KR20230093889A - All-solid-state battery with high chemo-mechanical stability - Google Patents

All-solid-state battery with high chemo-mechanical stability Download PDF

Info

Publication number
KR20230093889A
KR20230093889A KR1020210182879A KR20210182879A KR20230093889A KR 20230093889 A KR20230093889 A KR 20230093889A KR 1020210182879 A KR1020210182879 A KR 1020210182879A KR 20210182879 A KR20210182879 A KR 20210182879A KR 20230093889 A KR20230093889 A KR 20230093889A
Authority
KR
South Korea
Prior art keywords
solid electrolyte
negative electrode
sulfide
solid
state battery
Prior art date
Application number
KR1020210182879A
Other languages
Korean (ko)
Inventor
임형태
오영선
김민형
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020210182879A priority Critical patent/KR20230093889A/en
Publication of KR20230093889A publication Critical patent/KR20230093889A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은, 음극 집전체, 상기 음극 집전체 상에 배치된 열분해 흑연 시트(pyrolytic graphite sheet, PGS), 및 상기 열분해 흑연 시트 상에 배치되며, Li-Si 합금으로 이루어진 음극 활물질 및 황화물계 고체 전해질을 70 : 30 ~ 90 : 10의 중량비로 포함하는 음극 활물질층을 포함하는 음극층을 구비하는 전고체 전지에 대한 것이다. 본 발명에 따른 전고체 전지는, 음극 활물질(Li-Si 합금) 및 황화물계 고체 전해질을 특정 중량비로 포함하는 음극을 구비함으로써, 전지의 용량과 가역성에 영향을 미치지 않으면서 전극과 전해질 사이 접촉 면적을 넓힐 수 있기 때문에, 고체 전해질의 산화·환원 반응에 의해 발생하는 단락(short circuit) 및 기계적 파괴(mechanical failure)가 방지되어 공지 기술에 비해 현저히 향상된 화학적 및 기계적 특성을 가진다. The present invention provides an anode current collector, a pyrolytic graphite sheet (PGS) disposed on the anode current collector, and an anode active material disposed on the pyrolytic graphite sheet and made of a Li-Si alloy and a sulfide-based solid electrolyte. It relates to an all-solid-state battery having a negative electrode layer including a negative electrode active material layer containing a weight ratio of 70: 30 to 90: 10. The all-solid-state battery according to the present invention has a negative electrode containing a negative electrode active material (Li-Si alloy) and a sulfide-based solid electrolyte in a specific weight ratio, thereby increasing the contact area between the electrode and the electrolyte without affecting the capacity and reversibility of the battery. Since it can widen, short circuit and mechanical failure caused by oxidation/reduction reaction of solid electrolyte are prevented, and it has significantly improved chemical and mechanical properties compared to known technologies.

Description

화학-기계적 특성이 향상된 전고체 전지{ALL-SOLID-STATE BATTERY WITH HIGH CHEMO-MECHANICAL STABILITY}All-solid-state battery with improved chemical-mechanical properties {ALL-SOLID-STATE BATTERY WITH HIGH CHEMO-MECHANICAL STABILITY}

본 발명은 전고체 전지에 대한 것으로서, 보다 상세하게는, 황화물계 고체 전해질을 포함하는 전고체 전지의 화학적 및 기계적 특성을 향상시킬 수 있도록 설계된 음극을 구비한 전고체 전지에 대한 것이다.The present invention relates to an all-solid-state battery, and more particularly, to an all-solid-state battery having a negative electrode designed to improve chemical and mechanical properties of an all-solid-state battery including a sulfide-based solid electrolyte.

최근 전기자동차(EV)와 고성능의 휴대기기, 에너지 저장 시스템(ESS)의 기술발전 및 보편화로 인해 고에너지/고용량 전지의 수요가 증가함에 따라 차세대 전지에 관한 다양한 연구가 전 세계적으로 활발하게 진행되고 있다. Recently, as the demand for high-energy/high-capacity batteries increases due to the technological development and generalization of electric vehicles (EVs), high-performance portable devices, and energy storage systems (ESS), various researches on next-generation batteries are being actively conducted worldwide. there is.

그러나, 최근 리튬 이차전지의 폭발 및 발화의 위험성으로 인해 안정성에 관한 이슈가 대두되고 있는데, 이는 현재 상용화되어 있는 리튬 이차전지에 증발, 누액, 발화, 폭발에 취약한 유기 전해액을 사용하고 있기 때문이다. However, issues related to stability have recently emerged due to the risk of explosion and ignition of lithium secondary batteries. This is because currently commercialized lithium secondary batteries use organic electrolytes that are vulnerable to evaporation, leakage, ignition, and explosion.

