WO2020129802A1 - Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet and method for producing all-solid-state secondary battery - Google Patents

Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet and method for producing all-solid-state secondary battery Download PDF

Info

Publication number
WO2020129802A1
WO2020129802A1 PCT/JP2019/048675 JP2019048675W WO2020129802A1 WO 2020129802 A1 WO2020129802 A1 WO 2020129802A1 JP 2019048675 W JP2019048675 W JP 2019048675W WO 2020129802 A1 WO2020129802 A1 WO 2020129802A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solid electrolyte
polymer
solid
electrolyte composition
Prior art date
Application number
PCT/JP2019/048675
Other languages
French (fr)
Japanese (ja)
Inventor
智則 三村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020561353A priority Critical patent/JP7165750B2/en
Publication of WO2020129802A1 publication Critical patent/WO2020129802A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid secondary battery, and a method for manufacturing a solid electrolyte-containing sheet and an all-solid secondary battery.
  • a lithium-ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can charge and discharge by moving lithium ions back and forth between both electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolytic solution is liable to leak, and there is a risk of short circuit inside the battery due to overcharging or overdischarging, which may cause ignition. Therefore, further improvement in safety and reliability is required. Under these circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of the organic electrolyte has been receiving attention.
  • the all-solid-state secondary battery has a solid negative electrode, electrolyte, and positive electrode, and can greatly improve the safety and reliability of a battery using an organic electrolytic solution.
  • Patent Document 1 discloses a solid electrolyte composition having an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table and a polymer binder, wherein the polymer binder is , A solid electrolyte composition composed of a polymer having a hard segment and a soft segment is described.
  • Patent Document 2 includes an inorganic solid electrolyte, binder particles composed of a polymer having a reactive group, and a dispersion medium, and at least one component selected from a crosslinking agent and a crosslinking accelerator.
  • Solid electrolyte compositions are described. When forming a constituent layer, this solid electrolyte composition is prepared by polymerizing a binder particle (a polymer having a reactive group) fixed to an electrolyte particle or an active material particle by a polymerization reaction (chain polymerization reaction, polyaddition reaction, ring-opening polymerization reaction). And the like) to cure.
  • Patent Document 3 discloses a binder aqueous solution used for manufacturing a non-aqueous electrolyte battery, which contains a neutral salt of an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid and a polyamine. There is described a binder aqueous solution for a non-aqueous electrolyte battery, which comprises a binder composition for a water electrolyte battery and water.
  • Patent Document 1 JP-A-2005-088480 International Publication No. 2016/129427 International Publication No. 2017/026475
  • the constituent layers of an all-solid secondary battery are usually formed of solid particles such as an inorganic solid electrolyte, a binder, and an active material, the interfacial contact between the solid particles is not sufficient and the interfacial resistance increases (ion The conductivity will decrease.).
  • the constituent layers formed on the surface of the current collector are easily peeled off from the current collector, and the charge and discharge (release and absorption of lithium ions) of the all-solid-state secondary battery are involved.
  • Contact failure between solid particles occurs due to contraction and expansion of the constituent layers, especially the active material layer, leading to an increase in electrical resistance and a decrease in battery performance.
  • the material for forming the constituent layer is preferably a material containing solid particles and exhibiting excellent dispersibility.
  • a material having good dispersibility it may not be possible to suppress the above-mentioned increase in interfacial resistance and decrease in battery performance.
  • the present invention is a solid electrolyte composition exhibiting excellent dispersibility, and by using it as a material forming a constituent layer of an all-solid secondary battery, the obtained all-solid secondary battery has an interfacial resistance between solid particles. It is an object of the present invention to provide a solid electrolyte composition that suppresses the rise of the solid particles and firmly binds the solid particles to realize excellent battery performance. Another object of the present invention is to provide a solid electrolyte-containing sheet and an all-solid secondary battery having a layer composed of this solid electrolyte composition. Further, it is an object of the present invention to provide a solid electrolyte containing sheet using the above solid electrolyte composition and a method for manufacturing an all solid state secondary battery.
  • the present inventor as a result of various studies, the inorganic solid electrolyte and the non-aqueous dispersion medium, by using a binder containing a polymer and a cross-linking agent having a physically cross-linkable group in the side chain, the polymer It has been found that a solid electrolyte composition having excellent dispersibility is created by forming a physical crosslinked structure in the side chain via a crosslinking agent. Further, by using this solid electrolyte composition as a material for forming a constituent layer of an all-solid-state secondary battery, while suppressing an increase in interfacial resistance between solid particles, a constituent layer in which solid particles are firmly bound is formed. It was found that an all-solid secondary battery that can be formed and has excellent battery performance can be manufactured. The present invention has been completed through further studies based on these findings.
  • a solid electrolyte composition containing an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a binder, and a non-aqueous dispersion medium A solid electrolyte composition in which the binder comprises a polymer having a physical crosslinkable group in its side chain and a crosslinking agent having two or more physical crosslinkable functional groups that crosslink with this physical crosslinkable group.
  • the binder comprises a polymer having a physical crosslinkable group in its side chain and a crosslinking agent having two or more physical crosslinkable functional groups that crosslink with this physical crosslinkable group.
  • the polymer forming physical crosslinks has a physical crosslink structure formed by ionic bond with a cation represented by the following formula (H-1A) or formula (H-1B).
  • the solid electrolyte composition according to any one of claims.
  • L 11A and L 11B are an alkylene group having 1 to 24 carbon atoms, an arylene group having 6 to 60 carbon atoms, an alkenylene group having 2 to 24 carbon atoms, an oxygen atom, —N(R NL )—, a carbonyl group.
  • R NL represents a hydrogen atom or a substituent.
  • R 11 to R 18 represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an alkylsilyl group.
  • L 21 is an alkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 18 carbon atoms, an alkenylene group having 5 to 12 carbon atoms, an oxygen atom, —N(R NL )—, or an imine linking group or these A group combining is shown.
  • R NL represents a hydrogen atom or a substituent.
  • R 21 to R 26 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • ⁇ 8> The solid electrolyte composition according to any one of ⁇ 3> to ⁇ 7>, in which the polymer contains 0.15 to 1 mmol/g of a group selected from the group group (a).
  • ⁇ 9> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 8>, in which the polymer is polyurethane or a (meth)acrylic polymer.
  • the binder is particles having an average particle size of 5 nm to 10 ⁇ m.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent composition ratios of the respective elements, and a1:b1:c1:d1:e1 satisfies 1 to 12:0 to 5:1:2 to 12:0 to 10.
  • the non-aqueous dispersion medium contains at least one organic solvent selected from a ketone compound, an ester compound, an aromatic compound and an aliphatic compound.
  • a solid electrolyte-containing sheet having a layer composed of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 16> above.
  • An all-solid secondary battery comprising a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, At least one layer of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is a layer formed of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 16>. .. ⁇ 19>
  • a method for producing a solid electrolyte-containing sheet comprising forming a film of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 16> above.
  • a method for manufacturing an all-solid secondary battery including the method according to ⁇ 19>.
  • the present invention is a solid electrolyte composition exhibiting excellent dispersibility, and by using it as a material forming a constituent layer of an all-solid secondary battery, in an all-solid secondary battery obtained, interfacial resistance between solid particles It is possible to provide a solid electrolyte composition in which solid particles are firmly bound to each other while suppressing an increase in temperature, and excellent battery performance can be realized. It is possible to provide a solid electrolyte-containing sheet and an all-solid secondary battery having a layer composed of this solid electrolyte composition. Furthermore, the present invention can provide a method for producing a solid electrolyte-containing sheet and an all-solid secondary battery using the above solid electrolyte composition.
  • FIG. 1 is a vertical cross-sectional view schematically showing an all-solid secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view schematically showing the all-solid-state secondary battery (coin battery) produced in the example.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • acrylic or “(meth)acrylic
  • it means acrylic and/or methacrylic.
  • the expression of a compound (for example, when it is referred to as a compound at the end) is used to include the compound itself, a salt thereof, and an ion thereof.
  • it is meant to include a derivative in which a part of the derivative is changed, such as by introducing a substituent, within a range in which a desired effect is exhibited.
  • a substituent a linking group, etc.
  • substituent (hereinafter referred to as a substituent, etc.) which is not specified as substituted or unsubstituted in the present specification, it means that the group may have an appropriate substituent. Therefore, in the present specification, even when the YYY group is simply described, the YYY group includes not only a mode having no substituent but also a mode having a substituent. This is also synonymous with compounds that do not specify substituted or unsubstituted.
  • the following substituent T is mentioned as a preferable substituent.
  • each substituent may be the same or different from each other. It means good. Further, even when not otherwise specified, when a plurality of substituents and the like are adjacent to each other, they may be linked to each other or condensed to form a ring.
  • the solid electrolyte composition of the present invention (also referred to as an inorganic solid electrolyte-containing composition) contains an inorganic solid electrolyte, a binder, and a non-aqueous dispersion medium.
  • This binder comprises a polymer having a physical crosslinkable group in its side chain and a crosslinking agent (physical crosslinkable compound) having two or more physical crosslinkable functional groups that physically crosslink the physical crosslinkable group in the polymer. Contains.
  • the binder present in the solid electrolyte composition contains a polymer and a cross-linking agent
  • their existing state formation state of physical cross-linking
  • dispersion of the solid electrolyte composition From the viewpoint of properties, it is preferable to include a state in which the polymer and the cross-linking agent are physically cross-linked (a mode in which a polymer having a side cross-linking structure with the cross-linking agent is formed).
  • the presence state of the polymer and the cross-linking agent is, in addition to the above-described aspect, a state in which the cross-linking agent is bonded to the side chain of the polymer with one of the physically cross-linking functional groups in a graft or pendant form, May exist independently of each other, and may further include a state in which two or more of the above states are mixed.
  • the degree of cross-linking in this case is not particularly limited, and for example, with respect to the total number of moles of the physical cross-linkable group in the polymer, the physical cross-linkable group forming a physical cross-link with the physical cross-linkable functional group of the cross-linking agent.
  • the physical cross-linking rate (mol %) showing the ratio can be 10 to 100%.
  • the physical cross-linking group and the physical cross-linking functional group of the polymer and the cross-linking agent may remain in the state of the group (before the physical cross-linking).
  • the polymer and the crosslinking agent are usually contained in the binder (constituting the binder), but may be present outside the binder (for example, dispersed in a non-aqueous dispersion medium, Alternatively, it may be bound to solid particles).
  • the polymer is different from the polymer forming a conventional binder in that the side chain physically crosslinks through a crosslinking agent, and the mechanical properties such as strength are improved.
  • the physical crosslinks may be formed in one molecule of polymer (intramolecular crosslink), may be formed between different polymers (intermolecular crosslink), or may be mixed.
  • the physical crosslinks are formed between the side chains of the polymer, but when the binder is in the form of particles, the physical crosslinks may be formed within the particles or between the particles.
  • the physical crosslink is a crosslink other than the chemical crosslink formed by the physical crosslinkable group in the polymer and the physical crosslinkable functional group of the crosslinker being bonded by a covalent bond, that is, a chemical bond other than the covalent bond.
  • a crosslink formed by the bonding of The bond other than the covalent bond that forms the physical crosslink is not particularly limited, and examples thereof include an ionic bond, a hydrogen bond, an intermolecular interaction, and the like. Of these, physical crosslinking by ionic bonding is preferable from the viewpoint of bond strength.
  • the plurality of physically crosslinkable groups and the physically crosslinkable functional groups that the polymer and the crosslinking agent have in the molecule may be groups that crosslink with any of the bonds other than the above covalent bond, and groups that crosslink with different types of bonds. However, groups that crosslink with the same type of bond are preferred. Details of the physical crosslinkable group and the physical crosslinkable functional group will be described later.
  • the inorganic solid electrolyte when the inorganic solid electrolyte and the specific binder defined in the present invention coexist in the non-aqueous dispersion medium, the inorganic solid electrolyte can be highly and stably dispersed, The dispersibility of the solid electrolyte composition can be improved.
  • solid particles are bound to each other, and further, solid particles and a current collector are firmly bound while suppressing the interfacial resistance between the solid particles to be low. You can The details of the reason are not yet clear, but it is considered as follows.
  • the polymer forming the binder is likely to form physical cross-linking with the cross-linking agent, especially in the non-aqueous dispersion medium.
  • the polymer physically cross-linked with a side chain through a cross-linking agent forms a network structure and exhibits high mechanical strength.
  • the binder containing such a polymer expresses high mechanical strength and imparts high strength to the constituent layer made of the solid electrolyte composition.
  • this binder is considered to interact with solid particles such as an inorganic solid electrolyte via a physical cross-linking structure. When the binder interacts with the solid particles, the solid particles can be highly and stably dispersed in the non-aqueous dispersion medium.
  • the constituent layer can be formed while interacting with the solid particles, the resulting constituent layer can firmly bind the solid particles to each other, and when the constituent layer is formed on the current collector. Can also firmly bond the current collector and the solid particles.
  • the binder is a physically cross-linked polymer and does not spread on the solid particles, an ionic conduction path can be constructed without impairing the contact between the solid particles. Therefore, the interface resistance between solid particles can be suppressed low.
  • a polymer having a physically crosslinked structure in its side chain is superior in interaction with solid particles and the like to a polymer having a chemically crosslinked structure in its side chain formed by a covalent bond.
  • the constituent layer constituted by the solid electrolyte composition of the present invention the contact state between solid particles (building amount of ion conduction paths etc.) and the binding force between solid particles etc. are improved in a well-balanced manner, and ion conduction paths etc. It is considered that the solid particles are bound to each other with a strong binding property while being constructed, and the interfacial resistance between the solid particles is reduced. In addition, this constituent layer exhibits high strength.
  • Each sheet or all-solid-state secondary battery provided with a constitutional layer exhibiting such excellent characteristics shows a high ionic conductivity by suppressing an increase in electric resistance, and further, this excellent battery performance, repeated charge and discharge. Even if it does, it can be maintained.
  • the excellent dispersibility of the solid electrolyte composition means a state in which the solid particles are highly and stably dispersed in the non-aqueous dispersion medium, for example, in the “dispersibility test” in Examples described later. , Showing dispersibility of evaluation rank “4” or more.
  • the binder is preferably dispersed as particles (in the solid state) in the non-aqueous dispersion medium, and the inorganic solid electrolyte and the binder are dispersed in the non-aqueous dispersion medium in the solid state. It is more preferable that the solid electrolyte composition is in a dispersed state (suspension).
  • the binder is a constituent layer or a coating and drying layer of the solid electrolyte composition described below, solid particles such as an inorganic solid electrolyte are bound to each other, and further adjacent layers (for example, a current collector) and solid particles are bound to each other. It is sufficient that the solid particles are not necessarily bound to each other in the dispersed state of the solid electrolyte composition.
  • the solid electrolyte composition of the present invention also includes a mode in which, in addition to the inorganic solid electrolyte, as the dispersoid, an active material, a conductive additive, and the like are contained (the composition of this mode is referred to as an electrode layer composition). ).
  • the solid electrolyte composition of the present invention is a non-aqueous composition.
  • the non-aqueous composition includes not only a form containing no water but also a form having a water content (also referred to as water content) of 200 ppm or less.
  • the water content is preferably 150 ppm or less, more preferably 100 ppm or less, and further preferably 50 ppm or less.
  • the water content indicates the amount of water (mass ratio to the solid electrolyte composition) contained in the solid electrolyte composition.
  • the water content can be determined by Karl Fischer titration by filtering the solid electrolyte composition with a 0.45 ⁇ m membrane filter.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte in which ions can move. Since it does not contain an organic substance as a main ion conductive material, it is an organic solid electrolyte (a polymer electrolyte typified by polyethylene oxide (PEO) or the like, an organic typified by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or the like. Electrolyte salt) is clearly distinguished. Further, since the inorganic solid electrolyte is solid in the steady state, it is not usually dissociated or released into cations and anions.
  • PEO polyethylene oxide
  • LiTFSI lithium bis(trifluoromethanesulfonyl)imide
  • the electrolytic solution or the inorganic electrolyte salt LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and generally has no electron conductivity.
  • the inorganic solid electrolyte has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • a solid electrolyte material applicable to this type of product can be appropriately selected and used.
  • the inorganic solid electrolyte include (i) sulfide-based inorganic solid electrolyte, (ii) oxide-based inorganic solid electrolyte, (iii) halide-based inorganic solid electrolyte, and (iV) hydride-based solid electrolyte.
  • the sulfide-based inorganic solid electrolyte is preferable because of its high ionic conductivity and ease of interparticle interfacial bonding.
  • the inorganic solid electrolyte preferably has lithium-ion ionic conductivity.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Compounds having properties are preferred.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P depending on the purpose or case. It may contain an element.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive sulfide-based inorganic solid electrolyte satisfying the composition represented by the following formula (1).
  • L represents an element selected from Li, Na and K, and Li is preferable.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent composition ratios of the respective elements, and a1:b1:c1:d1:e1 satisfies 1 to 12:0 to 5:1:2 to 12:0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, and more preferably 0 to 1.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, and more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compounds when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized.
  • glass glass
  • glass-ceramic glass-ceramic
  • Li—P—S based glass containing Li, P and S, or Li—P—S based glass ceramics containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte is, for example, lithium sulfide (Li 2 S), phosphorus sulfide (eg, phosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, lithium halide (eg, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by a reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • phosphorus sulfide eg, phosphorus pentasulfide (P 2 S 5 )
  • elemental phosphorus elemental sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of the element represented by M for example, SiS 2 , S
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S/cm or more, more preferably 1 ⁇ 10 ⁇ 3 S/cm or more. There is no particular upper limit, but it is practically 1 ⁇ 10 ⁇ 1 S/cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5 -P 2 O 5 , Li 2 S-P 2 S 5 -SiS 2 , Li 2 S-P 2 S 5 -SiS 2- LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3 , Li 2 S-
  • amorphization method examples include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Compounds having properties are preferred.
  • the ionic conductivity of the oxide-based inorganic solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S/cm or more, more preferably 5 ⁇ 10 ⁇ 6 S/cm or more, and 1 ⁇ 10 ⁇ 5 S. /Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but it is practically 1 ⁇ 10 ⁇ 1 S/cm or less.
  • nb (M bb is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, xb satisfies 5 ⁇ xb ⁇ 10, and yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20.), Li xc Byc M cc zc O nc (M cc is At least one element of C, S, Al, Si, Ga, Ge, In, and Sn, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ 1 and nc satisfies 0 ⁇ nc ⁇ 6), Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P
  • Li 1+xh+yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (where 0 ⁇ xh ⁇ 1, 0 ⁇ yh ⁇ 1), Li having a garnet type crystal structure 7 La 3 Zr 2 O 12 (LLZ) and the like can be mentioned.
  • a phosphorus compound containing Li, P and O is also desirable.
  • lithium phosphate (Li 3 PO 4 ), LiPON and LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr) in which a part of oxygen of lithium phosphate is replaced with nitrogen. , Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.).
  • LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
  • the halide-based inorganic solid electrolyte is generally used, and has a ionic conductivity of a metal containing a halogen atom and belonging to Group 1 or 2 of the periodic table. A compound having and having an electronic insulating property is preferable.
  • the halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as LiCl, LiBr, LiI, and Li 3 YBr 6 and Li 3 YCl 6 described in ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • the hydride-based inorganic solid electrolyte is generally used, and it shows the ionic conductivity of a metal containing a hydrogen atom and belonging to Group 1 or 2 of the periodic table. A compound having and having an electronic insulating property is preferable.
  • the hydride-based inorganic solid electrolyte is not particularly limited, but examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, 3LiBH 4 —LiCl, and the like.
  • the inorganic solid electrolyte is preferably particles.
  • the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the average particle size of the inorganic solid electrolyte is measured by the following procedure.
  • the inorganic solid electrolyte particles are prepared by diluting a 1% by mass dispersion liquid in a 20 mL sample bottle with water (heptane in the case of a substance which is unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately thereafter, used for the test.
  • a laser diffraction/scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) was used, and data was captured 50 times at a temperature of 25° C. using a quartz cell for measurement. Obtain the volume average particle size.
  • JIS Z 8828:2013 “Particle size analysis-Dynamic light scattering method” if necessary. Five samples are prepared for each level, and the average value is adopted.
  • the inorganic solid electrolyte may be used alone or in combination of two or more.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is not particularly limited, but in terms of dispersibility, reduction of interfacial resistance and binding property, it is 50% by mass or more at 100% by mass of solid content. It is preferably 70% by mass or more, more preferably 90% by mass or more. From the same viewpoint, the upper limit is preferably 99.99% by mass or less, more preferably 99.95% by mass or less, and particularly preferably 99.9% by mass or less.
  • the content of the inorganic solid electrolyte in the solid electrolyte composition is the total content of the inorganic solid electrolyte and the active material.
  • the solid content means a component that does not disappear by volatilization or evaporation when the solid electrolyte composition is dried for 6 hours at 150° C. under a nitrogen atmosphere under a pressure of 1 mmHg. .. Typically, it refers to components other than the non-aqueous dispersion medium described later.
  • the solid electrolyte composition of the present invention contains a binder that binds solid particles.
  • This binder contains a polymer having a physical crosslinkable group in its side chain, and a crosslinker having two or more physical crosslinkable functional groups capable of crosslinking with the physical crosslinkable group of this polymer (capable of forming a physical crosslink). Therefore, the state of existence of the polymer and the crosslinking agent in the solid electrolyte composition is as described above.
  • the binder may be soluble in the non-aqueous dispersion medium, but is particularly insoluble or hardly soluble in the non-aqueous dispersion medium in terms of ion conductivity. (Particles of) are preferred.
  • the phrase “insoluble or hardly soluble in a non-aqueous dispersion medium” means that a binder is added to a non-aqueous dispersion medium at 30° C. (the amount used is 10 times the mass of the binder), and the mixture is allowed to stand for 24 hours.
  • the amount dissolved in the non-aqueous dispersion medium is 30 mass% or less, preferably 20 mass% or less, and more preferably 10 mass% or less. This dissolved amount is the ratio of the binder mass dissolved in the non-aqueous dispersion medium after 24 hours to the binder mass added to the non-aqueous dispersion medium.
  • the binder may be present in the solid electrolyte composition by being dissolved in, for example, a non-aqueous dispersion medium, and may be present in a solid state (as the insoluble or hardly soluble particles) in the non-aqueous dispersion medium (preferably It may be dispersed) (a binder that exists in a solid state is referred to as a particulate binder).
  • the binder is preferably a particulate binder in the solid electrolyte composition from the viewpoint of battery resistance and cycle characteristics. It is one of the preferable embodiments that the particulate binder maintains the particulate state even in the solid electrolyte layer (coating dry layer).
  • the binder is a particulate binder
  • its shape is not particularly limited and may be flat, amorphous or the like, but spherical or granular is preferable.
  • the average particle size of the particulate binder is not particularly limited, but is preferably 5 nm or more and 10 ⁇ m or less. This can improve the dispersibility of the solid electrolyte composition, the binding property between solid particles, and the ionic conductivity.
  • the average particle size is preferably 10 nm or more and 5 ⁇ m or less, more preferably 15 nm or more and 1 ⁇ m or less, and further preferably 20 nm or more and 0.5 ⁇ m or less, from the viewpoint that dispersibility, binding property and ionic conductivity can be further improved.
  • the average particle size of the binder can be measured in the same manner as for the inorganic solid electrolyte.
  • the average particle size of the particulate binder in the constituent layer of the all-solid secondary battery is, for example, measured in advance after disassembling the battery and peeling the constituent layer containing the particulate binder, and then measuring the constituent layer. The measurement can be performed by excluding the measured value of the average particle diameter of the particles other than the particulate binder that has been used.
  • the average particle size of the particulate binder is, for example, depending on the type of the non-aqueous dispersion medium used when preparing the binder dispersion, the content of the constituent components in the polymer constituting the binder, the type and content of the cross-linking agent, etc. Can be adjusted.
  • Binder the content in the solid electrolyte composition, dispersibility, further inorganic solid electrolyte particles, in terms of compatibility with the binding properties with solid particles such as the active material and the conductive auxiliary agent and ion conductivity, solid.
  • 100 mass% of the component 0.001 mass% or more is preferable, 0.05 mass% or more is more preferable, 0.1 mass% or more is further preferable, and 0.2 mass% or more is particularly preferable.
  • the upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • the content of the binder is the total content of a polymer having a physical crosslinkable group in its side chain and a crosslinking agent, which will be described later.
  • the mass ratio [(mass of inorganic solid electrolyte+mass of active material)/(mass of binder)] of the total mass (total mass) of the inorganic solid electrolyte and the active material to the mass of the binder is , 1,000 to 1 is preferable. This ratio is more preferably 1000 to 2, and even more preferably 500 to 10.
  • a polymer having physical crosslinkable group in side chain A polymer having a side chain having a physical crosslinkable group used in the solid electrolyte composition of the present invention (also referred to as a polymer that does not form a physical crosslink with the crosslinking agent or a polymer that does not have a physical crosslink structure with the crosslinking agent). ) Is a polymer that is physically crosslinkable with a crosslinking agent as described above, and is not particularly limited except that it has a physically crosslinkable group in its side chain, and is a solid electrolyte composition for all solid state secondary batteries. Polymers usually used for can be used.
  • the main chain of the polymer means a linear molecular chain in which all the other molecular chains constituting the polymer can be regarded as branched chains or pendant chains with respect to the main chain. Although it depends on the mass average molecular weight of a molecular chain regarded as a branched chain or a pendant chain, the longest chain is typically the main chain among the molecular chains constituting the polymer. However, the functional group at the polymer end is not included in the main chain.
  • the side chain of the polymer means a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
  • having a physically crosslinkable group in the side chain means that the side chain itself has the physically crosslinkable group (an aspect in which the physically crosslinkable group is directly bonded to the atom constituting the main molecular chain).
  • a mode having a physical crosslinkable group as a substituent of a side chain a mode in which a physical crosslinkable group is bonded to an atom constituting a main chain molecular chain through another atom, and a mode in which these are mixed Includes.
  • Examples of the polymer that is not physically crosslinked with the crosslinking agent include, for example, sequential polymerization (polycondensation, polyaddition or addition of polyurethane, polyurea, polyamide, polyimide, polyester, polyether, polycarbonate, etc. Condensation type polymers, and further chain polymerization type polymers such as fluorine-containing polymers, hydrocarbon-based polymers, vinyl polymers, and (meth)acrylic polymers.
  • the non-crosslinked polymer is preferably a sequential polymerization polymer, a fluoropolymer, a hydrocarbon polymer or a (meth)acrylic polymer, and is preferably a polyurethane, polyurea, polyamide, polyimide, a fluoropolymer, a hydrocarbon polymer or (meth).
  • Acrylic polymers are more preferred, and polyurethane or (meth)acrylic polymers are even more preferred.
  • Each of the above polymers may be a polymer composed of one segment or a polymer composed of two or more segments.
  • a sequential polymerization type polymer suitable as an uncrosslinked polymer is a combination of two or more (preferably two or three) constituent components represented by any of the following formulas (I-1) to (I-4). Or a main chain formed by sequentially polymerizing a carboxylic acid dianhydride represented by the following formula (I-5) and a diamine compound leading to a constituent component represented by the following formula (I-6) Polymers are preferred.
  • the combination of each constituent component is appropriately selected according to the polymer species.
  • the main chain made of polycarbonate, a configuration component formula (I-3) as a constituent or R P1 is represented by the following formula was introduced oxygen atoms at both ends of R P1 (I-2)
  • Examples thereof include a main chain having a constituent component represented by the following formula (I-2) and a constituent component represented by the following formula (I-3).
  • One kind of constituent in the combination of constituents means the number of kinds of constituents represented by any one of the following formulas, and has two kinds of constituents represented by the following formula. Is not to be construed as two constituents.
  • R P1 and R P2 each represent a molecular chain having a (mass average) molecular weight of 14 or more and 200,000 or less.
  • the molecular weight of this molecular chain cannot be unambiguously determined because it depends on its type, but is preferably 30 or more, more preferably 50 or more, further preferably 100 or more, and particularly preferably 150 or more.
  • the upper limit is preferably 100,000 or less, more preferably 10,000 or less.
  • the molecular weight of the molecular chain is measured with respect to the raw material compound before being incorporated into the main chain of the polymer.
  • the molecular chain that can be taken as R P1 and R P2 is not particularly limited, but is preferably a hydrocarbon chain, a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, more preferably a hydrocarbon chain or a polyalkylene oxide chain, and a hydrocarbon chain. , Polyethylene oxide chains or polypropylene oxide chains are more preferred.
  • the hydrocarbon chain which can be taken as R P1 and R P2 means a hydrocarbon chain composed of a carbon atom and a hydrogen atom, and more specifically, at least two compounds of a compound composed of a carbon atom and a hydrogen atom. It means a structure in which an atom (for example, a hydrogen atom) or a group (for example, a methyl group) is eliminated.
  • the hydrocarbon chain also includes a chain having a group containing an oxygen atom, a sulfur atom or a nitrogen atom, such as a hydrocarbon group represented by the following formula (M2).
  • M2 hydrocarbon group represented by the following formula
  • This hydrocarbon chain may have a carbon-carbon unsaturated bond and may have a ring structure of an aliphatic ring and/or an aromatic ring. That is, the hydrocarbon chain may be a hydrocarbon chain composed of a hydrocarbon selected from an aliphatic hydrocarbon and an aromatic hydrocarbon.
  • Such a hydrocarbon chain may be one that satisfies the above-mentioned molecular weight, and both a hydrocarbon chain having a low molecular weight and a hydrocarbon chain having a hydrocarbon polymer (also referred to as a hydrocarbon polymer chain).
  • the low molecular weight hydrocarbon chain is a chain composed of a normal (non-polymerizable) hydrocarbon group, and examples of this hydrocarbon group include an aliphatic or aromatic hydrocarbon group.
  • Is an alkylene group (which preferably has 1 to 12 carbon atoms, more preferably 1 to 6 and still more preferably 1 to 3) and an arylene group (which preferably has 6 to 22 carbon atoms, preferably 6 to 14 and 6 to 10 carbon atoms). Is more preferable), or a group consisting of a combination thereof is preferable.
  • an alkylene group is more preferable.
  • This hydrocarbon chain may have a polymer chain (for example, a (meth)acrylic polymer) as a substituent.
  • Examples of the aliphatic hydrocarbon group include a hydrogen-reduced product of an aromatic hydrocarbon group represented by the following formula (M2), a partial structure of a known aliphatic diisosonate compound (for example, a group consisting of isophorone), and the like. Can be mentioned. Moreover, the hydrocarbon group which each of the constituent components shown below has is also mentioned. Examples of the aromatic hydrocarbon group include a hydrocarbon group contained in each of the constituent components shown below, and a phenylene group or a hydrocarbon group represented by the following formula (M2) is preferable.
  • M2 aromatic hydrocarbon group represented by the following formula
  • X represents a single bond, —CH 2 —, —C(CH 3 ) 2 —, —SO 2 —, —S—, —CO— or —O—, and is a binding point of view.
  • —CH 2 — or —O— is preferable, and —CH 2 — is more preferable.
  • the alkyl group exemplified here may be substituted with a substituent T, preferably a halogen atom (more preferably a fluorine atom).
  • R M2 to R M5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable.
  • the substituent which can be taken as R M2 to R M5 is not particularly limited, and examples thereof include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, —OR M6 , —N(R M6 ) 2 , —SR M6 (R M6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), halogen atom (eg, fluorine atom, chlorine atom, bromine atom) Is mentioned.
  • R M6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • halogen atom eg, fluorine atom, chlorine atom, bromine atom
  • —N(R M6 ) 2 is an alkylamino group (having preferably 1 to 20 carbon atoms, more preferably 1 to 6) or an arylamino group (having 6 to 40 carbon atoms, preferably 6 to 20 carbon atoms). More preferred).
  • the hydrocarbon polymer chain may be a polymer chain formed by polymerizing (at least two) polymerizable hydrocarbons, and a chain composed of a hydrocarbon polymer having a larger number of carbon atoms than the above-mentioned low molecular weight hydrocarbon chain.
  • a chain composed of a hydrocarbon polymer composed of 30 or more, more preferably 50 or more carbon atoms is preferably a chain composed of a hydrocarbon polymer composed of 30 or more, more preferably 50 or more carbon atoms.
  • the upper limit of the number of carbon atoms constituting the hydrocarbon polymer is not particularly limited and may be, for example, 3,000.
  • This hydrocarbon polymer chain is preferably a chain composed of a hydrocarbon polymer whose main chain satisfies the above-mentioned number of carbon atoms and which is composed of an aliphatic hydrocarbon, and is composed of an aliphatic saturated hydrocarbon or an aliphatic unsaturated hydrocarbon. It is more preferable that the chain is a polymer (preferably elastomer) chain. Specific examples of the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain.
  • diene-based polymer examples include styrene-butadiene copolymer, styrene-ethylene-butadiene copolymer, copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), butadiene polymer, isoprene polymer and ethylene.
  • IIR butyl rubber
  • non-diene polymer examples include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen reduction products of the above diene polymers.
  • the hydrocarbon that becomes the hydrocarbon chain preferably has a reactive group at its terminal, and more preferably has a polycondensable terminal reactive group.
  • the end-reactive group capable of polycondensation or polyaddition forms a group bonded to R P1 or R P2 in each of the above formulas by polycondensation or polyaddition.
  • Examples of such a terminal reactive group include an isocyanate group, a hydroxy group, a carboxy group and an amino group, and among them, a hydroxy group is preferable.
  • hydrocarbon polymer having a terminal reactive group examples are, under the trade names, NISSO-PB series (manufactured by Nippon Soda Co., Ltd.), Claysol series (manufactured by Tomoe Kogyo Co., Ltd.), PolyVEST-HT series (manufactured by Evonik). , Poly-bd series (manufactured by Idemitsu Kosan Co., Ltd.), poly-ip series (manufactured by Idemitsu Kosan Co., Ltd.), EPOL (manufactured by Idemitsu Kosan Co., Ltd.) and Polytail series (manufactured by Mitsubishi Chemical Co., Ltd.) are preferably used.
  • polyalkylene oxide chain examples include known polyalkylene oxide chains.
  • the alkyleneoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 2 or 3 (polyethylene oxide chain or polypropylene oxide chain).
  • the polyalkylene oxide chain may be a chain composed of one kind of alkylene oxide or a chain composed of two or more kinds of alkylene oxide (for example, a chain composed of ethylene oxide and propylene oxide).
  • polycarbonate chain or polyester chain examples include known chains of polycarbonate or polyester.
  • Each of the polyalkylene oxide chain, the polycarbonate chain and the polyester chain preferably has an alkyl group (having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
  • Polyalkylene oxide chain which can be taken as R P1 and R P2, end of the polycarbonate chain and a polyester chain, appropriately changing the constituents as R P1 and R P2 are represented by the formulas above the embeddable ordinary chemical structure be able to.
  • the terminal oxygen atom of the polyalkylene oxide chain is removed and incorporated as R P1 or R P2 of the above component.
  • R N is a hydrogen atom, It may have an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms) or the like.
  • R P1 and R P2 are divalent molecular chains, but at least one hydrogen atom is replaced by —NH—CO—, —CO—, —O—, —NH— or —N ⁇ Therefore, it may have a trivalent or higher molecular chain.
  • R P1 is preferably a hydrocarbon chain, more preferably a low molecular weight hydrocarbon chain, and further preferably a hydrocarbon chain composed of an aliphatic or aromatic hydrocarbon group, Hydrocarbon chains consisting of aromatic hydrocarbon groups are particularly preferred.
  • R P2 is preferably a low molecular weight hydrocarbon chain (more preferably an aliphatic hydrocarbon group) or a molecular chain other than the low molecular weight hydrocarbon chain, and the low molecular weight hydrocarbon chain and the low molecular weight hydrocarbon chain are preferable. More preferable is an embodiment in which each molecular chain other than the hydrocarbon chain having a molecular weight is contained.
  • the constituent represented by any of the formula (I-3), the formula (I-4) and the formula (I-6) is a constituent in which R P2 is a low molecular weight hydrocarbon group. And R P2 contains at least two kinds of constituent components which are molecular chains other than low molecular weight hydrocarbon chains.
  • constituent components represented by the above formula (I-1) are shown below.
  • the raw material compound (diisocyanate compound) for deriving the constituent component represented by the formula (I-1) include diisocyanate compounds represented by the formula (M1) described in WO2018/020827 and Specific examples thereof include, further, polymeric 4,4′-diphenylmethane diisocyanate and the like.
  • the constituent component represented by the formula (I-1) and the raw material compound leading to the constituent component are not limited to those described in the following specific examples and the above-mentioned documents.
  • the raw material compound (carboxylic acid or acid chloride thereof, etc.) leading to the constituent component represented by the above formula (I-2) is not particularly limited and is described in, for example, paragraph [0074] of International Publication No. 2018/020827. , Carboxylic acid or acid chloride compounds and specific examples thereof.
  • the constituent components represented by the above formula (I-3) or formula (I-4) are shown below.
  • the starting compounds (diol compounds or diamine compounds) for deriving the constituents represented by the above formula (I-3) or formula (I-4) are described in, for example, International Publication No. 2018/020827. Each compound and specific examples thereof are mentioned, and further dihydroxyoxamide is also mentioned.
  • the constituent components represented by formula (I-3) or formula (I-4) and the raw material compounds leading to them are not limited to those described in the following specific examples and the above-mentioned documents.
  • the repeating number is an integer of 1 or more and is appropriately set within a range satisfying the molecular weight or the number of carbon atoms of the molecular chain.
  • R P3 represents an aromatic or aliphatic linking group (tetravalent), and a linking group represented by any of the following formulas (i) to (ix) is preferable.
  • X 1 represents a single bond or a divalent linking group.
  • the divalent linking group is preferably an alkylene group having 1 to 6 carbon atoms (eg methylene, ethylene, propylene). As propylene, 1,3-hexafluoro-2,2-propanediyl is preferable.
  • L represents —CH 2 ⁇ CH 2 — or —CH 2 —.
  • R X and R Y each represent a hydrogen atom or a substituent. In each formula, the substituent that can be used as R X and R Y is not particularly limited, and examples thereof include the substituent T described below.
  • alkyl group having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, 1 to 3 is more preferable
  • an aryl group having 6 to 22 carbon atoms is preferable, 6 to 14 is more preferable, and 6 to 10 is further preferable.
  • * Indicates a binding site to the carbonyl group in formula (1-5).
  • the carboxylic acid dianhydride represented by the above formula (I-5) and the raw material compound (diamine compound) leading to the constituent component represented by the above formula (I-6) are not particularly limited, and include, for example, Each compound described in WO2018/020827 and WO2015/046313 and specific examples thereof can be mentioned.
  • R P1 , R P2, and R P3 may each have a substituent.
  • the substituent is not particularly limited, and examples thereof include the substituent T described later, and the above-mentioned substituent that can be adopted as R M2 is preferably exemplified.
  • the constituent component represented by any one of the above formulas (I-1) to (I-6) does not have a physical crosslinkable group to be described later as a substituent in the partial structure part which is a side chain of the polymer, That is, the constituent components represented by the above formulas are not constituent components that form physical crosslinks with side chains.
  • the polymer of the sequential polymerization system contains a constituent having a physical crosslinkable group in the partial structure part which is a side chain of the polymer (sometimes referred to as a crosslinkable constituent).
  • the physical crosslinkable group refers to a group capable of forming a physical crosslink with a physical crosslinkable functional group of a crosslinker, a chemical bond such as an ionic bond or a hydrogen bond, or an intermolecular interaction, to bond to each other or A group capable of forming an interaction.
  • the physical crosslinkable group contained in the uncrosslinked polymer (crosslinkable constituent) can be selected as appropriate depending on the type (reaction (bond) or interaction) of the physical crosslink with the physical crosslinkable group contained in the crosslinker. ..
  • Examples of such a physically crosslinkable group include a group which can become a cation or an anion when physically crosslinked by an ionic bond.
  • Examples of the group capable of becoming a cation include a group having a property of forming a cation by receiving a hydrogen cation, an alkali metal cation, an alkaline earth metal cation, a transition metal cation, and the like.
  • a basic group Specific examples include each group included in the following group (b) of groups.
  • the group capable of becoming an anion includes a group having a property of forming an anion by donating (eliminating) a hydrogen cation, an alkali metal cation, an alkaline earth metal cation, a transition metal cation, and the like.
  • a hydrogen cation an alkali metal cation
  • an alkaline earth metal cation an alkaline earth metal cation
  • a transition metal cation and the like.
  • Is an acidic group more specifically, each group included in the following group (a).
  • a group capable of donating a hydrogen atom or a group capable of accepting a hydrogen atom may be mentioned.
  • Examples of the group capable of donating a hydrogen atom include a group having a hydrogen atom covalently bonded to an atom having a high electronegativity (for example, each atom of oxygen, nitrogen, sulfur, etc.).
  • a group, an amino group, each group included in the following group (a), and the like can be mentioned.
  • examples of the physical cross-linkable group include an aryl group having 6 to 100 carbon atoms.
  • group (a) a carboxy group is preferable, and among the group (b), an amino group is preferable.
  • ⁇ Base group (a)> Carboxy group, sulfo group (-SO 3 H), phosphoric acid group (phospho group, -OPO 3 H 2 ) and phosphonic acid group (-P( O)(OH) 2 )
  • Each of the phosphoric acid group and the phosphonic acid group may be substituted with one of two hydrogen atoms to form an ester.
  • the substituent is not particularly limited, but examples thereof include the substituent T described later, and an alkyl group, an aryl group and the like are preferable.
  • the substituted amino group include an amino group in which at least one hydrogen atom is substituted with an alkyl group, an aryl group, an alkylsilyl group or the like.
  • alkyl group and the alkylsilyl group examples include an alkyl group and an alkylsilyl group that can be used as R 11 of the formula (H-1A) described later, and the aryl group includes the aryl group of the above-described substituent T. Specific examples of the crosslinkable constituents will be described later.
  • the physical crosslinkable groups may be the same or different groups in which the bonds or interactions forming the physical crosslinks are the same.
  • the same kind of group is preferable.
  • the same type of groups the same group is more preferable.
  • the number of physical crosslinkable groups contained in one crosslinkable constituent component may be 1 or more, preferably 1 to 6, and more preferably 1 or 2.
  • the constituent having a physically crosslinkable group may be any constituent capable of forming an uncrosslinked polymer, and is represented by any one of the above formulas (I-1) to (I-4) and (I-6).
  • the above-mentioned physical crosslinkable group is introduced as a substituent into R P1 and R P2 of the constituent component.
  • those in which the above-mentioned physical crosslinkable group is introduced as a substituent to R P2 of the constituent component represented by the above formula (I-3) or formula (I-4) are preferable.
  • the non-crosslinked polymer of the sequential polymerization system is a formula (I-3) or a formula (I-4), preferably a formula (I- As the constituent component represented by 3), a constituent component in which R P2 is a polycarbonate chain, a polyester chain or a polyalkylene oxide chain as a molecular chain (a constituent component represented by the following formula (I-3B)), and R P2 Preferably has, as a molecular chain, a constituent component that is the above-mentioned hydrocarbon polymer chain (a constituent component represented by the following formula (I-3C)), and further, a constituent component in which R P2 is a hydrocarbon group. (Constituent component represented by the following formula (I-3A)) may be included.
  • the uncrosslinked polymer is a component represented by the following formula (I-1), a component represented by the formula (I-3B), a component represented by the formula (I-3C), And a constituent component represented by the following formula (II) as a constituent component having a physical crosslinkable group, and further a constituent component represented by the formula (I-3A) in addition to these constituent components. May be.
  • R P1 is as described above.
  • R P2A represents a low molecular weight hydrocarbon chain.
  • R P2B represents a polycarbonate chain, a polyester chain or a polyalkylene oxide chain.
  • R P2C represents a hydrocarbon polymer chain.
  • the low molecular weight hydrocarbon chain that can be taken as R P2A , the polycarbonate chain that can be taken as R P2B , the polyester chain or the polyalkylene oxide chain, and the hydrocarbon polymer chain that can be taken as R P2C are each represented by the above formula (I-3).
  • R P2 It has the same meaning as a low molecular weight hydrocarbon chain, polycarbonate chain, polyester chain or polyalkylene oxide chain and hydrocarbon polymer chain that can be taken as R P2 , and the preferred ones are also the same.
  • two Z's each represent -O- or -NH- (the two Z's are not different from each other), and both are preferably -O-.
  • R P4 is a molecular chain having a physical crosslinkable group, and is physically crosslinked to the side chain of the non-crosslinked polymer of the sequential polymerization system (atoms other than the atoms forming the molecular chain having two Z ends).
  • the molecular chain having Z at the end is preferably a hydrocarbon chain, more preferably a chain composed of a low molecular weight hydrocarbon group, and even more preferably an aliphatic hydrocarbon group.
  • An alkylene group (having 1 to 12 carbon atoms, preferably 2 to 6 carbon atoms, and more preferably 2 to 5 carbon atoms) is particularly preferable.
  • Such a constituent component is a compound having a physically crosslinkable group capable of being sequentially polymerized with the compound leading to the constituent component represented by any one of the above formulas (I-1) to (I-4) and (I-6). Can be incorporated into the uncrosslinked polymer.
  • the compound forming the crosslinkable constituent component the compound capable of introducing the physical crosslinkable group
  • a compound having a physical crosslinkable group and capable of polymer-reacting with the side chain of the polymer can also be mentioned.
  • the number of physically crosslinkable groups possessed by this compound is the same as that of the above-mentioned crosslinkable constituent components.
  • the non-crosslinked polymer of the sequential polymerization system may have constituent components other than the constituent components represented by the above formulas. Such constituents are not particularly limited as long as they can be successively polymerized with the constituents represented by the above formulas.
  • the (total) content of the constituent components represented by any one of the above formulas (1-1) to (I-6) and (II) in the unpolymerized polymer of the sequential polymerization system is not particularly limited. It is preferably 5 to 100% by mass, more preferably 10 to 100% by mass, and further preferably 50 to 100% by mass. The upper limit of this content may be, for example, 90% by mass or less, regardless of the above 100% by mass.
  • the content of the constituents other than the constituents represented by the above formulas in the unpolymerized polymer of the sequential polymerization system is not particularly limited, but is preferably 80% by mass or less.
  • the content of the crosslinkable constituent component, preferably the constituent component represented by the above formula (II), in the uncrosslinked polymer of the sequential polymerization system is not particularly limited as long as it is within the above (total) content range, From the viewpoint that the dispersibility of the solid electrolyte composition, the binding property between solid particles and the like and the ion conductivity can be exhibited at a high level, for example, it is preferably more than 0 mass% and less than 50 mass %.
  • the content is more preferably the mass%, further preferably 2.5 to 15 mass%.
  • the content thereof is not particularly limited and is set within the following range. it can. That is, the content of the constituent component represented by the formula (I-1) or the formula (I-2) or the constituent component derived from the carboxylic acid dianhydride represented by the formula (I-5) in the uncrosslinked polymer.
  • the amount is not particularly limited and is preferably 0 to 70% by mass, more preferably 0.01 to 50% by mass, and further preferably 0.1 to 40% by mass.
  • the content of each of the constituent components represented by is not particularly limited and is preferably 0 to 80% by mass, more preferably 5 to 70% by mass, and 15 to 30% by mass. More preferable.
  • constituents represented by formula (I-3) or (I-4) constituents in which R P2 is a low molecular weight hydrocarbon chain (for example, the constituent represented by the above formula (I-3A))
  • the content of () in the uncrosslinked polymer of the sequential polymerization system is not particularly limited, but is, for example, preferably 0 to 50% by mass, more preferably 0 to 30% by mass, and 0 to 20% by mass. % Is more preferable.
  • constituents represented by the formula (I-3) or the formula (I-4) constituents in which R P2 is the above polycarbonate chain, polyester chain or polyalkylene oxide chain as a molecular chain (for example, the above formula (I-).
  • the content of the constituent component 3B)) in the unpolymerized polymer of the sequential polymerization system is not particularly limited, but is preferably 0 to 70% by mass, and 0.1 to 60% by mass, for example. It is more preferable that the amount is 10 to 50% by mass, further preferably 10 to 30% by mass, and particularly preferably 10 to 30% by mass.
  • the constituent component in which R P2 is the above hydrocarbon polymer chain as a molecular chain (for example, represented by the above formula (I-3C))
  • the content of the constituent component) in the uncrosslinked polymer of the sequential polymerization system is not particularly limited, but is, for example, preferably 0 to 80% by mass, more preferably 5 to 60% by mass, and 10 to 10% by mass. It is more preferably 50% by mass.
  • the above content of each constituent component shall be the total content.
  • polyurethane, polyurea, polyamide, and polyimide which can be taken as the uncrosslinked polymer of the sequential polymerization system, in addition to those synthesized in the examples, for example, International Publication No. 2018/020827 and International Publication No. 2015/046313. Further, there may be mentioned those obtained by introducing a crosslinkable constituent into each of the polymers described in JP-A-2015-088480.
  • a chain-polymerization type polymer suitable as an uncrosslinked polymer is a polymer obtained by chain-polymerizing one or more monomers having a non-aromatic carbon-carbon double bond, and a side chain having physical crosslinkability. Has a group.
  • the above-mentioned fluorine-containing polymer, hydrocarbon-based polymer or (meth)acrylic polymer is preferable, and (meth)acrylic polymer is more preferable.
  • the fluorine-containing polymer is not particularly limited, and examples thereof include polytetrafluoroethylene (PTFE), polyvinylene difluoride (PVdF), a copolymer of polyvinylene difluoride and hexafluoropropylene (PVdF-HFP), A copolymer (PVdF-HFP-TFE) of polyvinylidene fluoride, hexafluoropropylene and tetrafluoroethylene can be mentioned.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylene difluoride
  • PVdF-HFP a copolymer of polyvinylene difluoride and hexafluoropropylene
  • PVdF-HFP-TFE A copolymer of polyvinylidene fluoride, hexafluoropropylene and tetrafluoroethylene can be mentioned.
  • the hydrocarbon-based polymer is not particularly limited, and examples thereof include polyethylene, polypropylene, natural rubber, polybutadiene, polyisoprene, polystyrene butadiene copolymer, polybutylene, acrylonitrile butadiene copolymer, and hydrogenated (hydrogenated) polymers thereof.
  • the hydrocarbon-based polymer is preferably one that does not have an unsaturated group (for example, 1,2-butadiene constituent component) bonded to the main chain because the formation of chemical crosslinks can be suppressed.
  • the (meth)acrylic polymer is not particularly limited, but at least one (meth)acrylic compound (M1) selected from a (meth)acrylic acid ester compound, a (meth)acrylamide compound and a (meth)acrylonitrile compound is used. Polymers obtained by (co)polymerization are preferred. A (meth)acrylic polymer made of a copolymer of the (meth)acrylic compound (M1) and another polymerizable compound (M2) is also preferable.
  • the other polymerizable compound (M2) is not particularly limited, and examples thereof include vinyl compounds such as styrene compounds, vinylnaphthalene compounds, vinylcarbazole compounds, allyl compounds, vinyl ether compounds, vinyl ester compounds, and dialkyl itaconate compounds.
  • vinyl compound include “vinyl-based monomers” described in JP-A-2015-88486.
  • (meth)acrylic compound (M1) and the vinyl compound (M2) which lead the constituent components of the (meth)acrylic polymer compounds represented by the following formula (b-1) are preferable.
  • This compound does not have the above-mentioned physical crosslinkable group as a substituent in the partial structure part which becomes the side chain of the polymer.
  • R 1 is a hydrogen atom, a hydroxy group, a cyano group, a halogen atom, an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms), and an alkenyl group (having 2 carbon atoms).
  • an alkyl group preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms
  • an alkenyl group having 2 carbon atoms.
  • 2 to 12 are more preferable
  • 2 to 6 are particularly preferable
  • an alkynyl group having 2 to 24 carbon atoms is preferable
  • 2 to 12 is more preferable
  • 2 to 6 is particularly preferable
  • an aryl group It preferably has 6 to 22 carbon atoms, and more preferably 6 to 14 carbon atoms.
  • a hydrogen atom or an alkyl group is preferable, and a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or a substituent.
  • the substituent that can be used as R 2 is not particularly limited, but is an alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms, particularly preferably 1 to 12 carbon atoms, and may be a branched chain but preferably a straight chain), An alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14), an aralkyl group (preferably having 7 to 23 carbon atoms, 7 And a cyano group, a hydroxy group, a sulfanyl group, and an oxygen-containing aliphatic heterocyclic group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms).
  • the aliphatic heterocyclic group containing an oxygen atom is preferably an epoxy group-containing group, an oxetane group-containing group,
  • L 1 is a linking group and is not particularly limited, and examples thereof include an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3), an alkenylene group having 2 to 6 carbon atoms (preferably 2 to 3), and a carbon atom number. 6 to 24 (preferably 6 to 10) arylene group, oxygen atom, sulfur atom, imino group (—NR N —), carbonyl group, phosphoric acid linking group (—OP(OH)(O)—O— ), a phosphonic acid linking group (—P(OH)(O)—O—), or a group related to a combination thereof, and the like.
  • —CO—O— group, —CO—N(R N )— group ( R N is as described above.) is preferable.
  • the linking group may have any substituent.
  • the number of atoms constituting the linking group and the number of linking atoms are as described later.
  • Examples of the optional substituent include the substituent T described later, and examples thereof include an alkyl group and a halogen atom.
  • n is 0 or 1, and 1 is preferable.
  • -(L 1 ) n -R 2 represents one kind of substituent (for example, an alkyl group)
  • n is 0 and R 2 is a substituent (alkyl group).
  • R 1 and n have the same meaning as in the above formula (b-1).
  • R 3 has the same meaning as R 2 .
  • L 2 is a linking group and has the same meaning as L 1 .
  • L 3 is a linking group and has the same meaning as L 1 above, but an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3) is preferable.
  • m is an integer of 1 to 200, preferably an integer of 1 to 100, and more preferably an integer of 1 to 50.
  • the substituent is not particularly limited, and examples thereof include the above-mentioned groups that can be taken as R 1 .
  • a group which may take a substituent such as an alkyl group, an aryl group, an alkylene group and an arylene group is a substituent within a range not impairing the effects of the present invention. May have.
  • substituents examples include the substituent T described later, and specifically, a halogen atom, a hydroxy group, a sulfanyl group, an acyl group, an acyloxy group, an alkoxy group, an aryloxy group, an aryloyl group, an aryloyloxy group and the like. Are listed.
  • the polymer constituting the binder is a chain polymerization type polymer, preferably an addition polymerization type polymer, it is preferable to have a constituent component (MM) derived from a macromonomer having a mass average molecular weight of 1,000 or more.
  • MM constituent component
  • the mass average molecular weight of the macromonomer is preferably 2,000 or more, more preferably 3,000 or more.
  • the upper limit is preferably 500,000 or less, more preferably 100,000 or less, and particularly preferably 30,000 or less.
  • the mass average molecular weight of the constituent component (MM) can be identified by measuring the mass average molecular weight of the macromonomer incorporated when the polymer constituting the binder is synthesized.
  • the macromonomer is not particularly limited as long as it has a mass average molecular weight of 1,000 or more, but a macromonomer having a polymer chain bonded to a polymerizable group such as a group having an ethylenically unsaturated bond is preferable.
  • the polymer chain of the macromonomer constitutes a side chain (graft chain) with respect to the polymer main chain.
  • the above polymer chain has the function of further improving the dispersibility in a non-aqueous dispersion medium. As a result, both suppression of interfacial resistance between solid particles and improvement of binding property are further achieved.
  • the molecular weight of a polymer, a polymer chain and a macromonomer refers to a mass average molecular weight or a number average molecular weight in terms of standard polystyrene by gel permeation chromatography (GPC) unless otherwise specified.
  • the measurement method is basically a value measured by the method of the following condition 1 or condition 2 (priority). However, an appropriate eluent may be selected and used depending on the type of polymer or macromonomer. (Condition 1) Column: Two TOSOH TSKgel Super AWM-H (trade name, manufactured by Tosoh Corporation) are connected.
  • Carrier 10 mM LiBr/N-methylpyrrolidone Measurement temperature: 40°C Carrier flow rate: 1.0 ml/min Sample concentration: 0.1% by mass Detector: RI (refractive index) detector (condition 2) Column: A column in which TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, and TOSOH TSKgel Super HZ2000 (both are trade names, manufactured by Tosoh Corporation) is used.
  • Carrier Tetrahydrofuran Measurement temperature: 40°C Carrier flow rate: 1.0 ml/min Sample concentration: 0.1% by mass Detector: RI (refractive index) detector
  • the polymerizable group contained in the macromonomer is not particularly limited and will be described in detail later, but examples thereof include various vinyl groups and (meth)acryloyl groups, and (meth)acryloyl groups are preferable.
  • the polymer chain of the macromonomer is not particularly limited, and ordinary polymer components can be applied. Examples thereof include a (meth)acrylic resin chain, a polyvinyl resin chain, a polysiloxane chain, a polyalkylene ether chain, and a hydrocarbon chain, and a (meth)acrylic resin chain or a polysiloxane chain is preferable.
  • the chain of the (meth)acrylic resin preferably contains a constituent component derived from a (meth)acrylic compound selected from a (meth)acrylic acid ester compound, a (meth)acrylonitrile compound, and the like, and two or more kinds of (meth)acryl It may be a polymer of a compound.
  • the (meth)acrylic compound has the same meaning as the (meth)acrylic compound (M1).
  • the polysiloxane chain is not particularly limited, and examples thereof include polymers of siloxane having an alkyl group or an aryl group.
  • Examples of the hydrocarbon chain include chains made of the above-mentioned hydrocarbon-based polymer.
  • the macromonomer preferably has a polymerizable group represented by the following formula (b-11).
  • R 11 has the same meaning as R 1 . * Is a binding position.
  • the macromonomer preferably has a linking group that links the polymerizable group and the polymer chain.
  • This linking group is usually incorporated into the side chain of the macromonomer.
  • the linking group is not particularly limited, and examples thereof include the groups described for the linking group L 1 in the above formula (b-1).
  • the number of atoms constituting the linking group is preferably 1 to 36, more preferably 1 to 24, further preferably 1 to 12, and more preferably 1 to 6. Particularly preferred.
  • the number of connecting atoms in the connecting group is preferably 10 or less, more preferably 8 or less.
  • the lower limit is 1 or more.
  • the above-mentioned number of connecting atoms means the minimum number of atoms connecting predetermined structural parts. For example, in the case of —CH 2 —C( ⁇ O)—O—, the number of atoms constituting the linking group is 6, but the number of linking atoms is 3.
  • the macromonomer preferably has a polymerizable moiety represented by any of the following formulas (b-12a) to (b-12c).
  • R b2 has the same meaning as R 1 .
  • R N2 has the same meaning as R N1 described later.
  • the benzene ring of formula (b-12c) may be substituted with any substituent T.
  • the structural portion existing before the bonding position of * is not particularly limited as long as the molecular weight as a macromonomer is satisfied, but the polymer chain (which may be bonded via a linking group) is preferable. At this time, the linking group and the polymer chain may each have a substituent T, for example, a halogen atom (fluorine atom) or the like.
  • the carbon atom to which R 11 or R b2 is not bonded is represented as an unsubstituted carbon atom, but may have a substituent as described above.
  • the substituent is not particularly limited, and examples thereof include the above-mentioned groups that can be taken as R 1 .
  • the above macromonomer is preferably a compound represented by the following formula (b-13a).
  • R b2 has the same meaning as R 1 .
  • na is not particularly limited, it is preferably an integer of 1 to 6, more preferably 1 or 2, and further preferably 1.
  • Ra represents a substituent when na is 1 and a linking group when na is 2 or more.
  • the substituent which can be taken as Ra is not particularly limited, but the above-mentioned polymer chain is preferable, and a (meth)acrylic resin chain or a polysiloxane chain is more preferable.
  • Ra may be directly bonded to the oxygen atom (—O—) in the formula (b-13a) or may be bonded via a linking group.
  • the linking group is not particularly limited, and examples thereof include the above-mentioned linking group that links the polymerizable group and the polymer chain.
  • the linking group is not particularly limited, and examples thereof include an alkane linking group having 1 to 30 carbon atoms, a cycloalkane linking group having 3 to 12 carbon atoms, and an aryl linking group having 6 to 24 carbon atoms.
  • R is a hydrogen atom or alkyl group having 1 to 6 carbon atoms
  • silylene group is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R Si is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • a carbonyl group an imino group
  • R N1 is a hydrogen atom or a substituent, preferably a hydrogen atom, It is preferably an alkyl group having 6 or an aryl group having 6 to 10 carbon atoms), or a combination thereof.
  • macromonomers other than the above-mentioned macromonomers examples include “macromonomer (X)” described in JP-A-2015-88486.
  • the chain-polymerized polymer contains a constituent (crosslinkable constituent) having a physical crosslinkable group in a partial structure part which is a side chain of the polymer.
  • the physical crosslinkable group is as described above, and an appropriate group can be selected according to the type of physical crosslink with the physical crosslinkable group contained in the crosslinker.
  • the crosslinkable constituent component may be a constituent component capable of forming an uncrosslinked polymer, and for example, a compound having a physical crosslinkable group in a partial structure part which is a side chain of the uncrosslinked polymer (hereinafter, simply referred to as a copolymerizable compound.
  • Such a copolymerizable compound is not particularly limited as long as it is a compound that can be copolymerized with a compound that guides the constituent components of the chain-polymerization polymer, and has, for example, the above-mentioned physical crosslinkable group, a vinyl compound. Or a (meth)acrylic compound etc. are mentioned. Specifically, for example, a (meth)acrylic acid compound, a compound in which the above-mentioned physical crosslinkable group is introduced as a substituent to at least one of L 1 and R 2 of the compound represented by the above formula (b-1), Furthermore, the above-mentioned macromonomer into which a physical crosslinkable group is introduced as a substituent can be mentioned.
  • a (meth)acrylic acid compound and further, a (meth)acrylic acid ester compound of an alkyl group in which at least one hydrogen atom is substituted with a carboxy group, a sulfonyl group, a phosphoric acid group or a phosphonic acid (for example, , (Meth)acrylic acid (carboxyalkyl) ester compound), and an alkyl group (meth)acrylic acid ester compound in which at least one hydrogen atom is substituted with a group contained in the above group (b) (for example, ( (Meth)acrylic acid aminoalkyl ester compounds) and the like.
  • the carbon number of the alkyl group is not particularly limited, preferably 1 to 12, more preferably 1 to 6, and further preferably 1 to 4. Further, the substitution position of the physical crosslinkable group with respect to the alkyl group is not particularly limited, and in consideration of the molecular structure of the crosslinking agent, a position satisfying the number of connecting atoms of the crosslinked structure including the physical crosslinked structure described later is preferable.
  • a compound forming a crosslinkable constituent (a compound capable of introducing a physical crosslinkable group), it has a physical crosslinkable group in addition to the above-mentioned copolymerizable compound, and causes a polymer reaction with a side chain of the polymer Compounds are also included.
  • the number of physical crosslinkable groups that each of the copolymerizable compound and the polymer-reactive compound has may be 1 or more, preferably 1 to 6, and more preferably 1 or 2. preferable.
  • the chain-polymerization uncrosslinked polymer contains a crosslinkable constituent component, and further, a constituent component derived from the (meth)acrylic compound (M1), a constituent component derived from the vinyl compound (M2), and a constituent component derived from a macromonomer. (MM), other components that can be copolymerized with the compounds leading to these components may be contained.
  • the (meth)acrylic polymer preferably contains a constituent component derived from the (meth)acrylic compound (M1) and a crosslinkable constituent component, and more preferably a constituent component (MM) derived from a macromonomer. ..
  • the (meth)acrylic polymer may contain the constituent component derived from the vinyl compound (M2) and further other constituent components.
  • the content of the crosslinkable constituent in the uncrosslinked polymer is not particularly limited, but in that the dispersibility of the solid electrolyte composition and the binding property between solid particles and the ion conductivity can be exhibited at a high level, For example, it is preferably more than 0% by mass and less than 50% by mass, more preferably 1 to 30% by mass, and further preferably 2.5 to 15% by mass.
  • the content of the constituent component derived from the (meth)acrylic compound (M1) in the polymer is not particularly limited, but is 1 to 99% by mass. Is more preferable, 5 to 97% by mass is more preferable, 10 to 95% by mass is particularly preferable, and 30 to 80% by mass is particularly preferable.
  • the content of the constituent component derived from the vinyl compound (M2) in the polymer is not particularly limited, but is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, and 0 to 10% by mass. It is particularly preferable that the content is mass %.
  • the content of the constituent component (MM) in the polymer is not particularly limited, but is preferably 1 to 60% by mass. Thereby, the dispersibility of the solid electrolyte composition, the binding property between solid particles, and the ionic conductivity can be exhibited at a high level.
  • the content of the constituent component (MM) in the polymer is more preferably 3 to 50% by mass, further preferably 5 to 40% by mass.
  • the uncrosslinked polymer (each component) may have a substituent.
  • substituents include groups selected from the following substituents T, and a group that does not function as a physical crosslinkable group when introduced into an uncrosslinked polymer is preferable.
  • the substituent T is shown below, but the substituent T is not limited thereto.
  • Alkyl group preferably alkyl group having 1 to 20 carbon atoms, for example, methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl group Preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl etc.
  • a cycloalkyl group preferably an alkynyl group having 1 to 20 carbon atoms, for example, methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpenty
  • a cycloalkyl group having 3 to 20 carbon atoms for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.
  • an aryl group preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl) , 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, and preferably having at least one oxygen atom, sulfur atom, nitrogen atom
  • a 5- or 6-membered heterocyclic group which includes an aromatic heterocyclic group and an aliphatic heterocyclic group, for example, a tetrahydropyran ring group, a tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazoly
  • An alkylthio group preferably an alkylthio group having 1 to 20 carbon atoms, for example, methylthio, ethylthio, isopropylthio, benzylthio, etc.
  • R P is a hydrogen atom or a substituent (preferably a group selected from the substituent T). Further, each of the groups listed as the substituent T may be further substituted with the above substituent T.
  • the compound, the substituent, the linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and/or an alkynylene group, these may be cyclic or linear, or linear or branched. Good.
  • the mass average molecular weight of the uncrosslinked polymer contained in the binder is not particularly limited, but is preferably 5,000 or more, more preferably 10,000 or more, and particularly preferably 30,000 or more.
  • the upper limit is preferably 1,000,000 or less, more preferably 200,000 or less.
  • the number of physically crosslinkable groups in one molecule of the uncrosslinked polymer is determined by the number of physically crosslinkable groups in the crosslinkable constituent and the content of the crosslinkable constituent in the uncrosslinked polymer, and is 1 or more. The number is not particularly limited as long as it is 2 to 100,000.
  • the content of the group selected from the group (a) in the uncrosslinked polymer is not particularly limited, but dispersibility, and further In terms of strength and the like, it is preferably 0.15 to 1 mmol/g, more preferably 0.2 to 0.7 mmol/g, and further preferably 0.2 to 0.5 mmol/g. ..
  • the above content is from the above-mentioned respective group groups, particularly the above group group (a), which the physically crosslinked polymer has. It is the total amount with the content of the selected group (derived cation or anion).
  • the above content can be measured by measuring the polymer by infrared spectroscopy and calculating from the peak area of the functional group.
  • the polymer contained in the solid electrolyte composition is measured using a binder or polymer separated (isolated) from other components by a conventional method.
  • the content of the uncrosslinked polymer in the solid electrolyte composition is not particularly limited as long as it satisfies the content of the binder described above, and is set appropriately.
  • the content with respect to the binder (total mass of the polymer having a side chain having a physical crosslinkable group and the crosslinking agent) is, for example, preferably 1 to 99.9% by mass, and 30 to 99.0% by mass. Is more preferable and 50 to 98.0% by mass is further preferable.
  • the polymer having a physically crosslinkable group in its side chain is physically crosslinked with the crosslinking agent, the above both contents of the uncrosslinked polymer are the total amount including the physically crosslinked polymer.
  • the uncrosslinked polymer is obtained by arbitrarily combining raw material compounds that lead to predetermined constituents according to the type of the main chain, and optionally polymerizing (sequentially in the presence of a catalyst (including a polymerization initiator, a chain transfer agent, etc.)). It can be synthesized by polymerizing or chain polymerizing such as addition polymerizing.
  • a catalyst including a polymerization initiator, a chain transfer agent, etc.
  • the method and conditions for carrying out sequential polymerization or chain polymerization are not particularly limited, and known methods and conditions can be appropriately selected.
  • the properties and physical properties of the uncrosslinked polymer can be adjusted by the type of the uncrosslinked polymer, the type or content of the constituent component (raw material compound), the molecular weight of the polymer, and the like.
  • a known compound is appropriately selected according to the type of uncrosslinked polymer.
  • Each raw material compound that forms In addition, it can also be synthesized by polymerizing a side chain of a usual sequential polymerization type or chain polymerization type polymer and a compound having a physical crosslinkable group.
  • the solvent for synthesizing the non-crosslinked polymer is not particularly limited, and those listed as the non-aqueous dispersion medium described later can be preferably used.
  • the dispersion liquid of the uncrosslinked polymer is prepared by the phase inversion emulsification method described later (when the binder is prepared)
  • the uncrosslinked polymer is synthesized (when the uncrosslinked polymer solution is prepared)
  • a method is preferred in which the solvent is replaced with a dispersion medium capable of emulsifying and dispersing the uncrosslinked polymer, and the solvent used when synthesizing the uncrosslinked polymer is removed.
