JPH11126600A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH11126600A
JPH11126600A JP9288765A JP28876597A JPH11126600A JP H11126600 A JPH11126600 A JP H11126600A JP 9288765 A JP9288765 A JP 9288765A JP 28876597 A JP28876597 A JP 28876597A JP H11126600 A JPH11126600 A JP H11126600A
Authority
JP
Japan
Prior art keywords
negative electrode
coating film
carbon material
current collector
layer coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9288765A
Other languages
Japanese (ja)
Inventor
Masanori Ito
真典 伊藤
Hideaki Nagura
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP9288765A priority Critical patent/JPH11126600A/en
Publication of JPH11126600A publication Critical patent/JPH11126600A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery which can work with good charge-discharge cycle characteristics, by coating a carbon material on a negative electrode current collector to a large thickness so that no exfoliation will be made. SOLUTION: A lithium ion secondary battery is composed of a negative electrode 2 formed by coating a negative electrode black mixture to a negative electrode current collector and a positive electrode 1 formed by coating a positive electrode black mixture to a positive electrode current collector, wherein the negative electrode black mixture is prepared from scale-form graphite (A), carbon material (B) with the mean particle size below 20 μm, and a binding agent (C), and when the coating film of the negative electrode black mixture is to be formed on the negative electrode current collector, the coating film structure is divided into an upper layer and a lower layer, and it is arranged so that the carbon material (B) content by wt. of the lower layer is greater than the carbon material (B) content by wt. of the whole coating film including the upper and lower layers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に充放電サイ
クル特性に優れたリチウムイオン二次電池に関する。
The present invention relates to a lithium ion secondary battery having particularly excellent charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術】ニッケルカドミウム電池に代表される従
来の二次電池に比べ小型・軽量かつ高エネルギー密度化
が可能であることから、最近の携帯電話機やノートパソ
コンなどの携帯電子機器にはリチウムイオン二次電池が
用いられている。リチウムイオン二次電池は、電気自動
車、電力保存用などに使用する大容量電源としても期待
されており、実用化に向けた研究が活発に行われてい
る。
2. Description of the Related Art Lithium-ion batteries have recently been used in portable electronic devices such as mobile phones and notebook computers because they are smaller, lighter and have higher energy density than conventional secondary batteries typified by nickel cadmium batteries. Secondary batteries are used. Lithium-ion secondary batteries are also expected to be used as large-capacity power supplies for use in electric vehicles, electric power storage, and the like, and research for their practical use is being actively conducted.

【0003】リチウムイオン二次電池の正極には、アル
ミニウム箔などの正極集電体上にコバルト酸リチウム
(LiCoO2)に代表される、リチウムを含む金属複
合酸化物を塗膜したものが用いられる。コバルト酸リチ
ウムは、コバルト原子1個と酸素原子2個とから形成さ
れる層の間にリチウムイオンが挿入された構造になって
いる。
As a positive electrode of a lithium ion secondary battery, a positive electrode current collector such as an aluminum foil coated with a lithium-containing metal composite oxide typified by lithium cobalt oxide (LiCoO2) is used. Lithium cobaltate has a structure in which lithium ions are inserted between layers formed of one cobalt atom and two oxygen atoms.

【0004】一方、リチウムイオン二次電池の負極に
は、銅箔などの負極集電体上に黒鉛等の炭素と結着剤と
を混合した負極合剤を塗膜したものが用いられる。炭素
はその種類によって程度の差はあるが、前述したコバル
ト酸リチウムと同様に層構造を有し、充電の際に正極の
コバルト酸リチウムから引き抜かれたリチウムイオンが
負極の炭素層間に挿入(ドープ)される。逆に放電の際
にはリチウムイオンが炭素層間から引き抜かれ(脱ドー
プ)再び正極のコバルト酸リチウム層間へと移動する。
On the other hand, as a negative electrode of a lithium ion secondary battery, a negative electrode current collector such as a copper foil coated with a negative electrode mixture obtained by mixing carbon such as graphite and a binder is coated. Carbon has a layer structure similar to that of the lithium cobalt oxide described above, although the degree varies depending on the type thereof, and lithium ions extracted from the lithium cobalt oxide of the positive electrode during charging are inserted (doped) between carbon layers of the negative electrode. ) Is done. Conversely, at the time of discharge, lithium ions are extracted from the carbon layer (dedoped) and move again to the lithium cobalt oxide layer of the positive electrode.

【0005】したがって、負極合剤中の炭素量が多いほ
どより多くのリチウムをドープすることができ、電池の
充放電サイクル特性を向上させることができることにな
る。
Therefore, as the amount of carbon in the negative electrode mixture increases, more lithium can be doped, and the charge / discharge cycle characteristics of the battery can be improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、負極集
電体上に塗膜された負極合剤中の炭素材料は充放電の際
のリチウムのドープ、脱ドープによって繰り返し膨張・
収縮するので、塗膜は負極集電体から剥がれ易く、よっ
て負極合剤中に含有させる炭素材料の量やその塗膜厚に
は限界があった。なお、結着剤の量を増やせば負極集電
体と炭素材料および炭素材料同志の結びつきをより強く
することができるが、あまり結着剤の量を増やすと電極
としての電気化学的特性に影響し逆に充放電サイクル特
性が悪化してしまうことになる。
However, the carbon material in the negative electrode mixture coated on the negative electrode current collector expands and contracts repeatedly due to doping and undoping of lithium during charging and discharging.
Since the film shrinks, the coating film is easily peeled off from the negative electrode current collector, and thus the amount of the carbon material contained in the negative electrode mixture and the thickness of the coating film are limited. Increasing the amount of the binder can strengthen the connection between the negative electrode current collector and the carbon material or between the carbon materials, but if the amount of the binder is increased too much, the electrochemical characteristics of the electrode will be affected. On the contrary, the charge / discharge cycle characteristics are deteriorated.

【0007】本発明はこのような事情に鑑みてなされた
ものであって、その目的は負極集電体上に炭素材料を剥
がれないように厚く塗膜して充分な充放電サイクル特性
を得ることができるようにしたリチウムイオン二次電池
を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to obtain a sufficient charge / discharge cycle characteristic by forming a thick coating on a negative electrode current collector so as not to peel off a carbon material. To provide a lithium-ion secondary battery that can be used.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
本発明では、負極集電体に負極合剤を塗膜してなる負極
と、正極集電体に正極合剤を塗膜してなる正極とを有す
るリチウムイオン二次電池において、前記負極合剤が鱗
片状黒鉛(A)と、前記鱗片状黒鉛(A)に比べて平均
粒径が小さい炭素材料(B)と、結着剤(C)とを配合
してなり、前記負極合剤は上層塗膜と下層塗膜の2層に
分けて負極集電体に塗膜し、前記下層塗膜における炭素
材料(B)の重量含有率を、前記上層塗膜および前記下
層塗膜を合わせた塗膜全体における炭素材料(B)の重
量含有率よりも大きくなるようにした(請求項1)。
According to the present invention, there is provided a negative electrode comprising a negative electrode current collector coated with a negative electrode mixture, and a positive electrode current collector coated with a positive electrode mixture. In a lithium ion secondary battery having a positive electrode, the negative electrode mixture is flaky graphite (A), a carbon material (B) having an average particle size smaller than that of the flaky graphite (A), and a binder ( C), and the negative electrode mixture is coated on the negative electrode current collector in two layers, an upper layer coating film and a lower layer coating film, and the weight content of the carbon material (B) in the lower layer coating film Was set to be larger than the weight content of the carbon material (B) in the entire coating film including the upper coating film and the lower coating film (claim 1).

