去した組成からなる層)をいう。活物質層及び塗布乾燥層は、本発明の効果を損なわない範囲であれば分散媒が残存していてもよく、残存量としては、例えば、各層中、3質量%以下とすることができる。
 本発明の全固体二次電池用シートの製造方法において、塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
[Manufacturing method of all-solid-state secondary battery sheet]
The method for producing the sheet for an all-solid secondary battery of the present invention is not particularly limited, and the sheet can be produced by forming each of the above layers using the inorganic solid electrolyte-containing composition of the present invention. For example, a layer (coating and drying layer) composed of an inorganic solid electrolyte-containing composition is preferably formed on a base material or a current collector (which may be via another layer) by forming a film (coating and drying). The method can be mentioned. Thereby, an all-solid-state secondary battery sheet having a base material or a current collector and a coating dry layer can be produced. In particular, when the inorganic solid electrolyte-containing composition of the present invention is formed on a current collector to prepare a sheet for an all-solid secondary battery, the adhesion between the current collector and the active material layer can be strengthened. Here, the coating dry layer is a layer formed by applying the inorganic solid electrolyte-containing composition of the present invention and drying the dispersion medium (that is, the inorganic solid electrolyte-containing composition of the present invention is used. A layer having a composition obtained by removing a dispersion medium from the inorganic solid electrolyte-containing composition of the present invention). In the active material layer and the coating dry layer, the dispersion medium may remain as long as the effects of the present invention are not impaired, and the residual amount may be, for example, 3% by mass or less in each layer.
In the method for manufacturing an all-solid-state secondary battery sheet of the present invention, each step such as coating and drying will be described in the following method for manufacturing an all-solid-state secondary battery.
 本発明の全固体二次電池用シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等については、後述する、全固体二次電池の製造方法において説明する。
 また、本発明の全固体二次電池用シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
In the method for producing a sheet for an all-solid-state secondary battery of the present invention, the coating dry layer obtained as described above can also be pressurized. The pressurizing conditions and the like will be described later in the method for manufacturing an all-solid-state secondary battery.
Further, in the method for producing a sheet for an all-solid-state secondary battery of the present invention, the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
 本発明の全固体二次電池用シートの製造方法は、本発明の無機固体電解質含有組成物を用いることにより、屈曲及び復元が作用する高生産性の製造方法、特に屈曲及び復元が繰り返して作用する工業的な製造方法(例えば、ロール トゥ ロール法)に適用しても、固体粒子同士の接触状態を維持した構成層を作製できる。すなわち、膜強度が高く欠陥の発生が抑制された構成層を有する全固体二次電池用シートを高生産性で製造することができる。 The method for producing a sheet for an all-solid secondary battery of the present invention is a highly productive production method in which bending and restoration act by using the composition containing an inorganic solid electrolyte of the present invention, and in particular, bending and restoration act repeatedly. Even if it is applied to an industrial manufacturing method (for example, a roll-to-roll method), a constituent layer that maintains a contact state between solid particles can be produced. That is, it is possible to manufacture an all-solid-state secondary battery sheet having a constituent layer having a high film strength and suppressing the occurrence of defects with high productivity.
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、好ましくは正極集電体上に形成され、正極を構成する。負極活物質層は、好ましくは負極集電体上に形成され、負極を構成する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層が本発明の無機固体電解質含有組成物で形成されていればよく、固体電解質層、又は負極活物質層及び正極活物質層の少なくとも一方が本発明の無機固体電解質含有組成物で形成されることが好ましい。全ての層が本発明の無機固体電解質含有組成物で形成されることも好ましい態様の1つである。本発明の無機固体電解質含有組成物で形成された活物質層又は固体電解質層は、好ましくは、含有する成分種及びその含有量比について、本発明の無機固体電解質含有組成物の固形分におけるものと同じである。なお、活物質層又は固体電解質層が本発明の無機固体電解質含有組成物で形成されない場合、公知の材料を用いることができる。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
[All-solid-state secondary battery]
The all-solid secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer arranged between the positive electrode active material layer and the negative electrode active material layer. Have. The positive electrode active material layer is preferably formed on the positive electrode current collector and constitutes the positive electrode. The negative electrode active material layer is preferably formed on the negative electrode current collector to form the negative electrode.
It is sufficient that at least one layer of the negative electrode active material layer, the positive electrode active material layer and the solid electrolyte layer is formed of the inorganic solid electrolyte-containing composition of the present invention, and the solid electrolyte layer, or the negative electrode active material layer and the positive electrode active material layer. It is preferable that at least one of the above is formed of the composition containing the inorganic solid electrolyte of the present invention. It is also one of the preferred embodiments that all layers are formed of the inorganic solid electrolyte-containing composition of the present invention. The active material layer or the solid electrolyte layer formed of the inorganic solid electrolyte-containing composition of the present invention is preferably one in the solid content of the inorganic solid electrolyte-containing composition of the present invention with respect to the component species contained therein and the content ratio thereof. Is the same as. When the active material layer or the solid electrolyte layer is not formed by the inorganic solid electrolyte-containing composition of the present invention, a known material can be used.
The thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 μm, more preferably 20 μm or more and less than 500 μm, respectively, in consideration of the dimensions of a general all-solid-state secondary battery. In the all-solid-state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is 50 μm or more and less than 500 μm.
The positive electrode active material layer and the negative electrode active material layer may each have a current collector on the opposite side of the solid electrolyte layer.
<筐体>
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
<Case>
Depending on the application, the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure, but in order to form a dry battery, it should be further enclosed in a suitable housing. Is preferable. The housing may be made of metal or resin (plastic). When a metallic material is used, for example, one made of aluminum alloy or stainless steel can be mentioned. It is preferable that the metallic housing is divided into a positive electrode side housing and a negative electrode side housing, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。 Hereinafter, the all-solid-state secondary battery according to the preferred embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited thereto.
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。 FIG. 1 is a cross-sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. .. Each layer is in contact with each other and has an adjacent structure. By adopting such a structure, during charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated there. On the other hand, at the time of discharge, the lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6. In the illustrated example, a light bulb is used as a model for the operating portion 6, and the light bulb is turned on by electric discharge.
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用積層体と称し、この全固体二次電池用積層体を2032型コインケースに入れて作製した電池(例えば図2に示すコイン型全固体二次電池)を全固体二次電池と称して呼び分けることもある。 When the all-solid secondary battery having the layer structure shown in FIG. 1 is placed in a 2032 type coin case, the all-solid secondary battery is referred to as an all-solid secondary battery laminate, and the all-solid secondary battery laminate is referred to as an all-solid secondary battery laminate. A battery manufactured in a 2032 type coin case (for example, a coin type all-solid secondary battery shown in FIG. 2) may be referred to as an all-solid secondary battery.
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれも本発明の無機固体電解質含有組成物で形成されている。この全固体二次電池10は優れた電池性能を示す。正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及びポリマーバインダー(本発明に用いるバインダー)は、それぞれ、互いに同種であっても異種であってもよい。
 本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
(Cathode active material layer, solid electrolyte layer, negative electrode active material layer)
In the all-solid-state secondary battery 10, all of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are formed of the inorganic solid electrolyte-containing composition of the present invention. The all-solid-state secondary battery 10 exhibits excellent battery performance. The inorganic solid electrolyte and the polymer binder (binder used in the present invention) contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be of the same type or different from each other.
In the present invention, either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer. Further, either or both of the positive electrode active material and the negative electrode active material may be collectively referred to as an active material or an electrode active material.
 本発明において、構成層に対して本発明に用いるバインダーを無機固体電解質又は活物質等の固体粒子と組み合わせて用いると、上述のようにシート作製時等の屈曲及び復元によっても固体粒子同士の界面接触を維持できる。そのため、工業的見地から連続的に作製した全固体二次電池用シートを用いても、得られる本発明の全固体二次電池は、低電池抵抗でサイクル特性に優れた高い電池性能を実現できる。 In the present invention, when the binder used in the present invention is used in combination with solid particles such as an inorganic solid electrolyte or an active material for the constituent layer, the interface between the solid particles is also caused by bending and restoration during sheet preparation as described above. Can maintain contact. Therefore, even if a sheet for an all-solid-state secondary battery continuously manufactured from an industrial point of view is used, the obtained all-solid-state secondary battery of the present invention can realize high battery performance with low battery resistance and excellent cycle characteristics. ..
 全固体二次電池10においては、負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1~500μmとすることができる。 In the all-solid-state secondary battery 10, the negative electrode active material layer can be a lithium metal layer. Examples of the lithium metal layer include a layer formed by depositing or molding a lithium metal powder, a lithium foil, a lithium vapor deposition film, and the like. The thickness of the lithium metal layer can be, for example, 1 to 500 μm regardless of the thickness of the negative electrode active material layer.
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be collectively referred to as a current collector.
As a material for forming the positive electrode current collector, in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, the surface of aluminum or stainless steel is treated with carbon, nickel, titanium or silver (a thin film is formed). Of these, aluminum and aluminum alloys are more preferable.
As a material for forming the negative electrode current collector, in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel. Preferably, aluminum, copper, copper alloy and stainless steel are more preferable.
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
The shape of the current collector is usually a film sheet, but a net, a punched body, a lath body, a porous body, a foam body, a molded body of a fiber group, or the like can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
 上記全固体二次電池10においては、正極活物質層は公知の構成層形成材料で形成した層を適用することもできる。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層、部材等を適宜介在若しくは配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
In the all-solid-state secondary battery 10, a layer formed of a known constituent layer-forming material can be applied to the positive electrode active material layer.
In the present invention, a functional layer, a member, or the like is appropriately interposed or arranged between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. You may. Further, each layer may be composed of a single layer or a plurality of layers.
[全固体二次電池の製造]
 全固体二次電池は、常法によって、製造できる。具体的には、全固体二次電池は、本発明の無機固体電解質含有組成物等を用いて、上記の各層を形成することにより、製造できる。以下、詳述する。
[Manufacturing of all-solid-state secondary batteries]
The all-solid-state secondary battery can be manufactured by a conventional method. Specifically, the all-solid-state secondary battery can be manufactured by forming each of the above layers using the inorganic solid electrolyte-containing composition or the like of the present invention. The details will be described below.
 本発明の全固体二次電池は、本発明の無機固体電解質含有組成物を、適宜基材(例えば、集電体となる金属箔)上に、塗布し、塗膜を形成する(製膜する)工程を含む(介する)方法(本発明の全固体二次電池用シートの製造方法)を行って、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する無機固体電解質含有組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための無機固体電解質含有組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する無機固体電解質含有組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。これを筐体に封入して所望の全固体二次電池とすることもできる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
In the all-solid-state secondary battery of the present invention, the inorganic solid electrolyte-containing composition of the present invention is appropriately applied onto a base material (for example, a metal foil serving as a current collector) to form a coating film (film formation). ) A method including (via) a step (a method for producing a sheet for an all-solid-state secondary battery of the present invention) can be performed.
For example, an inorganic solid electrolyte-containing composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil which is a positive electrode current collector to form a positive electrode active material layer, and the entire solid is formed. A positive electrode sheet for a secondary battery is produced. Next, an inorganic solid electrolyte-containing composition for forming the solid electrolyte layer is applied onto the positive electrode active material layer to form the solid electrolyte layer. Further, an inorganic solid electrolyte-containing composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer. By superimposing a negative electrode current collector (metal foil) on the negative electrode active material layer, an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between the positive electrode active material layer and the negative electrode active material layer can be obtained. Can be done. This can be enclosed in a housing to obtain a desired all-solid-state secondary battery.
Further, by reversing the forming method of each layer, a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collectors are superposed to manufacture an all-solid secondary battery. You can also do it.
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する無機固体電解質含有組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、無機固体電解質含有組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 更に、上記のようにして、全固体二次電池用正極シート又は全固体二次電池用負極シート、及び全固体二次電池用固体電解質シートを作製する。次いで、全固体二次電池用正極シート又は全固体二次電池用負極シートと全固体二次電池用固体電解質シートとを、正極活物質層又は負極活物質層と固体電解質層とを接触させた状態に、重ねて、加圧する。こうして、全固体二次電池用正極シート又は全固体二次電池用負極シートに固体電解質層を転写する。その後、全固体二次電池用固体電解質シートの基材を剥離した固体電解質層と全固体二次電池用負極シート又は全固体二次電池用正極シートとを(固体電解質層に負極活物質層又は正極活物質層を接触させた状態に)重ねて加圧する。こうして、全固体二次電池を製造することができる。この方法における加圧方法及び加圧条件等は、特に制限されず、後述する、塗布した組成物の加圧において説明する方法及び加圧条件等を適用できる。
As another method, the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery is produced. Further, an inorganic solid electrolyte-containing composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on a metal foil which is a negative electrode current collector to form a negative electrode active material layer, and the entire solid is formed. A negative electrode sheet for a secondary battery is manufactured. Next, a solid electrolyte layer is formed on the active material layer of any one of these sheets as described above. Further, the other of the positive electrode sheet for the all-solid secondary battery and the negative electrode sheet for the all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, an all-solid-state secondary battery can be manufactured.
As another method, the following method can be mentioned. That is, as described above, a positive electrode sheet for an all-solid-state secondary battery and a negative electrode sheet for an all-solid-state secondary battery are produced. Separately from this, an inorganic solid electrolyte-containing composition is applied onto a base material to prepare a solid electrolyte sheet for an all-solid secondary battery composed of a solid electrolyte layer. Further, the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery are laminated so as to sandwich the solid electrolyte layer peeled off from the base material. In this way, an all-solid-state secondary battery can be manufactured.
Further, as described above, a positive electrode sheet for an all-solid-state secondary battery or a negative electrode sheet for an all-solid-state secondary battery, and a solid electrolyte sheet for an all-solid-state secondary battery are produced. Next, the positive electrode sheet for the all-solid secondary battery or the negative electrode sheet for the all-solid secondary battery and the solid electrolyte sheet for the all-solid secondary battery were brought into contact with the positive electrode active material layer or the negative electrode active material layer and the solid electrolyte layer. Overlay and pressurize in the state. In this way, the solid electrolyte layer is transferred to the positive electrode sheet for the all-solid-state secondary battery or the negative electrode sheet for the all-solid-state secondary battery. Then, the solid electrolyte layer from which the base material of the solid electrolyte sheet for the all-solid secondary battery is peeled off and the negative electrode sheet for the all-solid secondary battery or the positive electrode sheet for the all-solid secondary battery are separated (the negative electrode active material layer or the negative electrode active material layer on the solid electrolyte layer). Pressurize the positive electrode active material layer in contact with each other. In this way, an all-solid-state secondary battery can be manufactured. The pressurizing method and pressurizing conditions in this method are not particularly limited, and the methods and pressurizing conditions described later in the pressurization of the applied composition can be applied.
 固体電解質層等は、例えば基板若しくは活物質層上で、無機固体電解質含有組成物等を後述する加圧条件下で加圧成形して形成することもできるし、固体電解質又は活物質のシート成形体を用いることもできる。
 上記の製造方法においては、正極用組成物、無機固体電解質含有組成物及び負極用組成物のいずれか1つに本発明の無機固体電解質含有組成物を用いればよく、無機固体電解質含有組成物、又は正極用組成物及び負極用組成物の少なくとも一方に本発明の無機固体電解質含有組成物を用いることが好ましく、いずれの組成物に本発明の無機固体電解質含有組成物を用いることもできる。
 本発明の固体電解質組成物以外の組成物で固体電解質層又は活物質層を形成する場合、その材料としては、通常用いられる組成物等が挙げられる。また、全固体二次電池の製造時に負極活物質層を形成せずに、後述する初期化若しくは使用時の充電で負極集電体に蓄積した、周期律表第一族若しくは第二族に属する金属のイオンを電子と結合させて、金属として負極集電体等の上に析出させることにより、負極活物質層を形成することもできる。
The solid electrolyte layer or the like can be formed, for example, by pressure-molding an inorganic solid electrolyte-containing composition or the like on a substrate or an active material layer under pressure conditions described later, or sheet molding of a solid electrolyte or an active material. You can also use the body.
In the above production method, the inorganic solid electrolyte-containing composition of the present invention may be used as any one of the positive electrode composition, the inorganic solid electrolyte-containing composition and the negative electrode composition, and the inorganic solid electrolyte-containing composition, Alternatively, it is preferable to use the inorganic solid electrolyte-containing composition of the present invention for at least one of the positive electrode composition and the negative electrode composition, and the inorganic solid electrolyte-containing composition of the present invention can be used for any of the compositions.
When the solid electrolyte layer or the active material layer is formed by a composition other than the solid electrolyte composition of the present invention, examples of the material include commonly used compositions and the like. In addition, it belongs to the first or second group of the periodic table, which is accumulated in the negative electrode current collector by initialization or charging during use, which will be described later, without forming the negative electrode active material layer during the manufacture of the all-solid secondary battery. A negative electrode active material layer can also be formed by combining metal ions with electrons and depositing them as a metal on a negative electrode current collector or the like.
<各層の形成(成膜)>
 無機固体電解質含有組成物の塗布方法は特に制限されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート塗布、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 このとき、無機固体電解質含有組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に制限されない。下限は、30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性と、非加圧でも良好なイオン伝導度を得ることができる。
 上記のようにして本発明の無機固体電解質含有組成物を塗布乾燥すると、界面抵抗の上昇を抑えながらも固体粒子同士を強固に結着させた強固な膜強度を示す塗布乾燥層(無機固体電解質層)を形成することができる。
<Formation of each layer (deposition)>
The method for applying the composition containing an inorganic solid electrolyte is not particularly limited and can be appropriately selected. For example, coating (preferably wet coating), spray coating, spin coating coating, dip coating coating, slit coating, stripe coating, and bar coating coating can be mentioned.
At this time, the inorganic solid electrolyte-containing composition may be subjected to a drying treatment after being applied to each of them, or may be subjected to a drying treatment after being applied in multiple layers. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher. The upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower. By heating in such a temperature range, the dispersion medium can be removed and a solid state (coating dry layer) can be obtained. Further, it is preferable because the temperature is not raised too high and each member of the all-solid-state secondary battery is not damaged. As a result, in the all-solid-state secondary battery, it is possible to obtain excellent overall performance, good binding property, and good ionic conductivity even without pressurization.
When the composition containing the inorganic solid electrolyte of the present invention is applied and dried as described above, a coating and drying layer (inorganic solid electrolyte) exhibiting a strong film strength in which solid particles are firmly bonded to each other while suppressing an increase in interfacial resistance. Layer) can be formed.
 無機固体電解質含有組成物を塗布した後、構成層を重ね合わせた後、又は全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては特に制限されず、一般的には5~1500MPaの範囲であることが好ましい。
 また、塗布した無機固体電解質含有組成物は、加圧と同時に加熱してもよい。加熱温度としては特に制限されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。なお、ポリマーバインダーに含まれるポリマーのガラス転移温度よりも高い温度でプレスすることもできる。ただし、一般的にはこのポリマーの融点を越えない温度である。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
It is preferable to pressurize each layer or the all-solid-state secondary battery after applying the inorganic solid electrolyte-containing composition, superimposing the constituent layers, or producing the all-solid-state secondary battery. Examples of the pressurizing method include a hydraulic cylinder press machine and the like. The pressing force is not particularly limited, and is generally preferably in the range of 5 to 1500 MPa.
