JPH07105935A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH07105935A
JPH07105935A JP5251604A JP25160493A JPH07105935A JP H07105935 A JPH07105935 A JP H07105935A JP 5251604 A JP5251604 A JP 5251604A JP 25160493 A JP25160493 A JP 25160493A JP H07105935 A JPH07105935 A JP H07105935A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
secondary battery
battery
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5251604A
Other languages
Japanese (ja)
Inventor
Tomokichi Yonehara
倫吉 米原
Junichi Yamaura
純一 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5251604A priority Critical patent/JPH07105935A/en
Publication of JPH07105935A publication Critical patent/JPH07105935A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a non-aqueous electrolyte secondary battery which secures a discharge capacity equal to at a low load discharging even though the battery goes in high load and/or low temp. discharging, and which presents a small deterioration in the capacity even in the course of iterative charging and discharging. CONSTITUTION:A secondary battery is formed cylindrical and composed of an assembly of spiral electrode plates and an electrolytic solution which is accommodated in a battery case, wherein the electrode assembly is prepared from a band-shaped positive electrode plate and negative electrode plate which are wound round while a separator made from a porous material is interposed. The negative electrode plate consists of a band-shaped plate prepared by laying a black mix layer upon a metal foil as a core for electricity collection, wherein the black mix consists of graphite powder having a real specific gravity of 1.8g/cc or more and a binder and has a density of 1.5g/cc or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
特にLiCoO2を正極活物質として用い、負極に炭素
質材料を用いた非水電解液二次電池の特性改良に関する
ものである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, the present invention relates to improving the characteristics of a non-aqueous electrolyte secondary battery using LiCoO 2 as a positive electrode active material and a carbonaceous material for a negative electrode.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高まっている。このような点で、非水系二次電
池、特にリチウム二次電池はとりわけ高電圧・高エネル
ギー密度を有する電池として期待が大きい。
2. Description of the Related Art In recent years, portable electronic devices and cordless electronic devices have been rapidly developed, and there has been an increasing demand for small and lightweight secondary batteries having high energy density as power sources for driving these electronic devices. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, are highly expected as batteries having high voltage and high energy density.

【0003】特に最近、LiCoO2を正極活物質と
し、負極に炭素質材料を用いた電池系が、高エネルギー
密度を持ったリチウム二次電池として注目を集めてい
る。この電池系の特徴は、電池電圧が高い(LiCoO
2がLiに対して4Vの高電圧を有するため)ことと、
正、負極ともに活物質のインターカレーション、デイン
ターカレーション反応を利用しているところにある。特
に、負極に金属Liを用いていないので、デンドライト
状Liの析出による短絡等を生じることがなく、安全性
が高まり、急速充電も期待できるものである。
In particular, a battery system using LiCoO 2 as a positive electrode active material and a carbonaceous material for a negative electrode has recently attracted attention as a lithium secondary battery having a high energy density. The feature of this battery system is that the battery voltage is high (LiCoO 2
2 has a high voltage of 4 V against Li), and
Both the positive and negative electrodes utilize the intercalation and deintercalation reactions of the active material. In particular, since metal Li is not used for the negative electrode, a short circuit or the like due to the deposition of dendrite-like Li does not occur, the safety is enhanced, and rapid charging can be expected.

【0004】[0004]

【発明が解決しようとする課題】一般に、この種の二次
電池には基本的に高出力で高容量、かつ長寿命であるこ
とが要望されている。特に、カムコーダー等の消費電力
の大きい機器の場合、低負荷で使用する場合のみなら
ず、高負荷での使用時および低温での使用時の容量確保
が非常に重要となる。
Generally, it is basically required for this type of secondary battery to have high output, high capacity and long life. In particular, in the case of a device with high power consumption such as a camcorder, it is very important to secure the capacity not only when used under a low load, but also when used under a high load and at a low temperature.