【0009】このように、負極合剤の炭素成分に鱗片状
黒鉛(A)とこの鱗片状黒鉛(A)に比べて平均粒径が
小さい炭素材料(B)とを用い、負極集電体上に塗膜す
るにあたって上層と下層との2層に分け、負極集電体に
隣接する下層塗膜中には粒径の小さな炭素材料(B)を
多く含ませてその分だけ粒径の大きい鱗片状黒鉛を少な
くしてこれらを偏在させるようにすると、下層塗膜中の
結着剤の量が多くなって負極集電体との接着性が向上す
るだけでなく、粒子同士が強固に結着し、しかも粒径の
小さな炭素材料(B)が多く含有されることによって充
放電の際の下層塗膜の膨張収縮量が小さくなり、これに
よる歪みが軽減されて負極集電体から剥がれ難くなる。
従って、鱗片状黒鉛(A)と炭素材料(B)と結着剤
(C)とを厚み方向に偏在させずに均等に混練して単層
で塗膜する場合に比較して、負極集電体上に負極合剤を
厚く塗膜することができ、もって負極の炭素量を増大し
て充放電サイクル特性の向上が図れる。ここで、上記鱗
片状黒鉛とは、黒鉛のab平面がc軸方向より大きい、
つまり雲母の様な板状の形態をした黒鉛のことである。
また、鱗片状黒鉛は通常この様な形をしており、人造黒
鉛でもこのような形態をしたものがある。一方、上記炭
素材料とは一般的な岩状の形態をした黒鉛のことであ
る。
As described above, the flaky graphite (A) and the carbon material (B) having an average particle size smaller than that of the flaky graphite (A) are used as the carbon component of the negative electrode mixture, When coating on the anode, it is divided into two layers, an upper layer and a lower layer. The lower layer coating film adjacent to the negative electrode current collector contains a large amount of the carbon material (B) having a small particle size, and the scale having a large particle size correspondingly. When the graphite is reduced and unevenly distributed, not only does the amount of the binder in the lower layer coating increase and the adhesiveness with the negative electrode current collector improves, but also the particles bind strongly. In addition, since the carbon material (B) having a small particle size is contained in a large amount, the amount of expansion and contraction of the lower coating film during charging and discharging is reduced, thereby reducing distortion and making it difficult to peel off from the negative electrode current collector. .
Therefore, compared to the case where the flaky graphite (A), the carbon material (B), and the binder (C) are uniformly kneaded without being unevenly distributed in the thickness direction and coated in a single layer, the negative electrode current collection is performed. The negative electrode mixture can be coated thickly on the body, so that the amount of carbon in the negative electrode can be increased to improve the charge / discharge cycle characteristics. Here, the flaky graphite, the ab plane of graphite is larger than the c-axis direction,
In other words, it is graphite having a plate-like shape like mica.
In addition, flaky graphite usually has such a shape, and some artificial graphite has such a shape. On the other hand, the carbon material is graphite having a general rock shape.

【0010】また、前記下層塗膜における炭素材料
(B)の重量含有率が、前記上層塗膜および前記下層塗
膜を合わせた塗膜全体における炭素材料(B)の重量含
有率の119%以上168%以下であることが好ましい
(請求項2)。
The weight content of the carbon material (B) in the lower coating film is at least 119% of the weight content of the carbon material (B) in the entire coating film including the upper coating film and the lower coating film. It is preferably 168% or less (claim 2).

【0011】さらにまた、前記下層塗膜の厚さが、上層
塗膜および下層塗膜を合わせた塗膜全体の厚さに対して
10%以上60%以下の厚さであることが好ましい(請
求項3)。
Further, it is preferable that the thickness of the lower coating film is 10% or more and 60% or less of the total thickness of the coating film including the upper coating film and the lower coating film. Item 3).

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例につき詳細
に説明する。尚、以下の説明において重量含有率とは、
物質Pが物質Qにどのくらい含まれているかを重量で比
較しこれを比率で表したものである。例えば物質Qがあ
る物質Xのx(g重)と物質Yのy(g重)とからなる
場合、物質Qにおける物質Xの重量含有率はx/(x+
y)で表される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. In the following description, the weight content is
The amount of the substance P contained in the substance Q is compared by weight, and this is expressed as a ratio. For example, when the substance Q is composed of x (g weight) of the substance X and y (g weight) of the substance Y, the weight content of the substance X in the substance Q is x / (x +
y).

【0013】[リチウムイオン二次電池の構成]図1
は、後述する実施例および比較例で使用する単3形(1
4.5φmm×50mm)巻回式リチウムイオン二次電
池の縦断面図である。この図において、1は正極シー
ト、2は負極シート、3はポリプロピレン製の多孔質フ
ィルムセパレータ、4はチタン製の正極リード、5はニ
ッケル製の負極リード、6はステンレス製の封口板、7
はアルミニウム製の正極キャップ兼正極端子板、8はポ
リプロピレン製の絶縁底板、9はポリプロピレン製の絶
縁ガスケット、10は安全弁、11はケースである。
[Configuration of Lithium Ion Secondary Battery] FIG.
Represents AA (1) used in Examples and Comparative Examples described later.
FIG. 4 is a longitudinal sectional view of a 4.5-mm × 50-mm) wound lithium ion secondary battery. In this figure, 1 is a positive electrode sheet, 2 is a negative electrode sheet, 3 is a porous film separator made of polypropylene, 4 is a positive electrode lead made of titanium, 5 is a negative electrode lead made of nickel, 6 is a sealing plate made of stainless steel, 7
Is a positive electrode cap / positive terminal plate made of aluminum, 8 is an insulating bottom plate made of polypropylene, 9 is an insulating gasket made of polypropylene, 10 is a safety valve, and 11 is a case.