Further, the applied inorganic solid electrolyte-containing composition may be heated at the same time as pressurization. The heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It can also be pressed at a temperature higher than the glass transition temperature of the inorganic solid electrolyte. It is also possible to press at a temperature higher than the glass transition temperature of the polymer contained in the polymer binder. However, in general, the temperature does not exceed the melting point of this polymer.
The pressurization may be carried out in a state where the coating solvent or the dispersion medium has been dried in advance, or may be carried out in a state where the solvent or the dispersion medium remains.
In addition, each composition may be applied at the same time, and the application drying press may be performed simultaneously and / or sequentially. After coating on separate substrates, they may be laminated by transfer.
 製造プロセス、例えば塗布中、加熱若しくは加圧中の雰囲気としては特に制限されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The manufacturing process, for example, the atmosphere during coating, heating or pressurization, is not particularly limited, and is in air, dry air (dew point -20 ° C or lower), inert gas (for example, argon gas, helium gas, nitrogen). (In gas) or the like.
The pressing time may be short (for example, within several hours) and high pressure may be applied, or medium pressure may be applied for a long time (1 day or more). In the case of an all-solid-state secondary battery other than the all-solid-state secondary battery sheet, for example, in the case of an all-solid-state secondary battery, an all-solid-state secondary battery restraint (screw tightening pressure, etc.) can be used in order to continue applying a medium pressure.
The press pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
The press pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part step by step with different pressures.
The pressed surface may be smooth or roughened.
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を解放することにより、行うことができる。
<Initialization>
The all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging with the press pressure increased, and then releasing the pressure until the pressure reaches the general working pressure of the all-solid-state secondary battery.
 本発明の全固体二次電池の製造方法は、本発明の無機固体電解質含有組成物を用いることにより、屈曲及び復元が作用する高生産性の製造方法、特に屈曲及び復元が繰り返して作用する工業的な製造方法(例えば、ロール トゥ ロール法)に適用しても、上述の優れた電池性能を実現する全固体二次電池を製造できる。すなわち、上述の電池性能に優れた全固体二次電池を高生産性で製造することができる。 The method for producing an all-solid secondary battery of the present invention is a highly productive production method in which bending and restoration act by using the composition containing an inorganic solid electrolyte of the present invention, particularly an industry in which bending and restoration act repeatedly. Even if it is applied to a conventional manufacturing method (for example, a roll-to-roll method), an all-solid secondary battery that realizes the above-mentioned excellent battery performance can be manufactured. That is, the above-mentioned all-solid-state secondary battery having excellent battery performance can be manufactured with high productivity.
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源などが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[Applications for all-solid-state secondary batteries]
The all-solid secondary battery of the present invention can be applied to various applications. The application mode is not particularly limited, but for example, when mounted on an electronic device, a laptop computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, or a mobile phone. Examples include copying, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, etc. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。本発明において「室温」とは25℃を意味する。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not construed as being limited thereto. In the following examples, "parts" and "%" representing the composition are based on mass unless otherwise specified. In the present invention, "room temperature" means 25 ° C.
1.ポリマーの合成、及びバインダー溶液若しくは分散液の調製
 表1に示すポリマーを以下のようにして合成した。なお、ポリマーの合成に際して、用いた原料化合物は特に断らない限り(合成例を記載したもの以外)市販の化合物を用いた。
[合成例1:バインダー形成ポリマーS-1の合成及びバインダー分散液S-1の調製]
 バインダー形成ポリマーS-1を合成して、このポリマーからなるバインダーの酪酸ブチル分散液S-1を調製した。
 500mL3つ口フラスコに、NISSO-PB GI1000(商品名、日本曹達社製)8.10g、及びポリエチレングリコール(PEG200、富士フイルム和光純薬社製)5.84g、ポリテトラメチレングリコール(PTMG250、アルドリッチ社製)7.30g、後述する参考合成例1で合成した官能基含有構成成分A-1を導く化合物1.47gを加え、テトラヒドロフラン(富士フイルム和光純薬社製)103.2gに溶解した。この溶液に、ジフェニルメタンジイソシアネート(MDI、東京化成工業社製)18.52gを加えて60℃で撹拌し、均一に溶解させた。得られた溶液に、ネオスタンU-600(商品名、日東化成社製)100mgを添加して60℃で6時間攪伴した。
 こうして得られたポリマー溶液を0℃に冷却し、テトラブチルアンモニウムフルオリド(1.0M(モル/L)のテトラヒドロフラン(THF)溶液、東京化成工業社製)を15g加え、0℃のまま30分撹拌した。そこへ1M塩酸水溶液を20g加えて得た溶液をアセトニトリル600gに流し入れ、上澄みを除いて得られたポリマーをTHFに再溶解させることで、ポリマーS-1(ポリウレタン)のTHF溶液(濃度11質量%)を得た。
 次いで、300mL3つ口フラスコに、上記ポリマーS-1のTHF溶液30gを入れ、室温で攪拌した。そこへ酪酸ブチル90gを30分かけて滴下した後、THFを減圧留去した。このようにして、バインダー形成ポリマーS-1からなるバインダー分散液S-1(濃度4質量%)を得た。
1. 1. Synthesis of polymer and preparation of binder solution or dispersion The polymer shown in Table 1 was synthesized as follows. In the synthesis of the polymer, commercially available compounds were used as the raw material compounds (other than those described in the synthesis examples) unless otherwise specified.
[Synthesis Example 1: Synthesis of Binder-Forming Polymer S-1 and Preparation of Binder Dispersion Liquid S-1]
A binder-forming polymer S-1 was synthesized to prepare a butyl butyrate dispersion S-1 of a binder composed of this polymer.
NISSO-PB GI1000 (trade name, manufactured by Nippon Soda Co., Ltd.) 8.10 g, polyethylene glycol (PEG200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 5.84 g, polytetramethylene glycol (PTMG250, manufactured by Aldrich) in a 500 mL three-necked flask. (Manufactured) 7.30 g and 1.47 g of the compound leading to the functional group-containing constituent component A-1 synthesized in Reference Synthesis Example 1 described later were added and dissolved in 103.2 g of tetrahydrofuran (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). To this solution was added 18.52 g of diphenylmethane diisocyanate (MDI, manufactured by Tokyo Chemical Industry Co., Ltd.) and stirred at 60 ° C. to uniformly dissolve the solution. To the obtained solution, 100 mg of Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) was added and stirred at 60 ° C. for 6 hours.
The polymer solution thus obtained was cooled to 0 ° C., 15 g of tetrabutylammonium fluoride (1.0 M (mol / L) in tetrahydrofuran (THF) solution, manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the temperature was maintained at 0 ° C. for 30 minutes. Stirred. A solution obtained by adding 20 g of a 1 M aqueous hydrochloric acid solution was poured into 600 g of acetonitrile, and the obtained polymer was redissolved in THF by removing the supernatant. ) Was obtained.
Next, 30 g of the above-mentioned polymer S-1 in THF was placed in a 300 mL three-necked flask and stirred at room temperature. 90 g of butyl butyrate was added dropwise thereto over 30 minutes, and then THF was distilled off under reduced pressure. In this way, a binder dispersion liquid S-1 (concentration: 4% by mass) made of the binder-forming polymer S-1 was obtained.
[合成例2:バインダー形成ポリマーS-2の合成及びバインダー分散液S-2の調製]
 バインダー形成ポリマーS-2を合成して、このポリマーからなるバインダーの酪酸ブチル分散液S-2を調製した。
 500mL3つ口フラスコに、NISSO-PB GI1000(商品名、日本曹達社製)11.10g、及びポリエチレングリコール(PEG200、富士フイルム和光純薬社製)5.92g、1,4-ブタンジオール(1,4-BD)2.67g、2,2-ビス(ヒドロキシメチル)酪酸(DMBA、東京化成工業社製)1.10gを加え、テトラヒドロフラン(富士フイルム和光純薬社製)101.6gに溶解した。この溶液に、ジフェニルメタンジイソシアネート(東京化成工業社製)18.52gを加えて60℃で撹拌し、均一に溶解させた。得られた溶液に、ネオスタンU-600(商品名、日東化成社製)100mgを添加して60℃で6時間攪伴した。
 こうして得られたポリマー溶液に対し、1,2-エポキシヘプタン(東京化成工業社製)3.4g、テトラブチルアンモニウムブロミド(東京化成工業社製)1.2gを加え、60℃で6時間撹拌した。得られた溶液をアセトニトリル600gに流し入れ、上澄みを除いて得られたポリマーをTHFに再溶解させることで、官能基含有構成成分A-2を有するポリマーS-2(ポリウレタン)のTHF溶液(濃度10質量%)を得た。
 次いで、300mL3つ口フラスコに、上記ポリマーS-2のTHF溶液30gを入れ、室温で攪拌した。そこへ酪酸ブチル90gを30分かけて滴下した後、THFを減圧留去した。このようにして、バインダー形成ポリマーS-2からなるバインダー分散液S-2(濃度4質量%)を得た。
[Synthesis Example 2: Synthesis of Binder-Forming Polymer S-2 and Preparation of Binder Dispersion Liquid S-2]
A binder-forming polymer S-2 was synthesized to prepare a butyl butyrate dispersion S-2 of a binder composed of this polymer.
NISSO-PB GI1000 (trade name, manufactured by Nippon Soda Co., Ltd.) 11.10 g, polyethylene glycol (PEG200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 5.92 g, 1,4-butanediol (1,4-butanediol) in a 500 mL three-necked flask. 2.67 g of 4-BD) and 1.10 g of 2,2-bis (hydroxymethyl) butyric acid (DMBA, manufactured by Tokyo Chemical Industry Co., Ltd.) were added and dissolved in 101.6 g of tetrahydrofuran (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). 18.52 g of diphenylmethane diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to this solution, and the mixture was stirred at 60 ° C. to uniformly dissolve it. To the obtained solution, 100 mg of Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) was added and stirred at 60 ° C. for 6 hours.
To the polymer solution thus obtained, 3.4 g of 1,2-epoxy heptane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1.2 g of tetrabutylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and the mixture was stirred at 60 ° C. for 6 hours. .. The obtained solution was poured into 600 g of acetonitrile, the supernatant was removed, and the obtained polymer was redissolved in THF to cause a THF solution (concentration 10) of the polymer S-2 (polyurethane) having a functional group-containing component A-2. Mass%) was obtained.
Next, 30 g of the above-mentioned polymer S-2 in THF was placed in a 300 mL three-necked flask and stirred at room temperature. 90 g of butyl butyrate was added dropwise thereto over 30 minutes, and then THF was distilled off under reduced pressure. In this way, a binder dispersion liquid S-2 (concentration: 4% by mass) made of the binder-forming polymer S-2 was obtained.
[合成例3~5:バインダー形成ポリマーS-3~S-5の合成、及びバインダー分散液S-3~S-5の調製]
 合成例2において、1,2-エポキシヘプタンの代わりに、それぞれ、参考合成例2で合成した2-ヒドロキシメチルアジリジン、グリシジルメチルエーテル(東京化成工業社製)、グリシドール(東京化成工業社製)を表1に示す組成となる量で用いたこと以外は、合成例2と同様にして、官能基含有構成成分A-3、A-4又はA-5を有するバインダー形成ポリマーS-3~S-5(ポリウレタン)をそれぞれ合成して、各バインダー形成ポリマーからなるバインダー分散液S-3~S-5(濃度4質量%)をそれぞれ得た。
[Synthesis Examples 3 to 5: Synthesis of Binder Forming Polymers S-3 to S-5 and Preparation of Binder Dispersion Liquids S-3 to S-5]
In Synthesis Example 2, instead of 1,2-epoxyheptane, 2-hydroxymethylaziridine, glycidylmethyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and glycidol (manufactured by Tokyo Chemical Industry Co., Ltd.) synthesized in Reference Synthesis Example 2 were used, respectively. Binder-forming polymers S-3 to S- having functional group-containing constituents A-3, A-4 or A-5, as in Synthesis Example 2, except that they were used in the amounts shown in Table 1. Each of 5 (polyurethane) was synthesized to obtain binder dispersions S-3 to S-5 (concentration: 4% by mass) composed of each binder-forming polymer.
[合成例6:バインダー形成ポリマーS-6の合成、及びバインダー溶液S-6の調製]
 合成例1において、ポリマーS-6が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと以外は、合成例1と同様にして、バインダー形成ポリマーS-6(ポリウレタン)を合成して、バインダー形成ポリマーS-6からなるバインダー溶液S-6(濃度4質量%)を得た。
[Synthesis Example 6: Synthesis of Binder-Forming Polymer S-6 and Preparation of Binder Solution S-6]
In Synthesis Example 1, a binder is used in the same manner as in Synthesis Example 1, except that a compound that guides each component so that the polymer S-6 has the composition (type and content of components) shown in Table 1 is used. The forming polymer S-6 (polyurethane) was synthesized to obtain a binder solution S-6 (concentration: 4% by mass) composed of the binder forming polymer S-6.
[合成例7:バインダー形成ポリマーS-7の合成、及びバインダー溶液S-7の調製]
 500mL3つ口フラスコに、NISSO-PB GI1000(商品名、日本曹達社製)11.10g、及びポリエチレングリコール(PEG200、富士フイルム和光純薬社製)5.92g、ポリテトラメチレングリコール(PTMG250、アルドリッチ社製)7.40g、N-メチルジエタノールアミン0.88gを加え、テトラヒドロフラン(富士フイルム和光純薬社製)101.1gに溶解した。この溶液に、ジフェニルメタンジイソシアネート(東京化成工業社製)18.52gを加えて60℃で撹拌し、均一に溶解させた。得られた溶液に、ネオスタンU-600(商品名、日東化成社製)100mgを添加して60℃で6時間攪伴した。
 こうして得られたポリマーS-7(ポリウレタン)のTHF溶液30gを300mL3つ口フラスコに入れ、室温で攪拌した。そこへ酪酸ブチル90gを30分かけて滴下した後、THFを減圧留去した。このようにして、バインダー形成ポリマーS-7からなるバインダー分散液S-7(濃度4質量%)を得た。
[Synthesis Example 7: Synthesis of Binder-Forming Polymer S-7 and Preparation of Binder Solution S-7]
NISSO-PB GI1000 (trade name, manufactured by Nippon Soda Co., Ltd.) 11.10 g, polyethylene glycol (PEG200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 5.92 g, polytetramethylene glycol (PTMG250, manufactured by Aldrich) in a 500 mL three-necked flask. (Manufactured by) 7.40 g and 0.88 g of N-methyldiethanolamine were added and dissolved in 101.1 g of tetrahydrofuran (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). 18.52 g of diphenylmethane diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to this solution, and the mixture was stirred at 60 ° C. to uniformly dissolve it. To the obtained solution, 100 mg of Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) was added and stirred at 60 ° C. for 6 hours.
30 g of a THF solution of the polymer S-7 (polyurethane) thus obtained was placed in a 300 mL three-necked flask and stirred at room temperature. 90 g of butyl butyrate was added dropwise thereto over 30 minutes, and then THF was distilled off under reduced pressure. In this way, a binder dispersion liquid S-7 (concentration: 4% by mass) made of the binder-forming polymer S-7 was obtained.
[合成例8:バインダー形成ポリマーS-8の合成、及びバインダー溶液S-8の調製]
 合成例1において、ポリマーS-8が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと以外は、合成例1と同様にして、バインダー形成ポリマーS-8(ポリウレタン)を合成して、各バインダー形成ポリマーからなるバインダー溶液S-8(濃度4質量%)を得た。
[Synthesis Example 8: Synthesis of Binder-Forming Polymer S-8 and Preparation of Binder Solution S-8]
In Synthesis Example 1, a binder is used in the same manner as in Synthesis Example 1, except that a compound that guides each component so that the polymer S-8 has the composition (type and content of components) shown in Table 1 is used. The forming polymer S-8 (polyurethane) was synthesized to obtain a binder solution S-8 (concentration: 4% by mass) composed of each binder forming polymer.
[合成例9:ポリマーS-9の合成、及びバインダー分散液S-9の調製]
 500mL3つ口フラスコに、ジシクロヘキシルメタン-4,4’-ジイソシアナート 7.78g、THF183g、構成成分B-1を導く化合物55.50g、後述する参考合成例4で合成した官能基含有構成成分A-8を導く化合物14.95gを加え、60℃で30時間撹拌した。
 こうして得られたポリマーS-9(ポリウレタン)のTHF溶液30gを300mL3つ口フラスコに入れ、室温で攪拌した。そこへ酪酸ブチル90gを30分かけて滴下した後、THFを減圧留去した。このようにして、バインダー形成ポリマーS-9からなるバインダー分散液S-9(濃度4質量%)を得た。
[Synthesis Example 9: Synthesis of Polymer S-9 and Preparation of Binder Dispersion Liquid S-9]
In a 500 mL three-necked flask, 7.78 g of dicyclohexylmethane-4,4'-diisocyanate, 183 g of THF, 55.50 g of the compound leading to the component B-1, and the functional group-containing component A synthesized in Reference Synthesis Example 4 described later. 14.95 g of the compound leading to -8 was added, and the mixture was stirred at 60 ° C. for 30 hours.
30 g of a THF solution of the polymer S-9 (polyurethane) thus obtained was placed in a 300 mL three-necked flask and stirred at room temperature. 90 g of butyl butyrate was added dropwise thereto over 30 minutes, and then THF was distilled off under reduced pressure. In this way, a binder dispersion liquid S-9 (concentration: 4% by mass) made of the binder-forming polymer S-9 was obtained.
[合成例10:ポリマーS-10の合成、及びバインダー分散液S-10の調製]
 200mL3つ口フラスコに、NISSO-PB GI1000(商品名、日本曹達社製)15.0g、官能基含有構成成分A-1を導く化合物14.0g、アジピン酸ジメチル(東京化成工業社製)11.0gを加え、150℃で攪拌した。得られた溶液に、オルトチタン酸テトラブチル0.27gを添加して180℃で8時間撹拌して、ポリマーS-10(ポリエステル)の溶液を得た。
 300mL3つ口フラスコに、ポリマーS-10の溶液3g及びTHF27gを入れ、室温で攪拌した。そこへ酪酸ブチル90gを30分かけて滴下した後、THFを減圧留去した。このようにして、バインダー形成ポリマーS-10からなるバインダー分散液S-10(濃度4質量%)を得た。
[Synthesis Example 10: Synthesis of Polymer S-10 and Preparation of Binder Dispersion Liquid S-10]
In a 200 mL three-necked flask, 15.0 g of NISSO-PB GI1000 (trade name, manufactured by Nippon Soda Co., Ltd.), 14.0 g of a compound that derives a functional group-containing component A-1, and dimethyl adipate (manufactured by Tokyo Chemical Industry Co., Ltd.) 11. 0 g was added and the mixture was stirred at 150 ° C. To the obtained solution, 0.27 g of tetrabutyl orthotitanium was added and stirred at 180 ° C. for 8 hours to obtain a solution of polymer S-10 (polyester).
3 g of a solution of polymer S-10 and 27 g of THF were placed in a 300 mL three-necked flask and stirred at room temperature. 90 g of butyl butyrate was added dropwise thereto over 30 minutes, and then THF was distilled off under reduced pressure. In this way, a binder dispersion liquid S-10 (concentration: 4% by mass) made of the binder-forming polymer S-10 was obtained.
[合成例11:ポリマーS-11の合成、及びバインダー分散液S-11の調製]
 合成例2において、ポリマーS-11が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと以外は、合成例2と同様にして、バインダー形成ポリマーS-11(ポリウレタン)を合成して、各バインダー形成ポリマーからなるバインダー分散液S-11(濃度4質量%)を得た。
[Synthesis Example 11: Synthesis of Polymer S-11 and Preparation of Binder Dispersion Liquid S-11]
In Synthesis Example 2, a binder is used in the same manner as in Synthesis Example 2, except that a compound that guides each component so that the polymer S-11 has the composition (type and content of components) shown in Table 1 is used. The forming polymer S-11 (polyurethane) was synthesized to obtain a binder dispersion liquid S-11 (concentration: 4% by mass) composed of each binder forming polymer.
[合成例12:ポリマーS-12の合成、及びバインダー分散液S-12の調製]
 合成例1において、PEG200をEDR-176(ハンツマン社製)4.33gに置き換えたこと以外は、合成例1と同様にして、バインダー形成ポリマーS-12(ポリウレタン)を合成して、各バインダー形成ポリマーからなるバインダー分散液S-12(濃度4質量%)を得た。
[Synthesis Example 12: Synthesis of Polymer S-12 and Preparation of Binder Dispersion Liquid S-12]
In Synthesis Example 1, the binder-forming polymer S-12 (polyurethane) was synthesized in the same manner as in Synthesis Example 1 except that PEG200 was replaced with 4.33 g of EDR-176 (manufactured by Huntsman) to form each binder. A binder dispersion S-12 (concentration: 4% by mass) made of a polymer was obtained.
[合成例13~16:ポリマーT-1、T-3~T-5の合成、及びバインダー分散液T-1、T-3~T-5の調製]
 合成例1において、ポリマーT-1、T-3~T-5が表1に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いたこと以外は、合成例1と同様にして、ポリマーT-1、T-3~T-5(ポリウレタン)をそれぞれ合成して、各ポリマーからなるバインダー分散液T-1、T-3~T-5(濃度4質量%)をそれぞれ得た。
[Synthesis Examples 13 to 16: Synthesis of Polymers T-1, T-3 to T-5, and Preparation of Binder Dispersions T-1, T-3 to T-5]
Synthesis example 1 except that a compound that guides each component so that the polymers T-1, T-3 to T-5 have the composition (type and content of the component) shown in Table 1 is used. Polymers T-1, T-3 to T-5 (polyurethane) are synthesized in the same manner as in Example 1, and binder dispersions T-1, T-3 to T-5 (concentration 4 mass) composed of the respective polymers are synthesized. %) Was obtained respectively.
[合成例17:ポリマーT-2の合成、及びバインダー分散液T-2の調製]
 100mLメスフラスコに、アクリル酸ドデシル(東京化成工業社製)13.7g、こはく酸モノ(2-アクリロイルオキシエチル)(東京化成工業社製)7.20g、アクリル酸2-ヒドロキシエチル(東京化成工業社製)15.2及び重合開始剤V-601(商品名、富士フイルム和光純薬社製)0.36gを加え、酪酸ブチル36gに溶解してモノマー溶液を調製した。
 次いで、300mL3つ口フラスコに酪酸ブチル18gを加え80℃で撹拌したところへ、上記モノマー溶液を2時間かけて滴下した。滴下終了後、90℃に昇温し、2時間撹拌してポリマーT-2((メタ)アクリルポリマー)を合成し、ポリマーT-2からなるバインダーの分散液T-2(濃度40質量%)を得た。
[Synthesis Example 17: Synthesis of Polymer T-2 and Preparation of Binder Dispersion Liquid T-2]
Dodecyl acrylate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 13.7 g, mono oxalate (2-acryloyloxyethyl) (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 7.20 g, 2-hydroxyethyl acrylate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in a 100 mL measuring flask. 15.2 g of the polymerization initiator V-601 (trade name, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added and dissolved in 36 g of butyl butyrate to prepare a monomer solution.
Next, 18 g of butyl butyrate was added to a 300 mL three-necked flask, and the mixture was stirred at 80 ° C., and the above monomer solution was added dropwise over 2 hours. After completion of the dropping, the temperature is raised to 90 ° C. and stirred for 2 hours to synthesize a polymer T-2 ((meth) acrylic polymer), and a dispersion liquid T-2 (concentration 40% by mass) of a binder composed of the polymer T-2. Got
[合成例18:ポリマーT-6の合成、及びバインダー分散液T-6の調製]
 300mL3口フラスコに、6FDA(東京化成工業社製)20.7g、DAPE(東京化成工業社製)8.39g、アミドール(東京化成工業社製)0.92g及びTHF120gを加え、40℃で8時間撹拌して、THF溶液を得た。
 次いで、500mL3口フラスコに、得られたTHF溶液30g及びTHF30gを加えた後、酪酸ブチル180gを室温で30分間かけて滴下した。得られた溶液からTHFを減圧留去し、ポリマーT-6(ポリイミド)を合成して、このポリマーT-6からなるバインダー分散液T-6(濃度4質量%)を得た。
[Synthesis Example 18: Synthesis of Polymer T-6 and Preparation of Binder Dispersion Liquid T-6]
6FDA (manufactured by Tokyo Chemical Industry Co., Ltd.) 20.7 g, DAPE (manufactured by Tokyo Chemical Industry Co., Ltd.) 8.39 g, Amidol (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.92 g and THF 120 g are added to a 300 mL three-necked flask, and the mixture is added at 40 ° C. for 8 hours. Stirring gave a THF solution.
Then, 30 g of the obtained THF solution and 30 g of THF were added to a 500 mL three-necked flask, and then 180 g of butyl butyrate was added dropwise at room temperature over 30 minutes. THF was distilled off from the obtained solution under reduced pressure to synthesize a polymer T-6 (polyimide) to obtain a binder dispersion T-6 (concentration: 4% by mass) composed of the polymer T-6.
[ポリマー等の平均粒子径及び質量平均分子量の測定]
 合成した各ポリマーの質量平均分子量及び各バインダーの平均粒子径(表1において単に「粒径」という。バインダーが溶解型である場合、粒径欄に「溶解」と表記した。)を表1に示す。
 各ポリマーの質量平均分子量は上記方法(条件2)により測定した。
 ポリマーS-1~S-12における上記官能基のpKaは1~20の範囲内である。
[Measurement of average particle size and mass average molecular weight of polymers, etc.]
Table 1 shows the mass average molecular weight of each synthesized polymer and the average particle size of each binder (in Table 1, it is simply referred to as "particle size". If the binder is a soluble type, it is indicated as "dissolved" in the particle size column). show.
The mass average molecular weight of each polymer was measured by the above method (condition 2).
The pKa of the functional group in the polymers S-1 to S-12 is in the range of 1 to 20.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<表の略号>
 表中、構成成分欄中の「-」は該当する構成成分を有していないことを示す。
 表中の略号で示される構成成分を下記に示す。なお、「PEG200」はポリエチレングリコール(数平均分子量200、富士フイルム和光純薬社製)であり、「PPG400」はポリプロピレングリコール(数平均分子量400、富士フイルム和光純薬社製)であり、「PTMG250」はポリテトラメチレンエーテルグリコール(数平均分子量250、SIGMA-Aldrich社製)であり、「GI1000」は水素化液状ポリブタジエンジオール:NISSO-PB GI1000(商品名、数平均分子量1400、日本曹達社製)である。また、「EDR-176」はポリエーテルアミン:ジェファーミンEDR-176(商品名、ハンツマン社製)である。
 構成成分M1は、上記式(I-1)又は式(I-2)で表される構成成分を示す。ただし、ポリマーT-6については例外的にカルボン酸無水物に由来する構成成分を記載した。
 構成成分M2は、上記式(I-3B)で表される構成成分を示す。バインダー形成ポリマーが2種以上のポリエーテル構造を含む場合、式(I-7)で表される構成成分のうち分子量が小さなアルキレンオキシ基で形成されたポリエーテル構造を有する構成成分を示す。ただし、ポリマーT-6については例外的にジアミノジフェニルエーテル(DAPE)に由来する構成成分を記載した。
 構成成分M3は、上記式(I-3B)で表される構成成分を示す。バインダー形成ポリマーが2種以上のポリエーテル構造を含む場合、式(I-7)で表される構成成分のうち分子量が大きなアルキレンオキシ基で形成されたポリエーテル構造を有する構成成分を示す。ただし、ポリマーT-2については例外的にメタクリル酸ドデシル(LMA)に由来する構成成分を記載し、ポリマーT-3については例外的に式(I-3A)で表される構成成分を記載した。
 構成成分M4は、上記式(1-3C)で表される構成成分を示す。
 構成成分M5は、上述の官能基を含有する構成成分を示す。ポリマーT-5については例外的にDMBAに由来する構成成分を記載した。
<Table abbreviation>
In the table, "-" in the component column indicates that the component does not have the corresponding component.
The components indicated by the abbreviations in the table are shown below. "PEG200" is polyethylene glycol (number average molecular weight 200, manufactured by Fujifilm Wako Junyaku Co., Ltd.), and "PPG400" is polypropylene glycol (number average molecular weight 400, manufactured by Fujifilm Wako Junyaku Co., Ltd.), and "PTMG250". Is polytetramethylene ether glycol (number average molecular weight 250, manufactured by SIGMA-Aldrich), and "GI1000" is hydride liquid polybutadiene diol: NISSO-PB GI1000 (trade name, number average molecular weight 1400, manufactured by Nippon Soda Co., Ltd.). Is. Further, "EDR-176" is a polyetheramine: Jeffamine EDR-176 (trade name, manufactured by Huntsman).