이러한 문제점을 해결하기 위해 액체 전해질을 대신해 고체 전해질을 적용한 전고체 전지(all-solid-state battery)가 많은 관심을 받고 활발한 연구가 이루어지고 있다. In order to solve these problems, an all-solid-state battery using a solid electrolyte instead of a liquid electrolyte has received a lot of attention and has been actively researched.

전고체 전지에 적용되는 고체 전해질 종류로는 크게 황화물계 전해질, 산화물계 전해질, 폴리머계 전해질 등으로 나눌 수 있다. 그 중 황화물계 고체 전해질은 결정성에 따라 비정질의 glasses 고체 전해질, 결정질의 ceramic 고체 전해질, 그리고 비정질 구조 속에 결정상을 석출시킨 glass-ceramics 고체 전해질로 분류되고 종류에 따라 10-6~10-1S/cm의 이온 전도도를 가진다. 또한, 황화물계 고체 전해질은 영률(Young's modulus)가 낮아 변형성이 좋기 때문에 냉간 압축(cold pressing)으로 가공할 수 있다는 장점이 있다. Types of solid electrolytes applied to all-solid-state batteries can be largely divided into sulfide-based electrolytes, oxide-based electrolytes, and polymer-based electrolytes. Among them, sulfide-based solid electrolytes are classified into amorphous glasses solid electrolyte, crystalline ceramic solid electrolyte, and glass-ceramics solid electrolyte in which crystal phase is precipitated in an amorphous structure according to crystallinity. Depending on the type, 10 -6 ~10 -1 S/ It has an ionic conductivity of cm. In addition, since the sulfide-based solid electrolyte has a low Young's modulus and good deformability, it has an advantage in that it can be processed by cold pressing.

하지만, 황화물계 고체 전해질은 전기화학 안전 전위 창 (stability voltage window)이 좁다는 단점이 있다 (1.7 ~ 2.1 V vs. Li/Li+). 작동 전압이 전해질의 전기화학 안정 범위를 벗어나면 전해질의 산화 혹은 환원이 발생한다. 그에 따른 분해물 생성에 의해 전극 내 전해질의 이온 전도도가 떨어지면서 내부 저항이 증가한다. However, the sulfide-based solid electrolyte has a disadvantage in that the electrochemical stability voltage window is narrow (1.7 to 2.1 V vs. Li/Li + ). When the operating voltage is outside the electrochemically stable range of the electrolyte, oxidation or reduction of the electrolyte occurs. Due to the generation of decomposition products, the ionic conductivity of the electrolyte in the electrode decreases and the internal resistance increases.

예를 들어, Sulfur composite cathode | 75Li2S-25P2S5 (LPS) electrolyte | Li-Si alloy anode의 양극/고체 전해질/음극 구조를 가지는 전고체 전지의 경우 0.5~3.7V 작동 전압 범위에서 충방전 시 Cathode의 전극 전위는 Li/Li+ 0.94~3.56V의 전압 변화를 겪게 된다(도 1). 이는 전해질의 전기화학 안정 범위를 벗어난 전압이기 때문에 충전 시 LPS 전해질은 산화 반응에 의해 분해되어 Anode와 전해질 사이 계면에 Li 이온이 비가역적으로 증착하게 된다. 그로 인해 리튬 수지상 결정(Li-dendrite)가 생성되고 마이크로 단락(micro short circuit)이 형성됨으로써 충전 시 전압 노이즈 현상이 발생하게 된다(도 2 내지 도 4). For example, sulfur composite cathode | 75Li 2 S-25P 2 S 5 (LPS) electrolyte | In the case of an all-solid-state battery with a cathode/solid electrolyte/cathode structure of Li-Si alloy anode, the electrode potential of the cathode undergoes a voltage change of Li/Li + 0.94 to 3.56V during charging and discharging in the operating voltage range of 0.5 to 3.7V. (Fig. 1). Since this is a voltage outside the electrochemical stability range of the electrolyte, the LPS electrolyte is decomposed by an oxidation reaction during charging, and Li ions are irreversibly deposited at the interface between the anode and the electrolyte. As a result, lithium dendrites (Li-dendrite) are generated and a micro short circuit is formed, resulting in voltage noise during charging (FIGS. 2 to 4).