【0014】正極シート1は、正極集電体として用意し
た厚さ30μmのアルミニウム箔の両面に正極合剤を塗
膜しさらに乾燥・圧延を加えた後シート状に切断したも
のである。また、正極シート1の長手方向に対して垂直
に正極合剤の一部を掻き取って集電体を露出させ、ここ
に正極リード4をスポット溶接した。
The positive electrode sheet 1 is obtained by coating a positive electrode mixture on both surfaces of a 30 μm-thick aluminum foil prepared as a positive electrode current collector, further drying and rolling, and then cutting into a sheet. Further, a part of the positive electrode mixture was scraped off perpendicularly to the longitudinal direction of the positive electrode sheet 1 to expose the current collector, and the positive electrode lead 4 was spot-welded thereto.

【0015】負極シート2は、負極集電体として用意し
た銅箔の両面に負極合剤を塗膜して乾燥した後、シート
状に切断して作成したものである。また、負極シート2
の長手方向に対して垂直に負極合剤の一部を掻き取って
集電体を露出させ、ここに負極リード5をスポット溶接
した。
The negative electrode sheet 2 is formed by coating a negative electrode mixture on both surfaces of a copper foil prepared as a negative electrode current collector, drying the mixture, and cutting it into a sheet. In addition, the negative electrode sheet 2
A portion of the negative electrode mixture was scraped off perpendicularly to the longitudinal direction to expose the current collector, and the negative electrode lead 5 was spot-welded thereto.

【0016】正極シート1および負極シート2は、セパ
レータ3を介して渦巻き状に巻回した状態でケース11
に挿入してある。また、正極シート1に溶接されている
正極リード4の他端を封口板6にスポット溶接し、負極
シート2にスポット溶接されている負極リード5の他端
を、負極端子を兼ねたケース11の円形底面の中心位置
にスポット溶接してある。絶縁底板8には巻回時に生じ
る空間と同面積になるように穴が空いている。
The positive electrode sheet 1 and the negative electrode sheet 2 are spirally wound with a separator 11 interposed therebetween.
Has been inserted. Further, the other end of the positive electrode lead 4 welded to the positive electrode sheet 1 is spot-welded to the sealing plate 6, and the other end of the negative electrode lead 5 spot-welded to the negative electrode sheet 2 is connected to the case 11 serving as the negative electrode terminal. Spot welded to the center of the circular bottom. A hole is formed in the insulating bottom plate 8 so as to have the same area as the space generated at the time of winding.

【0017】正極端子板7はあらかじめ封口板6に溶接
されている。安全弁10は電池に異常が起きて電池の内
圧が上昇した場合にその一部が破断してガスを外部へ放
出するためのものである。
The positive electrode terminal plate 7 is welded to the sealing plate 6 in advance. The safety valve 10 is for releasing a gas to the outside by breaking a part of the battery when the internal pressure of the battery rises due to an abnormality in the battery.

【0018】また、ケースにはエチレンカーボネートと
ジエチルカーボネートが体積比で1:1に混合されてい
る混合溶媒に、LiPF6が1mol/lになるように
溶解させて作成した電解液を(2.3ml)注入してあ
る。
Further, in the case, an electrolytic solution prepared by dissolving LiPF6 to 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 (2.3 ml) was prepared. ) Injected.

【0019】[実施例および比較例の作成]次に、以上
に説明した構成のリチウムイオン二次電池を用い、以下
に示す実施例および比較例の電池を作成した。電池の作
成に際しては、負極合剤として鱗片状黒鉛(A)と、平
均粒径が6μmの炭素材料(B)と、ポリフッ化ビニリ
デン(以下PVDFと略記する)をN−メチルピロドリ
ンに溶かして作成した結着剤(C)とを50:50:5
の重量比(ただしPVDFの割合はその固形分の重量比
である)で、各実施例および各比較例において同量を用
意した。
[Preparation of Examples and Comparative Examples] Next, using the lithium ion secondary battery having the above-described structure, batteries of the following Examples and Comparative Examples were prepared. In preparing a battery, flaky graphite (A) as a negative electrode mixture, a carbon material (B) having an average particle size of 6 μm, and polyvinylidene fluoride (hereinafter abbreviated as PVDF) are dissolved in N-methylpyrroline. 50: 50: 5 with the prepared binder (C)
(However, the ratio of PVDF is the weight ratio of the solid content), and the same amount was prepared in each Example and each Comparative Example.

【0020】正極合剤としては複合酸化物(LiCoO
2)と、導電材(カーボン粉末)と、ポリテトラフルオ
ロエチレン(PTFE)の水性ディスパージョンからな
る結着剤とを100:10:10(水性ディスパージョ
ンの割合はその固形分の割合)の重量比で混合し、これ
に水を加えて混練しペースト状にしたものを用意した。
また、全ての実施例および比較例において、正極合剤の
正極集電体への塗膜は単層で行った。
As the positive electrode mixture, a composite oxide (LiCoO
2), a conductive material (carbon powder), and a binder composed of an aqueous dispersion of polytetrafluoroethylene (PTFE) in a weight of 100: 10: 10 (the ratio of the aqueous dispersion is the solid content) The mixture was mixed in a ratio, and water was added to the mixture, and the mixture was kneaded to prepare a paste.
In all Examples and Comparative Examples, the coating of the positive electrode mixture on the positive electrode current collector was performed in a single layer.

【0021】(実施例1)本実施例のために用意された
全ての負極合剤を用い下層塗膜用および上層塗膜用の2
種類の負極合剤を作成しそれぞれを同じ厚さで負極集電
体上に塗膜した。下層塗膜用の負極合剤は、鱗片状黒鉛
(A)、炭素材料(B)、結着剤(C)の重量比が2
5:75:6になるようにした。上層塗膜用の負極合剤
は、鱗片状黒鉛(A)、炭素材料(B)、結着剤(C)
の重量比が75:25:4になるようにした。
(Example 1) All of the negative electrode mixtures prepared for this example were used for the lower layer coating and the upper layer coating.
Negative electrode mixtures were prepared, and each was coated on the negative electrode current collector with the same thickness. The weight ratio of the flaky graphite (A), the carbon material (B), and the binder (C) is 2 for the negative electrode mixture for the lower layer coating film.
5: 75: 6. The negative electrode mixture for the upper layer coating film is flake graphite (A), carbon material (B), binder (C)
Was 75: 25: 4.

【0022】(実施例2)本実施例のために用意された
全ての負極合剤を用い下層塗膜用および上層塗膜用の2
種類の負極合剤を作成し、実施例1の場合と同様にそれ
ぞれを同じ厚さで負極集電体上に塗膜した。下層塗膜用
の負極合剤は、鱗片状黒鉛(A)、炭素材料(B)、結
着剤(C)の重量比が40:60:6になるようにし
た。上層塗膜用の負極合剤は、鱗片状黒鉛(A)、炭素
材料(B)、結着剤(C)を60:40:4の重量比に
なるようにした。
Example 2 Using all the negative electrode mixtures prepared for the present example, two negative electrode mixtures for the lower layer coating and the upper layer coating were used.
Negative electrode mixtures were prepared, and each was coated on the negative electrode current collector in the same thickness as in Example 1. The weight ratio of the flaky graphite (A), the carbon material (B), and the binder (C) was 40: 60: 6 in the negative electrode mixture for the lower layer coating film. In the negative electrode mixture for the upper layer coating film, flaky graphite (A), carbon material (B), and binder (C) were adjusted to have a weight ratio of 60: 40: 4.