The component M1 represents a component represented by the above formula (I-1) or formula (I-2). However, with respect to the polymer T-6, the constituent components derived from the carboxylic acid anhydride are exceptionally described.
The component M2 represents a component represented by the above formula (I-3B). When the binder-forming polymer contains two or more kinds of polyether structures, the constituent components represented by the formula (I-7) having a polyether structure formed of an alkyleneoxy group having a small molecular weight are shown. However, with respect to the polymer T-6, the constituent components derived from diaminodiphenyl ether (DAPE) are described as an exception.
The component M3 represents a component represented by the above formula (I-3B). When the binder-forming polymer contains two or more kinds of polyether structures, the constituent components represented by the formula (I-7) having a polyether structure formed of an alkyleneoxy group having a large molecular weight are shown. However, for the polymer T-2, the constituent components derived from dodecyl methacrylate (LMA) are exceptionally described, and for the polymer T-3, the constituent components represented by the formula (I-3A) are exceptionally described. ..
The component M4 represents a component represented by the above formula (1-3C).
The component M5 represents a component containing the above-mentioned functional group. Exceptionally, the components derived from DMBA are described for the polymer T-5.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[参考合成例1:官能基含有構成成分A-1を導く化合物の合成]
 500mL3つ口フラスコにチオグリセロール(東京化成工業社製)30.0g、2,6-ルチジン(東京化成工業社製)42.4g及びテトラヒドロフラン150gを加え、室温で攪拌した。得られた溶液にトリメチルシリルクロリド(東京化成工業社製)72.0g及び2,6-ルチジン(東京化成工業社製)42.4gを加え、室温で4時間撹拌した。得られた溶液に1M塩酸水溶液を50mL加え、酢酸エチル200mLで3回抽出した後、硫酸ナトリウム30gで乾燥した。酢酸エチルを減圧留去することで、官能基含有構成成分A-1を導く化合物を合成した。
[Reference Synthesis Example 1: Synthesis of Compound Leading to Functional Group-Containing Component A-1]
30.0 g of thioglycerol (manufactured by Tokyo Chemical Industry Co., Ltd.), 42.4 g of 2,6-lutidine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 150 g of tetrahydrofuran were added to a 500 mL three-necked flask, and the mixture was stirred at room temperature. To the obtained solution, 72.0 g of trimethylsilyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 42.4 g of 2,6-lutidine (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and the mixture was stirred at room temperature for 4 hours. 50 mL of a 1 M aqueous hydrochloric acid solution was added to the obtained solution, the mixture was extracted 3 times with 200 mL of ethyl acetate, and then dried over 30 g of sodium sulfate. By distilling off ethyl acetate under reduced pressure, a compound leading to the functional group-containing constituent component A-1 was synthesized.
[参考合成例2:2-ヒドロキシメチルアジリジンの合成]
 500mL3つ口フラスコにグリセロール(東京化成工業社製)30.0g及びアセトニトリル100gを加え、室温で攪拌した。得られた溶液にアジ化ナトリウム(東京化成工業社製)56.5gを加え、室温で4時間撹拌した。得られた溶液に飽和亜硝酸ナトリウム水溶液及び1M塩酸を加えた後、酢酸エチル300gで3回抽出した。酢酸エチルを減圧留去した後、得られた化合物を500mL3つ口フラスコに加えた。そこへジクロロメタン(東京化成工業社製)160g、トリブチルクロロシラン(東京化成工業社製)78.3g及び2,6-ルチジン(東京化成工業社製)74.2gを加え、室温で6時間撹拌した。得られた溶液にトリフェニルホスフィン(東京化成工業社製)100gを加え、50℃で8時間撹拌した。得られた溶液に1M塩酸を加えた後、酢酸エチル300gで3回抽出した。酢酸エチルを減圧留去した後、得られた化合物を500mL3つ口フラスコに加えた。そこへテトラヒドロフラン200gを加えた後、0℃で30分撹拌して、テトラブチルアンモニウムブロミドフルオライド(1Mテトラヒドロフラン溶液、東京化成工業社製)を60g加え、更に室温で1時間撹拌した。1M塩酸を加えた後、酢酸エチル300gで3回抽出した。酢酸エチルを減圧留去することで、2-ヒドロキシメチルアジリジンを合成した。
[Reference Synthesis Example 2: Synthesis of 2-Hydroxymethyl Aziridine]
30.0 g of glycerol (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 g of acetonitrile were added to a 500 mL three-necked flask, and the mixture was stirred at room temperature. 56.5 g of sodium azide (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the obtained solution, and the mixture was stirred at room temperature for 4 hours. A saturated aqueous sodium nitrite solution and 1M hydrochloric acid were added to the obtained solution, and the mixture was extracted 3 times with 300 g of ethyl acetate. After distilling off ethyl acetate under reduced pressure, the obtained compound was added to a 500 mL three-necked flask. 160 g of dichloromethane (manufactured by Tokyo Chemical Industry Co., Ltd.), 78.3 g of tributylchlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 74.2 g of 2,6-lutidine (manufactured by Tokyo Chemical Industry Co., Ltd.) were added thereto, and the mixture was stirred at room temperature for 6 hours. 100 g of triphenylphosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the obtained solution, and the mixture was stirred at 50 ° C. for 8 hours. After adding 1M hydrochloric acid to the obtained solution, the mixture was extracted 3 times with 300 g of ethyl acetate. After distilling off ethyl acetate under reduced pressure, the obtained compound was added to a 500 mL three-necked flask. After adding 200 g of tetrahydrofuran to it, the mixture was stirred at 0 ° C. for 30 minutes, 60 g of tetrabutylammonium bromide fluoride (1M tetrahydrofuran solution, manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at room temperature for 1 hour. After adding 1M hydrochloric acid, the mixture was extracted 3 times with 300 g of ethyl acetate. 2-Hydroxymethylaziridine was synthesized by distilling off ethyl acetate under reduced pressure.
[参考合成例3:官能基含有構成成分A-6を導く化合物の合成]
 参考合成例1において、チオグリセロールの代わりに3-アミノ-1,2-プロパンジオール(東京化成工業社製)を用いたこと以外は、参考合成例1と同様にして、官能基含有構成成分A-6を導く化合物を合成した。
[Reference Synthesis Example 3: Synthesis of Compound Leading to Functional Group-Containing Component A-6]
Functional group-containing constituent A in the same manner as in Reference Synthesis Example 1, except that 3-amino-1,2-propanediol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of thioglycerol in Reference Synthesis Example 1. A compound leading to -6 was synthesized.
[参考合成例4:官能基含有構成成分A-8を導く化合物の合成]
 200mL3つ口フラスコにN-メチルピロリドン(NMP)50g、1,5-ヘキサジエンジエポキシド(東京化成工業社製)25g及び塩化リチウム(富士フイルム和光純薬社製)1.2gを加え、二酸化炭素雰囲気下において100℃で24時間撹拌した。得られた溶液に酢酸エチル100gを加え、水200mLで3回洗浄した後、硫酸ナトリウム30gで乾燥した。酢酸エチルを減圧留去することで、官能基含有構成成分A-8を導く化合物を合成した。
[Reference Synthesis Example 4: Synthesis of Compound Leading to Functional Group-Containing Component A-8]
Add 50 g of N-methylpyrrolidone (NMP), 25 g of 1,5-hexadiendiepoxide (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1.2 g of lithium chloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to a 200 mL three-necked flask to create a carbon dioxide atmosphere. Underneath, it was stirred at 100 ° C. for 24 hours. 100 g of ethyl acetate was added to the obtained solution, the mixture was washed 3 times with 200 mL of water, and then dried over 30 g of sodium sulfate. By distilling off ethyl acetate under reduced pressure, a compound leading to the functional group-containing constituent component A-8 was synthesized.
[参考合成例5:構成成分B-1を導く化合物の合成]
 500mL3つ口ナスフラスコに、NISSO-PB GI1000を50g、ジクロロメタン(富士フイルム和光純薬社製)を100g、及びトシルクロリド(東京化成工業社製)を10g加え、0℃で攪拌した。得られた溶液にトリエチルアミン(富士フイルム和光純薬社製)を24g加え、0℃で更に4時間撹拌した。得られた溶液を500gのアセトニトリルに流し込み、上澄みを除去して固形物を得た。
 500mL3つ口ナスフラスコに、上記固形物45g、トルエン(富士フイルム和光純薬社製)80g及びフタルイミド(東京化成工業社製)23gを加え、室温で12時間撹拌した。得られた溶液にエタノール100gを加え、更に80℃で12時間撹拌した。得られた溶液を500gのアセトニトリル中に流し込み、上澄みを除去して固形物を得た。アセトニトリルを減圧留去することで、構成成分B-1を導く化合物を合成した。
[Reference Synthesis Example 5: Synthesis of Compound Leading to Component B-1]
To a 500 mL three-necked eggplant flask, 50 g of NISSO-PB GI1000, 100 g of dichloromethane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and 10 g of tosyl lolide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and the mixture was stirred at 0 ° C. To the obtained solution, 24 g of triethylamine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further stirred at 0 ° C. for 4 hours. The obtained solution was poured into 500 g of acetonitrile and the supernatant was removed to obtain a solid substance.
To a 500 mL three-necked eggplant flask, 45 g of the above solid, 80 g of toluene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 23 g of phthalimide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and the mixture was stirred at room temperature for 12 hours. 100 g of ethanol was added to the obtained solution, and the mixture was further stirred at 80 ° C. for 12 hours. The resulting solution was poured into 500 g of acetonitrile and the supernatant was removed to give a solid. Acetonitrile was distilled off under reduced pressure to synthesize a compound leading to component B-1.
 その他のバインダーとして可溶性バインダーを用いてバインダー溶液を調製した。
[調製例1:ビニル系ポリマーD-1の合成及び可溶性バインダー溶液D-1の調製]
 100mLメスフラスコに、アクリル酸ドデシル(東京化成工業社製)14.2g、スチレン(富士フイルム和光純薬社製)21.6g、無水マレイン酸(富士フイルム和光純薬社製)0.25g及び重合開始剤V-601(商品名、富士フイルム和光純薬社製)0.36gを加え、酪酸ブチル36gに溶解してモノマー溶液を調製した。
 300mL3つ口フラスコに酪酸ブチル18gを加え80℃で撹拌したところへ、上記モノマー溶液を2時間かけて滴下した。滴下終了後、90℃に昇温し、2時間撹拌してポリマーD-1(ビニル系ポリマー)を合成し、ポリマーD-1からなるバインダーの溶液D-1(濃度40質量%)を得た。
A binder solution was prepared using a soluble binder as another binder.
[Preparation Example 1: Synthesis of Vinyl Polymer D-1 and Preparation of Soluble Binder Solution D-1]
Dodecyl acrylate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 14.2 g, styrene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 21.6 g, maleic anhydride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.25 g and polymerization in a 100 mL measuring flask. 0.36 g of the initiator V-601 (trade name, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added and dissolved in 36 g of butyl butyrate to prepare a monomer solution.
18 g of butyl butyrate was added to a 300 mL three-necked flask, and the mixture was stirred at 80 ° C., and the above monomer solution was added dropwise over 2 hours. After completion of the dropping, the temperature was raised to 90 ° C. and the mixture was stirred for 2 hours to synthesize polymer D-1 (vinyl-based polymer) to obtain a binder solution D-1 (concentration 40% by mass) composed of polymer D-1. ..
[調製例2:(メタ)アクリルポリマーD-2の合成及び可溶性バインダー溶液D-2の調製]
 100mLメスフラスコに、アクリル酸ヘキシル(東京化成工業社製)36.0g及び重合開始剤V-601(商品名、富士フイルム和光純薬社製)0.36gを加え、酪酸ブチル36gに溶解してモノマー溶液を調製した。
 300mL3つ口フラスコに酪酸ブチル18gを加え80℃で撹拌したところへ、上記モノマー溶液を2時間かけて滴下した。滴下終了後、90℃に昇温し、更に2時間撹拌してポリマーD-2(メタクリルポリマー)を合成し、ポリマーD-2からなるバインダーの溶液D-2(濃度40質量%)を得た。
[Preparation Example 2: Synthesis of (meth) acrylic polymer D-2 and preparation of soluble binder solution D-2]
To a 100 mL volumetric flask, 36.0 g of hexyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.36 g of the polymerization initiator V-601 (trade name, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added and dissolved in 36 g of butyl butyrate. A monomer solution was prepared.
18 g of butyl butyrate was added to a 300 mL three-necked flask, and the mixture was stirred at 80 ° C., and the above monomer solution was added dropwise over 2 hours. After completion of the dropping, the temperature was raised to 90 ° C., and the mixture was further stirred for 2 hours to synthesize polymer D-2 (methacrylic polymer) to obtain a binder solution D-2 (concentration 40% by mass) composed of polymer D-2. ..
 合成したビニル系ポリマーD-1及び(メタ)アクリルポリマーD-2を以下に示す。
 各構成成分の右下に付した数字はポリマー中の含有量を示し、その単位はモル%である。
Figure JPOXMLDOC01-appb-C000017
The synthesized vinyl polymer D-1 and (meth) acrylic polymer D-2 are shown below.
The number attached to the lower right of each component indicates the content in the polymer, and the unit is mol%.
Figure JPOXMLDOC01-appb-C000017
[調製例3:炭化水素系ポリマーからなる可溶性バインダー溶液M1911の調製]
 タフテック(登録商標)M1911:無水マレイン酸変性水添スチレン系熱可塑性エラストマー(商品名、SEBS、旭化成社製)を酪酸ブチルに溶解して、固形分濃度10質量%のバインダー溶液M1911を調製した。
 無水マレイン酸変性水添スチレン系熱可塑性エラストマーの質量平均分子量は120000であり、スチレン/エチレン・ブチレン比は30/70であり、無水マレイン酸変性量(無水マレイン酸基を有する構成成分の含有量)は0.4モル%であった。
[Preparation Example 3: Preparation of Soluble Binder Solution M1911 Consisting of Hydrocarbon Polymer]
Tough Tech (registered trademark) M1911: Maleic anhydride-modified hydrogenated styrene-based thermoplastic elastomer (trade name, SEBS, manufactured by Asahi Kasei Co., Ltd.) was dissolved in butyl butyrate to prepare a binder solution M1911 having a solid content concentration of 10% by mass.
Maleic anhydride-modified hydrogenated styrene-based thermoplastic elastomer has a mass average molecular weight of 120,000, a styrene / ethylene / butylene ratio of 30/70, and a maleic anhydride-modified amount (content of a component having a maleic anhydride group). ) Was 0.4 mol%.
[調製例4:含フッ素ポリマーからなる可溶性バインダー溶液UFBの調製]
 PVdF-HFP:Kynar Flex Ultraflex B(商品名、アルケマ社製)を酪酸ブチルに溶解して、固形分濃度3質量%のバインダー溶液UFBを調製した。
 PVdF-HFPの質量平均分子量は200000であり、共重合比[PVdF:HFP](質量比)は58:42であった。
[Preparation Example 4: Preparation of soluble binder solution UFB composed of fluoropolymer]
PVdF-HFP: Kynar Flex Ultraflex B (trade name, manufactured by Arkema Co., Ltd.) was dissolved in butyl butyrate to prepare a binder solution UFB having a solid content concentration of 3% by mass.
The mass average molecular weight of PVdF-HFP was 200,000, and the copolymerization ratio [PVdF: HFP] (mass ratio) was 58:42.
2.硫化物系無機固体電解質の合成
[合成例A]
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235、及び、A.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 次いで、ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、以下、LPSと表記することがある。)6.20gを得た。Li-P-S系ガラスの平均粒子径は15μmであった。
2. Synthesis of sulfide-based inorganic solid electrolyte [Synthesis Example A]
Sulfide-based inorganic solid electrolytes are described in T.I. Ohtomo, A.M. Hayashi, M. et al. Tassumisago, Y. et al. Tsuchida, S.A. Hama, K.K. Kawamoto, Journal of Power Sources, 233, (2013), pp231-235, and A.M. Hayashi, S.A. Hama, H. Morimoto, M.D. Tatsumi sago, T. et al. Minami, Chem. Lett. , (2001), pp872-873, was synthesized with reference to the non-patent documents.
Specifically, 2.42 g of lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%) and diphosphorus pentasulfide (P 2 S) in a glove box under an argon atmosphere (dew point -70 ° C). 5. Aldrich, purity> 99%) 3.90 g of each was weighed, placed in an agate mortar, and mixed for 5 minutes using an agate mortar. The mixing ratio of Li 2 S and P 2 S 5 was Li 2 S: P 2 S 5 = 75: 25 in terms of molar ratio.
Next, 66 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), and the entire amount of the above mixture of lithium sulfide and diphosphorus pentasulfide was put into the container, and the container was completely sealed under an argon atmosphere. A container is set in a planetary ball mill P-7 (trade name, manufactured by Fritsch) manufactured by Fritsch, and mechanical milling is performed at a temperature of 25 ° C. at a rotation speed of 510 rpm for 20 hours to produce a sulfide-based inorganic solid electrolyte of yellow powder. (Li-PS-based glass, hereinafter sometimes referred to as LPS.) 6.20 g was obtained. The average particle size of the Li-PS-based glass was 15 μm.
[実施例1]
 表2-1~表2-3(纏めて表2ということがある。)に示す各組成物を以下のようにして調製した。
<無機固体電解質含有組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを60g投入し、上記合成例Aで合成したLPS8.4g、表2に示すバインダー分散液又は溶液0.6g又は0.4g(固形分質量)、バインダー分散液を0.4g用いる場合は更に表2に示す可溶性バインダー溶液0.2g(固形分質量)、及び分散媒として酢酸ブチル11g投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットした。温度25℃、回転数150rpmで10分間混合して、無機固体電解質含有組成物(スラリー)K-1~K-16及びKc-11~Kc-16をそれぞれ調製した。
[Example 1]
Each composition shown in Tables 2-1 to 2-3 (collectively referred to as Table 2) was prepared as follows.
<Preparation of composition containing inorganic solid electrolyte>
60 g of zirconia beads having a diameter of 5 mm was put into a zirconia 45 mL container (manufactured by Fritsch), 8.4 g of LPS synthesized in Synthesis Example A, 0.6 g or 0.4 g of the binder dispersion or solution shown in Table 2 (solid). When 0.4 g of the binder dispersion was used, 0.2 g (solid content mass) of the soluble binder solution shown in Table 2 and 11 g of butyl acetate as the dispersion medium were further added. After that, this container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch. Inorganic solid electrolyte-containing compositions (slurries) K-1 to K-16 and Kc-11 to Kc-16 were prepared by mixing at a temperature of 25 ° C. and a rotation speed of 150 rpm for 10 minutes, respectively.
<正極用組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを60g投入し、合成例Aで合成したLPSを8g、及び、表2に示す分散媒13g(総量)を投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数200pmで30分間攪拌した。その後、この容器に、正極活物質としてNMC(アルドリッチ社製)を27.5g、導電助剤としてアセチレンブラック(AB)を1.0g、表2に示すバインダー分散液又は溶液0.5g(固形分質量)、PK-7~PK-9において酪酸ブチルを12.5g用いる場合は更に表2に示す可溶性バインダー溶液0.5g(固形分質量)投入し、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで30分間混合を続け、正極用組成物(スラリー)PK-1~PK-9をそれぞれ調製した。
<Preparation of composition for positive electrode>
60 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), 8 g of LPS synthesized in Synthesis Example A, and 13 g (total amount) of the dispersion medium shown in Table 2 were put. This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and stirred at 25 ° C. at a rotation speed of 200 pm for 30 minutes. Then, in this container, 27.5 g of NMC (manufactured by Aldrich) as the positive electrode active material, 1.0 g of acetylene black (AB) as the conductive auxiliary agent, and 0.5 g of the binder dispersion or solution shown in Table 2 (solid content). (Mass), when 12.5 g of butyl butyrate is used in PK-7 to PK-9, 0.5 g (solid content mass) of the soluble binder solution shown in Table 2 is further added, and the container is set in the planetary ball mill P-7. Mixing was continued for 30 minutes at a temperature of 25 ° C. and a rotation speed of 200 rpm to prepare positive electrode compositions (slurries) PK-1 to PK-9, respectively.
<負極用組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを60g投入し、合成例Aで合成したLPSを8.0g又は7.6g、表2に示すバインダー分散液又は溶液0.4g(固形分質量)、NK-11~NK-13においてLPSを7.6g用いる場合は更に表2に示す可溶性バインダー溶液0.4g(固形分質量)、及び表2に示す分散媒を17.5g(総量)投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、温度25℃、回転数300pmで60分間混合した。その後、表2に示す負極活物質として9.5g、導電助剤としてVGCF(昭和電工社製)1.0gを投入し、同様に、遊星ボールミルP-7に容器をセットして、温度25℃、回転数100rpmで10分間混合して、負極用組成物(スラリー)NK-1~NK-13及びNKc21~NKc26をそれぞれ調製した。
<Preparation of composition for negative electrode>
60 g of zirconia beads having a diameter of 5 mm was put into a 45 mL container made of zirconia (manufactured by Fritsch), 8.0 g or 7.6 g of LPS synthesized in Synthesis Example A, and 0.4 g of the binder dispersion or solution shown in Table 2 ( Solid content mass), when 7.6 g of LPS is used in NK-11 to NK-13, 0.4 g (solid content mass) of the soluble binder solution shown in Table 2 and 17.5 g (solid content mass) of the dispersion medium shown in Table 2 are further added. Total amount) was put in. This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mixed at a temperature of 25 ° C. and a rotation speed of 300 pm for 60 minutes. After that, 9.5 g of the negative electrode active material shown in Table 2 and 1.0 g of VGCF (manufactured by Showa Denko Co., Ltd.) were added as the conductive auxiliary agent, and similarly, the container was set on the planetary ball mill P-7 and the temperature was 25 ° C. , Negative electrode compositions (slurries) NK-1 to NK-13 and NKc21 to NKc26 were prepared by mixing at a rotation speed of 100 rpm for 10 minutes, respectively.
 なお、無機固体電解質含有組成物、正極用組成物及び負極用組成物における粒子状バインダーは、バインダー分散液での平均粒子径を維持していた。 The particulate binders in the inorganic solid electrolyte-containing composition, the positive electrode composition, and the negative electrode composition maintained the average particle size in the binder dispersion.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
<表の略号>
LPS:合成例Aで合成したLPS
NMC:LiNi1/3Co1/3Mn1/3
Si:ケイ素(Si、Aldrich社製)
黒鉛:CGB20(商品名、日本黒鉛社製)
AB:アセチレンブラック
VGCF:カーボンナノチューブ(昭和電工社製)
<Table abbreviation>
LPS: LPS synthesized in Synthesis Example A
NMC: LiNi 1/3 Co 1/3 Mn 1/3 O 2
Si: Silicon (Si, manufactured by Aldrich)
Graphite: CGB20 (trade name, manufactured by Nippon Graphite Co., Ltd.)
AB: Acetylene Black VGCF: Carbon Nanotube (manufactured by Showa Denko KK)
<全固体二次電池用固体電解質シートの作製>
 上記で得られた表3-1及び表3-2(纏めて表3ということがある。)に示す各無機固体電解質含有組成物を厚み20μmのアルミニウム箔上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)を用いて塗布し、80℃で2時間加熱して、無機固体電解質含有組成物を乾燥(分散媒を除去)させた。その後、ヒートプレス機を用いて、120℃の温度及び40MPaの圧力で10秒間、乾燥させた無機固体電解質含有組成物を加熱及び加圧して、全固体二次電池用固体電解質シート(表3において固体電解質シートと表記する。)101~116及びc11~c16をそれぞれ作製した。固体電解質層の膜厚は50μmであった。
<Preparation of solid electrolyte sheet for all-solid secondary batteries>
Each of the inorganic solid electrolyte-containing compositions shown in Tables 3-1 and 3-2 (collectively referred to as Table 3) obtained above is placed on an aluminum foil having a thickness of 20 μm with a baker-type applicator (trade name:). The composition was applied using SA-201 (manufactured by Tester Sangyo Co., Ltd.) and heated at 80 ° C. for 2 hours to dry (remove the dispersion medium) the composition containing an inorganic solid electrolyte. Then, using a heat press machine, the inorganic solid electrolyte-containing composition dried at a temperature of 120 ° C. and a pressure of 40 MPa for 10 seconds is heated and pressurized to obtain a solid electrolyte sheet for an all-solid secondary battery (in Table 3). It is referred to as a solid electrolyte sheet.) 101 to 116 and c11 to c16 were prepared, respectively. The film thickness of the solid electrolyte layer was 50 μm.
<全固体二次電池用正極シートの作製>
 表3に示す電極用組成物として上記で得られた正極用組成物を厚み20μmのアルミニウム箔上にベーカー式アプリケーター(商品名:SA-201)を用いて塗布し、80℃で1時間加熱し、更に110℃で1時間加熱して、正極用組成物を乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた正極用組成物を25℃で加圧(10MPa、1分)して、膜厚80μmの正極活物質層を有する全固体二次電池用正極シート(表3において正極シートと表記する。)117~125をそれぞれ作製した。
<Manufacturing positive electrode sheets for all-solid-state secondary batteries>
As the electrode composition shown in Table 3, the positive electrode composition obtained above was applied onto an aluminum foil having a thickness of 20 μm using a baker-type applicator (trade name: SA-201), and heated at 80 ° C. for 1 hour. Further, the composition was heated at 110 ° C. for 1 hour to dry (remove the dispersion medium) the composition for the positive electrode. Then, using a heat press machine, the dried positive electrode composition is pressurized at 25 ° C. (10 MPa, 1 minute) to provide a positive electrode sheet for an all-solid secondary battery having a positive electrode active material layer having a thickness of 80 μm (10 MPa, 1 minute). In Table 3, it is referred to as a positive electrode sheet.) 117 to 125 were prepared respectively.
<全固体二次電池用負極シートの作製>
 表3に示す電極用組成物として上記で得られた負極用組成物を厚み20μmの銅箔上に、ベーカー式アプリケーター(商品名:SA-201)を用いて塗布し、80℃で1時間加熱し、更に110℃で1時間加熱して、負極用組成物を乾燥(分散媒を除去)させた。その後、ヒートプレス機を用いて、乾燥させた負極用組成物を25℃で加圧(10MPa、1分)して、膜厚70μmの負極活物質層を有する全固体二次電池用負極シート(表3において負極シートと表記する。)126~138及びc21~c26をそれぞれ作製した。
<Manufacturing of negative electrode sheet for all-solid-state secondary battery>
As the electrode composition shown in Table 3, the negative electrode composition obtained above was applied onto a copper foil having a thickness of 20 μm using a baker-type applicator (trade name: SA-201), and heated at 80 ° C. for 1 hour. Then, the composition was further heated at 110 ° C. for 1 hour to dry (remove the dispersion medium) the composition for the negative electrode. Then, using a heat press machine, the dried composition for the negative electrode is pressurized at 25 ° C. (10 MPa, 1 minute) to obtain a negative electrode sheet for an all-solid secondary battery having a negative electrode active material layer having a thickness of 70 μm (a negative electrode sheet for an all-solid secondary battery). In Table 3, it is referred to as a negative electrode sheet.) 126 to 138 and c21 to c26 were prepared, respectively.
<評価1:分散安定性>
 調製した各組成物(スラリー)を直径10mm、高さ4cmのガラス試験管に高さ4cmまで投入し、25℃で72時間静置した。静置前後のスラリー液面から1cm分の固形分比を算出した。具体的には、静置前後において、スラリー液面から下方に1cmまでの液をそれぞれ取り出し、アルミニウム製カップ内で、120℃、2時間加熱乾燥した。その後のカップ内の固形分量の質量を測定して、静置前後の各固形分量を求めた。こうして得られた、静置前の固形分量WBに対する静置後の固形分量WAの固形分比[WA/WB]を求めた。
 この固形分比が下記評価基準のいずれに含まれるかにより、無機固体電解質含有組成物の分散安定性として無機固体電解質の沈降のしやすさ(沈降性)を評価した。本試験において、上記固形分比が1に近いほど、分散安定性に優れることを示し、評価基準「D」以上が合格レベルである。結果を表3に示す。
 