  • the boiling point of the solvent used when synthesizing the uncrosslinked polymer is preferably lower than the boiling point of the dispersion medium in which the uncrosslinked polymer can be emulsified and dispersed.
  • the dispersion medium capable of emulsifying and dispersing the uncrosslinked polymer a dispersion medium capable of emulsifying and dispersing the uncrosslinked polymer described below can be preferably used.
  • the method for preparing the dispersion liquid of the non-crosslinked polymer is not particularly limited, and it can be prepared by the synthesis of the above-mentioned non-crosslinked polymer (for example, emulsion polymerization method).
  • the synthesized non-crosslinked polymer is dispersed in an appropriate dispersion medium. It can also be prepared.
  • Examples of the method of dispersing the uncrosslinked polymer in the dispersion medium include a method of using a flow reactor (a method of colliding primary particles of the uncrosslinked polymer), a method of stirring using a homogenizer, and a phase inversion emulsification method. ..
  • the method of phase inversion emulsification of the synthesized non-crosslinked polymer is preferable from the viewpoint of productivity, and further the characteristics and physical properties of the obtained non-crosslinked polymer.
  • the phase inversion emulsification method includes a step of dispersing the uncrosslinked polymer and a step of removing the solvent used during the synthesis of the uncrosslinked polymer.
  • a solution of the uncrosslinked polymer is added dropwise to the dispersion medium for emulsification capable of emulsifying and dispersing the uncrosslinked polymer (for example, at -20 to 150° C. for 0.5 to 8 hours) to emulsify.
  • the method includes a method in which the dispersion medium for emulsification is slowly dropped while emulsifying the solution of the uncrosslinked polymer while stirring strongly.
  • Examples of the step of removing the solvent include a method in which the dispersion liquid of the uncrosslinked polymer thus obtained is concentrated under reduced pressure or heated under an inert gas stream.
  • the solvent used during the synthesis of the uncrosslinked polymer can be selectively removed, and the concentration of the emulsifying dispersion medium can be increased.
  • the “strong stirring” is not particularly limited as long as mechanical energy such as impact, shear, shear stress, friction, vibration is applied to the polymer solution.
  • a homogenizer, a homodisper, a Shinto machine, a dissolver, a Titec mixer, a stirring blade in a stirring tank, a high-pressure jet disperser, an ultrasonic disperser, a ball mill, a bead mill, etc. are used, for example, at 300 to 1000 rpm.
  • a mode in which stirring is performed under conditions such as the number of rotations can be mentioned.
  • the term “slowly dropping” is not particularly limited as long as it is not added all at once, but examples thereof include a condition in which the emulsifying dispersion medium to be dropped is added dropwise to the uncrosslinked polymer solution for 10 minutes or more.
  • the dispersion medium for emulsification is appropriately determined depending on the type of constituent components of the uncrosslinked polymer.
  • a solvent which can easily dissolve this constituent component and hardly dissolve other components such as the constituent component represented by the formula (I-1) can be mentioned.
  • the emulsifying solvent is not particularly limited, but aliphatic compounds and aromatic compounds are preferable among the non-aqueous dispersion media.
  • Examples of the aliphatic compound include hexane, heptane, normal octane, isooctane, nonane, decane, dodecane, cyclohexane, cycloheptane, cyclooctane, methylcyclohexane, ethylcyclohexane, decalin, light oil, kerosene, gasoline and the like.
  • Examples of the aromatic compound include benzene, toluene, ethylbenzene, xylene, mesitylene, tetralin and the like.
  • the dispersion medium for emulsification may be used alone or in combination of two or more.
  • a polar solvent (ether solvent, ketone solvent, ester solvent, etc.) may be added as long as it does not hinder the emulsion dispersion of the polymer.
  • the mass ratio [mass for emulsification/mass of polar solvent] of the dispersion medium for emulsification and the polar solvent is preferably 100/0 to 70/30, more preferably 100/0 to 90/10, and 100/0 to 99/. 1 is most preferred.
  • the boiling point of the dispersion medium for emulsification capable of emulsifying and dispersing the uncrosslinked polymer at normal pressure is preferably 60°C or higher, preferably 70°C or higher, and more preferably 80°C or higher.
  • the average particle size depending on the solid content concentration or dropping rate of the uncrosslinked polymer solution used, the type of the uncrosslinked polymer, further, the type or content of the constituent components, etc. Can be prepared.
  • the cross-linking agent used in the present invention is a compound (cross-linking compound) having at least two physical cross-linking functional groups that physically cross-link with the physical cross-linking group of the uncrosslinked polymer. This cross-linking agent reacts or interacts with the above-mentioned physical cross-linking group of the uncross-linked polymer to form a physical cross-linking structure.
  • the physical crosslinkable functional group refers to a functional group capable of forming a physical crosslink with the physical crosslinkable group of the uncrosslinked polymer, by ionic bond or hydrogen bond chemical bond, or by intermolecular interaction, A functional group capable of forming a bond or an interaction.
  • the physical crosslinkable functional group contained in the crosslinking agent include the above-mentioned physical crosslinkable groups without particular limitation, and the type of physical crosslink with the physical crosslinkable group of the uncrosslinked polymer (reaction (bond) or Interaction).
  • reaction (bond) or Interaction the type of physical crosslink with the physical crosslinkable group of the uncrosslinked polymer
  • the physical crosslinkable functional group may be 2 or more, preferably 2 to 20, more preferably 2 to 6, and particularly preferably 2 or 3.
  • the physical crosslinkable functional group may have the same kind of functional group or different kinds of functional groups as the bond or interaction forming the physical crosslink, but the same kind of functional group is preferable. Among the functional groups of the same type, the same functional group is more preferable.
  • the basic structure constituting the cross-linking agent other than the physical cross-linkable functional group is not particularly limited, and may be an aliphatic or aromatic structure or a polymer structure.
  • a molecular chain which can be taken as R P1 and R P2 described above and a group which can be taken as L 11A in the formula (H-1A) described later.
  • a hydrocarbon group (aliphatic or aromatic) that can be taken as a low molecular weight hydrocarbon chain is preferable from the viewpoint of improving dispersibility in a non-aqueous dispersion medium.
  • Examples of such a cross-linking agent include a carboxylic acid compound having a plurality of carboxy groups (polycarboxylic acid compound), a sulfonic acid compound having a plurality of sulfo groups (polysulfonic acid compound), and a phosphoric acid compound having a plurality of phosphoric acid groups (polyphosphoric acid compound).
  • Acid compounds phosphonic acid compounds having a plurality of phosphonic acid groups (polyphosphonic acid compounds), amine compounds having a plurality of amino groups (polyamine compounds), pyridine rings, and other nitrogen-containing aromatic rings contained in group (b)
  • Examples thereof include a compound having a plurality (for example, a pyridine compound having a plurality of pyridinyl groups).
  • polyamine compound and the pyridine compound include respective compounds capable of forming a cation represented by the formula (H-1A) or the formula (H-1B) described below, and more specifically, the below-mentioned compounds.
  • the compound which can form the specific example of the physically crosslinked structure is mentioned.
  • the cross-linking agent is preferably a non-polymer compound, for example, a low molecular weight compound.
  • the molecular weight of the crosslinking agent is not particularly limited, but is preferably less than 1000, more preferably 100 to 700, for example.
  • As the cross-linking agent a commercially available product or one synthesized by a conventional method may be used.
  • the content of the cross-linking agent with respect to the binder (the total mass of the polymer having a physical cross-linking group in the side chain and the cross-linking agent) is appropriately determined according to the number of the physical cross-linking functional groups, and is, for example, 0.
  • both contents of the cross-linking agent are the total amount including the cross-linking agent that is physically cross-linked.
  • the polymer having a physical crosslinked structure in the side chain is a polymer in which the physical crosslinkable group of the uncrosslinked polymer and the physical crosslinkable functional group of the crosslinking agent react or interact with each other to form physical crosslinks, It has a physical cross-linking structure with a cross-linking agent.
  • the fact that the polymer has a physical cross-linking structure can be confirmed by, for example, the appearance of absorption of a functional group capable of having a physical cross-linking structure by infrared spectroscopy, the presence or absence of behavior derived from the cross-linking structure by viscoelasticity measurement, etc. You can
  • the physical cross-linking structure is a basic bond other than the above-mentioned physical cross-linking functional group of the cross-linking agent and the bonding portion that bonds or interacts with each other, depending on the types of the physical cross-linking group of the uncrosslinked polymer and the physical cross-linking functional group of the cross-linking agent. Consists of structure and. For example, when the physical crosslink is formed by an ionic bond, examples of the binding part include a salt composed of a cation and an anion (ionic bond by acid and base).
  • the polymer that forms physical crosslinks by ionic bond has a cation and an anion, and the cation and anion are derived from the physical crosslinkable group of the uncrosslinked polymer and the physical crosslinkable functional group of the crosslinker.
  • the bonding part include a hydrogen bond between a (functional) group capable of donating a hydrogen atom and a (functional) group capable of accepting a hydrogen atom via a hydrogen atom.
  • examples of the bonding portion include a stacking structure with an aryl group.
  • the number (and the content) of the bonding parts that the polymer forming the physical crosslink has is the same as the number (and the content) of the physical crosslinkable group that the uncrosslinked polymer has, and may be at least one. ..
  • the anion constituting the binding part (salt) in this embodiment an anion of a group (origin) selected from the above group (a) is preferable, and a carboxy group anion (—COO ⁇ ) is more preferable.
  • a cation of a group (origin) selected from the above group (b) is preferable, and an cation of an amino group (—N + R 3 ) is more preferable.
  • R represents the hydrogen atom, the alkyl group, the aryl group, or the alkylsilyl group described above in ⁇ Group (b)>.
  • the physical crosslinked structure is preferably formed by an anion or cation derived from a physical crosslinkable group which the polymer has and a polyfunctional cation or polyfunctional anion derived from a crosslinking agent. That is, it is preferable that the polymer forming the physical crosslink has a physical crosslink structure formed by ionic bond with a polyfunctional cation or a polyfunctional anion.
  • the physical crosslinked structure is more preferably formed by an anion derived from the physical crosslinkable group of the polymer and a polyfunctional cation derived from the crosslinking agent.
  • the polyfunctional cation is preferably a cation derived from a diamino compound represented by the following formula (H-1A) or a cation derived from a bipyridine compound represented by the following formula (H-1B).
  • H-1A diamino compound represented by the following formula
  • H-1B bipyridine compound represented by the following formula
  • L 11A and L 11B are an alkylene group having 1 to 24 carbon atoms, an arylene group having 6 to 60 carbon atoms, an alkenylene group having 2 to 24 carbon atoms, an oxygen atom, —N(R NL )—, a carbonyl group. , A silane linking group or an imine linking group, or a group combining these.
  • the alkylene group and alkenylene group that can be used as L 11A and L 11B may be linear, branched or cyclic, and are preferably linear from the viewpoint of affinity with the non-aqueous dispersion medium.
  • the alkylene group and the alkenylene group each have preferably 2 or more carbon atoms, more preferably 4 or more, further preferably 5 or more, particularly preferably 5 or more in terms of affinity with the non-aqueous dispersion medium. It is 6 or more.
  • the upper limit of the number of carbon atoms is preferably 24 or less, more preferably 18 or less, further preferably 12 or less, and particularly preferably 10 or less.
  • Specific examples of the alkylene group include groups in which one hydrogen atom is further removed from the groups mentioned as the alkyl group or cycloalkyl group in the substituent T described later.
  • the arylene group that can be used as L 11A and L 11B has preferably 6 to 60 carbon atoms, more preferably 6 to 24 carbon atoms, further preferably 6 to 18 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • the silane linking group that can be used as L 11A and L 11B is not particularly limited and includes, for example, —[Si(R S1 )(R S2 )]n— or —[Si(R S1 )(R S2 )O]n.
  • R S1 and R S2 are not particularly limited and may have a substituent T described later, and an alkoxy group, an aryloxy group or an amino group is preferable.
  • n is an integer of 1 or more, preferably an integer of 1 to 6.
  • R NL represents a hydrogen atom or a substituent, and the substituent can be the substituent T described later.
  • an alkyl group preferably having 1 to 24 carbon atoms, more preferably 1 to 12 and further preferably 1 to 6 and particularly preferably 1 to 3 and an alkenyl group (preferably having 2 to 24 carbon atoms, 2 To 12 are more preferable, 2 to 6 are further preferable, 2 to 3 are particularly preferable, and an alkynyl group (having 2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is further preferable, and 2 to 3 is Particularly preferred), aralkyl group (preferably having 7 to 22 carbon atoms, more preferably 7 to 14 and particularly preferably 7 to 10), aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 and 6 to 10 is particularly preferable).
  • the number of groups, atoms or linking groups to be combined is not particularly limited, but is, for example, 2 to 100, preferably 2 to 20.
  • the combined group include a group combining an alkyl group and an aryl group, a group combining an alkyl group and -N(R NL )-, a group combining an alkyl group and an oxygen atom, an alkyl group and an ester.
  • Examples thereof include a group combining a group (oxygen atom and carbonyl group).
  • L 11A and L 11B those having a hydrophobicity close to that of the non-aqueous dispersion medium are preferable in terms of affinity for the non-aqueous dispersion, and examples thereof include an alkyl group, an alkyl group and -N(R NL )-.
  • R 11 to R 18 each represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an alkylsilyl group, preferably a hydrogen atom or an alkyl group.
  • the alkyl group that can be used as R 11 to R 18 may be linear, branched or cyclic, but is preferably linear.
  • the alkyl group preferably has 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms. Specific examples of the alkyl group include an alkyl group or a cycloalkyl group in the substituent T described later.
  • the alkylsilyl group that can be used as R 11 to R 18 is not particularly limited, and examples thereof include a group represented by —Si(R S3 ) 3 .
  • R S3 represents a hydrogen atom or an alkyl group.
  • the alkyl group that can be taken as R S3 has the same meaning as the alkyl group that can be taken as R 11 above, and the preferred ones are also the same
  • R 11 to R 13 and R 14 to R 16 may be the same or different, but at least one of R 11 to R 13 and R 14 to R 16 At least one is preferably a hydrogen atom, and the remaining two are more preferably alkyl groups. This hydrogen atom is usually derived from the physically crosslinkable group of the uncrosslinked polymer.
  • the two amino cations in formula (H-1A) may be the same or different, but are preferably the same.
  • R 17 and R 18 may be the same or different, but each is preferably a hydrogen atom (generally derived from the physically crosslinkable group of the uncrosslinked polymer). ..
  • the above polyfunctional cation is more preferably a cation (partial structure) derived from a diamino compound represented by the following formula (H-2).
  • L 21 is an alkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 18 carbon atoms, an alkenylene group having 5 to 12 carbon atoms, an oxygen atom, —N(R NL )— or an imine linking group, or The group which combined these is shown.
  • the alkylene group, arylene group, and alkenylene group that can be adopted as L 21 are the same as the alkylene group, arylene group, and alkenylene group that can be adopted as L 11A , respectively, except for the number of carbon atoms.
  • the alkylene group and the alkenylene group that can be used as L 21 each have preferably 5 to 10 carbon atoms, and more preferably 6 to 8 carbon atoms.
  • the arylene group preferably has 6 to 12 carbon atoms, and more preferably 6 to 8 carbon atoms.
  • the combined group which can be taken as L 21 has the same meaning as the combined group which can be taken as L 11A .
  • R 21 to R 26 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and the alkyl group has the same meaning as the alkyl group which can be adopted as R 11 .
  • the two amino cation moieties (-N + (R 21 )(R 22 )(R 23 ), and -N + (R 24 )(R 25 )(R 26 )) in the formula (H-2) are represented by the above formula. It has the same meaning as the two amino cation moieties in (H-1A).
  • the polyfunctional anion is preferably a polyfunctional cation represented by the formula (H-1A) or the formula (H-1B), and more preferably a cation of the polyfunctional cation represented by the formula (H-2).
  • Examples include polyfunctional anions in which a part is changed to the anion of the above-mentioned physically crosslinkable functional group.
  • polyfunctional cation or polyfunctional anion derived from the crosslinking agent are shown below, but the present invention is not limited thereto.
  • a polymer having a physical crosslinked structure in its side chain has a crosslinked structure including a physical crosslinked structure.
  • This crosslinked structure is a structural portion that bonds the main chains of the polymer, and includes a physically crosslinked structure and a part of the side chain of the polymer or a part of the physically crosslinkable functional group.
  • the number of connecting atoms of the crosslinked structure including the physical crosslinked structure can be appropriately set depending on the combination of the side chain of the polymer and the crosslinking agent, but when the physical crosslinked structure is formed by an ionic bond or a hydrogen bond, dispersibility, further strength In view of the above, 8 to 30 is preferable, 9 to 25 is more preferable, and 10 to 22 is further preferable.
  • the number of connecting atoms in the crosslinked structure refers to the minimum number of atoms connecting main chains, and includes atoms serving as ions forming ionic bonds and hydrogen atoms forming hydrogen bonds. However, hydrogen atoms or groups for forming cations are not included in the number of atoms.
  • the binder may contain the above-mentioned uncrosslinked polymer, crosslinking agent, and polymer having a physically crosslinked structure in the side chain, each alone or in combination of two or more.
  • the binder is preferably prepared by mixing (physically crosslinking) an uncrosslinked polymer (preferably a dispersion of the uncrosslinked polymer) and a crosslinking agent before being mixed with the solid electrolyte or the like.
  • the mixing conditions at this time are not particularly limited, and are appropriately determined depending on the reaction or interaction of physical crosslinking.
  • the uncrosslinked polymer and the cross-linking agent can be physically cross-linked by mixing without heating or under heating.
  • the solid electrolyte composition of the present invention contains a non-aqueous dispersion medium.
  • the non-aqueous dispersion medium may be one that disperses each component contained in the solid electrolyte composition of the present invention, and is preferably one in which the above binder is dispersed in particles.
  • the non-aqueous dispersion medium means a dispersion medium containing no water, and is usually a dispersion medium selected from organic solvents.
  • the phrase "the dispersion medium does not contain water” includes not only the embodiment in which the water content is 0 mass% but also the embodiment in which the water content is 0.1 mass% or less. However, the water content in the solid electrolyte composition of the present invention is preferably within the above range (non-aqueous composition).
  • the organic solvent is not particularly limited, and examples thereof include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds and the like.
  • the non-aqueous dispersion medium preferably contains an organic solvent having 6 or more carbon atoms, more preferably an organic solvent having 6 to 12 carbon atoms, from the viewpoint of dispersibility and strength. It is preferable to include an organic solvent having 6 to 9 carbon atoms.
  • Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol and 1,4-butanediol may be mentioned.
  • alkylene glycol diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.
  • alkylene glycol alkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether
  • Ether dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.
  • dialkyl ether dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.
  • cyclic ether tetrahydrofuran, dioxane (1,2) -, 1,3- and 1,4-isomers are included)
  • amide compound examples include N,N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ⁇ -caprolactam, formamide, N-methylformamide, acetamide. , N-methylacetamide, N,N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, cyclohexanone, diisobutyl ketone (DIBK) and the like.
  • Examples of the aromatic compound include aromatic hydrocarbon compounds such as benzene, toluene and xylene.
  • Examples of the aliphatic compound include aliphatic hydrocarbon compounds such as hexane, heptane, octane and decane.
  • Examples of the nitrile compound include acetonitrile, propionitrile, isobutyronitrile and the like.
  • Examples of the ester compound include ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanoate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutyrate, and pivalic acid.
  • Examples thereof include carboxylic acid esters such as propyl, isopropyl pivalate, butyl pivalate, and isobutyl pivalate.
  • the non-aqueous dispersion medium is preferably a ketone compound, an ester compound, an aromatic compound or an aliphatic compound, and at least one organic solvent selected from a ketone compound, an ester compound, an aromatic compound and an aliphatic compound. It is more preferable to include.
  • the non-aqueous dispersion medium contained in the solid electrolyte composition may be one type or two or more types.
  • the content of the non-aqueous dispersion medium in the solid electrolyte composition is not particularly limited and is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • the content of the organic solvent having 6 or more carbon atoms in the non-aqueous dispersion medium is not particularly limited, and can be, for example, 50 to 100 mass% with respect to the total amount of the non-aqueous dispersion medium.
  • the solid electrolyte composition of the present invention can also contain an active material.
  • This active material is a material capable of inserting and releasing ions of a metal element belonging to Group 1 or 2 of the periodic table.
  • Examples of such an active material include a positive electrode active material and a negative electrode active material.
  • a metal oxide (preferably a transition metal oxide) is preferable as the positive electrode active material, and a carbonaceous material, a metal oxide, a silicon-based material, a simple substance of lithium, a lithium alloy, and an alloy with lithium can be formed as the negative electrode active material.
  • a negative electrode active material is preferred.
  • a solid electrolyte composition containing a positive electrode active material (a composition for an electrode layer) may be referred to as a positive electrode composition
  • a solid electrolyte composition containing a negative electrode active material may be referred to as a negative electrode composition.
  • the positive electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above-mentioned characteristics, and may be a transition metal oxide, an organic material, an element such as sulfur that can be composited with Li, a composite of sulfur and a metal, or the like.
  • the element M b (elements of Group 1 (Ia), elements of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb of the metal periodic table other than lithium, Elements such as Sb, Bi, Si, P or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, (MD) ) Lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicic acid compounds.
  • MA a transition metal oxide having a layered rock salt type structure
  • MB transition metal oxide having a spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD Lithium-containing transition metal halogenated phosphoric acid compounds
  • ME lithium-containing transition metal silicic acid compounds.
  • transition metal oxide having a (MA) layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (lithium nickel cobalt aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • transition metal oxide having a (MB) spinel structure examples include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And the monoclinic naconic vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
  • the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but a particulate shape is preferable.
  • the average particle size of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m. In order to make the positive electrode active material have a predetermined particle size, an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the average particle size of the positive electrode active material particles can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (unit weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
  • the content of the positive electrode active material in the electrode layer composition is not particularly limited and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and further preferably 50 to 85% by mass, based on 100% by mass of the solid content. Is more preferable, and 55 to 80% by mass is particularly preferable.
  • the negative electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and it is a carbonaceous material, a metal oxide, a metal composite oxide, a simple substance of lithium, a lithium alloy, or an anode active that can form an alloy with lithium (can be alloyed). Examples include substances. Above all, a carbonaceous material, a metal composite oxide, or a simple substance of lithium is preferably used from the viewpoint of reliability.
  • An active material capable of alloying with lithium is preferable from the viewpoint that the capacity of the all-solid secondary battery can be increased. Since the solid particles are firmly bound to each other in the constituent layer formed of the solid electrolyte composition of the present invention, a negative electrode active material capable of forming an alloy with lithium can be used as the negative electrode active material. As a result, it is possible to increase the capacity of the all-solid-state secondary battery and extend the life of the battery.
  • the carbonaceous material used as the negative electrode active material is a material consisting essentially of carbon.
  • carbon black such as acetylene black (AB)
  • graphite natural graphite, artificial graphite such as vapor-grown graphite
  • PAN polyacrylonitrile
  • various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polyvinyl alcohol)-based carbon fibers, lignin carbon fibers, glassy carbon fibers and activated carbon fibers.
  • Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • These carbonaceous materials can be divided into non-graphitizable carbonaceous materials (also called hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization.
  • the carbonaceous material preferably has the interplanar spacing or density and crystallite size described in JP-A-62-22066, JP-A-2-6856 and JP-A-3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, etc. may be used.
  • Can also Hard carbon or graphite is preferably used as the carbonaceous material, and graphite is more preferably used.
  • the metal or metalloid element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of inserting and extracting lithium, and an oxide of a metal element (metal oxide), a composite of metal elements Examples thereof include oxides or composite oxides of metal elements and metalloid elements (collectively referred to as metal composite oxides) and oxides of metalloid elements (metalloid oxides).
  • metal oxide metal oxide
  • metal composite oxides oxides or composite oxides of metal elements and metalloid elements
  • metalloid elements metalloid elements
  • amorphous oxides are preferable, and chalcogenide, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferable.
  • the metalloid element refers to an element exhibiting intermediate properties between a metal element and a non-metalloid element, and usually contains 6 elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and astatine.
  • Amorphous means an X-ray diffraction method using CuK ⁇ rays and having a broad scattering band having an apex in a region of 20° to 40° at a 2 ⁇ value. You may have.
  • the highest intensity of the crystalline diffraction lines observed at 2 ⁇ values of 40° to 70° is 100 times or less than the diffraction line intensity of the apex of the broad scattering band observed at 20° to 40° of 2 ⁇ values. Is preferable, and is more preferably 5 times or less, and particularly preferably not having a crystalline diffraction line.
  • the amorphous oxide of a metalloid element or the above chalcogenide is more preferable, and an element of Group 13 (IIIB) to 15 (VB) of the periodic table (for example, , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) are preferably used alone or as a (composite) oxide composed of a combination of two or more thereof, or a chalcogenide.
  • an element of Group 13 (IIIB) to 15 (VB) of the periodic table for example, Al, Ga, Si, Sn, Ge, Pb, Sb and Bi
  • preferable amorphous oxides and chalcogenides are, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , and Sb 2.
  • O 4, Sb 2 O 8 Bi 2 O 3, Sb 2 O 8 Si 2 O 3, Sb 2 O 5, Bi 2 O 3, Bi 2 O 4, GeS, PbS, PbS 2, Sb 2 S 3 and Sb 2 S 5 is preferably mentioned.
  • the negative electrode active material that can be used in combination with the amorphous oxide centered on Sn, Si, and Ge include carbonaceous materials that can store and/or release lithium ions or lithium metal, lithium simple substance, lithium alloy, lithium. An active material that can be alloyed with is preferably used.
  • the oxide of a metal or metalloid element particularly the metal composite oxide and the chalcogenide, contain at least one of titanium and lithium as a constituent component.
  • the metal composite oxide containing lithium include, for example, a composite oxide of lithium oxide and the above metal composite oxide or the above chalcogenide, and more specifically, Li 2 SnO 2. ..
  • the negative electrode active material for example, the metal oxide contains a titanium atom (titanium oxide).
  • the metal oxide contains a titanium atom (titanium oxide).
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • LTO lithium titanate
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of a secondary battery, and examples thereof include a lithium aluminum alloy.
  • the negative electrode active material capable of forming an alloy with lithium is not particularly limited as long as it is one that is usually used as the negative electrode active material of a secondary battery. Such an active material has large expansion and contraction due to charge and discharge, and the binding property of the solid particles is lowered as described above, but in the present invention, the binder can achieve high binding property.
  • examples of such an active material include a negative electrode active material having a silicon atom or a tin atom, each metal such as Al and In, and a negative electrode active material having a silicon atom that enables higher battery capacity (silicon atom-containing active material).
  • a silicon atom-containing active material in which the content of silicon atoms is 50 mol% or more of all the constituent atoms is more preferable.
  • a negative electrode containing such a negative electrode active material for example, a Si negative electrode containing a silicon atom-containing active material, a Sn negative electrode containing a tin atom-containing active material
  • a carbon negative electrode graphite, acetylene black, etc.
  • silicon atom-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and further silicon-containing alloys including titanium, vanadium, chromium, manganese, nickel, copper, lanthanum (for example, LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si), or an organized active material (for example, LaSi 2 /Si), as well as silicon atoms and tin atoms such as SnSiO 3 and SnSiS 3.
  • silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1)
  • silicon-containing alloys including titanium, vanadium, chromium, manganese, nickel, copper, lanthanum (for example, LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si), or an organized active material (for example, LaSi 2 /Si), as well as silicon atoms and tin atoms such as SnSiO 3 and
  • Examples include active materials containing SiOx can be used as a negative electrode active material (semi-metal oxide) itself, and since Si is generated by the operation of an all-solid secondary battery, an active material (precursor thereof) that can be alloyed with lithium. It can be used as a body substance).
  • Examples of the negative electrode active material having a tin atom include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the above silicon atom and tin atom.
  • a complex oxide with lithium oxide for example, Li 2 SnO 2 is also included.
  • the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with lithium is a preferred embodiment, among them,
  • a negative electrode active material that can be alloyed with lithium is a preferred embodiment, among them,
  • the above silicon material or silicon-containing alloy (alloy containing silicon element) is more preferable, and silicon (Si) or silicon-containing alloy is further preferable.
  • the shape of the negative electrode active material is not particularly limited, but a particulate shape is preferable.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • An ordinary crusher or classifier is used to obtain a predetermined particle size.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill or a sieve is preferably used.
  • wet crushing can also be performed in the presence of water or an organic solvent such as methanol. In order to obtain the desired particle size, it is preferable to carry out classification.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as desired. Classification can be performed both dry and wet.
  • the average particle size of the negative electrode active material can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (unit weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
  • the content of the negative electrode active material in the electrode layer composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass based on 100% by mass of the solid content.
  • the chemical formula of the compound obtained by the above calcination method can be calculated from the mass difference of the powder before and after calcination as a simple method, and as a simple method.
  • the negative electrode active material layer when the negative electrode active material layer is formed by charging the battery, in place of the negative electrode active material, ions of a metal belonging to Group 1 or Group 2 of the periodic table generated in the all-solid secondary battery are used. Can be used. A negative electrode active material layer can be formed by combining these ions with an electron and depositing as a metal.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like, and specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , and LiTaO 3.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus. Furthermore, the surface of the particles of the positive electrode active material or the negative electrode active material may be surface-treated with active rays or active gas (plasma etc.) before and after the surface coating.
  • the solid electrolyte composition of the present invention may contain a conductive auxiliary agent, and it is particularly preferable that the silicon atom-containing active material as the negative electrode active material is used in combination with the conductive auxiliary agent.
  • the conductive aid is not particularly limited, and those known as general conductive aids can be used.
  • electronic conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, Ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube.
  • ions of a metal belonging to Group 1 or Group 2 of the periodic table preferably Li Ions are not inserted and released, and those that do not function as an active material are used as the conduction aid.
  • the conductive assistants those that can function as the active material in the active material layer when the battery is charged/discharged are classified as the active material, not the conductive assistant. Whether or not the battery functions as an active material when charged and discharged is not unique and is determined by a combination with the active material.
  • the conductive additive one type may be used, or two or more types may be used.
  • the content of the conductive additive in the electrode layer composition is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass based on 100 parts by mass of the solid content.
  • the shape of the conductive additive is not particularly limited, but a particulate form is preferable.
  • the median diameter D50 of the conductive additive is not particularly limited and is, for example, preferably 0.01 to 1 ⁇ m, and more preferably 0.02 to 0.1 ⁇ m.
  • the solid electrolyte composition of the present invention contains a lithium salt, an ionic liquid, a thickener, a defoaming agent, a leveling agent, a dehydrating agent, an antioxidant, etc., as a component other than the above components.
  • a cross-linking agent such as one that causes a cross-linking reaction by radical polymerization, condensation polymerization or ring-opening polymerization
  • a polymerization initiator such as one that generates an acid or radical by heat or light
  • the solid electrolyte composition of the present invention is suitable for forming a solid electrolyte layer and an active material layer of an all-solid secondary battery, more preferable as a composition for forming a solid electrolyte layer or a negative electrode active material layer, a negative electrode active material layer Is particularly preferable as the composition for forming.
  • the solid electrolyte composition of the present invention can be prepared, preferably as a slurry, by mixing an inorganic solid electrolyte, a binder, a non-aqueous dispersion medium, and further other components with, for example, various commonly used mixers. ..
  • the mixing method is not particularly limited, and the respective components may be mixed together or sequentially.
  • it is preferable that the polymer and the cross-linking agent are physically cross-linked in advance and then mixed with the solid electrolyte or the like to form the solid electrolyte composition.
  • the particulate binder When the particulate binder is used, it is preferably used as a dispersion liquid of the particulate binder in which the particulate non-crosslinked polymer is synthesized and then physically crosslinked with the crosslinking agent, but the present invention is not limited thereto.
  • the environment for mixing is not particularly limited, and examples thereof include a dry air atmosphere or an inert gas atmosphere.
  • the solid electrolyte-containing sheet of the present invention is a sheet-shaped molded product that can form a constituent layer of an all-solid secondary battery, and includes various modes depending on its use.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for all solid state secondary batteries
  • an electrode or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (electrode for all solid state secondary battery) Sheet) and the like.
  • the solid electrolyte sheet for an all-solid secondary battery may be a sheet having a solid electrolyte layer, even a sheet having a solid electrolyte layer formed on a substrate does not have a substrate and is formed from a solid electrolyte layer. It may be a sheet.
  • the solid electrolyte sheet for all solid state secondary batteries may have other layers in addition to the solid electrolyte layer. Examples of the other layer include a protective layer (release sheet), a current collector, and a coat layer.
  • Examples of the solid electrolyte sheet for all solid state secondary batteries include, for example, a sheet having a layer composed of the solid electrolyte composition of the present invention on a substrate, a normal solid electrolyte layer, and optionally a protective layer in this order.
  • the solid electrolyte layer formed from the solid electrolyte composition of the present invention contains an inorganic solid electrolyte and a binder containing a polymer whose side chain is physically crosslinked with the above-mentioned crosslinking agent, and exhibits high strength.
  • the content of each component in this solid electrolyte layer is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the solid electrolyte composition of the present invention.
  • the solid electrolyte layer is the same as the solid electrolyte layer in the all-solid-state secondary battery described later, and usually contains no active material.
  • the solid electrolyte sheet for all-solid secondary batteries can be used suitably as a material which comprises the solid electrolyte layer of all-solid secondary batteries.
  • the base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include a sheet (plate-like body) made of a material, an organic material, an inorganic material, and the like, which will be described later with reference to a current collector.
  • the organic material include various polymers and the like, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, cellulose and the like.
  • the inorganic material include glass and ceramics.
  • the electrode sheet for an all-solid secondary battery may be any electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector). However, it may be a sheet having no base material and formed of an active material layer.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. A mode having a layer and an active material layer in this order is also included.
  • the electrode sheet may have other layers as described above.
  • the layer thickness of each layer constituting the electrode sheet is the same as the layer thickness of each layer described in the all-solid secondary battery described later.
  • the active material layer of the electrode sheet is preferably formed of the solid electrolyte composition (electrode layer composition) of the present invention.
  • the content of each component in the active material layer of the electrode sheet is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the solid electrolyte composition (electrode composition) of the present invention. ..
  • This electrode sheet can be suitably used as a material forming the (negative electrode or positive electrode) active material layer of the all-solid secondary battery.
  • the method for producing the solid electrolyte-containing sheet is not particularly limited.
  • the solid electrolyte-containing sheet can be manufactured using the solid electrolyte composition of the present invention.
  • the solid electrolyte composition of the present invention is prepared as described above, and the obtained solid electrolyte composition is formed into a film (coating and drying) on a substrate (may have other layers interposed).
  • a method of forming a solid electrolyte layer (coating dry layer) on a substrate can be mentioned. Thereby, a solid electrolyte-containing sheet having a base material (current collector) and a coating and drying layer can be produced as desired.
  • the coating dry layer is a layer formed by applying the solid electrolyte composition of the present invention and drying the non-aqueous dispersion medium (that is, using the solid electrolyte composition of the present invention, Layer of the composition obtained by removing the non-aqueous dispersion medium from the solid electrolyte composition of.
  • the nonaqueous dispersion medium may remain in the active material layer and the coating dried layer as long as the effects of the present invention are not impaired.
  • the remaining amount is, for example, 3% by mass or less in each layer. it can.
  • the solid electrolyte composition of the present invention is preferably used as a slurry, and if desired, the solid electrolyte composition of the present invention can be slurried by a known method.
  • Each process such as application and drying of the solid electrolyte composition of the present invention will be described in the following method for manufacturing an all-solid secondary battery.
  • the coating dried layer obtained as described above can be pressed.
  • the pressurizing condition and the like will be described later in the method of manufacturing an all-solid-state secondary battery.
  • the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
  • the all-solid secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is formed on the positive electrode current collector, if desired, and constitutes a positive electrode.
  • the negative electrode active material layer is optionally formed on the negative electrode current collector to form a negative electrode.
  • At least one layer of the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer of the all-solid secondary battery is preferably formed of the solid electrolyte composition of the present invention, and all layers are the solid of the present invention.
  • the active material layer contains an inorganic solid electrolyte, an active material, and preferably a conductive additive.
  • the negative electrode active material layer when not formed by the solid electrolyte composition of the present invention, a layer containing an inorganic solid electrolyte, an active material, preferably a conductive additive and optionally the above components, the metal described as the negative electrode active material or A layer made of an alloy (such as a lithium metal layer), and a layer (sheet) made of the carbonaceous material or the silicon atom-containing active material described as the negative electrode active material are adopted.
  • the layer made of metal or alloy includes, for example, a layer formed by depositing or molding powder of metal or alloy such as lithium, metal foil or alloy foil, and vapor deposition film.
  • the thickness of the layer made of a metal or alloy and the layer made of a carbonaceous material are not particularly limited, and may be, for example, 0.01 to 100 ⁇ m.
  • the solid electrolyte layer contains a solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table and, if desired, each of the above components.
  • the solid electrolyte composition or the active material layer can be formed by the solid electrolyte composition of the present invention or the solid electrolyte-containing sheet.
  • the solid electrolyte layer and the active material layer to be formed are preferably the same as those in the solid content of the solid electrolyte composition or the solid electrolyte-containing sheet, unless otherwise specified, for each component and the content thereof. ..
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
  • each layer is preferably 10 to 1,000 ⁇ m, and more preferably 20 ⁇ m or more and less than 500 ⁇ m, in consideration of the dimensions of a general all-solid secondary battery.
  • the thickness of at least one of the positive electrode active material layer, the solid electrolyte layer and the negative electrode active material layer is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each be provided with a current collector on the side opposite to the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure depending on the application, but in order to obtain the form of a dry battery, it should be further enclosed in a suitable casing before use.
  • the housing may be made of metal or resin (plastic).
  • metallic casing is preferably divided into a casing on the positive electrode side and a casing on the negative electrode side and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
  • FIG. 1 is a sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. ..
  • the layers are in contact with each other and have a laminated structure. By adopting such a structure, during charging, electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated there.
  • the solid electrolyte composition of the present invention can be preferably used as a molding material for a solid electrolyte layer, a negative electrode active material layer or a positive electrode active material layer. Further, the solid electrolyte-containing sheet of the present invention is suitable as a solid electrolyte layer, a negative electrode active material layer or a positive electrode active material layer.
  • the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as an electrode layer or an active material layer.
  • this all-solid secondary battery When the all-solid secondary battery having the layer structure shown in FIG. 1 is put into a 2032 type coin case, this all-solid secondary battery is referred to as an all-solid secondary battery laminate, and this all-solid secondary battery laminate is A battery produced by putting it in a 2032 type coin case may be referred to as an all-solid secondary battery.
  • any one of the solid electrolyte layer and the active material layer is formed using the solid electrolyte composition of the present invention or the solid electrolyte containing sheet.
  • all layers are formed by using the solid electrolyte composition of the present invention or the solid electrolyte-containing sheet, and in another preferred embodiment, the solid electrolyte layer and the negative electrode active material layer are the solid electrolyte composition of the present invention or the above. It is formed using a solid electrolyte containing sheet.
  • the negative electrode active material layer is a layer formed of a metal or an alloy as a negative electrode active material, a carbonaceous material or a silicon atom-containing as a negative electrode active material, in addition to the solid electrolyte composition of the present invention or the electrode sheet. It can also be formed by using a layer or the like made of an active material and further by depositing a metal belonging to Group 1 or 2 of the periodic table on the negative electrode current collector or the like during charging.
  • the components contained in the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 may be the same or different from each other.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as aluminum or stainless steel whose surface is treated with carbon, nickel, titanium or silver (a thin film is formed). The above) are preferable, and among them, aluminum and aluminum alloys are more preferable.
  • As a material for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel. Preferred are aluminum, copper, copper alloy and stainless steel.
  • the shape of the current collector is usually a film sheet, but a net, a punch, a lath, a porous body, a foam, a molded body of fibers, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a functional layer, a member or the like is appropriately interposed or arranged between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer and the positive electrode current collector. You may. Each layer may be composed of a single layer or multiple layers.
  • the all-solid secondary battery of the present invention is not particularly limited, and can be manufactured by (via) the method for manufacturing a solid electrolyte-containing sheet of the present invention. Focusing on the raw material used, the solid electrolyte composition of the present invention can also be used for production. Specifically, the all-solid secondary battery, the solid electrolyte composition of the present invention is prepared as described above, using the obtained solid electrolyte composition and the like, a solid electrolyte layer of the all-solid secondary battery and It can be manufactured by forming an active material layer. This makes it possible to manufacture an all-solid secondary battery having excellent battery performance such as battery capacity. Since the method for preparing the solid electrolyte composition of the present invention is as described above, it is omitted.
  • the all-solid secondary battery of the present invention has a step of applying the solid electrolyte composition of the present invention onto a substrate (for example, a metal foil serving as a current collector) to form a coating film (form a film). It can be manufactured via a method.
  • a solid electrolyte secondary battery a solid electrolyte composition (electrode layer composition) of the present invention is applied as a positive electrode composition onto a metal foil that is a positive electrode current collector to form a positive electrode active material layer.
  • a positive electrode sheet is prepared.
  • the solid electrolyte composition of the present invention for forming a solid electrolyte layer is applied onto the positive electrode active material layer to form a solid electrolyte layer.
  • the solid electrolyte composition of the present invention (composition for electrode layer) is applied on the solid electrolyte layer as a composition for negative electrode to form a negative electrode active material layer.
  • a composition for negative electrode to form a negative electrode active material layer.
  • each layer is reversed, and the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery. You can also do it.
  • the positive electrode sheet for all solid state secondary batteries is produced as described above.
  • the solid electrolyte composition of the present invention is applied as a negative electrode composition onto a metal foil that is a negative electrode current collector to form a negative electrode active material layer, and a negative electrode sheet for an all-solid secondary battery is produced.
  • the solid electrolyte layer-forming composition of the present invention is applied onto any one of the active material layers of these sheets to form a solid electrolyte layer, as described above.
  • the other of the positive electrode sheet for all-solid secondary battery and the negative electrode sheet for all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • the all solid state secondary battery can be manufactured.
  • the following method can be given as another method. That is, the positive electrode sheet for all-solid secondary batteries and the negative electrode sheet for all-solid secondary batteries are produced as described above. Separately from this, a solid electrolyte composition is applied onto a substrate to prepare a solid electrolyte sheet for an all-solid secondary battery including a solid electrolyte layer. Further, the positive electrode sheet for all-solid secondary battery and the negative electrode sheet for all-solid secondary battery are laminated so as to sandwich the solid electrolyte layer peeled from the base material. In this way, the all solid state secondary battery can be manufactured.
  • the positive electrode sheet for all-solid secondary battery or the negative electrode sheet for all-solid secondary battery, and the solid electrolyte sheet for all-solid secondary battery are produced. Then, the positive electrode sheet for all solid state secondary batteries or the negative electrode sheet for all solid state secondary batteries and the solid electrolyte sheet for all solid state secondary batteries were brought into contact with the positive electrode active material layer or the negative electrode active material layer and the solid electrolyte layer. Overlap and pressurize. In this way, the solid electrolyte layer is transferred to the positive electrode sheet for all-solid secondary batteries or the negative electrode sheet for all-solid secondary batteries.
  • the solid electrolyte layer and the all-solid secondary battery negative electrode sheet or all-solid secondary battery positive electrode sheet for which the base material of the solid electrolyte sheet for all-solid secondary battery is peeled off (a solid electrolyte layer with a negative electrode active material layer or The positive electrode active material layers are stacked and pressed together. In this way, an all-solid-state secondary battery can be manufactured.
  • the pressurizing method, pressurizing condition, and the like in this method are not particularly limited, and the method, pressurizing condition, and the like described below for pressurizing the applied composition can be applied.
  • Each of the above manufacturing methods is a method of forming a solid electrolyte layer, a negative electrode active material layer and a positive electrode active material layer with the solid electrolyte composition of the present invention, in the manufacturing method of the all solid state secondary battery of the present invention. At least one of the solid electrolyte layer, the negative electrode active material layer and the positive electrode active material layer, preferably the solid electrolyte layer and the negative electrode active material layer, is formed from the solid electrolyte composition of the present invention.
  • a solid electrolyte layer with a composition other than the solid electrolyte composition of the present invention, as a material thereof, a commonly used solid electrolyte composition or the like, when forming a negative electrode active material layer, a known negative electrode active material composition Examples thereof include a metal or alloy (metal layer) as a negative electrode active material, a carbonaceous material (carbonaceous material layer) as a negative electrode active material, a silicon atom-containing active material, and the like. Further, the negative electrode active material layer was not formed during the production of the all-solid-state secondary battery, and the negative electrode current collector accumulated in the negative electrode current collector during initialization or charging during use described later belongs to Group 1 or 2 of the periodic table.
  • a negative electrode active material layer can also be formed by combining a metal ion with an electron and precipitating it as a metal on a negative electrode current collector or the like.
  • the solid electrolyte layer or the like can be formed, for example, on the substrate or the active material layer by pressure-molding the solid electrolyte composition or the like under the pressure condition described below, or by forming a sheet molded body of the solid electrolyte or the active material. It can also be used.
  • the method of applying the composition used for manufacturing the all-solid secondary battery is not particularly limited and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating, dip coating, slit coating, stripe coating and bar coating. At this time, the composition may be subjected to a drying treatment after each coating, or may be subjected to a multilayer treatment and then a drying treatment.
  • the drying temperature is not particularly limited. The lower limit is preferably 30° C. or higher, more preferably 60° C. or higher, even more preferably 80° C. or higher.
  • the upper limit is preferably 300°C or lower, more preferably 250°C or lower, and further preferably 200°C or lower.
  • the non-aqueous dispersion medium can be removed and a solid state (coating dried layer) can be obtained. It is also preferable because the temperature is not raised too high and each member of the all solid state secondary battery is not damaged. As a result, in the all-solid secondary battery, excellent overall performance can be obtained and good binding property can be obtained.
  • a reaction or interaction for forming a physical crosslink can be further caused depending on its type, etc., and a polymer having a physical crosslink structure with a crosslinking agent.
  • a coating dry layer having a small interfacial resistance between solid particles can be formed.
  • the pressurizing method include a hydraulic cylinder press machine.
  • the applied pressure is not particularly limited, and generally, it is preferably in the range of 0.1 to 1500 MPa.
  • the applied composition may be heated simultaneously with the pressurization.
  • the heating temperature is not particularly limited and is generally in the range of 30 to 300°C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state in which the coating solvent or the non-aqueous dispersion medium has been dried in advance, or in a state in which the coating solvent or the non-aqueous dispersion medium remains.
  • each composition may be applied at the same time, or the application and drying press may be applied simultaneously and/or sequentially.
  • the atmosphere during pressurization is not particularly limited, and may be air, dry air (dew point ⁇ 20° C. or lower), inert gas (eg, argon gas, helium gas, nitrogen gas). Since the inorganic solid electrolyte reacts with water, the atmosphere during pressurization is preferably under dry air or in an inert gas.
  • the pressing time may be a short time (for example, within several hours) and high pressure may be applied, or a long time (one day or more) and medium pressure may be applied.
  • a restraint (screw tightening pressure or the like) of the all solid state secondary battery can be used in order to continue applying a medium pressure.
  • the pressing pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed portion. It is also possible to change the same site stepwise with different pressures.
  • the pressed surface may be smooth or roughened.
  • the all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charge/discharge in a state where the press pressure is increased, and then releasing the pressure until it becomes a general working pressure of the all solid state secondary battery.
  • the all-solid secondary battery of the present invention can be applied to various uses.
  • the application mode is not particularly limited, but for example, when it is mounted on an electronic device, it is a notebook computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, a mobile phone. Examples include copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, mini disk, electric shaver, transceiver, electronic organizer, calculator, portable tape recorder, radio, backup power supply, memory card.
  • consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting equipment, toys, game devices, road conditioners, clocks, strobes, cameras, medical devices (pacemakers, hearing aids, shoulder scuffers, etc.), etc. .. Further, it can be used for various military purposes and for space. It can also be combined with a solar cell.
  • binders used in Examples and Comparative Examples are shown below.
  • the structure of the polymer constituting the binder and the crosslinked structure are also shown.
  • the binder and the inorganic solid electrolyte used in Examples and Comparative Examples were synthesized as follows.
  • Neostan U-600 trade name, bismuth tris(2-ethylhexanoate), manufactured by Nitto Kasei Co., Ltd.
  • Binder Dispersion Liquid B-1 0.76 g of N,N,N′,N′-tetramethylethylenediamine (NEDA) as a cross-linking agent was added to the obtained heptane dispersion liquid B-1, and the mixture was stirred at a temperature of 25° C. for 30 minutes to give a polymer B- A binder dispersion B-1 (10% by mass heptane dispersion) containing 1 and a crosslinking agent NEDA was obtained.
  • NEDA N,N,N′,N′-tetramethylethylenediamine
  • binder dispersion liquid B-1 the binder dispersion liquid B-1 was prepared, except that the compounds shown in Table 1 below were used as the cross-linking agent in the amounts used in the contents shown in the same table.
  • Binder dispersions B-2 to B-10 were prepared in the same manner as in.
  • a solution prepared in a separate container (103.8 g of ethyl acrylate (manufactured by Wako Pure Chemical Industries), 20 g of acrylic acid (manufactured by Wako Pure Chemical Industries), 60 g of macromonomer AB-6 (manufactured by Toagosei Co., Ltd.) (Amount of solid content) and 2.0 g of a polymerization initiator V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) were added dropwise over 2 hours and then stirred at 80° C. for 2 hours. Further 1.0 g of V-601 was added to the obtained mixture, and the mixture was stirred at 90° C. for 2 hours.
  • a (meth)acrylic polymer B-11 was synthesized as an uncrosslinked polymer to prepare a polymer dispersion liquid B-11.
  • 16.2 g of N,N,N′,N′-tetramethylethylenediamine as a cross-linking agent was added to the obtained polymer dispersion B-11, and the mixture was stirred at a temperature of 25° C. for 30 minutes to give a polymer B-11.
  • a binder dispersion liquid B-11 containing a crosslinking agent NEDA was obtained.
  • the macromonomer AB-6 used is polybutyl acrylate (number average molecular weight 6000) whose terminal functional group is a methacryloyl group.
  • binder dispersion B-11 the above-mentioned binder dispersion B-11 was prepared, except that the compounds shown in Table 1 below were used as the cross-linking agent in the amounts used shown in the table.
  • Binder dispersions B-12 and B-13 were prepared in the same manner as in.
  • ⁇ Synthesis Example 14 Synthesis of polymer B-14 and preparation of binder solution B-14>
  • the above polymer B- was prepared except that the compounds leading to the constituents shown in Table 1 below were used as the compounds leading to the respective constituents in the amounts used shown in the same table.
  • a urethane polymer B-14 was synthesized in the same manner as in the synthesis of 1, to prepare a polymer solution B-14.
  • the binder solution was prepared in the same manner as in the preparation of the binder dispersion B-1 except that the obtained polymer solution B-14 was used (without phase inversion emulsification). B-14 was prepared.
  • ⁇ Synthesis Example 15 Synthesis of polymer BC-1 and preparation of binder solution BC-1> 2.5 g of 4,4′-diphenylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.), 17.6 g of Jeffamine D-2000 (trade name, polyoxypropylene diamine, number average molecular weight of 2,000, manufactured by Huntsman) of 200 mL. And was dissolved in 52 g of methyl ethyl ketone. The resulting solution was heated to 60° C. and heated and stirred for 30 minutes, then 51 mg of neostan U-600) was added, and the mixture was further heated and stirred at 60° C. for 5 hours.
  • 4,4′-diphenylmethane diisocyanate manufactured by Wako Pure Chemical Industries, Ltd.
  • Jeffamine D-2000 trade name, polyoxypropylene diamine, number average molecular weight of 2,000, manufactured by Huntsman
  • the urea polymer BC-1 was synthesized to prepare the polymer solution BC-1 (content: 30% by mass).
  • the polymer solution BC-1 thus obtained was used as a binder solution BC-1.
  • the binder solution BC-1 contains the urea polymer BC-1 that has not been crosslinked with a crosslinking agent as a binder.
  • Binder solution BC-2 The heptane dispersion B-1 of the polyurethane polymer B-1 prepared in Synthesis Example 1 above was used as a binder solution BC-2.
  • This binder solution BC-2 contains, as a binder, a urethane polymer B-1 which has not been crosslinked with a crosslinking agent.
  • ⁇ Preparation Example 1 Preparation of binder aqueous solution BC-3>
  • an aqueous binder solution BC-3 containing a copolymer resin of isobutene and maleic anhydride and polyethyleneimine was prepared.
  • Preparation Example 2 Preparation of Binder Dispersion Liquid BC-3> Using the binder aqueous solution BC-3 prepared in Preparation Example 1 above, an attempt was made to prepare a polymer dispersion liquid BC in the same manner as the polymer dispersion liquid B-1. However, the copolymer resin (binder) was not dispersed in the non-aqueous dispersion medium (butyl acetate), and the dispersion could not be prepared.
  • the non-aqueous dispersion medium butyl acetate
  • ⁇ Synthesis Example 16 Synthesis of polymer BC-4 and preparation of binder dispersion liquid BC-4>
  • the above polymer B- was prepared except that the compounds leading to the constituents shown in Table 1 below were used as the compounds leading to the respective constituents in the amounts used shown in the same table.
  • urethane polymer BC-4 was synthesized to prepare a polymer solution BC-4.
  • a polymer dispersion liquid BC-4 was prepared in the same manner as the polymer dispersion liquid B-1.
  • the polymer dispersion liquid BC-4 thus obtained was used as a binder dispersion liquid BC-4.
  • a liquid prepared in a separate container (93 parts by mass of a 43% by mass butyl butyrate solution of the macromonomer M-1, butyl acrylate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 90 parts by mass of methyl methacrylate (Fuji 26 parts by weight of film Wako Pure Chemical Industries, Ltd., 20 parts by weight of 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate (trade name: Karenz MOI-BP, Showa Denko KK), V-601 (Product name, dimethyl-2,2'-azobis (2-methylpropinate, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 1.1 parts by mass) is added dropwise over 2 hours, and then at 80° C.
  • AD-1 Polymer synthesized by the following method 190 parts by mass of toluene was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, and nitrogen gas was introduced for 10 minutes at a flow rate of 200 mL/min, and then the temperature was raised to 80°C. Warmed. Solution prepared in another container (150 parts by mass of butyl acrylate, 50 parts by mass of hydroxybutyl acrylate, 1.9 parts by mass of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed for 2 hours. Was added dropwise, and then the mixture was stirred at 80° C. for 2 hours.
  • the obtained solid was dissolved in 300 parts by mass of heptane to obtain a solution of macromonomer M-1.
  • the solid content concentration was 43.4%, and the mass average molecular weight was 16,000.
  • Dodecyl methacrylate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • 150 parts by mass Methyl methacrylate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • 59 parts by mass 3-mercaptoisobutyric acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • binder dispersions B-1 to B-14 it was confirmed by the above-mentioned method that the polymer constituting each binder was physically crosslinked. As a result, as shown in the above formulas, it was confirmed that all the polymers formed a salt (bonding part) composed of a carboxylate anion derived from a carboxy group and an ammonium cation derived from an amino group, and a crosslinked structure. Table 1 shows the number of connecting atoms in the formed crosslinked structure.
  • the (meth)acrylic polymer BC-5 has a structure in which its side chain is chemically crosslinked by a covalent bond.
  • the average particle diameter of the binder was measured by the method described above. The results are shown in Table 1.
  • the mass average molecular weight of the (uncrosslinked) polymer having a physically crosslinkable group in its side chain was measured by the above-mentioned method. The results are shown in Table 1. Further, the results of measuring the content of the group selected from the group group (a) (referred to as "functional group amount" in Table 1) by the above-mentioned method for the polymer having a physically crosslinkable group in the side chain are shown in Table 1. Show. With respect to each of the obtained binder dispersions, the dispersion state of the binder was visually evaluated and shown in the "shape" column of Table 1.
  • the state in which the binder is dispersed in the non-aqueous dispersion medium to form a particulate binder is referred to as “particle”.
  • the binder solution a state in which the binder is dissolved in the non-aqueous dispersion medium to form a particulate binder and is in a solution is referred to as a “solution”.
  • the constituent components M1 to M4 are as follows.
  • Urethane polymer Component M1 Component represented by Formula (I-1)
  • Component M2 Component represented by Formula (I-3B)
  • Component M3 Component represented by Formula (I-3C)
  • Constituent M4 Constituent Component
  • Constituent M1 Constituent Component Represented by Formula (I-1)
  • Constituent M2 Both Constituent Represented by Formula (I-3B) Constituent component in which terminal oxygen atom is changed to NH
  • Constituent component M3 Constituent component (meth)acrylic polymer represented by formula (I-3C)
  • Constituent component M1 (Meth)acrylic compound (M1)-derived constituent component M3: Constituent component derived from macromonomer
  • Constituent component M4 Constituent component having a physical crosslinkable group
  • Each constituent component of the polymer BC-5 is described in order in each constituent component column.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • Example 1 A solid electrolyte composition and a solid electrolyte-containing sheet were produced, and the following characteristics were evaluated for the solid electrolyte composition and the solid electrolyte-containing sheet. The results are shown in Table 2.
  • ⁇ Preparation of solid electrolyte composition 180 zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), 4.85 g of LPS synthesized in Synthesis Example A above, and a binder dispersion or solution shown in Table 2 (0.15 g as solid content mass). ), and 16.0 g of the non-aqueous dispersion medium shown in Table 2. After that, this container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch Co., and mixing was continued for 10 minutes at a temperature of 25° C. and a rotation speed of 150 rpm to obtain solid electrolyte composition C-1 to C C-15 and CC-1 to CC-4 were prepared respectively.
  • a planetary ball mill P-7 trade name
  • the total amount refers to the total amount (10 cm) of the solid electrolyte composition charged in the glass test tube, and the height of the supernatant refers to the solid component of the solid electrolyte composition settling (solid-liquid separation).
  • the amount of the supernatant (cm). In this test, the smaller the ratio is, the better the dispersibility is, and the evaluation rank "4" or higher is the pass level.
  • ⁇ Evaluation 2 Evaluation of binding property>
  • the solid electrolyte-containing sheet was wrapped around rods having different diameters, and the presence or absence of cracks, cracks or cracks in the solid electrolyte layer and the presence or absence of peeling of the solid electrolyte layer from the aluminum foil (current collector) were confirmed.
  • the binding property was evaluated according to which of the following evaluation ranks included the minimum diameter of the rod wound without causing defects such as these defects. In the present invention, the smaller the minimum diameter of the bar is, the stronger the binding property is, and the evaluation rank “4” or more is passed.
  • the ionic conductivity was measured using the obtained all-solid-state secondary battery 13 for measuring ionic conductivity. Specifically, in a 25° C. constant temperature bath, AC impedance was measured up to a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz using a 1255B FREQUENCY RESPONSE ANALYZER (trade name) manufactured by SOLARTRON. Thus, the resistance in the film thickness direction of the sample was obtained and calculated by the following formula (1).
  • Ionic conductivity (mS/cm) 1000 ⁇ sample film thickness (cm)/ ⁇ resistance ( ⁇ ) ⁇ sample area (cm 2 ) ⁇ ...Equation (1)
  • the sample film thickness and the sample area are measured before putting the all-solid-state secondary battery laminate 12 into the 2032 type coin case 16, and the value obtained by subtracting the thickness of the aluminum foil (that is, the solid electrolyte layer). Film thickness and area).
  • the results shown in Table 2 show the following.
  • the solid electrolyte composition CC-1 using a binder composed of a urea polymer (uncrosslinked urea polymer) which can be hydrogen-bonded in the main chain but is not physically crosslinked in the side chain had no problem in dispersibility, but contained solid electrolyte.
  • Sheet BS-1 does not show sufficient binding property and ionic conductivity.
  • solid electrolyte compositions CC-2 and CS-3 using a binder composed of a urethane polymer (uncrosslinked urethane polymer) that can hydrogen bond in the main chain but is not physically crosslinked in the side chain have insufficient dispersibility.
  • the solid electrolyte-containing sheets BS-2 and BS-3 produced from these solid electrolyte compositions are also inferior in binding property and ionic conductivity.
  • the solid electrolyte composition CC-4 using a binder composed of a (meth)acrylic polymer having a side chain having a chemical cross-linking structure by covalent bonds is a solid having poor dispersibility and having sufficient binding property and ionic conductivity. An electrolyte containing sheet cannot be obtained.
  • the solid electrolyte compositions C-1 to C-15 of the present invention using a binder composed of a urethane polymer or a (meth)acrylic polymer having a physical crosslinked structure show excellent dispersibility.
  • the solid electrolyte-containing sheets S-1 to S-15 of the present invention produced by using these solid electrolyte compositions have both excellent binding properties and ionic conductivity.
  • L 11 in the formula (H-1A) defined in the present invention is an alkyl group and the alkyl group has 5 or more carbon atoms
  • the solid electrolyte composition exhibits higher dispersibility, It is possible to achieve both high adhesion and high ionic conductivity.
  • a non-aqueous dispersion medium having 6 or more carbon atoms is used in combination with the binder specified in the present invention, the dispersibility can be further improved, and excellent binding properties and ionic conductivity can be achieved.
  • Example 2 An all-solid secondary battery was manufactured and the following characteristics were evaluated. The results are shown in Tables 3 and 4.
  • the composition for a negative electrode obtained above was applied onto a stainless steel foil (negative electrode current collector) having a thickness of 10 ⁇ m by a baker type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and at 100° C. for 2 hours. It heated and dried the composition for negative electrodes (the non-aqueous dispersion medium was removed). Then, the dried negative electrode composition was pressed (10 MPa, 1 minute) at 25° C. using a heat press machine, and a negative electrode sheet PU- for an all-solid secondary battery having a negative electrode active material layer with a film thickness of 50 ⁇ m was formed. 1 to PU-17 and PV-1 to V-6 were prepared respectively.
  • Si Silicon LPS: Sulfide-based inorganic solid electrolyte AB synthesized in Synthesis Example A: Acetylene black (manufactured by Denka)
  • THF Tetrahydrofuran (Fujifilm Wako Pure Chemical Industries, Ltd.)
  • composition for positive electrode 180 pieces of zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), 2.7 g of LPS synthesized in Synthesis Example A, KYNAR FLEX 2500-20 (trade name, PVdF-HFP: polyfluoride). 0.3 g of vinylidene hexafluoropropylene copolymer, manufactured by Arkema Inc.) was added as solid mass, and 22 g of butyl butyrate was added. This container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch Co., and stirred at 25° C. at a rotation speed of 300 rpm for 60 minutes.
  • the composition for positive electrode obtained above was applied onto a 20 ⁇ m thick aluminum foil (positive electrode current collector) with a Baker applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and heated at 100° C. for 2 hours. Then, the positive electrode composition was dried (non-aqueous dispersion medium was removed). Then, the dried positive electrode composition was pressed (10 MPa, 1 minute) at 25° C. using a heat press machine to prepare a positive electrode sheet for an all-solid secondary battery having a positive electrode active material layer with a film thickness of 80 ⁇ m. did. A disc-shaped positive electrode sheet was obtained by punching out a disc-shaped positive electrode sheet having a diameter of 14.0 mm from this positive electrode sheet for all-solid secondary batteries.
  • the prepared negative electrode sheet for all solid-state secondary batteries (the aluminum foil of the solid electrolyte-containing sheet has been peeled off) was cut into a disk shape having a diameter of 14.5 mm, and as shown in FIG. 2, a spacer and a washer (see FIG. 2). (Not shown) was put in a stainless steel 2032 type coin case 11 and a disk-shaped positive electrode sheet was overlaid on the solid electrolyte layer.
  • a laminate 12 for an all-solid secondary battery (a laminate comprising an aluminum foil-a positive electrode active material layer-a solid electrolyte layer-a negative electrode active material layer-a stainless steel foil) was formed. After that, the 2032 type coin case 11 was caulked to manufacture the all solid state secondary batteries 201 to 219 and c21 to c26 shown in FIG. 2, respectively.
  • the all-solid-state secondary battery 13 manufactured in this way has the layer structure shown in FIG.
  • One cycle of charging and discharging was performed by using this charging once and discharging once, and the charging and discharging was performed for one cycle to initialize the all solid state secondary battery.
  • the discharge capacity (initial discharge capacity) in the first charge/discharge cycle after initialization is 100%
  • the charge when the discharge capacity maintenance ratio (discharge capacity relative to the initial discharge capacity) reaches (decreases) 80%.
  • the cycle characteristics were evaluated depending on which of the following evaluation ranks the discharge cycle number was included in. In this test, the discharge capacity retention rate is evaluated as "4" or higher.
  • the initial discharge capacities of the all-solid-state secondary batteries 201 to 219 all showed values sufficient to function as all-solid-state secondary batteries.
  • the results shown in Table 4 show the following.
  • No. The all-solid-state secondary batteries c21 to c23, c25 and c26 are prepared by using a binder made of an uncrosslinked polymer, and are negative electrode compositions PV-1 to PV-3, PV-5, PV-6 and a solid electrolyte. It is an all-solid-state secondary battery in which a negative electrode active material layer and a solid electrolyte layer are produced from the containing sheets BS-1 to BS-3. None of these all-solid-state secondary batteries have high resistance and show battery performance compatible with discharge capacity.
  • a positive electrode active material layer and a solid electrolyte layer prepared by a negative electrode composition PV-4 containing a binder made of a polymer having a chemical cross-linking structure by a covalent bond in a side chain and a solid electrolyte containing sheet BS-4 were provided.
  • the negative electrode compositions PU-1 to PU-17 and the solid electrolyte-containing sheet S-1 produced by using the solid electrolyte compositions C-1 to C-15 of the present invention prepared in Example 1 To S-15, all-solid-state secondary battery No. 1 in which the negative electrode active material layer and the solid electrolyte layer were produced.
  • All of 201 to 219 have a high discharge capacity retention rate, suppress an increase in resistance (high battery voltage), and show excellent battery performance.
  • L 11 in the formula (H-1A) specified in the present invention is an alkyl group and the alkyl group has 5 or more carbon atoms, further excellent battery performance is exhibited.
  • a non-aqueous dispersion medium having 6 or more carbon atoms is used in combination with the binder specified in the present invention, high battery performance is exhibited. High energy density is exhibited when silicon is used as the negative electrode active material.
  • Example 3 Preparation of Solid Electrolyte Composition of Example 1
  • Solid electrolyte composition of Example 1 except that Li 0.33 La 0.55 TiO 3 (LLT) was used in place of LPS in C-1 to C-15.
  • solid electrolyte compositions containing LLT as a solid electrolyte were prepared.
  • a solid electrolyte-containing sheet and a negative electrode sheet for an all-solid secondary battery were produced in the same manner as in Examples 1 and 2, to produce all-solid secondary batteries, and The test was conducted.
  • the solid electrolyte composition containing LLT, the solid electrolyte-containing sheet, and the all-solid secondary battery were all solid electrolyte compositions containing LPS, and the solid electrolyte-containing sheet and all-solid secondary battery using the same. Like a battery, it exhibits excellent characteristics or performance.