【0023】(実施例3)本実施例のために用意された
全ての負極合剤を用い下層塗膜用および上層塗膜用の2
種類の負極合剤を作成し、実施例1の場合と同様にそれ
ぞれを同じ厚さで負極集電体上に塗膜した。下層塗膜用
の負極合剤は、鱗片状黒鉛(A)、炭素材料(B)、結
着剤(C)の重量比が15:85:6になるようにし
た。上層塗膜用の負極合剤は、鱗片状黒鉛(A)、炭素
材料(B)、結着剤(C)を85:15:4の重量比に
なるようにした。
(Example 3) All of the negative electrode mixtures prepared for this example were used for the lower layer coating and the upper layer coating.
Negative electrode mixtures were prepared, and each was coated on the negative electrode current collector in the same thickness as in Example 1. The weight ratio of the flaky graphite (A), the carbon material (B), and the binder (C) was adjusted to 15: 85: 6 in the negative electrode mixture for the lower layer coating film. In the negative electrode mixture for the upper layer coating film, flake graphite (A), carbon material (B), and binder (C) were adjusted to have a weight ratio of 85: 15: 4.

【0024】(比較例1)本比較例のために用意された
全ての負極合剤を用い負極集電体に、前記鱗片状黒鉛
(A)と前記炭素材料(B)と前記結着剤(C)とを重
量比で50:50:5の割合で混合して作成した負極合
剤を、実施例1における上層および下層塗膜を含む塗膜
全体の厚さに等い厚さで両面に塗膜した。
(Comparative Example 1) The flake graphite (A), the carbon material (B), and the binder ( C) was mixed at a weight ratio of 50: 50: 5 with a negative electrode mixture prepared on both surfaces in a thickness equal to the entire thickness of the coating film including the upper and lower coating films in Example 1. Coated.

【0025】(比較例2)下層塗膜用および上層塗膜用
の2種類の負極合剤を作成し、実施例1の場合と同様に
それぞれを同じ厚さで負極集電体上に塗膜した。下層塗
膜用の負極合剤は、鱗片状黒鉛(A)、炭素材料
(B)、結着剤(C)の重量比が50:50:6になる
ようにした。上層塗膜用の負極合剤は、鱗片状黒鉛
(A)、炭素材料(B)、結着剤(C)を50:50:
4の重量比になるようにした。
(Comparative Example 2) Two kinds of negative electrode mixtures for the lower layer coating film and the upper layer coating film were prepared, and each was coated on the negative electrode current collector in the same thickness as in Example 1. did. The weight ratio of the flaky graphite (A), the carbon material (B), and the binder (C) was set to 50: 50: 6 for the negative electrode mixture for the lower layer coating film. The negative electrode mixture for the upper layer coating film was composed of flaky graphite (A), carbon material (B), and binder (C) in a ratio of 50:50:
4 by weight.

【0026】(比較例3)本比較例のために用意された
全ての負極合剤を用い下層塗膜用および上層塗膜用の2
種類の負極合剤を作成し、実施例1の場合と同様にそれ
ぞれを同じ厚さで負極集電体上に塗膜した。下層塗膜用
の負極合剤は、鱗片状黒鉛(A)、炭素材料(B)、結
着剤(C)の重量比が45:55:6になるようにし
た。上層塗膜用の負極合剤は、鱗片状黒鉛(A)、炭素
材料(B)、結着剤(C)を55:45:4の重量比に
なるようにした。
(Comparative Example 3) All of the negative electrode mixtures prepared for this comparative example were used for the lower layer coating and the upper layer coating.
Negative electrode mixtures were prepared, and each was coated on the negative electrode current collector in the same thickness as in Example 1. The weight ratio of the flaky graphite (A), the carbon material (B), and the binder (C) was set to 45: 55: 6 in the negative electrode mixture for the lower layer coating film. In the negative electrode mixture for the upper layer coating film, the flaky graphite (A), the carbon material (B), and the binder (C) were adjusted to have a weight ratio of 55: 45: 4.

【0027】(比較例4)本比較例のために用意された
全ての負極合剤を用い下層塗膜用および上層塗膜用の2
種類の負極合剤を作成し、それぞれを実施例1の場合と
同じ厚さで負極集電体上に塗膜した。下層塗膜用の負極
合剤は、鱗片状黒鉛(A)、炭素材料(B)、結着剤
(C)の重量比が10:90:6になるようにした。上
層塗膜用の負極合剤は、鱗片状黒鉛(A)、炭素材料
(B)、結着剤(C)を90:10:4の重量比になる
ようにした。
(Comparative Example 4) Using all the negative electrode mixtures prepared for this comparative example, two
Various kinds of negative electrode mixtures were prepared, and each was coated on the negative electrode current collector in the same thickness as in Example 1. The weight ratio of the flaky graphite (A), the carbon material (B), and the binder (C) was set to 10: 90: 6 in the negative electrode mixture for the lower layer coating film. In the negative electrode mixture for the upper layer coating film, the flake graphite (A), the carbon material (B), and the binder (C) were adjusted to have a weight ratio of 90: 10: 4.

【0028】(比較例5)本比較例のために用意された
全ての負極合剤を用い下層塗膜用および上層塗膜用の2
種類の負極合剤を作成し、それぞれを実施例1の場合と
同じ厚さで負極集電体上に塗膜した。下層塗膜用の負極
合剤は、鱗片状黒鉛(A)、炭素材料(B)、結着剤
(C)の重量比が5:95:6になるようにした。上層
塗膜用の負極合剤は、鱗片状黒鉛(A)、炭素材料
(B)、結着剤(C)を95:5:4の重量比になるよ
うにした。
(Comparative Example 5) All of the negative electrode mixtures prepared for this comparative example were used for the lower layer coating film and the upper layer coating film.
Various kinds of negative electrode mixtures were prepared, and each was coated on the negative electrode current collector in the same thickness as in Example 1. The weight ratio of the flaky graphite (A), the carbon material (B), and the binder (C) was 5: 95: 6 in the negative electrode mixture for the lower layer coating film. In the negative electrode mixture for the upper layer coating film, the flaky graphite (A), the carbon material (B), and the binder (C) were adjusted to have a weight ratio of 95: 5: 4.