【0005】しかし、電池を構成するにあたり、一定容
積の電池ケース内に極板群を収納するには、容量を確保
するため負極の炭素質材料を多く充填すると、合剤の密
度が大きくなる。しかし、合剤の密度が大きくなると、
高負荷放電および低温放電時の容量が低負荷放電時の容
量に対して低下してしまう。このため、この負極合剤の
密度を最適化することが高負荷放電および低温放電時に
おける容量確保に必要となる。
However, in constructing a battery, in order to store the electrode plate group in a battery case having a constant volume, if the carbonaceous material of the negative electrode is filled with a large amount in order to secure the capacity, the density of the mixture becomes large. However, when the density of the mixture increases,
The capacity during high-load discharge and low-temperature discharge becomes lower than the capacity during low-load discharge. Therefore, it is necessary to optimize the density of this negative electrode mixture in order to secure the capacity during high load discharge and low temperature discharge.

【0006】本発明は、このような問題点を解決するも
ので、高負荷放電および低温放電時でも低負荷放電時と
同等の放電容量が確保ができ、さらにサイクル寿命特性
にも優れた非水電解液二次電池を提供することを目的と
する。
The present invention solves such a problem and is capable of ensuring a discharge capacity equivalent to that at the time of low load discharge even at the time of high load discharge and low temperature discharge, and is also excellent in cycle life characteristics. An object is to provide an electrolytic solution secondary battery.

【0007】[0007]

【課題を解決するための手段】これらの課題を解決する
ために本発明の非水電解液二次電池は、LixCoO2
LixNiO2等のLi含有複合酸化物からなる正極活物
質を備えた帯状の正極板および炭素質材料を備え帯状に
形成した負極板を多孔質材料からなるセパレータを介し
て巻回した渦巻状極板群と、電解液と電池ケース内に収
納され、この負極板は炭素質材料である真比重1.8g
/cc以上の黒鉛粉末と、スチレンブタジエンラバー
(SBR)等の結着剤からなる負極合剤層を集電芯材の
金属箔上に形成した帯状の極板であって、負極合剤の密
度を1.5g/cc以下としたものである。
In order to solve these problems, the non-aqueous electrolyte secondary battery of the present invention comprises Li x CoO 2 ,
A swirl shape in which a strip-shaped positive electrode plate provided with a positive electrode active material made of a Li-containing composite oxide such as Li x NiO 2 and a strip-shaped negative electrode plate provided with a carbonaceous material are wound around a separator made of a porous material. The negative electrode plate, which is housed in the electrode plate group, the electrolytic solution, and the battery case, has a true specific gravity of 1.8 g, which is a carbonaceous material.
A strip-shaped electrode plate, in which a negative electrode mixture layer composed of a graphite powder of / cc or more and a binder such as styrene-butadiene rubber (SBR) is formed on a metal foil of a current collector core. Is 1.5 g / cc or less.

【0008】[0008]

【作用】LixCoO2、LixNiO2等のLi含有複合
酸化物からなる正極と、真比重1.8g/cc以上の黒
鉛粉末からなる負極と、有機電解質からなるリチウム二
次電池を充放電するとき、負極合剤の密度が大きい場
合、合剤の多孔度は低下し、電解液との濡れ性が不充分
となり、活物質と電解液の接触面積が小さくなる。この
ため、高負荷放電および低温放電時には負極の分極が大
きくなり、低負荷放電時に対する容量維持率が低下す
る。また、サイクル寿命特性においても、炭素質材料が
リチウムを吸蔵すると膨張し、放出すると収縮する性質
を持つことから、充放電サイクルをくり返すことにより
極板が膨張収縮するが、合剤密度が大きい場合、多孔度
が小さく、電解液との濡れ性が不十分なため、極板内か
ら電解液が失われていき、電解液と活物質の接触面積、
つまり有効反応面積が減少していくためサイクル特性が
劣化する。
A positive electrode made of a Li-containing composite oxide such as Li x CoO 2 or Li x NiO 2, a negative electrode made of graphite powder having a true specific gravity of 1.8 g / cc or more, and a lithium secondary battery made of an organic electrolyte are charged. When discharging, if the density of the negative electrode mixture is high, the porosity of the mixture is reduced, the wettability with the electrolytic solution becomes insufficient, and the contact area between the active material and the electrolytic solution becomes small. For this reason, the polarization of the negative electrode is increased during high load discharge and low temperature discharge, and the capacity retention ratio during low load discharge is reduced. Also in terms of cycle life characteristics, the carbonaceous material expands when it occludes lithium and contracts when it releases lithium, so the electrode plate expands and contracts by repeating charge and discharge cycles, but the mixture density is high. In this case, since the porosity is small and the wettability with the electrolytic solution is insufficient, the electrolytic solution is lost from inside the electrode plate, the contact area between the electrolytic solution and the active material,
In other words, the effective reaction area decreases and the cycle characteristics deteriorate.