따라서, LPS 분해에 의해서 발생하는 계면에서의 집중적인 리튬 증착 현상을 해소하기 위해서는 Li 이온이 환원될 수 있는 반응 자리(site)의 확대가 필요하다. Therefore, in order to solve the intensive lithium deposition phenomenon at the interface caused by LPS decomposition, it is necessary to expand the reaction site where Li ions can be reduced.

국제공개공보 WO 2020/067108 A1 (공개일: 2020.04.02)International Publication WO 2020/067108 A1 (Publication date: 2020.04.02) 한국 공개특허공보 제10-2020-0128256호 (공개일: 2020.11.12)Korean Patent Publication No. 10-2020-0128256 (published date: 2020.11.12)

본 발명이 해결하고자 하는 기술적 과제는, 충·방전시 황화물계 고체 전해질의 산화·환원 반응에 의한 분해와 그에 따른 리튬 수지상 결정(Li-dendrite)의 생성으로 인한 단락(short circuit) 현상 및 기계적 파괴(mechanical failure)를 방지할 수 있는 음극을 구비한 전고체 전지를 제공하는 것이다. The technical problem to be solved by the present invention is decomposition by oxidation/reduction reaction of sulfide-based solid electrolyte during charging and discharging, and short circuit phenomenon and mechanical destruction due to the generation of lithium dendrite (Li-dendrite) as a result. It is to provide an all-solid-state battery having a negative electrode capable of preventing mechanical failure.

상기 기술적 과제를 달성하기 위해, 본 발명은 음극층, 양극층, 및 상기 음극층과 양극층 사이에 구비된 황화물계 고체 전해질층을 포함하는 전고체 전지에 있어서, 상기 음극층이, (i) 음극 집전체, (ii) 상기 음극 집전체 상에 배치된 열분해 흑연 시트(pyrolytic graphite sheet, PGS), 및 (iii) 상기 열분해 흑연 시트 상에 배치되며, Li-Si 합금으로 이루어진 음극 활물질 및 황화물계 고체 전해질을 70 : 30 ~ 90 : 10의 중량비로 포함하는 음극 활물질층을 포함하는 것을 특징으로 하는 전고체 전지를 제안한다. In order to achieve the above technical problem, the present invention is an all-solid-state battery comprising a negative electrode layer, a positive electrode layer, and a sulfide-based solid electrolyte layer provided between the negative electrode layer and the positive electrode layer, wherein the negative electrode layer, (i) a negative electrode current collector, (ii) a pyrolytic graphite sheet (PGS) disposed on the negative electrode current collector, and (iii) a negative electrode active material disposed on the pyrolytic graphite sheet and made of a Li-Si alloy and a sulfide-based An all-solid-state battery comprising a negative active material layer containing a solid electrolyte in a weight ratio of 70:30 to 90:10 is proposed.

이때, 상기 음극 활물질층은, 음극 활물질인 Li-Si 합금으로서 Li3.25Si를 포함하고 황화물계 고체 전해질로서 75Li2S-25P2S5을 포함하는 것이 바람직하며, 더욱 바람직하게는, 상기 음극 활물질층은 Li3.25Si 및 75Li2S-25P2S5을 80 : 20의 중량비로 포함할 수 있다. At this time, the negative electrode active material layer preferably includes Li 3.25 Si as a Li-Si alloy as a negative electrode active material and 75Li 2 S-25P 2 S 5 as a sulfide-based solid electrolyte, more preferably, the negative electrode active material The layer may include Li 3.25 Si and 75Li 2 S-25P 2 S 5 in a weight ratio of 80:20.

한편, 상기 양극층은 황(sulfur)을 포함하는 복합체로 이루어지는 것이 바람직하며, 일례로 황(sulfur), 황화물계 고체 전해질 및 카본(carbon)을 포함한 복합체로 이루어질 수 있다. On the other hand, the positive electrode layer is preferably made of a composite containing sulfur, and for example, may be made of a composite containing sulfur, a sulfide-based solid electrolyte, and carbon.