 - 評価基準 -
 A:0.9≦固形分比≦1.0
 B:0.7≦固形分比<0.9
 C:0.5≦固形分比<0.7
 D:0.3≦固形分比<0.5
 E:0.1≦固形分比<0.3
 F:    固形分比<0.1
 
<Evaluation 1: Dispersion stability>
Each of the prepared compositions (slurries) was placed in a glass test tube having a diameter of 10 mm and a height of 4 cm up to a height of 4 cm, and allowed to stand at 25 ° C. for 72 hours. The solid content ratio for 1 cm was calculated from the slurry liquid surface before and after standing. Specifically, before and after standing, liquids up to 1 cm below the slurry liquid surface were taken out and dried by heating in an aluminum cup at 120 ° C. for 2 hours. After that, the mass of the solid content in the cup was measured to determine the solid content before and after standing. The solid content ratio [WA / WB] of the solid content WA after standing to the solid content WB before standing was determined.
The ease of sedimentation (precipitation) of the inorganic solid electrolyte was evaluated as the dispersion stability of the composition containing the inorganic solid electrolyte depending on which of the following evaluation criteria the solid content ratio was included in. In this test, the closer the solid content ratio is to 1, the better the dispersion stability is, and the evaluation standard "D" or higher is the pass level. The results are shown in Table 3.