【0009】このことから、負極合剤の密度を最適化
し、1.5g/cc以下とすることにより、合剤の多孔
度を確保して活物質と電解液との接触面積を大きくする
ことができ、高負荷放電および低温放電時の負極の分極
を小さくし、低負荷放電時に対する容量維持率を確保す
ることができる。また、サイクル寿命特性も向上するこ
とができる。
From this, by optimizing the density of the negative electrode mixture to 1.5 g / cc or less, the porosity of the mixture can be secured and the contact area between the active material and the electrolytic solution can be increased. It is possible to reduce the polarization of the negative electrode during high load discharge and low temperature discharge, and ensure the capacity retention ratio during low load discharge. In addition, cycle life characteristics can also be improved.

【0010】ただし、負極合剤の密度を低くしていく場
合は、高負荷放電特性およびサイクル寿命特性に劣化は
みられないが、電池ケース内における炭素質材料の充填
量が減少するために体積エネルギー密度の面で不利とな
るので、負極合剤の密度を低下させる場合は、炭素質材
料の充填量と電池の体積エネルギー密度とのバランスを
考慮して負極合剤の密度を決定する必要がある。
However, when the density of the negative electrode mixture is decreased, the high load discharge characteristics and the cycle life characteristics are not deteriorated, but the volume of the carbonaceous material in the battery case is reduced, so that the volume is decreased. Since it is disadvantageous in terms of energy density, when lowering the density of the negative electrode mixture, it is necessary to determine the density of the negative electrode mixture in consideration of the balance between the filling amount of the carbonaceous material and the volumetric energy density of the battery. is there.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】(実施例1)図1に本発明の実施例に用い
た円筒型電池の縦断面図を示す。図1において、正極板
1は活物質であるLiCoO2に導電材として炭素粉末
を、結着剤としてポリ四フッ化エチレン樹脂ディスパー
ジョンを混合し、さらに増粘剤としてカルボキシメチル
セルロース(以下CMCという)水溶液を混合したもの
を集電芯材である金属箔上に塗着して正極合剤層を形成
し、乾燥後圧延して所定の厚みに調整し、所定寸法に切
断したものである。これには正極リード2がスポット溶
接されている。負極板3は真比重1.8g/cc以上の
ピッチ系黒鉛(本実施例では球状黒鉛を用いた)に結着
剤としてスチレンブタジエンラバー(以下SBRとい
う)の水溶性ディスパージョンを混合し、さらに増粘剤
としてCMC水溶液を混合し、以下は前記正極板と同様
の方法で作成した。これには負極リード4がスポット溶
接されている。なお、金属箔の形態としては開口部を有
しているもの、あるいは開口部のないものいずれでもよ
い。また、結着剤としては合剤層の強度、化学的安定性
の面で最も本電池系に適していることを確認しているS
BRの水溶性ディスパージョンを用いた。次に、これら
正、負極板の間にポリプロピレン製セパレータ5を配
し、全体を渦巻状に巻回して極板群を構成した。この極
板群の上下にそれぞれ上部絶縁板6、下部絶縁板7を配
して電池ケース8に挿入後、所定量の電解液を注入し、
ポリプロピレン製のガスケット9を介して組み立て封口
板10でケース8を密封して完成電池とした。なお、電
解液には、1.5モルの6フッ化リン酸リチウムを炭酸
エチレンと炭酸ジエチルとプロピル酸メチルとの混合溶
媒中に溶かしたものを用いた。この電池は試作直後は放
電状態にあり、充電から開始する。
(Embodiment 1) FIG. 1 shows a vertical sectional view of a cylindrical battery used in an embodiment of the present invention. In FIG. 1, the positive electrode plate 1 is a mixture of LiCoO 2 as an active material with carbon powder as a conductive material, polytetrafluoroethylene resin dispersion as a binder, and carboxymethyl cellulose (hereinafter referred to as CMC) as a thickener. A mixture of an aqueous solution is applied onto a metal foil which is a current collector core to form a positive electrode mixture layer, which is dried, rolled and adjusted to a predetermined thickness, and cut into a predetermined size. The positive