Abstract

The present invention provides: a solid electrolyte composition which contains an inorganic solid electrolyte, a binder and a nonaqueous dispersion medium, and which is configured such that the binder contains a polymer that has a physically crosslinkable group in a side chain and a crosslinking agent that has two or more physically crosslinkable functional groups that are crosslinkable with the physically crosslinkable group; a solid electrolyte-containing sheet which has a layer that is formed from this composition; an all-solid-state secondary battery; a method for producing a solid electrolyte-containing sheet; and a method for producing an all-solid-state secondary battery.

Description

固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and method for producing solid electrolyte-containing sheet and all-solid secondary battery
 本発明は、固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法に関する。 The present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid secondary battery, and a method for manufacturing a solid electrolyte-containing sheet and an all-solid secondary battery.
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の安全性及び信頼性を大きく改善することができる。
A lithium-ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can charge and discharge by moving lithium ions back and forth between both electrodes. Conventionally, an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery. However, the organic electrolytic solution is liable to leak, and there is a risk of short circuit inside the battery due to overcharging or overdischarging, which may cause ignition. Therefore, further improvement in safety and reliability is required.
Under these circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of the organic electrolyte has been receiving attention. The all-solid-state secondary battery has a solid negative electrode, electrolyte, and positive electrode, and can greatly improve the safety and reliability of a battery using an organic electrolytic solution.
 このような全固体二次電池において、負極活物質層、固体電解質層及び正極活物質層等の構成層を形成する材料として、無機固体電解質、活物質及びバインダー(結着剤)等を含有する材料が、提案されている。
 例えば、特許文献1には、周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質および高分子バインダーを有する固体電解質組成物であって、該高分子バインダーが、ハードセグメントとソフトセグメントとを有するポリマーで構成された固体電解質組成物が記載されている。また、特許文献2には、無機固体電解質、反応性基を有するポリマーで構成されたバインダー粒子、及び分散媒を含み、かつ、架橋剤及び架橋促進剤から選択される少なくとも1種の成分を含む固体電解質組成物が記載されている。この固体電解質組成物は、構成層を形成するに際して、電解質粒子や活物質粒子に固着したバインダー粒子(反応性基を有するポリマー)を、重合反応(連鎖重合反応、重付加反応、開環重合反応等の重合反応)により、硬化させる。
 特許文献3には、非水電解質電池の製造に用いるバインダー水溶液について、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩およびポリアミン類を含有する非水電解質電池用バインダー組成物と、水とからなる、非水電解質電池用バインダー水溶液が記載されている。
In such an all solid state secondary battery, an inorganic solid electrolyte, an active material, a binder (binder), etc. are contained as materials for forming constituent layers such as a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer. Materials have been proposed.
For example, Patent Document 1 discloses a solid electrolyte composition having an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table and a polymer binder, wherein the polymer binder is , A solid electrolyte composition composed of a polymer having a hard segment and a soft segment is described. Further, Patent Document 2 includes an inorganic solid electrolyte, binder particles composed of a polymer having a reactive group, and a dispersion medium, and at least one component selected from a crosslinking agent and a crosslinking accelerator. Solid electrolyte compositions are described. When forming a constituent layer, this solid electrolyte composition is prepared by polymerizing a binder particle (a polymer having a reactive group) fixed to an electrolyte particle or an active material particle by a polymerization reaction (chain polymerization reaction, polyaddition reaction, ring-opening polymerization reaction). And the like) to cure.
Patent Document 3 discloses a binder aqueous solution used for manufacturing a non-aqueous electrolyte battery, which contains a neutral salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid and a polyamine. There is described a binder aqueous solution for a non-aqueous electrolyte battery, which comprises a binder composition for a water electrolyte battery and water.
特開2015-088480号公報[Patent Document 1] JP-A-2005-088480 国際公開第2016/129427号International Publication No. 2016/129427 国際公開第2017/026475号International Publication No. 2017/026475
 全固体二次電池の構成層は、通常、無機固体電解質、バインダー、更には活物質等の固体粒子で形成されるため、固体粒子同士の界面接触が十分ではなく、界面抵抗が高くなる(イオン伝導度が低下する。)。一方、固体粒子同士の結着性が弱いと、集電体表面に形成された構成層が集電体から剥がれやすく、また、全固体二次電池の充放電(リチウムイオンの放出吸収)に伴う構成層、とりわけ活物質層の収縮膨張による固体粒子同士の接触不良が起こり、電気抵抗の上昇、更には電池性能の低下を招く。
 構成層を固体粒子で形成する場合、この構成層を形成する材料としては、固体粒子を含有する優れた分散性を示す材料が望ましい。しかし、分散性のよい材料を用いても、上記の界面抵抗の上昇、電池性能の低下を抑制できないことがある。
Since the constituent layers of an all-solid secondary battery are usually formed of solid particles such as an inorganic solid electrolyte, a binder, and an active material, the interfacial contact between the solid particles is not sufficient and the interfacial resistance increases (ion The conductivity will decrease.). On the other hand, when the solid particles are weakly bound to each other, the constituent layers formed on the surface of the current collector are easily peeled off from the current collector, and the charge and discharge (release and absorption of lithium ions) of the all-solid-state secondary battery are involved. Contact failure between solid particles occurs due to contraction and expansion of the constituent layers, especially the active material layer, leading to an increase in electrical resistance and a decrease in battery performance.
When the constituent layer is formed of solid particles, the material for forming the constituent layer is preferably a material containing solid particles and exhibiting excellent dispersibility. However, even if a material having good dispersibility is used, it may not be possible to suppress the above-mentioned increase in interfacial resistance and decrease in battery performance.
 本発明は、優れた分散性を示す固体電解質組成物であって、全固体二次電池の構成層を形成する材料として用いることにより、得られる全固体二次電池において、固体粒子間の界面抵抗の上昇を抑えて固体粒子を強固に結着させ、優れた電池性能を実現できる固体電解質組成物を提供することを課題とする。また、本発明は、この固体電解質組成物で構成した層を有する、固体電解質含有シート及び全固体二次電池を提供することを課題とする。更に、本発明は、上記固体電解質組成物を用いた固体電解質含有シート及び全固体二次電池の製造方法を提供することを課題とする。 INDUSTRIAL APPLICABILITY The present invention is a solid electrolyte composition exhibiting excellent dispersibility, and by using it as a material forming a constituent layer of an all-solid secondary battery, the obtained all-solid secondary battery has an interfacial resistance between solid particles. It is an object of the present invention to provide a solid electrolyte composition that suppresses the rise of the solid particles and firmly binds the solid particles to realize excellent battery performance. Another object of the present invention is to provide a solid electrolyte-containing sheet and an all-solid secondary battery having a layer composed of this solid electrolyte composition. Further, it is an object of the present invention to provide a solid electrolyte containing sheet using the above solid electrolyte composition and a method for manufacturing an all solid state secondary battery.
 本発明者は、種々検討を重ねた結果、無機固体電解質及び非水系分散媒に対して、物理架橋性基を側鎖に有するポリマー及び架橋剤を含むバインダーを併用することにより、上記ポリマーがその側鎖で架橋剤を介して物理架橋構造を形成して、分散性の優れた固体電解質組成物が創出されることを見出した。更に、この固体電解質組成物を全固体二次電池の構成層を形成する材料として用いることにより、固体粒子間の界面抵抗の上昇を抑制しつつ、固体粒子を強固に結着させた構成層を形成でき、優れた電池性能の全固体二次電池を作製できること、を見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。 The present inventor, as a result of various studies, the inorganic solid electrolyte and the non-aqueous dispersion medium, by using a binder containing a polymer and a cross-linking agent having a physically cross-linkable group in the side chain, the polymer It has been found that a solid electrolyte composition having excellent dispersibility is created by forming a physical crosslinked structure in the side chain via a crosslinking agent. Further, by using this solid electrolyte composition as a material for forming a constituent layer of an all-solid-state secondary battery, while suppressing an increase in interfacial resistance between solid particles, a constituent layer in which solid particles are firmly bound is formed. It was found that an all-solid secondary battery that can be formed and has excellent battery performance can be manufactured. The present invention has been completed through further studies based on these findings.
 すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質と、バインダーと、非水系分散媒とを含有する固体電解質組成物であって、
 バインダーが、物理架橋性基を側鎖に有するポリマーと、この物理架橋性基と架橋する物理架橋性官能基を2個以上有する架橋剤とを含む、固体電解質組成物。
<2>ポリマーと架橋剤とが物理架橋を形成している<1>に記載の固体電解質組成物。
<3>物理架橋を形成しているポリマーが、下記基群(a)から選択される基のアニオンを少なくとも1個有する<2>に記載の固体電解質組成物。
<基群(a)>
 カルボキシ基、スルホ基、リン酸基及びホスホン酸基
<4>物理架橋を形成しているポリマーが、下記基群(b)から選択される基のカチオンを有する<2>又は<3>に記載の固体電解質組成物。
<基群(b)>
 アミノ基、ピロール環基、イミダゾール環基、ピラゾール環基、オキサゾール環基、チアゾール環基、イミダゾリン環基、ピリミジン環基、ピラジン環基、及びピリジン環基
That is, the above problem was solved by the following means.
<1> A solid electrolyte composition containing an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a binder, and a non-aqueous dispersion medium,
A solid electrolyte composition in which the binder comprises a polymer having a physical crosslinkable group in its side chain and a crosslinking agent having two or more physical crosslinkable functional groups that crosslink with this physical crosslinkable group.
<2> The solid electrolyte composition according to <1>, wherein the polymer and the crosslinking agent form physical crosslinks.
<3> The solid electrolyte composition according to <2>, wherein the polymer forming physical crosslinks has at least one anion of a group selected from the following group (a).
<Base group (a)>
<2> or <3>, wherein the polymer having a carboxy group, a sulfo group, a phosphoric acid group and a phosphonic acid group <4> physically crosslinked has a cation of a group selected from the following group (b): Solid electrolyte composition.
<Base group (b)>
Amino group, pyrrole ring group, imidazole ring group, pyrazole ring group, oxazole ring group, thiazole ring group, imidazoline ring group, pyrimidine ring group, pyrazine ring group, and pyridine ring group
<5>物理架橋を形成しているポリマーが、下記式(H-1A)又は式(H-1B)で表わされるカチオンとイオン結合してなる物理架橋構造を有する<2>~<4>のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000003
 式中、L11A及びL11Bは、炭素数1~24のアルキレン基、炭素数6~60のアリーレン基、炭素数2~24のアルケニレン基、酸素原子、-N(RNL)-、カルボニル基、シラン連結基若しくはイミン連結基又はこれらを組み合わせた基を示す。RNLは水素原子又は置換基を示す。
 R11~R18は水素原子、炭素数1~12のアルキル基又はアルキルシリル基を示す。
<5> The polymer forming physical crosslinks has a physical crosslink structure formed by ionic bond with a cation represented by the following formula (H-1A) or formula (H-1B). The solid electrolyte composition according to any one of claims.
Figure JPOXMLDOC01-appb-C000003
In the formula, L 11A and L 11B are an alkylene group having 1 to 24 carbon atoms, an arylene group having 6 to 60 carbon atoms, an alkenylene group having 2 to 24 carbon atoms, an oxygen atom, —N(R NL )—, a carbonyl group. , A silane linking group, an imine linking group, or a combination thereof. R NL represents a hydrogen atom or a substituent.
R 11 to R 18 represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an alkylsilyl group.
<6>アルキレン基の炭素数が5以上である<5>に記載の固体電解質組成物。 <6> The solid electrolyte composition according to <5>, wherein the alkylene group has 5 or more carbon atoms.
<7>物理架橋を形成しているポリマーが、下記式(H-2)で表わされるカチオンとイオン結合してなる物理架橋構造を有する<2>~<6>のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000004
 式中、L21は、炭素数5~12のアルキレン基、炭素数6~18のアリーレン基、炭素数5~12のアルケニレン基、酸素原子、-N(RNL)-若しくはイミン連結基又はこれらを組み合わせた基を示す。RNLは水素原子又は置換基を示す。
 R21~R26は水素原子又は炭素数1~12のアルキル基を示す。
<7> The polymer forming a physical crosslink is described in any one of <2> to <6>, which has a physical crosslink structure formed by ionic bonding with a cation represented by the following formula (H-2). Solid electrolyte composition.
Figure JPOXMLDOC01-appb-C000004
In the formula, L 21 is an alkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 18 carbon atoms, an alkenylene group having 5 to 12 carbon atoms, an oxygen atom, —N(R NL )—, or an imine linking group or these A group combining is shown. R NL represents a hydrogen atom or a substituent.
R 21 to R 26 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
<8>ポリマーが、上記基群(a)から選択される基を0.15~1mmol/g含有する<3>~<7>のいずれか1つに記載の固体電解質組成物。
<9>ポリマーが、ポリウレタン又は(メタ)アクリルポリマーである<1>~<8>のいずれか1つに記載の固体電解質組成物。
<10>バインダーが、平均粒径5nm~10μmの粒子である<1>~<9>のいずれか1つに記載の固体電解質組成物。
<11>バインダーの、固体電解質組成物の固形分中の含有量が0.001~10質量%である<1>~<10>のいずれか1つに記載の固体電解質組成物。
<12>導電助剤を含有する<1>~<11>のいずれか1つに記載の固体電解質組成物。
<13>無機固体電解質が、下記式(I)で表される<1>~<12>のいずれか1つに記載の固体電解質組成物。
   式(I):La1b1c1d1e1
 式中、LはLi、Na及びKから選択される元素を示す。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。
<14>非水系分散媒が、ケトン化合物、エステル化合物、芳香族化合物及び脂肪族化合物から選択される少なくとも1種の有機溶媒を含む<1>~<13>のいずれか1つに記載の固体電解質組成物。
<15>非水系分散媒が、炭素数6以上の有機溶媒を含む<1>~<14>のいずれか1つに記載の固体電解質組成物。
<16>周期律表第一族若しくは第二族に属する金属のイオンの挿入放出が可能なケイ素原子含有活物質を含有する<1>~<15>のいずれか1つに記載の固体電解質組成物。
<8> The solid electrolyte composition according to any one of <3> to <7>, in which the polymer contains 0.15 to 1 mmol/g of a group selected from the group group (a).
<9> The solid electrolyte composition according to any one of <1> to <8>, in which the polymer is polyurethane or a (meth)acrylic polymer.
<10> The solid electrolyte composition according to any one of <1> to <9>, in which the binder is particles having an average particle size of 5 nm to 10 μm.
<11> The solid electrolyte composition according to any one of <1> to <10>, in which the content of the binder in the solid content of the solid electrolyte composition is 0.001 to 10% by mass.
<12> The solid electrolyte composition according to any one of <1> to <11>, which contains a conductive additive.
<13> The solid electrolyte composition according to any one of <1> to <12>, wherein the inorganic solid electrolyte is represented by the following formula (I).
Formula (I): L a1 M b1 P c1 S d1 A e1
In the formula, L represents an element selected from Li, Na and K. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 represent composition ratios of the respective elements, and a1:b1:c1:d1:e1 satisfies 1 to 12:0 to 5:1:2 to 12:0 to 10.
<14> The solid according to any one of <1> to <13>, in which the non-aqueous dispersion medium contains at least one organic solvent selected from a ketone compound, an ester compound, an aromatic compound and an aliphatic compound. Electrolyte composition.
<15> The solid electrolyte composition according to any one of <1> to <14>, in which the non-aqueous dispersion medium contains an organic solvent having 6 or more carbon atoms.
<16> The solid electrolyte composition according to any one of <1> to <15>, which contains a silicon atom-containing active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table. Stuff.
<17>上記<1>~<16>のいずれか1つに記載の固体電解質組成物で構成した層を有する固体電解質含有シート。
<18>正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
 正極活物質層、負極活物質層及び固体電解質層の少なくとも1つの層が、<1>~<16>のいずれか1つに記載の固体電解質組成物で構成した層である全固体二次電池。
<19>上記<1>~<16>のいずれか1つに記載の固体電解質組成物を製膜する、固体電解質含有シートの製造方法。
<20>上記<19>に記載の製造方法を含む全固体二次電池の製造方法。
<17> A solid electrolyte-containing sheet having a layer composed of the solid electrolyte composition according to any one of <1> to <16> above.
<18> An all-solid secondary battery comprising a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order,
At least one layer of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is a layer formed of the solid electrolyte composition according to any one of <1> to <16>. ..
<19> A method for producing a solid electrolyte-containing sheet, comprising forming a film of the solid electrolyte composition according to any one of <1> to <16> above.
<20> A method for manufacturing an all-solid secondary battery, including the method according to <19>.
 本発明は、優れた分散性を示す固体電解質組成物であって、全固体二次電池の構成層を形成する材料として用いることにより、得られる全固体二次電池において、固体粒子間の界面抵抗の上昇を抑えて固体粒子を強固に結着させ、優れた電池性能を実現できる固体電解質組成物を提供できる。この固体電解質組成物で構成した層を有する、固体電解質含有シート及び全固体二次電池を提供できる。更に、本発明は、上記固体電解質組成物を用いた固体電解質含有シート及び全固体二次電池の製造方法を提供できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
INDUSTRIAL APPLICABILITY The present invention is a solid electrolyte composition exhibiting excellent dispersibility, and by using it as a material forming a constituent layer of an all-solid secondary battery, in an all-solid secondary battery obtained, interfacial resistance between solid particles It is possible to provide a solid electrolyte composition in which solid particles are firmly bound to each other while suppressing an increase in temperature, and excellent battery performance can be realized. It is possible to provide a solid electrolyte-containing sheet and an all-solid secondary battery having a layer composed of this solid electrolyte composition. Furthermore, the present invention can provide a method for producing a solid electrolyte-containing sheet and an all-solid secondary battery using the above solid electrolyte composition.
The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
図1は本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。FIG. 1 is a vertical cross-sectional view schematically showing an all-solid secondary battery according to a preferred embodiment of the present invention. 図2は実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。FIG. 2 is a vertical cross-sectional view schematically showing the all-solid-state secondary battery (coin battery) produced in the example.
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、アクリル及び/又はメタクリルを意味する。
 本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本明細書において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 本明細書において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
In the description of the present invention, the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
In the present specification, when simply described as “acrylic” or “(meth)acrylic”, it means acrylic and/or methacrylic.
In the present specification, the expression of a compound (for example, when it is referred to as a compound at the end) is used to include the compound itself, a salt thereof, and an ion thereof. In addition, it is meant to include a derivative in which a part of the derivative is changed, such as by introducing a substituent, within a range in which a desired effect is exhibited.
With respect to a substituent, a linking group, etc. (hereinafter referred to as a substituent, etc.) which is not specified as substituted or unsubstituted in the present specification, it means that the group may have an appropriate substituent. Therefore, in the present specification, even when the YYY group is simply described, the YYY group includes not only a mode having no substituent but also a mode having a substituent. This is also synonymous with compounds that do not specify substituted or unsubstituted. The following substituent T is mentioned as a preferable substituent.
In the present specification, when there are a plurality of substituents or the like represented by a specific symbol, or when a plurality of substituents or the like are defined simultaneously or alternatively, each substituent may be the same or different from each other. It means good. Further, even when not otherwise specified, when a plurality of substituents and the like are adjacent to each other, they may be linked to each other or condensed to form a ring.
[固体電解質組成物]
 本発明の固体電解質組成物(無機固体電解質含有組成物ともいう。)は、無機固体電解質とバインダーと非水系分散媒とを含有する。このバインダーは、物理架橋性基を側鎖に有するポリマーと、ポリマー中の物理架橋性基に対して物理架橋する物理架橋性官能基を2個以上有する架橋剤(物理架橋性の化合物)とを含んでいる。
[Solid electrolyte composition]
The solid electrolyte composition of the present invention (also referred to as an inorganic solid electrolyte-containing composition) contains an inorganic solid electrolyte, a binder, and a non-aqueous dispersion medium. This binder comprises a polymer having a physical crosslinkable group in its side chain and a crosslinking agent (physical crosslinkable compound) having two or more physical crosslinkable functional groups that physically crosslink the physical crosslinkable group in the polymer. Contains.
 本発明において、固体電解質組成物中に存在するバインダーは、ポリマーと架橋剤とを含んでいれば、それらの存在状態(物理架橋の形成状態)は、特に制限されないが、固体電解質組成物の分散性の点で、ポリマーと架橋剤とが物理架橋している状態(架橋剤との物理架橋構造を側鎖に有するポリマーが形成されている態様)を含んでいることが好ましい。ただし、ポリマー及び架橋剤の存在状態は、上記態様の他に、ポリマーの側鎖に物理架橋性官能基の一つで架橋剤がグラフト状若しくはペンダント状に結合している状態、ポリマーと架橋剤とがそれぞれ独立に存在している状態、更には2以上の上記状態が混在している状態を含んでいてもよい。この場合の架橋度は、特に制限されず、例えば、ポリマー中の物理架橋性基の全モル数に対して、架橋剤の物理架橋性官能基と物理架橋を形成している物理架橋性基の割合を示す物理架橋率(モル%)でいうと10~100%とすることができる。
 バインダーが上記物理架橋している状態にあるポリマーを含む固体電解質組成物は、後述するように、ポリマーと架橋剤とを予め物理架橋させてバインダーを調製し、次いで固体電解質等と混合して固体電解質組成物を形成することが好ましい。
 本発明の固体電解質組成物で形成される固体電解質層においても、バインダーは架橋剤との物理架橋構造を側鎖に有するポリマーを含んでおり、これ以外の上記状態にあるポリマーを含んでいてもよい。
In the present invention, if the binder present in the solid electrolyte composition contains a polymer and a cross-linking agent, their existing state (formation state of physical cross-linking) is not particularly limited, but dispersion of the solid electrolyte composition From the viewpoint of properties, it is preferable to include a state in which the polymer and the cross-linking agent are physically cross-linked (a mode in which a polymer having a side cross-linking structure with the cross-linking agent is formed). However, the presence state of the polymer and the cross-linking agent is, in addition to the above-described aspect, a state in which the cross-linking agent is bonded to the side chain of the polymer with one of the physically cross-linking functional groups in a graft or pendant form, May exist independently of each other, and may further include a state in which two or more of the above states are mixed. The degree of cross-linking in this case is not particularly limited, and for example, with respect to the total number of moles of the physical cross-linkable group in the polymer, the physical cross-linkable group forming a physical cross-link with the physical cross-linkable functional group of the cross-linking agent. The physical cross-linking rate (mol %) showing the ratio can be 10 to 100%.
The solid electrolyte composition containing the polymer in a state in which the binder is physically crosslinked, as described below, to prepare a binder by physically cross-linking the polymer and the crosslinking agent in advance, and then mixed with a solid electrolyte or the like to form a solid. It is preferred to form an electrolyte composition.
Also in the solid electrolyte layer formed by the solid electrolyte composition of the present invention, the binder contains a polymer having a side-chain physically cross-linked structure with a cross-linking agent, even if it contains a polymer in the above state other than this Good.
 ポリマーと架橋剤とがそれぞれ独立に存在している状態において、ポリマー及び架橋剤の物理架橋性基及び物理架橋性官能基は、(物理架橋する前の)基の状態のままでもよく、物理架橋を形成して変化した構造(上記基由来のアニオン若しくはカチオン等)となっていてもよい。
 本発明において、ポリマー及び架橋剤は、通常、バインダー中に含まれている(バインダーを構成している)が、バインダー外に存在していてもよい(例えば、非水系分散媒中に分散し、又は、固体粒子に結着していてもよい)。
In the state where the polymer and the cross-linking agent exist independently of each other, the physical cross-linking group and the physical cross-linking functional group of the polymer and the cross-linking agent may remain in the state of the group (before the physical cross-linking). To form a changed structure (anion or cation derived from the above group).
In the present invention, the polymer and the crosslinking agent are usually contained in the binder (constituting the binder), but may be present outside the binder (for example, dispersed in a non-aqueous dispersion medium, Alternatively, it may be bound to solid particles).
 本発明において、ポリマーは、従来のバインダーを形成するポリマーとはその側鎖で架橋剤を介して物理架橋する点で異なり、強度等の機械特性が向上している。
 本発明において、物理架橋は、1分子のポリマー中で形成されてもよく(分子内架橋)、異なるポリマー間で形成されてもよく(分子間架橋)、これらが混在していてもよい。このように物理架橋は、ポリマーの側鎖同士で形成されるが、バインダーが粒子状である場合、物理架橋は粒子内で形成されてもよく、粒子間で形成されてもよい。
In the present invention, the polymer is different from the polymer forming a conventional binder in that the side chain physically crosslinks through a crosslinking agent, and the mechanical properties such as strength are improved.
In the present invention, the physical crosslinks may be formed in one molecule of polymer (intramolecular crosslink), may be formed between different polymers (intermolecular crosslink), or may be mixed. Thus, the physical crosslinks are formed between the side chains of the polymer, but when the binder is in the form of particles, the physical crosslinks may be formed within the particles or between the particles.
 本発明において、物理架橋とは、ポリマー中の物理架橋性基と架橋剤の物理架橋性官能基とが共有結合によって結合して形成される化学架橋以外の架橋、すなわち化学結合のうち共有結合以外の結合によって形成される架橋をいう。物理架橋を形成する、共有結合以外の結合としては、特に制限されないが、例えば、イオン結合、水素結合、分子間相互作用等が挙げられる。中でも、結合の強さの点でイオン結合による物理架橋が好ましい。
 ポリマー及び架橋剤が分子内に有する複数の物理架橋性基及び物理架橋性官能基は、それぞれ、上記共有結合以外の結合のいずれかで架橋する基であればよく、異種の結合で架橋する基であってもよいが、同種の結合で架橋する基が好ましい。物理架橋性基及び物理架橋性官能基の詳細は後述する。
In the present invention, the physical crosslink is a crosslink other than the chemical crosslink formed by the physical crosslinkable group in the polymer and the physical crosslinkable functional group of the crosslinker being bonded by a covalent bond, that is, a chemical bond other than the covalent bond. Refers to a crosslink formed by the bonding of The bond other than the covalent bond that forms the physical crosslink is not particularly limited, and examples thereof include an ionic bond, a hydrogen bond, an intermolecular interaction, and the like. Of these, physical crosslinking by ionic bonding is preferable from the viewpoint of bond strength.
The plurality of physically crosslinkable groups and the physically crosslinkable functional groups that the polymer and the crosslinking agent have in the molecule may be groups that crosslink with any of the bonds other than the above covalent bond, and groups that crosslink with different types of bonds. However, groups that crosslink with the same type of bond are preferred. Details of the physical crosslinkable group and the physical crosslinkable functional group will be described later.
 本発明の固体電解質組成物において、非水系分散媒中に無機固体電解質と本発明で規定する特定のバインダーとが共存していると、無機固体電解質を高度かつ安定して分散させることができ、固体電解質組成物の分散性を高めることができる。この固体電解質組成物で全固体二次電池の構成層を形成すると、固体粒子同士、更には固体粒子及び集電体等を、固体粒子間の界面抵抗を低く抑えつつも強固に結着させることができる。その理由の詳細は、まだ定かではないが、次のように考えられる。 In the solid electrolyte composition of the present invention, when the inorganic solid electrolyte and the specific binder defined in the present invention coexist in the non-aqueous dispersion medium, the inorganic solid electrolyte can be highly and stably dispersed, The dispersibility of the solid electrolyte composition can be improved. When the constituent layer of the all-solid secondary battery is formed with this solid electrolyte composition, solid particles are bound to each other, and further, solid particles and a current collector are firmly bound while suppressing the interfacial resistance between the solid particles to be low. You can The details of the reason are not yet clear, but it is considered as follows.
 本発明の固体電解質組成物において、バインダーを形成するポリマーは、特に非水系分散媒中では、架橋剤との物理架橋を形成しやすい。架橋剤を介して側鎖で物理架橋したポリマーは、網目構造を形成して高い機械的強度を示す。このようなポリマーを含むバインダーは高い機械的強度を発現して、固体電解質組成物からなる構成層に高い強度を付与する。それに加えて、このバインダーは、物理架橋構造を介して、無機固体電解質等の固体粒子に対して相互作用すると考えられる。固体粒子にバインダーが相互作用することで、非水系分散媒中に固体粒子を高度かつ安定して分散させることができる。また、固体粒子に対して相互作用しながら構成層を形成できるため、得られる構成層は、固体粒子同士を強固に結着させることができ、また集電体上に構成層を形成する場合には集電体と固体粒子とを強固に結着させることもできる。更に、バインダーは、物理架橋したポリマーであるために固体粒子上で濡れ広がないため、固体粒子同士の接触を損なわずにイオン伝導パスを構築できる。そのため、固体粒子間の界面抵抗を低く抑えることができる。
 物理架橋構造を側鎖に有するポリマーは、共有結合で形成した化学架橋構造を側鎖に有するポリマーに対して、固体粒子への相互作用等に優れる。
In the solid electrolyte composition of the present invention, the polymer forming the binder is likely to form physical cross-linking with the cross-linking agent, especially in the non-aqueous dispersion medium. The polymer physically cross-linked with a side chain through a cross-linking agent forms a network structure and exhibits high mechanical strength. The binder containing such a polymer expresses high mechanical strength and imparts high strength to the constituent layer made of the solid electrolyte composition. In addition, this binder is considered to interact with solid particles such as an inorganic solid electrolyte via a physical cross-linking structure. When the binder interacts with the solid particles, the solid particles can be highly and stably dispersed in the non-aqueous dispersion medium. Further, since the constituent layer can be formed while interacting with the solid particles, the resulting constituent layer can firmly bind the solid particles to each other, and when the constituent layer is formed on the current collector. Can also firmly bond the current collector and the solid particles. Further, since the binder is a physically cross-linked polymer and does not spread on the solid particles, an ionic conduction path can be constructed without impairing the contact between the solid particles. Therefore, the interface resistance between solid particles can be suppressed low.
A polymer having a physically crosslinked structure in its side chain is superior in interaction with solid particles and the like to a polymer having a chemically crosslinked structure in its side chain formed by a covalent bond.
 このように、固体電解質組成物の高度かつ安定な分散性と、固体粒子間等の強固な結着性とを、界面抵抗の上昇を抑えつつも、高い水準で両立(維持)できる。よって、本発明の固体電解質組成物で構成した構成層は、固体粒子同士の接触状態(イオン伝導パス等の構築量)及び固体粒子同士等の結着力がバランスよく改善され、イオン伝導パス等を構築しつつも、固体粒子同士等が強固な結着性で結着し、しかも固体粒子間の界面抵抗が小さくなると考えられる。また、この構成層は高い強度を示す。このような優れた特性を示す構成層を備えた各シート又は全固体二次電池は、電気抵抗の上昇を抑えて高いイオン伝導度を示し、更にはこの優れた電池性能を、充放電を繰り返したとしても、維持できる。 In this way, it is possible to maintain (maintain) the high and stable dispersibility of the solid electrolyte composition and the strong binding property between solid particles and the like at a high level while suppressing an increase in interfacial resistance. Therefore, the constituent layer constituted by the solid electrolyte composition of the present invention, the contact state between solid particles (building amount of ion conduction paths etc.) and the binding force between solid particles etc. are improved in a well-balanced manner, and ion conduction paths etc. It is considered that the solid particles are bound to each other with a strong binding property while being constructed, and the interfacial resistance between the solid particles is reduced. In addition, this constituent layer exhibits high strength. Each sheet or all-solid-state secondary battery provided with a constitutional layer exhibiting such excellent characteristics shows a high ionic conductivity by suppressing an increase in electric resistance, and further, this excellent battery performance, repeated charge and discharge. Even if it does, it can be maintained.
 本発明において、固体電解質組成物の分散性が優れるとは、固体粒子を非水系分散媒中に高度かつ安定して分散させた状態をいい、例えば、後述する実施例における「分散性試験」において、評価ランク「4」以上の分散性を示すことをいう。 In the present invention, the excellent dispersibility of the solid electrolyte composition means a state in which the solid particles are highly and stably dispersed in the non-aqueous dispersion medium, for example, in the “dispersibility test” in Examples described later. , Showing dispersibility of evaluation rank “4” or more.
 本発明の固体電解質組成物において、バインダーは粒子として(固体状態で)非水系分散媒中に分散していることが好ましく、無機固体電解質及びバインダーが固体状態で非水系分散媒中に分散された分散状態(サスペンジョン)にあること(固体電解質組成物がスラリーであること)がより好ましい。バインダーは、構成層、又は後述する固体電解質組成物の塗布乾燥層としたときに、無機固体電解質等の固体粒子同士、更には隣接する層(例えば集電体)と固体粒子とを、結着させることができればよく、固体電解質組成物の上記分散状態において、固体粒子同士を必ずしも結着させていなくてもよい。 In the solid electrolyte composition of the present invention, the binder is preferably dispersed as particles (in the solid state) in the non-aqueous dispersion medium, and the inorganic solid electrolyte and the binder are dispersed in the non-aqueous dispersion medium in the solid state. It is more preferable that the solid electrolyte composition is in a dispersed state (suspension). When the binder is a constituent layer or a coating and drying layer of the solid electrolyte composition described below, solid particles such as an inorganic solid electrolyte are bound to each other, and further adjacent layers (for example, a current collector) and solid particles are bound to each other. It is sufficient that the solid particles are not necessarily bound to each other in the dispersed state of the solid electrolyte composition.
 本発明の固体電解質組成物は、分散質として、無機固体電解質に加えて、活物質、更には導電助剤等を含有する態様も包含する(この態様の組成物を電極層用組成物という。)。 The solid electrolyte composition of the present invention also includes a mode in which, in addition to the inorganic solid electrolyte, as the dispersoid, an active material, a conductive additive, and the like are contained (the composition of this mode is referred to as an electrode layer composition). ).
 本発明の固体電解質組成物は、非水系組成物である。本発明において、非水系組成物とは、水分を含有しない態様に加えて、含水率(水分含有量ともいう。)が200ppm以下である形態をも包含する。非水系組成物において、含水率は、150ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることが更に好ましい。含水量は、固体電解質組成物中に含有している水の量(固体電解質組成物に対する質量割合)を示す。含水量は、固体電解質組成物を0.45μmのメンブレンフィルターでろ過し、カールフィッシャー滴定により求めることができる。 The solid electrolyte composition of the present invention is a non-aqueous composition. In the present invention, the non-aqueous composition includes not only a form containing no water but also a form having a water content (also referred to as water content) of 200 ppm or less. In the non-aqueous composition, the water content is preferably 150 ppm or less, more preferably 100 ppm or less, and further preferably 50 ppm or less. The water content indicates the amount of water (mass ratio to the solid electrolyte composition) contained in the solid electrolyte composition. The water content can be determined by Karl Fischer titration by filtering the solid electrolyte composition with a 0.45 μm membrane filter.
 以下、本発明の固体電解質組成物が含有する成分及び含有しうる成分について説明する。 Hereinafter, the components contained in the solid electrolyte composition of the present invention and the components that can be contained therein will be described.
<無機固体電解質>
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有するものであれば特に制限されず電子伝導性を有さないものが一般的である。
<Inorganic solid electrolyte>
In the present invention, the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte in which ions can move. Since it does not contain an organic substance as a main ion conductive material, it is an organic solid electrolyte (a polymer electrolyte typified by polyethylene oxide (PEO) or the like, an organic typified by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or the like. Electrolyte salt) is clearly distinguished. Further, since the inorganic solid electrolyte is solid in the steady state, it is not usually dissociated or released into cations and anions. In this respect, it is clearly distinguished from the electrolytic solution or the inorganic electrolyte salt (LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or released in the polymer. The inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and generally has no electron conductivity.
 本発明において、無機固体電解質は、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有する。無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。例えば、無機固体電解質としては、(i)硫化物系無機固体電解質、(ii)酸化物系無機固体電解質、(iii)ハロゲン化物系無機固体電解質、及び、(iV)水素化物系固体電解質が挙げられ、高いイオン伝導度と粒子間界面接合の容易さの点で、硫化物系無機固体電解質が好ましい。
 本発明の全固体二次電池が全固体リチウムイオン二次電池である場合、無機固体電解質はリチウムイオンのイオン伝導性を有することが好ましい。
In the present invention, the inorganic solid electrolyte has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table. As the inorganic solid electrolyte, a solid electrolyte material applicable to this type of product can be appropriately selected and used. Examples of the inorganic solid electrolyte include (i) sulfide-based inorganic solid electrolyte, (ii) oxide-based inorganic solid electrolyte, (iii) halide-based inorganic solid electrolyte, and (iV) hydride-based solid electrolyte. The sulfide-based inorganic solid electrolyte is preferable because of its high ionic conductivity and ease of interparticle interfacial bonding.
When the all-solid-state secondary battery of the present invention is an all-solid-state lithium-ion secondary battery, the inorganic solid electrolyte preferably has lithium-ion ionic conductivity.
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Compounds having properties are preferred. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but other than Li, S and P depending on the purpose or case. It may contain an element.
 硫化物系無機固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性硫化物系無機固体電解質が挙げられる。
 
   式(I):La1b1c1d1e1
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive sulfide-based inorganic solid electrolyte satisfying the composition represented by the following formula (1).