【0029】[作成した電池の試験]以上に作成した実
施例および比較例の電池を室温環境下で第1サイクルと
して40mAの定電流で4.1Vまで充電した後400
mAの定電流で電池電圧が2.8Vになるまで放電して
初期放電容量(mAh)を測定した。
[Test of the Batteries Prepared] The batteries of the examples and the comparative examples prepared above were charged to 4.1 V at a constant current of 40 mA in a room temperature environment as a first cycle and then charged to 400 V.
The battery was discharged at a constant current of mA until the battery voltage reached 2.8 V, and the initial discharge capacity (mAh) was measured.

【0030】さらにその後、充放電を100サイクル繰
り返し100サイクル目の放電容量(mAh)を調べ
た。また、100サイクル目の放電容量を初期放電容量
で除して充放電サイクル維持率を求めた。以上の結果を
表1に示す。
Thereafter, charge and discharge were repeated 100 cycles, and the discharge capacity (mAh) at the 100th cycle was examined. Further, the discharge capacity at the 100th cycle was divided by the initial discharge capacity to obtain a charge / discharge cycle retention rate. Table 1 shows the above results.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように、負極合剤を単層
で塗膜した比較例1の場合の充放電サイクル容量維持率
は実施例1〜3および比較例2〜5に比べてかなり低い
値となっている。このことから、単層の場合よりも2層
の場合の方が充放電サイクル容量維持率が改善されるこ
とが理解される。
As is apparent from Table 1, the charge / discharge cycle capacity retention ratio in Comparative Example 1 in which the negative electrode mixture was coated in a single layer was considerably lower than in Examples 1 to 3 and Comparative Examples 2 to 5. Value. From this, it is understood that the charge / discharge cycle capacity retention ratio is more improved in the case of two layers than in the case of a single layer.

【0033】また、実施例1〜3の結果から、下層塗膜
用負極合剤に含まれる炭素材料(B)の重量比を上層塗
膜用負極合剤に含まれる炭素材料(B)の重量比よりも
大きくした場合、特に鱗片状黒鉛(A)、炭素材料
(B)、結着剤(C)の重量比を15:85:6(実施
例3)乃至40:60:6(実施例2)とした場合にお
いて高い充放電サイクル容量維持率が得られることが理
解される。
Further, from the results of Examples 1 to 3, the weight ratio of the carbon material (B) contained in the negative electrode mixture for the lower coating film was calculated by the weight of the carbon material (B) contained in the negative electrode mixture for the upper coating film. When the ratio is larger than the ratio, in particular, the weight ratio of the flaky graphite (A), the carbon material (B), and the binder (C) is from 15: 85: 6 (Example 3) to 40: 60: 6 (Example). It is understood that in the case of 2), a high charge / discharge cycle capacity retention rate can be obtained.

【0034】ここで、実施例3の場合における下層塗膜
の負極合剤中に含まれる炭素材料(B)の重量含有率
は、85/(15+85+6)[≒80.1%]と計算
され、また実施例2の場合における下層塗膜の負極合剤
中に含まれる炭素材料(B)の重量含有率は、60/
(60+40+6)[≒56.6%]と計算される。
Here, the weight content of the carbon material (B) contained in the negative electrode mixture of the lower coating film in the case of Example 3 was calculated to be 85 / (15 + 85 + 6) [≒ 80.1%]. In the case of Example 2, the weight content of the carbon material (B) contained in the negative electrode mixture of the lower coating film was 60 /
(60 + 40 + 6) [+ 56.6%] is calculated.

【0035】一方、下層塗膜と上層塗膜とを総合した全
重量比で見れば、実施例1〜3は鱗片状黒鉛(A)と炭
素材料(B)と結着剤(C)との配合割合は共に等し
く、100:100:10であり、炭素材料(B)の重
量含有率は100/210[≒47.6%]で全て等し
くなっているから、この塗膜全体での炭素材料(B)の
重量含有率を基準値とすれば、実施例3では(85/1
06)/(100/210)≒1.68となり、上記基
準値に対して68%増しの炭素材料(B)を含むことに
なる。また、同様に実施例2では(60/106)/
(100/210)≒1.19となり、基準値に対して
19%増しの炭素材料(B)を含むことになる。
On the other hand, looking at the total weight ratio of the lower layer coating film and the upper layer coating film, Examples 1 to 3 show that the flake graphite (A), the carbon material (B) and the binder (C) The blending ratios are the same, 100: 100: 10, and the weight content of the carbon material (B) is 100/210 [≒ 47.6%], so that the carbon material in the entire coating film is the same. Assuming that the weight content of (B) is a reference value, in Example 3, (85/1
06) / (100/210) ≒ 1.68, which means that the carbon material (B) containing 68% of the reference value is included. Similarly, in Example 2, (60/106) /
(100/210) ≒ 1.19, which includes the carbon material (B) which is 19% higher than the reference value.

【0036】即ち、前記下層塗膜における炭素材料
(B)の重量含有率が、前記上層塗膜および前記下層塗
膜を合わせた塗膜全体における炭素材料(B)の重量含
有率に対して、119%以上168%以下の場合に充放
電サイクル容量維持率が改善されると言い換えることが
できる。
That is, the weight content of the carbon material (B) in the lower coating film is more than the weight content of the carbon material (B) in the entire coating film including the upper coating film and the lower coating film. In other words, when it is 119% or more and 168% or less, the charge / discharge cycle capacity retention rate is improved.

【0037】[下層塗膜の厚さと充放電サイクル容量維
持率との関係]次に、下層塗膜の厚さと、これに対する
充放電サイクル容量維持率との関係を調べた。この試験
にあたっては、鱗片状黒鉛(A)、炭素材料(B)、結
着剤(C)からなる下層塗膜用の負極合剤の重量比が2
5:75:6である前記実施例1に準ずるもの、またそ
の重量比が40:60:6である前記実施例2に準ずる
もの、更にその重量比が15:85:6である前記実施
例3に準ずるものについてそれぞれ行った。
[Relationship Between Thickness of Lower Coating Film and Charge / Discharge Cycle Capacity Retention Ratio] Next, the relationship between the thickness of the lower coating film and the corresponding charge / discharge cycle capacity retention ratio was examined. In this test, the weight ratio of the negative electrode mixture for the lower layer coating composed of flaky graphite (A), carbon material (B) and binder (C) was 2
5: 75: 6 according to Example 1 above, and the weight ratio according to Example 2 above is 40: 60: 6, and further, the weight ratio is 15: 85: 6. 3 was performed for each of them.

【0038】先ず、前記実施例1に準ずるものとして、
当該実施例1で使用した下層塗膜用の負極合剤と上層塗
膜用の負極合剤とを用い、下層塗膜の厚さを上層および
下層塗膜を含む全体の厚さに対して10%(実施例
4)、25%(実施例5)、60%(実施例6)、5%
(比較例7)、65%(比較例8)、70%(比較例
9)とした電池をそれぞれ作成した。下層及び上層塗膜
の厚さ以外の構成は実施例1で作成した電池とまったく
同じである。
First, according to the first embodiment,
Using the negative electrode mixture for the lower layer coating and the negative electrode mixture for the upper layer coating used in Example 1, the thickness of the lower layer coating was 10 times the total thickness including the upper layer and the lower layer coating. % (Example 4), 25% (Example 5), 60% (Example 6), 5%
(Comparative Example 7), 65% (Comparative Example 8), and 70% (Comparative Example 9) batteries were produced. The structure other than the thicknesses of the lower and upper coating films is exactly the same as the battery prepared in Example 1.