electrode lead 2 is spot-welded to this. In the negative electrode plate 3, pitch-based graphite having a true specific gravity of 1.8 g / cc or more (spheroidal graphite was used in this example) was mixed with a water-soluble dispersion of styrene-butadiene rubber (hereinafter referred to as SBR) as a binder, and An aqueous CMC solution was mixed as a thickener, and the following was prepared in the same manner as in the positive electrode plate. The negative electrode lead 4 is spot-welded to this. The metal foil may have an opening or may have no opening. In addition, it has been confirmed that the binder layer is most suitable for the battery system in terms of strength and chemical stability of the mixture layer.
A water soluble dispersion of BR was used. Next, the polypropylene separator 5 was placed between the positive and negative plates, and the whole was spirally wound to form an electrode plate group. An upper insulating plate 6 and a lower insulating plate 7 are arranged above and below this electrode plate group, respectively, and after being inserted into a battery case 8, a predetermined amount of electrolytic solution is injected,
The case 8 was sealed with the assembly sealing plate 10 through the polypropylene gasket 9 to complete the battery. As the electrolytic solution, a solution prepared by dissolving 1.5 mol of lithium hexafluorophosphate in a mixed solvent of ethylene carbonate, diethyl carbonate and methyl propylate was used. This battery is in a discharged state immediately after trial manufacture, and starts from charging.

【0013】負極合剤の密度は、金属箔上に塗着して負
極合剤層を形成し、乾燥後、そのままあるいは圧延して
所定の厚みに調整し、この極板を所定寸法に切断後重量
を測定し、芯材分の重量を差し引いた後、合剤層部分の
体積で割ったものである。すなわち、負極合剤の密度は
塗着後の圧延度合いで調整することができる。
The density of the negative electrode mixture is applied to a metal foil to form a negative electrode mixture layer, dried, and then dried or rolled to a predetermined thickness, and the electrode plate is cut into a predetermined size. The weight is measured, the weight of the core material is subtracted, and then the weight is divided by the volume of the mixture layer portion. That is, the density of the negative electrode mixture can be adjusted by the degree of rolling after coating.

【0014】上記の方法により、正極を共通とし、負極
合剤の密度を表1に示す1.0g/cc〜1.8g/c
cとして電池A〜Dを作製し、電池特性の評価を行っ
た。評価試験の条件は、充電電流0.2C、終止電圧
4.1Vの定電流充電、放電終止電圧3.0Vの定電流
放電とし、各電池の20℃での放電レート特性および放
電レート1.0Cでの低温度特性の評価を行った。
According to the above method, the positive electrode is commonly used, and the density of the negative electrode mixture is 1.0 g / cc to 1.8 g / c shown in Table 1.
The batteries A to D were prepared as c, and the battery characteristics were evaluated. The conditions of the evaluation test were a charging current of 0.2 C, a constant current charge of a cutoff voltage of 4.1 V, and a constant current discharge of a discharge cutoff voltage of 3.0 V. The low temperature characteristics were evaluated.