Formula (I): L a1 M b1 P c1 S d1 A e1

In the formula, L represents an element selected from Li, Na and K, and Li is preferable. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 represent composition ratios of the respective elements, and a1:b1:c1:d1:e1 satisfies 1 to 12:0 to 5:1:2 to 12:0 to 10. a1 is preferably 1 to 9, and more preferably 1.5 to 7.5. b1 is preferably 0 to 3, and more preferably 0 to 1. d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5. e1 is preferably 0 to 5, and more preferably 0 to 3.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合比を調整することにより制御できる。 The composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compounds when producing the sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized. For example, Li—P—S based glass containing Li, P and S, or Li—P—S based glass ceramics containing Li, P and S can be used.
The sulfide-based inorganic solid electrolyte is, for example, lithium sulfide (Li 2 S), phosphorus sulfide (eg, phosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, lithium halide (eg, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by a reaction of at least two raw materials.
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 In Li-P-S based glass and Li-P-S based glass ceramics, the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ~ 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S and P 2 S 5 in this range, the lithium ion conductivity can be increased. Specifically, the lithium ion conductivity can be preferably 1×10 −4 S/cm or more, more preferably 1×10 −3 S/cm or more. There is no particular upper limit, but it is practically 1×10 −1 S/cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 As specific examples of sulfide-based inorganic solid electrolytes, examples of combinations of raw materials are shown below. For example, Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5 -P 2 O 5 , Li 2 S-P 2 S 5 -SiS 2 , Li 2 S-P 2 S 5 -SiS 2- LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2 -ZnS, Li 2 S-Ga 2 S 3 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—GeS 2 —Sb 2 S 5 , Li 2 S—GeS 2 —Al 2 S 3 , Li 2 S-SiS 2 , Li 2 S-Al 2 S 3 , Li 2 S-SiS 2 -Al 2 S 3 , Li 2 S-SiS 2 -P 2 S 5 , Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S -SiS 2 -LiI, such as Li 2 S-SiS 2 -Li 4 SiO 4, Li 2 S-SiS 2 -Li 3 PO 4, Li 10 GeP 2 S 12 and the like. However, the mixing ratio of each raw material does not matter. An example of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition is an amorphization method. Examples of the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されないが、1×10-1S/cm以下であることが実際的である。
(Ii) Oxide-based Inorganic Solid Electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Compounds having properties are preferred.
The ionic conductivity of the oxide-based inorganic solid electrolyte is preferably 1×10 −6 S/cm or more, more preferably 5×10 −6 S/cm or more, and 1×10 −5 S. /Cm or more is particularly preferable. The upper limit is not particularly limited, but it is practically 1×10 −1 S/cm or less.
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、Snの少なくとも1種以上の元素でありxcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。 Specific examples of the compound include, for example, Li xa La ya TiO 3 [xa=0.3 to 0.7, ya=0.3 to 0.7] (LLT), Li xb La yb Zr zb M bb mb O. nb (M bb is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, xb satisfies 5≦xb≦10, and yb satisfies 1≦yb ≦4, zb satisfies 1≦zb≦4, mb satisfies 0≦mb≦2, and nb satisfies 5≦nb≦20.), Li xc Byc M cc zc O nc (M cc is At least one element of C, S, Al, Si, Ga, Ge, In, and Sn, xc satisfies 0<xc≦5, yc satisfies 0<yc≦1, and zc satisfies 0<zc≦ 1 and nc satisfies 0<nc≦6), Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd (where 1≦xd≦3, 0≦yd≦1). , 0≦zd≦2, 0≦ad≦1, 1≦md≦7, 3≦nd≦13), Li (3-2xe) M ee xe D ee O (xe is a number from 0 to 0.1). , M ee represents a divalent metal atom, D ee represents a halogen atom or a combination of two or more kinds of halogen atoms), Li xf Si yf O zf (1≦xf≦5, 0<yf≦3. 1≦zf≦10), Li xg S yg O zg (1≦xg≦3, 0<yg≦2, 1≦zg≦10), Li 3 BO 3 —Li 2 SO 4 , Li 2 O—B 2 O 3 -P 2 O 5 , Li 2 O-SiO 2 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3/2w) N w (w is w<1), LISON (Lithium super ionic conductor) ) Type crystal structure, Li 3.5 Zn 0.25 GeO 4 , La 0.55 Li 0.35 TiO 3 having a perovskite type crystal structure, and LiTi 2 P 3 having a NASICON (Naturium super ionic conductor) type crystal structure. O 12 , Li 1+xh+yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (where 0≦xh≦1, 0≦yh≦1), Li having a garnet type crystal structure 7 La 3 Zr 2 O 12 (LLZ) and the like can be mentioned. A phosphorus compound containing Li, P and O is also desirable. For example, lithium phosphate (Li 3 PO 4 ), LiPON and LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr) in which a part of oxygen of lithium phosphate is replaced with nitrogen. , Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.). LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
(iii)ハロゲン化物系無機固体電解質
 ハロゲン化物系無機固体電解質は、一般に用いられるものであり、ハロゲン原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されないが、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClを好ましい。
(Iii) Halide-Based Inorganic Solid Electrolyte The halide-based inorganic solid electrolyte is generally used, and has a ionic conductivity of a metal containing a halogen atom and belonging to Group 1 or 2 of the periodic table. A compound having and having an electronic insulating property is preferable.
The halide-based inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as LiCl, LiBr, LiI, and Li 3 YBr 6 and Li 3 YCl 6 described in ADVANCED MATERIALS, 2018, 30, 1803075. Of these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
(iV)水素化物系無機固体電解質
 水素化物系無機固体電解質は、一般に用いられるものであり、水素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されないが、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
(IV) Hydride-based Inorganic Solid Electrolyte The hydride-based inorganic solid electrolyte is generally used, and it shows the ionic conductivity of a metal containing a hydrogen atom and belonging to Group 1 or 2 of the periodic table. A compound having and having an electronic insulating property is preferable.
The hydride-based inorganic solid electrolyte is not particularly limited, but examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, 3LiBH 4 —LiCl, and the like.
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の平均粒径(体積平均粒子径)は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。無機固体電解質の平均粒径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散液試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。 The inorganic solid electrolyte is preferably particles. In this case, the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, more preferably 0.1 μm or more. The upper limit is preferably 100 μm or less, and more preferably 50 μm or less. The average particle size of the inorganic solid electrolyte is measured by the following procedure. The inorganic solid electrolyte particles are prepared by diluting a 1% by mass dispersion liquid in a 20 mL sample bottle with water (heptane in the case of a substance which is unstable to water). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately thereafter, used for the test. Using this dispersion sample, a laser diffraction/scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) was used, and data was captured 50 times at a temperature of 25° C. using a quartz cell for measurement. Obtain the volume average particle size. For other detailed conditions, refer to the description in JIS Z 8828:2013 “Particle size analysis-Dynamic light scattering method” if necessary. Five samples are prepared for each level, and the average value is adopted.
 無機固体電解質は、1種を単独で用いても、2種以上を用いてもよい。
 無機固体電解質の、固体電解質組成物中の含有量は、特に制限されないが、分散性、界面抵抗の低減及び結着性の点で、固形分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.99質量%以下であることが好ましく、99.95質量%以下であることがより好ましく、99.9質量%以下であることが特に好ましい。ただし、固体電解質組成物が後述する活物質を含有する場合、固体電解質組成物中の無機固体電解質の上記含有量は、無機固体電解質と活物質との合計含有量とする。
 本発明において、固形分(固形成分)とは、固体電解質組成物を、1mmHgの気圧下、窒素雰囲気下150℃で6時間乾燥処理を行ったときに、揮発若しくは蒸発して消失しない成分をいう。典型的には、後述の非水系分散媒以外の成分を指す。
The inorganic solid electrolyte may be used alone or in combination of two or more.
The content of the inorganic solid electrolyte in the solid electrolyte composition is not particularly limited, but in terms of dispersibility, reduction of interfacial resistance and binding property, it is 50% by mass or more at 100% by mass of solid content. It is preferably 70% by mass or more, more preferably 90% by mass or more. From the same viewpoint, the upper limit is preferably 99.99% by mass or less, more preferably 99.95% by mass or less, and particularly preferably 99.9% by mass or less. However, when the solid electrolyte composition contains an active material described below, the content of the inorganic solid electrolyte in the solid electrolyte composition is the total content of the inorganic solid electrolyte and the active material.
In the present invention, the solid content (solid component) means a component that does not disappear by volatilization or evaporation when the solid electrolyte composition is dried for 6 hours at 150° C. under a nitrogen atmosphere under a pressure of 1 mmHg. .. Typically, it refers to components other than the non-aqueous dispersion medium described later.
<バインダー>
 本発明の固体電解質組成物は、固体粒子を結着させるバインダーを含有する。
 このバインダーは、物理架橋性基を側鎖に有するポリマーと、このポリマーが有する物理架橋性基と架橋する(物理架橋を形成しうる)物理架橋性官能基を2個以上有する架橋剤とを含んでおり、固体電解質組成物中における、ポリマーと架橋剤との存在状態は上述の通りである。
<Binder>
The solid electrolyte composition of the present invention contains a binder that binds solid particles.
This binder contains a polymer having a physical crosslinkable group in its side chain, and a crosslinker having two or more physical crosslinkable functional groups capable of crosslinking with the physical crosslinkable group of this polymer (capable of forming a physical crosslink). Therefore, the state of existence of the polymer and the crosslinking agent in the solid electrolyte composition is as described above.
 バインダー(特に物理架橋構造を側鎖に有するポリマー)は、非水系分散媒に対して可溶であってもよいが、特にイオン伝導性の点で、非水系分散媒に対して不溶若しくは難溶(の粒子)であることが好ましい。
 本発明において、非水系分散媒に対して不溶若しくは難溶であるとは、バインダーを30℃の非水系分散媒(使用量はバインダーの質量に対して10倍)に添加し、24時間静置しても、非水系分散媒への溶解量が30質量%以下であることを意味し、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。この溶解量は、非水系分散媒に添加したバインダー質量に対する、24時間経過後に非水系分散媒中に溶解しているバインダー質量の割合とする。
The binder (particularly a polymer having a side chain having a physical cross-linking structure) may be soluble in the non-aqueous dispersion medium, but is particularly insoluble or hardly soluble in the non-aqueous dispersion medium in terms of ion conductivity. (Particles of) are preferred.
In the present invention, the phrase “insoluble or hardly soluble in a non-aqueous dispersion medium” means that a binder is added to a non-aqueous dispersion medium at 30° C. (the amount used is 10 times the mass of the binder), and the mixture is allowed to stand for 24 hours. Even so, it means that the amount dissolved in the non-aqueous dispersion medium is 30 mass% or less, preferably 20 mass% or less, and more preferably 10 mass% or less. This dissolved amount is the ratio of the binder mass dissolved in the non-aqueous dispersion medium after 24 hours to the binder mass added to the non-aqueous dispersion medium.
 上記バインダーは、固体電解質組成物中において、例えば非水系分散媒に溶解して存在していてもよく、非水系分散媒中に固体状(上記不溶若しくは難溶の粒子として)で存在(好ましくは分散)していてもよい(固体状で存在するバインダーを粒子状バインダーという。)。本発明において、バインダーは、固体電解質組成物中において粒子状バインダーであることが、電池抵抗及びサイクル特性の点で、好ましい。粒子状バインダーは固体電解質層(塗布乾燥層)においても粒子状を維持していることが好ましい態様の1つである。 The binder may be present in the solid electrolyte composition by being dissolved in, for example, a non-aqueous dispersion medium, and may be present in a solid state (as the insoluble or hardly soluble particles) in the non-aqueous dispersion medium (preferably It may be dispersed) (a binder that exists in a solid state is referred to as a particulate binder). In the present invention, the binder is preferably a particulate binder in the solid electrolyte composition from the viewpoint of battery resistance and cycle characteristics. It is one of the preferable embodiments that the particulate binder maintains the particulate state even in the solid electrolyte layer (coating dry layer).
 バインダーが粒子状バインダーである場合、その形状は特に制限されず、偏平状、無定形等であってもよいが、球状若しくは顆粒状が好ましい。粒子状バインダーの平均粒径は、特に制限されないが、5nm以上10μm以下であることが好ましい。これにより、固体電解質組成物の分散性と固体粒子間等の結着性とイオン伝導性とを改善できる。分散性、結着性及びイオン伝導性を更に改善できる点で、平均粒径は、10nm以上5μm以下が好ましく、15nm以上1μm以下がより好ましく、20nm以上0.5μm以下が更に好ましい。バインダーの平均粒径は、無機固体電解質と同様にして測定できる。
 なお、全固体二次電池の構成層における粒子状バインダーの平均粒径は、例えば、電池を分解して粒子状バインダーを含有する構成層を剥がした後、その構成層について測定を行い、予め測定していた粒子状バインダー以外の粒子の平均粒径の測定値を排除することにより、測定することができる。
 粒子状バインダーの平均粒径は、例えば、バインダー分散液を調製する際に用いる非水系分散媒の種類、バインダーを構成するポリマー中の構成成分の含有量、架橋剤の種類及び含有量等により、調整できる。
When the binder is a particulate binder, its shape is not particularly limited and may be flat, amorphous or the like, but spherical or granular is preferable. The average particle size of the particulate binder is not particularly limited, but is preferably 5 nm or more and 10 μm or less. This can improve the dispersibility of the solid electrolyte composition, the binding property between solid particles, and the ionic conductivity. The average particle size is preferably 10 nm or more and 5 μm or less, more preferably 15 nm or more and 1 μm or less, and further preferably 20 nm or more and 0.5 μm or less, from the viewpoint that dispersibility, binding property and ionic conductivity can be further improved. The average particle size of the binder can be measured in the same manner as for the inorganic solid electrolyte.
The average particle size of the particulate binder in the constituent layer of the all-solid secondary battery is, for example, measured in advance after disassembling the battery and peeling the constituent layer containing the particulate binder, and then measuring the constituent layer. The measurement can be performed by excluding the measured value of the average particle diameter of the particles other than the particulate binder that has been used.
The average particle size of the particulate binder is, for example, depending on the type of the non-aqueous dispersion medium used when preparing the binder dispersion, the content of the constituent components in the polymer constituting the binder, the type and content of the cross-linking agent, etc. Can be adjusted.
 バインダーの、固体電解質組成物中の含有量は、分散性、更には無機固体電解質粒子、活物質及び導電助剤等の固体粒子との結着性とイオン伝導性との両立の点で、固形成分100質量%において、0.001質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が特に好ましい。上限としては、電池容量の観点から、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。バインダーの含有量は、後述する、物理架橋性基を側鎖に有するポリマーと架橋剤との合計含有量とする。
 本発明の固体電解質組成物において、バインダーの質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/(バインダーの質量)]は、1,000~1の範囲が好ましい。この比率は1000~2がより好ましく、500~10が更に好ましい。
Binder, the content in the solid electrolyte composition, dispersibility, further inorganic solid electrolyte particles, in terms of compatibility with the binding properties with solid particles such as the active material and the conductive auxiliary agent and ion conductivity, solid. In 100 mass% of the component, 0.001 mass% or more is preferable, 0.05 mass% or more is more preferable, 0.1 mass% or more is further preferable, and 0.2 mass% or more is particularly preferable. From the viewpoint of battery capacity, the upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. The content of the binder is the total content of a polymer having a physical crosslinkable group in its side chain and a crosslinking agent, which will be described later.
In the solid electrolyte composition of the present invention, the mass ratio [(mass of inorganic solid electrolyte+mass of active material)/(mass of binder)] of the total mass (total mass) of the inorganic solid electrolyte and the active material to the mass of the binder is , 1,000 to 1 is preferable. This ratio is more preferably 1000 to 2, and even more preferably 500 to 10.
(物理架橋性基を側鎖に有するポリマー)
 本発明の固体電解質組成物に用いられる、物理架橋性基を側鎖に有するポリマー(架橋剤と物理架橋を形成していないポリマー、架橋剤との物理架橋構造を有していないポリマーともいう。)は、上述のように架橋剤と物理架橋可能なポリマーであって、側鎖に物理架橋性基を有していること以外は特に制限されず、全固体二次電池用の固体電解質組成物に通常用いられるポリマーを用いることができる。
 本発明において、ポリマーの主鎖とは、ポリマーを構成する、それ以外のすべての分子鎖が、主鎖に対して枝分れ鎖若しくはペンダント鎖とみなしうる線状分子鎖をいう。枝分れ鎖若しくはペンダント鎖とみなす分子鎖の質量平均分子量にもよるが、典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖となる。ただし、ポリマー末端が有する官能基は主鎖に含まない。
 また、ポリマーの側鎖とは、主鎖以外の分子鎖をいい、短分子鎖及び長分子鎖を含む。したがって、物理架橋性基を側鎖に有するとは、物理架橋性基を側鎖そのものとして有する態様(主鎖となる分子鎖を構成する原子に物理架橋性基が直接結合している態様)と、物理架橋性基を側鎖の置換基として有する態様(主鎖となる分子鎖を構成する原子に他の原子を介して物理架橋性基が結合している態様)と、これらが混在した態様を包含する。
(Polymer having physical crosslinkable group in side chain)
A polymer having a side chain having a physical crosslinkable group used in the solid electrolyte composition of the present invention (also referred to as a polymer that does not form a physical crosslink with the crosslinking agent or a polymer that does not have a physical crosslink structure with the crosslinking agent). ) Is a polymer that is physically crosslinkable with a crosslinking agent as described above, and is not particularly limited except that it has a physically crosslinkable group in its side chain, and is a solid electrolyte composition for all solid state secondary batteries. Polymers usually used for can be used.
In the present invention, the main chain of the polymer means a linear molecular chain in which all the other molecular chains constituting the polymer can be regarded as branched chains or pendant chains with respect to the main chain. Although it depends on the mass average molecular weight of a molecular chain regarded as a branched chain or a pendant chain, the longest chain is typically the main chain among the molecular chains constituting the polymer. However, the functional group at the polymer end is not included in the main chain.
The side chain of the polymer means a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain. Therefore, having a physically crosslinkable group in the side chain means that the side chain itself has the physically crosslinkable group (an aspect in which the physically crosslinkable group is directly bonded to the atom constituting the main molecular chain). , A mode having a physical crosslinkable group as a substituent of a side chain (a mode in which a physical crosslinkable group is bonded to an atom constituting a main chain molecular chain through another atom), and a mode in which these are mixed Includes.
 架橋剤と物理架橋していないポリマー(未架橋ポリマーということがある。)としては、例えば、ポリウレタン、ポリウレア、ポリアミド、ポリイミド、ポリエステル、ポリエーテル、ポリカーボネート等の逐次重合(重縮合、重付加若しくは付加縮合)系のポリマー、更には、含フッ素ポリマー、炭化水素系ポリマー、ビニルポリマー、(メタ)アクリルポリマー等の連鎖重合系のポリマーが挙げられる。未架橋ポリマーは、中でも、逐次重合系のポリマー、含フッ素ポリマー、炭化水素系ポリマー又は(メタ)アクリルポリマーが好ましく、ポリウレタン、ポリウレア、ポリアミド、ポリイミド、含フッ素ポリマー、炭化水素系ポリマー又は(メタ)アクリルポリマーがより好ましく、ポリウレタン又は(メタ)アクリルポリマーが更に好ましい。
 上記各ポリマーは、1つのセグメントからなるポリマーでもよく、2つ以上のセグメントからなるポリマーでもよい。
Examples of the polymer that is not physically crosslinked with the crosslinking agent (sometimes referred to as uncrosslinked polymer) include, for example, sequential polymerization (polycondensation, polyaddition or addition of polyurethane, polyurea, polyamide, polyimide, polyester, polyether, polycarbonate, etc. Condensation type polymers, and further chain polymerization type polymers such as fluorine-containing polymers, hydrocarbon-based polymers, vinyl polymers, and (meth)acrylic polymers. The non-crosslinked polymer is preferably a sequential polymerization polymer, a fluoropolymer, a hydrocarbon polymer or a (meth)acrylic polymer, and is preferably a polyurethane, polyurea, polyamide, polyimide, a fluoropolymer, a hydrocarbon polymer or (meth). Acrylic polymers are more preferred, and polyurethane or (meth)acrylic polymers are even more preferred.
Each of the above polymers may be a polymer composed of one segment or a polymer composed of two or more segments.
 - 逐次重合系のポリマー -
 未架橋ポリマーとして好適な逐次重合系のポリマーは、下記式(I-1)~(I-4)のいずれかで表される構成成分を2種以上(好ましくは2種又は3種)組み合わせてなる主鎖、又は下記式(I-5)で表されるカルボン酸二無水物と下記式(I-6)で表される構成成分を導くジアミン化合物とを逐次重合してなる主鎖を有するポリマーが好ましい。各構成成分の組み合わせは、ポリマー種に応じて適宜に選択される。ポリカーボネートからなる主鎖としては、RP1の両端部に酸素原子を導入した下記式(I-2)で表される構成成分若しくはRP1として式(I-3)で表される構成成分を採る下記式(I-2)で表される構成成分と、下記式(I-3)で表される構成成分とを有する主鎖が挙げられる。構成成分の組み合わせにおける1種の構成成分とは、下記のいずれか1つの式で表される構成成分の種類数を意味し、1つの下記式で表される構成成分を2種有していても、2種の構成成分とは解釈しない。
-Sequential polymerization type polymer-
A sequential polymerization type polymer suitable as an uncrosslinked polymer is a combination of two or more (preferably two or three) constituent components represented by any of the following formulas (I-1) to (I-4). Or a main chain formed by sequentially polymerizing a carboxylic acid dianhydride represented by the following formula (I-5) and a diamine compound leading to a constituent component represented by the following formula (I-6) Polymers are preferred. The combination of each constituent component is appropriately selected according to the polymer species. The main chain made of polycarbonate, a configuration component formula (I-3) as a constituent or R P1 is represented by the following formula was introduced oxygen atoms at both ends of R P1 (I-2) Examples thereof include a main chain having a constituent component represented by the following formula (I-2) and a constituent component represented by the following formula (I-3). One kind of constituent in the combination of constituents means the number of kinds of constituents represented by any one of the following formulas, and has two kinds of constituents represented by the following formula. Is not to be construed as two constituents.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、RP1及びRP2は、それぞれ(質量平均)分子量が14以上200,000以下の分子鎖を示す。この分子鎖の分子量は、その種類等によるので一義的に決定できないが、例えば、30以上が好ましく、50以上がより好ましく、100以上が更に好ましく、150以上が特に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましい。分子鎖の分子量は、ポリマーの主鎖に組み込む前の原料化合物について測定する。
 RP1及びRP2としてとりうる上記分子鎖は、特に制限されないが、炭化水素鎖、ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖が好ましく、炭化水素鎖又はポリアルキレンオキシド鎖がより好ましく、炭化水素鎖、ポリエチレンオキシド鎖又はポリプロピレンオキシド鎖が更に好ましい。
In the formula, R P1 and R P2 each represent a molecular chain having a (mass average) molecular weight of 14 or more and 200,000 or less. The molecular weight of this molecular chain cannot be unambiguously determined because it depends on its type, but is preferably 30 or more, more preferably 50 or more, further preferably 100 or more, and particularly preferably 150 or more. The upper limit is preferably 100,000 or less, more preferably 10,000 or less. The molecular weight of the molecular chain is measured with respect to the raw material compound before being incorporated into the main chain of the polymer.
The molecular chain that can be taken as R P1 and R P2 is not particularly limited, but is preferably a hydrocarbon chain, a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, more preferably a hydrocarbon chain or a polyalkylene oxide chain, and a hydrocarbon chain. , Polyethylene oxide chains or polypropylene oxide chains are more preferred.
 RP1及びRP2としてとりうる炭化水素鎖は、炭素原子及び水素原子から構成される炭化水素の鎖を意味し、より具体的には、炭素原子及び水素原子から構成される化合物の少なくとも2つの原子(例えば水素原子)又は基(例えばメチル基)が脱離した構造を意味する。ただし、本発明において、炭化水素鎖は、例えば下記式(M2)で表される炭化水素基のように、鎖中に酸素原子、硫黄原子又は窒素原子を含む基を有する鎖も包含する。炭化水素鎖の末端に有し得る末端基は炭化水素鎖には含まれないものとする。この炭化水素鎖は、炭素-炭素不飽和結合を有していてもよく、脂肪族環及び/又は芳香族環の環構造を有していてもよい。すなわち、炭化水素鎖は、脂肪族炭化水素及び芳香族炭化水素から選択される炭化水素で構成される炭化水素鎖であればよい。 The hydrocarbon chain which can be taken as R P1 and R P2 means a hydrocarbon chain composed of a carbon atom and a hydrogen atom, and more specifically, at least two compounds of a compound composed of a carbon atom and a hydrogen atom. It means a structure in which an atom (for example, a hydrogen atom) or a group (for example, a methyl group) is eliminated. However, in the present invention, the hydrocarbon chain also includes a chain having a group containing an oxygen atom, a sulfur atom or a nitrogen atom, such as a hydrocarbon group represented by the following formula (M2). The end groups that may be present at the ends of the hydrocarbon chain are not included in the hydrocarbon chain. This hydrocarbon chain may have a carbon-carbon unsaturated bond and may have a ring structure of an aliphatic ring and/or an aromatic ring. That is, the hydrocarbon chain may be a hydrocarbon chain composed of a hydrocarbon selected from an aliphatic hydrocarbon and an aromatic hydrocarbon.
 このような炭化水素鎖としては、上記分子量を満たすものであればよく、低分子量の炭化水素基からなる鎖と、炭化水素ポリマーからなる炭化水素鎖(炭化水素ポリマー鎖ともいう。)との両炭化水素鎖を包含する。
 低分子量の炭化水素鎖は、通常の(非重合性の)炭化水素基からなる鎖であり、この炭化水素基としては、例えば、脂肪族若しくは芳香族の炭化水素基が挙げられ、具体的には、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリーレン基(炭素数は6~22が好ましく、6~14が好ましく、6~10がより好ましい)、又はこれらの組み合わせからなる基が好ましい。RP2としてとりうる低分子量の炭化水素鎖を形成する炭化水素基としては、アルキレン基がより好ましい。この炭化水素鎖は置換基として重合鎖(例えば(メタ)アクリルポリマー)を有していてもよい。
Such a hydrocarbon chain may be one that satisfies the above-mentioned molecular weight, and both a hydrocarbon chain having a low molecular weight and a hydrocarbon chain having a hydrocarbon polymer (also referred to as a hydrocarbon polymer chain). Includes hydrocarbon chains.
The low molecular weight hydrocarbon chain is a chain composed of a normal (non-polymerizable) hydrocarbon group, and examples of this hydrocarbon group include an aliphatic or aromatic hydrocarbon group. Is an alkylene group (which preferably has 1 to 12 carbon atoms, more preferably 1 to 6 and still more preferably 1 to 3) and an arylene group (which preferably has 6 to 22 carbon atoms, preferably 6 to 14 and 6 to 10 carbon atoms). Is more preferable), or a group consisting of a combination thereof is preferable. As the hydrocarbon group forming a low molecular weight hydrocarbon chain that can be taken as R P2 , an alkylene group is more preferable. This hydrocarbon chain may have a polymer chain (for example, a (meth)acrylic polymer) as a substituent.
 脂肪族の炭化水素基としては、例えば、下記式(M2)で表される芳香族の炭化水素基の水素還元体、公知の脂肪族ジイソソアネート化合物が有する部分構造(例えばイソホロンからなる基)等が挙げられる。また、後掲する各例示の構成成分が有する炭化水素基も挙げられる。
 芳香族の炭化水素基は、例えば、後掲する各例示の構成成分が有する炭化水素基が挙げられ、フェニレン基又は下記式(M2)で表される炭化水素基が好ましい。
Examples of the aliphatic hydrocarbon group include a hydrogen-reduced product of an aromatic hydrocarbon group represented by the following formula (M2), a partial structure of a known aliphatic diisosonate compound (for example, a group consisting of isophorone), and the like. Can be mentioned. Moreover, the hydrocarbon group which each of the constituent components shown below has is also mentioned.
Examples of the aromatic hydrocarbon group include a hydrocarbon group contained in each of the constituent components shown below, and a phenylene group or a hydrocarbon group represented by the following formula (M2) is preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(M2)中、Xは、単結合、-CH-、-C(CH-、-SO-、-S-、-CO-又は-O-を示し、結着性の観点で、-CH-または-O-が好ましく、-CH-がより好ましい。ここで例示した上記アルキル基は、置換基T、好ましくはハロゲン原子(より好ましくはフッ素原子)で置換されていてもよい。
 RM2~RM5は、それぞれ、水素原子又は置換基を示し、水素原子が好ましい。RM2~RM5としてとりうる置換基としては、特に制限されないが、例えば、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM6、―N(RM6、-SRM6(RM6は置換基を示し、好ましくは炭素数1~20のアルキル基又は炭素数6~10のアリール基を示す。)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)が挙げられる。―N(RM6としては、アルキルアミノ基(炭素数は、1~20が好ましく、1~6がより好ましい)又はアリールアミノ基(炭素数は、6~40が好ましく、6~20がより好ましい)が挙げられる。
In the formula (M2), X represents a single bond, —CH 2 —, —C(CH 3 ) 2 —, —SO 2 —, —S—, —CO— or —O—, and is a binding point of view. And —CH 2 — or —O— is preferable, and —CH 2 — is more preferable. The alkyl group exemplified here may be substituted with a substituent T, preferably a halogen atom (more preferably a fluorine atom).
R M2 to R M5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable. The substituent which can be taken as R M2 to R M5 is not particularly limited, and examples thereof include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, —OR M6 , —N(R M6 ) 2 , —SR M6 (R M6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), halogen atom (eg, fluorine atom, chlorine atom, bromine atom) Is mentioned. —N(R M6 ) 2 is an alkylamino group (having preferably 1 to 20 carbon atoms, more preferably 1 to 6) or an arylamino group (having 6 to 40 carbon atoms, preferably 6 to 20 carbon atoms). More preferred).
 炭化水素ポリマー鎖は、重合性の炭化水素が(少なくとも2つ)重合してなるポリマー鎖であって、上述の低分子量の炭化水素鎖よりも炭素原子数が大きい炭化水素ポリマーからなる鎖であれば特に制限されないが、好ましくは30個以上、より好ましくは50個以上の炭素原子から構成される炭化水素ポリマーからなる鎖である。炭化水素ポリマーを構成する炭素原子数の上限は、特に制限されず、例えば3,000個とすることができる。この炭化水素ポリマー鎖は、主鎖が、上記炭素原子数を満たす、脂肪族炭化水素で構成される炭化水素ポリマーからなる鎖が好ましく、脂肪族飽和炭化水素若しくは脂肪族不飽和炭化水素で構成される重合体(好ましくはエラストマー)からなる鎖であることがより好ましい。重合体としては、具体的には、主鎖に二重結合を有するジエン系重合体、及び、主鎖に二重結合を有しない非ジエン系重合体が挙げられる。ジエン系重合体としては、例えば、スチレン-ブタジエン共重合体、スチレン-エチレン-ブタジエン共重合体、イソブチレンとイソプレンの共重合体(好ましくはブチルゴム(IIR))、ブタジエン重合体、イソプレン重合体及びエチレン-プロピレン-ジエン共重合体等が挙げられる。非ジエン系重合体としては、エチレン-プロピレン共重合体及びスチレン-エチレン-ブチレン共重合体等のオレフィン系重合体、並びに、上記ジエン系重合体の水素還元物が挙げられる。 The hydrocarbon polymer chain may be a polymer chain formed by polymerizing (at least two) polymerizable hydrocarbons, and a chain composed of a hydrocarbon polymer having a larger number of carbon atoms than the above-mentioned low molecular weight hydrocarbon chain. Although not particularly limited, it is preferably a chain composed of a hydrocarbon polymer composed of 30 or more, more preferably 50 or more carbon atoms. The upper limit of the number of carbon atoms constituting the hydrocarbon polymer is not particularly limited and may be, for example, 3,000. This hydrocarbon polymer chain is preferably a chain composed of a hydrocarbon polymer whose main chain satisfies the above-mentioned number of carbon atoms and which is composed of an aliphatic hydrocarbon, and is composed of an aliphatic saturated hydrocarbon or an aliphatic unsaturated hydrocarbon. It is more preferable that the chain is a polymer (preferably elastomer) chain. Specific examples of the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain. Examples of the diene-based polymer include styrene-butadiene copolymer, styrene-ethylene-butadiene copolymer, copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), butadiene polymer, isoprene polymer and ethylene. —Propylene-diene copolymer and the like. Examples of the non-diene polymer include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen reduction products of the above diene polymers.
 炭化水素鎖となる炭化水素は、その末端に反応性基を有することが好ましく、縮重合可能な末端反応性基を有することがより好ましい。縮重合又は重付加可能な末端反応性基は、縮重合又は重付加することにより、上記各式のRP1又はRP2に結合する基を形成する。このような末端反応性基としては、イソシネート基、ヒドロキシ基、カルボキシ基及びアミノ基等が挙げられ、中でもヒドロキシ基が好ましい。
 末端反応性基を有する炭化水素ポリマーとしては、例えば、いずれも商品名で、NISSO-PBシリーズ(日本曹達社製)、クレイソールシリーズ(巴工業社製)、PolyVEST-HTシリーズ(エボニック社製)、poly-bdシリーズ(出光興産社製)、poly-ipシリーズ(出光興産社製)、EPOL(出光興産社製)及びポリテールシリーズ(三菱化学社製)等が好適に用いられる。
The hydrocarbon that becomes the hydrocarbon chain preferably has a reactive group at its terminal, and more preferably has a polycondensable terminal reactive group. The end-reactive group capable of polycondensation or polyaddition forms a group bonded to R P1 or R P2 in each of the above formulas by polycondensation or polyaddition. Examples of such a terminal reactive group include an isocyanate group, a hydroxy group, a carboxy group and an amino group, and among them, a hydroxy group is preferable.
Examples of the hydrocarbon polymer having a terminal reactive group are, under the trade names, NISSO-PB series (manufactured by Nippon Soda Co., Ltd.), Claysol series (manufactured by Tomoe Kogyo Co., Ltd.), PolyVEST-HT series (manufactured by Evonik). , Poly-bd series (manufactured by Idemitsu Kosan Co., Ltd.), poly-ip series (manufactured by Idemitsu Kosan Co., Ltd.), EPOL (manufactured by Idemitsu Kosan Co., Ltd.) and Polytail series (manufactured by Mitsubishi Chemical Co., Ltd.) are preferably used.
 ポリアルキレンオキシド鎖(ポリアルキレンオキシ鎖)としては、公知のポリアルキレンオキシドからなる鎖が挙げられる。アルキレンオキシ基の炭素数は、1~10であることが好ましく、1~6であることがより好ましく、2又は3であること(ポリエチレンオキシド鎖又はポリプロピレンオキシド鎖)が更に好ましい。ポリアルキレンオキシド鎖は、1種のアルキレンオキシドからなる鎖でもよく、2種以上のアルキレンオキシドからなる鎖(例えば、エチレンオキシド及びプロピレンオキシドからなる鎖)でもよい。
 ポリカーボネート鎖又はポリエステル鎖としては、公知のポリカーボネート又はポリエステルからなる鎖が挙げられる。
 ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖は、それぞれ、末端にアルキル基(炭素数は1~12が好ましく、1~6がより好ましい)を有することが好ましい。
 RP1及びRP2としてとりうるポリアルキレンオキシド鎖、ポリカーボネート鎖及びポリエステル鎖の末端は、RP1及びRP2として上記各式で表される構成成分に組み込み可能な通常の化学構造に適宜に変更することができる。例えば、実施例で合成したポリウレタンのように、ポリアルキレンオキシド鎖の末端酸素原子は取り除かれて上記構成成分のRP1又はRP2として組み込まれる。
Examples of the polyalkylene oxide chain (polyalkyleneoxy chain) include known polyalkylene oxide chains. The alkyleneoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 2 or 3 (polyethylene oxide chain or polypropylene oxide chain). The polyalkylene oxide chain may be a chain composed of one kind of alkylene oxide or a chain composed of two or more kinds of alkylene oxide (for example, a chain composed of ethylene oxide and propylene oxide).
Examples of the polycarbonate chain or polyester chain include known chains of polycarbonate or polyester.
Each of the polyalkylene oxide chain, the polycarbonate chain and the polyester chain preferably has an alkyl group (having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
Polyalkylene oxide chain which can be taken as R P1 and R P2, end of the polycarbonate chain and a polyester chain, appropriately changing the constituents as R P1 and R P2 are represented by the formulas above the embeddable ordinary chemical structure be able to. For example, as in the polyurethanes synthesized in the examples, the terminal oxygen atom of the polyalkylene oxide chain is removed and incorporated as R P1 or R P2 of the above component.
 分子鎖が含むアルキル基の内部若しくは末端に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NR:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)等を有していてもよい。 Inside or at the end of the alkyl group contained in the molecular chain, an ether group (—O—), a thioether group (—S—), a carbonyl group (>C═O), an imino group (>NR N : R N is a hydrogen atom, It may have an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms) or the like.
 上記各式において、RP1及びRP2は2価の分子鎖であるが、少なくとも1つの水素原子が-NH-CO-、-CO-、-O-、-NH-又は-N<で置換されて、3価以上の分子鎖となっていてもよい。 In each of the above formulas, R P1 and R P2 are divalent molecular chains, but at least one hydrogen atom is replaced by —NH—CO—, —CO—, —O—, —NH— or —N< Therefore, it may have a trivalent or higher molecular chain.
 RP1は、上記分子鎖の中でも、炭化水素鎖であることが好ましく、低分子量の炭化水素鎖であることがより好ましく、脂肪族若しくは芳香族の炭化水素基からなる炭化水素鎖が更に好ましく、芳香族の炭化水素基からなる炭化水素鎖が特に好ましい。
 RP2は、上記分子鎖の中でも、低分子量の炭化水素鎖(より好ましくは脂肪族の炭化水素基)、又は低分子量の炭化水素鎖以外の分子鎖が好ましく、低分子量の炭化水素鎖及び低分子量の炭化水素鎖以外の分子鎖をそれぞれ含む態様がより好ましい。この態様においては、式(I-3)、式(I-4)及び式(I-6)のいずれかで表される構成成分は、RP2が低分子量の炭化水素基鎖である構成成分と、RP2が低分子量の炭化水素鎖以外の分子鎖である構成成分の少なくとも2種を含む。
Among the above molecular chains, R P1 is preferably a hydrocarbon chain, more preferably a low molecular weight hydrocarbon chain, and further preferably a hydrocarbon chain composed of an aliphatic or aromatic hydrocarbon group, Hydrocarbon chains consisting of aromatic hydrocarbon groups are particularly preferred.
Among the above molecular chains, R P2 is preferably a low molecular weight hydrocarbon chain (more preferably an aliphatic hydrocarbon group) or a molecular chain other than the low molecular weight hydrocarbon chain, and the low molecular weight hydrocarbon chain and the low molecular weight hydrocarbon chain are preferable. More preferable is an embodiment in which each molecular chain other than the hydrocarbon chain having a molecular weight is contained. In this aspect, the constituent represented by any of the formula (I-3), the formula (I-4) and the formula (I-6) is a constituent in which R P2 is a low molecular weight hydrocarbon group. And R P2 contains at least two kinds of constituent components which are molecular chains other than low molecular weight hydrocarbon chains.
 上記式(I-1)で表される構成成分の具体例を以下に示す。また、上記式(I-1)で表される構成成分を導く原料化合物(ジイソシアネート化合物)としては、例えば、国際公開第2018/020827号に記載の、式(M1)で表されるジイソシアネート化合物及びその具体例、更にはポリメリック4,4’-ジフェニルメタンジイソシアネート等が挙げられる。なお、本発明において、式(I-1)で表される構成成分及びこれを導く原料化合物は下記具体例及び上記文献に記載のものに限定されない。 Specific examples of the constituent components represented by the above formula (I-1) are shown below. Examples of the raw material compound (diisocyanate compound) for deriving the constituent component represented by the formula (I-1) include diisocyanate compounds represented by the formula (M1) described in WO2018/020827 and Specific examples thereof include, further, polymeric 4,4′-diphenylmethane diisocyanate and the like. In the present invention, the constituent component represented by the formula (I-1) and the raw material compound leading to the constituent component are not limited to those described in the following specific examples and the above-mentioned documents.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(I-2)で表される構成成分を導く原料化合物(カルボン酸若しくはその酸クロリド等)は、特に制限されず、例えば、国際公開第2018/020827号の段落[0074]に記載の、カルボン酸又は酸クロリドの化合物及びその具体例が挙げられる。 The raw material compound (carboxylic acid or acid chloride thereof, etc.) leading to the constituent component represented by the above formula (I-2) is not particularly limited and is described in, for example, paragraph [0074] of International Publication No. 2018/020827. , Carboxylic acid or acid chloride compounds and specific examples thereof.
 上記式(I-3)又は式(I-4)で表される構成成分の具体例を以下に示す。また、上記式(I-3)又は式(I-4)で表される構成成分を導く原料化合物(ジオール化合物又はジアミン化合物)としては、それぞれ、例えば、国際公開第2018/020827号に記載の各化合物及びその具体例が挙げられ、更にジヒドロキシオキサミドも挙げられる。なお、本発明において、式(I-3)又は式(I-4)で表される構成成分及びこれを導く原料化合物は下記具体例及び上記文献に記載のものに限定されない。
 なお、下記具体例において、構成成分中に繰り返し構造を有する場合、その繰り返し数は1以上の整数であり、上記分子鎖の分子量又は炭素原子数を満たす範囲で適宜に設定される。
Specific examples of the constituent components represented by the above formula (I-3) or formula (I-4) are shown below. The starting compounds (diol compounds or diamine compounds) for deriving the constituents represented by the above formula (I-3) or formula (I-4) are described in, for example, International Publication No. 2018/020827. Each compound and specific examples thereof are mentioned, and further dihydroxyoxamide is also mentioned. In the present invention, the constituent components represented by formula (I-3) or formula (I-4) and the raw material compounds leading to them are not limited to those described in the following specific examples and the above-mentioned documents.
In addition, in the following specific examples, when the constituent component has a repeating structure, the repeating number is an integer of 1 or more and is appropriately set within a range satisfying the molecular weight or the number of carbon atoms of the molecular chain.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(I-5)において、RP3は芳香族若しくは脂肪族の連結基(4価)を示し、下記式(i)~(iix)のいずれかで表される連結基が好ましい。 In formula (I-5), R P3 represents an aromatic or aliphatic linking group (tetravalent), and a linking group represented by any of the following formulas (i) to (ix) is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(i)~(iix)中、Xは単結合又は2価の連結基を示す。2価の連結基としては、炭素数1~6のアルキレン基(例えば、メチレン、エチレン、プロピレン)が好ましい。プロピレンとしては、1,3-ヘキサフルオロ-2,2-プロパンジイルが好ましい。Lは-CH=CH-又は-CH-を示す。R及びRはそれぞれ水素原子又は置換基を表す。各式において、R及びRとして採りうる置換基としては、特に制限されず、後述する置換基Tが挙げられ、アルキル基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)又はアリール基(炭素数は6~22が好ましく、6~14がより好ましく、6~10が更に好ましい)が好ましく挙げられる。*は式(1-5)中のカルボニル基との結合部位を示す。 In formulas (i) to (ix), X 1 represents a single bond or a divalent linking group. The divalent linking group is preferably an alkylene group having 1 to 6 carbon atoms (eg methylene, ethylene, propylene). As propylene, 1,3-hexafluoro-2,2-propanediyl is preferable. L represents —CH 2 ═CH 2 — or —CH 2 —. R X and R Y each represent a hydrogen atom or a substituent. In each formula, the substituent that can be used as R X and R Y is not particularly limited, and examples thereof include the substituent T described below. An alkyl group (having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, 1 to 3 is more preferable) or an aryl group (having 6 to 22 carbon atoms is preferable, 6 to 14 is more preferable, and 6 to 10 is further preferable). * Indicates a binding site to the carbonyl group in formula (1-5).
 上記式(I-5)で表されるカルボン酸二無水物、及び上記式(I-6)で表される構成成分を導く原料化合物(ジアミン化合物)は、それぞれ、特に制限されず、例えば、国際公開第2018/020827号及び国際公開第2015/046313号に記載の各化合物及びその具体例が挙げられる。 The carboxylic acid dianhydride represented by the above formula (I-5) and the raw material compound (diamine compound) leading to the constituent component represented by the above formula (I-6) are not particularly limited, and include, for example, Each compound described in WO2018/020827 and WO2015/046313 and specific examples thereof can be mentioned.
 RP1、RP2及びRP3は、それぞれ、置換基を有していてもよい。この置換基としては、特に制限されず、例えば、後述する置換基Tが挙げられ、RM2として採りうる上記置換基が好適に挙げられる。
 上記式(I-1)~式(I-6)のいずれかで表される構成成分は、ポリマーの側鎖となる部分構造部に置換基として後述する物理架橋性基を有していない、すなわち、上記各式で表される構成成分は、側鎖で物理架橋を形成する構成成分ではない。
R P1 , R P2, and R P3 may each have a substituent. The substituent is not particularly limited, and examples thereof include the substituent T described later, and the above-mentioned substituent that can be adopted as R M2 is preferably exemplified.
The constituent component represented by any one of the above formulas (I-1) to (I-6) does not have a physical crosslinkable group to be described later as a substituent in the partial structure part which is a side chain of the polymer, That is, the constituent components represented by the above formulas are not constituent components that form physical crosslinks with side chains.
 (物理架橋性基を有する構成成分)
 逐次重合系のポリマーは、上記構成成分とは別に、ポリマーの側鎖となる部分構造部に物理架橋性基を有する構成成分(架橋性構成成分ということがある。)を含む。
 本発明において、物理架橋性基とは、架橋剤が有する物理架橋性官能基と物理架橋を形成しうる基をいい、イオン結合若しくは水素結合の化学結合、又は分子間相互作用により、互いに結合又は相互作用を形成しうる基をいう。
 未架橋ポリマー(架橋性構成成分)が有する物理架橋性基は、架橋剤が有する物理架橋性基との物理架橋の種類(反応(結合)若しくは相互作用)に応じて、適宜の基を選択できる。
(Constituent Component Having Physically Crosslinkable Group)
In addition to the above-mentioned constituents, the polymer of the sequential polymerization system contains a constituent having a physical crosslinkable group in the partial structure part which is a side chain of the polymer (sometimes referred to as a crosslinkable constituent).
In the present invention, the physical crosslinkable group refers to a group capable of forming a physical crosslink with a physical crosslinkable functional group of a crosslinker, a chemical bond such as an ionic bond or a hydrogen bond, or an intermolecular interaction, to bond to each other or A group capable of forming an interaction.
The physical crosslinkable group contained in the uncrosslinked polymer (crosslinkable constituent) can be selected as appropriate depending on the type (reaction (bond) or interaction) of the physical crosslink with the physical crosslinkable group contained in the crosslinker. ..
 このような物理架橋性基としては、例えば、イオン結合により物理架橋する場合、カチオン又はアニオンになりうる基が挙げられる。カチオンになりうる基としては、水素カチオン、アルカリ金属カチオン、アルカリ土類金属カチオン、遷移金属カチオン等を受容してカチオンを形成する特性を有する基が挙げられ、具体的には塩基性基、より具体的には、下記基群(b)に含まれる各基等が挙げられる。一方、アニオンになりうる基としては、水素カチオン、アルカリ金属カチオン、アルカリ土類金属カチオン、遷移金属カチオン等を供与(脱離)してアニオンを形成する特性を有する基が挙げられ、具体的には酸性基、より具体的には下記基群(a)に含まれる各基等が挙げられる。
 また、水素結合により物理架橋する場合、水素原子を供与可能な基又は水素原子を受容可能な基が挙げられる。水素原子を供与可能な基としては、電気陰性度が大きな原子(例えば、酸素、窒素、硫黄等の各原子)に共有結合で結びついた水素原子を有する基が挙げられ、具体的には、ヒドロキシ基、アミノ基、更には下記基群(a)に含まれる各基等が挙げられる。水素原子を受容可能な基としては、電気陰性度が大きく、かつ孤立電子対を有する原子(例えば、窒素、酸素、硫黄、フッ素、塩素等の各原子)を有する基が挙げられ、具体的には、カルボニル基、>S=O、フッ素原子、塩素原子、更には下記基群(a)又は(b)に含まれる各基等が挙げられる。
 更に、分子間相互作用により物理架橋する場合、物理架橋性基としては、例えば、炭素数6~100のアリール基等が挙げられる。
Examples of such a physically crosslinkable group include a group which can become a cation or an anion when physically crosslinked by an ionic bond. Examples of the group capable of becoming a cation include a group having a property of forming a cation by receiving a hydrogen cation, an alkali metal cation, an alkaline earth metal cation, a transition metal cation, and the like. Specifically, a basic group, Specific examples include each group included in the following group (b) of groups. On the other hand, the group capable of becoming an anion includes a group having a property of forming an anion by donating (eliminating) a hydrogen cation, an alkali metal cation, an alkaline earth metal cation, a transition metal cation, and the like. Is an acidic group, more specifically, each group included in the following group (a).
Further, when physically cross-linking by a hydrogen bond, a group capable of donating a hydrogen atom or a group capable of accepting a hydrogen atom may be mentioned. Examples of the group capable of donating a hydrogen atom include a group having a hydrogen atom covalently bonded to an atom having a high electronegativity (for example, each atom of oxygen, nitrogen, sulfur, etc.). A group, an amino group, each group included in the following group (a), and the like can be mentioned. Examples of the group capable of accepting a hydrogen atom include a group having a large electronegativity and an atom having a lone electron pair (for example, each atom of nitrogen, oxygen, sulfur, fluorine, chlorine, etc.), and specifically, Include a carbonyl group, >S=O, a fluorine atom, a chlorine atom, and further each group contained in the following group (a) or (b).
Further, when physically cross-linking by an intermolecular interaction, examples of the physical cross-linkable group include an aryl group having 6 to 100 carbon atoms.
 未架橋ポリマー(架橋性構成成分)が有する物理架橋性基としては、特に、イオン結合若しくは水素結合により物理架橋する場合、下記基群(a)から選択されるいずれかの基、又は下記基群(b)から選択されるいずれかの基であることが好ましく、下記基群(a)から選択されるいずれかの基であることがより好ましい。基群(a)の中でもカルボキシ基が好ましく、基群(b)の中でもアミノ基が好ましい。
<基群(a)>
 カルボキシ基、スルホ基(-SOH)、リン酸基(ホスホ基、-OPO)及びホスホン酸基(-P(=O)(OH)
 リン酸基及びホスホン酸基は、それぞれ、2つの水素原子のうち1つが置換され、エステルを形成していてもよい。置換基としては、特に制限されないが、後述する置換基Tが挙げられ、アルキル基、アリール基等が好ましい。
<基群(b)>
 アミノ基、ピロール環基、イミダゾール環基、ピラゾール環基、オキサゾール環基、チアゾール環基、イミダゾリン環基、ピリミジン環基、ピラジン環基、及びピリジン環基
 アミノ基は、無置換のアミノ基に加えて、置換アミノ基を含む。置換アミノ基としては、アルキル基、アリール基、アルキルシリル基等で少なくとも1つの水素原子が置換されたアミノ基が挙げられる。アルキル基及びアルキルシリル基としては、後述する式(H-1A)のR11としてとりうるアルキル基及びアルキルシリル基が挙げられ、アリール基としては上述の置換基Tのアリール基が挙げられる。
 架橋性構成成分の具体例は後掲する。
As the physical crosslinkable group that the uncrosslinked polymer (crosslinkable constituent) has, particularly when physically crosslinked by an ionic bond or a hydrogen bond, any group selected from the following group group (a), or the following group group: It is preferably any group selected from (b), and more preferably any group selected from the following group of groups (a). Among the group (a), a carboxy group is preferable, and among the group (b), an amino group is preferable.
<Base group (a)>
Carboxy group, sulfo group (-SO 3 H), phosphoric acid group (phospho group, -OPO 3 H 2 ) and phosphonic acid group (-P(=O)(OH) 2 )
Each of the phosphoric acid group and the phosphonic acid group may be substituted with one of two hydrogen atoms to form an ester. The substituent is not particularly limited, but examples thereof include the substituent T described later, and an alkyl group, an aryl group and the like are preferable.
<Base group (b)>
Amino group, pyrrole ring group, imidazole ring group, pyrazole ring group, oxazole ring group, thiazole ring group, imidazoline ring group, pyrimidine ring group, pyrazine ring group, and pyridine ring group. And includes a substituted amino group. Examples of the substituted amino group include an amino group in which at least one hydrogen atom is substituted with an alkyl group, an aryl group, an alkylsilyl group or the like. Examples of the alkyl group and the alkylsilyl group include an alkyl group and an alkylsilyl group that can be used as R 11 of the formula (H-1A) described later, and the aryl group includes the aryl group of the above-described substituent T.
Specific examples of the crosslinkable constituents will be described later.
 架橋性構成成分又は未架橋ポリマーが物理架橋性基を複数有する場合、物理架橋性基は、物理架橋を形成する結合若しくは相互作用が同種の基であっても異種の基であってもよいが、同種の基が好ましい。同種の基の中でも、同じ基であることがより好ましい。また、互いに物理架橋する複数の未架橋ポリマーが有する物理架橋性基についても、上記と同様であり、同種の基が好ましく、同じ基であることがより好ましい。 When the crosslinkable component or the uncrosslinked polymer has a plurality of physical crosslinkable groups, the physical crosslinkable groups may be the same or different groups in which the bonds or interactions forming the physical crosslinks are the same. , The same kind of group is preferable. Among the same type of groups, the same group is more preferable. The same applies to the physically crosslinkable groups of the plurality of uncrosslinked polymers that physically crosslink with each other, the same type of groups are preferable, and the same groups are more preferable.
 1つの架橋性構成成分が有する物理架橋性基の数は、1個以上であればよく、1~6個であることが好ましく、1個又は2個であることがより好ましい。 The number of physical crosslinkable groups contained in one crosslinkable constituent component may be 1 or more, preferably 1 to 6, and more preferably 1 or 2.
 物理架橋性基を有する構成成分は、未架橋ポリマーを形成しうる構成成分であればよく、例えば上記式(I-1)~(I-4)及び(I-6)のいずれかで表される構成成分のRP1及びRP2に置換基として上記物理架橋性基を導入したものが挙げられる。中でも、上記式(I-3)又は式(I-4)で表される構成成分のRP2に置換基として上記物理架橋性基を導入したものが好ましい。 The constituent having a physically crosslinkable group may be any constituent capable of forming an uncrosslinked polymer, and is represented by any one of the above formulas (I-1) to (I-4) and (I-6). The above-mentioned physical crosslinkable group is introduced as a substituent into R P1 and R P2 of the constituent component. Among these, those in which the above-mentioned physical crosslinkable group is introduced as a substituent to R P2 of the constituent component represented by the above formula (I-3) or formula (I-4) are preferable.
 (逐次重合系の未架橋ポリマーの構造)
 逐次重合系の未架橋ポリマーは、架橋性構成成分ではない構成成分として上記各式で表される構成成分のうち、式(I-3)又は式(I-4)、好ましくは式(I-3)で表される構成成分として、RP2が分子鎖として上記ポリカーボネート鎖、ポリエステル鎖若しくはポリアルキレンオキシド鎖である構成成分(下記式(I-3B)で表される構成成分)と、RP2が分子鎖として上記の炭化水素ポリマー鎖である構成成分(下記式(I-3C)で表される構成成分)とを有していることが好ましく、更にRP2が炭化水素基である構成成分(下記式(I-3A)で表される構成成分)を有していてもよい。
(Structure of uncrosslinked polymer of sequential polymerization system)
The non-crosslinked polymer of the sequential polymerization system is a formula (I-3) or a formula (I-4), preferably a formula (I- As the constituent component represented by 3), a constituent component in which R P2 is a polycarbonate chain, a polyester chain or a polyalkylene oxide chain as a molecular chain (a constituent component represented by the following formula (I-3B)), and R P2 Preferably has, as a molecular chain, a constituent component that is the above-mentioned hydrocarbon polymer chain (a constituent component represented by the following formula (I-3C)), and further, a constituent component in which R P2 is a hydrocarbon group. (Constituent component represented by the following formula (I-3A)) may be included.
 具体的には、未架橋ポリマーは、下記式(I-1)で表される構成成分、式(I-3B)で表される構成成分、式(I-3C)で表される構成成分、及び物理架橋性基を有する構成成分として下記式(II)で表される構成成分を有することが好ましく、これら構成成分に加えて更に式(I-3A)で表される構成成分を有していてもよい。 Specifically, the uncrosslinked polymer is a component represented by the following formula (I-1), a component represented by the formula (I-3B), a component represented by the formula (I-3C), And a constituent component represented by the following formula (II) as a constituent component having a physical crosslinkable group, and further a constituent component represented by the formula (I-3A) in addition to these constituent components. May be.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(I-1)において、RP1は上述の通りである。式(I-3A)において、RP2Aは低分子量の炭化水素鎖を示す。式(I-3B)において、RP2Bはポリカーボネート鎖、ポリエステル鎖又はポリアルキレンオキシド鎖を示す。式(I-3C)において、RP2Cは炭化水素ポリマー鎖を示す。RP2Aとしてとりうる低分子量の炭化水素鎖、RP2Bとしてとりうるポリカーボネート鎖、ポリエステル鎖又はポリアルキレンオキシド鎖、及びRP2Cとしてとりうる炭化水素ポリマー鎖は、それぞれ、上記式(I-3)におけるRP2としてとりうる低分子量の炭化水素鎖、ポリカーボネート鎖、ポリエステル鎖又はポリアルキレンオキシド鎖、及び炭化水素ポリマー鎖と同義であり、好ましいものも同じである。
 式(II)において、2つのZはいずれも-O-又は-NH-を示し(2つのZが互いに異なることはない。)、2つとも-O-であることが好ましい。RP4は、物理架橋性基を有する分子鎖であり、逐次重合系の非架橋ポリマーの側鎖となる部分(2つのZを端部とする分子鎖を形成する原子以外の原子)に物理架橋性基を有していること以外は、上記式(I-3)におけるRP2と同義である。Zを端部とする分子鎖としては、RP2としてとりうる上記分子鎖の中でも、炭化水素鎖が好ましく、低分子量の炭化水素基からなる鎖がより好ましく、脂肪族の炭化水素基が更に好ましく、アルキレン基(炭素数は1~12が好ましく、2~6がより好ましく、2~5が更に好ましい)が特に好ましい。
In the formula (I-1), R P1 is as described above. In the formula (I-3A), R P2A represents a low molecular weight hydrocarbon chain. In the formula (I-3B), R P2B represents a polycarbonate chain, a polyester chain or a polyalkylene oxide chain. In formula (I-3C), R P2C represents a hydrocarbon polymer chain. The low molecular weight hydrocarbon chain that can be taken as R P2A , the polycarbonate chain that can be taken as R P2B , the polyester chain or the polyalkylene oxide chain, and the hydrocarbon polymer chain that can be taken as R P2C are each represented by the above formula (I-3). It has the same meaning as a low molecular weight hydrocarbon chain, polycarbonate chain, polyester chain or polyalkylene oxide chain and hydrocarbon polymer chain that can be taken as R P2 , and the preferred ones are also the same.
In formula (II), two Z's each represent -O- or -NH- (the two Z's are not different from each other), and both are preferably -O-. R P4 is a molecular chain having a physical crosslinkable group, and is physically crosslinked to the side chain of the non-crosslinked polymer of the sequential polymerization system (atoms other than the atoms forming the molecular chain having two Z ends). It has the same meaning as R P2 in the above formula (I-3), except that it has a polymerizable group. Among the above-mentioned molecular chains that can be taken as R P2 , the molecular chain having Z at the end is preferably a hydrocarbon chain, more preferably a chain composed of a low molecular weight hydrocarbon group, and even more preferably an aliphatic hydrocarbon group. An alkylene group (having 1 to 12 carbon atoms, preferably 2 to 6 carbon atoms, and more preferably 2 to 5 carbon atoms) is particularly preferable.
 上記式(II)で表される構成成分の具体例を以下に示すが、本発明は下記具体例に限定されない。
Figure JPOXMLDOC01-appb-C000011
Specific examples of the constituent components represented by the above formula (II) are shown below, but the present invention is not limited to the following specific examples.
Figure JPOXMLDOC01-appb-C000011
 このような構成成分は、上記式(I-1)~(I-4)及び(I-6)のいずれかで表される構成成分を導く化合物と逐次重合可能で物理架橋性基を有する化合物を用いて、未架橋ポリマー中に組み込むことができる。
 また、架橋性構成成分を形成する化合物(物理架橋性基を導入可能な化合物)として、物理架橋性基を有し、ポリマーの側鎖と高分子反応する化合物も挙げられる。この化合物が有する物理架橋性基の数は上記架橋性構成成分と同じである。
Such a constituent component is a compound having a physically crosslinkable group capable of being sequentially polymerized with the compound leading to the constituent component represented by any one of the above formulas (I-1) to (I-4) and (I-6). Can be incorporated into the uncrosslinked polymer.
Further, as the compound forming the crosslinkable constituent component (the compound capable of introducing the physical crosslinkable group), a compound having a physical crosslinkable group and capable of polymer-reacting with the side chain of the polymer can also be mentioned. The number of physically crosslinkable groups possessed by this compound is the same as that of the above-mentioned crosslinkable constituent components.
 逐次重合系の未架橋ポリマーは、上記各式で表される構成成分以外の構成成分を有していてもよい。このような構成成分は、上記各式で表される構成成分と逐次重合可能なものであれば特に制限されない。 The non-crosslinked polymer of the sequential polymerization system may have constituent components other than the constituent components represented by the above formulas. Such constituents are not particularly limited as long as they can be successively polymerized with the constituents represented by the above formulas.
 逐次重合系の未架橋ポリマー中の上記各式(1-1)~式(I-6)及び式(II)のいずれかで表される構成成分の(合計)含有量は、特に限定されないが、5~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることが更に好ましい。この含有量の上限値は、上記100質量%にかかわらず、例えば、90質量%以下とすることもできる。
 逐次重合系の未架橋ポリマー中の、上記各式で表される構成成分以外の構成成分の含有量は、特に限定されないが、80質量%以下であることが好ましい。
The (total) content of the constituent components represented by any one of the above formulas (1-1) to (I-6) and (II) in the unpolymerized polymer of the sequential polymerization system is not particularly limited. It is preferably 5 to 100% by mass, more preferably 10 to 100% by mass, and further preferably 50 to 100% by mass. The upper limit of this content may be, for example, 90% by mass or less, regardless of the above 100% by mass.
The content of the constituents other than the constituents represented by the above formulas in the unpolymerized polymer of the sequential polymerization system is not particularly limited, but is preferably 80% by mass or less.
 架橋性構成成分、好ましくは上記式(II)で表される構成成分の、逐次重合系の未架橋ポリマー中の含有量は、上記(合計)含有量の範囲内であれば特に制限されないが、固体電解質組成物の分散性と固体粒子間等の結着性とイオン伝導性とを高い水準で発揮できる点で、例えば、0質量%を越え50質量%未満であることが好ましく、1~30質量%であることがより好ましく、2.5~15質量%であることが更に好ましい。 The content of the crosslinkable constituent component, preferably the constituent component represented by the above formula (II), in the uncrosslinked polymer of the sequential polymerization system is not particularly limited as long as it is within the above (total) content range, From the viewpoint that the dispersibility of the solid electrolyte composition, the binding property between solid particles and the like and the ion conductivity can be exhibited at a high level, for example, it is preferably more than 0 mass% and less than 50 mass %. The content is more preferably the mass%, further preferably 2.5 to 15 mass%.
 逐次重合系の未架橋ポリマーが上記式(I-1)~式(I-6)のいずれかで表される構成成分を有する場合、その含有量は、特に制限されず、以下の範囲に設定できる。
 すなわち、未架橋ポリマー中の、式(I-1)若しくは式(I-2)で表される構成成分、又は式(I-5)で表されるカルボン酸二無水物由来の構成成分の含有量は、特に制限されず、0~70質量%であることが好ましく、0.01~50質量%であることがより好ましく、0.1~40質量%であることが更に好ましい。
 逐次重合系の未架橋ポリマー中の、式(I-3)で表される構成成分と、式(I-4)で表される構成成分との合計含有量、又は、式(I-6)で表される構成成分の含有量は、それぞれ、特に制限されず、0~80質量%であることが好ましく、5~70質量%であることがより好ましく、15~30質量%であることが更に好ましい。
When the unpolymerized polymer of the sequential polymerization system has the constituent component represented by any one of the above formulas (I-1) to (I-6), the content thereof is not particularly limited and is set within the following range. it can.
That is, the content of the constituent component represented by the formula (I-1) or the formula (I-2) or the constituent component derived from the carboxylic acid dianhydride represented by the formula (I-5) in the uncrosslinked polymer. The amount is not particularly limited and is preferably 0 to 70% by mass, more preferably 0.01 to 50% by mass, and further preferably 0.1 to 40% by mass.
The total content of the constituent component represented by the formula (I-3) and the constituent component represented by the formula (I-4) in the unpolymerized polymer of the sequential polymerization system, or the formula (I-6) The content of each of the constituent components represented by is not particularly limited and is preferably 0 to 80% by mass, more preferably 5 to 70% by mass, and 15 to 30% by mass. More preferable.
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が低分子量の炭化水素鎖である構成成分(例えば上記式(I-3A)で表される構成成分)の、逐次重合系の未架橋ポリマー中の含有量は、特に制限されないが、例えば、0~50質量%であることが好ましく、0~30質量%であることがより好ましく、0~20質量%であることが更に好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が分子鎖として上記ポリカーボネート鎖、ポリエステル鎖又はポリアルキレンオキシド鎖である構成成分(例えば上記式(I-3B)で表される構成成分)の、逐次重合系の未架橋ポリマー中の含有量は、特に制限されないが、例えば、0~70質量%であることが好ましく、0.1~60質量%であることがより好ましく、10~50質量%であることが更に好ましく、10~30質量%であることが特に好ましい。
 式(I-3)又は式(I-4)で表される構成成分のうち、RP2が分子鎖として上記炭化水素ポリマー鎖である構成成分(例えば上記式(I-3C)で表される構成成分)の、逐次重合系の未架橋ポリマー中の含有量は、特に制限されないが、例えば、0~80質量%であることが好ましく、5~60質量%であることがより好ましく、10~50質量%であることが更に好ましい。
Among the constituents represented by formula (I-3) or (I-4), constituents in which R P2 is a low molecular weight hydrocarbon chain (for example, the constituent represented by the above formula (I-3A)) The content of () in the uncrosslinked polymer of the sequential polymerization system is not particularly limited, but is, for example, preferably 0 to 50% by mass, more preferably 0 to 30% by mass, and 0 to 20% by mass. % Is more preferable.
Among the constituents represented by the formula (I-3) or the formula (I-4), constituents in which R P2 is the above polycarbonate chain, polyester chain or polyalkylene oxide chain as a molecular chain (for example, the above formula (I- The content of the constituent component 3B)) in the unpolymerized polymer of the sequential polymerization system is not particularly limited, but is preferably 0 to 70% by mass, and 0.1 to 60% by mass, for example. It is more preferable that the amount is 10 to 50% by mass, further preferably 10 to 30% by mass, and particularly preferably 10 to 30% by mass.
Among the constituent components represented by the formula (I-3) or the formula (I-4), the constituent component in which R P2 is the above hydrocarbon polymer chain as a molecular chain (for example, represented by the above formula (I-3C)) The content of the constituent component) in the uncrosslinked polymer of the sequential polymerization system is not particularly limited, but is, for example, preferably 0 to 80% by mass, more preferably 5 to 60% by mass, and 10 to 10% by mass. It is more preferably 50% by mass.
 なお、逐次重合系の未架橋ポリマーが各式で表される構成成分を複数有する場合、各構成成分の上記含有量は合計含有量とする。 Note that if the uncrosslinked polymer of the sequential polymerization system has a plurality of constituent components represented by each formula, the above content of each constituent component shall be the total content.
 逐次重合系の未架橋ポリマーとしてとりうる、ポリウレタン、ポリウレア、ポリアミド、ポリイミドの各ポリマーとしては、実施例で合成したものの他に、例えば、国際公開第2018/020827号及び国際公開第2015/046313号、更には特開2015-088480号公報に記載の各ポリマー等に架橋性構成成分を導入したものを挙げることができる。 As the respective polymers of polyurethane, polyurea, polyamide, and polyimide which can be taken as the uncrosslinked polymer of the sequential polymerization system, in addition to those synthesized in the examples, for example, International Publication No. 2018/020827 and International Publication No. 2015/046313. Further, there may be mentioned those obtained by introducing a crosslinkable constituent into each of the polymers described in JP-A-2015-088480.
 - 連鎖重合系のポリマー -
 未架橋ポリマーとして好適な連鎖重合系のポリマーは、非芳香族性の炭素-炭素二重結合を有する1種又は2種以上のモノマーが連鎖重合してなるポリマーであり、側鎖に物理架橋性基を有している。中でも、上述の、含フッ素ポリマー、炭化水素系ポリマー又は(メタ)アクリルポリマーが好ましく、(メタ)アクリルポリマーがより好ましい。
-Polymer of chain polymerization system-
A chain-polymerization type polymer suitable as an uncrosslinked polymer is a polymer obtained by chain-polymerizing one or more monomers having a non-aromatic carbon-carbon double bond, and a side chain having physical crosslinkability. Has a group. Among them, the above-mentioned fluorine-containing polymer, hydrocarbon-based polymer or (meth)acrylic polymer is preferable, and (meth)acrylic polymer is more preferable.