【0039】以上のように作成した実施例4〜6の電
池、および比較例7〜9の電池、並びに実施例1の電池
のそれぞれにつき、室温環境下で第1サイクルとして4
0mAの定電流で4.1Vまで充電した後、400mA
の定電流で電池電圧が2.8Vになるまで放電して初期
放電容量(mAh)を測定した。
Each of the batteries of Examples 4 to 6, the batteries of Comparative Examples 7 to 9, and the battery of Example 1 prepared as described above was subjected to the first cycle at room temperature in the environment of 4 cycles.
After charging to 4.1 V with a constant current of 0 mA, 400 mA
Was discharged until the battery voltage reached 2.8 V, and the initial discharge capacity (mAh) was measured.

【0040】さらにその後、充放電を100サイクル繰
り返し、100サイクル目の放電容量(mAh)を調べ
た。また、100サイクル目の放電容量を初期放電容量
で除し、充放電サイクル維持率を求めた。以上の結果を
表2に示す。
Thereafter, charging and discharging were repeated 100 cycles, and the discharge capacity (mAh) at the 100th cycle was examined. Further, the discharge capacity at the 100th cycle was divided by the initial discharge capacity to determine a charge / discharge cycle retention rate. Table 2 shows the above results.

【0041】[0041]

【表2】 [Table 2]

【0042】次に、前記実施例2に準ずるものとして、
当該実施例2で使用した下層塗膜用の負極合剤と上層塗
膜用の負極合剤とを用い、下層塗膜の厚さを上層および
下層塗膜を含む全体の厚さに対して10%(実施例
7)、25%(実施例8)、60%(実施例9)、5%
(比較例10)、65%(比較例11)、70%(比較
例12)とした電池をそれぞれ作成した。下層及び上層
塗膜の厚さ以外の構成は実施例2で作成した電池とまっ
たく同じである。
Next, according to the second embodiment,
Using the negative electrode mixture for the lower layer coating and the negative electrode mixture for the upper layer coating used in Example 2, the thickness of the lower layer coating was 10 times the total thickness including the upper layer and the lower layer coating. % (Example 7), 25% (Example 8), 60% (Example 9), 5%
Batteries of (Comparative Example 10), 65% (Comparative Example 11), and 70% (Comparative Example 12) were prepared. The configuration other than the thicknesses of the lower and upper coating films is exactly the same as that of the battery prepared in Example 2.

【0043】以上のように作成した実施例7〜9の電
池、および比較例10〜12の電池、並びに実施例2の
電池それぞれにつき、室温環境下で第1サイクルとして
40mAの定電流で4.1Vまで充電した後、400m
Aの定電流で電池電圧が2.8Vになるまで放電して初
期放電容量(mAh)を測定した。
Each of the batteries of Examples 7 to 9, the batteries of Comparative Examples 10 to 12 and the battery of Example 2 prepared as described above was subjected to a constant current of 40 mA as a first cycle under a room temperature environment. 400m after charging to 1V
The battery was discharged at a constant current of A until the battery voltage reached 2.8 V, and the initial discharge capacity (mAh) was measured.

【0044】さらにその後、充放電を100サイクル繰
り返し、100サイクル目の放電容量(mAh)を調べ
た。また、100サイクル目の放電容量を初期放電容量
で除し、充放電サイクル維持率を求めた。以上の結果を
表3に示す。
Thereafter, the charge and discharge were repeated 100 cycles, and the discharge capacity (mAh) at the 100th cycle was examined. Further, the discharge capacity at the 100th cycle was divided by the initial discharge capacity to determine a charge / discharge cycle retention rate. Table 3 shows the above results.

【0045】[0045]

【表3】 [Table 3]

【0046】更に、前記実施例3に準ずるものとして、
当該実施例3で使用した下層塗膜用の負極合剤と上層塗
膜用の負極合剤とを用い、下層塗膜の厚さを上層および
下層塗膜を含む全体の厚さに対して10%(実施例1
0)、25%(実施例11)、60%(実施例12)、
5%(比較例13)、65%(比較例14)、70%
(比較例15)とした電池をそれぞれ作成した。下層及
び上層塗膜の厚さ以外の構成は実施例2で作成した電池
とまったく同じである。
Further, according to the third embodiment,
Using the negative electrode mixture for the lower layer coating and the negative electrode mixture for the upper layer coating used in Example 3, the thickness of the lower layer coating was 10 times the total thickness including the upper layer and the lower layer coating. % (Example 1
0), 25% (Example 11), 60% (Example 12),
5% (Comparative Example 13), 65% (Comparative Example 14), 70%
Batteries referred to as (Comparative Example 15) were prepared. The configuration other than the thicknesses of the lower and upper coating films is exactly the same as that of the battery prepared in Example 2.

【0047】以上のように作成した実施例10〜12の
電池、および比較例13〜15の電池、並びに実施例3
の電池それぞれにつき、室温環境下で第1サイクルとし
て40mAの定電流で4.1Vまで充電した後、400
mAの定電流で電池電圧が2.8Vになるまで放電して
初期放電容量(mAh)を測定した。
The batteries of Examples 10 to 12, the batteries of Comparative Examples 13 to 15, and the Example 3 prepared as described above.
After charging each battery to 4.1 V at a constant current of 40 mA in a room temperature environment as a first cycle,
The battery was discharged at a constant current of mA until the battery voltage reached 2.8 V, and the initial discharge capacity (mAh) was measured.

【0048】さらにその後、充放電を100サイクル繰
り返し、100サイクル目の放電容量(mAh)を調べ
た。また、100サイクル目の放電容量を初期放電容量
で除し、充放電サイクル維持率を求めた。以上の結果を
表4に示す。
Thereafter, the charge and discharge were repeated 100 cycles, and the discharge capacity (mAh) at the 100th cycle was examined. Further, the discharge capacity at the 100th cycle was divided by the initial discharge capacity to determine a charge / discharge cycle retention rate. Table 4 shows the above results.

【0049】[0049]

【表4】 [Table 4]

【0050】各表2〜4に示されるように、実施例1並
びに実施例4〜6の電池の場合、また実施例2並びに実
施例7〜9の電池の場合、更に実施例3並びに実施例1
0〜12の電池の場合、即ち塗膜全体の厚さに対する下
層塗膜の割合が10%〜60%の範囲にあると、高い初
期放電容量および充放電サイクル維持率が得られること
がわかる。
As shown in Tables 2 to 4, the batteries of Examples 1 and 4 to 6, the batteries of Examples 2 and 7 to 9, the batteries of Examples 3 and 9, 1
In the case of batteries 0 to 12, that is, when the ratio of the lower coating film to the total thickness of the coating film is in the range of 10% to 60%, a high initial discharge capacity and a high charge / discharge cycle retention ratio can be obtained.