【0015】[0015]

【表1】 [Table 1]

【0016】図2に20℃、0.2C放電容量を100
%とした場合の20℃、1.0Cでの放電挙動を、図3
に図2と同様の条件の2.0Cでの放電挙動をそれぞれ
示す。この結果から、20℃においては1.0Cまでの
放電レートでは負極合剤の密度による放電容量の変化は
見られないが、2.0Cの放電レートでは負極合剤の密
度が1.5g/cc以上になると容量劣化が大きいこと
がわかった。
FIG. 2 shows a discharge capacity of 100 at 0.2 ° C. and 0.2 C.
Fig. 3 shows the discharge behavior at 20 ° C and 1.0C in%.
2 shows the discharge behavior at 2.0 C under the same conditions as in FIG. From this result, at 20 ° C., no change in the discharge capacity due to the density of the negative electrode mixture was observed at a discharge rate up to 1.0 C, but at a discharge rate of 2.0 C, the density of the negative electrode mixture was 1.5 g / cc. It has been found that the capacity deterioration is large in the above cases.

【0017】図4に20℃、1.0C放電容量を100
%とした場合の−10℃、1.0Cでの放電挙動を示
す。この結果から、放電レート1.0Cにおいては−1
0℃では負極合剤の密度が1.5g/cc以上になると
容量劣化が大きいことがわかった。容量劣化の大きい負
極合剤の密度が1.5g/cc以上の電池を分解し、観
察すると、負極板に電解液が十分含浸されていないこと
がわかった。
In FIG. 4, a discharge capacity of 1.0 C at 20 ° C. is 100
The discharge behavior at −10 ° C. and 1.0 C is shown when it is defined as%. From this result, at a discharge rate of 1.0 C, -1
It was found that at 0 ° C., the capacity deterioration was large when the density of the negative electrode mixture was 1.5 g / cc or more. When a battery in which the density of the negative electrode mixture with large capacity deterioration was 1.5 g / cc or more was disassembled and observed, it was found that the negative electrode plate was not sufficiently impregnated with the electrolytic solution.

【0018】これより、負極合剤の密度が1.5g/c
c以上になると、合剤の多孔度が下がり、電解液との濡
れ性が低下するために、特に高負荷放電および低温放電
時の分極が大きくなって高負荷放電特性および低温放電
特性が悪化することがわかった。
From this, the density of the negative electrode mixture was 1.5 g / c.
When it is more than c, the porosity of the mixture is lowered and the wettability with the electrolytic solution is lowered, so that the polarization is increased particularly at the time of high load discharge and low temperature discharge, and the high load discharge characteristic and the low temperature discharge characteristic are deteriorated. I understood it.

【0019】なお、負極の炭素質材料の黒鉛に、真比重
1.8g/cc以下のものを用いた場合は、合剤層がか
さ高くなるため、炭素質材料の充填量の面から本電池系
には不適当である。
When graphite having a true specific gravity of 1.8 g / cc or less is used as the carbonaceous material of the negative electrode, the mixture layer becomes bulky, so that the amount of the carbonaceous material filled in the present battery is increased. Not suitable for the system.

【0020】また、集電芯材について数種検討を行った
が、電気抵抗、電気化学的安定性、および加工性の面で
銅箔が最も本電池系に適していた。
Several studies were conducted on the collector core material, and copper foil was most suitable for this battery system in terms of electrical resistance, electrochemical stability, and workability.