- Evaluation criteria -
A: 0.9 ≤ solid content ratio ≤ 1.0
B: 0.7 ≤ solid content ratio <0.9
C: 0.5 ≤ solid content ratio <0.7
D: 0.3 ≤ solid content ratio <0.5
E: 0.1 ≤ solid content ratio <0.3
F: Solid content ratio <0.1
<評価2:膜強度>
 上記のようにして作製した、全固体二次電池用固体電解質シート、各全固体二次電池用負極シート及び各全固体二次電池用正極シートをそれぞれ3cm×14cmの長方形に切り出した。切り出したシートを、円筒形マンドレル試験機「商品コード056」(マンドレル直径10mm、Allgood社製)を用いて、日本産業規格(JIS) K5600-5-1(耐屈曲性(円筒形マンドレル:タイプ2の試験装置を用いた試験)、国際標準規格(ISO)1519と同試験。)に従って、屈曲させた。次いで、屈曲させたシートを元に戻した。この屈曲及び復元を1回として50回繰り返した。なお、試験片は、その固体電解質層をマンドレルとは逆側(基材をマンドレル側)に、かつ試験片の幅方向をマンドレルの中心軸に略平行に、セットした。
 上記屈曲試験後に、各シートの屈曲部分を含む3cm×8cmの範囲を目視観察し、欠陥の発生状態を調べた、欠陥の発生状態を下記評価基準に当てはめて、シート(構成層)の膜強度を評価した。本試験において、評価基準「C」以上が合格である。結果を表3に示す。
 