그리고, 본 발명은 발명의 다른 측면에서 상기 전고체 전지의 제조방법으로서, (a) 황화물계 고체 전해질 분말을 가압하여 고체 전해질층을 형성시키는 단계, (b) Li-Si 합금으로 이루어진 음극 활물질 분말 및 황화물계 고체 전해질 분말을 70 : 30 ~ 90 : 10의 중량비로 포함하는 복합 분말을 상기 고체 전해질층의 일면에 구비시킨 후 가압하여 음극 활물질층을 형성시키는 단계, (c) 열분해 흑연 시트(pyrolytic graphite sheet, PGS)를 상기 음극층 상에 적층시키는 단계, 및 (d) 황(sulfur), 황화물계 고체 전해질 및 카본(carbon)을 포함하는 복합 분말을 상기 고체 전해질층의 타면에 구비시킨 후 가압하여 양극층을 형성시키는 단계를 포함하는 전고체 전지의 제조방법을 제안한다. And, the present invention is a method for manufacturing the all-solid-state battery in another aspect of the invention, (a) forming a solid electrolyte layer by pressing a sulfide-based solid electrolyte powder, (b) negative electrode active material powder made of a Li-Si alloy and sulfide-based solid electrolyte powder in a weight ratio of 70: 30 to 90: 10. Forming a negative electrode active material layer by providing a composite powder on one side of the solid electrolyte layer and pressurizing it, (c) a pyrolytic graphite sheet (pyrolytic). stacking a graphite sheet (PGS) on the negative electrode layer, and (d) providing a composite powder containing sulfur, a sulfide-based solid electrolyte, and carbon on the other side of the solid electrolyte layer, and pressurizing it. We propose a manufacturing method of an all-solid-state battery comprising the step of forming a positive electrode layer by doing so.

본 발명에 따른 전고체 전지는, 음극 활물질(Li-Si 합금) 및 황화물계 고체 전해질을 특정 중량비로 포함하는 음극을 구비함으로써, 전지의 용량과 가역성에 영향을 미치지 않으면서 전극과 전해질 사이 접촉 면적을 넓힐 수 있기 때문에, 고체 전해질의 산화·환원 반응에 의해 발생하는 단락(short circuit) 및 기계적 파괴(mechanical failure)가 방지되어 공지 기술에 비해 현저히 향상된 화학적 및 기계적 특성을 가진다. The all-solid-state battery according to the present invention has a negative electrode containing a negative electrode active material (Li-Si alloy) and a sulfide-based solid electrolyte in a specific weight ratio, thereby increasing the contact area between the electrode and the electrolyte without affecting the capacity and reversibility of the battery. Since it can widen, short circuit and mechanical failure caused by oxidation/reduction reaction of solid electrolyte are prevented, and it has significantly improved chemical and mechanical properties compared to known technologies.

도 1은 전고체 전지(Sulfur composite cathode|75Li2S-25P2S5 electrolyte|Li-Si alloy anode)의 0.5~3.7V 방·충전 시 양극(cathode)의 전극 전위 변화 곡선(붉은선)이다.
도 2는 Li-Si 합금으로만 이루어진 음극을 구비한 전고체 전지의 방·충전 곡선이다.
도 3은 LPS (75Li2S-25P2S5) 전해질의 산화·환원에 의해 생성되는 분해물을 보여주는 모식도이다.
도 4는 Li-Si 합금으로만 이루어진 음극을 구비한 전고체 전지의 3.7V 충전상태에서의 주사전자 현미경(SEM) 사진이다.
도 5는 본원 실시예에서 제작한 복합 Anode 구조를 도입한 완전 전지(full cell)의 모식도이다.
도 6은 본원 실시예에서 제작한 복합 Anode 구조 (음극 활물질 : 전해질 = 80 : 20 wt%)를 적용한 셀의 방·충전 곡선 (검정색) 및 복합 Anode 구조 (음극활물질: 전해질 = 50: 50 wt%)를 적용한 셀의 방전 곡선 (빨강색)이다.
1 is an electrode potential change curve (red line) of the cathode during discharge and charging of 0.5 to 3.7 V of an all-solid-state battery (Sulfur composite cathode|75Li 2 S-25P 2 S 5 electrolyte|Li-Si alloy anode) .
2 is a discharge/charge curve of an all-solid-state battery having a negative electrode made of only a Li-Si alloy.
3 is a schematic diagram showing degradation products produced by oxidation/reduction of LPS (75Li 2 S-25P 2 S 5 ) electrolyte.
4 is a scanning electron microscope (SEM) photograph of an all-solid-state battery having a negative electrode made of only a Li—Si alloy in a state of charge of 3.7 V.
5 is a schematic diagram of a full cell incorporating the composite anode structure fabricated in the present example.
6 is a discharge/charge curve (black) and a composite anode structure (negative electrode active material: electrolyte = 50: 50 wt%) of a cell to which the composite anode structure (negative electrode active material: electrolyte = 80: 20 wt%) manufactured in the present example is applied. ) is the discharge curve (red color) of the cell applied.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Embodiments according to the concept of the present invention can be applied with various changes and can have various forms, so specific embodiments are illustrated in the drawings and described in detail in this specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, or substitutes included in the spirit and technical scope of the present invention.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "comprise" or "having" are intended to designate that the described feature, number, step, operation, component, part, or combination thereof exists, but one or more other features or numbers However, it should be understood that it does not preclude the presence or addition of steps, operations, components, parts, or combinations thereof.