【0021】以上のように本実施例によれば真比重1.
8g/cc以上の黒鉛粉末を負極活物質として用い、負
極合剤の密度を1.5g/cc以下とすると高負荷放電
特性および低温放電特性を向上させることができる。
As described above, according to this embodiment, the true specific gravity is 1.
When graphite powder of 8 g / cc or more is used as the negative electrode active material and the density of the negative electrode mixture is 1.5 g / cc or less, high load discharge characteristics and low temperature discharge characteristics can be improved.

【0022】(実施例2)実施例1と同様に負極合剤の
密度を表1に示す1.0g/cc〜1.8g/ccとし
て電池A〜Dを作製し、電池のサイクル寿命特性を測定
した。サイクル寿命特性の試験条件は、充電電流0.2
C、終止電圧4.1Vの定電流充電、放電電流1.0
C、終止電圧3.0Vの定電圧放電とし、20℃で充放
電を繰り返した。
(Example 2) As in Example 1, batteries A to D were produced with the density of the negative electrode mixture being 1.0 g / cc to 1.8 g / cc shown in Table 1, and the cycle life characteristics of the batteries were determined. It was measured. The test condition for cycle life characteristics is a charging current of 0.2.
C, constant current charge with final voltage 4.1V, discharge current 1.0
C, constant voltage discharge having a final voltage of 3.0 V was performed, and charging / discharging was repeated at 20 ° C.

【0023】図5に10サイクル目容量を100%とし
た場合の、サイクル数に対する容量変化を示す。この結
果から、負極合剤の密度が1.5g/cc以上の電池の
サイクル寿命特性が悪くなることがわかった。これら負
極合剤の密度が1.5g/cc以上の電池を分解して、
観察すると、負極板中の電解液の枯れが見られた。これ
より、負極合剤の密度が1.5g/cc以上になると、
充放電サイクルをくり返すうちに極板の膨張、収縮によ
って極板中の電解液が追い出されてしまい、電解液との
濡れ性の悪さから追い出された電解液が極板中に戻りに
くいため、充放電サイクルをくり返すうちに極板中の電
解液が失われ、有効反応面積が減少していき、容量劣化
を起こすことがわかった。逆に負極合剤の密度がこれよ
り低い場合にも、極板の膨張、収縮が起こり、電解液が
極板中から追い出されるが、電解液との濡れ性が良いこ
とで電解液が容易に極板中に戻ることができるので、極
板中に安定して電解液が存在することができるため充放
電サイクルによる容量劣化が抑えられる。
FIG. 5 shows the change in capacity with respect to the number of cycles when the capacity at the 10th cycle is 100%. From this result, it was found that the cycle life characteristics of the battery in which the density of the negative electrode mixture was 1.5 g / cc or more was deteriorated. Disassemble a battery in which the density of the negative electrode mixture is 1.5 g / cc or more,
Upon observation, the electrolyte solution in the negative electrode plate was found dead. From this, when the density of the negative electrode mixture becomes 1.5 g / cc or more,
The electrolyte in the electrode plate is expelled due to expansion and contraction of the electrode plate during repeated charge and discharge cycles, and the electrolyte solution that has been expelled due to poor wettability with the electrolytic solution does not easily return to the electrode plate. It was found that as the charge and discharge cycle was repeated, the electrolytic solution in the electrode plate was lost, the effective reaction area decreased, and the capacity deteriorated. On the contrary, even if the density of the negative electrode mixture is lower than this, expansion and contraction of the electrode plate occur, and the electrolytic solution is expelled from the inside of the electrode plate, but because the wettability with the electrolytic solution is good, the electrolytic solution can be easily formed. Since it can return to the electrode plate, the electrolytic solution can be stably present in the electrode plate, so that capacity deterioration due to charge / discharge cycles can be suppressed.

【0024】以上のように本実施例によれば真比重1.
8g/cc以上の黒鉛粉末を負極に用い、負極合剤の密
度を1.5g/cc以下とすればサイクル寿命特性を向
上させることができる。
As described above, according to this embodiment, the true specific gravity is 1.
If graphite powder of 8 g / cc or more is used for the negative electrode and the density of the negative electrode mixture is 1.5 g / cc or less, cycle life characteristics can be improved.