【0051】また、比較例7,10,12の場合には、
下層塗膜の厚さが薄すぎて集電体との接着性を充分に確
保できないため塗膜が剥がれ落ちて充分な充放電サイク
ル維持率を得ることができないと考えられる。
In the case of Comparative Examples 7, 10, and 12,
It is considered that the thickness of the lower layer coating film is too thin to ensure sufficient adhesion to the current collector, so that the coating film is peeled off and a sufficient charge / discharge cycle maintenance ratio cannot be obtained.

【0052】また、比較例8〜9,比較例11〜12,
比較例14〜15の場合には、下層塗膜が厚すぎて結着
剤の含有率の高い部分が多くなるため、電極反応が阻害
されてしまい初期放電容量が他の例に比べて低くなって
しまうと考えられる。
Further, Comparative Examples 8 to 9, Comparative Examples 11 to 12,
In the case of Comparative Examples 14 and 15, the lower layer coating film is too thick and the content of the binder is high, so that the electrode reaction is hindered and the initial discharge capacity is lower than in other examples. It is thought to be.

【0053】[他の結着剤について]ところで、以上に
説明した実施例および比較例においては結着剤としてP
VDFを用いた。結着剤としてポリテトラフルオロエチ
レン(PTFE)、ポリアクリル酸、ポリビニルアルコ
ール、カルボキシメチルセルロース、ジアセチルセルロ
ース、ヒドロキシジプロピルセルロース、SBR、EP
DM、スルホン化EPDM、フッ素ゴム、ポリブタジエ
ン、ポリエチレンオキサイド等を用いた場合もPVDF
を用いた場合と同様な結果が得られた。
[Other Binders] By the way, in Examples and Comparative Examples described above, P was used as a binder.
VDF was used. Polytetrafluoroethylene (PTFE), polyacrylic acid, polyvinyl alcohol, carboxymethyl cellulose, diacetyl cellulose, hydroxydipropyl cellulose, SBR, EP as a binder
When using DM, sulfonated EPDM, fluoro rubber, polybutadiene, polyethylene oxide, etc.
The same result as in the case of using was obtained.

【0054】[0054]

【発明の効果】負極合剤の炭素成分に、鱗片状黒鉛
(A)とこの鱗片状黒鉛(A)に比べて平均粒径が小さ
い炭素材料(B)とを用いて、負極集電体上に2層に分
けて塗膜し、負極集電体に隣接する下層塗膜中には粒径
の小さな炭素材料(B)を多く含ませて、その分だけ粒
径の大きい鱗片状黒鉛を少なくしてこれらを偏在させる
ようにすると、下層塗膜中の結着剤の量が多くなって負
極集電体との接着性が向上するだけでなく、粒子同士が
強固に結着され、しかも粒径の小さな炭素材料(B)が
多く含有されることによって充放電の際の下層塗膜の膨
張収縮量が小さくなり、これによる歪みが軽減されて負
極集電体から剥がれ難くなる。従って、鱗片状黒鉛
(A)と炭素材料(B)と結着剤(C)とを偏在させず
に均等に混練した負極合剤を1層で塗膜する場合に比較
して、負極集電体上に負極合剤を厚く塗膜することがで
き、もって負極の炭素量を増大して充放電サイクル特性
の向上が図れる。
According to the present invention, flaky graphite (A) and a carbon material (B) having an average particle diameter smaller than that of the flaky graphite (A) are used as the carbon component of the negative electrode mixture. The lower coating film adjacent to the negative electrode current collector contains a large amount of the carbon material (B) having a small particle size, and the scale-like graphite having a large particle size is reduced by that much. When these are unevenly distributed, not only the amount of the binder in the lower layer coating film is increased and the adhesiveness with the negative electrode current collector is improved, but also the particles are firmly bound to each other, and By containing a large amount of the carbon material (B) having a small diameter, the amount of expansion and contraction of the lower coating film during charging and discharging is reduced, and the resulting distortion is reduced, making it difficult for the negative electrode current collector to peel off. Therefore, as compared with a case where a negative electrode mixture in which the flaky graphite (A), the carbon material (B), and the binder (C) are uniformly kneaded without uneven distribution is coated in one layer, the negative electrode current collection is performed. The negative electrode mixture can be coated thickly on the body, so that the amount of carbon in the negative electrode can be increased to improve the charge / discharge cycle characteristics.

【0055】また、下層塗膜に含まれる前記炭素材料
(B)の重量の下層塗膜全体の重量に対する比が、塗布
された負極合剤全体に含まれる炭素材料(B)の重量の
負極合剤全体の重量に対する比に対して119%以上1
68%以下となるようにすれば、結着剤が電極の電気化
学的特性に影響を与えることなく充放電サイクル特性の
良いリチウムイオン二次電池とすることができる。
The ratio of the weight of the carbon material (B) contained in the lower coating film to the total weight of the lower coating film is determined by the ratio of the weight of the carbon material (B) contained in the entire coated negative electrode mixture to the negative electrode coating. 119% or more 1 based on the weight of the whole agent
When the content is 68% or less, a lithium ion secondary battery having good charge / discharge cycle characteristics can be obtained without the binder affecting the electrochemical characteristics of the electrode.

【0056】さらにまた、下層塗膜の厚さが、上層塗膜
および下層塗膜を合わせた塗膜全体の厚さに対して10
%以上60%以下の厚さとすれば、集電体との接着性を
充分に確保できずに塗膜が剥がれ落ちてしまうことな
く、また、結着剤によって電極反応が阻害されてしまう
ようなこともない、充放電サイクル特性の良いリチウム
イオン二次電池を提供することができる。
Further, the thickness of the lower layer coating film is 10% of the total thickness of the upper layer coating film and the lower layer coating film combined.
% To 60% or less, the adhesion to the current collector cannot be sufficiently ensured, the coating film does not peel off, and the electrode reaction is inhibited by the binder. It is possible to provide a lithium ion secondary battery having good charge-discharge cycle characteristics without any problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によるリチウムイオン二次電
池の縦断面を示す図である。
FIG. 1 is a view showing a longitudinal section of a lithium ion secondary battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極シート 2 負極シート 3 セパレータ 4 正極リード 5 負極リード 6 封口板 7 正極端子板 8 絶縁底板 9 絶縁ガスケット 10 安全弁 11 ケース REFERENCE SIGNS LIST 1 positive electrode sheet 2 negative electrode sheet 3 separator 4 positive electrode lead 5 negative electrode lead 6 sealing plate 7 positive electrode terminal plate 8 insulating bottom plate 9 insulating gasket 10 safety valve 11 case