이하, 본 발명을 실시예를 들어 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail with examples.

<실시예><Example>

종래 기술에 따라 고용량 음극 활물질인 Lithium silicon(Li13-Si4)으로만 음극을 구성할 경우 전해질의 전기화학 안정 전압 범위를 벗어난 조건에서는 음극/전해질 계면에서 비가역적인 Li 이온 증착으로 인한 Li-dendrite 현상이 나타난다. 따라서, 기존의 음극 활물질로만 이루어진 음극 구조와는 다른 '복합체' 구조를 적용하여 Li-Si alloying 반응 site를 분산시킬 필요가 있다. According to the prior art, when the anode is composed of only lithium silicon (Li 13 -Si 4 ), a high-capacity anode active material, Li-dendrite due to irreversible Li ion deposition at the cathode/electrolyte interface under conditions outside the electrochemical stable voltage range of the electrolyte phenomenon appears. Therefore, it is necessary to disperse the Li-Si alloying reaction site by applying a 'composite' structure different from the existing anode structure composed of only anode active materials.

이에, 본 발명에 따른 실시예에서는 다음과 같이 음극의 기존 음극 활물질 함량을 그대로 유지한 채 추가로 고체 전해질을 첨가하는 방법으로 전지의 용량과 가역성에 영향을 미치지 않으면서 전극과 전해질 사이 접촉 면적을 넓힐 수 있는 전고체 전지를 제시한다. 또한, 본 발명에 따른 전고체 전지에서는 음극에 전자 전도도가 낮은 고체 전해질이 첨가되기 때문에 원활한 전자 이동을 위해 음극 활물질층과 집전체 사이에 PGS (Pyrolytic Graphite Sheet)를 추가로 삽입한다. Therefore, in the embodiment according to the present invention, the contact area between the electrode and the electrolyte is increased without affecting the capacity and reversibility of the battery by adding a solid electrolyte while maintaining the existing negative active material content of the negative electrode as follows. A scalable all-solid-state battery is presented. In addition, in the all-solid-state battery according to the present invention, since a solid electrolyte having low electronic conductivity is added to the negative electrode, a pyrolytic graphite sheet (PGS) is additionally inserted between the negative electrode active material layer and the current collector for smooth electron movement.

1) Sulfur composite cathode (sulfur+solid electrolyte+carbon) 제조1) Manufacturing sulfur composite cathode (sulfur+solid electrolyte+carbon)

Cathode 제조 구성물질의 부피 비를 고려하여 sulfur, solid electrolyte, carbon을 25 : 50 : 25 wt%로 혼합한다. 물질의 고른 분산 및 입자 사이즈 감소를 위하여 planetary ball milling 방법을 채택하였다. Milling pot에 분말 형태의 각 구성요소와 5Φ의 zirconia ball을 BPR (ball to powder) 35 : 1 무게 비율로 넣고 milling pot 내부 Ar 분위기를 유지하기 위하여 glove box내에서 sealing한다. Sealing된 milling pot를 370rpm으로 planetary ball milling하면 균일한 분포를 가지는 composite cathode가 제조된다. Mix sulfur, solid electrolyte, and carbon at a ratio of 25:50:25 wt%, considering the volume ratio of components for cathode manufacturing. A planetary ball milling method was adopted for uniform dispersion of materials and particle size reduction. Put each component in powder form and a 5Φ zirconia ball in a BPR (ball to powder) 35 : 1 weight ratio in a milling pot, and seal it in a glove box to maintain the Ar atmosphere inside the milling pot. If planetary ball milling of the sealed milling pot at 370 rpm produces a composite cathode with uniform distribution.

2) 황화물계 고체전해질(Li2) Sulfide-based solid electrolyte (Li 22 S-PS-P 22 SS 55 ) 제조 - 본 발명의 성능 평가를 위한 전해질 제조) Preparation - Electrolyte preparation for performance evaluation of the present invention