【0025】[0025]

【発明の効果】以上のように本発明は、真比重1.8g
/cc以上の黒鉛粉末を負極活物質として用い、負極合
剤の密度を1.5g/cc以下とすることによって、高
負荷放電特性、低温放電特性、およびサイクル寿命特性
の優れた非水電解液二次電池を実現することができる。
As described above, the present invention has a true specific gravity of 1.8 g.
/ Cc or more of the graphite powder as the negative electrode active material, and the density of the negative electrode mixture is set to 1.5 g / cc or less, so that the nonaqueous electrolytic solution excellent in high load discharge characteristics, low temperature discharge characteristics, and cycle life characteristics A secondary battery can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】実施例1における20℃、1.0C放電での電
圧挙動を示した図
FIG. 2 is a diagram showing voltage behavior at 20 ° C. and 1.0 C discharge in Example 1.

【図3】実施例1における20℃、2.0C放電での電
圧挙動を示した図
FIG. 3 is a diagram showing voltage behavior in Example 1 at 20 ° C. and 2.0 C discharge.

【図4】実施例1における−10℃、1.0C放電での
電圧挙動を示した図
FIG. 4 is a diagram showing voltage behavior at −10 ° C. and 1.0 C discharge in Example 1.

【図5】実施例2におけるサイクル寿命特性を示した図5 is a diagram showing cycle life characteristics in Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 正極板 2 正極リード 3 負極板 4 負極リード 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 電池ケース 9 ガスケット 10 組み立て封口板 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Positive electrode lead 3 Negative electrode plate 4 Negative electrode lead 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Battery case 9 Gasket 10 Assembly sealing plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】LixCoO2、LixNiO2等のLi含有
複合酸化物からなる活物質を備えた帯状の正極板および
炭素質材料を備えた帯状の負極板を多孔質材料からなる
セパレータを介して巻回した渦巻状極板群と、電解液と
が電池ケース内に収納された非水電解液二次電池におい
て、負極板は炭素質材料である真比重1.8g/cc以
上の黒鉛粉末と結着剤とからなる負極合剤層を集電芯材
の金属箔上に形成した帯状の極板であり、上記負極合剤
の密度が1.5g/cc以下であることを特徴とする非
水電解液二次電池。
1. A separator made of a porous material, which is a strip-shaped positive electrode plate provided with an active material made of a Li-containing complex oxide such as Li x CoO 2 or Li x NiO 2 and a strip-shaped negative electrode plate provided with a carbonaceous material. In a non-aqueous electrolyte secondary battery in which a spirally wound electrode plate group wound via an electrode and an electrolyte solution are housed in a battery case, the negative electrode plate is a carbonaceous material and has a true specific gravity of 1.8 g / cc or more. A strip-shaped electrode plate in which a negative electrode mixture layer composed of graphite powder and a binder is formed on a metal foil of a current collector core, and the density of the negative electrode mixture is 1.5 g / cc or less. And a non-aqueous electrolyte secondary battery.
JP5251604A 1993-10-07 1993-10-07 Non-aqueous electrolyte secondary battery Pending JPH07105935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5251604A JPH07105935A (en) 1993-10-07 1993-10-07 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5251604A JPH07105935A (en) 1993-10-07 1993-10-07 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07105935A true JPH07105935A (en) 1995-04-21