-評価基準-
 A:欠陥(欠け、割れ、ヒビ、剥がれ)が全く見られなかった。
 B:欠陥部分の面積が、観測対象となる全面積のうち0%超え10%以下
 C:欠陥部分の面積が、観測対象となる全面積のうち10%超え30%以下
 D:欠陥部分の面積が、観測対象となる全面積のうち30%超え50%以下
 E:欠陥部分の面積が、観測対象となる全面積のうち50%超え70%以下
 F:欠陥部分の面積が、観測対象となる全面積のうち70%超え90%以下
 G:欠陥部分の面積が、観測対象となる全面積のうち90%超えた。
 
<Evaluation 2: Membrane strength>
The solid electrolyte sheet for the all-solid-state secondary battery, the negative electrode sheet for each all-solid-state secondary battery, and the positive electrode sheet for each all-solid-state secondary battery produced as described above were cut out into a rectangle of 3 cm × 14 cm, respectively. The cut out sheet was cut out using a cylindrical mandrel testing machine "Product Code 056" (mandrel diameter 10 mm, manufactured by Allgood), Japanese Industrial Standards (JIS) K5600-5-1 (flexibility (cylindrical mandrel: type 2). (Test using the test equipment of the above), the same test as the international standard (ISO) 1519.). Then, the bent sheet was replaced. This bending and restoration was repeated 50 times as one time. The test piece was set with its solid electrolyte layer on the opposite side of the mandrel (base material on the mandrel side) and the width direction of the test piece substantially parallel to the central axis of the mandrel.
After the above bending test, a range of 3 cm × 8 cm including the bent portion of each sheet was visually observed to examine the state of occurrence of defects. The state of occurrence of defects was applied to the following evaluation criteria, and the film strength of the sheet (constructive layer) was applied. Was evaluated. In this test, the evaluation standard "C" or higher is passed. The results are shown in Table 3.