 含フッ素ポリマーとしては、特に制限されないが、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとテトラフルオロエチレンの共重合体(PVdF-HFP-TFE)が挙げられる。
 炭化水素系ポリマーとしては、特に制限されないが、例えば、ポリエチレン、ポリプロピレン、天然ゴム、ポリブタジエン、ポリイソプレン、ポリスチレンブタジエン共重合体、ポリブチレン、アクリロニトリルブタジエン共重合体、又はこれらの水添(水素化)ポリマーが挙げられる。本発明において、炭化水素系ポリマーは、主鎖に結合する不飽和基(例えば1,2-ブタジエン構成成分)を有しないものが化学架橋の形成を抑制できる点で好ましい。
The fluorine-containing polymer is not particularly limited, and examples thereof include polytetrafluoroethylene (PTFE), polyvinylene difluoride (PVdF), a copolymer of polyvinylene difluoride and hexafluoropropylene (PVdF-HFP), A copolymer (PVdF-HFP-TFE) of polyvinylidene fluoride, hexafluoropropylene and tetrafluoroethylene can be mentioned.
The hydrocarbon-based polymer is not particularly limited, and examples thereof include polyethylene, polypropylene, natural rubber, polybutadiene, polyisoprene, polystyrene butadiene copolymer, polybutylene, acrylonitrile butadiene copolymer, and hydrogenated (hydrogenated) polymers thereof. Are listed. In the present invention, the hydrocarbon-based polymer is preferably one that does not have an unsaturated group (for example, 1,2-butadiene constituent component) bonded to the main chain because the formation of chemical crosslinks can be suppressed.
 (メタ)アクリルポリマーとしては、特に制限されないが、(メタ)アクリル酸エステル化合物、(メタ)アクリルアミド化合物及び(メタ)アクリルニトリル化合物から選択される少なくとも1種の(メタ)アクリル化合物(M1)を(共)重合して得られるポリマーが好ましい。また、(メタ)アクリル化合物(M1)とその他の重合性化合物(M2)との共重合体からなる(メタ)アクリルポリマーも好ましい。その他の重合性化合物(M2)としては、特に制限されず、スチレン化合物、ビニルナフタレン化合物、ビニルカルバゾール化合物、アリル化合物、ビニルエーテル化合物、ビニルエステル化合物、イタコン酸ジアルキル化合物等のビニル化合物が挙げられる。ビニル化合物としては、例えば、特開2015-88486号公報に記載の「ビニル系モノマー」が挙げられる。 The (meth)acrylic polymer is not particularly limited, but at least one (meth)acrylic compound (M1) selected from a (meth)acrylic acid ester compound, a (meth)acrylamide compound and a (meth)acrylonitrile compound is used. Polymers obtained by (co)polymerization are preferred. A (meth)acrylic polymer made of a copolymer of the (meth)acrylic compound (M1) and another polymerizable compound (M2) is also preferable. The other polymerizable compound (M2) is not particularly limited, and examples thereof include vinyl compounds such as styrene compounds, vinylnaphthalene compounds, vinylcarbazole compounds, allyl compounds, vinyl ether compounds, vinyl ester compounds, and dialkyl itaconate compounds. Examples of the vinyl compound include “vinyl-based monomers” described in JP-A-2015-88486.
 (メタ)アクリルポリマーの構成成分を導く(メタ)アクリル化合物(M1)及びビニル化合物(M2)としては、下記式(b-1)で表される化合物が好ましい。この化合物は、ポリマーの側鎖となる部分構造部に置換基として上述の物理架橋性基を有していない。 As the (meth)acrylic compound (M1) and the vinyl compound (M2) which lead the constituent components of the (meth)acrylic polymer, compounds represented by the following formula (b-1) are preferable. This compound does not have the above-mentioned physical crosslinkable group as a substituent in the partial structure part which becomes the side chain of the polymer.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、Rは水素原子、ヒドロキシ基、シアノ基、ハロゲン原子、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、又はアリール基(炭素数6~22が好ましく、6~14がより好ましい)を表す。中でも水素原子又はアルキル基が好ましく、水素原子又はメチル基がより好ましい。 In the formula, R 1 is a hydrogen atom, a hydroxy group, a cyano group, a halogen atom, an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms), and an alkenyl group (having 2 carbon atoms). To 24 are preferable, 2 to 12 are more preferable, 2 to 6 are particularly preferable), an alkynyl group (having 2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is particularly preferable), or an aryl group ( It preferably has 6 to 22 carbon atoms, and more preferably 6 to 14 carbon atoms. Of these, a hydrogen atom or an alkyl group is preferable, and a hydrogen atom or a methyl group is more preferable.
 Rは、水素原子又は置換基を示す。Rとして採りうる置換基は、特に限定されないが、アルキル基(炭素数1~30が好ましく、1~24がより好ましく、1~12が特に好ましく、分岐鎖でもよいが直鎖が好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましい)、シアノ基、ヒドロキシ基、スルファニル基、酸素原子を含有する脂肪族複素環基(炭素数2~12が好ましく、2~6がより好ましい)が挙げられる。
 酸素原子を含有する脂肪族複素環基は、エポキシ基含有基、オキセタン基含有基、テトラヒドロフリル基含有基などが好ましい。
R 2 represents a hydrogen atom or a substituent. The substituent that can be used as R 2 is not particularly limited, but is an alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms, particularly preferably 1 to 12 carbon atoms, and may be a branched chain but preferably a straight chain), An alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14), an aralkyl group (preferably having 7 to 23 carbon atoms, 7 And a cyano group, a hydroxy group, a sulfanyl group, and an oxygen-containing aliphatic heterocyclic group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms).
The aliphatic heterocyclic group containing an oxygen atom is preferably an epoxy group-containing group, an oxetane group-containing group, a tetrahydrofuryl group-containing group, or the like.
 Lは、連結基であり、特に限定されないが、例えば、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数2~6(好ましくは2~3)のアルケニレン基、炭素数6~24(好ましくは6~10)のアリーレン基、酸素原子、硫黄原子、イミノ基(-NR-)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はそれらの組み合わせに係る基等が挙げられ、-CO-O-基、-CO-N(R)-基(Rは上述の通り。)が好ましい。上記連結基は任意の置換基を有していてもよい。連結基を構成する原子の数及び連結原子数は後述する通りである。任意の置換基としては、後記置換基Tが挙げられ、例えば、アルキル基又はハロゲン原子などが挙げられる。 L 1 is a linking group and is not particularly limited, and examples thereof include an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3), an alkenylene group having 2 to 6 carbon atoms (preferably 2 to 3), and a carbon atom number. 6 to 24 (preferably 6 to 10) arylene group, oxygen atom, sulfur atom, imino group (—NR N —), carbonyl group, phosphoric acid linking group (—OP(OH)(O)—O— ), a phosphonic acid linking group (—P(OH)(O)—O—), or a group related to a combination thereof, and the like. —CO—O— group, —CO—N(R N )— group ( R N is as described above.) is preferable. The linking group may have any substituent. The number of atoms constituting the linking group and the number of linking atoms are as described later. Examples of the optional substituent include the substituent T described later, and examples thereof include an alkyl group and a halogen atom.
 nは0又は1であり、1が好ましい。ただし、-(L-Rが1種の置換基(例えばアルキル基)を示す場合、nを0とし、Rを置換基(アルキル基)とする。 n is 0 or 1, and 1 is preferable. However, when -(L 1 ) n -R 2 represents one kind of substituent (for example, an alkyl group), n is 0 and R 2 is a substituent (alkyl group).
 上記(メタ)アクリル化合物(M1)としては、上記(b-1)のほか、下記式(b-2)又は(b-3)で表される化合物も好ましい。 As the above (meth)acrylic compound (M1), in addition to the above (b-1), compounds represented by the following formula (b-2) or (b-3) are also preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 R、nは上記式(b-1)と同義である。
 Rは、Rと同義である。
 Lは、連結基であり、上記Lと同義である。
 Lは、連結基であり、上記Lと同義であるが、炭素数1~6(好ましくは1~3)のアルキレン基が好ましい。
 mは1~200の整数であり、1~100の整数であることが好ましく、1~50の整数であることがより好ましい。
R 1 and n have the same meaning as in the above formula (b-1).
R 3 has the same meaning as R 2 .
L 2 is a linking group and has the same meaning as L 1 .
L 3 is a linking group and has the same meaning as L 1 above, but an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3) is preferable.
m is an integer of 1 to 200, preferably an integer of 1 to 100, and more preferably an integer of 1 to 50.
 上記式(b-1)~(b-3)において、重合性基を形成する炭素原子であってRが結合していない炭素原子は無置換炭素原子(HC=)として表しているが、置換基を有していてもよい。置換基としては、特に制限されないが、例えば、Rとしてとりうる上記基が挙げられる。
 また、式(b-1)~(b-3)において、アルキル基、アリール基、アルキレン基、アリーレン基など置換基を取ることがある基については、本発明の効果を損なわない範囲で置換基を有していてもよい。置換基としては、例えば後述する置換基Tが挙げられ、具体的には、ハロゲン原子、ヒドロキシ基、スルファニル基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アリーロイル基、アリーロイルオキシ基等が挙げられる。
In the above formulas (b-1) to (b-3), the carbon atom forming the polymerizable group and not bonded to R 1 is represented as an unsubstituted carbon atom (H 2 C=). However, it may have a substituent. The substituent is not particularly limited, and examples thereof include the above-mentioned groups that can be taken as R 1 .
Further, in the formulas (b-1) to (b-3), a group which may take a substituent such as an alkyl group, an aryl group, an alkylene group and an arylene group is a substituent within a range not impairing the effects of the present invention. May have. Examples of the substituent include the substituent T described later, and specifically, a halogen atom, a hydroxy group, a sulfanyl group, an acyl group, an acyloxy group, an alkoxy group, an aryloxy group, an aryloyl group, an aryloyloxy group and the like. Are listed.
 バインダーを構成するポリマーが連鎖重合系のポリマー、好ましくは付加重合系のポリマーである場合、質量平均分子量が1,000以上のマクロモノマーに由来する構成成分(MM)を有することが好ましい。 When the polymer constituting the binder is a chain polymerization type polymer, preferably an addition polymerization type polymer, it is preferable to have a constituent component (MM) derived from a macromonomer having a mass average molecular weight of 1,000 or more.
 マクロモノマーの質量平均分子量は、2,000以上であることが好ましく、3,000以上であることがより好ましい。上限としては、500,000以下であることが好ましく、100,000以下であることがより好ましく、30,000以下であることが特に好ましい。バインダーを構成するポリマーが上記範囲の質量平均分子量をもつマクロモノマー由来の構成成分(MM)を有することで、更に良好に非水系分散媒中に均一に分散できる。なお、構成成分(MM)の質量平均分子量は、バインダーを構成するポリマーを合成するときに組み込むマクロモノマーの質量平均分子量を測定することで同定することができる。 The mass average molecular weight of the macromonomer is preferably 2,000 or more, more preferably 3,000 or more. The upper limit is preferably 500,000 or less, more preferably 100,000 or less, and particularly preferably 30,000 or less. When the polymer that constitutes the binder has the constituent component (MM) derived from the macromonomer having a mass average molecular weight within the above range, it can be more uniformly dispersed in the non-aqueous dispersion medium. The mass average molecular weight of the constituent component (MM) can be identified by measuring the mass average molecular weight of the macromonomer incorporated when the polymer constituting the binder is synthesized.
 マクロモノマーは、質量平均分子量が1,000以上のものであれば特に限定されないが、エチレン性不飽和結合を有する基等の重合性基に結合する重合鎖を有するマクロモノマーが好ましい。マクロモノマーが有する重合鎖は、ポリマーの主鎖に対して側鎖(グラフト鎖)を構成する。 The macromonomer is not particularly limited as long as it has a mass average molecular weight of 1,000 or more, but a macromonomer having a polymer chain bonded to a polymerizable group such as a group having an ethylenically unsaturated bond is preferable. The polymer chain of the macromonomer constitutes a side chain (graft chain) with respect to the polymer main chain.
 上記重合鎖は非水系分散媒への分散性を更に良化する働きを有する。これにより、固体粒子間の界面抵抗の抑制と結着性の良化との両立が更に図られる。 The above polymer chain has the function of further improving the dispersibility in a non-aqueous dispersion medium. As a result, both suppression of interfacial resistance between solid particles and improvement of binding property are further achieved.
-平均分子量の測定-
 本発明において、ポリマー、ポリマー鎖及びマクロモノマーの分子量については、特に断らない限り、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量又は数平均分子量をいう。その測定法としては、基本として下記条件1又は条件2(優先)の方法により測定した値とする。ただし、ポリマー又はマクロモノマーの種類によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-H(商品名、東ソー社製)を2本つなげる。
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000(いずれも商品名、東ソー社製)をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
-Measurement of average molecular weight-
In the present invention, the molecular weight of a polymer, a polymer chain and a macromonomer refers to a mass average molecular weight or a number average molecular weight in terms of standard polystyrene by gel permeation chromatography (GPC) unless otherwise specified. The measurement method is basically a value measured by the method of the following condition 1 or condition 2 (priority). However, an appropriate eluent may be selected and used depending on the type of polymer or macromonomer.
(Condition 1)
Column: Two TOSOH TSKgel Super AWM-H (trade name, manufactured by Tosoh Corporation) are connected.
Carrier: 10 mM LiBr/N-methylpyrrolidone Measurement temperature: 40°C
Carrier flow rate: 1.0 ml/min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector (condition 2)
Column: A column in which TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, and TOSOH TSKgel Super HZ2000 (both are trade names, manufactured by Tosoh Corporation) is used.
Carrier: Tetrahydrofuran Measurement temperature: 40°C
Carrier flow rate: 1.0 ml/min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
 マクロモノマーが有する重合性基は、特に限定されず、詳細は後述するが、例えば各種のビニル基、(メタ)アクリロイル基を挙げることができ、(メタ)アクリロイル基が好ましい。 The polymerizable group contained in the macromonomer is not particularly limited and will be described in detail later, but examples thereof include various vinyl groups and (meth)acryloyl groups, and (meth)acryloyl groups are preferable.
 マクロモノマーが有する重合鎖は、特に限定されず、通常のポリマー成分を適用することができる。例えば、(メタ)アクリル樹脂の鎖、ポリビニル樹脂の鎖、ポリシロキサン鎖、ポリアルキレンエーテル鎖、炭化水素鎖等が挙げられ、(メタ)アクリル樹脂の鎖又はポリシロキサン鎖が好ましい。
 (メタ)アクリル樹脂の鎖は、(メタ)アクリル酸エステル化合物及び(メタ)アクリロニトリル化合物等から選ばれる(メタ)アクリル化合物に由来する構成成分を含むことが好ましく、2種以上の(メタ)アクリル化合物の重合体であってもよい。(メタ)アクリル化合物は上記(メタ)アクリル化合物(M1)と同義である。ポリシロキサン鎖は、特に限定されないが、アルキル基若しくはアリール基を有するシロキサンの重合体が挙げられる。炭化水素鎖としては、上述した炭化水素系ポリマーからなる鎖が挙げられる。
The polymer chain of the macromonomer is not particularly limited, and ordinary polymer components can be applied. Examples thereof include a (meth)acrylic resin chain, a polyvinyl resin chain, a polysiloxane chain, a polyalkylene ether chain, and a hydrocarbon chain, and a (meth)acrylic resin chain or a polysiloxane chain is preferable.
The chain of the (meth)acrylic resin preferably contains a constituent component derived from a (meth)acrylic compound selected from a (meth)acrylic acid ester compound, a (meth)acrylonitrile compound, and the like, and two or more kinds of (meth)acryl It may be a polymer of a compound. The (meth)acrylic compound has the same meaning as the (meth)acrylic compound (M1). The polysiloxane chain is not particularly limited, and examples thereof include polymers of siloxane having an alkyl group or an aryl group. Examples of the hydrocarbon chain include chains made of the above-mentioned hydrocarbon-based polymer.
 上記マクロモノマーは下記式(b-11)で表される重合性基を有することが好ましい。下記式中、R11はRと同義である。*は結合位置である。 The macromonomer preferably has a polymerizable group represented by the following formula (b-11). In the formula below, R 11 has the same meaning as R 1 . * Is a binding position.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 マクロモノマーは、上記重合性基と上記重合鎖とを連結する連結基を有することが好ましい。この連結基は、通常、マクロモノマーの側鎖に組み込まれる。連結基は、特に限定されないが、上述の式(b-1)における連結基Lで説明した基等が挙げられる。
 本発明において、連結基を構成する原子の数は、1~36であることが好ましく、1~24であることがより好ましく、1~12であることが更に好ましく、1~6であることが特に好ましい。連結基の連結原子数は10以下であることが好ましく、8以下であることがより好ましい。下限としては、1以上である。上記連結原子数とは所定の構造部間を結ぶ最少の原子数をいう。例えば、-CH-C(=O)-O-の場合、連結基を構成する原子の数は6となるが、連結原子数は3となる。
The macromonomer preferably has a linking group that links the polymerizable group and the polymer chain. This linking group is usually incorporated into the side chain of the macromonomer. The linking group is not particularly limited, and examples thereof include the groups described for the linking group L 1 in the above formula (b-1).
In the present invention, the number of atoms constituting the linking group is preferably 1 to 36, more preferably 1 to 24, further preferably 1 to 12, and more preferably 1 to 6. Particularly preferred. The number of connecting atoms in the connecting group is preferably 10 or less, more preferably 8 or less. The lower limit is 1 or more. The above-mentioned number of connecting atoms means the minimum number of atoms connecting predetermined structural parts. For example, in the case of —CH 2 —C(═O)—O—, the number of atoms constituting the linking group is 6, but the number of linking atoms is 3.
 上記マクロモノマーとしては、下記式(b-12a)~(b-12c)のいずれかで表される重合性部位を有することが好ましい。 The macromonomer preferably has a polymerizable moiety represented by any of the following formulas (b-12a) to (b-12c).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 Rb2はRと同義である。*は結合位置である。RN2は後述するRN1と同義である。式(b-12c)のベンゼン環には任意の置換基Tが置換していてもよい。
 *の結合位置の先に存在する構造部としては、マクロモノマーとしての分子量を満たせば特に限定されないが、(連結基を介して結合してもよい)上記重合鎖が好ましい。このとき、連結基及び重合鎖はそれぞれ置換基Tを有していてもよく、例えば、ハロゲン原子(フッ素原子)などを有していてもよい。
 上記式(b-11)で表される重合性基及び上記式(b-12a)~(b-12c)のいずれかで表される重合性部位において、重合性基を形成する炭素原子であってR11又はRb2が結合していない炭素原子は無置換炭素原子として表しているが、上述のように、置換基を有していてもよい。置換基としては、特に制限されないが、例えば、Rとしてとりうる上記基が挙げられる。
R b2 has the same meaning as R 1 . * Is a binding position. R N2 has the same meaning as R N1 described later. The benzene ring of formula (b-12c) may be substituted with any substituent T.
The structural portion existing before the bonding position of * is not particularly limited as long as the molecular weight as a macromonomer is satisfied, but the polymer chain (which may be bonded via a linking group) is preferable. At this time, the linking group and the polymer chain may each have a substituent T, for example, a halogen atom (fluorine atom) or the like.
It is a carbon atom forming a polymerizable group in the polymerizable group represented by the above formula (b-11) and the polymerizable site represented by any of the above formulas (b-12a) to (b-12c). The carbon atom to which R 11 or R b2 is not bonded is represented as an unsubstituted carbon atom, but may have a substituent as described above. The substituent is not particularly limited, and examples thereof include the above-mentioned groups that can be taken as R 1 .
 上記マクロモノマーは、下記式(b-13a)で表される化合物であることが好ましい。 The above macromonomer is preferably a compound represented by the following formula (b-13a).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 Rb2は、Rと同義である。
 naは特に限定されないが、好ましくは1~6の整数であり、より好ましくは1又は2であり、更に好ましくは1である。
R b2 has the same meaning as R 1 .
Although na is not particularly limited, it is preferably an integer of 1 to 6, more preferably 1 or 2, and further preferably 1.
 Raは、naが1のときは置換基、naが2以上のときは連結基を表す。
 Raとしてとりうる置換基としては、特に限定されないが、上記重合鎖が好ましく、(メタ)アクリル樹脂の鎖又はポリシロキサン鎖がより好ましい。
 Raは、式(b-13a)中の酸素原子(-O-)に直接結合していてもよく、連結基を介して結合していてもよい。この連結基としては、特に限定されないが、上述の、重合性基と重合鎖とを連結する連結基が挙げられる。
Ra represents a substituent when na is 1 and a linking group when na is 2 or more.
The substituent which can be taken as Ra is not particularly limited, but the above-mentioned polymer chain is preferable, and a (meth)acrylic resin chain or a polysiloxane chain is more preferable.
Ra may be directly bonded to the oxygen atom (—O—) in the formula (b-13a) or may be bonded via a linking group. The linking group is not particularly limited, and examples thereof include the above-mentioned linking group that links the polymerizable group and the polymer chain.
 Raが連結基であるとき、その連結基としては、特に限定されないが、例えば、炭素数1~30のアルカン連結基、炭素数3~12のシクロアルカン連結基、炭素数6~24のアリール連結基、炭素数3~12のヘテロアリール連結基、エーテル基、スルフィド基、ホスフィニデン基(-PR-:Rは水素原子若しくは炭素数1~6のアルキル基)、シリレン基(-Si(RSi-:RSiは水素原子若しくは炭素数1~6のアルキル基)、カルボニル基、イミノ基(-NRN1-:RN1は水素原子又は置換基を示し、好ましくは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)、又はその組み合わせであることが好ましい。 When Ra is a linking group, the linking group is not particularly limited, and examples thereof include an alkane linking group having 1 to 30 carbon atoms, a cycloalkane linking group having 3 to 12 carbon atoms, and an aryl linking group having 6 to 24 carbon atoms. Group, heteroaryl linking group having 3 to 12 carbon atoms, ether group, sulfide group, phosphinidene group (-PR-: R is a hydrogen atom or alkyl group having 1 to 6 carbon atoms), silylene group (-Si(R Si )) 2 -: R Si is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), a carbonyl group, an imino group (-NR N1 -: R N1 is a hydrogen atom or a substituent, preferably a hydrogen atom, It is preferably an alkyl group having 6 or an aryl group having 6 to 10 carbon atoms), or a combination thereof.
 上述のマクロモノマー以外のマクロモノマーとしては、例えば、特開2015-88486号公報に記載の「マクロモノマー(X)」が挙げられる。 Examples of macromonomers other than the above-mentioned macromonomers include “macromonomer (X)” described in JP-A-2015-88486.
 (物理架橋性基を有する構成成分)
 連鎖重合系のポリマーは、上記構成成分とは別に、ポリマーの側鎖となる部分構造部に物理架橋性基を有する構成成分(架橋性構成成分)を含む。この物理架橋性基は、上述の通りであり、架橋剤が有する物理架橋性基との物理架橋の種類に応じて適宜の基を選択できる。
 架橋性構成成分は、未架橋ポリマーを形成しうる構成成分であればよく、例えば未架橋ポリマーの側鎖となる部分構造部に物理架橋性基を有する化合物(以下、単に共重合性化合物ということがある。)に由来する構成成分が挙げられる。このような共重合性化合物としては、連鎖重合系のポリマーを構成する構成成分を導く化合物と共重合しうる化合物であれば特に制限されず、例えば、上述の物理架橋性基を有する、ビニル化合物若しくは(メタ)アクリル化合物等が挙げられる。具体的には、例えば、(メタ)アクリル酸化合物、上記式(b-1)で表される化合物のL及びRの少なくとも一方に置換基として上述の物理架橋性基を導入した化合物、更には上述のマクロモノマーに置換基として物理架橋性基を導入したものが挙げられる。より具体的には、(メタ)アクリル酸化合物、更には、少なくとも1つの水素原子がカルボキシ基、スルホニル基、リン酸基若しくはホスホン酸で置換されたアルキル基の(メタ)アクリル酸エステル化合物(例えば、(メタ)アクリル酸(カルボキシアルキル)エステル化合物)、また、少なくとも1つの水素原子が上記基群(b)に含まれる基で置換されたアルキル基の(メタ)アクリル酸エステル化合物(例えば、(メタ)アクリル酸アミノアルキルエステル化合物)等が挙げられる。
 上記アルキル基の炭素数は、特に制限されず、1~12が好ましく、1~6がより好ましく、1~4が更に好ましい。また、アルキル基に対する物理架橋性基の置換位置は、特に制限されず、架橋剤の分子構造を考慮して、後述する物理架橋構造を含む架橋構造の連結原子数を満たす位置が好ましい。
(Constituent Component Having Physically Crosslinkable Group)
In addition to the above-mentioned constituents, the chain-polymerized polymer contains a constituent (crosslinkable constituent) having a physical crosslinkable group in a partial structure part which is a side chain of the polymer. The physical crosslinkable group is as described above, and an appropriate group can be selected according to the type of physical crosslink with the physical crosslinkable group contained in the crosslinker.
The crosslinkable constituent component may be a constituent component capable of forming an uncrosslinked polymer, and for example, a compound having a physical crosslinkable group in a partial structure part which is a side chain of the uncrosslinked polymer (hereinafter, simply referred to as a copolymerizable compound. There is a). Such a copolymerizable compound is not particularly limited as long as it is a compound that can be copolymerized with a compound that guides the constituent components of the chain-polymerization polymer, and has, for example, the above-mentioned physical crosslinkable group, a vinyl compound. Or a (meth)acrylic compound etc. are mentioned. Specifically, for example, a (meth)acrylic acid compound, a compound in which the above-mentioned physical crosslinkable group is introduced as a substituent to at least one of L 1 and R 2 of the compound represented by the above formula (b-1), Furthermore, the above-mentioned macromonomer into which a physical crosslinkable group is introduced as a substituent can be mentioned. More specifically, a (meth)acrylic acid compound, and further, a (meth)acrylic acid ester compound of an alkyl group in which at least one hydrogen atom is substituted with a carboxy group, a sulfonyl group, a phosphoric acid group or a phosphonic acid (for example, , (Meth)acrylic acid (carboxyalkyl) ester compound), and an alkyl group (meth)acrylic acid ester compound in which at least one hydrogen atom is substituted with a group contained in the above group (b) (for example, ( (Meth)acrylic acid aminoalkyl ester compounds) and the like.
The carbon number of the alkyl group is not particularly limited, preferably 1 to 12, more preferably 1 to 6, and further preferably 1 to 4. Further, the substitution position of the physical crosslinkable group with respect to the alkyl group is not particularly limited, and in consideration of the molecular structure of the crosslinking agent, a position satisfying the number of connecting atoms of the crosslinked structure including the physical crosslinked structure described later is preferable.
 また、架橋性構成成分を形成する化合物(物理架橋性基を導入可能な化合物)として、上記共重合性化合物の他にも、物理架橋性基を有し、ポリマーの側鎖と高分子反応する化合物も挙げられる。 Further, as a compound forming a crosslinkable constituent (a compound capable of introducing a physical crosslinkable group), it has a physical crosslinkable group in addition to the above-mentioned copolymerizable compound, and causes a polymer reaction with a side chain of the polymer Compounds are also included.
 共重合性化合物及び上記高分子反応する化合物がそれぞれ有する物理架橋性基の数は、1個以上であればよく、1~6個であることが好ましく、1個又は2個であることがより好ましい。 The number of physical crosslinkable groups that each of the copolymerizable compound and the polymer-reactive compound has may be 1 or more, preferably 1 to 6, and more preferably 1 or 2. preferable.
 (連鎖重合系の未架橋ポリマーの構造)
 連鎖重合系の未架橋ポリマーは、架橋性構成成分を含み、更に、上記(メタ)アクリル化合物(M1)由来の構成成分、上記ビニル化合物(M2)由来の構成成分、マクロモノマーに由来する構成成分(MM)、これらの構成成分を導く化合物と共重合可能な、他の構成成分を含んでいてもよい。
 (メタ)アクリルポリマーは、上記(メタ)アクリル化合物(M1)由来の構成成分と架橋性構成成分とを含むことが好ましく、好ましくは更にマクロモノマーに由来する構成成分(MM)を含むことが好ましい。(メタ)アクリルポリマーは、上記ビニル化合物(M2)由来の構成成分、更には他の構成成分を含んでいてもよい。
(Structure of uncrosslinked polymer of chain polymerization system)
The chain-polymerization uncrosslinked polymer contains a crosslinkable constituent component, and further, a constituent component derived from the (meth)acrylic compound (M1), a constituent component derived from the vinyl compound (M2), and a constituent component derived from a macromonomer. (MM), other components that can be copolymerized with the compounds leading to these components may be contained.
The (meth)acrylic polymer preferably contains a constituent component derived from the (meth)acrylic compound (M1) and a crosslinkable constituent component, and more preferably a constituent component (MM) derived from a macromonomer. .. The (meth)acrylic polymer may contain the constituent component derived from the vinyl compound (M2) and further other constituent components.
 架橋性構成成分の、未架橋ポリマー中の含有量は、特に制限されないが、固体電解質組成物の分散性と固体粒子間等の結着性とイオン伝導性とを高い水準で発揮できる点で、例えば、0質量%を越え50質量%未満であることが好ましく、1~30質量%であることがより好ましく、2.5~15質量%であることが更に好ましい。 The content of the crosslinkable constituent in the uncrosslinked polymer is not particularly limited, but in that the dispersibility of the solid electrolyte composition and the binding property between solid particles and the ion conductivity can be exhibited at a high level, For example, it is preferably more than 0% by mass and less than 50% by mass, more preferably 1 to 30% by mass, and further preferably 2.5 to 15% by mass.
 連鎖重合系のポリマーが(メタ)アクリルポリマーである場合、(メタ)アクリル化合物(M1)に由来する構成成分の、ポリマー中の含有量は、特に限定されないが、1~99質量%であることが好ましく、5~97質量%であることがより好ましく、10~95質量%であることが特に好ましく、30~80質量%であることが特に好ましい。
 ビニル化合物(M2)に由来する構成成分の、ポリマー中の含有量は、特に限定されないが、0~30質量%であることが好ましく、0~20質量%であることがより好ましく、0~10質量%であることが特に好ましい。
 ポリマー中の構成成分(MM)の含有量は、特に限定されないが、1~60質量%であることが好ましい。これにより、固体電解質組成物の分散性と固体粒子間等の結着性とイオン伝導性とを高い水準で発揮できる。構成成分(MM)の含有量は、ポリマー中、3~50質量%であることがより好ましく、5~40質量%であることが更に好ましい。
When the chain polymerization type polymer is a (meth)acrylic polymer, the content of the constituent component derived from the (meth)acrylic compound (M1) in the polymer is not particularly limited, but is 1 to 99% by mass. Is more preferable, 5 to 97% by mass is more preferable, 10 to 95% by mass is particularly preferable, and 30 to 80% by mass is particularly preferable.
The content of the constituent component derived from the vinyl compound (M2) in the polymer is not particularly limited, but is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, and 0 to 10% by mass. It is particularly preferable that the content is mass %.
The content of the constituent component (MM) in the polymer is not particularly limited, but is preferably 1 to 60% by mass. Thereby, the dispersibility of the solid electrolyte composition, the binding property between solid particles, and the ionic conductivity can be exhibited at a high level. The content of the constituent component (MM) in the polymer is more preferably 3 to 50% by mass, further preferably 5 to 40% by mass.
 未架橋ポリマー(各構成成分)は、置換基を有していてもよい。置換基としては、下記置換基Tから選択される基が挙げられ、未架橋ポリマーに導入されたときに物理架橋性基として機能しない基が好ましい。以下に置換基Tを挙げるが、これらに限定されない。
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、スルホ基(スルホン酸基)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Tから選択される基)である。
 また、これらの置換基Tで挙げた各基は、上記置換基Tが更に置換していてもよい。
The uncrosslinked polymer (each component) may have a substituent. Examples of the substituent include groups selected from the following substituents T, and a group that does not function as a physical crosslinkable group when introduced into an uncrosslinked polymer is preferable. The substituent T is shown below, but the substituent T is not limited thereto.
Alkyl group (preferably alkyl group having 1 to 20 carbon atoms, for example, methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl group (Preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl etc.), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl etc.), a cycloalkyl group. (Preferably a cycloalkyl group having 3 to 20 carbon atoms, for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl) , 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), a heterocyclic group (preferably a heterocyclic group having 2 to 20 carbon atoms, and preferably having at least one oxygen atom, sulfur atom, nitrogen atom) A 5- or 6-membered heterocyclic group, which includes an aromatic heterocyclic group and an aliphatic heterocyclic group, for example, a tetrahydropyran ring group, a tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl, etc.), an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, for example, methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), an aryloxy group ( Preferably an aryloxy group having 6 to 26 carbon atoms, for example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc., a heterocyclic oxy group (an —O— group bonded to the above heterocyclic group) Group), an alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, for example, ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.), an aryloxycarbonyl group (preferably an aryloxycarbonyl group having 6 to 26 carbon atoms, Examples include phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc., an amino group (preferably an amino group having 0 to 20 carbon atoms, an alkylamino group, an arylamino group, , Amino (-NH 2 ), N,N-dimethylamino, N,N-diethylamino, N-ethylamino, anilino, etc., sulfamoyl group (preferably sulfamo having 0 to 20 carbon atoms) An yl group, for example, N,N-dimethylsulfamoyl, N-phenylsulfamoyl, etc., an acyl group (alkylcarbonyl group, alkenylcarbonyl group, alkynylcarbonyl group, arylcarbonyl group, heterocyclic carbonyl group, preferably, Is an acyl group having 1 to 20 carbon atoms, for example, acetyl, propionyl, butyryl, octanoyl, hexadecanoyl, acryloyl, methacryloyl, crotonoyl, benzoyl, naphthoyl, nicotinoyl, etc., acyloxy group (alkylcarbonyloxy group, alkenylcarbonyloxy group). , An alkynylcarbonyloxy group, an arylcarbonyloxy group, a heterocyclic carbonyloxy group, preferably an acyloxy group having 1 to 20 carbon atoms, for example, acetyloxy, propionyloxy, butyryloxy, octanoyloxy, hexadecanoyloxy, acryloyl. Oxy, methacryloyloxy, crotonoyloxy, benzoyloxy, naphthoyloxy, nicotinoyloxy and the like), aryloyloxy group (preferably aryloyloxy group having 7 to 23 carbon atoms, for example, benzoyloxy and the like), carbamoyl group ( Preferably, a carbamoyl group having 1 to 20 carbon atoms, such as N,N-dimethylcarbamoyl, N-phenylcarbamoyl, etc., an acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.) An alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, for example, methylthio, ethylthio, isopropylthio, benzylthio, etc.), an arylthio group (preferably an arylthio group having 6 to 26 carbon atoms, for example, phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc., a heterocyclic thio group (a group in which an —S— group is bonded to the above heterocyclic group), an alkylsulfonyl group (preferably an alkylsulfonyl group having 1 to 20 carbon atoms, For example, methylsulfonyl, ethylsulfonyl and the like), arylsulfonyl group (preferably arylsulfonyl group having 6 to 22 carbon atoms, for example, benzenesulfonyl and the like), alkylsilyl group (preferably alkylsilyl group having 1 to 20 carbon atoms, for example , Monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), arylsilyl group (preferably arylsilyl group having 6 to 42 carbon atoms, for example, triphenylsilyl etc.), phosphoryl group (preferably having 0 to 20 carbon atoms). A phosphoric acid group of, for example, —OP(═O)(R P ) 2 ), a phosphonyl group (preferably a phosphonyl group having 0 to 20 carbon atoms, for example, —P(═O)(R P ) 2 ), phosphinyl A group (preferably a phosphinyl group having 0 to 20 carbon atoms, for example, -P(R P ) 2 ), a sulfo group (sulfonic acid group), a carboxy group, a hydroxy group, a sulfanyl group, a cyano group, a halogen atom (for example, a fluorine atom) , Chlorine atom, bromine atom, iodine atom, etc.). R P is a hydrogen atom or a substituent (preferably a group selected from the substituent T).
Further, each of the groups listed as the substituent T may be further substituted with the above substituent T.
 化合物、置換基及び連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよい。 When the compound, the substituent, the linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and/or an alkynylene group, these may be cyclic or linear, or linear or branched. Good.
 (未架橋ポリマーの特性、物性)
 バインダーが含有する未架橋ポリマーの質量平均分子量は、特に限定されないが、5,000以上であることが好ましく、10,000以上であることがより好ましく、30,000以上であることが特に好ましい。上限としては、1,000,000以下であることが好ましく、200,000以下であることがより好ましい。
(Characteristics and physical properties of uncrosslinked polymer)
The mass average molecular weight of the uncrosslinked polymer contained in the binder is not particularly limited, but is preferably 5,000 or more, more preferably 10,000 or more, and particularly preferably 30,000 or more. The upper limit is preferably 1,000,000 or less, more preferably 200,000 or less.
 1分子の未架橋ポリマーが有する物理架橋性基の数は、架橋性構成成分が有する物理架橋性基の数と、未架橋ポリマー中の架橋性構成成分の含有量とで決定され、1個以上であれば特に制限されないが、好ましくは2~100000個である。
 未架橋ポリマーが上記基群(a)から選択される基を有する場合、基群(a)から選択される基の、未架橋ポリマー中の含有量は、特に制限されないが、分散性、更には強度等の点で、0.15~1mmol/gであることが好ましく、0.2~0.7mmol/gであることがより好ましく、0.2~0.5mmol/gであることが更に好ましい。
 上記含有量は、物理架橋性基を側鎖に有するポリマーが架橋剤と物理架橋している場合、この物理架橋しているポリマーが有する、上記の各基群、特に上記基群(a)から選択される基(由来のカチオン若しくはアニオン)の含有量との合計量とする。
 上記含有量はポリマーを赤外線分光法で測定し官能基のピーク面積より計算することで測定できる。なお、固体電解質組成物中に含有しているポリマーについては、常法により他の成分から分離(単離)したバインダー又はポリマーを用いて測定する。
The number of physically crosslinkable groups in one molecule of the uncrosslinked polymer is determined by the number of physically crosslinkable groups in the crosslinkable constituent and the content of the crosslinkable constituent in the uncrosslinked polymer, and is 1 or more. The number is not particularly limited as long as it is 2 to 100,000.
When the uncrosslinked polymer has a group selected from the above group (a), the content of the group selected from the group (a) in the uncrosslinked polymer is not particularly limited, but dispersibility, and further In terms of strength and the like, it is preferably 0.15 to 1 mmol/g, more preferably 0.2 to 0.7 mmol/g, and further preferably 0.2 to 0.5 mmol/g. ..
When the polymer having a physically crosslinkable group in the side chain is physically crosslinked with the crosslinking agent, the above content is from the above-mentioned respective group groups, particularly the above group group (a), which the physically crosslinked polymer has. It is the total amount with the content of the selected group (derived cation or anion).
The above content can be measured by measuring the polymer by infrared spectroscopy and calculating from the peak area of the functional group. The polymer contained in the solid electrolyte composition is measured using a binder or polymer separated (isolated) from other components by a conventional method.
 未架橋ポリマーの、固体電解質組成物中の含有量は、上述したバインダーの含有量を満たす限り特に制限されず、適宜に設定される。また、バインダー(物理架橋性基を側鎖に有するポリマーと架橋剤との合計質量)に対する含有量としては、例えば、1~99.9質量%であることが好ましく、30~99.0質量%であることがより好ましく、50~98.0質量%であることが更に好ましい。未架橋ポリマーの上記両含有量は、物理架橋性基を側鎖に有するポリマーが架橋剤と物理架橋している場合、この物理架橋しているポリマー分を含めた合計量とする。 The content of the uncrosslinked polymer in the solid electrolyte composition is not particularly limited as long as it satisfies the content of the binder described above, and is set appropriately. The content with respect to the binder (total mass of the polymer having a side chain having a physical crosslinkable group and the crosslinking agent) is, for example, preferably 1 to 99.9% by mass, and 30 to 99.0% by mass. Is more preferable and 50 to 98.0% by mass is further preferable. When the polymer having a physically crosslinkable group in its side chain is physically crosslinked with the crosslinking agent, the above both contents of the uncrosslinked polymer are the total amount including the physically crosslinked polymer.
 (未架橋ポリマーの合成)
 未架橋ポリマーは、主鎖の種類に応じて、所定の構成成分を導く原料化合物を任意に組み合わせて、所望により触媒(重合開始剤、連鎖移動剤等を含む。)の存在下、重合(逐次重合又は付加重合等の連鎖重合)させることにより、合成することができる。逐次重合又は連鎖重合させる方法及び条件は、特に限定されず、公知の方法及び条件を適宜に選択できる。未架橋ポリマーの各特性、物性は、未架橋ポリマーの種類、更には、構成成分(原料化合物)の種類若しくは含有量、ポリマーの分子量等により、調整できる。原料化合物は、未架橋ポリマーの種類に応じて適宜に公知の化合物が選択される。例えば、上述した原料化合物の他にも、特開2015-088480号公報に記載の、ウレタン結合を有するポリマー、ウレア結合を有するポリマー、アミド結合を有するポリマー(ポリアミド樹脂)、イミド結合を有するポリマー等を形成する各原料化合物が挙げられる。
 また、通常の逐次重合系若しくは連鎖重合系のポリマーの側鎖と、物理架橋性基を有する化合物とを高分子反応して、合成することもできる。
(Synthesis of uncrosslinked polymer)
The uncrosslinked polymer is obtained by arbitrarily combining raw material compounds that lead to predetermined constituents according to the type of the main chain, and optionally polymerizing (sequentially in the presence of a catalyst (including a polymerization initiator, a chain transfer agent, etc.)). It can be synthesized by polymerizing or chain polymerizing such as addition polymerizing. The method and conditions for carrying out sequential polymerization or chain polymerization are not particularly limited, and known methods and conditions can be appropriately selected. The properties and physical properties of the uncrosslinked polymer can be adjusted by the type of the uncrosslinked polymer, the type or content of the constituent component (raw material compound), the molecular weight of the polymer, and the like. As the raw material compound, a known compound is appropriately selected according to the type of uncrosslinked polymer. For example, in addition to the above-mentioned raw material compound, a polymer having a urethane bond, a polymer having a urea bond, a polymer having an amide bond (polyamide resin), a polymer having an imide bond, and the like described in JP-A-2005-088480. Each raw material compound that forms
In addition, it can also be synthesized by polymerizing a side chain of a usual sequential polymerization type or chain polymerization type polymer and a compound having a physical crosslinkable group.
 未架橋ポリマーを合成する際の溶媒は、特に限定されず、後述する非水系分散媒として挙げたものを好ましく用いることができる。本発明において、後述する転相乳化法により、未架橋ポリマーの分散液を調製する場合(バインダーを作製する場合)、未架橋ポリマーを合成する際(未架橋ポリマー溶液を調製する際)に用いた溶媒を、未架橋ポリマーを乳化分散し得る分散媒に置換し、未架橋ポリマーを合成する際に用いた溶媒を除去する方法が好ましい。この方法においては、未架橋ポリマーを合成する際に用いた溶媒の沸点は、未架橋ポリマーを乳化分散し得る分散媒の沸点より低いことが好ましい。未架橋ポリマーを乳化分散し得る分散媒としては、後述する未架橋ポリマーを乳化分散し得る分散媒を好ましく用いることができる。 The solvent for synthesizing the non-crosslinked polymer is not particularly limited, and those listed as the non-aqueous dispersion medium described later can be preferably used. In the present invention, when the dispersion liquid of the uncrosslinked polymer is prepared by the phase inversion emulsification method described later (when the binder is prepared), when the uncrosslinked polymer is synthesized (when the uncrosslinked polymer solution is prepared) A method is preferred in which the solvent is replaced with a dispersion medium capable of emulsifying and dispersing the uncrosslinked polymer, and the solvent used when synthesizing the uncrosslinked polymer is removed. In this method, the boiling point of the solvent used when synthesizing the uncrosslinked polymer is preferably lower than the boiling point of the dispersion medium in which the uncrosslinked polymer can be emulsified and dispersed. As the dispersion medium capable of emulsifying and dispersing the uncrosslinked polymer, a dispersion medium capable of emulsifying and dispersing the uncrosslinked polymer described below can be preferably used.
 (未架橋ポリマーの分散液の調製)
 未架橋ポリマーの分散液を調製する方法は、特に制限されず、上記未架橋ポリマーの合成(例えば乳化重合法)により調製することもでき、合成した未架橋ポリマーを適宜の分散媒に分散して調製することもできる。分散媒に未架橋ポリマーを分散させる方法としては、例えば、フローリアクターを用いる方法(未架橋ポリマーの一次粒子同士を衝突させる方法)、ホモジナイザーを用いて撹拌する方法、転相乳化法等が挙げられる。中でも、生産性の点、更には得られる未架橋ポリマーの特性、物性等の点で、合成した未架橋ポリマーを転相乳化する方法が好ましい。
(Preparation of dispersion of uncrosslinked polymer)
The method for preparing the dispersion liquid of the non-crosslinked polymer is not particularly limited, and it can be prepared by the synthesis of the above-mentioned non-crosslinked polymer (for example, emulsion polymerization method). The synthesized non-crosslinked polymer is dispersed in an appropriate dispersion medium. It can also be prepared. Examples of the method of dispersing the uncrosslinked polymer in the dispersion medium include a method of using a flow reactor (a method of colliding primary particles of the uncrosslinked polymer), a method of stirring using a homogenizer, and a phase inversion emulsification method. .. Among them, the method of phase inversion emulsification of the synthesized non-crosslinked polymer is preferable from the viewpoint of productivity, and further the characteristics and physical properties of the obtained non-crosslinked polymer.
 転相乳化法としては、未架橋ポリマーを分散させる工程と、未架橋ポリマーの合成時に用いた溶媒を除去する工程とを有する。分散させる工程としては、未架橋ポリマーを乳化分散し得る乳化用分散媒中に未架橋ポリマーの溶液を(例えば、-20~150℃で0.5~8時間の条件で)滴下して乳化する方法、未架橋ポリマーの溶液を強く撹拌しつつ乳化用分散媒をゆっくりと滴下して乳化させる方法が挙げられる。溶媒を除去する工程としては、こうして得られた未架橋ポリマーの分散液を、減圧濃縮又は不活性気流下で加熱する方法が挙げられる。これにより、未架橋ポリマーの合成時に用いた溶媒を選択的に除去することができ、乳化用分散媒の濃度を高めることができる。
 本発明において、上記「強く撹拌」とは、ポリマー溶液に衝撃、せん断、ずり応力、摩擦、振動等の機械的エネルギーを加える限り特に制限されない。例えば、ホモジナイザー、ホモディスパー、しんとう機、ディゾルバー、タイテックミキサー、攪絆槽での攪絆羽、高圧噴射式分散機、超音波分散機、ボールミル、ビーズミル等の装置を用い、例えば、300~1000rpmの回転数等の条件で撹拌する態様が挙げられる。また、「ゆっくりと滴下」とは、一括で添加しない限り特に制限されないが、例えば、滴下する乳化用分散媒を10分以上かけて、未架橋ポリマー溶液に滴下混合する条件が挙げられる。
The phase inversion emulsification method includes a step of dispersing the uncrosslinked polymer and a step of removing the solvent used during the synthesis of the uncrosslinked polymer. In the step of dispersing, a solution of the uncrosslinked polymer is added dropwise to the dispersion medium for emulsification capable of emulsifying and dispersing the uncrosslinked polymer (for example, at -20 to 150° C. for 0.5 to 8 hours) to emulsify. The method includes a method in which the dispersion medium for emulsification is slowly dropped while emulsifying the solution of the uncrosslinked polymer while stirring strongly. Examples of the step of removing the solvent include a method in which the dispersion liquid of the uncrosslinked polymer thus obtained is concentrated under reduced pressure or heated under an inert gas stream. As a result, the solvent used during the synthesis of the uncrosslinked polymer can be selectively removed, and the concentration of the emulsifying dispersion medium can be increased.
In the present invention, the “strong stirring” is not particularly limited as long as mechanical energy such as impact, shear, shear stress, friction, vibration is applied to the polymer solution. For example, a homogenizer, a homodisper, a Shinto machine, a dissolver, a Titec mixer, a stirring blade in a stirring tank, a high-pressure jet disperser, an ultrasonic disperser, a ball mill, a bead mill, etc. are used, for example, at 300 to 1000 rpm. A mode in which stirring is performed under conditions such as the number of rotations can be mentioned. The term “slowly dropping” is not particularly limited as long as it is not added all at once, but examples thereof include a condition in which the emulsifying dispersion medium to be dropped is added dropwise to the uncrosslinked polymer solution for 10 minutes or more.
 乳化用分散媒としては、未架橋ポリマーの構成成分の種類等に応じて適宜に決定される。例えば、炭化水素ポリマー鎖を有する構成成分を含有する場合、この構成成分が溶解しやすく、式(I-1)で表される構成成分等の他の成分を溶解しにくい溶媒が挙げられる。このような乳化用溶媒としては、特に限定されないが、上記非水系分散媒の中でも、脂肪族化合物及び芳香族化合物が好ましい。脂肪族化合物としては、例えば、ヘキサン、ヘプタン、ノルマルオクタン、イソオクタン、ノナン、デカン、ドデカン、シクロヘキサン、シクロヘプタン、シクロオクタン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン、軽油、灯油、ガソリン等が挙げられる。芳香族化合物としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、テトラリン等が挙げられる。乳化用分散媒は1種単独で用いてもよく、2種以上を用いてもよい。ポリマーの乳化分散を阻害しない限りにおいて極性溶媒(エーテル溶媒、ケトン溶媒、エステル溶媒等)を添加してもよい。乳化用分散媒と極性溶媒との質量比率[乳化用の質量/極性溶媒の質量]は100/0~70/30が好ましく、100/0~90/10がより好ましく、100/0~99/1が最も好ましい。
 未架橋ポリマーを乳化分散し得る乳化用分散媒の常圧における沸点は、60℃以上が好ましく、70℃以上が好ましく、80℃以上が好ましい。
The dispersion medium for emulsification is appropriately determined depending on the type of constituent components of the uncrosslinked polymer. For example, when a constituent component having a hydrocarbon polymer chain is contained, a solvent which can easily dissolve this constituent component and hardly dissolve other components such as the constituent component represented by the formula (I-1) can be mentioned. The emulsifying solvent is not particularly limited, but aliphatic compounds and aromatic compounds are preferable among the non-aqueous dispersion media. Examples of the aliphatic compound include hexane, heptane, normal octane, isooctane, nonane, decane, dodecane, cyclohexane, cycloheptane, cyclooctane, methylcyclohexane, ethylcyclohexane, decalin, light oil, kerosene, gasoline and the like. Examples of the aromatic compound include benzene, toluene, ethylbenzene, xylene, mesitylene, tetralin and the like. The dispersion medium for emulsification may be used alone or in combination of two or more. A polar solvent (ether solvent, ketone solvent, ester solvent, etc.) may be added as long as it does not hinder the emulsion dispersion of the polymer. The mass ratio [mass for emulsification/mass of polar solvent] of the dispersion medium for emulsification and the polar solvent is preferably 100/0 to 70/30, more preferably 100/0 to 90/10, and 100/0 to 99/. 1 is most preferred.
The boiling point of the dispersion medium for emulsification capable of emulsifying and dispersing the uncrosslinked polymer at normal pressure is preferably 60°C or higher, preferably 70°C or higher, and more preferably 80°C or higher.
 転相乳化法において、未架橋ポリマーの粒子の、平均粒径は、用いる未架橋ポリマー溶液の固形分濃度若しくは滴下速度、未架橋ポリマーの種類、更には、構成成分の種類若しくは含有量等により、調製できる。 In the phase inversion emulsification method, of the particles of the uncrosslinked polymer, the average particle size, depending on the solid content concentration or dropping rate of the uncrosslinked polymer solution used, the type of the uncrosslinked polymer, further, the type or content of the constituent components, etc. Can be prepared.
(架橋剤)
 本発明に用いる架橋剤は、上記未架橋ポリマーが有する物理架橋性基と物理架橋する物理架橋性官能基を少なくとも2個有する化合物(架橋性化合物)である。この架橋剤は、未架橋のポリマーが有する上記物理架橋性基と反応若しくは相互作用して物理架橋構造を形成する。
(Crosslinking agent)
The cross-linking agent used in the present invention is a compound (cross-linking compound) having at least two physical cross-linking functional groups that physically cross-link with the physical cross-linking group of the uncrosslinked polymer. This cross-linking agent reacts or interacts with the above-mentioned physical cross-linking group of the uncross-linked polymer to form a physical cross-linking structure.
 本発明において、物理架橋性官能基とは、未架橋ポリマーが有する物理架橋性基と物理架橋を形成しうる官能基をいい、イオン結合若しくは水素結合の化学結合、又は分子間相互作用により、互いに結合又は相互作用を形成しうる官能基をいう。
 架橋剤が有する物理架橋性官能基としては、上述の物理架橋性基を特に制限されずに挙げることができ、未架橋ポリマーが有する物理架橋性基との物理架橋の種類(反応(結合)若しくは相互作用)に応じて適宜に選択される。特に、イオン結合若しくは水素結合により未架橋ポリマーと物理架橋する場合、上述の基群(a)から選択されるいずれかの基、又は上述の基群(b)から選択されるいずれかの基であることが好ましく、上述の基群(b)から選択されるいずれかの基であることがより好ましい。
 物理架橋性官能基は、2個以上であればよく、2~20個であることが好ましく、2~6個がより好ましく、2個又は3個であることが特に好ましい。物理架橋性官能基は、物理架橋を形成する結合若しくは相互作用が同種の官能基であっても異種の官能基であってもよいが、同種の官能基が好ましい。同種の官能基の中でも、同じ官能基であることがより好ましい。
In the present invention, the physical crosslinkable functional group refers to a functional group capable of forming a physical crosslink with the physical crosslinkable group of the uncrosslinked polymer, by ionic bond or hydrogen bond chemical bond, or by intermolecular interaction, A functional group capable of forming a bond or an interaction.
Examples of the physical crosslinkable functional group contained in the crosslinking agent include the above-mentioned physical crosslinkable groups without particular limitation, and the type of physical crosslink with the physical crosslinkable group of the uncrosslinked polymer (reaction (bond) or Interaction). In particular, when physically cross-linking with an uncrosslinked polymer by an ionic bond or a hydrogen bond, any group selected from the above group group (a) or any group selected from the above group group (b). Preferably, it is any group selected from the above group (b).
The physical crosslinkable functional group may be 2 or more, preferably 2 to 20, more preferably 2 to 6, and particularly preferably 2 or 3. The physical crosslinkable functional group may have the same kind of functional group or different kinds of functional groups as the bond or interaction forming the physical crosslink, but the same kind of functional group is preferable. Among the functional groups of the same type, the same functional group is more preferable.
 架橋剤を構成する、物理架橋性官能基以外の基本構造は、特に制限されず、脂肪族若しくは芳香族からなる構造であってもよく、高分子構造であってもよい。例えば、上述のRP1及びRP2としてとりうる分子鎖、更には後述する式(H-1A)のL11Aとして採りうる基が挙げられる。RP1及びRP2としてとりうる分子鎖の中でも、非水系分散媒に対する分散性改善の点で、低分子量の炭化水素鎖として採りうる(脂肪族若しくは芳香族の)炭化水素基が好ましい。
 このような架橋剤としては、例えば、カルボキシ基を複数有するカルボン酸化合物(ポリカルボン酸化合物)、スルホ基を複数有するスルホン酸化合物(ポリスルホン酸化合物)、リン酸基を複数有するリン酸化合物(ポリリン酸化合物)、ホスホン酸基を複数有するホスホン酸化合物(ポリホスホン酸化合物)、アミノ基を複数有するアミン化合物(ポリアミン化合物)、ピリジン環等の、基群(b)に含まれる含窒素芳香族環を複数有する化合物(例えば、ピリジニル基を複数有するピリジン化合物)等が挙げられる。
 ポリアミン化合物及びピリジン化合物としては、具体的には、後述する式(H-1A)又は式(H-1B)で表されるカチオンを形成しうる各化合物が挙げられ、より具体的には、後述する物理架橋構造の具体例を形成しうる化合物が挙げられる。
The basic structure constituting the cross-linking agent other than the physical cross-linkable functional group is not particularly limited, and may be an aliphatic or aromatic structure or a polymer structure. For example, there may be mentioned a molecular chain which can be taken as R P1 and R P2 described above, and a group which can be taken as L 11A in the formula (H-1A) described later. Among the molecular chains that can be taken as R P1 and R P2 , a hydrocarbon group (aliphatic or aromatic) that can be taken as a low molecular weight hydrocarbon chain is preferable from the viewpoint of improving dispersibility in a non-aqueous dispersion medium.
Examples of such a cross-linking agent include a carboxylic acid compound having a plurality of carboxy groups (polycarboxylic acid compound), a sulfonic acid compound having a plurality of sulfo groups (polysulfonic acid compound), and a phosphoric acid compound having a plurality of phosphoric acid groups (polyphosphoric acid compound). Acid compounds), phosphonic acid compounds having a plurality of phosphonic acid groups (polyphosphonic acid compounds), amine compounds having a plurality of amino groups (polyamine compounds), pyridine rings, and other nitrogen-containing aromatic rings contained in group (b) Examples thereof include a compound having a plurality (for example, a pyridine compound having a plurality of pyridinyl groups).
Specific examples of the polyamine compound and the pyridine compound include respective compounds capable of forming a cation represented by the formula (H-1A) or the formula (H-1B) described below, and more specifically, the below-mentioned compounds. The compound which can form the specific example of the physically crosslinked structure is mentioned.
 架橋剤は、重合体でない化合物が好ましく、例えば低分子化合物であることが好ましい。架橋剤の分子量としては、特に制限されないが、例えば、1000未満が好ましく、100~700がより好ましい。
 架橋剤は、市販品を用いてもよく、常法により合成したものを用いてもよい。
 架橋剤の、バインダー(物理架橋性基を側鎖に有するポリマーと架橋剤との合計質量)に対する含有量としては、物理架橋性官能基の数等に応じて適宜に決定され、例えば、0.01~40質量%であることが好ましく、0.2~10質量%であることがより好ましく、0.7~5質量%であることが更に好ましい。
 架橋剤の上記両含有量は、架橋剤が物理架橋性基を側鎖に有するポリマーと物理架橋している場合、この物理架橋している架橋剤分を含めた合計量とする。
The cross-linking agent is preferably a non-polymer compound, for example, a low molecular weight compound. The molecular weight of the crosslinking agent is not particularly limited, but is preferably less than 1000, more preferably 100 to 700, for example.
As the cross-linking agent, a commercially available product or one synthesized by a conventional method may be used.
The content of the cross-linking agent with respect to the binder (the total mass of the polymer having a physical cross-linking group in the side chain and the cross-linking agent) is appropriately determined according to the number of the physical cross-linking functional groups, and is, for example, 0. It is preferably from 01 to 40 mass%, more preferably from 0.2 to 10 mass%, even more preferably from 0.7 to 5 mass%.
When the cross-linking agent is physically cross-linked with the polymer having a physical cross-linking group in its side chain, both contents of the cross-linking agent are the total amount including the cross-linking agent that is physically cross-linked.
(物理架橋構造を側鎖に有するポリマー)
 物理架橋構造を側鎖に有するポリマーは、上述の未架橋ポリマーの物理架橋性基と架橋剤の物理架橋性官能基とが反応若しくは相互作用して、物理架橋を形成しているポリマーであり、架橋剤との物理架橋構造を有している。
 ポリマーが物理架橋構造を有していることは、例えば、赤外分光法で物理架橋構造をとりうる官能基の吸収の出現、粘弾性測定で架橋構造由来の挙動の有無等により、確認することができる。
(Polymer having side chain having physical cross-linking structure)
The polymer having a physical crosslinked structure in the side chain is a polymer in which the physical crosslinkable group of the uncrosslinked polymer and the physical crosslinkable functional group of the crosslinking agent react or interact with each other to form physical crosslinks, It has a physical cross-linking structure with a cross-linking agent.
The fact that the polymer has a physical cross-linking structure can be confirmed by, for example, the appearance of absorption of a functional group capable of having a physical cross-linking structure by infrared spectroscopy, the presence or absence of behavior derived from the cross-linking structure by viscoelasticity measurement, etc. You can
 物理架橋構造は、未架橋ポリマーの物理架橋性基及び架橋剤の物理架橋性官能基の種類に応じて、結合若しくは相互作用する結合部と、架橋剤の、上記物理架橋性官能基以外の基本構造とからなる。例えば、物理架橋がイオン結合で形成される場合、結合部としては、カチオンとアニオンとからなる塩(酸及び塩基によるイオン結合)が挙げられる。このように、イオン結合で物理架橋を形成しているポリマーはカチオン及びアニオンを有しており、カチオン及びアニオンは未架橋ポリマーの物理架橋性基及び架橋剤の物理架橋性官能基に由来する。また、物理架橋が水素結合で形成される場合、結合部としては、水素原子を供与可能な(官能)基と水素原子を受容可能な(官能)基との水素原子を介した水素結合が挙げられる。更に物理架橋が分子間相互作用で形成される場合、結合部としてはアリール基によるスタッキング構造等が挙げられる。
 物理架橋を形成しているポリマーが有する結合部の数(及び含有量)は、上記未架橋ポリマーが有する物理架橋性基の数(及び含有量)と同じであり、少なくとも1個であればよい。
The physical cross-linking structure is a basic bond other than the above-mentioned physical cross-linking functional group of the cross-linking agent and the bonding portion that bonds or interacts with each other, depending on the types of the physical cross-linking group of the uncrosslinked polymer and the physical cross-linking functional group of the cross-linking agent. Consists of structure and. For example, when the physical crosslink is formed by an ionic bond, examples of the binding part include a salt composed of a cation and an anion (ionic bond by acid and base). Thus, the polymer that forms physical crosslinks by ionic bond has a cation and an anion, and the cation and anion are derived from the physical crosslinkable group of the uncrosslinked polymer and the physical crosslinkable functional group of the crosslinker. When the physical crosslink is formed by a hydrogen bond, examples of the bonding part include a hydrogen bond between a (functional) group capable of donating a hydrogen atom and a (functional) group capable of accepting a hydrogen atom via a hydrogen atom. To be Further, when physical crosslinks are formed by intermolecular interaction, examples of the bonding portion include a stacking structure with an aryl group.
The number (and the content) of the bonding parts that the polymer forming the physical crosslink has is the same as the number (and the content) of the physical crosslinkable group that the uncrosslinked polymer has, and may be at least one. ..
 以下、物理架橋がイオン結合で形成される態様について、具体的に説明する。
 この態様における結合部(塩)を構成するアニオンとしては、上述の基群(a)から選択される基(由来)のアニオンが好ましく、中でもカルボキシ基のアニオン(-COO)がより好ましい。カチオンとしては、上述の基群(b)から選択される基(由来)のカチオンが好ましく、中でもアミノ基のカチオン(-N)がより好ましい。ここで、Rは、上記<基群(b)>で説明した、上述の、水素原子、アルキル基、アリール基又はアルキルシリル基を示す。
 上記物理架橋構造は、ポリマーが有する物理架橋性基由来のアニオン若しくはカチオンと、架橋剤由来の多官能性カチオン若しくは多官能性アニオンとで形成されることが好ましい。すなわち、物理架橋を形成しているポリマーが、多官能性カチオン若しくは多官能性アニオンとイオン結合してなる物理架橋構造を有していることが好ましい。物理架橋構造は、ポリマーが有する物理架橋性基由来のアニオンと架橋剤由来の多官能性カチオンとで形成されることがより好ましい。
 この多官能性カチオンとしては、好ましくは、下記式(H-1A)で表わされる、ジアミノ化合物由来のカチオン、又は下記式(H-1B)で表わされる、ビピリジン化合物由来のカチオンである。これらのカチオンは、イオン結合による物理架橋構造を形成する部分構造であり、本明細書において単に部分構造ということがある。
Hereinafter, an aspect in which the physical crosslink is formed by an ionic bond will be specifically described.
As the anion constituting the binding part (salt) in this embodiment, an anion of a group (origin) selected from the above group (a) is preferable, and a carboxy group anion (—COO ) is more preferable. As the cation, a cation of a group (origin) selected from the above group (b) is preferable, and an cation of an amino group (—N + R 3 ) is more preferable. Here, R represents the hydrogen atom, the alkyl group, the aryl group, or the alkylsilyl group described above in <Group (b)>.
The physical crosslinked structure is preferably formed by an anion or cation derived from a physical crosslinkable group which the polymer has and a polyfunctional cation or polyfunctional anion derived from a crosslinking agent. That is, it is preferable that the polymer forming the physical crosslink has a physical crosslink structure formed by ionic bond with a polyfunctional cation or a polyfunctional anion. The physical crosslinked structure is more preferably formed by an anion derived from the physical crosslinkable group of the polymer and a polyfunctional cation derived from the crosslinking agent.
The polyfunctional cation is preferably a cation derived from a diamino compound represented by the following formula (H-1A) or a cation derived from a bipyridine compound represented by the following formula (H-1B). These cations are partial structures that form a physical crosslinked structure by an ionic bond, and may be simply referred to as partial structures in this specification.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式中、L11A及びL11Bは、炭素数1~24のアルキレン基、炭素数6~60のアリーレン基、炭素数2~24のアルケニレン基、酸素原子、-N(RNL)-、カルボニル基、シラン連結基若しくはイミン連結基、又はこれを組み合わせた基を示す。
 L11A及びL11Bとして採りうるアルキレン基及びアルケニレン基は、直鎖状、分岐鎖状及び環状のいずれでもよく、非水系分散媒との親和性の点で、直鎖状が好ましい。アルキレン基及びアルケニレン基の炭素数は、それぞれ、好ましくは2以上であり、非水系分散媒との親和性の点で、より好ましくは4以上であり、更に好ましくは5以上であり、特に好ましくは6以上である。炭素数の上限は、好ましくは24以下であり、より好ましくは18以下であり、更に好ましくは12以下であり、特に好ましくは10以下である。アルキレン基の具体例としては、後述する置換基Tにおけるアルキル基又はシクロアルキル基として挙げた基から更に水素原子を1つ除去した基を挙げることができる。
In the formula, L 11A and L 11B are an alkylene group having 1 to 24 carbon atoms, an arylene group having 6 to 60 carbon atoms, an alkenylene group having 2 to 24 carbon atoms, an oxygen atom, —N(R NL )—, a carbonyl group. , A silane linking group or an imine linking group, or a group combining these.
The alkylene group and alkenylene group that can be used as L 11A and L 11B may be linear, branched or cyclic, and are preferably linear from the viewpoint of affinity with the non-aqueous dispersion medium. The alkylene group and the alkenylene group each have preferably 2 or more carbon atoms, more preferably 4 or more, further preferably 5 or more, particularly preferably 5 or more in terms of affinity with the non-aqueous dispersion medium. It is 6 or more. The upper limit of the number of carbon atoms is preferably 24 or less, more preferably 18 or less, further preferably 12 or less, and particularly preferably 10 or less. Specific examples of the alkylene group include groups in which one hydrogen atom is further removed from the groups mentioned as the alkyl group or cycloalkyl group in the substituent T described later.
 L11A及びL11Bとして採りうるアリーレン基の炭素数は、好ましくは6~60であり、より好ましくは6~24であり、更に好ましくは6~18であり、特に好ましくは6~12である。
 L11A及びL11Bとして採りうるシラン連結基としては、特に制限されず、例えば、-[Si(RS1)(RS2)]n-又は-[Si(RS1)(RS2)O]n-で表される基が挙げられる。RS1及びRS2は、特に制限されず、後述する置換基Tをとることができ、アルコキシ基、アリールオキシ基又はアミノ基が好ましい。nは1以上の整数であり、1~6の整数が好ましい。
 L11A及びL11Bとして採りうるイミン連結基としては、特に制限されず、例えば、RNL-N=C<、又は、-N=C(RNL)-で表される基が挙げられる。RNLは水素原子又は置換基を示し、置換基としては後述する置換基Tをとることができる。置換基としては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキル基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)が好ましい。
The arylene group that can be used as L 11A and L 11B has preferably 6 to 60 carbon atoms, more preferably 6 to 24 carbon atoms, further preferably 6 to 18 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
The silane linking group that can be used as L 11A and L 11B is not particularly limited and includes, for example, —[Si(R S1 )(R S2 )]n— or —[Si(R S1 )(R S2 )O]n. And groups represented by -. R S1 and R S2 are not particularly limited and may have a substituent T described later, and an alkoxy group, an aryloxy group or an amino group is preferable. n is an integer of 1 or more, preferably an integer of 1 to 6.
The imine linking group can take as L 11A and L 11B, not particularly limited, for example, R NL -N = C <, or, -N = C (R NL) - group represented by the like. R NL represents a hydrogen atom or a substituent, and the substituent can be the substituent T described later. As the substituent, an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 and further preferably 1 to 6 and particularly preferably 1 to 3) and an alkenyl group (preferably having 2 to 24 carbon atoms, 2 To 12 are more preferable, 2 to 6 are further preferable, 2 to 3 are particularly preferable, and an alkynyl group (having 2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is further preferable, and 2 to 3 is Particularly preferred), aralkyl group (preferably having 7 to 22 carbon atoms, more preferably 7 to 14 and particularly preferably 7 to 10), aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 and 6 to 10 is particularly preferable).
 本発明において、組み合わせた基について、組み合わせる基、原子若しくは連結基の数は、特に制限されないが、例えば、2~100個、好ましくは2~20個である。組み合わせた基としては、例えば、アルキル基とアリール基とを組み合わせた基、アルキル基と-N(RNL)-とを組み合わせた基、アルキル基と酸素原子とを組み合わせた基、アルキル基とエステル基(酸素原子及びカルボニル基)とを組み合わせた基等が挙げられる。 In the present invention, the number of groups, atoms or linking groups to be combined is not particularly limited, but is, for example, 2 to 100, preferably 2 to 20. Examples of the combined group include a group combining an alkyl group and an aryl group, a group combining an alkyl group and -N(R NL )-, a group combining an alkyl group and an oxygen atom, an alkyl group and an ester. Examples thereof include a group combining a group (oxygen atom and carbonyl group).
 L11A及びL11Bとしては、それぞれ、非水系分散に対する親和性の点で、非水系分散媒との疎水性が近いものが好ましく、例えば、アルキル基、アルキル基と-N(RNL)-とを組み合わせた基、アルキル基とエステル基とを組み合わせた基がより好ましく、アルキル基が更に好ましい。 As L 11A and L 11B , those having a hydrophobicity close to that of the non-aqueous dispersion medium are preferable in terms of affinity for the non-aqueous dispersion, and examples thereof include an alkyl group, an alkyl group and -N(R NL )-. A group in which the above are combined, a group in which an alkyl group and an ester group are combined are more preferable, and an alkyl group is still more preferable.