Family

ID=17225298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5251604A Pending JPH07105935A (en) 1993-10-07 1993-10-07 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07105935A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289022A (en) * 1996-04-24 1997-11-04 Seiko Instr Kk Nonaqueous electrolyte secondary battery
WO1999008335A1 (en) * 1997-08-11 1999-02-18 Sony Corporation Nonaqueous electrolyte secondary battery
JP2000090987A (en) * 1998-09-09 2000-03-31 Matsushita Electric Ind Co Ltd Method for measuring discharging capacity of non- aqueous electrolyte secondary battery
JP2001160391A (en) * 1999-12-06 2001-06-12 Sanyo Electronic Components Co Ltd Nonaqueous electrolyte secondary battery
US6344296B1 (en) 1996-08-08 2002-02-05 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6627352B1 (en) 1996-08-22 2003-09-30 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and its negative electrode
WO2004001880A1 (en) * 2002-06-20 2003-12-31 Sony Corporation Electrode and cell comprising the same
US11502337B2 (en) 2017-11-30 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Cylindrical secondary battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289022A (en) * 1996-04-24 1997-11-04 Seiko Instr Kk Nonaqueous electrolyte secondary battery
US7700239B2 (en) 1996-08-08 2010-04-20 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8129051B2 (en) 1996-08-08 2012-03-06 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7288342B2 (en) 1996-08-08 2007-10-30 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7378191B2 (en) 1996-08-08 2008-05-27 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7335447B2 (en) 1996-08-08 2008-02-26 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6447956B2 (en) 1996-08-08 2002-09-10 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US9508980B2 (en) 1996-08-08 2016-11-29 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative
US8802297B2 (en) 1996-08-08 2014-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6953640B2 (en) 1996-08-08 2005-10-11 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8580437B2 (en) 1996-08-08 2013-11-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7947395B2 (en) 1996-08-08 2011-05-24 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6444365B2 (en) 1996-08-08 2002-09-03 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6344296B1 (en) 1996-08-08 2002-02-05 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7399553B2 (en) 1996-08-08 2008-07-15 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6627352B1 (en) 1996-08-22 2003-09-30 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and its negative electrode
WO1999008335A1 (en) * 1997-08-11 1999-02-18 Sony Corporation Nonaqueous electrolyte secondary battery
JP2000090987A (en) * 1998-09-09 2000-03-31 Matsushita Electric Ind Co Ltd Method for measuring discharging capacity of non- aqueous electrolyte secondary battery
JP2001160391A (en) * 1999-12-06 2001-06-12 Sanyo Electronic Components Co Ltd Nonaqueous electrolyte secondary battery
US7229713B2 (en) 2002-06-20 2007-06-12 Sony Corporation Electrode and battery using the same
WO2004001880A1 (en) * 2002-06-20 2003-12-31 Sony Corporation Electrode and cell comprising the same
US11502337B2 (en) 2017-11-30 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Cylindrical secondary battery

Similar Documents

Publication Publication Date Title
US20030157409A1 (en) Polymer lithium battery with ionic electrolyte
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
JPH10112318A (en) Nonaqueous electrolyte secondary battery
JPH10312811A (en) Nonaqeous electrolyte secondary battery
CN113451586A (en) Electrode plate of secondary battery, secondary battery and preparation method of secondary battery
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2000011991A (en) Organic electrolyte secondary battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
JPH11102729A (en) Manufacture of nonaqueous solvent type secondary battery
JP2005158623A (en) Nonaqueous electrolyte secondary battery
KR20140070258A (en) Cathode active material composition, and cathode and lithium secondary battery comprising the same
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP4162510B2 (en) Nonaqueous electrolyte secondary battery
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JPH11126600A (en) Lithium ion secondary battery
CN215644574U (en) Electrode plate of secondary battery and secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
CN110544797A (en) Water-containing solid electrolyte and electric energy storage equipment thereof
US11575122B2 (en) Electrode with enhanced state of charge estimation
CN110137577B (en) Lithium iron phosphate polymer lithium battery capable of realizing large-current charging and discharging
JP3329161B2 (en) Non-aqueous electrolyte secondary battery
JP3404929B2 (en) Non-aqueous electrolyte battery
JPH1154122A (en) Lithium ion secondary battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
JP2005327516A (en) Charging method of nonaqueous electrolyte secondary battery