-Evaluation criteria-
A: No defects (chips, cracks, cracks, peeling) were found.
B: The area of the defective part is 0% or more and 10% or less of the total area to be observed C: The area of the defective part is 10% or more and 30% or less of the total area to be observed D: The area of the defective part However, 30% or more and 50% or less of the total area to be observed E: The area of the defective part is 50% or more and 70% or less of the total area to be observed F: The area of the defective part is the observation target More than 70% of the total area and 90% or less G: The area of the defective part exceeded 90% of the total area to be observed.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
<全固体二次電池の製造>
 全固体二次電池の製造に際して、以下のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートの各活物質層上に固体電解質層を形成した。
(固体電解質層を備えた全固体二次電池用正極シートの作製)
 次いで、表4の「電極活物質層」欄に示す各全固体二次電池用正極シートの正極活物質層上に、上記で作製した、表4の「固体電解質層」欄に示す固体電解質シートを固体電解質層が正極活物質層に接するように重ね、プレス機を用いて25℃で50MPa加圧して転写(積層)した後に、25℃で600MPa加圧することで、膜厚30μmの固体電解質層を備えた全固体二次電池用正極シート(正極活物質層の膜厚60μm)117~125をそれぞれ作製した。
<Manufacturing of all-solid-state secondary batteries>
In the production of the all-solid-state secondary battery, a solid electrolyte layer was formed on each active material layer of the positive electrode sheet for the all-solid-state secondary battery and the negative electrode sheet for the all-solid-state secondary battery as follows.
(Preparation of positive electrode sheet for all-solid secondary battery with solid electrolyte layer)
Next, on the positive electrode active material layer of each positive electrode sheet for an all-solid secondary battery shown in the “electrode active material layer” column of Table 4, the solid electrolyte sheet shown in the “solid electrolyte layer” column of Table 4 prepared above was prepared. Is layered so that the solid electrolyte layer is in contact with the positive electrode active material layer, and is transferred (laminated) by pressurizing 50 MPa at 25 ° C. using a press machine, and then pressurizing 600 MPa at 25 ° C. to obtain a solid electrolyte layer having a thickness of 30 μm. The positive electrode sheets for all-solid secondary batteries (thickness of the positive electrode active material layer 60 μm) 117 to 125, respectively, were prepared.
(固体電解質層を備えた全固体二次電池用負極シートの作製)
 まず、表4の「電極活物質層」欄に示す各全固体二次電池用負極シートの負極活物質層上に、上記で作製した、表4の「固体電解質層」欄に示す固体電解質シートを固体電解質層が負極活物質層に接するように重ね、プレス機を用いて25℃で50MPa加圧して転写(積層)した後に、25℃で600MPa加圧することで、膜厚30μmの固体電解質層を備えた全固体二次電池用負極シート(負極活物質層の膜厚50μm)126~138及びc21~c26をそれぞれ作製した。
(Preparation of negative electrode sheet for all-solid secondary battery with solid electrolyte layer)
First, on the negative electrode active material layer of each negative electrode sheet for an all-solid secondary battery shown in the "electrode active material layer" column of Table 4, the solid electrolyte sheet shown in the "solid electrolyte layer" column of Table 4 prepared above. The solid electrolyte layer is layered so that the negative electrode active material layer is in contact with the negative electrode active material layer, and is transferred (laminated) by pressurizing at 25 ° C. at 50 MPa using a press machine. The negative electrode sheets for all-solid secondary batteries (thickness of the negative electrode active material layer 50 μm) 126 to 138 and c21 to c26, respectively, were prepared.
(全固体二次電池No.101の製造)
 以下のようにして、図1に示す層構成を有する全固体二次電池(No.101)を作製した。
 上記で得られた、固体電解質層を備えた全固体二次電池用正極シートNo.117(固体電解質含有シートのアルミニウム箔は剥離済み)を直径14.5mmの円板状に切り出し、図2に示すように、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れた。次いで、固体電解質層上に直径15mmの円盤状に切り出したリチウム箔を重ねた。その上に更にステンレス箔を重ねた後、2032型コインケース11をかしめることで、図2に示すNo.101の全固体二次電池13を製造した。
 このようにして製造した全固体二次電池は、図1に示す層構成を有する(ただし、リチウム箔が負極活物質層2及び負極集電体1に相当する)。
(Manufacturing of all-solid-state secondary battery No. 101)
An all-solid-state secondary battery (No. 101) having the layer structure shown in FIG. 1 was produced as follows.
The positive electrode sheet No. 1 for an all-solid secondary battery having a solid electrolyte layer obtained above. 117 (the aluminum foil of the solid electrolyte-containing sheet has been peeled off) is cut out into a disk shape with a diameter of 14.5 mm, and as shown in FIG. 2, a stainless steel 2032 incorporating a spacer and a washer (not shown in FIG. 2). I put it in the mold coin case 11. Next, a lithium foil cut out in a disk shape having a diameter of 15 mm was overlaid on the solid electrolyte layer. After further stacking the stainless steel foil on it, the 2032 type coin case 11 was crimped to obtain the No. 2 shown in FIG. 101 all-solid-state secondary batteries 13 were manufactured.
The all-solid-state secondary battery manufactured in this manner has the layer structure shown in FIG. 1 (however, the lithium foil corresponds to the negative electrode active material layer 2 and the negative electrode current collector 1).
(全固体二次電池No.102~109の製造)
 上記全固体二次電池(No.101)の製造において、固体電解質層を備えた全固体二次電池用正極シートNo.117に代えて表4の「電極活物質層」欄に示すNo.で表わされる、固体電解質層を備えた全固体二次電池用正極シートを用いたこと以外は、全固体二次電池(No.101)の製造と同様にして、全固体二次電池(No.102~109)をそれぞれ製造した。
(Manufacturing of all-solid-state secondary batteries Nos. 102 to 109)
In the production of the all-solid-state secondary battery (No. 101), the positive electrode sheet No. 1 for an all-solid-state secondary battery provided with a solid electrolyte layer. Instead of 117, No. 1 shown in the “Electrode active material layer” column of Table 4. In the same manner as in the production of the all-solid-state secondary battery (No. 101), the all-solid-state secondary battery (No. 101) was used, except that the positive electrode sheet for the all-solid-state secondary battery provided with the solid-state electrolyte layer was used. 102 to 109) were produced respectively.
(全固体二次電池No.110の製造)
 以下のようにして、図1に示す層構成を有する全固体二次電池(No.110)を作製した。
 上記で得られた、固体電解質を有する各全固体二次電池用負極シートNo.126(固体電解質含有シートのアルミニウム箔は剥離済み)を直径14.5mmの円板状に切り出し、図2に示すように、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れた。次いで、下記で作製した全固体二次電池用正極シートから直径14.0mmで打ち抜いた円板状の正極シート(正極活物質層)を固体電解質層上に重ねた。その上に更にステンレス鋼箔(正極集電体)を重ねて全固体二次電池用積層体12(ステンレス鋼箔-アルミニウム箔-正極活物質層-固体電解質層-負極活物質層-銅箔からなる積層体)を形成した。その後、2032型コインケース11をかしめることで、図2に示す全固体二次電池No.110を製造した。
(Manufacturing of all-solid-state secondary battery No. 110)
An all-solid secondary battery (No. 110) having the layer structure shown in FIG. 1 was produced as follows.
Negative electrode sheet No. for each all-solid-state secondary battery having a solid electrolyte obtained above. 126 (the aluminum foil of the solid electrolyte-containing sheet has been peeled off) is cut out into a disk shape with a diameter of 14.5 mm, and as shown in FIG. 2, a stainless steel 2032 incorporating a spacer and a washer (not shown in FIG. 2). I put it in the mold coin case 11. Next, a disk-shaped positive electrode sheet (positive electrode active material layer) punched out from the positive electrode sheet for an all-solid secondary battery prepared below with a diameter of 14.0 mm was superposed on the solid electrolyte layer. From the all-solid secondary battery laminate 12 (stainless steel foil-aluminum foil-positive positive active material layer-solid electrolyte layer-negative negative active material layer-copper foil) by further stacking a stainless steel foil (positive electrode current collector) on it. Laminated body) was formed. After that, by crimping the 2032 type coin case 11, the all-solid-state secondary battery No. 2 shown in FIG. 110 was manufactured.
 以下のようにして、全固体二次電池(No.110)の製造に用いた固体二次電池用正極シートを調製した。
 (正極用組成物の調製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成例Aで合成したLPSを2.7g、KYNAR FLEX 2500-20(商品名、PVdF-HFP:ポリフッ化ビニリデンヘキサフルオロプロピレン共重合体、アルケマ社製)を固形分質量として0.3g、及び酪酸ブチルを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数300rpmで60分間攪拌した。その後、正極活物質としてLiNi1/3Co1/3Mn1/3(NMC)7.0gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物を調製した。
 (固体二次電池用正極シートの作製)
 上記で得られた正極用組成物を厚み20μmのアルミニウム箔(正極集電体)上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、100℃で2時間加熱し、正極用組成物を乾燥(分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた正極用組成物を25℃で加圧(10MPa、1分)し、膜厚80μmの正極活物質層を有する全固体二次電池用正極シートを作製した。
The positive electrode sheet for the solid-state secondary battery used in the production of the all-solid-state secondary battery (No. 110) was prepared as follows.
(Preparation of composition for positive electrode)
180 zirconia beads having a diameter of 5 mm were put into a 45 mL container made of zirconia (manufactured by Fritsch), 2.7 g of LPS synthesized in the above synthesis example A, KYNAR FLEX 2500-20 (trade name, PVdF-HFP: polyfluoridene fluoride). Vinylidene hexafluoropropylene copolymer (manufactured by Arkema) was added in an amount of 0.3 g as a solid content mass, and butyl butyrate was added in an amount of 22 g. This container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and stirred at 25 ° C. and a rotation speed of 300 rpm for 60 minutes. After that, 7.0 g of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC) was added as the positive electrode active material, and in the same manner, the container was set in the planetary ball mill P-7, and the temperature was 25 ° C. Mixing was continued at 100 rpm for 5 minutes to prepare a positive electrode composition.
(Preparation of positive electrode sheet for solid secondary battery)
The positive electrode composition obtained above is applied onto an aluminum foil (positive electrode current collector) having a thickness of 20 μm with a baker-type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and heated at 100 ° C. for 2 hours. Then, the composition for the positive electrode was dried (the dispersion medium was removed). Then, using a heat press machine, the dried positive electrode composition is pressurized at 25 ° C. (10 MPa, 1 minute) to prepare a positive electrode sheet for an all-solid secondary battery having a positive electrode active material layer having a thickness of 80 μm. bottom.
(全固体二次電池No.111~122及びc101~c106の製造)
 上記全固体二次電池(No.110)の製造において、固体電解質層を備えた全固体二次電池用負極シートNo.126に代えて表4の「電極活物質層」欄に示すNo.で表わされる、固体電解質層を備えた全固体二次電池用負極シートを用いたこと以外は、全固体二次電池(No.110)の製造と同様にして、全固体二次電池(No.111~122及びc101~c106)をそれぞれ製造した。
(Manufacture of all-solid-state secondary batteries Nos. 111 to 122 and c101 to c106)
In the production of the all-solid-state secondary battery (No. 110), the negative electrode sheet No. 1 for an all-solid-state secondary battery provided with a solid electrolyte layer. Instead of 126, No. 1 shown in the “Electrode active material layer” column of Table 4. In the same manner as in the production of the all-solid-state secondary battery (No. 110), the all-solid-state secondary battery (No. 110) was used, except that the negative electrode sheet for the all-solid secondary battery provided with the solid-state electrolyte layer was used. 111 to 122 and c101 to c106) were produced, respectively.
<評価3:イオン電導度測定>
 製造した各全固体二次電池のイオン伝導度を測定した。具体的には、各全固体二次電池について、30℃の恒温槽中、1255B FREQUENCY RESPONSE ANALYZER(商品名、SOLARTRON社製)を用いて、電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより、イオン伝導度測定用試料の層厚方向の抵抗を求め、下記式(1)により計算して、イオン伝導度を求めた。
 
 式(1):イオン伝導度σ(mS/cm)=
  1000×試料層厚(cm)/[抵抗(Ω)×試料面積(cm)]
 
 式(1)において、試料層厚は、積層体12を2032型コインケース11に入れる前に測定し、集電体の厚みを差し引いた値(固体電解質層及び電極活物質層の合計層厚)である。試料面積は円板状シートの面積である。
 得られたイオン伝導度σが下記評価基準のいずれに含まれるかを判定した。
 本試験におけるイオン伝導度σは、評価基準「D」以上が合格である。結果を表4に示す。
 
 - 評価基準 -
 A:0.90≦σ
 B:0.80≦σ<0.90
 C:0.70≦σ<0.80
 D:0.60≦σ<0.70
 E:0.50≦σ<0.60
 F:     σ<0.50
 
<Evaluation 3: Ion conductivity measurement>
The ionic conductivity of each manufactured all-solid-state secondary battery was measured. Specifically, for each all-solid-state secondary battery, AC impedance was measured from a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz using 1255B FREQUENCY RESPONSE ANALYZER (trade name, manufactured by SOLARTRON) in a constant temperature bath at 30 ° C. As a result, the resistance of the sample for measuring ionic conductivity in the layer thickness direction was determined, and the ionic conductivity was determined by calculating with the following formula (1).

Equation (1): Ion conductivity σ (mS / cm) =
1000 x sample layer thickness (cm) / [resistance (Ω) x sample area (cm 2 )]

In the formula (1), the sample layer thickness is a value obtained by measuring the laminate 12 before putting it in the 2032 type coin case 11 and subtracting the thickness of the current collector (total layer thickness of the solid electrolyte layer and the electrode active material layer). Is. The sample area is the area of the disk-shaped sheet.
It was determined which of the following evaluation criteria the obtained ionic conductivity σ was included in.
The ionic conductivity σ in this test passed the evaluation standard "D" or higher. The results are shown in Table 4.

- Evaluation criteria -
A: 0.90 ≤ σ
B: 0.80 ≤ σ <0.90
C: 0.70 ≤ σ <0.80
D: 0.60 ≤ σ <0.70
E: 0.50 ≤ σ <0.60
F: σ <0.50
<評価4:高速充放電条件でのサイクル特性>
 製造した各全固体二次電池について、高速充放電条件での放電容量維持率を充放電評価装置TOSCAT-3000(商品名、東洋システム社製)により測定した。
 具体的には、各全固体二次電池を、それぞれ、25℃の環境下で、電流密度0.1mA/cmで電池電圧が3.6Vに達するまで充電した。その後、電流密度0.1mA/cmで電池電圧が2.5Vに達するまで放電した。この充電1回と放電1回とを充放電1サイクルとして、同じ条件で充放電を3サイクル繰り返して、初期化した。その後、電流密度1mA/cmで電池電圧が3.6Vに達するまで充電し、電流密度1mA/cmで電池電圧が2.5Vに達するまで放電することを1サイクルとして、上記充放電サイクルを繰り返して行い、充放電サイクルを行う毎に各全固体二次電池の放電容量を、充放電評価装置:TOSCAT-3000(商品名)により、測定した。
 初期化後の充放電1サイクル目の放電容量(初期放電容量)を100%としたときに、放電容量維持率(初期放電容量に対する放電容量)が80%に達した際の充放電サイクル数が、下記評価基準のいずれに含まれるかにより、電池性能(サイクル特性)を評価した。本試験において、評価基準が高いほど、高速充放電に対しても優れたサイクル特性を示し、高速充放電を複数回繰り返しても(長期の使用においても)初期の電池性能を維持できる。サイクル特性は評価基準「D」以上が合格である。結果を表4に示す。
 なお、全固体二次電池No.101~122の初期放電容量は、いずれも、全固体二次電池として機能するのに十分な値を示した。また、上記高速充放電ではなく、上記の初期化と同条件で通常の充放電サイクルを繰り返して行っても、全固体二次電池No.101~122は優れたサイクル特性を維持していた。
 
 - 評価基準 -
 A:500サイクル以上
 B:300サイクル以上、500サイクル未満
 C:200サイクル以上、300サイクル未満
 D:150サイクル以上、200サイクル未満
 E: 80サイクル以上、150サイクル未満
 F: 40サイクル以上、 80サイクル未満
 
<Evaluation 4: Cycle characteristics under high-speed charge / discharge conditions>
For each of the manufactured all-solid-state secondary batteries, the discharge capacity retention rate under high-speed charge / discharge conditions was measured by the charge / discharge evaluation device TOSCAT-3000 (trade name, manufactured by Toyo System Co., Ltd.).
Specifically, each all-solid-state secondary battery was charged in an environment of 25 ° C. at a current density of 0.1 mA / cm 2 until the battery voltage reached 3.6 V. Then, the battery was discharged at a current density of 0.1 mA / cm 2 until the battery voltage reached 2.5 V. This one charge and one discharge were set as one charge / discharge cycle, and charging / discharging was repeated for three cycles under the same conditions for initialization. Then, was charged at a current density of 1 mA / cm 2 until the battery voltage reached 3.6V, as one cycle to discharge at a current density of 1 mA / cm 2 until the battery voltage reached 2.5V, the charging and discharging cycle It was repeated, and the discharge capacity of each all-solid secondary battery was measured by a charge / discharge evaluation device: TOSCAT-3000 (trade name) every time the charge / discharge cycle was performed.
When the discharge capacity (initial discharge capacity) of the first charge / discharge cycle after initialization is 100%, the number of charge / discharge cycles when the discharge capacity retention rate (discharge capacity with respect to the initial discharge capacity) reaches 80% , Battery performance (cycle characteristics) was evaluated according to which of the following evaluation criteria was included. In this test, the higher the evaluation standard, the better the cycle characteristics for high-speed charging / discharging, and the initial battery performance can be maintained even if high-speed charging / discharging is repeated multiple times (even in long-term use). The cycle characteristics pass the evaluation standard "D" or higher. The results are shown in Table 4.
The all-solid-state secondary battery No. The initial discharge capacities of 101 to 122 all showed sufficient values to function as an all-solid-state secondary battery. Further, even if the normal charge / discharge cycle is repeated under the same conditions as the above initialization instead of the above-mentioned high-speed charge / discharge, the all-solid-state secondary battery No. 101-122 maintained excellent cycle characteristics.