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極集電体に負極合剤を塗膜してなる負
極と、正極集電体に正極合剤を塗膜してなる正極とを有
するリチウムイオン二次電池において、 前記負極合剤は鱗片状黒鉛(A)と、前記鱗片状黒鉛
(A)に比べて平均粒径が小さい炭素材料(B)と、結
着剤(C)とを配合してなり、前記負極合剤は上層塗膜
と下層塗膜との2層に分けて負極集電体に塗膜し、前記
下層塗膜における炭素材料(B)の重量含有率を、前記
上層塗膜および前記下層塗膜を合わせた塗膜全体におけ
る炭素材料(B)の重量含有率よりも大きくしたことを
特徴とするリチウムイオン二次電池。
1. A lithium ion secondary battery comprising: a negative electrode formed by coating a negative electrode current collector with a negative electrode mixture; and a positive electrode formed by coating a positive electrode current collector with a positive electrode mixture. The agent comprises flaky graphite (A), a carbon material (B) having an average particle size smaller than that of the flaky graphite (A), and a binder (C). The negative electrode current collector is divided into two layers, an upper layer coating film and a lower layer coating film, and the weight content of the carbon material (B) in the lower layer coating film is determined by combining the upper layer coating film and the lower layer coating film. A lithium ion secondary battery characterized in that the weight content of the carbon material (B) in the entire coating film is larger than the weight content.
【請求項2】 前記下層塗膜における炭素材料(B)の
重量含有率が、前記上層塗膜および前記下層塗膜を合わ
せた塗膜全体における炭素材料(B)の重量含有率の1
19%以上168%以下であることを特徴とする請求項
1に記載のリチウムイオン二次電池。
2. The weight content of the carbon material (B) in the lower coating film is 1% of the weight content of the carbon material (B) in the entire coating film including the upper coating film and the lower coating film.
The lithium ion secondary battery according to claim 1, wherein the content is 19% or more and 168% or less.
【請求項3】 前記下層塗膜の厚さが、上層塗膜および
下層塗膜を合わせた塗膜全体の厚さに対して10%以上
60%以下の厚さであることを特徴とする請求項1に記
載のリチウムイオン二次電池。
3. The method according to claim 1, wherein the thickness of the lower coating film is 10% to 60% of the total thickness of the coating film including the upper coating film and the lower coating film. Item 7. The lithium ion secondary battery according to Item 1.
JP9288765A 1997-10-21 1997-10-21 Lithium ion secondary battery Pending JPH11126600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9288765A JPH11126600A (en) 1997-10-21 1997-10-21 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9288765A JPH11126600A (en) 1997-10-21 1997-10-21 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH11126600A true JPH11126600A (en) 1999-05-11

Family

ID=17734429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9288765A Pending JPH11126600A (en) 1997-10-21 1997-10-21 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH11126600A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2008251249A (en) * 2007-03-29 2008-10-16 Tdk Corp Anode and lithium ion secondary battery
JP2008258055A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Secondary battery and vehicle
WO2008155885A1 (en) * 2007-06-18 2008-12-24 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for producing electrode for nonaqueous electrolyte secondary battery
WO2011142083A1 (en) * 2010-05-12 2011-11-17 株式会社豊田自動織機 Electrode for lithium ion secondary battery and method for producing same
WO2012001814A1 (en) * 2010-07-02 2012-01-05 トヨタ自動車株式会社 Lithium secondary battery
US8216718B2 (en) 2007-03-29 2012-07-10 Tdk Corporation Anode and lithium-ion secondary battery
WO2013088929A1 (en) * 2011-12-16 2013-06-20 日本電気株式会社 Secondary battery
WO2019167613A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251249A (en) * 2007-03-29 2008-10-16 Tdk Corp Anode and lithium ion secondary battery
JP4665930B2 (en) * 2007-03-29 2011-04-06 Tdk株式会社 Anode and lithium ion secondary battery
US8034483B2 (en) 2007-03-29 2011-10-11 Tdk Corporation Anode and lithium-ion secondary battery
US8216718B2 (en) 2007-03-29 2012-07-10 Tdk Corporation Anode and lithium-ion secondary battery
JP4513822B2 (en) * 2007-03-30 2010-07-28 Tdk株式会社 Electrode and electrochemical device
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2008258055A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Secondary battery and vehicle
US8124278B2 (en) * 2007-06-18 2012-02-28 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing electrode of nonaqueous electrolyte secondary battery
WO2008155885A1 (en) * 2007-06-18 2008-12-24 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for producing electrode for nonaqueous electrolyte secondary battery
JP5403153B2 (en) * 2010-05-12 2014-01-29 株式会社豊田自動織機 ELECTRODE FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
WO2011142083A1 (en) * 2010-05-12 2011-11-17 株式会社豊田自動織機 Electrode for lithium ion secondary battery and method for producing same
US9263730B2 (en) 2010-05-12 2016-02-16 Kabushiki Kaisha Toyota Jidoshokki Electrode for lithium-ion secondary battery and manufacturing process for the same
WO2012001814A1 (en) * 2010-07-02 2012-01-05 トヨタ自動車株式会社 Lithium secondary battery
WO2013088929A1 (en) * 2011-12-16 2013-06-20 日本電気株式会社 Secondary battery
US9570747B2 (en) 2011-12-16 2017-02-14 Nec Corporation Secondary battery
WO2019167613A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP7254875B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
WO2006112243A1 (en) Rectangular lithium secondary battery
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
JP2003242964A (en) Non-aqueous electrolyte secondary battery
CN212907803U (en) Lithium ion battery with high-rate charge and discharge
CN113451586A (en) Electrode plate of secondary battery, secondary battery and preparation method of secondary battery
US6346343B1 (en) Secondary lithium battery comprising lithium deposited on negative electrode material
JP2000011991A (en) Organic electrolyte secondary battery
KR101613285B1 (en) Composite electrode comprising different electrode active material and electrode assembly
JPH11283623A (en) Lithium ion battery and its manufacture
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
JPH1145720A (en) Lithium secondary battery
JP2006024392A (en) Charging method of lithium-ion secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
CN111725555B (en) Lithium ion secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2002134101A (en) Method of producing positive electrode plate for lithium secondary battery
JP2003151559A (en) Organic electrolyte battery
KR20000075095A (en) A positive electrode for a lithium secondary battery, a method of preparing the same, and a lithium secondary battery using the same
JP2005032688A (en) Non-aqueous electrolyte secondary battery
JP2002110145A (en) Nonaqueous secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
WO2021192453A1 (en) Negative electrode material for lithium ion secondary batteries
US20220059844A1 (en) Electrode for Secondary Battery and Method for Preparing the Same