 R11~R18は、それぞれ、水素原子、炭素数1~12のアルキル基又はアルキルシリル基を示し、水素原子又はアルキル基が好ましい。
 R11~R18として採りうるアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよいが、直鎖状が好ましい。アルキル基の炭素数は、好ましくは1~6であり、より好ましくは1~3である。アルキル基の具体例としては、後述する置換基Tにおけるアルキル基又はシクロアルキル基を挙げることができる。
 R11~R18として採りうるアルキルシリル基は、特に制限されず、例えば、-Si(RS3で表される基が挙げられる。RS3は水素原子又はアルキル基を示す。RS3として採りうるアルキル基は、上記R11として採りうるアルキル基と同義であり、好ましいものも同じである。
R 11 to R 18 each represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an alkylsilyl group, preferably a hydrogen atom or an alkyl group.
The alkyl group that can be used as R 11 to R 18 may be linear, branched or cyclic, but is preferably linear. The alkyl group preferably has 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms. Specific examples of the alkyl group include an alkyl group or a cycloalkyl group in the substituent T described later.
The alkylsilyl group that can be used as R 11 to R 18 is not particularly limited, and examples thereof include a group represented by —Si(R S3 ) 3 . R S3 represents a hydrogen atom or an alkyl group. The alkyl group that can be taken as R S3 has the same meaning as the alkyl group that can be taken as R 11 above, and the preferred ones are also the same.
 式(H-1A)において、R11~R13及びR14~R16は、それぞれ、同一でも異なっていてもよいが、R11~R13の少なくとも1つ、及び、R14~R16の少なくとも1つが水素原子であることが好ましく、残りの2つがアルキル基であることがより好ましい。この水素原子は、通常未架橋ポリマーの物理架橋性基に由来する。また、式(H-1A)中の2つのアミノカチオンは、同一でも異なっていてもよいが、同一であることが好ましい。
 式(H-1B)において、R17及びR18は、それぞれ、同一でも異なっていてもよいが、いずれも水素原子(通常、未架橋ポリマーの物理架橋性基に由来する)であることが好ましい。
In formula (H-1A), R 11 to R 13 and R 14 to R 16 may be the same or different, but at least one of R 11 to R 13 and R 14 to R 16 At least one is preferably a hydrogen atom, and the remaining two are more preferably alkyl groups. This hydrogen atom is usually derived from the physically crosslinkable group of the uncrosslinked polymer. The two amino cations in formula (H-1A) may be the same or different, but are preferably the same.
In the formula (H-1B), R 17 and R 18 may be the same or different, but each is preferably a hydrogen atom (generally derived from the physically crosslinkable group of the uncrosslinked polymer). ..
 上記多官能性カチオンとしては、より好ましくは、下記式(H-2)で表わされる、ジアミノ化合物由来のカチオン(部分構造)である。 The above polyfunctional cation is more preferably a cation (partial structure) derived from a diamino compound represented by the following formula (H-2).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式中、L21は、炭素数5~12のアルキレン基、炭素数6~18のアリーレン基、炭素数5~12のアルケニレン基、酸素原子、-N(RNL)-若しくはイミン連結基、又はこれらを組み合わせた基を示す。
 L21として採りうる、アルキレン基、アリーレン基及びアルケニレン基は、それぞれ、炭素数以外は、L11Aとして採りうるアルキレン基、アリーレン基及びアルケニレン基と同じである。L21として採りうるアルキレン基及びアルケニレン基の炭素数は、それぞれ、好ましくは5~10であり、より好ましくは6~8である。アリーレン基の炭素数は、好ましくは6~12であり、より好ましくは6~8である。
 L21として採りうる組み合わせた基は、L11Aとして採りうる組み合わせた基と同義である。
In the formula, L 21 is an alkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 18 carbon atoms, an alkenylene group having 5 to 12 carbon atoms, an oxygen atom, —N(R NL )— or an imine linking group, or The group which combined these is shown.
The alkylene group, arylene group, and alkenylene group that can be adopted as L 21 are the same as the alkylene group, arylene group, and alkenylene group that can be adopted as L 11A , respectively, except for the number of carbon atoms. The alkylene group and the alkenylene group that can be used as L 21 each have preferably 5 to 10 carbon atoms, and more preferably 6 to 8 carbon atoms. The arylene group preferably has 6 to 12 carbon atoms, and more preferably 6 to 8 carbon atoms.
The combined group which can be taken as L 21 has the same meaning as the combined group which can be taken as L 11A .
 R21~R26は、水素原子又は炭素数1~12のアルキル基を示し、アルキル基としてはR11として採りうるアルキル基と同義である。
 式(H-2)における2つのアミノカチオン部(-N(R21)(R22)(R23)、及び-N(R24)(R25)(R26))は、上記式(H-1A)における2つのアミノカチオン部と同義である。
R 21 to R 26 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and the alkyl group has the same meaning as the alkyl group which can be adopted as R 11 .
The two amino cation moieties (-N + (R 21 )(R 22 )(R 23 ), and -N + (R 24 )(R 25 )(R 26 )) in the formula (H-2) are represented by the above formula. It has the same meaning as the two amino cation moieties in (H-1A).
 多官能性アニオンとしては、好ましくは上記式(H-1A)又は式(H-1B)で表される多官能カチオン、より好ましくは上記式(H-2)で表される多官能カチオンのカチオン部を上記物理架橋性官能基のアニオンに変更した多官能性アニオンが挙げられる。 The polyfunctional anion is preferably a polyfunctional cation represented by the formula (H-1A) or the formula (H-1B), and more preferably a cation of the polyfunctional cation represented by the formula (H-2). Examples include polyfunctional anions in which a part is changed to the anion of the above-mentioned physically crosslinkable functional group.
 架橋剤由来の多官能性カチオン若しくは多官能性アニオンの具体例を以下に示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000019
Specific examples of the polyfunctional cation or polyfunctional anion derived from the crosslinking agent are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000019
 物理架橋構造を側鎖に有するポリマーは、物理架橋構造を含む架橋構造を有している。この架橋構造は、ポリマーの主鎖同士を結合する構造部分であり、物理架橋構造と、ポリマーの側鎖の一部又は物理架橋性官能基の一部とを含む。物理架橋構造を含む架橋構造の連結原子数は、ポリマーの側鎖及び架橋剤の組み合わせによって適宜に設定できるが、物理架橋構造がイオン結合又は水素結合で形成される場合、分散性、更には強度等の点で、8~30が好ましく、9~25がより好ましく、10~22が更に好ましい。架橋構造の連結原子数とは、主鎖間を結ぶ最少の原子数をいい、イオン結合を形成するイオンとなっている原子、及び水素結合を形成している水素原子を含める。ただし、カチオンを形成するための水素原子又は基は原子数に算入しない。 A polymer having a physical crosslinked structure in its side chain has a crosslinked structure including a physical crosslinked structure. This crosslinked structure is a structural portion that bonds the main chains of the polymer, and includes a physically crosslinked structure and a part of the side chain of the polymer or a part of the physically crosslinkable functional group. The number of connecting atoms of the crosslinked structure including the physical crosslinked structure can be appropriately set depending on the combination of the side chain of the polymer and the crosslinking agent, but when the physical crosslinked structure is formed by an ionic bond or a hydrogen bond, dispersibility, further strength In view of the above, 8 to 30 is preferable, 9 to 25 is more preferable, and 10 to 22 is further preferable. The number of connecting atoms in the crosslinked structure refers to the minimum number of atoms connecting main chains, and includes atoms serving as ions forming ionic bonds and hydrogen atoms forming hydrogen bonds. However, hydrogen atoms or groups for forming cations are not included in the number of atoms.
 バインダー(固体電解質組成物)は、上述の、未架橋ポリマー、架橋剤、及び物理架橋構造を側鎖に有するポリマーを、それぞれ、1種単独で、又は2種以上、含有していてもよい。
 バインダーは、固体電解質等と混合される前に、未架橋ポリマー(好ましくは未架橋ポリマーの分散液)と架橋剤とを混合して(物理架橋して)調製されることが好ましい。このときの混合条件は、特に制限されず、物理架橋の反応若しくは相互作用に応じて適宜に決定される。例えば、未架橋ポリマーと架橋剤とを、非加熱下又は加熱下で混合することにより、物理架橋させることができる。
The binder (solid electrolyte composition) may contain the above-mentioned uncrosslinked polymer, crosslinking agent, and polymer having a physically crosslinked structure in the side chain, each alone or in combination of two or more.
The binder is preferably prepared by mixing (physically crosslinking) an uncrosslinked polymer (preferably a dispersion of the uncrosslinked polymer) and a crosslinking agent before being mixed with the solid electrolyte or the like. The mixing conditions at this time are not particularly limited, and are appropriately determined depending on the reaction or interaction of physical crosslinking. For example, the uncrosslinked polymer and the cross-linking agent can be physically cross-linked by mixing without heating or under heating.
<非水系分散媒>
 本発明の固体電解質組成物は、非水系分散媒を含有する。
 非水系分散媒は、本発明の固体電解質組成物に含まれる各成分を分散させるものであればよく、上述のバインダーを粒子状で分散させるものが好ましい。本発明において、非水系分散媒は、水を含まない分散媒を意味し、通常、有機溶媒から選択される分散媒である。本発明において、分散媒が水を含まないとは、水の含有率が0質量%である態様に加えて、0.1質量%以下である態様を包含する。ただし、本発明の固体電解質組成物中の水含有量は、好ましくは上記範囲内(非水系組成物)とする。
<Non-aqueous dispersion medium>
The solid electrolyte composition of the present invention contains a non-aqueous dispersion medium.
The non-aqueous dispersion medium may be one that disperses each component contained in the solid electrolyte composition of the present invention, and is preferably one in which the above binder is dispersed in particles. In the present invention, the non-aqueous dispersion medium means a dispersion medium containing no water, and is usually a dispersion medium selected from organic solvents. In the present invention, the phrase "the dispersion medium does not contain water" includes not only the embodiment in which the water content is 0 mass% but also the embodiment in which the water content is 0.1 mass% or less. However, the water content in the solid electrolyte composition of the present invention is preferably within the above range (non-aqueous composition).
 有機溶媒としては、特に制限されないが、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等の各有機溶媒が挙げられる。
 非水系分散媒は、分散性、更には強度等の点で、上記有機溶媒の中でも、炭素数が6以上の有機溶媒を含むことが好ましく、炭素数6~12の有機溶媒を含むことがより好ましく、炭素数6~9の有機溶媒を含むことが等に好ましい。
The organic solvent is not particularly limited, and examples thereof include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds and the like.
The non-aqueous dispersion medium preferably contains an organic solvent having 6 or more carbon atoms, more preferably an organic solvent having 6 to 12 carbon atoms, from the viewpoint of dispersibility and strength. It is preferable to include an organic solvent having 6 to 9 carbon atoms.
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。 Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol and 1,4-butanediol may be mentioned.
 エーテル化合物としては、アルキレングリコール(ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール等)、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。 As the ether compound, alkylene glycol (diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, etc.), alkylene glycol alkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether) Ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dialkyl ether (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ether (tetrahydrofuran, dioxane (1,2) -, 1,3- and 1,4-isomers are included))).
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。 Examples of the amide compound include N,N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ε-caprolactam, formamide, N-methylformamide, acetamide. , N-methylacetamide, N,N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトン(DIBK)などが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素化合物等が挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどの脂肪族炭化水素化合物等が挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピオニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ペンタン酸ブチル、イソ酪酸エチル、イソ酪酸プロピル、イソ酪酸イソプロピル、イソ酪酸イソブチル、ピバル酸プロピル、ピバル酸イソプロピル、ピバル酸ブチル、ピバル酸イソブチルなどのカルボン酸エステル等が挙げられる。
Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
Examples of the ketone compound include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, cyclohexanone, diisobutyl ketone (DIBK) and the like.
Examples of the aromatic compound include aromatic hydrocarbon compounds such as benzene, toluene and xylene.
Examples of the aliphatic compound include aliphatic hydrocarbon compounds such as hexane, heptane, octane and decane.
Examples of the nitrile compound include acetonitrile, propionitrile, isobutyronitrile and the like.
Examples of the ester compound include ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanoate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutyrate, and pivalic acid. Examples thereof include carboxylic acid esters such as propyl, isopropyl pivalate, butyl pivalate, and isobutyl pivalate.
 本発明において、非水系分散媒は、ケトン化合物、エステル化合物、芳香族化合物又は脂肪族化合物が好ましく、ケトン化合物、エステル化合物、芳香族化合物及び脂肪族化合物から選択される少なくとも1種の有機溶媒を含むことがより好ましい。
 固体電解質組成物に含有される非水系分散媒は、1種であっても、2種以上であってもよい。
In the present invention, the non-aqueous dispersion medium is preferably a ketone compound, an ester compound, an aromatic compound or an aliphatic compound, and at least one organic solvent selected from a ketone compound, an ester compound, an aromatic compound and an aliphatic compound. It is more preferable to include.
The non-aqueous dispersion medium contained in the solid electrolyte composition may be one type or two or more types.
 非水系分散媒の、固体電解質組成物中の含有量は、特に限定されず、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
 非水系分散媒における、炭素数が6以上の有機溶媒の含有率は、特に制限されず、例えば、非水系分散媒全量に対して50~100質量%とすることができる。
The content of the non-aqueous dispersion medium in the solid electrolyte composition is not particularly limited and is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
The content of the organic solvent having 6 or more carbon atoms in the non-aqueous dispersion medium is not particularly limited, and can be, for example, 50 to 100 mass% with respect to the total amount of the non-aqueous dispersion medium.
<活物質>
 本発明の固体電解質組成物は、活物質を含有することもできる。この活物質は、周期律表第一族若しくは第二族に属する金属元素のイオンの挿入放出が可能な物質である。このような活物質としては、正極活物質及び負極活物質が挙げられる。正極活物質としては、金属酸化物(好ましくは遷移金属酸化物)が好ましく、負極活物質としては、炭素質材料、金属酸化物、ケイ素系材料、リチウム単体、リチウム合金、リチウムと合金形成可能な負極活物質が好ましい。
 本発明において、正極活物質を含有する固体電解質組成物(電極層用組成物)を正極用組成物と、また、負極活物質を含有する固体電解質組成物を負極用組成物ということがある。
<Active material>
The solid electrolyte composition of the present invention can also contain an active material. This active material is a material capable of inserting and releasing ions of a metal element belonging to Group 1 or 2 of the periodic table. Examples of such an active material include a positive electrode active material and a negative electrode active material. A metal oxide (preferably a transition metal oxide) is preferable as the positive electrode active material, and a carbonaceous material, a metal oxide, a silicon-based material, a simple substance of lithium, a lithium alloy, and an alloy with lithium can be formed as the negative electrode active material. A negative electrode active material is preferred.
In the present invention, a solid electrolyte composition containing a positive electrode active material (a composition for an electrode layer) may be referred to as a positive electrode composition, and a solid electrolyte composition containing a negative electrode active material may be referred to as a negative electrode composition.
(正極活物質)
 正極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であり、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(Cathode active material)
The positive electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above-mentioned characteristics, and may be a transition metal oxide, an organic material, an element such as sulfur that can be composited with Li, a composite of sulfur and a metal, or the like.
Among them, as the positive electrode active material, a transition metal oxide having preferably used a transition metal oxide, a transition metal element M a (Co, Ni, Fe , Mn, 1 or more elements selected from Cu and V) the The thing is more preferable. Further, the element M b (elements of Group 1 (Ia), elements of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb of the metal periodic table other than lithium, Elements such as Sb, Bi, Si, P or B) may be mixed. The mixing amount is preferably 0 ~ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, (MD) ) Lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicic acid compounds.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
Specific examples of the transition metal oxide having a (MA) layered rock salt structure include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (lithium nickel cobalt aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
Specific examples of the transition metal oxide having a (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li. 2 NiMn 3 O 8 and the like.
Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And the monoclinic naconic vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
Examples of the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO or NMC is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の平均粒径は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の平均粒径は、上記無機固体電解質の平均粒径と同様にして測定できる。 The shape of the positive electrode active material is not particularly limited, but a particulate shape is preferable. The average particle size of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 μm. In order to make the positive electrode active material have a predetermined particle size, an ordinary pulverizer or classifier may be used. The positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent. The average particle size of the positive electrode active material particles can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The positive electrode active material may be used alone or in combination of two or more.
When the positive electrode active material layer is formed, the mass (mg) (unit weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
 正極活物質の、電極層用組成物中における含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量%が更に好ましく、55~80質量%が特に好ましい。 The content of the positive electrode active material in the electrode layer composition is not particularly limited and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and further preferably 50 to 85% by mass, based on 100% by mass of the solid content. Is more preferable, and 55 to 80% by mass is particularly preferable.
(負極活物質)
 負極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であり、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、リチウム単体、リチウム合金、リチウムと合金形成可能(合金化可能)な負極活物質等が挙げられる。中でも、炭素質材料、金属複合酸化物又はリチウム単体が信頼性の点から好ましく用いられる。全固体二次電池の大容量化が可能となる点では、リチウムと合金化可能な活物質が好ましい。本発明の固体電解質組成物で形成した構成層は固体粒子同士が強固に結着しているため、負極活物質としてリチウムと合金形成可能な負極活物質を用いることができる。これにより、全固体二次電池の大容量化と電池の長寿命化とが可能となる。
(Negative electrode active material)
The negative electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or Group 2 of the periodic table, and is preferably one capable of reversibly inserting and releasing lithium ions. The material is not particularly limited as long as it has the above characteristics, and it is a carbonaceous material, a metal oxide, a metal composite oxide, a simple substance of lithium, a lithium alloy, or an anode active that can form an alloy with lithium (can be alloyed). Examples include substances. Above all, a carbonaceous material, a metal composite oxide, or a simple substance of lithium is preferably used from the viewpoint of reliability. An active material capable of alloying with lithium is preferable from the viewpoint that the capacity of the all-solid secondary battery can be increased. Since the solid particles are firmly bound to each other in the constituent layer formed of the solid electrolyte composition of the present invention, a negative electrode active material capable of forming an alloy with lithium can be used as the negative electrode active material. As a result, it is possible to increase the capacity of the all-solid-state secondary battery and extend the life of the battery.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
The carbonaceous material used as the negative electrode active material is a material consisting essentially of carbon. For example, petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), and PAN (polyacrylonitrile)-based resin or furfuryl alcohol resin A carbonaceous material obtained by firing a resin can be used. Further, various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polyvinyl alcohol)-based carbon fibers, lignin carbon fibers, glassy carbon fibers and activated carbon fibers. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
These carbonaceous materials can be divided into non-graphitizable carbonaceous materials (also called hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization. The carbonaceous material preferably has the interplanar spacing or density and crystallite size described in JP-A-62-22066, JP-A-2-6856 and JP-A-3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, etc. may be used. Can also
Hard carbon or graphite is preferably used as the carbonaceous material, and graphite is more preferably used.
 負極活物質として適用される金属若しくは半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、金属元素の酸化物(金属酸化物)、金属元素の複合酸化物若しくは金属元素と半金属元素との複合酸化物(纏めて金属複合酸化物という。)、半金属元素の酸化物(半金属酸化物)が挙げられる。これらの酸化物としては、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイドも好ましく挙げられる。本発明において、半金属元素とは、金属元素と非半金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、更にはセレン、ポロニウム及びアスタチンの3元素を含む。また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°~70°に見られる結晶性の回折線の内最も強い強度が、2θ値で20°~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 The metal or metalloid element oxide applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of inserting and extracting lithium, and an oxide of a metal element (metal oxide), a composite of metal elements Examples thereof include oxides or composite oxides of metal elements and metalloid elements (collectively referred to as metal composite oxides) and oxides of metalloid elements (metalloid oxides). As these oxides, amorphous oxides are preferable, and chalcogenide, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferable. In the present invention, the metalloid element refers to an element exhibiting intermediate properties between a metal element and a non-metalloid element, and usually contains 6 elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and astatine. Amorphous means an X-ray diffraction method using CuKα rays and having a broad scattering band having an apex in a region of 20° to 40° at a 2θ value. You may have. The highest intensity of the crystalline diffraction lines observed at 2θ values of 40° to 70° is 100 times or less than the diffraction line intensity of the apex of the broad scattering band observed at 20° to 40° of 2θ values. Is preferable, and is more preferably 5 times or less, and particularly preferably not having a crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb及びSbが好ましく挙げられる。
 Sn、Si、Geを中心とする非晶質酸化物に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な活物質が好適に挙げられる。
Among the compound group consisting of the above amorphous oxide and chalcogenide, the amorphous oxide of a metalloid element or the above chalcogenide is more preferable, and an element of Group 13 (IIIB) to 15 (VB) of the periodic table (for example, , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) are preferably used alone or as a (composite) oxide composed of a combination of two or more thereof, or a chalcogenide. Specific examples of preferable amorphous oxides and chalcogenides are, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , and Sb 2. O 4, Sb 2 O 8 Bi 2 O 3, Sb 2 O 8 Si 2 O 3, Sb 2 O 5, Bi 2 O 3, Bi 2 O 4, GeS, PbS, PbS 2, Sb 2 S 3 and Sb 2 S 5 is preferably mentioned.
Examples of the negative electrode active material that can be used in combination with the amorphous oxide centered on Sn, Si, and Ge include carbonaceous materials that can store and/or release lithium ions or lithium metal, lithium simple substance, lithium alloy, lithium. An active material that can be alloyed with is preferably used.
 金属若しくは半金属元素の酸化物、とりわけ金属複合酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属複合酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。 From the viewpoint of high current density charge/discharge characteristics, it is preferable that the oxide of a metal or metalloid element, particularly the metal composite oxide and the chalcogenide, contain at least one of titanium and lithium as a constituent component. Examples of the metal composite oxide containing lithium (lithium composite metal oxide) include, for example, a composite oxide of lithium oxide and the above metal composite oxide or the above chalcogenide, and more specifically, Li 2 SnO 2. ..
 負極活物質、例えば金属酸化物は、チタン原子を含有すること(チタン酸化物)も好ましい。具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。 It is also preferable that the negative electrode active material, for example, the metal oxide contains a titanium atom (titanium oxide). Specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) has excellent rapid charge/discharge characteristics due to its small volume fluctuation during occlusion/release of lithium ions, and deterioration of the electrodes is suppressed. It is preferable in that the life can be improved.
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。 The lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of a secondary battery, and examples thereof include a lithium aluminum alloy.
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質は、充放電による膨張収縮が大きく、上述のように固体粒子の結着性が低下するが、本発明では上記バインダーにより高い結着性を達成できる。このような活物質として、ケイ素原子若しくはスズ原子を有する負極活物質、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素原子を有する負極活物質(ケイ素原子含有活物質)が好ましく、ケイ素原子の含有量が全構成原子の50mol%以上のケイ素原子含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(例えば、ケイ素原子含有活物質を含有するSi負極、スズ原子を有する活物質を含有するSn負極)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量(エネルギー密度)を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素原子含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅、ランタン等を含むケイ素含有合金(例えば、LaSi、VSi、La-Si、Gd-Si、Ni-Si)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素原子及びスズ原子を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な活物質(その前駆体物質)として用いることができる。
 スズ原子を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素原子及びスズ原子を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOも包含される。
The negative electrode active material capable of forming an alloy with lithium is not particularly limited as long as it is one that is usually used as the negative electrode active material of a secondary battery. Such an active material has large expansion and contraction due to charge and discharge, and the binding property of the solid particles is lowered as described above, but in the present invention, the binder can achieve high binding property. Examples of such an active material include a negative electrode active material having a silicon atom or a tin atom, each metal such as Al and In, and a negative electrode active material having a silicon atom that enables higher battery capacity (silicon atom-containing active material). ) Is preferable, and a silicon atom-containing active material in which the content of silicon atoms is 50 mol% or more of all the constituent atoms is more preferable.
Generally, a negative electrode containing such a negative electrode active material (for example, a Si negative electrode containing a silicon atom-containing active material, a Sn negative electrode containing a tin atom-containing active material) is a carbon negative electrode (graphite, acetylene black, etc.). In comparison with, it is possible to occlude more Li ions. That is, the storage amount of Li ions per unit mass increases. Therefore, the battery capacity (energy density) can be increased. As a result, there is an advantage that the battery drive time can be lengthened.
Examples of the silicon atom-containing active material include silicon materials such as Si and SiOx (0<x≦1), and further silicon-containing alloys including titanium, vanadium, chromium, manganese, nickel, copper, lanthanum (for example, LaSi 2 , VSi 2 , La-Si, Gd-Si, Ni-Si), or an organized active material (for example, LaSi 2 /Si), as well as silicon atoms and tin atoms such as SnSiO 3 and SnSiS 3. Examples include active materials containing SiOx can be used as a negative electrode active material (semi-metal oxide) itself, and since Si is generated by the operation of an all-solid secondary battery, an active material (precursor thereof) that can be alloyed with lithium. It can be used as a body substance).
Examples of the negative electrode active material having a tin atom include Sn, SnO, SnO 2 , SnS, SnS 2 , and the active material containing the above silicon atom and tin atom. Further, a complex oxide with lithium oxide, for example, Li 2 SnO 2 is also included.
 本発明においては、上述の負極活物質を特に制限されることなく用いることができるが、電池容量の点では、負極活物質として、リチウムと合金化可能な負極活物質が好ましい態様であり、中でも、上記ケイ素材料又はケイ素含有合金(ケイ素元素を含有する合金)がより好ましく、ケイ素(Si)又はケイ素含有合金を含むことが更に好ましい。 In the present invention, the above-mentioned negative electrode active material can be used without particular limitation, but in terms of battery capacity, a negative electrode active material that can be alloyed with lithium is a preferred embodiment, among them, The above silicon material or silicon-containing alloy (alloy containing silicon element) is more preferable, and silicon (Si) or silicon-containing alloy is further preferable.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒径は、0.1~60μmが好ましい。所定の粒径にするには、通常の粉砕機若しくは分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル若しくは篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては、特に限定はなく、篩、風力分級機などを所望により用いることができる。分級は乾式及び湿式ともに用いることができる。負極活物質の平均粒径は、上記無機固体電解質の平均粒径と同様にして測定できる。 The shape of the negative electrode active material is not particularly limited, but a particulate shape is preferable. The average particle size of the negative electrode active material is preferably 0.1 to 60 μm. An ordinary crusher or classifier is used to obtain a predetermined particle size. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill or a sieve is preferably used. At the time of crushing, wet crushing can also be performed in the presence of water or an organic solvent such as methanol. In order to obtain the desired particle size, it is preferable to carry out classification. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as desired. Classification can be performed both dry and wet. The average particle size of the negative electrode active material can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The negative electrode active material may be used alone or in combination of two or more.
When the negative electrode active material layer is formed, the mass (mg) (unit weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity.
 負極活物質の、電極層用組成物中における含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。 The content of the negative electrode active material in the electrode layer composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass based on 100% by mass of the solid content.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above calcination method can be calculated from the mass difference of the powder before and after calcination as a simple method, and as a simple method.
 本発明において、負極活物質層を電池の充電により形成する場合、上記負極活物質に代えて、全固体二次電池内に発生する周期律表第一族若しくは第二族に属する金属のイオンを用いることができる。このイオンを電子と結合させて金属として析出させることで、負極活物質層を形成できる。 In the present invention, when the negative electrode active material layer is formed by charging the battery, in place of the negative electrode active material, ions of a metal belonging to Group 1 or Group 2 of the periodic table generated in the all-solid secondary battery are used. Can be used. A negative electrode active material layer can be formed by combining these ions with an electron and depositing as a metal.
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
(Coating with active material)
The surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide. Examples of the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like, and specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , and LiTaO 3. , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO. 3, Li 2 SiO 3, SiO 2, TiO 2, ZrO 2, Al 2 O 3, B 2 O 3 and the like.
The surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
Furthermore, the surface of the particles of the positive electrode active material or the negative electrode active material may be surface-treated with active rays or active gas (plasma etc.) before and after the surface coating.
<導電助剤>
 本発明の固体電解質組成物は、導電助剤を含有することもでき、特に負極活物質としてのケイ素原子含有活物質は導電助剤と併用されることが好ましい。
 導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いてもよい。
 本発明において、活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際に周期律表第一族若しくは第二族に属する金属のイオン(好ましくはLiイオン)の挿入と放出が起きず、活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
<Conductive agent>
The solid electrolyte composition of the present invention may contain a conductive auxiliary agent, and it is particularly preferable that the silicon atom-containing active material as the negative electrode active material is used in combination with the conductive auxiliary agent.
The conductive aid is not particularly limited, and those known as general conductive aids can be used. For example, electronic conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, Ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube. Such as carbon fibers, carbonaceous materials such as graphene or fullerene, metal powders such as copper and nickel, metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used. You may use.
In the present invention, when an active material and a conductive auxiliary agent are used in combination, among the above conductive auxiliary agents, ions of a metal belonging to Group 1 or Group 2 of the periodic table (preferably Li Ions are not inserted and released, and those that do not function as an active material are used as the conduction aid. Therefore, among the conductive assistants, those that can function as the active material in the active material layer when the battery is charged/discharged are classified as the active material, not the conductive assistant. Whether or not the battery functions as an active material when charged and discharged is not unique and is determined by a combination with the active material.
 導電助剤は、1種を用いてもよいし、2種以上を用いてもよい。
 導電助剤の、電極層用組成物中の含有量は、固形分100質量部に対して、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。
As the conductive additive, one type may be used, or two or more types may be used.
The content of the conductive additive in the electrode layer composition is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass based on 100 parts by mass of the solid content.
 導電助剤の形状は、特に制限されないが、粒子状が好ましい。導電助剤のメジアン径D50は、特に限定されず、例えば、0.01~1μmが好ましく、0.02~0.1μmが好ましい。 The shape of the conductive additive is not particularly limited, but a particulate form is preferable. The median diameter D50 of the conductive additive is not particularly limited and is, for example, preferably 0.01 to 1 μm, and more preferably 0.02 to 0.1 μm.
<他の添加剤>
 本発明の固体電解質組成物は、上記各成分以外の他の成分として、所望により、リチウム塩、イオン液体、増粘剤、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。また、上記ポリマーを化学架橋するための、架橋剤(ラジカル重合、縮合重合又は開環重合により架橋反応するもの等)、更には重合開始剤(酸又はラジカルを熱又は光によって発生させるものなど)を含有していてもよい。
<Other additives>
The solid electrolyte composition of the present invention, if desired, contains a lithium salt, an ionic liquid, a thickener, a defoaming agent, a leveling agent, a dehydrating agent, an antioxidant, etc., as a component other than the above components. You can Further, a cross-linking agent (such as one that causes a cross-linking reaction by radical polymerization, condensation polymerization or ring-opening polymerization) for chemically cross-linking the above polymer, and further a polymerization initiator (such as one that generates an acid or radical by heat or light) May be contained.
 本発明の固体電解質組成物は、全固体二次電池の固体電解質層及び活物質層の形成に好適であり、固体電解質層又は負極活物質層の形成用組成物としてより好ましく、負極活物質層の形成用組成物として特に好ましい。 The solid electrolyte composition of the present invention is suitable for forming a solid electrolyte layer and an active material layer of an all-solid secondary battery, more preferable as a composition for forming a solid electrolyte layer or a negative electrode active material layer, a negative electrode active material layer Is particularly preferable as the composition for forming.
[固体電解質組成物の製造方法]
 本発明の固体電解質組成物は、無機固体電解質、バインダー、非水系分散媒、更には他の成分を、例えば通常用いる各種の混合機で混合することにより、好ましくはスラリーとして、調製することができる。
 混合方法は、特に制限されず、各成分を一括して混合してもよく、順次混合してもよい。本発明においては、ポリマーと架橋剤とを予め物理架橋させ、次いで固体電解質等と混合して固体電解質組成物を形成することが好ましい。粒子状バインダーを用いる場合、粒子状の非架橋ポリマーを合成した後に架橋剤と予め物理架橋させた粒子状バインダーの分散液として用いることが好ましいが、これに限定されない。混合する環境は、特に制限されないが、乾燥空気下又は不活性ガス下等が挙げられる。
[Method for producing solid electrolyte composition]
The solid electrolyte composition of the present invention can be prepared, preferably as a slurry, by mixing an inorganic solid electrolyte, a binder, a non-aqueous dispersion medium, and further other components with, for example, various commonly used mixers. ..
The mixing method is not particularly limited, and the respective components may be mixed together or sequentially. In the present invention, it is preferable that the polymer and the cross-linking agent are physically cross-linked in advance and then mixed with the solid electrolyte or the like to form the solid electrolyte composition. When the particulate binder is used, it is preferably used as a dispersion liquid of the particulate binder in which the particulate non-crosslinked polymer is synthesized and then physically crosslinked with the crosslinking agent, but the present invention is not limited thereto. The environment for mixing is not particularly limited, and examples thereof include a dry air atmosphere or an inert gas atmosphere.
[固体電解質含有シート]
 本発明の固体電解質含有シートは、全固体二次電池の構成層を形成しうるシート状成形体であって、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう。)、電極、又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。
[Solid electrolyte containing sheet]
The solid electrolyte-containing sheet of the present invention is a sheet-shaped molded product that can form a constituent layer of an all-solid secondary battery, and includes various modes depending on its use. For example, a sheet preferably used for a solid electrolyte layer (also referred to as a solid electrolyte sheet for all solid state secondary batteries), an electrode, or a sheet preferably used for a laminate of an electrode and a solid electrolyte layer (electrode for all solid state secondary battery) Sheet) and the like.
 全固体二次電池用固体電解質シートは、固体電解質層を有するシートであればよく、固体電解質層が基材上に形成されているシートでも、基材を有さず、固体電解質層から形成されているシートであってもよい。全固体二次電池用固体電解質シートは、固体電解質層の他に他の層を有してもよい。他の層としては、例えば、保護層(剥離シート)、集電体、コート層等が挙げられる。
 全固体二次電池用固体電解質シートとして、例えば、基材上に、本発明の固体電解質組成物で構成した層、通常固体電解質層と、所望により保護層とをこの順で有するシートが挙げられる。本発明の固体電解質組成物で形成される固体電解質層は、無機固体電解質と、上記架橋剤で側鎖が物理架橋されたポリマーを含むバインダーとを含有しており、高強度を示す。この固体電解質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の固体電解質組成物の固形分中における各成分の含有量と同義である。固体電解質層は、後述する全固体二次電池における固体電解質層と同じであり、通常、活物質を含まない。全固体二次電池用固体電解質シートは、全固体二次電池の固体電解質層を構成する材料として好適に用いることができる。
The solid electrolyte sheet for an all-solid secondary battery may be a sheet having a solid electrolyte layer, even a sheet having a solid electrolyte layer formed on a substrate does not have a substrate and is formed from a solid electrolyte layer. It may be a sheet. The solid electrolyte sheet for all solid state secondary batteries may have other layers in addition to the solid electrolyte layer. Examples of the other layer include a protective layer (release sheet), a current collector, and a coat layer.
Examples of the solid electrolyte sheet for all solid state secondary batteries include, for example, a sheet having a layer composed of the solid electrolyte composition of the present invention on a substrate, a normal solid electrolyte layer, and optionally a protective layer in this order. .. The solid electrolyte layer formed from the solid electrolyte composition of the present invention contains an inorganic solid electrolyte and a binder containing a polymer whose side chain is physically crosslinked with the above-mentioned crosslinking agent, and exhibits high strength. The content of each component in this solid electrolyte layer is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the solid electrolyte composition of the present invention. The solid electrolyte layer is the same as the solid electrolyte layer in the all-solid-state secondary battery described later, and usually contains no active material. The solid electrolyte sheet for all-solid secondary batteries can be used suitably as a material which comprises the solid electrolyte layer of all-solid secondary batteries.
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後述する集電体で説明する材料、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス、セラミック等が挙げられる。 The base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include a sheet (plate-like body) made of a material, an organic material, an inorganic material, and the like, which will be described later with reference to a current collector. Examples of the organic material include various polymers and the like, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, cellulose and the like. Examples of the inorganic material include glass and ceramics.
 全固体二次電池用電極シート(単に「電極シート」ともいう。)は、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、活物質層から形成されているシートであってもよい。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。電極シートは上述の他の層を有してもよい。電極シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。
 電極シートの活物質層は、本発明の固体電解質組成物(電極層用組成物)で形成されることが好ましい。電極シートの活物質層中の各成分の含有量は、特に限定されないが、好ましくは、本発明の固体電解質組成物(電極用組成物)の固形分中における各成分の含有量と同義である。この電極シートは、全固体二次電池の(負極又は正極)活物質層を構成する材料として好適に用いることができる。
The electrode sheet for an all-solid secondary battery (also simply referred to as “electrode sheet”) may be any electrode sheet having an active material layer, and the active material layer is formed on a base material (current collector). However, it may be a sheet having no base material and formed of an active material layer. This electrode sheet is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte. A mode having a layer and an active material layer in this order is also included. The electrode sheet may have other layers as described above. The layer thickness of each layer constituting the electrode sheet is the same as the layer thickness of each layer described in the all-solid secondary battery described later.
The active material layer of the electrode sheet is preferably formed of the solid electrolyte composition (electrode layer composition) of the present invention. The content of each component in the active material layer of the electrode sheet is not particularly limited, but is preferably synonymous with the content of each component in the solid content of the solid electrolyte composition (electrode composition) of the present invention. .. This electrode sheet can be suitably used as a material forming the (negative electrode or positive electrode) active material layer of the all-solid secondary battery.
[固体電解質含有シートの製造方法]
 固体電解質含有シートの製造方法は、特に限定されない。固体電解質含有シートは、本発明の固体電解質組成物を用いて製造することができる。例えば、上述のようにして本発明の固体電解質組成物を調製し、得られた固体電解質組成物を基材上(他の層を介していてもよい。)に製膜(塗布乾燥)して、基材上に固体電解質層(塗布乾燥層)を形成する方法が挙げられる。これにより、所望により基材(集電体)と塗布乾燥層とを有する固体電解質含有シートを作製することができる。ここで、塗布乾燥層とは、本発明の固体電解質組成物を塗布し、非水系分散媒を乾燥させることにより形成される層(すなわち、本発明の固体電解質組成物を用いてなり、本発明の固体電解質組成物から非水系分散媒を除去した組成からなる層)をいう。活物質層及び塗布乾燥層は、本発明の効果を損なわない範囲であれば非水系分散媒が残存していてもよく、残存量としては、例えば、各層中、3質量%以下とすることができる。
 上記製造方法において、本発明の固体電解質組成物はスラリーとして用いることが好ましく、所望により、公知の方法で本発明の固体電解質組成物をスラリー化することができる。本発明の固体電解質組成物の塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
[Method for producing solid electrolyte-containing sheet]
The method for producing the solid electrolyte-containing sheet is not particularly limited. The solid electrolyte-containing sheet can be manufactured using the solid electrolyte composition of the present invention. For example, the solid electrolyte composition of the present invention is prepared as described above, and the obtained solid electrolyte composition is formed into a film (coating and drying) on a substrate (may have other layers interposed). A method of forming a solid electrolyte layer (coating dry layer) on a substrate can be mentioned. Thereby, a solid electrolyte-containing sheet having a base material (current collector) and a coating and drying layer can be produced as desired. Here, the coating dry layer is a layer formed by applying the solid electrolyte composition of the present invention and drying the non-aqueous dispersion medium (that is, using the solid electrolyte composition of the present invention, Layer of the composition obtained by removing the non-aqueous dispersion medium from the solid electrolyte composition of. The nonaqueous dispersion medium may remain in the active material layer and the coating dried layer as long as the effects of the present invention are not impaired. The remaining amount is, for example, 3% by mass or less in each layer. it can.
In the above production method, the solid electrolyte composition of the present invention is preferably used as a slurry, and if desired, the solid electrolyte composition of the present invention can be slurried by a known method. Each process such as application and drying of the solid electrolyte composition of the present invention will be described in the following method for manufacturing an all-solid secondary battery.
 本発明の固体電解質含有シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等については、後述する、全固体二次電池の製造方法において説明する。
 また、本発明の固体電解質含有シートの製造方法においては、基材、保護層(特に剥離シート)等を剥離することもできる。
In the method for producing a solid electrolyte-containing sheet of the present invention, the coating dried layer obtained as described above can be pressed. The pressurizing condition and the like will be described later in the method of manufacturing an all-solid-state secondary battery.
Further, in the method for producing a solid electrolyte-containing sheet of the present invention, the base material, the protective layer (particularly the release sheet) and the like can be peeled off.
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、所望により正極集電体上に形成され、正極を構成する。負極活物質層は、所望により負極集電体上に形成され、負極を構成する。
 全固体二次電池の、固体電解質層、正極活物質層及び負極活物質層の少なくとも1つの層は、本発明の固体電解質組成物で形成されることが好ましく、全ての層が本発明の固体電解質組成物で形成される態様を含む。活物質層は、無機固体電解質と活物質と好ましくは導電助剤とを含有する。負極活物質層は、本発明の固体電解質組成物で形成されない場合、無機固体電解質と活物質と好ましくは導電助剤と所望により上記各成分を含有する層、上記負極活物質として説明した金属若しくは合金からなる層(リチウム金属層等)、更には上記負極活物質として説明した炭素質材料又はケイ素原子含有活物質からなる層(シート)等が採用される。金属若しくは合金からなる層とは、例えば、リチウム等の金属若しくは合金の粉末を堆積又は成形してなる層、金属箔若しくは合金箔、及び蒸着膜等を包含する。金属若しくは合金からなる層及び炭素質材料等からなる層の厚さは、それぞれ、特に限定されず、例えば、0.01~100μmとすることができる。固体電解質層は、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する固体電解質と所望により上記各成分とを含有する。
[All solid state secondary battery]
The all-solid secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer. Have. The positive electrode active material layer is formed on the positive electrode current collector, if desired, and constitutes a positive electrode. The negative electrode active material layer is optionally formed on the negative electrode current collector to form a negative electrode.
At least one layer of the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer of the all-solid secondary battery is preferably formed of the solid electrolyte composition of the present invention, and all layers are the solid of the present invention. Including an embodiment formed of the electrolyte composition. The active material layer contains an inorganic solid electrolyte, an active material, and preferably a conductive additive. The negative electrode active material layer, when not formed by the solid electrolyte composition of the present invention, a layer containing an inorganic solid electrolyte, an active material, preferably a conductive additive and optionally the above components, the metal described as the negative electrode active material or A layer made of an alloy (such as a lithium metal layer), and a layer (sheet) made of the carbonaceous material or the silicon atom-containing active material described as the negative electrode active material are adopted. The layer made of metal or alloy includes, for example, a layer formed by depositing or molding powder of metal or alloy such as lithium, metal foil or alloy foil, and vapor deposition film. The thickness of the layer made of a metal or alloy and the layer made of a carbonaceous material are not particularly limited, and may be, for example, 0.01 to 100 μm. The solid electrolyte layer contains a solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table and, if desired, each of the above components.
(正極活物質層、固体電解質層、負極活物質層)
 本発明の全固体二次電池においては、上述のように、固体電解質組成物又は活物質層は、本発明の固体電解質組成物又は上記固体電解質含有シートで形成することができる。形成される固体電解質層及び活物質層は、好ましくは、含有する各成分及びその含有量について、特段の断りがない限り、固体電解質組成物又は固体電解質含有シートの固形分におけるものと同じである。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に限定されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層、固体電解質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
(Positive electrode active material layer, solid electrolyte layer, negative electrode active material layer)
In the all solid state secondary battery of the present invention, as described above, the solid electrolyte composition or the active material layer can be formed by the solid electrolyte composition of the present invention or the solid electrolyte-containing sheet. The solid electrolyte layer and the active material layer to be formed are preferably the same as those in the solid content of the solid electrolyte composition or the solid electrolyte-containing sheet, unless otherwise specified, for each component and the content thereof. ..
The thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 μm, and more preferably 20 μm or more and less than 500 μm, in consideration of the dimensions of a general all-solid secondary battery. In the all solid state secondary battery of the present invention, the thickness of at least one of the positive electrode active material layer, the solid electrolyte layer and the negative electrode active material layer is more preferably 50 μm or more and less than 500 μm.
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。 The positive electrode active material layer and the negative electrode active material layer may each be provided with a current collector on the side opposite to the solid electrolyte layer.
(筐体)
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金及びステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
(Case)
The all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure depending on the application, but in order to obtain the form of a dry battery, it should be further enclosed in a suitable casing before use. Is preferred. The housing may be made of metal or resin (plastic). When using a metallic thing, an aluminum alloy thing and a stainless steel thing can be mentioned, for example. The metallic casing is preferably divided into a casing on the positive electrode side and a casing on the negative electrode side and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。 An all-solid secondary battery according to a preferred embodiment of the present invention will be described below with reference to FIG. 1, but the present invention is not limited to this.
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 本発明の固体電解質組成物は、固体電解質層、負極活物質層又は正極活物質層の成形材料として好ましく用いることができる。また、本発明の固体電解質含有シートは、固体電解質層、負極活物質層又は正極活物質層として好適である。
 本明細書において、正極活物質層と負極活物質層をあわせて電極層又は活物質層と称することがある。
FIG. 1 is a sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. .. The layers are in contact with each other and have a laminated structure. By adopting such a structure, during charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated there. On the other hand, during discharge, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6. In the example shown in the figure, a light bulb is used as the operating portion 6, and it is adapted to be lit by discharge.
The solid electrolyte composition of the present invention can be preferably used as a molding material for a solid electrolyte layer, a negative electrode active material layer or a positive electrode active material layer. Further, the solid electrolyte-containing sheet of the present invention is suitable as a solid electrolyte layer, a negative electrode active material layer or a positive electrode active material layer.
In this specification, the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as an electrode layer or an active material layer.
 図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用積層体と称し、この全固体二次電池用積層体を2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。 When the all-solid secondary battery having the layer structure shown in FIG. 1 is put into a 2032 type coin case, this all-solid secondary battery is referred to as an all-solid secondary battery laminate, and this all-solid secondary battery laminate is A battery produced by putting it in a 2032 type coin case may be referred to as an all-solid secondary battery.
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、固体電解質層及び活物質層のいずれか1つが本発明の固体電解質組成物又は上記固体電解質含有シートを用いて形成される。好ましい態様では全ての層が本発明の固体電解質組成物又は上記固体電解質含有シートを用いて形成され、好ましい別の態様では、固体電解質層及び負極活物質層が本発明の固体電解質組成物又は上記固体電解質含有シートを用いて形成される。負極活物質層は、本発明の固体電解質組成物又は上記電極シートを用いて形成する以外にも、負極活物質としての金属若しくは合金からなる層、負極活物質としての炭素質材料又はケイ素原子含有活物質からなる層等を用いて、更には充電時に負極集電体等に周期律表第一族若しくは第二族に属する金属を析出させることにより、形成することもできる。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する各成分は、それぞれ、互いに同種であっても異種であってもよい。
(Positive electrode active material layer, solid electrolyte layer, negative electrode active material layer)
In the all solid state secondary battery 10, any one of the solid electrolyte layer and the active material layer is formed using the solid electrolyte composition of the present invention or the solid electrolyte containing sheet. In a preferred embodiment, all layers are formed by using the solid electrolyte composition of the present invention or the solid electrolyte-containing sheet, and in another preferred embodiment, the solid electrolyte layer and the negative electrode active material layer are the solid electrolyte composition of the present invention or the above. It is formed using a solid electrolyte containing sheet. The negative electrode active material layer is a layer formed of a metal or an alloy as a negative electrode active material, a carbonaceous material or a silicon atom-containing as a negative electrode active material, in addition to the solid electrolyte composition of the present invention or the electrode sheet. It can also be formed by using a layer or the like made of an active material and further by depositing a metal belonging to Group 1 or 2 of the periodic table on the negative electrode current collector or the like during charging.
The components contained in the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 may be the same or different from each other.
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as aluminum or stainless steel whose surface is treated with carbon, nickel, titanium or silver (a thin film is formed). The above) are preferable, and among them, aluminum and aluminum alloys are more preferable.
As a material for forming the negative electrode current collector, in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel. Preferred are aluminum, copper, copper alloy and stainless steel.
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
The shape of the current collector is usually a film sheet, but a net, a punch, a lath, a porous body, a foam, a molded body of fibers, and the like can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層、部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。 In the present invention, a functional layer, a member or the like is appropriately interposed or arranged between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer and the positive electrode current collector. You may. Each layer may be composed of a single layer or multiple layers.
[全固体二次電池の製造方法]
 本発明の全固体二次電池は、特に限定されず、本発明の固体電解質含有シートの製造方法を含んで(経て)製造することができる。用いる原料に着目すると、本発明の固体電解質組成物を用いて製造することもできる。具体的には、全固体二次電池は、上述のようにして本発明の固体電解質組成物を調製し、得られた固体電解質組成物等を用いて、全固体二次電池の固体電解質層及び/又は活物質層を形成することにより、製造できる。これにより、電池容量等の電池性能に優れた全固体二次電池を製造できる。本発明の固体電解質組成物の調製方法は上述の通りであるので省略する。
[Method of manufacturing all-solid-state secondary battery]
The all-solid secondary battery of the present invention is not particularly limited, and can be manufactured by (via) the method for manufacturing a solid electrolyte-containing sheet of the present invention. Focusing on the raw material used, the solid electrolyte composition of the present invention can also be used for production. Specifically, the all-solid secondary battery, the solid electrolyte composition of the present invention is prepared as described above, using the obtained solid electrolyte composition and the like, a solid electrolyte layer of the all-solid secondary battery and It can be manufactured by forming an active material layer. This makes it possible to manufacture an all-solid secondary battery having excellent battery performance such as battery capacity. Since the method for preparing the solid electrolyte composition of the present invention is as described above, it is omitted.
 本発明の全固体二次電池は、本発明の固体電解質組成物を、基材(例えば、集電体となる金属箔)上に塗布し、塗膜を形成する(製膜する)工程を有する方法を経て製造できる。
 例えば、正極集電体である金属箔上に、正極用組成物として本発明の固体電解質組成物(電極層用組成物)を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための本発明の固体電解質組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用組成物として本発明の固体電解質組成物(電極層用組成物)を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。所望によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
The all-solid secondary battery of the present invention has a step of applying the solid electrolyte composition of the present invention onto a substrate (for example, a metal foil serving as a current collector) to form a coating film (form a film). It can be manufactured via a method.
For example, for a solid electrolyte secondary battery, a solid electrolyte composition (electrode layer composition) of the present invention is applied as a positive electrode composition onto a metal foil that is a positive electrode current collector to form a positive electrode active material layer. A positive electrode sheet is prepared. Then, the solid electrolyte composition of the present invention for forming a solid electrolyte layer is applied onto the positive electrode active material layer to form a solid electrolyte layer. Further, the solid electrolyte composition of the present invention (composition for electrode layer) is applied on the solid electrolyte layer as a composition for negative electrode to form a negative electrode active material layer. To obtain an all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. You can If desired, this can be enclosed in a housing to form a desired all solid state secondary battery.
In addition, the formation method of each layer is reversed, and the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery. You can also do it.
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用組成物として本発明の固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、本発明の固体電解質層形成組成物を塗布して固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 更に、上記のようにして、全固体二次電池用正極シート又は全固体二次電池用負極シート、及び全固体二次電池用固体電解質シートを作製する。次いで、全固体二次電池用正極シート又は全固体二次電池用負極シートと全固体二次電池用固体電解質シートとを、正極活物質層又は負極活物質層と固体電解質層とを接触させた状態に、重ねて、加圧する。こうして、全固体二次電池用正極シート又は全固体二次電池用負極シートに固体電解質層を転写する。その後、全固体二次電池用固体電解質シートの基材を剥離した固体電解質層と全固体二次電池用負極シート又は全固体二次電池用正極シートとを(固体電解質層に負極活物質層又は正極活物質層を接触させた状態に)重ねて加圧する。こうして、全固体二次電池を製造することができる。この方法における加圧方法及び加圧条件等は、特に制限されず、後述する、塗布した組成物の加圧において説明する方法及び加圧条件等を適用できる。
Another method is as follows. That is, the positive electrode sheet for all solid state secondary batteries is produced as described above. In addition, the solid electrolyte composition of the present invention is applied as a negative electrode composition onto a metal foil that is a negative electrode current collector to form a negative electrode active material layer, and a negative electrode sheet for an all-solid secondary battery is produced. Then, the solid electrolyte layer-forming composition of the present invention is applied onto any one of the active material layers of these sheets to form a solid electrolyte layer, as described above. Further, the other of the positive electrode sheet for all-solid secondary battery and the negative electrode sheet for all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, the all solid state secondary battery can be manufactured.
The following method can be given as another method. That is, the positive electrode sheet for all-solid secondary batteries and the negative electrode sheet for all-solid secondary batteries are produced as described above. Separately from this, a solid electrolyte composition is applied onto a substrate to prepare a solid electrolyte sheet for an all-solid secondary battery including a solid electrolyte layer. Further, the positive electrode sheet for all-solid secondary battery and the negative electrode sheet for all-solid secondary battery are laminated so as to sandwich the solid electrolyte layer peeled from the base material. In this way, the all solid state secondary battery can be manufactured.
Further, as described above, the positive electrode sheet for all-solid secondary battery or the negative electrode sheet for all-solid secondary battery, and the solid electrolyte sheet for all-solid secondary battery are produced. Then, the positive electrode sheet for all solid state secondary batteries or the negative electrode sheet for all solid state secondary batteries and the solid electrolyte sheet for all solid state secondary batteries were brought into contact with the positive electrode active material layer or the negative electrode active material layer and the solid electrolyte layer. Overlap and pressurize. In this way, the solid electrolyte layer is transferred to the positive electrode sheet for all-solid secondary batteries or the negative electrode sheet for all-solid secondary batteries. Then, the solid electrolyte layer and the all-solid secondary battery negative electrode sheet or all-solid secondary battery positive electrode sheet for which the base material of the solid electrolyte sheet for all-solid secondary battery is peeled off (a solid electrolyte layer with a negative electrode active material layer or The positive electrode active material layers are stacked and pressed together. In this way, an all-solid-state secondary battery can be manufactured. The pressurizing method, pressurizing condition, and the like in this method are not particularly limited, and the method, pressurizing condition, and the like described below for pressurizing the applied composition can be applied.