Bulk type의 전고체 전지 제조가 용이하고, 황 전극과의 부 반응을 최소화할 수 있는 황화물계 고체 전해질을 제조한다. 황화물계 고체 전해질 중 상온에서 비교적 높은 이온전도도를 가지는 Li2S-P2S5를 선택한다. Milling pot에 75 : 25 mol%의 Li2S 분말 0.532g과 P2S5 분말 0.858g을 10Φ zirconia ball 10개와 함께 BPR 30 : 1 무게 비율로 넣는다. 그 뒤 370rpm으로 planetary ball milling을 실시한다. Cathode와 마찬가지로 glove box내에서 진행한다.A sulfide-based solid electrolyte that is easy to manufacture a bulk type all-solid-state battery and can minimize side reactions with a sulfur electrode is prepared. Among the sulfide-based solid electrolytes, Li 2 SP 2 S 5 having relatively high ionic conductivity at room temperature is selected. Put 0.532 g of 75:25 mol% Li 2 S powder and 0.858 g of P 2 S 5 powder together with 10 10 zirconia balls in a BPR 30:1 weight ratio in a milling pot. After that, planetary ball milling is performed at 370 rpm. Like the cathode, proceed in the glove box.

3) Anode (Li3) Anode (Li 3.253.25 Si) 제조 - 본 발명과의 비교 대상 Anode 제조Si) Manufacturing - Anode manufacturing for comparison with the present invention

Li 합금화 원소 중 높은 부피당 용량을 가지는 Li-Si alloy를 제조하여 전고체전지의 Anode로 적용한다. Cathode, 고체전해질과 마찬가지로 glove box내에서 제조한다. Granular 형태의 Li 0.2140g과 Si 분말 0.2664g을 milling pot에 넣고 BPR 110 : 1 무게 비율 조건으로 5Φ, 10Φ zirconia ball을 함께 넣어준 후 370rpm으로 planetary ball milling을 실시한다. Among the Li alloying elements, Li-Si alloy with high capacity per volume is manufactured and applied to the anode of the all-solid-state battery. Like the cathode and solid electrolyte, it is manufactured in a glove box. Put 0.2140g of granular Li and 0.2664g of Si powder into a milling pot, put 5Φ, 10Φ zirconia balls together under the BPR 110: 1 weight ratio condition, and then perform planetary ball milling at 370rpm.

4) 복합 Anode (Li4) Composite Anode (Li 3.253.25 Si+solid electrolyte) 제조 - 본 발명의 성능 평가를 위한 복합 Anode 제조Si + solid electrolyte) manufacturing - composite anode manufacturing for performance evaluation of the present invention

전해질층과 음극층 계면에서 집중될 수 있는 리튬이온 환원 (합금화 및 리튬 석출)을 분산시키기 위해 음극 활물질과 고체 전해질로 구성된 복합체 Anode를 제조한다. Milling pot에 80 : 20 wt%의 Li3.25Si : (75Li2S-25P2S5)와 5Φ, 10Φ zirconia ball을 함께 넣어준 후 370rpm으로 planetary ball milling을 실시한다. 기존 Anode와 마찬가지로 glove box내에서 진행한다.In order to disperse the lithium ion reduction (alloying and lithium precipitation) that can be concentrated at the interface between the electrolyte layer and the anode layer, a composite anode composed of an anode active material and a solid electrolyte is prepared. After putting 80:20 wt% Li 3.25 Si: (75Li 2 S-25P 2 S 5 ) and 5Φ, 10Φ zirconia balls together in a milling pot, planetary ball milling is performed at 370 rpm. Like the existing anode, proceed in the glove box.

5) 전고체 전지 full cell 제조 (도 5)5) Manufacture of all-solid-state battery full cell (FIG. 5)

- 지름 14Φ로 제작된 알루미나 몰드에 전해질 0.1g을 넣고 oil pressure machine으로 330MPa의 압력을 가해 disc pellet형태로 성형한다. - Put 0.1g of electrolyte into an alumina mold with a diameter of 14Φ and apply a pressure of 330MPa with an oil pressure machine to form a disc pellet.

- 음극 활물질 (Li3.25Si = 0.01g) : 전해질을 80 : 20 wt%로 혼합하여 제조한 복합체를 몰드 한쪽에 넣은 후 압력을 가하여 Anode 층을 만든다. - Negative active material (Li 3.25 Si = 0.01g): A composite prepared by mixing electrolyte at a ratio of 80:20 wt% is placed on one side of the mold and pressure is applied to form an anode layer.

- 복합 Anode 위에 PGS를 적층하여 압력을 가하여 Anode 층을 완성한다. - PGS is laminated on the composite anode and pressure is applied to complete the anode layer.