- Evaluation criteria -
A: 500 cycles or more, B: 300 cycles or more, less than 500 cycles C: 200 cycles or more, less than 300 cycles D: 150 cycles or more, less than 200 cycles E: 80 cycles or more, less than 150 cycles F: 40 cycles or more, less than 80 cycles
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表3及び表4に示す結果から次のことが分かる。
 比較例Kc11~Kc16及びNKc21~NKc26に示す、本発明で規定するポリマーバインダーを含有しない無機固体電解質含有組成物は、いずれも、分散安定性に劣り、これらの組成物で形成した構成層は膜強度が不十分であった。また、これらの組成物を用いた、比較例c101~c106の全固体二次電池は十分なサイクル特性もイオン伝導度(小さな電池抵抗)も示さない。
 これに対して、本発明のK-1~K-16、PK-1~PK-9及びNK-1~NK-13で示した、本発明で規定するポリマーバインダーを有する無機固体電解質含有組成物は高い分散安定性を示している。この無機固体電解質含有組成物で形成した構成層は強固な膜強度を示しており、工業的な製造方法(例えば、ロール トゥ ロール法)に適用しても、欠陥の発生を効果的に抑制しうることが分かる。更に、上記無機固体電解質含有組成物で構成した層を有する全固体二次電池No.101~122は、いずれも、高速充放電条件においても優れたサイクル特性と、高いイオン伝導度(低電池抵抗)とを高い水準で実現できる。
The following can be seen from the results shown in Tables 3 and 4.
The inorganic solid electrolyte-containing compositions containing no polymer binder specified in the present invention shown in Comparative Examples Kc11 to Kc16 and NKc21 to NKc26 are all inferior in dispersion stability, and the constituent layer formed of these compositions is a film. The strength was insufficient. In addition, the all-solid-state secondary batteries of Comparative Examples c101 to c106 using these compositions do not show sufficient cycle characteristics or ionic conductivity (small battery resistance).
On the other hand, the inorganic solid electrolyte-containing composition having the polymer binder specified in the present invention shown in K-1 to K-16, PK-1 to PK-9 and NK-1 to NK-13 of the present invention. Shows high dispersion stability. The constituent layer formed of this inorganic solid electrolyte-containing composition exhibits strong film strength, and even when applied to an industrial manufacturing method (for example, a roll-to-roll method), the occurrence of defects is effectively suppressed. You can see that it is possible. Further, the all-solid-state secondary battery No. 1 having a layer composed of the above-mentioned inorganic solid electrolyte-containing composition. All of 101 to 122 can realize excellent cycle characteristics and high ionic conductivity (low battery resistance) at a high level even under high-speed charge / discharge conditions.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 Although the present invention has been described with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, and contrary to the spirit and scope of the invention set forth in the appended claims. I think that it should be widely interpreted without.
 本願は、2020年2月20日に日本国で特許出願された特願2020-027191に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2020-027911 filed in Japan on February 20, 2020, which is referred to herein and is described herein. Incorporate as a part.
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 2032型コインケース
12 全固体二次電池用積層体
13 コイン型全固体二次電池
1 Negative electrode current collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part 10 All-solid-state secondary battery 11 2032 type Coin case 12 Laminate for all-solid-state secondary battery 13 Coin type All-solid-state secondary battery

Claims (15)

  1.  周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、ポリマーバインダーと、分散媒とを含有する無機固体電解質含有組成物であって、
     前記ポリマーバインダーが、下記(P1)及び(P2)を満たすポリマーで構成されたポリマーバインダーを含む、無機固体電解質含有組成物。
     
    (P1)フッ素原子で置換されていない原子で構成され、かつウレタン結合、ウレア結合及びエステル結合のうちの少なくとも1つの結合を含む主鎖を有する。
    (P2)下記官能基群から選択される官能基を少なくとも1つ有する構成成分を含む。
     <官能基群>
     水酸基、1級アミノ基、2級アミノ基、スルファニル基
    An inorganic solid electrolyte-containing composition containing an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the Periodic Table, a polymer binder, and a dispersion medium.
    An inorganic solid electrolyte-containing composition comprising a polymer binder in which the polymer binder is composed of a polymer satisfying the following (P1) and (P2).

    (P1) It is composed of atoms not substituted with fluorine atoms, and has a main chain containing at least one of urethane bond, urea bond and ester bond.
    (P2) Contains a component having at least one functional group selected from the following functional group group.
    <Functional group group>
    Hydroxy group, primary amino group, secondary amino group, sulfanilic group
  2.  前記ポリマーで構成されたポリマーバインダーが前記分散媒に分散している請求項1に記載の固体電解質含有組成物。 The solid electrolyte-containing composition according to claim 1, wherein the polymer binder composed of the polymer is dispersed in the dispersion medium.
  3.  前記ポリマーで構成されたポリマーバインダーの平均粒子径が1~1000nmである、請求項1又は2に記載の無機固体電解質含有組成物。 The inorganic solid electrolyte-containing composition according to claim 1 or 2, wherein the polymer binder composed of the polymer has an average particle size of 1 to 1000 nm.
  4.  前記構成成分が前記官能基を2つ以上有する、請求項1~3のいずれか1項に記載の無機固体電解質含有組成物。 The inorganic solid electrolyte-containing composition according to any one of claims 1 to 3, wherein the constituent component has two or more of the functional groups.
  5.  前記構成成分の、前記ポリマー中の含有率が0.01~50モル%である、請求項1~4のいずれか1項に記載の無機固体電解質含有組成物。 The inorganic solid electrolyte-containing composition according to any one of claims 1 to 4, wherein the content of the constituent component in the polymer is 0.01 to 50 mol%.
  6.  前記構成成分が下記式(F1)で表される部分構造を有する、請求項1~5のいずれか1項に記載の無機固体電解質含有組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(F1)中、L及びLは連結基を示し、Rは水酸基又は1級若しくは2級アミノ基を示し、Rは置換基を示す。
    The inorganic solid electrolyte-containing composition according to any one of claims 1 to 5, wherein the constituent component has a partial structure represented by the following formula (F1).
    Figure JPOXMLDOC01-appb-C000001
    In formula (F1), L 1 and L 2 represent a linking group, R 1 represents a hydroxyl group or a primary or secondary amino group, and R 2 represents a substituent.
  7.  前記構成成分が下記式(F2)で表される部分構造を有する、請求項1~6のいずれか1項に記載の無機固体電解質含有組成物。
    Figure JPOXMLDOC01-appb-C000002
     式(F2)中、Lは連結基を示し、Rは置換基を示す。
    The inorganic solid electrolyte-containing composition according to any one of claims 1 to 6, wherein the constituent component has a partial structure represented by the following formula (F2).
    Figure JPOXMLDOC01-appb-C000002
    In formula (F2), L 1 represents a linking group and R 3 represents a substituent.
  8.  前記分散媒に可溶性のポリマーで構成されたポリマーバインダーを含有し、前記可溶性のポリマーが(メタ)アクリルポリマー、炭化水素系ポリマー、ビニル系ポリマー及びフッ素系ポリマーのいずれかである、請求項1~7のいずれか1項に記載の無機固体電解質含有組成物。 Claims 1 to 1, wherein the dispersion medium contains a polymer binder composed of a soluble polymer, and the soluble polymer is any one of a (meth) acrylic polymer, a hydrocarbon-based polymer, a vinyl-based polymer, and a fluorine-based polymer. 7. The composition containing an inorganic solid polymer according to any one of 7.
  9.  活物質を含有する、請求項1~8のいずれか1項に記載の無機固体電解質含有組成物。 The inorganic solid electrolyte-containing composition according to any one of claims 1 to 8, which contains an active material.
  10.  前記活物質がケイ素元素又はスズ元素を含有する負極活物質である、請求項9に記載の無機固体電解質含有組成物。 The inorganic solid electrolyte-containing composition according to claim 9, wherein the active material is a negative electrode active material containing a silicon element or a tin element.
  11.  導電助剤を含有する、請求項1~10のいずれか1項に記載の無機固体電解質含有組成物。 The inorganic solid electrolyte-containing composition according to any one of claims 1 to 10, which contains a conductive auxiliary agent.
  12.  請求項1~11のいずれか1項に記載の無機固体電解質含有組成物で構成した層を有する全固体二次電池用シート。 A sheet for an all-solid secondary battery having a layer composed of the composition containing the inorganic solid electrolyte according to any one of claims 1 to 11.
  13.  正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
     前記正極活物質層、前記固体電解質層及び前記負極活物質層の少なくとも1つの層が、請求項1~11のいずれか1項に記載の無機固体電解質含有組成物で構成した層である、全固体二次電池。
    An all-solid-state secondary battery including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order.
    The positive electrode active material layer, the solid electrolyte layer, and at least one layer of the negative electrode active material layer are all layers composed of the inorganic solid electrolyte-containing composition according to any one of claims 1 to 11. Solid secondary battery.
  14.  請求項1~11のいずれか1項に記載の無機固体電解質含有組成物を製膜する、全固体二次電池用シートの製造方法。 A method for producing a sheet for an all-solid secondary battery, which forms a film of the inorganic solid electrolyte-containing composition according to any one of claims 1 to 11.
  15.  請求項14に記載の製造方法を経て全固体二次電池を製造する、全固体二次電池の製造方法。 A method for manufacturing an all-solid-state secondary battery, which manufactures an all-solid-state secondary battery through the manufacturing method according to claim 14.
PCT/JP2021/005973 2020-02-20 2021-02-17 Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery WO2021166968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022501941A JPWO2021166968A1 (en) 2020-02-20 2021-02-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020027191 2020-02-20
JP2020-027191 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021166968A1 true WO2021166968A1 (en) 2021-08-26

Family

ID=77391272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005973 WO2021166968A1 (en) 2020-02-20 2021-02-17 Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery

Country Status (2)

Country Link
JP (1) JPWO2021166968A1 (en)
WO (1) WO2021166968A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058543A1 (en) * 2021-10-05 2023-04-13 株式会社クレハ Vinylidene fluoride polymer solution
WO2024071056A1 (en) * 2022-09-30 2024-04-04 富士フイルム株式会社 Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088480A (en) * 2013-09-25 2015-05-07 富士フイルム株式会社 Solid electrolytic composition, binder for all-solid type secondary batteries, electrode sheet for batteries arranged by use thereof, and all-solid type secondary battery
JP2015167126A (en) * 2014-02-17 2015-09-24 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for battery and whole solid secondary battery using the same, and method for producing them
JP2016181448A (en) * 2015-03-24 2016-10-13 富士フイルム株式会社 Sulfide-based solid electrolyte composition, electrode sheet for battery and manufacturing method therefor, all solid secondary battery and manufacturing method therefor
WO2018151161A1 (en) * 2017-02-17 2018-08-23 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet and method for producing same, all-solid secondary battery and method for producing same, and polymer and non-aqueous solvent dispersion thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088480A (en) * 2013-09-25 2015-05-07 富士フイルム株式会社 Solid electrolytic composition, binder for all-solid type secondary batteries, electrode sheet for batteries arranged by use thereof, and all-solid type secondary battery
JP2015167126A (en) * 2014-02-17 2015-09-24 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for battery and whole solid secondary battery using the same, and method for producing them
JP2016181448A (en) * 2015-03-24 2016-10-13 富士フイルム株式会社 Sulfide-based solid electrolyte composition, electrode sheet for battery and manufacturing method therefor, all solid secondary battery and manufacturing method therefor
WO2018151161A1 (en) * 2017-02-17 2018-08-23 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet and method for producing same, all-solid secondary battery and method for producing same, and polymer and non-aqueous solvent dispersion thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058543A1 (en) * 2021-10-05 2023-04-13 株式会社クレハ Vinylidene fluoride polymer solution
WO2024071056A1 (en) * 2022-09-30 2024-04-04 富士フイルム株式会社 Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery

Also Published As

Publication number Publication date
JPWO2021166968A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2021039950A1 (en) Inorganic solid electrolyte-containing composition, sheet for solid-state secondary batteries, solid-state secondary battery, and methods for producing solid-state secondary battery and sheet for solid-state secondary batteries
WO2021039948A1 (en) Method for producing electrode composition, method for manufacturing electrode sheet for all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
WO2021100362A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2021039468A1 (en) Composition containing inorganic solid electrolyte, sheet for all-solid secondary batteries, all-solid secondary battery, method for manufacturing sheet for all-solid secondary batteries, and method for manufacturing all-solid secondary battery
JP7234400B2 (en) Composition containing inorganic solid electrolyte, sheet for all-solid secondary battery, all-solid secondary battery, and method for producing composition containing inorganic solid electrolyte, sheet for all-solid secondary battery, and all-solid secondary battery
WO2021060541A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid secondary batteries, electrode sheet for all-solid secondary batteries, all-solid secondary battery, method for manufacturing sheet for all-solid secondary batteries, and method for manufacturing all-solid secondary battery
WO2021014852A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries and method for producing all-solid-state secondary battery
CN112470316A (en) Solid electrolyte composition, sheet containing solid electrolyte, electrode sheet for all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, method for producing all-solid-state secondary battery, and method for producing particulate binder
WO2021166968A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2021157278A1 (en) Inorganic-solid-electrolyte-containing composition, sheet for all-solid-state secondary battery, all-solid-state secondary battery, and methods for manufacturing sheet for all-solid-state secondary battery and all-solid-state secondary battery
WO2021200497A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary battery, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
WO2021039947A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries and method for producing all-solid-state secondary battery
WO2020129802A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet and method for producing all-solid-state secondary battery
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2023054425A1 (en) Electrode composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and methods for producing electrode composition, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery
WO2021039946A1 (en) Inorganic solid electrolyte-containing composition, all solid state secondary battery sheet, all solid state secondary battery, methods for producing all solid state secondary battery sheet and all solid state secondary battery, and composite polymer particles
WO2021020031A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary batteries and all-solid-state secondary battery
WO2021193826A1 (en) Inorganic-solid-electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery sheet and all solid-state secondary battery
JP7266152B2 (en) Inorganic solid electrolyte-containing composition, all-solid secondary battery sheet and all-solid secondary battery, and method for producing all-solid secondary battery sheet and all-solid secondary battery
WO2022202495A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary battery and method for producing all-solid-state secondary battery
WO2021060542A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2023054455A1 (en) Sheet for electrode, all-solid secondary battery, and methods for producing sheet for electrode, electrode sheet, and all-solid secondary battery
WO2022138752A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary battery and method for producing all-solid-state secondary battery
WO2022065477A1 (en) Inorganic solid electrolyte-containing composition, sheet for solid-state secondary batteries, solid-state secondary battery, and methods for producing sheet for solid-state secondary batteries and solid-state secondary battery
JP7096367B2 (en) A method for manufacturing a solid electrolyte composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet or an all-solid-state secondary battery.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756319

Country of ref document: EP

Kind code of ref document: A1