 上記各製造方法は、いずれも、固体電解質層、負極活物質層及び正極活物質層を本発明の固体電解質組成物で形成する方法であるが、本発明の全固体二次電池の製造方法においては、固体電解質層、負極活物質層及び正極活物質層の少なくとも一つ、好ましくは固体電解質層及び負極活物質層を、本発明の固体電解質組成物で形成する。本発明の固体電解質組成物以外の組成物で固体電解質層を形成する場合、その材料としては、通常用いられる固体電解質組成物等、負極活物質層を形成する場合、公知の負極活物質組成物、負極活物質としての金属若しくは合金(金属層)又は負極活物質としての炭素質材料(炭素質材料層)又はケイ素原子含有活物質等が挙げられる。また、全固体二次電池の製造時に負極活物質層を形成せずに、後述する初期化若しくは使用時の充電で負極集電体に蓄積した、周期律表第一族若しくは第二族に属する金属のイオンを電子と結合させて、金属として負極集電体等の上に析出させることにより、負極活物質層を形成することもできる。
 固体電解質層等は、例えば基板若しくは活物質層上で、固体電解質組成物等を後述する加圧条件下で加圧成形して形成することもできるし、固体電解質又は活物質のシート成形体を用いることもできる。
Each of the above manufacturing methods is a method of forming a solid electrolyte layer, a negative electrode active material layer and a positive electrode active material layer with the solid electrolyte composition of the present invention, in the manufacturing method of the all solid state secondary battery of the present invention. At least one of the solid electrolyte layer, the negative electrode active material layer and the positive electrode active material layer, preferably the solid electrolyte layer and the negative electrode active material layer, is formed from the solid electrolyte composition of the present invention. When forming a solid electrolyte layer with a composition other than the solid electrolyte composition of the present invention, as a material thereof, a commonly used solid electrolyte composition or the like, when forming a negative electrode active material layer, a known negative electrode active material composition Examples thereof include a metal or alloy (metal layer) as a negative electrode active material, a carbonaceous material (carbonaceous material layer) as a negative electrode active material, a silicon atom-containing active material, and the like. Further, the negative electrode active material layer was not formed during the production of the all-solid-state secondary battery, and the negative electrode current collector accumulated in the negative electrode current collector during initialization or charging during use described later belongs to Group 1 or 2 of the periodic table. A negative electrode active material layer can also be formed by combining a metal ion with an electron and precipitating it as a metal on a negative electrode current collector or the like.
The solid electrolyte layer or the like can be formed, for example, on the substrate or the active material layer by pressure-molding the solid electrolyte composition or the like under the pressure condition described below, or by forming a sheet molded body of the solid electrolyte or the active material. It can also be used.
<各層の形成(製膜)>
 全固体二次電池の製造に用いる組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布及びバーコート塗布が挙げられる。
 このとき、組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、非水系分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
<Formation of each layer (film formation)>
The method of applying the composition used for manufacturing the all-solid secondary battery is not particularly limited and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating, dip coating, slit coating, stripe coating and bar coating.
At this time, the composition may be subjected to a drying treatment after each coating, or may be subjected to a multilayer treatment and then a drying treatment. The drying temperature is not particularly limited. The lower limit is preferably 30° C. or higher, more preferably 60° C. or higher, even more preferably 80° C. or higher. The upper limit is preferably 300°C or lower, more preferably 250°C or lower, and further preferably 200°C or lower. By heating in such a temperature range, the non-aqueous dispersion medium can be removed and a solid state (coating dried layer) can be obtained. It is also preferable because the temperature is not raised too high and each member of the all solid state secondary battery is not damaged. As a result, in the all-solid secondary battery, excellent overall performance can be obtained and good binding property can be obtained.
 上記のようにして、本発明の固体電解質組成物を塗布乾燥すると、物理架橋を形成する反応若しくは相互作用をその種類等によっては更に生起させることができ、架橋剤との物理架橋構造を有するポリマーを含むバインダーによって、固体粒子同士等が強固に結着し、更に固体粒子間の界面抵抗が小さな塗布乾燥層を形成することができる。 As described above, when the solid electrolyte composition of the present invention is applied and dried, a reaction or interaction for forming a physical crosslink can be further caused depending on its type, etc., and a polymer having a physical crosslink structure with a crosslinking agent. With the binder containing, solid particles and the like are firmly bound to each other, and a coating dry layer having a small interfacial resistance between solid particles can be formed.
 塗布した組成物、又は、全固体二次電池を作製した後の各層若しくは全固体二次電池は、加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には0.1~1500MPaの範囲であることが好ましい。
 また、塗布した組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は非水系分散媒を予め乾燥させた状態で行ってもよいし、塗布溶媒又は非水系分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。
It is preferable to pressurize the applied composition, or each layer or all-solid secondary battery after the all-solid secondary battery is manufactured. It is also preferable to apply pressure in a state where the layers are laminated. Examples of the pressurizing method include a hydraulic cylinder press machine. The applied pressure is not particularly limited, and generally, it is preferably in the range of 0.1 to 1500 MPa.
Further, the applied composition may be heated simultaneously with the pressurization. The heating temperature is not particularly limited and is generally in the range of 30 to 300°C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
The pressurization may be performed in a state in which the coating solvent or the non-aqueous dispersion medium has been dried in advance, or in a state in which the coating solvent or the non-aqueous dispersion medium remains.
In addition, each composition may be applied at the same time, or the application and drying press may be applied simultaneously and/or sequentially.
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。無機固体電解質は水分と反応するため、加圧中の雰囲気は、乾燥空気下又は不活性ガス中が好ましい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。固体電解質含有シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The atmosphere during pressurization is not particularly limited, and may be air, dry air (dew point −20° C. or lower), inert gas (eg, argon gas, helium gas, nitrogen gas). Since the inorganic solid electrolyte reacts with water, the atmosphere during pressurization is preferably under dry air or in an inert gas.
The pressing time may be a short time (for example, within several hours) and high pressure may be applied, or a long time (one day or more) and medium pressure may be applied. Other than the solid electrolyte containing sheet, for example, in the case of an all solid state secondary battery, a restraint (screw tightening pressure or the like) of the all solid state secondary battery can be used in order to continue applying a medium pressure.
The pressing pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
The pressing pressure can be changed according to the area and film thickness of the pressed portion. It is also possible to change the same site stepwise with different pressures.
The pressed surface may be smooth or roughened.
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を解放することにより、行うことができる。
<Initialization>
The all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charge/discharge in a state where the press pressure is increased, and then releasing the pressure until it becomes a general working pressure of the all solid state secondary battery.
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[Applications of all solid state secondary battery]
The all-solid secondary battery of the present invention can be applied to various uses. The application mode is not particularly limited, but for example, when it is mounted on an electronic device, it is a notebook computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, a mobile phone. Examples include copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, mini disk, electric shaver, transceiver, electronic organizer, calculator, portable tape recorder, radio, backup power supply, memory card. Other consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting equipment, toys, game devices, road conditioners, clocks, strobes, cameras, medical devices (pacemakers, hearing aids, shoulder scuffers, etc.), etc. .. Further, it can be used for various military purposes and for space. It can also be combined with a solar cell.
 以下に、実施例に基づき本発明について更に詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。 The present invention will be described in more detail below based on examples. The present invention should not be construed as being limited thereto. In the following examples, "parts" and "%" representing compositions are based on mass unless otherwise specified.
 実施例及び比較例に用いるバインダーを以下に示す。
 下記式において、バインダーを構成するポリマーの構造と架橋構造とを併記する。
The binders used in Examples and Comparative Examples are shown below.
In the following formula, the structure of the polymer constituting the binder and the crosslinked structure are also shown.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 実施例及び比較例に用いるバインダー及び無機固体電解質を以下のようにしてそれぞれ合成した。 The binder and the inorganic solid electrolyte used in Examples and Comparative Examples were synthesized as follows.
<合成例1:ポリマーB-1の合成及びバインダー分散液B-1の調製>
(ポリマーB-1の合成)
 500mL3つ口フラスコに、2,2-ビス(ヒドロキシメチル)酪酸(東京化成工業社製)1.95gと、ポリエチレングリコール(数平均分子量200、富士フイルム和光純薬社製)12.62gと、NISSO-PB GI-1000(商品名、日本曹達社製)26.32gとを加え、THF(テトラヒドロフラン)262gに溶解した。この溶液に、ジフェニルメタンジイソシアネート(富士フイルム和光純薬社製)24.53gを加えて60℃で撹拌し、均一に溶解させた。得られた溶液に、ネオスタンU-600(商品名、ビスマストリス(2-エチルヘキサノエート)、日東化成社製)120mgを添加して60℃で5時間攪伴し、粘性ポリマー溶液を得た。このポリマー溶液にメタノール1.9gを加えてポリマー末端を封止して、重合反応を停止し、未架橋ポリマーとしてウレタンポリマーB-1を合成して、ポリマーB-1の20質量%THF溶液(ポリマー溶液B-1)を得た。
<Synthesis Example 1: Synthesis of polymer B-1 and preparation of binder dispersion B-1>
(Synthesis of Polymer B-1)
In a 500 mL three-neck flask, 1.95 g of 2,2-bis(hydroxymethyl)butyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.), polyethylene glycol (number average molecular weight 200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 12.62 g, and NISSO -PB GI-1000 (trade name, manufactured by Nippon Soda Co., Ltd.) and 26.32 g were added and dissolved in 262 g of THF (tetrahydrofuran). To this solution, 24.53 g of diphenylmethane diisocyanate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added and stirred at 60° C. to uniformly dissolve it. To the obtained solution, 120 mg of Neostan U-600 (trade name, bismuth tris(2-ethylhexanoate), manufactured by Nitto Kasei Co., Ltd.) was added and stirred at 60° C. for 5 hours to obtain a viscous polymer solution. .. To this polymer solution, 1.9 g of methanol was added to seal the polymer terminal to terminate the polymerization reaction, and urethane polymer B-1 was synthesized as an uncrosslinked polymer to prepare a 20 mass% THF solution of polymer B-1 ( A polymer solution B-1) was obtained.
(ポリマー分散液B-1の調製)
 次に、得られたポリマー溶液B-1を350rpmで撹拌しながら、ヘプタン(沸点98℃)720gを1時間かけて滴下し、ポリマーB-1の乳化液を得た。窒素ガスをフローしながらこの乳化液を85℃で120分加熱した。得られた残留物後にヘプタン150gを加えて更に85℃で60分加熱した。この操作を4回繰り返し、THF(沸点66℃)を除去した。こうして、ポリマーB-1の10質量%ヘプタン分散液B-1を得た。
(Preparation of polymer dispersion B-1)
Next, 720 g of heptane (boiling point 98° C.) was added dropwise over 1 hour while stirring the obtained polymer solution B-1 at 350 rpm to obtain an emulsion of polymer B-1. This emulsion was heated at 85° C. for 120 minutes while flowing nitrogen gas. After the obtained residue, 150 g of heptane was added, and the mixture was further heated at 85° C. for 60 minutes. This operation was repeated 4 times to remove THF (boiling point 66° C.). Thus, a 10 mass% heptane dispersion liquid B-1 of the polymer B-1 was obtained.
(バインダー分散液B-1の調製)
 得られたヘプタン分散液B-1に、架橋剤としてN,N,N’,N’-テトラメチルエチレンジアミン(NEDA)を0.76g加えて、温度25℃で30分撹拌して、ポリマーB-1及び架橋剤NEDAを含むバインダー分散液B-1(10質量%ヘプタン分散液)を得た。
(Preparation of Binder Dispersion Liquid B-1)
0.76 g of N,N,N′,N′-tetramethylethylenediamine (NEDA) as a cross-linking agent was added to the obtained heptane dispersion liquid B-1, and the mixture was stirred at a temperature of 25° C. for 30 minutes to give a polymer B- A binder dispersion B-1 (10% by mass heptane dispersion) containing 1 and a crosslinking agent NEDA was obtained.
<合成例2~10:ポリマーB-2~B-10の合成及びバインダー分散液B-2~B-10の調製>
 上記ポリマーB-1の合成において、各構成成分を導く化合物として下記表1に記載の構成成分を導く化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記ポリマーB-1の合成と同様にして、ウレタンポリマーB-2~B-10をそれぞれ合成し、ポリマー溶液B-2~B-10をそれぞれ調製した。
 こうして得たポリマー溶液B-2~B-10を用いて、ポリマー分散液B-1の調製と同様にして、ポリマー分散液B-2~B-10をそれぞれ調製した。
 次いで、バインダー分散液B-1の調製において、架橋剤として下記表1に記載の化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記バインダー分散液B-1の調製と同様にして、バインダー分散液B-2~B-10をそれぞれ調製した。
<Synthesis Examples 2 to 10: Synthesis of Polymers B-2 to B-10 and Preparation of Binder Dispersions B-2 to B-10>
In the synthesis of the above polymer B-1, the above polymer B-was prepared except that the compounds leading to the constituents shown in Table 1 below were used as the compounds leading to the respective constituents in the amounts used shown in the same table. In the same manner as in the synthesis of 1, urethane polymers B-2 to B-10 were synthesized to prepare polymer solutions B-2 to B-10, respectively.
Using the polymer solutions B-2 to B-10 thus obtained, polymer dispersions B-2 to B-10 were prepared in the same manner as the polymer dispersion B-1.
Then, in the preparation of the binder dispersion liquid B-1, the binder dispersion liquid B-1 was prepared, except that the compounds shown in Table 1 below were used as the cross-linking agent in the amounts used in the contents shown in the same table. Binder dispersions B-2 to B-10 were prepared in the same manner as in.
<合成例11:ポリマーB-11の合成及びバインダー分散液B-11の調製>
(ポリマーB-11の合成)
 還流冷却管、ガス導入コックを付した1L三口フラスコにヘプタンを200g加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。これに、別容器にて調製した液(アクリル酸エチル(和光純薬社製)103.8g、アクリル酸(和光純薬社製)20g、マクロモノマーAB-6(東亜合成社製)を60g(固形分量)、重合開始剤V-601(商品名、和光純薬社製)を2.0g混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。得られた混合物にV-601を更に1.0g添加し、90℃で2時間攪拌した。こうして、未架橋ポリマーとして(メタ)アクリルポリマーB-11を合成して、ポリマー分散液B-11を調製した。
 次いで、得られたポリマー分散液B-11に、架橋剤としてN,N,N’,N’-テトラメチルエチレンジアミンを16.2g加えて、温度25℃で30分撹拌して、ポリマーB-11及び架橋剤NEDAを含むバインダー分散液B-11を得た。
 用いたマクロモノマーAB-6は、末端官能基がメタクリロイル基であるポリブチルアクリレート(数平均分子量6000)である。
<Synthesis Example 11: Synthesis of polymer B-11 and preparation of binder dispersion B-11>
(Synthesis of Polymer B-11)
200 g of heptane was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, nitrogen gas was introduced at a flow rate of 200 mL/min for 10 minutes, and then the temperature was raised to 80°C. To this, a solution prepared in a separate container (103.8 g of ethyl acrylate (manufactured by Wako Pure Chemical Industries), 20 g of acrylic acid (manufactured by Wako Pure Chemical Industries), 60 g of macromonomer AB-6 (manufactured by Toagosei Co., Ltd.) (Amount of solid content) and 2.0 g of a polymerization initiator V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) were added dropwise over 2 hours and then stirred at 80° C. for 2 hours. Further 1.0 g of V-601 was added to the obtained mixture, and the mixture was stirred at 90° C. for 2 hours. Thus, a (meth)acrylic polymer B-11 was synthesized as an uncrosslinked polymer to prepare a polymer dispersion liquid B-11.
Next, 16.2 g of N,N,N′,N′-tetramethylethylenediamine as a cross-linking agent was added to the obtained polymer dispersion B-11, and the mixture was stirred at a temperature of 25° C. for 30 minutes to give a polymer B-11. A binder dispersion liquid B-11 containing a crosslinking agent NEDA was obtained.
The macromonomer AB-6 used is polybutyl acrylate (number average molecular weight 6000) whose terminal functional group is a methacryloyl group.
<合成例12及び13:ポリマーB-12、B-13の合成及びバインダー分散液B-12、B-13の調製>
 ポリマーB-11の合成において、各構成成分を導く化合物として下記表1に記載の構成成分を導く化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記ポリマーB-11の合成と同様にして、(メタ)アクリルポリマーB-12及びB-13をそれぞれ合成し、ポリマー分散液B-12及びB-13をそれぞれ調製した。
 次いで、バインダー分散液B-11の調製において、架橋剤として下記表1に記載の化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記バインダー分散液B-11の調製と同様にして、バインダー分散液B-12及びB-13をそれぞれ調製した。
<Synthesis Examples 12 and 13: Synthesis of Polymers B-12 and B-13 and Preparation of Binder Dispersions B-12 and B-13>
In the synthesis of polymer B-11, the above polymer B-11 was used, except that the compounds leading to the constituents shown in Table 1 below were used in the amounts shown in the same table as the compounds leading to the respective constituents. (Meth)acrylic polymers B-12 and B-13 were respectively synthesized in the same manner as in the above-mentioned synthesis to prepare polymer dispersions B-12 and B-13.
Then, in the preparation of the binder dispersion B-11, the above-mentioned binder dispersion B-11 was prepared, except that the compounds shown in Table 1 below were used as the cross-linking agent in the amounts used shown in the table. Binder dispersions B-12 and B-13 were prepared in the same manner as in.
<合成例14:ポリマーB-14の合成及びバインダー溶液B-14の調製>
 上記ポリマーB-1の合成において、各構成成分を導く化合物として下記表1に記載の構成成分を導く化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記ポリマーB-1の合成と同様にして、ウレタンポリマーB-14を合成し、ポリマー溶液B-14を調製した。
 次いで、バインダー分散液B-1の調製において、得られたポリマー溶液B-14を(転相乳化させることなく)用いたこと以外は、バインダー分散液B-1の調製と同様にして、バインダー溶液B-14を調製した。
<Synthesis Example 14: Synthesis of polymer B-14 and preparation of binder solution B-14>
In the synthesis of the above polymer B-1, the above polymer B-was prepared except that the compounds leading to the constituents shown in Table 1 below were used as the compounds leading to the respective constituents in the amounts used shown in the same table. A urethane polymer B-14 was synthesized in the same manner as in the synthesis of 1, to prepare a polymer solution B-14.
Then, in the preparation of the binder dispersion B-1, the binder solution was prepared in the same manner as in the preparation of the binder dispersion B-1 except that the obtained polymer solution B-14 was used (without phase inversion emulsification). B-14 was prepared.
<合成例15:ポリマーBC-1の合成及びバインダー溶液BC-1の調製>
 4,4’-ジフェニルメタンジイソシアネート(和光純薬社製)2.5g、ジェファーミンD-2000(商品名、ポリオキシプロピレンジアミン、数平均分子量2,000、ハンツマン社製)17.6gを200mLのフラスコに仕込み、メチルエチルケトン52gに溶解させた。得られた溶液を60℃に昇温させて30分間加熱攪拌した後、ネオスタンU-600)51mgを加えて、更に5時間60℃で加熱攪拌した。そこへ、ブチルアミン1.7gを加えて引き続き60℃で1時間加熱攪拌した。こうして、ウレアポリマーBC-1を合成し、ポリマー溶液BC-1(含有量30質量%)を調製した。
 こうして得られたポリマー溶液BC-1をバインダー溶液BC-1とした。
 バインダー溶液BC-1は、架橋剤で架橋されていないウレアポリマーBC-1をバインダーとして含有している。
<Synthesis Example 15: Synthesis of polymer BC-1 and preparation of binder solution BC-1>
2.5 g of 4,4′-diphenylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.), 17.6 g of Jeffamine D-2000 (trade name, polyoxypropylene diamine, number average molecular weight of 2,000, manufactured by Huntsman) of 200 mL. And was dissolved in 52 g of methyl ethyl ketone. The resulting solution was heated to 60° C. and heated and stirred for 30 minutes, then 51 mg of neostan U-600) was added, and the mixture was further heated and stirred at 60° C. for 5 hours. 1.7 g of butylamine was added thereto, and the mixture was subsequently heated with stirring at 60° C. for 1 hour. Thus, the urea polymer BC-1 was synthesized to prepare the polymer solution BC-1 (content: 30% by mass).
The polymer solution BC-1 thus obtained was used as a binder solution BC-1.
The binder solution BC-1 contains the urea polymer BC-1 that has not been crosslinked with a crosslinking agent as a binder.
<バインダー溶液BC-2>
 上記合成例1で調製した、ポリウレタンポリマーB-1のヘプタン分散液B-1を、バインダー溶液BC-2とした。このバインダー溶液BC-2は、架橋剤で架橋されていないウレタンポリマーB-1をバインダーとして含有している。
<Binder solution BC-2>
The heptane dispersion B-1 of the polyurethane polymer B-1 prepared in Synthesis Example 1 above was used as a binder solution BC-2. This binder solution BC-2 contains, as a binder, a urethane polymer B-1 which has not been crosslinked with a crosslinking agent.
<調製例1:バインダー水溶液BC-3の調製>
 特許文献3の実施例1と同様にして、イソブテンと無水マレイン酸との共重合樹脂及びポリエチレンイミンを含有するバインダー水溶液BC-3を調製した。
<Preparation Example 1: Preparation of binder aqueous solution BC-3>
In the same manner as in Example 1 of Patent Document 3, an aqueous binder solution BC-3 containing a copolymer resin of isobutene and maleic anhydride and polyethyleneimine was prepared.
<調製例2:バインダー分散液BC-3の調製>
 上記調製例1で調製したバインダー水溶液BC-3を用いて、ポリマー分散液B-1の調製と同様にして、ポリマー分散液BCの調製を試みた。しかし、共重合樹脂(バインダー)が非水系分散媒(酢酸ブチル)に分散せず、分散液を調製できなかった。
<Preparation Example 2: Preparation of Binder Dispersion Liquid BC-3>
Using the binder aqueous solution BC-3 prepared in Preparation Example 1 above, an attempt was made to prepare a polymer dispersion liquid BC in the same manner as the polymer dispersion liquid B-1. However, the copolymer resin (binder) was not dispersed in the non-aqueous dispersion medium (butyl acetate), and the dispersion could not be prepared.
<合成例16:ポリマーBC-4の合成及びバインダー分散液BC-4の調製>
 上記ポリマーB-1の合成において、各構成成分を導く化合物として下記表1に記載の構成成分を導く化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記ポリマーB-1の合成と同様にして、ウレタンポリマーBC-4を合成し、ポリマー溶液BC-4を調製した。このポリマー溶液BC-4を用いて、ポリマー分散液B-1の調製と同様にして、ポリマー分散液BC-4を調製した。
 こうして得られたポリマー分散液BC-4をバインダー分散液BC-4とした。
<Synthesis Example 16: Synthesis of polymer BC-4 and preparation of binder dispersion liquid BC-4>
In the synthesis of the above polymer B-1, the above polymer B-was prepared except that the compounds leading to the constituents shown in Table 1 below were used as the compounds leading to the respective constituents in the amounts used shown in the same table. In the same manner as in the synthesis of 1, urethane polymer BC-4 was synthesized to prepare a polymer solution BC-4. Using this polymer solution BC-4, a polymer dispersion liquid BC-4 was prepared in the same manner as the polymer dispersion liquid B-1.
The polymer dispersion liquid BC-4 thus obtained was used as a binder dispersion liquid BC-4.
<合成例17:ポリマーBC-5の合成及びバインダー分散液BC-5の調製>
 還流冷却管、ガス導入コックを付した1L三口フラスコに、マクロモノマーM-1の43質量%酪酸ブチル溶液を47質量部、酪酸ブチルを60質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。そこへ、別容器にて調製した液(マクロモノマーM-1の43質量%酪酸ブチル溶液を93質量部、アクリル酸ブチル(富士フイルム和光純薬社製)を90質量部、メタクリル酸メチル(富士フイルム和光純薬社製)を26質量部、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート(商品名:カレンズMOI-BP、昭和電工社製)を20質量部、V-601(商品名、ジメチル-2,2’-アゾビス(2-メチルプロピネート、富士フイルム和光純薬社製)を1.1質量部混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2g添加し、さらに95℃で2時間攪拌した。室温まで冷却した後、酪酸ブチルを250質量部加えてろ過した。得られた分散液に下記で得られたAD-1を4質量部混合し、ネオスタンU-600(商品名、ビスマストリス(2-エチルヘキサノエート)、日東化成社製)1質量部を添加して、120℃で4時間撹拌して架橋することで樹脂((メタ)アクリルポリマー)BC-5の分散液を得た。固形分濃度は30.2%であった。
<Synthesis Example 17: Synthesis of polymer BC-5 and preparation of binder dispersion liquid BC-5>
To a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, 47 parts by mass of a 43% by mass butyl butyrate solution of macromonomer M-1 and 60 parts by mass of butyl butyrate were added, and nitrogen gas was supplied at a flow rate of 200 mL/min at 10 mL. After being introduced for a minute, the temperature was raised to 80°C. There, a liquid prepared in a separate container (93 parts by mass of a 43% by mass butyl butyrate solution of the macromonomer M-1, butyl acrylate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 90 parts by mass of methyl methacrylate (Fuji 26 parts by weight of film Wako Pure Chemical Industries, Ltd., 20 parts by weight of 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate (trade name: Karenz MOI-BP, Showa Denko KK), V-601 (Product name, dimethyl-2,2'-azobis (2-methylpropinate, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 1.1 parts by mass) is added dropwise over 2 hours, and then at 80° C. for 2 hours. After stirring for 0.2 hours, V-601 (0.2 g) was added, and the mixture was further stirred for 2 hours at 95° C. After cooling to room temperature, 250 parts by mass of butyl butyrate was added and filtered. 4 parts by mass of the obtained AD-1 was mixed, and 1 part by mass of Neostan U-600 (trade name, bismuth tris(2-ethylhexanoate), manufactured by Nitto Kasei) was added, and the mixture was stirred at 120° C. for 4 hours. Then, crosslinking was performed to obtain a dispersion liquid of resin ((meth)acrylic polymer) BC-5 having a solid content concentration of 30.2%.
AD-1:下記の方法で合成したポリマー
 還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(アクリル酸ブチルを150質量部、ヒドロキシブチルアクリレートを50質量部、V-601(和光純薬工業株式会社製)を1.9質量部混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2g添加し、更に95℃で2時間攪拌した。室温まで冷却した後、メタノールに加えて沈殿させ、メタノールで2回洗浄後、120℃で真空乾燥することでポリマーAD-1を得た。
AD-1: Polymer synthesized by the following method 190 parts by mass of toluene was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, and nitrogen gas was introduced for 10 minutes at a flow rate of 200 mL/min, and then the temperature was raised to 80°C. Warmed. Solution prepared in another container (150 parts by mass of butyl acrylate, 50 parts by mass of hydroxybutyl acrylate, 1.9 parts by mass of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed for 2 hours. Was added dropwise, and then the mixture was stirred at 80° C. for 2 hours. After that, 0.2 g of V-601 was added, and the mixture was further stirred at 95° C. for 2 hours. After cooling to room temperature, the mixture was added to methanol for precipitation, washed twice with methanol, and then vacuum dried at 120° C. to obtain a polymer AD-1.
<マクロモノマーM-1の合成例>
 還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(処方α)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2g添加し、さらに95℃で2時間攪拌した。攪拌後95℃に保った溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業株式会社製)を0.025質量部、メタクリル酸グリシジル(富士フイルム和光純薬社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業株式会社製)を2.5質量部加えて大気下で120℃3時間攪拌した。室温まで冷却した後、メタノールに加えて沈殿させメタノールで2回洗浄後、50℃で送風乾燥した。得られた固体を300質量部のヘプタンに溶解させることでマクロモノマーM-1の溶液を得た。固形分濃度は43.4%、質量平均分子量は16,000であった。
 (処方α)
メタクリル酸ドデシル(富士フイルム和光純薬社製)   150質量部
メタクリル酸メチル(富士フイルム和光純薬社製)     59質量部
3-メルカプトイソ酪酸(東京化成工業株式会社製)     2質量部
V-601(富士フイルム和光純薬社製)        1.9質量部
<Example of synthesis of macromonomer M-1>
To a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, 190 parts by mass of toluene was added, nitrogen gas was introduced at a flow rate of 200 mL/min for 10 minutes, and then the temperature was raised to 80°C. The liquid (formulation α) prepared in another container was added dropwise over 2 hours, and then stirred at 80°C for 2 hours. After that, 0.2 g of V-601 was added, and the mixture was further stirred at 95° C. for 2 hours. After stirring, 0.025 parts by mass of 2,2,6,6-tetramethylpiperidine-1-oxyl (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and glycidyl methacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were kept at 95° C. 13 parts by mass and 2.5 parts by mass of tetrabutylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and the mixture was stirred at 120° C. for 3 hours in the atmosphere. After cooling to room temperature, the mixture was added to methanol to be precipitated, washed twice with methanol, and then air-dried at 50°C. The obtained solid was dissolved in 300 parts by mass of heptane to obtain a solution of macromonomer M-1. The solid content concentration was 43.4%, and the mass average molecular weight was 16,000.
(Prescription α)
Dodecyl methacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 150 parts by mass Methyl methacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 59 parts by mass 3-mercaptoisobutyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 2 parts by mass V-601 ( FUJIFILM Wako Pure Chemical Industries, Ltd.) 1.9 parts by mass
 得られたバインダー分散液B-1~B-14において、各バインダーを構成するポリマーが物理架橋していることを上述の方法により確認した。その結果、いずれのポリマーも、上記式に示すように、カルボキシ基由来のカルボキシラートアニオンとアミノ基由来のアンモニウムカチオンとからなる塩(結合部)の形成、及び架橋構造の形成が確認された。表1には、形成された架橋構造の連結原子数を示す。
 (メタ)アクリルポリマーBC-5は、その側鎖において共有結合により化学架橋した構造を有している。
In the obtained binder dispersions B-1 to B-14, it was confirmed by the above-mentioned method that the polymer constituting each binder was physically crosslinked. As a result, as shown in the above formulas, it was confirmed that all the polymers formed a salt (bonding part) composed of a carboxylate anion derived from a carboxy group and an ammonium cation derived from an amino group, and a crosslinked structure. Table 1 shows the number of connecting atoms in the formed crosslinked structure.
The (meth)acrylic polymer BC-5 has a structure in which its side chain is chemically crosslinked by a covalent bond.
 得られた各バインダー分散液について、バインダーの平均粒径を、上述の方法により、測定した。その結果を表1に示す。また、物理架橋性基を側鎖に有する(未架橋)ポリマーの質量平均分子量は、上述の方法により測定した。その結果を表1に示す。更に、物理架橋性基を側鎖に有するポリマーについて、基群(a)から選択される基の含有量(表1において「官能基量」という)を上述の方法により測定した結果を表1に示す。
 得られた各バインダー分散液について、バインダーの分散状態を目視により、評価して、表1の「形状」欄に示した。バインダーが非水系分散媒に分散して粒子状のバインダーを形成している状態を「粒子」と称する。一方、バインダー溶液において、バインダーが非水系分散媒に溶解して粒子状のバインダーを形成せず溶液となっている状態を「溶液」と称する。
With respect to each of the obtained binder dispersions, the average particle diameter of the binder was measured by the method described above. The results are shown in Table 1. The mass average molecular weight of the (uncrosslinked) polymer having a physically crosslinkable group in its side chain was measured by the above-mentioned method. The results are shown in Table 1. Further, the results of measuring the content of the group selected from the group group (a) (referred to as "functional group amount" in Table 1) by the above-mentioned method for the polymer having a physically crosslinkable group in the side chain are shown in Table 1. Show.
With respect to each of the obtained binder dispersions, the dispersion state of the binder was visually evaluated and shown in the "shape" column of Table 1. The state in which the binder is dispersed in the non-aqueous dispersion medium to form a particulate binder is referred to as “particle”. On the other hand, in the binder solution, a state in which the binder is dissolved in the non-aqueous dispersion medium to form a particulate binder and is in a solution is referred to as a “solution”.
 表1において、構成成分M1~M4は、以下の通りである。
ウレタンポリマー
 構成成分M1:式(I-1)で表される構成成分
 構成成分M2:式(I-3B)で表される構成成分
 構成成分M3:式(I-3C)で表される構成成分
 構成成分M4:式(II)で表される構成成分
ウレアポリマー
 構成成分M1:式(I-1)で表される構成成分
 構成成分M2:式(I-3B)で表される構成成分において両末端の酸素原子をNHに変更した構成成分
 構成成分M3:式(I-3C)で表される構成成分
(メタ)アクリルポリマー
 構成成分M1:(メタ)アクリル化合物(M1)由来の構成成分
 構成成分M3:マクロモノマー由来の構成成分
 構成成分M4:物理架橋性基を有する構成成分
 なお、ポリマーBC-5の各構成成分は各構成成分欄に順に記載した。
In Table 1, the constituent components M1 to M4 are as follows.
Urethane polymer Component M1: Component represented by Formula (I-1) Component M2: Component represented by Formula (I-3B) Component M3: Component represented by Formula (I-3C) Constituent M4: Constituent Component Urea Polymer Represented by Formula (II) Constituent M1: Constituent Component Represented by Formula (I-1) Constituent M2: Both Constituent Represented by Formula (I-3B) Constituent component in which terminal oxygen atom is changed to NH Constituent component M3: Constituent component (meth)acrylic polymer represented by formula (I-3C) Constituent component M1: (Meth)acrylic compound (M1)-derived constituent component M3: Constituent component derived from macromonomer Constituent component M4: Constituent component having a physical crosslinkable group Each constituent component of the polymer BC-5 is described in order in each constituent component column.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
<表の略号>
 表中、構成成分及び架橋剤欄中の「-」は該当する構成成分又は架橋剤を有していないことを示す。
 表中、構成成分M1~M4欄には、各構成単位を導く化合物名を下記の略号で示した。
 - 構成成分M1 -
MDI:ジフェニルメタンジイソシアネート(富士フイルム和光純薬社製)
H12MDI:ジシクロヘキシルメタンジイソシアネート(東京化成工業社製)
EA:アクリル酸エチル(富士フイルム和光純薬社製)
BA:アクリル酸ブチル(富士フイルム和光純薬社製)
 - 構成成分M2 -
PEG200:ポリエチレングリコール(数平均分子量200、富士フイルム和光純薬社製)
PPG400:ポリプロピレングリコール(数平均分子量400、富士フイルム和光純薬社製)
D-2000:ジェファーミンD-2000(商品名)、ポリオキシプロピレンジアミン、数平均分子量2,000、ハンツマン社製)
MMA:メタクリル酸メチル(富士フイルム和光純薬社製)
 - 構成成分M3 -
GI1000:NISSO-PB GI-1000(商品名、両末端水酸基水素化ポリブタジエン、数平均分子量1500、日本曹達社製)
AB-6:末端官能基がメタクリロイル基であるポリブチルアクリレート(数平均分子量6,000、東亜合成社製)
BA:ブチルアミン
M-1:上記で合成したマクロモノマー
 - 構成成分M4 -
DMBA:2,2-ビス(ヒドロキシメチル)酪酸(東京化成工業社製)
AA:アクリル酸(富士フイルム和光純薬社製)
DMAEA:アクリル酸ジメチルアミノエチル(富士フイルム和光純薬社製)
MOI-BP:2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート(昭和電工社製)
 - 架橋剤 -
NEDA:N,N,N’,N’-テトラメチルエチレンジアミン(東京化成工業社製)
NBDA:N,N,N’,N’-テトラメチル-1,4-ブタンジアミン(東京化成工業社製)
NHDA:N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン(東京化成工業社製)
DPP:1,3-ジ(4-ピリジル)プロパン(東京化成工業社製)
BDA:1,4-ブタンジアミン(東京化成工業社製)
TA:ジエチレントリアミン(東京化成工業社製)
ADA:アジピン酸(東京化成工業社製)
PPDS:1,3-プロパンジスルホン酸(東京化成工業社製)
AD-1:上記の方法で合成したポリマー
<Table abbreviation>
In the table, "-" in the column of component and cross-linking agent indicates that the component or cross-linking agent does not exist.
In the columns of constituent components M1 to M4 in the table, the names of compounds leading to the respective constituent units are shown by the following abbreviations.
-Component M1-
MDI: diphenylmethane diisocyanate (manufactured by FUJIFILM Wako Pure Chemical Industries)
H12MDI: Dicyclohexylmethane diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.)
EA: Ethyl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries)
BA: Butyl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries)
-Component M2-
PEG200: polyethylene glycol (number average molecular weight 200, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
PPG400: Polypropylene glycol (number average molecular weight 400, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
D-2000: Jeffamine D-2000 (trade name), polyoxypropylenediamine, number average molecular weight of 2,000, manufactured by Huntsman)
MMA: Methyl methacrylate (manufactured by FUJIFILM Wako Pure Chemical Industries)
-Component M3-
GI1000: NISSO-PB GI-1000 (trade name, hydrogenated polybutadiene having hydroxyl groups at both ends, number average molecular weight of 1500, manufactured by Nippon Soda Co., Ltd.)
AB-6: Polybutyl acrylate whose terminal functional group is a methacryloyl group (number average molecular weight 6,000, manufactured by Toagosei Co., Ltd.)
BA: Butylamine M-1: Macromonomer synthesized above-Component M4-
DMBA: 2,2-bis(hydroxymethyl)butyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
AA: Acrylic acid (Fujifilm Wako Pure Chemical Industries, Ltd.)
DMAEA: Dimethylaminoethyl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
MOI-BP: 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate (manufactured by Showa Denko KK)
-Crosslinking agent-
NEDA: N,N,N',N'-tetramethylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
NBDA: N,N,N',N'-tetramethyl-1,4-butanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
NHDA: N,N,N',N'-tetramethyl-1,6-hexanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
DPP: 1,3-di(4-pyridyl)propane (manufactured by Tokyo Chemical Industry Co., Ltd.)
BDA: 1,4-butanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
TA: Diethylenetriamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
ADA: adipic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
PPDS: 1,3-propanedisulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
AD-1: Polymer synthesized by the above method
<合成例A:硫化物系無機固体電解質Li-P-S系ガラスの合成>
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
<Synthesis Example A: Synthesis of sulfide-based inorganic solid electrolyte Li-PS glass>
As the sulfide-based inorganic solid electrolyte, T.I. Ohtomo, A.; Hayashi, M.; Tatsumisago, Y. Tsuchida, S.; Hama, K.; Kawamoto, Journal of Power Sources, 233, (2013), pp 231-235 and A.S. Hayashi, S.; Hama, H.; Morimoto, M.; Tatsumisaki, T.; Minami, Chem. Lett. , (2001), pp872-873, the Li-PS glass was synthesized.
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。なお、LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製の遊星ボールミルP-7(商品名)にこの容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、LPS)6.20gを得た。イオン伝導度は0.28mS/cmであった。上記測定方法によるLi-P-S系ガラスの平均粒径は15μmであった。
Specifically, in an argon atmosphere (dew point −70° C.) in a glove box, 2.42 g of lithium sulfide (Li 2 S, manufactured by Aldrich, purity>99.98%), diphosphorus pentasulfide (P 2 S) 5 , 3.90 g (manufactured by Aldrich, purity>99%) were weighed and put into an agate mortar and mixed for 5 minutes using an agate pestle. The mixing ratio of Li 2 S and P 2 S 5 was set to Li 2 S:P 2 S 5 =75:25 in terms of molar ratio.
Sixty-six zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), the entire mixture of the lithium sulfide and phosphorus pentasulfide was charged, and the container was sealed under an argon atmosphere. This container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch Co., and mechanical milling was performed at a temperature of 25° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powdered sulfide-based inorganic solid electrolyte (Li-P- S-type glass, LPS) 6.20 g was obtained. The ionic conductivity was 0.28 mS/cm. The average particle size of the Li—P—S based glass measured by the above method was 15 μm.
実施例1
 固体電解質組成物及び固体電解質含有シートをそれぞれ製造して、この固体電解質組成物及び固体電解質含有シートについて下記特性を評価した。その結果を表2に示す。
Example 1
A solid electrolyte composition and a solid electrolyte-containing sheet were produced, and the following characteristics were evaluated for the solid electrolyte composition and the solid electrolyte-containing sheet. The results are shown in Table 2.
<固体電解質組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成例Aで合成したLPS4.85g、表2に示すバインダー分散液若しくは溶液(固形分質量として0.15g)、及び表2に示す非水系分散媒を16.0g投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7(商品名)にセットし、温度25℃、回転数150rpmで10分間混合を続けて、非水系組成物として固体電解質組成物C-1~C-15及びCC-1~CC-4をそれぞれ調製した。
<Preparation of solid electrolyte composition>
180 zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), 4.85 g of LPS synthesized in Synthesis Example A above, and a binder dispersion or solution shown in Table 2 (0.15 g as solid content mass). ), and 16.0 g of the non-aqueous dispersion medium shown in Table 2. After that, this container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch Co., and mixing was continued for 10 minutes at a temperature of 25° C. and a rotation speed of 150 rpm to obtain solid electrolyte composition C-1 to C C-15 and CC-1 to CC-4 were prepared respectively.
 バインダー分散液として上記調製例1で調製したバインダー水溶液BC-3を用いて、固体電解質組成物C-1と同様にして、固体電解質組成物の調製を試みた。しかし、バインダー水溶液BC-3の水溶媒によりLPSが分解して、固体電解質層を形成可能な固体電解質組成物を調製できなかった。 An attempt was made to prepare a solid electrolyte composition in the same manner as the solid electrolyte composition C-1 using the binder aqueous solution BC-3 prepared in Preparation Example 1 as the binder dispersion. However, LPS was decomposed by the aqueous solvent of the binder aqueous solution BC-3, and a solid electrolyte composition capable of forming a solid electrolyte layer could not be prepared.
<固体電解質含有シートの作製>
 上記で得られた各固体電解質組成物C-1~C-15及びCC-1~CC-4を厚み20μmのアルミニウム箔上に、アプリケーター(商品名:SA-201ベーカー式アプリケーター、テスター産業社製)により塗布し、80℃で2時間加熱し、固体電解質組成物を乾燥させた。その後、ヒートプレス機を用いて、120℃の温度及び600MPaの圧力で10秒間、乾燥させた固体電解質組成物を加熱及び加圧し、固体電解質含有シートS-1~S-15及びBS-1~BS-4をそれぞれ作製した。固体電解質層の膜厚は50μmであった。
<Preparation of solid electrolyte-containing sheet>
Each of the solid electrolyte compositions C-1 to C-15 and CC-1 to CC-4 obtained above was applied onto an aluminum foil having a thickness of 20 μm by an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd. ) And heated at 80° C. for 2 hours to dry the solid electrolyte composition. Then, using a heat press machine, the dried solid electrolyte composition is heated and pressed at a temperature of 120° C. and a pressure of 600 MPa for 10 seconds, and the solid electrolyte-containing sheets S-1 to S-15 and BS-1 to BS-4 was prepared respectively. The thickness of the solid electrolyte layer was 50 μm.
<評価1:分散性の評価>
 調製した固体電解質組成物を、直径10mm、高さ15cmのガラス試験管に高さ10cmまで加え、25℃で2時間静置した後に、分離した上澄みの高さを目視で確認して測定した。固体電解質組成物の全量(高さ10cm)に対する上澄みの高さの比:上澄みの高さ/全量の高さを求めた。この比が下記評価ランクのいずれに含まれるかにより、固体電解質組成物の分散性(分散安定性)を評価した。上記比を算出するに際し、全量とはガラス試験管に投入した固体電解質組成物の全量(10cm)をいい、上澄みの高さとは固体電解質組成物の固形成分が沈降して生じた(固液分離した)上澄み液の量(cm)をいう。
 本試験において、上記比が小さいほど、分散性に優れることを示し、評価ランク「4」以上が合格レベルである。
 - 評価ランク -
 8:     上澄みの高さ/全量の高さ<0.1
 7: 0.1≦上澄みの高さ/全量の高さ<0.2
 6: 0.2≦上澄みの高さ/全量の高さ<0.3
 5: 0.3≦上澄みの高さ/全量の高さ<0.4
 4: 0.4≦上澄みの高さ/全量の高さ<0.5
 3: 0.5≦上澄みの高さ/全量の高さ<0.7
 2: 0.7≦上澄みの高さ/全量の高さ<0.9
 1: 0.9≦上澄みの高さ/全量の高さ
<Evaluation 1: Evaluation of dispersibility>
The prepared solid electrolyte composition was added to a glass test tube having a diameter of 10 mm and a height of 15 cm up to a height of 10 cm and allowed to stand at 25° C. for 2 hours, and then the height of the separated supernatant was visually confirmed and measured. The ratio of the height of the supernatant to the total amount (height 10 cm) of the solid electrolyte composition: the height of the supernatant/the height of the total amount was determined. The dispersibility (dispersion stability) of the solid electrolyte composition was evaluated depending on which of the following evaluation ranks this ratio was included in. When calculating the above ratio, the total amount refers to the total amount (10 cm) of the solid electrolyte composition charged in the glass test tube, and the height of the supernatant refers to the solid component of the solid electrolyte composition settling (solid-liquid separation). The amount of the supernatant (cm).
In this test, the smaller the ratio is, the better the dispersibility is, and the evaluation rank "4" or higher is the pass level.
-Evaluation rank-
8: Height of supernatant liquid/total height <0.1
7: 0.1≦supernatant height/total height <0.2
6: 0.2≦height of supernatant/height of total amount<0.3
5: 0.3≦height of supernatant/total height<0.4
4: 0.4≦height of supernatant/total height<0.5
3: 0.5≦height of supernatant/total height<0.7
2: 0.7≦height of supernatant/height of total amount<0.9
1: 0.9≦height of supernatant/total height
<評価2:結着性の評価>
 固体電解質含有シートを径の異なる棒に巻きつけ、固体電解質層の欠け、割れ若しくはヒビの有無、及び、固体電解質層のアルミニウム箔(集電体)からの剥がれの有無を確認した。これらの欠陥等の異常が発生することなく巻きつけられた棒の最小径が下記評価ランクのいずれに含まれるかにより、結着性を評価した。
 本発明において、棒の最小径が小さいほど、結着性が強固であることを示し、評価ランク「4」以上が合格である。
 - 評価ランク -
 8:      最少径< 2mm
 7:  2mm≦最少径< 4mm
 6:  4mm≦最少径< 6mm
 5:  6mm≦最少径<10mm
 4: 10mm≦最少径<14mm
 3: 14mm≦最少径<20mm
 2: 20mm≦最少径<32mm
 1: 32mm≦最少径
<Evaluation 2: Evaluation of binding property>
The solid electrolyte-containing sheet was wrapped around rods having different diameters, and the presence or absence of cracks, cracks or cracks in the solid electrolyte layer and the presence or absence of peeling of the solid electrolyte layer from the aluminum foil (current collector) were confirmed. The binding property was evaluated according to which of the following evaluation ranks included the minimum diameter of the rod wound without causing defects such as these defects.
In the present invention, the smaller the minimum diameter of the bar is, the stronger the binding property is, and the evaluation rank “4” or more is passed.
-Evaluation rank-
8: Minimum diameter <2 mm
7: 2 mm ≤ minimum diameter <4 mm
6: 4 mm ≤ minimum diameter <6 mm
5: 6 mm ≤ minimum diameter <10 mm
4: 10 mm ≤ minimum diameter <14 mm
3: 14 mm ≤ minimum diameter <20 mm
2: 20 mm ≤ minimum diameter <32 mm
1: 32 mm ≤ minimum diameter
<評価3:イオン伝導度の測定>
 上記で得られた固体電解質含有シートを直径14.5mmの円板状に切り出し、この固体電解質含有シートを図2に示すコインケース11に入れた。具体的には、直径15mmの円板状に切り出したアルミニウム箔(図2に図示しない)を、固体電解質含有シートの固体電解質層と接触させて全固体二次電池用積層体12(アルミニウム-固体電解質層-アルミニウムからなる積層体)を形成し、スペーサーとワッシャー(ともに図2において図示しない)を組み込んで、ステンレス製の2032型コインケース11に入れた。コインケース11をかしめることで、イオン伝導度測定用の全固体二次電池13を作製した。
<Evaluation 3: Measurement of ionic conductivity>
The solid electrolyte-containing sheet obtained above was cut into a disk shape having a diameter of 14.5 mm, and the solid electrolyte-containing sheet was put in the coin case 11 shown in FIG. Specifically, an aluminum foil (not shown in FIG. 2) cut into a disk shape having a diameter of 15 mm is brought into contact with the solid electrolyte layer of the solid electrolyte-containing sheet, and the laminate 12 for all-solid secondary batteries (aluminum-solid An electrolyte layer-a laminated body made of aluminum was formed, a spacer and a washer (both not shown in FIG. 2) were incorporated, and the laminate was put into a 2032 type coin case 11 made of stainless steel. By caulking the coin case 11, an all-solid secondary battery 13 for measuring ionic conductivity was produced.
 得られたイオン伝導度測定用の全固体二次電池13を用いて、イオン伝導度を測定した。具体的には、25℃の恒温槽中、SOLARTRON社製 1255B FREQUENCY RESPONSE ANALYZER(商品名)を用いて電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより試料の膜厚方向の抵抗を求め、下記式(1)により計算して求めた。
 イオン伝導度(mS/cm)=
  1000×試料膜厚(cm)/{抵抗(Ω)×試料面積(cm)}・・・式(1)
 式(1)において、試料膜厚及び試料面積は、全固体二次電池用積層体12を2032型コインケース16に入れる前に測定し、アルミニウム箔の厚みを差し引いた値(すなわち、固体電解質層の膜厚及び面積)である。
The ionic conductivity was measured using the obtained all-solid-state secondary battery 13 for measuring ionic conductivity. Specifically, in a 25° C. constant temperature bath, AC impedance was measured up to a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz using a 1255B FREQUENCY RESPONSE ANALYZER (trade name) manufactured by SOLARTRON. Thus, the resistance in the film thickness direction of the sample was obtained and calculated by the following formula (1).
Ionic conductivity (mS/cm)=
1000×sample film thickness (cm)/{resistance (Ω)×sample area (cm 2 )}...Equation (1)
In the formula (1), the sample film thickness and the sample area are measured before putting the all-solid-state secondary battery laminate 12 into the 2032 type coin case 16, and the value obtained by subtracting the thickness of the aluminum foil (that is, the solid electrolyte layer). Film thickness and area).
 得られたイオン伝導度が下記評価ランクのいずれに含まれるかを判定した。
 本試験におけるイオン伝導度は評価ランク「4」以上が合格である。
 - 評価ランク -
 8:  0.5mS/cm≦イオン伝導度
 7:  0.4mS/cm≦イオン伝導度< 0.5mS/cm
 6:  0.3mS/cm≦イオン伝導度< 0.4mS/cm
 5:  0.2mS/cm≦イオン伝導度< 0.3mS/cm
 4:  0.1mS/cm≦イオン伝導度< 0.2mS/cm
 3: 0.05mS/cm≦イオン伝導度< 0.1mS/cm
 2: 0.01mS/cm≦イオン伝導度<0.05mS/cm
 1:           イオン伝導度<0.01mS/cm
It was determined which of the following evaluation ranks the obtained ionic conductivity was included in.
Regarding the ionic conductivity in this test, an evaluation rank of "4" or higher is acceptable.
-Evaluation rank-
8: 0.5 mS/cm≦ion conductivity 7: 0.4 mS/cm≦ion conductivity <0.5 mS/cm
6: 0.3 mS/cm≦ion conductivity <0.4 mS/cm
5: 0.2 mS/cm≦ion conductivity <0.3 mS/cm
4: 0.1 mS/cm≦ion conductivity <0.2 mS/cm
3: 0.05 mS/cm≦ion conductivity<0.1 mS/cm
2: 0.01 mS/cm≦ion conductivity <0.05 mS/cm
1: Ionic conductivity <0.01 mS/cm
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
<表の略号>
LPS:合成例Aで合成した硫化物系無機固体電解質
THF:テトラヒドロフラン
<Table abbreviation>
LPS: sulfide-based inorganic solid electrolyte synthesized in Synthesis Example A THF: tetrahydrofuran
 表2に示す結果から次のことが分かる。
 主鎖で水素結合しうるものの側鎖で物理架橋していないウレアポリマー(未架橋ウレアポリマー)からなるバインダーを用いた固体電解質組成物CC-1は分散性に問題はなかったが、固体電解質含有シートBS-1は十分な結着性及びイオン伝導度を示さない。一方、主鎖で水素結合しうるものの側鎖で物理架橋していないウレタンポリマー(未架橋ウレタンポリマー)からなるバインダーを用いた固体電解質組成物CC-2及びCS-3は分散性が十分ではなかった。また、これらの固体電解質組成物で作製した固体電解質含有シートBS-2及びBS-3は結着性及びイオン伝導度にも劣る。また、側鎖で共有結合による化学架橋構造を有する(メタ)アクリルポリマーからなるバインダーを用いた固体電解質組成物CC-4は、分散性に劣り、十分な結着性及びイオン伝導度を示す固体電解質含有シートを得ることができない。
The results shown in Table 2 show the following.
The solid electrolyte composition CC-1 using a binder composed of a urea polymer (uncrosslinked urea polymer) which can be hydrogen-bonded in the main chain but is not physically crosslinked in the side chain had no problem in dispersibility, but contained solid electrolyte. Sheet BS-1 does not show sufficient binding property and ionic conductivity. On the other hand, solid electrolyte compositions CC-2 and CS-3 using a binder composed of a urethane polymer (uncrosslinked urethane polymer) that can hydrogen bond in the main chain but is not physically crosslinked in the side chain have insufficient dispersibility. It was Further, the solid electrolyte-containing sheets BS-2 and BS-3 produced from these solid electrolyte compositions are also inferior in binding property and ionic conductivity. Further, the solid electrolyte composition CC-4 using a binder composed of a (meth)acrylic polymer having a side chain having a chemical cross-linking structure by covalent bonds is a solid having poor dispersibility and having sufficient binding property and ionic conductivity. An electrolyte containing sheet cannot be obtained.
 これに対して、物理架橋構造を有するウレタンポリマー若しくは(メタ)アクリルポリマーからなるバインダーを用いた本発明の固体電解質組成物C-1~C-15は、いずれも、優れた分散性を示す。また、これら固体電解質組成物を用いて作製した、本発明の固体電解質含有シートS-1~S-15は、優れた結着性及びイオン伝導度を両立している。
 特に、本発明で規定する式(H-1A)中のL11がアルキル基であると、更にアルキル基の炭素数が5以上であると、固体電解質組成物が更に高い分散性を示し、結着性及びイオン伝導度を高い水準で両立できる。また、本発明で規定するバインダーに対して炭素数が6以上の非水系分散媒を併用すると、分散性の更なる向上が可能となり、優れた結着性及びイオン伝導度を達成できる。
On the other hand, all of the solid electrolyte compositions C-1 to C-15 of the present invention using a binder composed of a urethane polymer or a (meth)acrylic polymer having a physical crosslinked structure show excellent dispersibility. Further, the solid electrolyte-containing sheets S-1 to S-15 of the present invention produced by using these solid electrolyte compositions have both excellent binding properties and ionic conductivity.
In particular, when L 11 in the formula (H-1A) defined in the present invention is an alkyl group and the alkyl group has 5 or more carbon atoms, the solid electrolyte composition exhibits higher dispersibility, It is possible to achieve both high adhesion and high ionic conductivity. When a non-aqueous dispersion medium having 6 or more carbon atoms is used in combination with the binder specified in the present invention, the dispersibility can be further improved, and excellent binding properties and ionic conductivity can be achieved.
実施例2
 全固体二次電池を製造して、下記特性を評価した。その結果を表3及び表4に示す。
Example 2
An all-solid secondary battery was manufactured and the following characteristics were evaluated. The results are shown in Tables 3 and 4.
<負極用組成物U-1~U-15及びV-1~V-4の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成例Aで合成したLPSを4.0g、表3に示すバインダー分散液若しくは溶液(固形分質量として0.3g)、及び表3に示す非水系分散媒を22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数300rpmで60分間攪拌した。その後、負極活物質としてケイ素(Si、Aldrich社製)5.3g及び導電助剤としてアセチレンブラック(デンカ社製)0.4gを投入して遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで10分間混合を続けて、非水系組成物として負極活物質組成物U-1~U-15及びV-1~V-4をそれぞれ調製した。
<負極用組成物U-16、U-17、V-5及びV-6の調製>
 上記負極用組成物U-1の調製において、下記表1に記載の化合物を同表に記載の含有量となる使用量で用いたこと以外は、上記負極用組成物U-1の調製と同様にして、負極用組成物U-16、U-17、V-5及びV-6をそれぞれ調製した。
<Preparation of Negative Electrode Compositions U-1 to U-15 and V-1 to V-4>
180 pieces of zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), 4.0 g of LPS synthesized in Synthesis Example A was prepared, and the binder dispersion or solution shown in Table 3 (solid content of 0) was used. .3 g) and 22 g of the non-aqueous dispersion medium shown in Table 3. This container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch Co., and stirred at 25° C. at a rotation speed of 300 rpm for 60 minutes. Then, 5.3 g of silicon (Si, manufactured by Aldrich) as a negative electrode active material and 0.4 g of acetylene black (manufactured by Denka) as a conductive auxiliary agent were charged, and the container was set in a planetary ball mill P-7 at 25° C. Mixing was continued at a rotation speed of 100 rpm for 10 minutes to prepare negative electrode active material compositions U-1 to U-15 and V-1 to V-4 as non-aqueous compositions.
<Preparation of Negative Electrode Compositions U-16, U-17, V-5 and V-6>
In the preparation of the negative electrode composition U-1, the same as in the preparation of the negative electrode composition U-1, except that the compounds shown in Table 1 below were used in the amounts described in the same table. Then, negative electrode compositions U-16, U-17, V-5 and V-6 were prepared.
<全固体二次電池用負極シートの作製>
 上記で得られた負極用組成物を厚み10μmのステンレス鋼箔(負極集電体)上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、100℃で2時間加熱し、負極用組成物を乾燥(非水系分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた負極用組成物を25℃で加圧(10MPa、1分)し、膜厚50μmの負極活物質層を有する全固体二次電池用負極シートPU-1~PU-17及びPV-1~V-6をそれぞれ作製した。
<Preparation of negative electrode sheet for all solid state secondary battery>
The composition for a negative electrode obtained above was applied onto a stainless steel foil (negative electrode current collector) having a thickness of 10 μm by a baker type applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and at 100° C. for 2 hours. It heated and dried the composition for negative electrodes (the non-aqueous dispersion medium was removed). Then, the dried negative electrode composition was pressed (10 MPa, 1 minute) at 25° C. using a heat press machine, and a negative electrode sheet PU- for an all-solid secondary battery having a negative electrode active material layer with a film thickness of 50 μm was formed. 1 to PU-17 and PV-1 to V-6 were prepared respectively.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
<表の略号>
Si:ケイ素
LPS:合成例Aで合成した硫化物系無機固体電解質
AB:アセチレンブラック(デンカ社製)
THF:テトラヒドロフラン(富士フイルム和光純薬社製)
<Table abbreviation>
Si: Silicon LPS: Sulfide-based inorganic solid electrolyte AB synthesized in Synthesis Example A: Acetylene black (manufactured by Denka)
THF: Tetrahydrofuran (Fujifilm Wako Pure Chemical Industries, Ltd.)
<固体電解質層の形成>
 表4に示す全固体二次電池用負極シートの負極活物質層上に、上記実施例1で作製した、表4に示す固体電解質含有シートを固体電解質層が負極活物質層に接するように重ね、プレス機を用いて25℃で50MPa加圧して転写(積層)した後に、25℃で600MPa加圧することで、全固体二次電池用負極シートの負極活物質層(膜厚46μm)上に膜厚50μmの固体電解質層を積層した。
<Formation of solid electrolyte layer>
On the negative electrode active material layer of the negative electrode sheet for all-solid secondary batteries shown in Table 4, the solid electrolyte containing sheet shown in Table 4 prepared in Example 1 was overlaid so that the solid electrolyte layer was in contact with the negative electrode active material layer. After transferring (laminating) by pressurizing 50 MPa at 25° C. using a press machine, pressurizing 600 MPa at 25° C. to form a film on the negative electrode active material layer (film thickness 46 μm) of the negative electrode sheet for all-solid secondary battery. A solid electrolyte layer having a thickness of 50 μm was laminated.
<正極用組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成例Aで合成したLPSを2.7g、KYNAR FLEX 2500-20(商品名、PVdF-HFP:ポリフッ化ビニリデンヘキサフルオロプロピレン共重合体、アルケマ社製)を固形分質量として0.3g、及び酪酸ブチルを22g投入した。フリッチュ社製遊星ボールミルP-7(商品名)にこの容器をセットし、25℃で、回転数300rpmで60分間攪拌した。その後、正極活物質としてLiNi1/3Co1/3Mn1/3(NMC)7.0gを投入し、同様にして、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで5分間混合を続け、正極用組成物を調製した。
<Preparation of composition for positive electrode>
180 pieces of zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), 2.7 g of LPS synthesized in Synthesis Example A, KYNAR FLEX 2500-20 (trade name, PVdF-HFP: polyfluoride). 0.3 g of vinylidene hexafluoropropylene copolymer, manufactured by Arkema Inc.) was added as solid mass, and 22 g of butyl butyrate was added. This container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch Co., and stirred at 25° C. at a rotation speed of 300 rpm for 60 minutes. Then, 7.0 g of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC) was charged as the positive electrode active material, and similarly, the container was set in the planetary ball mill P-7, and the rotation speed was 25° C. Mixing was continued at 100 rpm for 5 minutes to prepare a positive electrode composition.
<全固体二次電池用正極シートの作製>
 上記で得られた正極用組成物を厚み20μmのアルミニウム箔(正極集電体)上に、ベーカー式アプリケーター(商品名:SA-201、テスター産業社製)により塗布し、100℃で2時間加熱し、正極用組成物を乾燥(非水系分散媒を除去)した。その後、ヒートプレス機を用いて、乾燥させた正極用組成物を25℃で加圧(10MPa、1分)し、膜厚80μmの正極活物質層を有する全固体二次電池用正極シートを作製した。
 この全固体二次電池用正極シートから直径14.0mmの円板状に打ち抜いて、円盤状正極シートを得た。
<Preparation of positive electrode sheet for all solid state secondary battery>
The composition for positive electrode obtained above was applied onto a 20 μm thick aluminum foil (positive electrode current collector) with a Baker applicator (trade name: SA-201, manufactured by Tester Sangyo Co., Ltd.) and heated at 100° C. for 2 hours. Then, the positive electrode composition was dried (non-aqueous dispersion medium was removed). Then, the dried positive electrode composition was pressed (10 MPa, 1 minute) at 25° C. using a heat press machine to prepare a positive electrode sheet for an all-solid secondary battery having a positive electrode active material layer with a film thickness of 80 μm. did.
A disc-shaped positive electrode sheet was obtained by punching out a disc-shaped positive electrode sheet having a diameter of 14.0 mm from this positive electrode sheet for all-solid secondary batteries.
<全固体二次電池の製造>
 作製した各全固体二次電池用負極シート(固体電解質含有シートのアルミニウム箔は剥離済み)を直径14.5mmの円板状に切り出し、図2に示すように、スペーサーとワッシャー(図2において図示せず)を組み込んだステンレス製の2032型コインケース11に入れて、固体電解質層上に円盤状正極シートを重ねた。全固体二次電池用積層体12(アルミニウム箔-正極活物質層-固体電解質層-負極活物質層-ステンレス鋼箔からなる積層体)を形成した。その後、2032型コインケース11をかしめることで、図2に示す全固体二次電池201~219、c21~c26をそれぞれ製造した。このようにして製造した全固体二次電池13は、図1に示す層構成を有する。
<Manufacture of all solid state secondary battery>
The prepared negative electrode sheet for all solid-state secondary batteries (the aluminum foil of the solid electrolyte-containing sheet has been peeled off) was cut into a disk shape having a diameter of 14.5 mm, and as shown in FIG. 2, a spacer and a washer (see FIG. 2). (Not shown) was put in a stainless steel 2032 type coin case 11 and a disk-shaped positive electrode sheet was overlaid on the solid electrolyte layer. A laminate 12 for an all-solid secondary battery (a laminate comprising an aluminum foil-a positive electrode active material layer-a solid electrolyte layer-a negative electrode active material layer-a stainless steel foil) was formed. After that, the 2032 type coin case 11 was caulked to manufacture the all solid state secondary batteries 201 to 219 and c21 to c26 shown in FIG. 2, respectively. The all-solid-state secondary battery 13 manufactured in this way has the layer structure shown in FIG.
<評価1:電池特性1(放電容量維持率)>
 全固体二次電池201~219及びc21~c26の電池特性として、放電容量維持率を測定して、サイクル特性を評価した。
 具体的には、各全固体二次電池の放電容量維持率を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により測定した。充電は、電流密度0.1mA/cmで電池電圧が4.2Vに達するまで行った。放電は、電流密度0.1mA/cmで電池電圧が2.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして1サイクル充放電を行って、全固体二次電池を初期化した。初期化後の充放電1サイクル目の放電容量(初期放電容量)を100%としたときに、放電容量維持率(初期放電容量に対する放電容量)が80%に達した(低下した)際の充放電サイクル数が、下記評価ランクのいずれに含まれるかにより、サイクル特性を評価した。
 本試験において、放電容量維持率は、評価ランク「4」以上が合格である。
 なお、全固体二次電池201~219の初期放電容量は、いずれも、全固体二次電池として機能するのに十分な値を示した。
 - 評価ランク -
 8: 100サイクル≦充放電サイクル数
 7:  50サイクル≦充放電サイクル数<100サイクル
 6:  30サイクル≦充放電サイクル数< 50サイクル
 5:  20サイクル≦充放電サイクル数< 30サイクル
 4:  10サイクル≦充放電サイクル数< 20サイクル
 3:   5サイクル≦充放電サイクル数< 10サイクル
 2:   2サイクル≦充放電サイクル数<  5サイクル
 1:         充放電サイクル数<  2サイクル
<Evaluation 1: Battery characteristics 1 (discharge capacity maintenance rate)>
As the battery characteristics of the all solid state secondary batteries 201 to 219 and c21 to c26, the discharge capacity retention rate was measured and the cycle characteristics were evaluated.
Specifically, the discharge capacity retention rate of each all-solid-state secondary battery was measured by a charge/discharge evaluation device: TOSCAT-3000 (trade name, manufactured by Toyo System Co., Ltd.). Charging was performed at a current density of 0.1 mA/cm 2 until the battery voltage reached 4.2V. The discharge was performed at a current density of 0.1 mA/cm 2 until the battery voltage reached 2.5V. One cycle of charging and discharging was performed by using this charging once and discharging once, and the charging and discharging was performed for one cycle to initialize the all solid state secondary battery. When the discharge capacity (initial discharge capacity) in the first charge/discharge cycle after initialization is 100%, the charge when the discharge capacity maintenance ratio (discharge capacity relative to the initial discharge capacity) reaches (decreases) 80%. The cycle characteristics were evaluated depending on which of the following evaluation ranks the discharge cycle number was included in.
In this test, the discharge capacity retention rate is evaluated as "4" or higher.
The initial discharge capacities of the all-solid-state secondary batteries 201 to 219 all showed values sufficient to function as all-solid-state secondary batteries.
-Evaluation rank-
8: 100 cycles≦charge/discharge cycles 7: 50 cycles≦charge/discharge cycles<100 cycles 6: 30 cycles≦charge/discharge cycles<50 cycles 5: 20 cycles≦charge/discharge cycles<30 cycles 4: 10 cycles≦ Charge/Discharge Cycle Number <20 Cycle 3: 5 Cycle ≦ Charge/Discharge Cycle Number <10 Cycle 2: 2 Cycle ≦ Charge/Discharge Cycle Number <5 Cycle 1: Charge/Discharge Cycle Number <2 Cycle
<評価2:電池特性2(抵抗)>
 全固体二次電池201~219及びc21~c26の電池特性として、その抵抗を測定して、抵抗の高低を評価した。
 各全固体二次電池の抵抗を、充放電評価装置:TOSCAT-3000(商品名、東洋システム社製)により評価した。充電は、電流密度0.1mA/cmで電池電圧が4.2Vに達するまで行った。放電は、電流密度0.2mA/cmで電池電圧が2.5Vに達するまで行った。この充電1回と放電1回とを充放電1サイクルとして繰り返して2サイクル充放電して、2サイクル目の5mAh/g(活物質質量1g当たりの電気量)放電後の電池電圧を読み取った。この電池電圧が下記評価ランクのいずれに含まれるかにより、全固体二次電池の抵抗を評価した。電池電圧が高いほど低抵抗であることを示す。本試験において、評価ランク「4」以上が合格である。
 - 評価ランク -
 8: 4.1V≦電池電圧
 7: 4.0V≦電池電圧<4.1V
 6: 3.9V≦電池電圧<4.0V
 5: 3.7V≦電池電圧<3.9V
 4: 3.5V≦電池電圧<3.7V
 3: 3.2V≦電池電圧<3.5V
 2: 2.5V≦電池電圧<3.2V
 1: 充放電できず
<Evaluation 2: Battery characteristics 2 (resistance)>
As the battery characteristics of the all-solid-state secondary batteries 201 to 219 and c21 to c26, the resistance was measured and the level of resistance was evaluated.
The resistance of each all-solid-state secondary battery was evaluated by a charge/discharge evaluation device: TOSCAT-3000 (trade name, manufactured by Toyo System Co., Ltd.). Charging was performed at a current density of 0.1 mA/cm 2 until the battery voltage reached 4.2V. The discharge was performed at a current density of 0.2 mA/cm 2 until the battery voltage reached 2.5V. This charging once and discharging once were repeated as one cycle of charging/discharging, charging/discharging was repeated for two cycles, and the battery voltage after discharging 5 mAh/g (electric quantity per 1 g of active material mass) at the second cycle was read. The resistance of the all solid state secondary battery was evaluated according to which of the following evaluation ranks this battery voltage was included in. The higher the battery voltage, the lower the resistance. In this test, an evaluation rank of "4" or higher is passed.
-Evaluation rank-
8: 4.1V ≤ battery voltage 7: 4.0V ≤ battery voltage <4.1V
6: 3.9 V ≤ battery voltage <4.0 V
5: 3.7V ≤ battery voltage <3.9V
4: 3.5V≦battery voltage<3.7V
3: 3.2 V ≤ battery voltage <3.5 V
2: 2.5V≦battery voltage<3.2V
1: Cannot be charged/discharged
<評価3:活物質容量>
 全固体二次電池201~219及びc21~c26の電池特性として、活物質の理論容量を下記のようにして算出して評価した。容量が高いほどエネルギー密度が高いことを示す。
 - 理論容量の算出 -
 リチウムの挿入時の飽和組成から算出した。
 
 黒鉛:黒鉛はC→LiCとなるため、黒鉛1gあたりのLi挿入量は1340(クーロン)となる([(1(g)/6(黒鉛1分子当たりのLi挿入量))/12(黒鉛分子量)]×96500(ファラデー定数))。
 3.6クーロンが1mAhのため、黒鉛の理論容量は372(mAh/g)(1340/3.6)となる。
 
 ケイ素:ケイ素はSi→Li4.4Siとなるため、ケイ素1gあたりのLi挿入量は15110(クーロン)となる([(1(g)×4.4(ケイ素1分子当たりのLi挿入量))/28.1(ケイ素分子量)]×96500(ファラデー定数))。
 よって、ケイ素の理論容量は、4197(mAh/g)(15110/3.6)となる。
 
 - 評価ランク -
 5: 1500mAh/g≦活物質理論容量
 4: 1200mAh/g≦活物質理論容量<1500mAh/g
 3:  800mAh/g≦活物質理論容量<1200mAh/g
 2:  400mAh/g≦活物質理論容量< 800mAh/g
 1:           活物質理論容量< 400mAh/g
<Evaluation 3: Active material capacity>
As the battery characteristics of the all solid state secondary batteries 201 to 219 and c21 to c26, the theoretical capacity of the active material was calculated and evaluated as follows. The higher the capacity, the higher the energy density.
-Calculation of theoretical capacity-
It was calculated from the saturated composition when lithium was inserted.

Graphite: Since graphite becomes C→LiC 6 , the Li insertion amount per 1 g of graphite is 1340 (coulomb) ([(1(g)/6 (Li insertion amount per molecule of graphite))/12 (graphite Molecular weight)]×96500 (Faraday constant)).
Since 3.6 coulomb is 1 mAh, the theoretical capacity of graphite is 372 (mAh/g) (1340/3.6).

Silicon: Since silicon becomes Si→Li 4.4 Si, the Li insertion amount per 1 g of silicon is 15110 (coulomb) ([(1(g)×4.4 (Li insertion amount per silicon molecule)). )/28.1 (molecular weight of silicon)]×96500 (Faraday constant)).
Therefore, the theoretical capacity of silicon is 4197 (mAh/g) (15110/3.6).

-Evaluation rank-
5: 1500 mAh/g≦active material theoretical capacity 4: 1200 mAh/g≦active material theoretical capacity <1500 mAh/g
3: 800 mAh/g≦active material theoretical capacity <1200 mAh/g
2: 400 mAh/g≦active material theoretical capacity<800 mAh/g
1: Active material theoretical capacity <400 mAh/g
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表4に示す結果から次のことが分かる。
 No.c21~c23、c25及びc26の全固体二次電池は、未架橋のポリマーからなるバインダーを用いて作製した、負極用組成物PV-1~PV-3、PV-5、PV-6及び固体電解質含有シートBS-1~BS-3により負極活物質層及び固体電解質層を作製した全固体二次電池である。これらの全固体二次電池は、いずれも、抵抗が大きく放電容量と両立した電池性能を示さない。また、側鎖で共有結合による化学架橋構造を有するポリマーからなるバインダーを含有する負極用組成物PV-4及び固体電解質含有シートBS-4により作製した正極活物質層及び固体電解質層を備えた全固体二次電池No.c24も、同様に、十分な結着性及びイオン伝導度を示さない。
 これに対して、実施例1で調製した本発明の固体電解質組成物C-1~C-15を用いて作製した、負極用組成物PU-1~PU-17及び固体電解質含有シートS-1~S-15で負極活物質層及び固体電解質層を作製した全固体二次電池No.201~219は、いずれも、放電容量維持率が高く、抵抗上昇を抑え(電池電圧が高く)、優れた電池性能を示す。特に、本発明で規定する式(H-1A)中のL11がアルキル基であると、更にアルキル基の炭素数が5以上であると、更に優れた電池性能性を示す。また、本発明で規定するバインダーに対して炭素数が6以上の非水系分散媒を併用すると、高い電池性能を示す。負極活物質としてケイ素を用いると高いエネルギー密度を示す。
The results shown in Table 4 show the following.
No. The all-solid-state secondary batteries c21 to c23, c25 and c26 are prepared by using a binder made of an uncrosslinked polymer, and are negative electrode compositions PV-1 to PV-3, PV-5, PV-6 and a solid electrolyte. It is an all-solid-state secondary battery in which a negative electrode active material layer and a solid electrolyte layer are produced from the containing sheets BS-1 to BS-3. None of these all-solid-state secondary batteries have high resistance and show battery performance compatible with discharge capacity. Also, a positive electrode active material layer and a solid electrolyte layer prepared by a negative electrode composition PV-4 containing a binder made of a polymer having a chemical cross-linking structure by a covalent bond in a side chain and a solid electrolyte containing sheet BS-4 were provided. Solid secondary battery No. Similarly, c24 does not show sufficient binding property and ionic conductivity.
On the other hand, the negative electrode compositions PU-1 to PU-17 and the solid electrolyte-containing sheet S-1 produced by using the solid electrolyte compositions C-1 to C-15 of the present invention prepared in Example 1 To S-15, all-solid-state secondary battery No. 1 in which the negative electrode active material layer and the solid electrolyte layer were produced. All of 201 to 219 have a high discharge capacity retention rate, suppress an increase in resistance (high battery voltage), and show excellent battery performance. In particular, when L 11 in the formula (H-1A) specified in the present invention is an alkyl group and the alkyl group has 5 or more carbon atoms, further excellent battery performance is exhibited. Further, when a non-aqueous dispersion medium having 6 or more carbon atoms is used in combination with the binder specified in the present invention, high battery performance is exhibited. High energy density is exhibited when silicon is used as the negative electrode active material.
実施例3
 実施例1の固体電解質組成物の調製C-1~C-15において、LPSに代えてLi0.33La0.55TiO(LLT)を用いたこと以外は、実施例1の固体電解質組成物の調製と同様にして、固体電解質としてLLTを含有する固体電解質組成物をそれぞれ調製した。これらの固体電解質組成物を用いて、実施例1及び2と同様にして、固体電解質含有シート、全固体二次電池用負極シートを作製し、全固体二次電池をそれぞれ製造して、上記各試験を行った。その結果、LLTを含有する固体電解質組成物、固体電解質含有シート及び全固体二次電池は、いずれも、LPSを含有する固体電解質組成物、これを用いた、固体電解質含有シート及び全固体二次電池と同様に、優れた特性若しくは性能を発揮する。
Example 3
Preparation of Solid Electrolyte Composition of Example 1 Solid electrolyte composition of Example 1 except that Li 0.33 La 0.55 TiO 3 (LLT) was used in place of LPS in C-1 to C-15. In the same manner as in the preparation of the product, solid electrolyte compositions containing LLT as a solid electrolyte were prepared. Using these solid electrolyte compositions, a solid electrolyte-containing sheet and a negative electrode sheet for an all-solid secondary battery were produced in the same manner as in Examples 1 and 2, to produce all-solid secondary batteries, and The test was conducted. As a result, the solid electrolyte composition containing LLT, the solid electrolyte-containing sheet, and the all-solid secondary battery were all solid electrolyte compositions containing LPS, and the solid electrolyte-containing sheet and all-solid secondary battery using the same. Like a battery, it exhibits excellent characteristics or performance.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, it is not intended to limit our invention to any details of the description, unless otherwise indicated, contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted broadly without.
 本願は、2018年12月21日に日本国で特許出願された特願2018-239432に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2018-239432 filed in Japan on December 21, 2018, which is hereby incorporated by reference in its entirety. Capture as a part.
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 2032型コインケース
12 全固体二次電池用積層体
13 全固体二次電池
DESCRIPTION OF SYMBOLS 1 Negative electrode current collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part 10 All-solid secondary battery 11 2032 type coin case 12 All-solid secondary battery laminate 13 All-solid Secondary battery

Claims (20)

  1.  周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質と、バインダーと、非水系分散媒とを含有する固体電解質組成物であって、
     前記バインダーが、物理架橋性基を側鎖に有するポリマーと、前記物理架橋性基と架橋する物理架橋性官能基を2個以上有する架橋剤とを含む、固体電解質組成物。
    A solid electrolyte composition containing an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a binder, and a non-aqueous dispersion medium,
    A solid electrolyte composition in which the binder contains a polymer having a physical crosslinkable group in its side chain and a crosslinking agent having two or more physical crosslinkable functional groups that crosslink with the physical crosslinkable group.
  2.  前記ポリマーと前記架橋剤とが物理架橋を形成している請求項1に記載の固体電解質組成物。 The solid electrolyte composition according to claim 1, wherein the polymer and the cross-linking agent form a physical cross-link.
  3.  前記物理架橋を形成しているポリマーが、下記基群(a)から選択される基のアニオンを少なくとも1個有する請求項2に記載の固体電解質組成物。
    <基群(a)>
     カルボキシ基、スルホ基、リン酸基及びホスホン酸基
    The solid electrolyte composition according to claim 2, wherein the polymer forming the physical crosslink has at least one anion of a group selected from the following group (a).
    <Base group (a)>
    Carboxy group, sulfo group, phosphoric acid group and phosphonic acid group
  4.  前記物理架橋を形成しているポリマーが、下記基群(b)から選択される基のカチオンを有する請求項2又は3に記載の固体電解質組成物。
    <基群(b)>
     アミノ基、ピロール環基、イミダゾール環基、ピラゾール環基、オキサゾール環基、チアゾール環基、イミダゾリン環基、ピリミジン環基、ピラジン環基、及びピリジン環基
    The solid electrolyte composition according to claim 2 or 3, wherein the polymer forming the physical crosslinkage has a cation of a group selected from the following group (b).
    <Base group (b)>
    Amino group, pyrrole ring group, imidazole ring group, pyrazole ring group, oxazole ring group, thiazole ring group, imidazoline ring group, pyrimidine ring group, pyrazine ring group, and pyridine ring group
  5.  前記物理架橋を形成しているポリマーが、下記式(H-1A)又は式(H-1B)で表わされるカチオンとイオン結合してなる物理架橋構造を有する請求項2~4のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、L11A及びL11Bは、炭素数1~24のアルキレン基、炭素数6~60のアリーレン基、炭素数2~24のアルケニレン基、酸素原子、-N(RNL)-、カルボニル基、シラン連結基若しくはイミン連結基又はこれらを組み合わせた基を示す。RNLは水素原子又は置換基を示す。
     R11~R18は水素原子、炭素数1~12のアルキル基又はアルキルシリル基を示す。
    5. The polymer forming the physical crosslink has a physical crosslink structure formed by ionic bond with a cation represented by the following formula (H-1A) or formula (H-1B). The solid electrolyte composition according to.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, L 11A and L 11B are an alkylene group having 1 to 24 carbon atoms, an arylene group having 6 to 60 carbon atoms, an alkenylene group having 2 to 24 carbon atoms, an oxygen atom, —N(R NL )—, a carbonyl group. , A silane linking group, an imine linking group, or a combination thereof. R NL represents a hydrogen atom or a substituent.
    R 11 to R 18 represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an alkylsilyl group.
  6.  前記アルキレン基の炭素数が5以上である請求項5に記載の固体電解質組成物。 The solid electrolyte composition according to claim 5, wherein the alkylene group has 5 or more carbon atoms.
  7.  前記物理架橋を形成しているポリマーが、下記式(H-2)で表わされるカチオンとイオン結合してなる物理架橋構造を有する請求項2~6のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000002
     式中、L21は、炭素数5~12のアルキレン基、炭素数6~18のアリーレン基、炭素数5~12のアルケニレン基、酸素原子、-N(RNL)-若しくはイミン連結基又はこれらを組み合わせた基を示す。RNLは水素原子又は置換基を示す。
     R21~R26は水素原子又は炭素数1~12のアルキル基を示す。
    The solid electrolyte composition according to any one of claims 2 to 6, wherein the polymer forming the physical crosslink has a physical crosslink structure formed by ionic bond with a cation represented by the following formula (H-2). ..
    Figure JPOXMLDOC01-appb-C000002
    In the formula, L 21 is an alkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 18 carbon atoms, an alkenylene group having 5 to 12 carbon atoms, an oxygen atom, —N(R NL )—, or an imine linking group or these A group combining is shown. R NL represents a hydrogen atom or a substituent.
    R 21 to R 26 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  8.  前記ポリマーが、上記基群(a)から選択される基を0.15~1mmol/g含有する請求項3~7のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 3 to 7, wherein the polymer contains a group selected from the group group (a) in an amount of 0.15 to 1 mmol/g.
  9.  前記ポリマーが、ポリウレタン又は(メタ)アクリルポリマーである請求項1~8のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 8, wherein the polymer is polyurethane or a (meth)acrylic polymer.
  10.  前記バインダーが、平均粒径5nm~10μmの粒子である請求項1~9のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 9, wherein the binder is particles having an average particle size of 5 nm to 10 µm.
  11.  前記バインダーの、固体電解質組成物の固形分中の含有量が0.001~10質量%である請求項1~10のいずれか1項に記載の固体電解質組成物。 11. The solid electrolyte composition according to claim 1, wherein the content of the binder in the solid content of the solid electrolyte composition is 0.001 to 10 mass %.
  12.  導電助剤を含有する請求項1~11のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 11, which contains a conductive auxiliary agent.
  13.  前記無機固体電解質が、下記式(I)で表される請求項1~12のいずれか1項に記載の固体電解質組成物。
       式(I):La1b1c1d1e1
     式中、LはLi、Na及びKから選択される元素を示す。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。
    The solid electrolyte composition according to any one of claims 1 to 12, wherein the inorganic solid electrolyte is represented by the following formula (I).
    Formula (I): L a1 M b1 P c1 S d1 A e1
    In the formula, L represents an element selected from Li, Na and K. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 represent composition ratios of the respective elements, and a1:b1:c1:d1:e1 satisfies 1 to 12:0 to 5:1:2 to 12:0 to 10.
  14.  前記非水系分散媒が、ケトン化合物、エステル化合物、芳香族化合物及び脂肪族化合物から選択される少なくとも1種の有機溶媒を含む請求項1~13のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 13, wherein the non-aqueous dispersion medium contains at least one organic solvent selected from a ketone compound, an ester compound, an aromatic compound and an aliphatic compound.
  15.  前記非水系分散媒が、炭素数6以上の有機溶媒を含む請求項1~14のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 14, wherein the non-aqueous dispersion medium contains an organic solvent having 6 or more carbon atoms.
  16.  周期律表第一族若しくは第二族に属する金属のイオンの挿入放出が可能なケイ素原子含有活物質を含有する請求項1~15のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 15, containing a silicon atom-containing active material capable of inserting and releasing ions of a metal belonging to Group 1 or 2 of the periodic table.
  17.  請求項1~16のいずれか1項に記載の固体電解質組成物で構成した層を有する固体電解質含有シート。 A solid electrolyte-containing sheet having a layer composed of the solid electrolyte composition according to any one of claims 1 to 16.
  18.  正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
     前記正極活物質層、前記負極活物質層及び前記固体電解質層の少なくとも1つの層が、請求項1~16のいずれか1項に記載の固体電解質組成物で構成した層である全固体二次電池。
    An all-solid secondary battery comprising a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order,
    At least one layer of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is a layer formed of the solid electrolyte composition according to any one of claims 1 to 16. battery.
  19.  請求項1~16のいずれか1項に記載の固体電解質組成物を製膜する、固体電解質含有シートの製造方法。 A method for producing a solid electrolyte-containing sheet, comprising forming a film of the solid electrolyte composition according to any one of claims 1 to 16.
  20.  請求項19に記載の製造方法を含む全固体二次電池の製造方法。 A method for manufacturing an all-solid secondary battery, including the manufacturing method according to claim 19.
PCT/JP2019/048675 2018-12-21 2019-12-12 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet and method for producing all-solid-state secondary battery WO2020129802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561353A JP7165750B2 (en) 2018-12-21 2019-12-12 SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY, AND METHOD FOR MANUFACTURING SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-239432 2018-12-21
JP2018239432 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020129802A1 true WO2020129802A1 (en) 2020-06-25

Family

ID=71101251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048675 WO2020129802A1 (en) 2018-12-21 2019-12-12 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet and method for producing all-solid-state secondary battery

Country Status (2)

Country Link
JP (1) JP7165750B2 (en)
WO (1) WO2020129802A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282333A1 (en) * 2021-07-07 2023-01-12 富士フイルム株式会社 Electrode composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2023210273A1 (en) * 2022-04-27 2023-11-02 東亞合成株式会社 Secondary battery electrode binder and use of same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191865A (en) * 2014-03-28 2015-11-02 富士フイルム株式会社 All-solid type secondary battery, solid electrolytic composition used therefor, electrode sheet for batteries, and methods for manufacturing electrode sheet for batteries and all-solid type secondary battery
WO2016129427A1 (en) * 2015-02-12 2016-08-18 富士フイルム株式会社 Solid electrolyte composition, battery electrode sheet and all solid state secondary battery obtained using same, and methods for producing battery electrode sheet and all solid state secondary battery
WO2016132872A1 (en) * 2015-02-20 2016-08-25 富士フイルム株式会社 Solid electrolyte composition, cell electrode sheet and all-solid-state secondary cell in which said solid electrolyte composition is used, and method for manufacturing cell electrode sheet and all-solid-state secondary cell
JP2018014317A (en) * 2016-07-06 2018-01-25 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid type secondary battery, and methods for manufacturing solid electrolyte-containing sheet and all-solid type secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397049B2 (en) * 2009-07-02 2014-01-22 日本ゼオン株式会社 All solid state secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191865A (en) * 2014-03-28 2015-11-02 富士フイルム株式会社 All-solid type secondary battery, solid electrolytic composition used therefor, electrode sheet for batteries, and methods for manufacturing electrode sheet for batteries and all-solid type secondary battery
WO2016129427A1 (en) * 2015-02-12 2016-08-18 富士フイルム株式会社 Solid electrolyte composition, battery electrode sheet and all solid state secondary battery obtained using same, and methods for producing battery electrode sheet and all solid state secondary battery
WO2016132872A1 (en) * 2015-02-20 2016-08-25 富士フイルム株式会社 Solid electrolyte composition, cell electrode sheet and all-solid-state secondary cell in which said solid electrolyte composition is used, and method for manufacturing cell electrode sheet and all-solid-state secondary cell
JP2018014317A (en) * 2016-07-06 2018-01-25 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid type secondary battery, and methods for manufacturing solid electrolyte-containing sheet and all-solid type secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282333A1 (en) * 2021-07-07 2023-01-12 富士フイルム株式会社 Electrode composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2023210273A1 (en) * 2022-04-27 2023-11-02 東亞合成株式会社 Secondary battery electrode binder and use of same

Also Published As

Publication number Publication date
JP7165750B2 (en) 2022-11-04
JPWO2020129802A1 (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP7234400B2 (en) Composition containing inorganic solid electrolyte, sheet for all-solid secondary battery, all-solid secondary battery, and method for producing composition containing inorganic solid electrolyte, sheet for all-solid secondary battery, and all-solid secondary battery
JP7177944B2 (en) Method for producing electrode composition, method for producing electrode sheet for all-solid secondary battery, and method for producing all-solid secondary battery
JP7373577B2 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid secondary battery, electrode sheet for all-solid secondary battery, and all-solid secondary battery, and manufacturing method of sheet for all-solid secondary battery and all-solid secondary battery
WO2020022205A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid secondary battery electrode sheet, all-solid secondary battery, methods for producing solid electrolyte-containing sheet and all-solid secondary battery, and method for producing particulate binder
US20220140395A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for sheet for all-solid state secondary battery and all-solid state secondary battery
KR20200039741A (en) Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and solid electrolyte-containing sheet and all-solid secondary battery manufacturing method
WO2021039468A1 (en) Composition containing inorganic solid electrolyte, sheet for all-solid secondary batteries, all-solid secondary battery, method for manufacturing sheet for all-solid secondary batteries, and method for manufacturing all-solid secondary battery
WO2020138122A1 (en) Solid electrolyte composition, solid-electrolyte-containing sheet, all-solid-state secondary cell, and method for manufacturing solid-electrolyte-containing sheet and all-solid-state secondary cell
JP7455871B2 (en) Inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery
JP7165750B2 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY, AND METHOD FOR MANUFACTURING SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
JP7263536B2 (en) Inorganic solid electrolyte-containing composition, all-solid secondary battery sheet and all-solid secondary battery, and method for producing all-solid secondary battery sheet and all-solid secondary battery
JP7143433B2 (en) Solid electrolyte composition, sheet for all-solid secondary battery, electrode sheet for all-solid secondary battery, and all-solid secondary battery
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2023054425A1 (en) Electrode composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and methods for producing electrode composition, electrode sheet for all-solid-state secondary battery, and all-solid-state secondary battery
WO2021039946A1 (en) Inorganic solid electrolyte-containing composition, all solid state secondary battery sheet, all solid state secondary battery, methods for producing all solid state secondary battery sheet and all solid state secondary battery, and composite polymer particles
JP7407286B2 (en) Inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet and all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery
JP7436692B2 (en) Inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery
JP7301141B2 (en) Composition containing inorganic solid electrolyte, sheet for all-solid secondary battery, electrode sheet for all-solid secondary battery and all-solid secondary battery, and method for producing sheet for all-solid secondary battery and all-solid secondary battery
JP7096367B2 (en) A method for manufacturing a solid electrolyte composition, an all-solid-state secondary battery sheet and an all-solid-state secondary battery, and an all-solid-state secondary battery sheet or an all-solid-state secondary battery.
JP7373674B2 (en) Inorganic solid electrolyte-containing composition, all-solid-state secondary battery sheet and all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery sheet and all-solid-state secondary battery
WO2022071124A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2024071056A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2021193826A1 (en) Inorganic-solid-electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery sheet and all solid-state secondary battery
WO2022085637A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid secondary battery, all-solid secondary battery, and methods for producing sheet for all-solid secondary battery and all-solid secondary battery
WO2023054455A1 (en) Sheet for electrode, all-solid secondary battery, and methods for producing sheet for electrode, electrode sheet, and all-solid secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897966

Country of ref document: EP

Kind code of ref document: A1