- 황 복합 Cathode 0.02g을 몰드 반대편에 넣고 압력을 가해 황 복합 Cathode 층을 만든다. (양극활물질 S = 0.005g, 전해질 = 0.01 g, 카본 도전재 = 0.005 g)- Put 0.02g of sulfur composite cathode on the opposite side of the mold and apply pressure to create a sulfur composite cathode layer. (Cathode active material S = 0.005 g, electrolyte = 0.01 g, carbon conductive material = 0.005 g)

6) 복합 Anode 포함 전고체 전지에 대한 충·방전 실험6) Charge and discharge test for all-solid-state battery with composite anode

복합 Anode의 음극 활물질과 고체 전해질의 비율은 50 : 50 wt% 와 80 : 20 wt% 로 맞춰 테스트하였다. 50 : 50 wt% 의 음극을 적용한 전지는 전해질의 높은 비율로 인해 저항이 증가하여 50 mAh/g 의 방전 용량이 기록되었다 (도 6의 빨강색 그래프). 반면, 중량비 80 : 20wt% 의 복합 Anode 구조를 도입한 셀의 경우, 기존의 Anode 구조를 가지고 있는 셀과 비교했을 때 유사한 수준의 무게당 용량을 나타내면서 Li-dendrite로 인한 노이즈 현상은 나타나지 않아 기본 성능 및 화학-기계적 안정성 모두 우수함을 알 수 있다(도 6의 검정색 그래프). The ratio of the anode active material and the solid electrolyte of the composite anode was tested by adjusting to 50:50 wt% and 80:20 wt%. The battery to which the 50:50 wt% negative electrode was applied had an increased resistance due to the high electrolyte ratio, and a discharge capacity of 50 mAh/g was recorded (red graph in FIG. 6). On the other hand, in the case of a cell introducing a composite anode structure with a weight ratio of 80 : 20wt%, compared to a cell with an existing anode structure, it shows a similar level of capacity per weight and does not show noise caused by Li-dendrite, so it has basic performance. and chemical-mechanical stability were both excellent (black graph in FIG. 6).

본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The present invention is not limited to the above embodiments, but can be manufactured in a variety of different forms, and those skilled in the art to which the present invention pertains may take other specific forms without changing the technical spirit or essential features of the present invention. It will be understood that it can be implemented as. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting.

Claims (5)

음극층; 양극층; 및 상기 음극층과 양극층 사이에 구비된 황화물계 고체 전해질층을 포함하고,
상기 음극층은,
음극 집전체; 상기 음극 집전체 상에 배치된 열분해 흑연 시트(pyrolytic graphite sheet, PGS); 및 상기 열분해 흑연 시트 상에 배치되며, Li-Si 합금으로 이루어진 음극 활물질 및 황화물계 고체 전해질을 70 : 30 ~ 90 : 10의 중량비로 포함하는 음극 활물질층;을
포함하는 것을 특징으로 하는 전고체 전지.
cathode layer; anode layer; And a sulfide-based solid electrolyte layer provided between the cathode layer and the anode layer,
The cathode layer,
negative current collector; a pyrolytic graphite sheet (PGS) disposed on the negative current collector; and a negative active material layer disposed on the pyrolytic graphite sheet and including a negative active material made of a Li-Si alloy and a sulfide-based solid electrolyte in a weight ratio of 70:30 to 90:10.
All-solid-state battery characterized in that it comprises.
제1항에 있어서,
상기 Li-Si 합금은 Li3.25Si이고,
상기 황화물계 고체 전해질은 75Li2S-25P2S5인 것을 특징으로 하는 전고체 전지.
According to claim 1,
The Li-Si alloy is Li 3.25 Si,
The sulfide-based solid electrolyte is an all-solid-state battery, characterized in that 75Li 2 S-25P 2 S 5 .
제2항에 있어서,
상기 음극 활물질층은 Li3.25Si 및 75Li2S-25P2S5을 80 : 20의 중량비로 포함하는 것을 특징으로 하는 전고체 전지.
According to claim 2,
The all-solid-state battery, characterized in that the negative electrode active material layer comprises Li 3.25 Si and 75Li 2 S-25P 2 S 5 in a weight ratio of 80:20.
제1항에 있어서,
상기 양극층은 황(sulfur), 황화물계 고체 전해질 및 카본(carbon)을 포함하는 것을 특징으로 하는 전고체 전지.
According to claim 1,
The all-solid-state battery, characterized in that the positive electrode layer comprises sulfur, a sulfide-based solid electrolyte and carbon.
(a) 황화물계 고체 전해질 분말을 가압하여 고체 전해질층을 형성시키는 단계;
(b) Li-Si 합금으로 이루어진 음극 활물질 분말 및 황화물계 고체 전해질 분말을 70 : 30 ~ 90 : 10의 중량비로 포함하는 복합 분말을 상기 고체 전해질층의 일면에 구비시킨 후 가압하여 음극 활물질층을 형성시키는 단계;
(c) 열분해 흑연 시트(pyrolytic graphite sheet, PGS)를 상기 음극층 상에 적층시키는 단계; 및
(d) 황(sulfur), 황화물계 고체 전해질 및 카본(carbon)을 포함하는 복합 분말을 상기 고체 전해질층의 타면에 구비시킨 후, 가압하여 양극층을 형성시키는 단계;를 포함하는
전고체 전지의 제조방법.
(a) pressurizing the sulfide-based solid electrolyte powder to form a solid electrolyte layer;
(b) A composite powder containing a negative electrode active material powder made of a Li-Si alloy and a sulfide-based solid electrolyte powder in a weight ratio of 70:30 to 90:10 is provided on one surface of the solid electrolyte layer and then pressurized to form the negative electrode active material layer. forming;
(c) stacking a pyrolytic graphite sheet (PGS) on the negative electrode layer; and
(d) providing a composite powder containing sulfur, a sulfide-based solid electrolyte, and carbon to the other surface of the solid electrolyte layer, and then pressurizing to form a positive electrode layer; comprising
Method for manufacturing an all-solid-state battery.
KR1020210182879A 2021-12-20 2021-12-20 All-solid-state battery with high chemo-mechanical stability KR20230093889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210182879A KR20230093889A (en) 2021-12-20 2021-12-20 All-solid-state battery with high chemo-mechanical stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210182879A KR20230093889A (en) 2021-12-20 2021-12-20 All-solid-state battery with high chemo-mechanical stability

Publications (1)

Publication Number Publication Date
KR20230093889A true KR20230093889A (en) 2023-06-27

Family

ID=86947066

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210182879A KR20230093889A (en) 2021-12-20 2021-12-20 All-solid-state battery with high chemo-mechanical stability

Country Status (1)

Country Link
KR (1) KR20230093889A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067108A1 (en) 2018-09-27 2020-04-02 富士フイルム株式会社 Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
KR20200128256A (en) 2019-05-02 2020-11-12 현대자동차주식회사 A composite anode for all-solid state battery and process for preparing thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067108A1 (en) 2018-09-27 2020-04-02 富士フイルム株式会社 Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
KR20200128256A (en) 2019-05-02 2020-11-12 현대자동차주식회사 A composite anode for all-solid state battery and process for preparing thereof

Similar Documents

Publication Publication Date Title
US11502299B2 (en) Battery cell engineering and design to reach high energy
US10090557B2 (en) Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same
KR102240980B1 (en) Lithium manganese oxide composite, secondary battery, and manufacturing method thereof
KR101308677B1 (en) Lithium secondary batteries
KR101670580B1 (en) Separator for secondary battery, method of fabricating the same, and lithium secondary battery comprising the same
CN111436199A (en) Compositions and methods for energy storage devices with improved performance
US20160308243A1 (en) Electrochemical cell with solid and liquid electrolytes
EP3220447B1 (en) Laminate, secondary battery, battery pack, and vehicle
WO2015098551A1 (en) Solid-state lithium battery, solid-state lithium battery module, and method for producing solid-state lithium battery
KR20190079132A (en) All solid battery
KR20150098573A (en) Method of producing solid state lithium battery module
KR20070015001A (en) Non-aqueous electrolyte battery
JP2022518395A (en) Compositions and Methods for Prelithiumized Energy Storage Devices
WO2019200609A1 (en) Incorporation of lithium-ion source material into an activated carbon electrode for a capacitor-assisted battery
CN102447134A (en) Method for producing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20180129184A (en) Method for preparing positive electrode, positive electrode for secondary battery prepared by the same and lithium secondary battery comprising the same
EP4071875A1 (en) Solid-state battery, battery module, battery pack, and related device thereof
CN116799166A (en) Negative active material, method of preparing the same, and device including the same
CN111247673A (en) Composition for forming active material layer, method for producing same, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
KR20190033214A (en) Negavive electrode for lithium secondary battery, and lithium secondary battery comprising the same
KR20230093889A (en) All-solid-state battery with high chemo-mechanical stability
JP2019040787A (en) Positive electrode for lithium ion secondary battery
KR102055067B1 (en) MoS2 secondary battery system having enhanced electrochemical properties through co-intercalation of Li-electrolyte solvent
WO2012157047A1 (en) All-solid-state secondary battery
EP3540830B1 (en) Cathode for lithium secondary battery and lithium secondary battery comprising same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal