JPH1167277A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH1167277A
JPH1167277A JP9224669A JP22466997A JPH1167277A JP H1167277 A JPH1167277 A JP H1167277A JP 9224669 A JP9224669 A JP 9224669A JP 22466997 A JP22466997 A JP 22466997A JP H1167277 A JPH1167277 A JP H1167277A
Authority
JP
Japan
Prior art keywords
easy
active material
electrolyte
positive electrode
conductive filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9224669A
Other languages
Japanese (ja)
Other versions
JP3478077B2 (en
Inventor
Kiichi Hashimoto
喜一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP22466997A priority Critical patent/JP3478077B2/en
Publication of JPH1167277A publication Critical patent/JPH1167277A/en
Application granted granted Critical
Publication of JP3478077B2 publication Critical patent/JP3478077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery with high potential, high energy density, excellent cycle characteristics by forming an adhesive layer containing a conductive filler having a particle size of the specified range and a DBP absorption of the specified ratio so as to have the dry film thickness of the specified range. SOLUTION: The mean particle size of conductive fillers is specified to 0.5 μm or less, the DBP absorption to 50 ml/100 g or less, and the dry film thickness of an adhesive layer to 0.01-5 μm. The conductive filler is preferable to be tin oxide. A positive electrode is formed by sequentially arranging an adhesive later, a positive active material containing a compound capable of absorbing/emitting lithium ions on a positive current collector. The conductive fillers having a mean particle size of 0.5 μm or less, a DBP absorption of 50 ml/100 g or less are preferably contained in the adhesive layer, and the dry film thickness of the adhesive layer is preferably 0.01-5 μm. A polymer electrolyte is preferable to be an electrolyte comprising a nonaqueous electrolyte-containing gel polymer. Thereby, the dispersion of battery performance is decreased, and cycle characteristics are increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池に存す
る。更に詳しくは、電解液に代えて(電解液を含有し
た)ポリマー電解質を用いたリチウム二次電池に存し、
高電位、高エネルギー密度でサイクル特性に優れたリチ
ウム二次電池に存する。
The present invention relates to a lithium secondary battery. More specifically, the present invention relates to a lithium secondary battery using a polymer electrolyte (containing an electrolyte) instead of the electrolyte,
High-potential, high-energy density lithium ion battery with excellent cycle characteristics.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR装置、オーデ
ィオ機器、携帯型コンピュータ、携帯電話等様々な機器
の小型化、軽量化が進んでおり、これら機器の電源とし
ての電池に対する高性能化要請が高まっている。中でも
電気自動車の動力源としての電池として高電圧、高エネ
ルギー密度で、且つ優れたサイクル特性の実現が可能な
リチウム二次電池の開発が盛んになっている。
2. Description of the Related Art In recent years, various devices such as a camera-integrated VTR device, an audio device, a portable computer, and a cellular phone have been reduced in size and weight, and there has been a demand for higher performance of a battery as a power supply for these devices. Is growing. Above all, development of lithium secondary batteries capable of achieving high voltage, high energy density and excellent cycle characteristics as batteries as power sources for electric vehicles has been active.

【0003】リチウム二次電池は、リチウムイオンを吸
蔵放出可能な正極と負極及び非水電解質液とからなり、
一般的に、リチウム二次電池における正極や負極は、ア
ルミニウム箔や銅箔の様な集電体上に正極(負極)活物
質、導電材料、及び結合剤(バインダー)、溶媒等を含
有する塗料を塗布、乾燥して製造する。しかし、金属か
ら成る集電体と結合剤から成る活物質層とのなじみが悪
く、巻き取り工程などの製造工程中で活物質層が剥離し
たり、電池容器中で電解液の浸透により活物質層中の結
合剤が膨潤して、活物質層が剥離するなどの問題が生じ
ていた。
A lithium secondary battery comprises a positive electrode capable of inserting and extracting lithium ions, a negative electrode, and a non-aqueous electrolyte solution.
Generally, a positive electrode or a negative electrode in a lithium secondary battery is a paint containing a positive electrode (negative electrode) active material, a conductive material, a binder (binder), a solvent, and the like on a current collector such as an aluminum foil or a copper foil. Is applied and dried. However, the compatibility between the current collector made of metal and the active material layer made of the binder is poor, and the active material layer peels off during the manufacturing process such as the winding process, or the active material is immersed in the battery container due to the penetration of the electrolyte in the battery container. There have been problems such as the binder in the layer swelling and the active material layer being peeled off.

【0004】この集電体と活物質層との接着性を改良す
るための手段の一般的な例として、集電体の表面を粗面
化する手法がある。表面の粗面化方法としては、機械的
研磨法、電解研磨法または化学研磨法が挙げられ、例え
ば機械的研磨法としては、研磨剤粒子を固着した研磨布
紙、砥石、エメリバフ、鋼線などを備えたワイヤ−ブラ
シなどで集電体表面を研磨する方法が知られている。
As a general example of the means for improving the adhesion between the current collector and the active material layer, there is a method of roughening the surface of the current collector. Examples of the surface roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. Examples of the mechanical polishing method include polishing cloth paper having abrasive particles fixed thereon, a grindstone, an emery buff, and a steel wire. There is known a method of polishing the surface of a current collector with a wire-brush provided with a brush.

【0005】しかし、上記の方法では電池容器中での長
時間にわたる電解液と活物質層との接触により、活物質
層の結合剤が膨潤するため、集電体と活物質層との間の
接着性を十分に保つには至っていない。さらに、粗面化
された集電体と活物質層との間の電気的接触性が不十分
かつ不均一であるので、電極内部で部分的に電気抵抗が
変化し、電池性能を十分に引き出すことができない。
[0005] However, in the above method, the binder in the active material layer swells due to the prolonged contact between the electrolyte and the active material layer in the battery container. The adhesion has not been sufficiently maintained. Furthermore, since the electrical contact between the roughened current collector and the active material layer is insufficient and non-uniform, the electrical resistance partially changes inside the electrode, and the battery performance is sufficiently brought out. Can not do.

【0006】また、集電体と活物質層との接着性を改良
する別の手段として、US5580686等には、グラ
ファイトと結合剤を主成分とする易接着層を集電体と活
物質層の間に設ける方法が記載されている。グラファイ
ト粒子が集電体表面を粗面化するとともに、導電性をも
つグラファイト粒子の介在により集電体と活物質層の電
気的接触性を改善する効果があるものの、一般に、グラ
ファイトは結合剤に対するなじみが悪く、グラファイト
を結合剤中に分散する工程は長時間を要する。また、グ
ラファイトを含有する塗料は粘性が高いため、集電体上
に薄く塗布することが困難であり、電池の体積エネルギ
ー密度の面では不利である。さらに、グラファイトは、
DBP吸油量が大きいので、分散に要する結合剤量を多
く必要とし、導電性粒子としてのグラファイトの特徴を
十分に発揮するに至っていない。このように、結合剤に
対する分散性が悪いグラファイトを使用して形成された
易接着層は、表面性が悪く、かつ塗膜が脆いという問題
点を有していた。
As another means for improving the adhesion between the current collector and the active material layer, US Pat. No. 5,580,686 discloses an easy-adhesion layer containing graphite and a binder as main components. It describes a method of providing it in between. Although the graphite particles roughen the surface of the current collector and improve the electrical contact between the current collector and the active material layer through the presence of conductive graphite particles, graphite is generally bound to the binder. The step of dispersing graphite in a binder is not easy to use and takes a long time. In addition, since the paint containing graphite has high viscosity, it is difficult to apply the paint thinly on the current collector, which is disadvantageous in terms of the volume energy density of the battery. In addition, graphite is
Since the DBP oil absorption is large, a large amount of binder is required for dispersion, and the characteristics of graphite as conductive particles have not been sufficiently exhibited. As described above, the easily-adhesive layer formed using graphite having poor dispersibility in a binder has problems that the surface property is poor and the coating film is brittle.

【0007】ところで、従来のリチウム二次電池では、
高電圧系電池の電解液として非水系の電解液が用いられ
ていた。ところが、非水系電解液を用いた電池は濾液や
発火の危険を有していることから,近年では、安全性を
向上させるために非水電解液を、例えばゲル状ポリマ−
に電解液を含有させた電解質の開発が行われている。特
にリチウム二次電池においては液体電解質を用いた際に
生ずるリチウムのデンドライト析出による内部短絡から
くる発熱、発火が問題となっており、ポリマー電解質の
適応が望まれていた。
By the way, in a conventional lithium secondary battery,
Non-aqueous electrolytes have been used as electrolytes for high-voltage batteries. However, batteries using a non-aqueous electrolyte have a risk of filtrate or ignition, and in recent years, non-aqueous electrolytes have been used to improve safety, for example, gel polymer.
An electrolyte containing an electrolytic solution has been developed. Particularly in a lithium secondary battery, heat generation and ignition resulting from an internal short circuit due to lithium dendrite deposition that occurs when a liquid electrolyte is used has become a problem, and application of a polymer electrolyte has been desired.

【0008】さらに上記のような、ゲル状ポリマー中に
電解液を含有した電解質等を含めたポリマ−電解質は、
従来のリチウム二次電池と異なりセパレータを用いずと
も、この二次電池系で使用されるセパレ−タ−の代用を
勤めることが可能となるので、ポリマー電解質を挟んで
正極と負極と接合させて用いることが出来る。この様な
ポリマーは液系に比して軽量で形状柔軟性を有するの
で、例えばシ−ト状が如き薄膜化が可能であり、軽量、
省スペースな電池が作成可能となる有利な点がある。
Further, as described above, a polymer electrolyte including an electrolyte containing an electrolytic solution in a gel polymer, etc.
Unlike a conventional lithium secondary battery, without using a separator, it is possible to substitute for a separator used in this secondary battery system, so that a positive electrode and a negative electrode can be joined with a polymer electrolyte interposed therebetween. Can be used. Since such a polymer is lighter and has a shape flexibility as compared with a liquid system, it can be formed into a thin film such as a sheet, for example.
There is an advantage that a space-saving battery can be created.

【0009】このようなポリマー電解質を用いたリチウ
ム二次電池においても、正極または負極活物質層は金属
からなる集電体上に形成されるので、正極または負極活
物質層と集電体との接着性を高め、良好な電気的接触を
得ることは必要である。しかしながら、集電体の粗面化
またはグラファイトを成分とする易接着層を設けるとい
った上記の従来の製造方法を用いても、十分な効果が得
られていない。
In such a lithium secondary battery using a polymer electrolyte, the positive electrode or negative electrode active material layer is formed on a current collector made of a metal. It is necessary to increase the adhesion and obtain good electrical contact. However, a sufficient effect has not been obtained even by using the above-described conventional manufacturing method such as roughening the current collector or providing an easy-adhesion layer containing graphite as a component.

【0010】[0010]

【発明が解決しようとする課題】上記の様に、活物質層
の集電体への接着性は、主に集電体の粗面化によって行
われており、粗面化された集電体と活物質層との間の電
気的接触性が不十分であるため、電池性能を十分に引き
出すことができず、また、電池容器中での長時間にわた
る電解液と活物質層との接触により、活物質層中の結合
剤が膨潤し、活物質層が集電体から剥離するという問題
点を有していた。一方、グラファイトを成分とする易接
着層を設ける手法では、グラファイトの分散に多量の結
合剤を必要とするため、導電剤としてのグラファイトの
特性を十分に活かせず、また、粘性が極めて高いため、
薄膜化が困難であり、塗膜の表面性も悪く脆いといった
欠点を有していた。
As described above, the adhesion of the active material layer to the current collector is mainly performed by roughening the current collector. The battery performance cannot be sufficiently brought out due to insufficient electrical contact between the active material layer and the active material layer. In addition, there has been a problem that the binder in the active material layer swells and the active material layer peels off from the current collector. On the other hand, in the method of providing an easy-adhesion layer containing graphite as a component, a large amount of a binder is required for dispersing the graphite, so that the properties of graphite as a conductive agent cannot be sufficiently utilized, and since the viscosity is extremely high,
It was difficult to form a thin film, and the coating film had poor surface properties and was brittle.

【0011】[0011]

【課題を解決するための手段】本発明は上記実状に鑑み
て為されたものであり、高電位、高エネルギー密度でサ
イクル特性に優れたリチウム二次電池を得るために鋭意
検討した結果、集電体と活物質層との間に、導電性フィ
ラーを使用した易接着層を設けることにより、集電体と
活物質層との接着性および電気的接触性の向上を計り且
つ、サイクル特性に優れ、さらに電池間のサイクル特性
と放電容量のばらつきが少ないリチウム二次電池を得ら
れることを見いだし、完成したものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and as a result of intensive studies to obtain a lithium secondary battery having a high potential, a high energy density and excellent cycle characteristics, has been developed. By providing an easy-adhesion layer using a conductive filler between the current collector and the active material layer, the adhesion and electrical contact between the current collector and the active material layer are improved, and the cycle characteristics are improved. It has been found that a lithium secondary battery that is excellent and has less variation in cycle characteristics and discharge capacity between batteries can be obtained, and has been completed.

【0012】更に詳しくは、本発明に於けるリチウム二
次電池の易接着層の導電性フィラーの平均粒子径とDB
P吸油量が、本発明の目的とする特性の改良に重要な指
標になることを見出し、この目的を達成するためには、
導電性フィラーの平均粒子径を0.5μm以下、DBP
吸油量を50ml/100g以下、さらには、易接着層
の乾燥膜厚を0.01〜5umにすることが必用である
ことを突き止めた。このように導電性フィラーの平均粒
子径を0.5μm以下、DBP吸油量を50ml/10
0g以下、さらには、易接着層の乾燥膜厚を0.01〜
5μmとすることで高電位、高エネルギー密度でサイク
ル特性を向上することができるのである。
More specifically, the average particle diameter of the conductive filler of the easy-adhesion layer of the lithium secondary battery according to the present invention and DB
It has been found that the P oil absorption is an important index for improving the properties aimed at by the present invention.
The average particle size of the conductive filler is 0.5 μm or less, DBP
It has been found that it is necessary to make the oil absorption amount 50 ml / 100 g or less, and furthermore, to make the dry film thickness of the easy-adhesion layer 0.01 to 5 μm. Thus, the average particle diameter of the conductive filler is 0.5 μm or less, and the DBP oil absorption is 50 ml / 10
0 g or less, and the dry film thickness of the easily adhesive layer is 0.01 to
By setting the thickness to 5 μm, the cycle characteristics can be improved at a high potential and a high energy density.

【0013】更に好ましくは、本発明は正極、負極及び
ポリマー電解質を備えたリチウム二次電池であって、正
極が正極集電体上に導電性フィラーを含有する易接着
層、リチウムイオンを吸蔵放出可能な化合物を含む正極
活物質層を順次設けたものであり、該易接着層の導電性
フィラーの平均粒子径が0.5μm以下、DBP吸油量
が50ml/100g以下であり、かつ、易接着層の乾
燥膜厚が0.01〜5μmであることを特徴とするリチ
ウム二次電池に存する。
More preferably, the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode and a polymer electrolyte, wherein the positive electrode has an easy-adhesion layer containing a conductive filler on a positive electrode current collector, and absorbs and releases lithium ions. A positive electrode active material layer containing a possible compound is sequentially provided, the average particle diameter of the conductive filler in the easy-adhesion layer is 0.5 μm or less, the DBP oil absorption is 50 ml / 100 g or less, and the easy-adhesion The dry thickness of the layer is 0.01 to 5 μm.

【0014】[0014]

【発明の実施の形態】本発明のリチウム二次電池は集電
体と電池活物質層との間に易接着層を設けた電極を有
し、特にはポリマー電解質を主たる構成要件とするもの
である。まず本発明のリチウム二次電池における電極に
ついて説明する。一般的に、リチウム二次電池における
正極や負極は、アルミニウム箔や銅箔の様な集電体上
に、正極(負極)活物質、導電材料、結合剤(バインダ
ー)、溶媒等を含有する塗料を塗布、乾燥して電池活物
質層を形成させて製造する。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium secondary battery of the present invention has an electrode provided with an easy-adhesion layer between a current collector and a battery active material layer, and particularly has a polymer electrolyte as a main component. is there. First, the electrodes in the lithium secondary battery of the present invention will be described. Generally, a positive electrode or a negative electrode in a lithium secondary battery is a paint containing a positive electrode (negative electrode) active material, a conductive material, a binder (binder), a solvent, etc. on a current collector such as an aluminum foil or a copper foil. Is applied and dried to form a battery active material layer.

【0015】本発明における正極に用いる活物質は、リ
チウムイオンを吸蔵放出可能な化合物が用いられ、例え
ば無機化合物としてはFe、Co、Ni、Mn、等の遷
移金属の遷移金属酸化物、リチウムと遷移金属との複合
酸化物、遷移金属硫化物等が挙げられる。具体的には、
MnO、V2 5 、V6 13、TiO2 等の遷移金属
酸化物粉末、ニッケル酸リチウム、コバルト酸リチウム
などのリチウムと遷移金属との複合酸化物粉末、TiS
2 、FeSなどの遷移金属硫化物粉末が挙げられる。有
機化合物としては、例えばポリアニリン等の導電性ポリ
マー等が挙げられる。これらの無機化合物、有機化合物
は混合して用いても良い。
As the active material used for the positive electrode in the present invention, a compound capable of inserting and extracting lithium ions is used. For example, as an inorganic compound, a transition metal oxide of a transition metal such as Fe, Co, Ni, Mn, lithium, and the like are used. Complex oxides with transition metals, transition metal sulfides, and the like can be given. In particular,
Transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 and TiO 2 ; composite oxide powders of lithium and transition metal such as lithium nickelate and lithium cobaltate; TiS
2. Transition metal sulfide powder such as FeS. Examples of the organic compound include a conductive polymer such as polyaniline. These inorganic compounds and organic compounds may be used as a mixture.

【0016】負極に用いられる活物質としては、リチウ
ムイオンを吸蔵放出可能な化合物が用いられ、例えばグ
ラファイトやコ−クス等が挙げられるが、特に安全性の
面からコ−クスが好ましい。これら正極、負極の活物質
の粒径は電池のその他の構成要件とのかねあいで適宜選
択すればよいが、通常1〜30μm、特に1〜10μ
m、中でも3〜8μmとすることで、活物質層中の空隙
率を容易に制御することが可能であるという効果がある
ので好ましい。
As the active material used for the negative electrode, a compound capable of inserting and extracting lithium ions is used, and examples thereof include graphite and coke. Cokes are particularly preferable from the viewpoint of safety. The particle size of the active material of the positive electrode and the negative electrode may be appropriately selected in consideration of other components of the battery, but is usually 1 to 30 μm, and particularly 1 to 10 μm.
m, especially 3 to 8 μm, is preferred because it has an effect that the porosity in the active material layer can be easily controlled.

【0017】結合剤としては、電解液等に対して安定で
ある必要があり耐候性、耐薬品性、耐熱性、難燃性等が
望まれる。さらにイオン伝導性に優れた材料が望ましく
例えば架橋性のポリエチレンオキシド樹脂等が挙げられ
る。さらに好ましくは、ポリエチレンオキシド樹脂末端
にアクリル基、メタアクリル基等を導入し、熱や紫外線
等により架橋させることが望ましい。
The binder must be stable with respect to the electrolytic solution and the like, and is desired to have weather resistance, chemical resistance, heat resistance, flame retardancy and the like. Further, a material having excellent ion conductivity is desirable, and examples thereof include a cross-linkable polyethylene oxide resin. More preferably, it is desirable to introduce an acryl group, a methacryl group or the like into the terminal of the polyethylene oxide resin, and to crosslink with heat, ultraviolet rays or the like.

【0018】導電性物質としては、リチウムを吸蔵放出
可能な化合物粉末に適量混合して導電性を付与できる物
であれば特に制限は無いが、アセチレンブラック、カ−
ボンブラック、黒鉛などの炭素粉末や、使用する電極電
位で安定な金属粉末などが挙げられる。これら導電性物
質のDBP吸油量は120ml/100g以上が好まし
く、特に150ml/100g以上が電解液を保持する
という理由から好ましい。活物質との重量比は、98/
2〜90/10の範囲が好ましい。活物質との重量比が
98/2より大きいと,導電性物質の導電性が発揮され
ず、電極塗膜の抵抗が増加する。また、活物質との重量
比が90/10より小さいと,導電性物質の分散が困難
になることに加えて,活物質の重量の減少により、充放
電容量も減少する。
The conductive substance is not particularly limited as long as it can impart conductivity by mixing an appropriate amount of the compound powder capable of inserting and extracting lithium.
Examples include carbon powder such as bon black and graphite, and metal powder that is stable at the electrode potential used. The DBP oil absorption of these conductive substances is preferably 120 ml / 100 g or more, particularly preferably 150 ml / 100 g or more because the electrolyte retains the electrolyte. The weight ratio with the active material is 98 /
A range of 2 to 90/10 is preferred. If the weight ratio with the active material is greater than 98/2, the conductivity of the conductive material will not be exhibited, and the resistance of the electrode coating will increase. If the weight ratio to the active material is smaller than 90/10, the dispersion of the conductive material becomes difficult, and the charge / discharge capacity also decreases due to the decrease in the weight of the active material.

【0019】溶媒としては、前記結合剤を溶解可能でか
つ容易に乾燥するものが好ましく、例えばアクリロニト
リル、ジメチルカ−ボネ−ト等が挙げられる。集電体と
しては、一般的に正極にアルミ箔を用い、負極に銅箔を
用いる。尚、負極材料として、負極集電体と負極活物質
層からなる負極を使用する代わりに、Li金属箔を使用
することもできる。
As the solvent, those capable of dissolving the binder and drying easily are preferable, and examples thereof include acrylonitrile and dimethyl carbonate. As a current collector, an aluminum foil is generally used for a positive electrode, and a copper foil is used for a negative electrode. In addition, instead of using a negative electrode composed of a negative electrode current collector and a negative electrode active material layer, a Li metal foil can be used as the negative electrode material.

【0020】本発明においては、集電体と活物質層との
間に、導電性フィラーを含有する易接着層を設ける。本
発明においては、易接着層における導電性フィラーの平
均粒子径は0.5μm以下である。この様な値に特定す
ることで、良好な接着性を保てるため、サイクル特性が
向上するという顕著な効果が得られる。これは、平均粒
子径0.5μm以下の導電性フィラーは、易接着層表面
に適度な表面粗さを与える効果によるものである。導電
性フィラーの平均粒子径が0.5umを越えると、易接
着層の表面が粗れすぎて、易接着層と活物質層との間の
電気的接触性が不十分かつ不均一であるので、電極内部
で部分的に電気抵抗が変化し、電池性能を十分に引き出
すことができない。
In the present invention, an easy-adhesion layer containing a conductive filler is provided between the current collector and the active material layer. In the present invention, the average particle size of the conductive filler in the easily adhesive layer is 0.5 μm or less. By specifying such a value, a remarkable effect of improving cycle characteristics can be obtained because good adhesiveness can be maintained. This is due to the effect that the conductive filler having an average particle size of 0.5 μm or less imparts an appropriate surface roughness to the surface of the easily adhesive layer. When the average particle diameter of the conductive filler exceeds 0.5 μm, the surface of the easy-adhesion layer is too rough, and the electrical contact between the easy-adhesion layer and the active material layer is insufficient and uneven. In addition, the electric resistance partially changes inside the electrode, and the battery performance cannot be sufficiently brought out.

【0021】また、本発明においては、易接着層におけ
る導電性フィラーのDBP吸油量が50ml/100g
以下である。このような値に規定することで、導電性フ
ィラーの導電性を発揮するために、適度な結合剤量での
分散が可能になる。更には、良好な分散状態の導電性フ
ィラーの塗料が得られるので、易接着層の薄膜化が可能
であるばかりでなく、易接着層の表面性のばらつきが小
さくなるため、易接着層と活物質層との間に均一な電気
的接触を保つことができる。一方、導電性フィラーのD
BP吸油量が50ml/100gを越えると、導電性フ
ィラーの分散に要する結合剤の割合が多くなり、易接着
層の電気抵抗が高くなり、導電性フィラーの効果を得る
ことができない。
In the present invention, the DBP oil absorption of the conductive filler in the easily adhesive layer is 50 ml / 100 g.
It is as follows. By specifying such a value, it is possible to disperse the conductive filler with an appropriate amount of binder in order to exhibit the conductivity of the conductive filler. Further, since a coating of the conductive filler in a good dispersion state can be obtained, not only the thinning of the easy-adhesion layer is possible, but also the dispersion of the surface properties of the easy-adhesion layer is reduced, so that the active adhesive layer and the active adhesive layer can be effectively used. Uniform electrical contact with the material layer can be maintained. On the other hand, the conductive filler D
If the BP oil absorption exceeds 50 ml / 100 g, the proportion of the binder required for dispersing the conductive filler increases, the electrical resistance of the easily adhesive layer increases, and the effect of the conductive filler cannot be obtained.

【0022】尚、易接着層中の導電性フィラーと結合剤
との比率は、95/5〜10/90が望ましい。導電性
フィラーと結合剤の比率が95/5より大きいと,導電
性フィラーの分散が困難になり,10/90より小さい
と導電性フィラーの導電性が得られない。さらに、本発
明においては、易接着層の乾燥膜厚が0.01〜5μm
である。ここでいう乾燥膜厚とは、集電体上に易接着塗
料を塗布し,含有溶剤を乾燥させる処理を施した後に測
定した易接着層の膜厚をいう。乾燥膜厚をこのような値
に規定することで、良好な接着性を保ちながら、活物質
層との電気的接触抵抗を低減し、電池の体積エネギー密
度を向上できるという顕著な効果が得られる。易接着層
の乾燥膜厚が0.01μmに満たないと、易接着層の機
械的強度が弱く、易接着層に傷が入りやすい。また、易
接着層の乾燥膜厚が5μmを越えると、易接着層の電気
抵抗が高くなるため、レイト特性やサイクル特性が悪く
なるということがある。また、易接着層を厚膜にするこ
とは、電池の体積エネルギー密度の向上の点からも不利
である。
The ratio between the conductive filler and the binder in the easy-adhesion layer is preferably from 95/5 to 10/90. If the ratio of the conductive filler to the binder is more than 95/5, it becomes difficult to disperse the conductive filler. If the ratio is less than 10/90, the conductivity of the conductive filler cannot be obtained. Further, in the present invention, the dry film thickness of the easily adhesive layer is 0.01 to 5 μm.
It is. Here, the dry film thickness refers to the film thickness of the easy-adhesion layer measured after applying an easy-adhesion paint on the current collector and performing a process of drying the contained solvent. By defining the dry film thickness to such a value, a remarkable effect that the electrical contact resistance with the active material layer can be reduced and the volume energy density of the battery can be improved while maintaining good adhesiveness can be obtained. . If the dry film thickness of the easy-adhesion layer is less than 0.01 μm, the mechanical strength of the easy-adhesion layer is weak, and the easy-adhesion layer is easily damaged. On the other hand, when the dry film thickness of the easy-adhesion layer exceeds 5 μm, the electrical resistance of the easy-adhesion layer increases, which may deteriorate the rate characteristics and the cycle characteristics. In addition, making the easy-adhesion layer thicker is disadvantageous in terms of improving the volume energy density of the battery.

【0023】本発明における導電性フィラーとしては、
導電性金属または金属化合物粉末があげられる。例え
ば、AgやPtなどの金属、酸化錫、酸化亜鉛、酸化チ
タンなどの金属化合物、さらには、酸化錫などの金属化
合物にSbやAlなどをドーピングしたものなどが使用
でき、中でも、分散性の点から酸化錫が好ましい。ま
た、易接着層の結合剤としては、塩化ビニル樹脂、ウレ
タン樹脂などの高分子化合物、さらには、アルカリ金属
系シリケート剤などが使用でき、集電体との反応性の点
からアルカリ金属系シリケート剤が好ましい。尚、導電
性フィラーの分散性を高めるために、易接着層の塗料を
作製する際に、界面活性剤を添加してもよい。
As the conductive filler in the present invention,
Examples include conductive metal or metal compound powders. For example, a metal compound such as Ag or Pt, a metal compound such as tin oxide, zinc oxide, or titanium oxide, or a metal compound such as tin oxide doped with Sb or Al can be used. From the viewpoint, tin oxide is preferred. As the binder for the easy-adhesion layer, polymer compounds such as vinyl chloride resin and urethane resin, as well as alkali metal silicate agents can be used, and alkali metal silicate is preferred from the viewpoint of reactivity with the current collector. Agents are preferred. In addition, in order to enhance the dispersibility of the conductive filler, a surfactant may be added at the time of preparing the paint for the easily adhesive layer.

【0024】集電体上への易接着層及び電極活物質層の
形成方法は、特に限定されるものではないが、コンマリ
バ−スコ−ト、スクイ−ズコ−ト、リップコ−ト、ダイ
コート、バーコート、グラビュアコート等の塗布方式が
用いられ、易接着剤、電極活物質が順次形成される。ま
た、上述のように電極、特には正極を形成した後に、活
物質含有層にカレンダ−やプレス処理等で圧力をかけて
もよい。このときの圧力は活物質を形成する材料により
異なるが、一般的には500〜2000kgf/cm2
とすればよい。
The method of forming the easy-adhesion layer and the electrode active material layer on the current collector is not particularly limited, but is a common coat, a squeeze coat, a lip coat, a die coat, and a bar. A coating method such as a coat and a gravure coat is used, and an easy-adhesive and an electrode active material are sequentially formed. After forming the electrode, particularly the positive electrode, as described above, pressure may be applied to the active material-containing layer by calendaring, pressing, or the like. The pressure at this time varies depending on the material forming the active material, but is generally 500 to 2000 kgf / cm 2.
And it is sufficient.

【0025】尚、本発明において、易接着層は正極、負
極いずれに設けても良いが、特には正極に形成すること
が好ましい。次に、ポリマー電解質について説明する。
ポリマー電解質としては、一般的には、ゲル状ポリマー
中に電解液を含有するもの(以下、これを単にポリマー
電解質ということがある)を用いる。
In the present invention, the easy-adhesion layer may be provided on either the positive electrode or the negative electrode, but is preferably formed on the positive electrode. Next, the polymer electrolyte will be described.
Generally, a polymer electrolyte containing an electrolyte solution in a gel polymer (hereinafter, this may be simply referred to as a polymer electrolyte) is used as the polymer electrolyte.

【0026】ゲル状ポリマーに含有させる電解液は非水
電解液が好適であり、これは非水溶媒に電解質を溶解さ
せたものを用いるのが一般的である。ポリマー電解質に
用いる電解液としては、電解質として上記正極活物質及
び負極活物質に対して安定であり、かつリチウムイオン
が前記正極活物質あるいは負極活物質と電気化学反応を
するための移動を行い得る非水物質であればいずれのも
のでも使用することができる。
The electrolyte contained in the gel polymer is preferably a non-aqueous electrolyte, which is generally obtained by dissolving an electrolyte in a non-aqueous solvent. As the electrolyte solution used for the polymer electrolyte, the electrolyte is stable with respect to the positive electrode active material and the negative electrode active material, and lithium ions can move to perform an electrochemical reaction with the positive electrode active material or the negative electrode active material. Any non-aqueous substance can be used.

【0027】具体的にはLiPF6 、LiAsF6 、L
iSbF6 、LiBF4 、LiClO4 、LiI、Li
Br、LiCl、LiAlCl、LiHF2 、LiSC
N、LiSO3 CF2 等が挙げられる。これらのうちで
は、特にLiPF6 、LiClO4 が好適である。これ
ら電解質の電解液における含有量は、一般的に0.5〜
2.5mol/lである。
Specifically, LiPF 6 , LiAsF 6 , L
iSbF 6 , LiBF 4 , LiClO 4 , LiI, Li
Br, LiCl, LiAlCl, LiHF 2 , LiSC
N, LiSO 3 CF 2 and the like. Among them, LiPF 6 and LiClO 4 are particularly preferable. The content of these electrolytes in the electrolyte is generally 0.5 to
2.5 mol / l.

【0028】このポリマー電解質を溶解する溶媒は特に
限定されないが、比較的高誘電率の溶媒が好適に用いら
れる。具体的にはエチレンカ−ボネ−ト、プロピレンカ
−ボネ−ト等の環状カ−ボネ−ト類、ジメチルカ−ボネ
−ト、ジエチルカ−ボネ−ト、エチルメチルカ−ボネ−
トなどの非環状カ−ボネ−ト類、テトラヒドロフラン、
2−メチルテトラヒドロフラン、ジメトキシエタン等の
グライム類、γ−ブチルラクトン等のラクトン類、スル
フォラン等の硫黄化合物、アセトニトリル等のニトリル
類等の1種又は2種以上の混合物を挙げることができ
る。これらのうちでは、特にエチレンカ−ボネ−ト、プ
ロピレンカ−ボネ−ト等の環状カ−ボネ−ト類、ジメチ
ルカ−ボネ−ト、ジエチルカ−ボネ−ト、エチルメチル
カ−ボネ−トなどの非環状カ−ボネ−ト類から選ばれた
1種又は2種以上の混合溶液が好適である。
The solvent for dissolving the polymer electrolyte is not particularly limited, but a solvent having a relatively high dielectric constant is preferably used. Specifically, cyclic carbonates such as ethylene carbonate and propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
Acyclic carbonates such as tetrahydrofuran,
One or a mixture of two or more of glymes such as 2-methyltetrahydrofuran and dimethoxyethane, lactones such as γ-butyllactone, sulfur compounds such as sulfolane, and nitriles such as acetonitrile can be mentioned. Among these, cyclic carbonates such as ethylene carbonate and propylene carbonate, and acyclic carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are particularly preferred. One or a mixed solution of two or more selected from -bonettes is preferred.

【0029】上記電解質溶解液をポリエチレンオキサイ
ド、ポリプロピレンオキサイド、ポリエチレンオキサイ
ドのイソシアネ−ト架橋体、フェニレンオキシド、フェ
ニレンスルフィド系ポリマ−等の重合体に浸させゲル状
電解質を作成する。本発明のリチウム二次電池の形状
は、円筒型、箱形、ペ−パ−型、カ−ド型など種々の形
状とすることができる。
The above-mentioned electrolyte solution is immersed in a polymer such as polyethylene oxide, polypropylene oxide, an isocyanate crosslinked product of polyethylene oxide, phenylene oxide, or a phenylene sulfide polymer to prepare a gel electrolyte. The shape of the lithium secondary battery of the present invention can be various shapes such as a cylindrical shape, a box shape, a paper type, and a card type.

【0030】[0030]

【作用】本発明の特徴は上述した如く、ポリマー電解質
を用いたリチウム二次電池において易接着層中の導電性
フィラーの粒子径とDBP吸油量と、易接着層の乾燥膜
厚を規定することにある。以下、本発明を具体的に説明
する。
As described above, the features of the present invention are to regulate the particle size of the conductive filler in the easy-adhesion layer, the DBP oil absorption, and the dry film thickness of the easy-adhesion layer in the lithium secondary battery using the polymer electrolyte. It is in. Hereinafter, the present invention will be described specifically.

【0031】[0031]

【実施例】以下に実施例を示し本発明を更に具体的に説
明するが、本発明はその要旨を超えない限り、以下に示
す実施例に制限されるわけではない。なお、各実施例に
おいて評価は下記の方法によって行った。 (接着性)易接着層と正極活物質層との間の接着性は、
電解液に正極を浸漬した時の正極活物質層の剥離に要す
る時間により評価した。電解液にはプロピレンカーボネ
ートを使用し、正極サイズは13mmΦに成形して評価
した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. In each example, evaluation was performed by the following method. (Adhesion) The adhesion between the easy-adhesion layer and the positive electrode active material layer is as follows:
The evaluation was made based on the time required for peeling the positive electrode active material layer when the positive electrode was immersed in the electrolytic solution. Propylene carbonate was used as the electrolytic solution, and the size of the positive electrode was formed to 13 mmφ and evaluated.

【0032】(初期放電容量[mAH/g])初期放電
容量は正極重量当たりの放電容量で計算した。評価は同
一のシ−トから5個同じ電池を作成して、初期放電容量
のばらつきも評価した。 (サイクル特性)サイクル特性は初期放電容量を1とし
たとき、容量保持率が80%以下になったサイクル数で
評価した。評価は同一のシ−トから5個同じ電池を作成
して、サイクル特性のばらつきも評価した。
(Initial Discharge Capacity [mAH / g]) The initial discharge capacity was calculated as the discharge capacity per positive electrode weight. For the evaluation, five identical batteries were prepared from the same sheet, and the variation in the initial discharge capacity was also evaluated. (Cycle Characteristics) The cycle characteristics were evaluated based on the number of cycles at which the capacity retention ratio became 80% or less, when the initial discharge capacity was 1. For evaluation, five identical batteries were prepared from the same sheet, and the variation in cycle characteristics was also evaluated.

【0033】実施例1 以下に示す組成に従い易接着層塗料を作成しアルミ基材
上に塗布した。易接着層塗料の原料としては以下のもの
を使用した。 導電性フィラー:酸化錫粉末(三菱マテリアル社製;平均粒子径0.03μm 、DBP吸油量30ml/100g) 40重量部 結合剤 :Li2 Si1511の20%水溶液(Aldrich社製) 90重量部 界面活性剤 :Triton X−100(Alidrich社製) 1重量部 水 : 150重量部
Example 1 An easily adhesive layer paint was prepared according to the composition shown below and applied to an aluminum substrate. The following materials were used as the raw materials for the easily adhesive layer paint. Conductive filler: Tin oxide powder (manufactured by Mitsubishi Materials Corporation; average particle size: 0.03 μm, DBP oil absorption: 30 ml / 100 g) 40 parts by weight Binder: 20% aqueous solution of Li 2 Si 15 O 11 (manufactured by Aldrich) 90 parts by weight Part Surfactant: Triton X-100 (manufactured by Alidrich) 1 part by weight Water: 150 parts by weight

【0034】上記易接着層用材料の分散処理を行い塗料
化し、厚さ20μmのアルミ箔上にバーコーターを用
い、乾燥膜厚が0.01μmになるよう塗布した。塗膜
の乾燥条件は,200℃で90秒間の予備乾燥後、さら
に、脱水のために400℃のAr雰囲気の電気炉で24
時間乾燥させた。続いて、以下に示す組成に従い正極用
塗料を作成し、上記の易接着層付きアルミ基材上に塗布
して、Li電池用の正極とし評価した。正極塗料の原料
としては以下のものを使用した。
The material for the easily adhesive layer was subjected to a dispersion treatment to form a paint, and was applied on an aluminum foil having a thickness of 20 μm using a bar coater so that the dry film thickness became 0.01 μm. The drying conditions of the coating film are as follows: after pre-drying at 200 ° C. for 90 seconds, and further, in an electric furnace at 400 ° C. Ar atmosphere for dehydration.
Let dry for hours. Subsequently, a paint for a positive electrode was prepared according to the composition shown below, and was applied on the aluminum substrate with an easy-adhesion layer described above, and was evaluated as a positive electrode for a Li battery. The following were used as raw materials for the positive electrode paint.

【0035】 正極材 :LiCoO2 粉(FMC社製) 88重量部 導電材 :アセチレンブラック(電気化学工業社製) 4重量部 結合剤 :Photomer4050(Henkel社製) 8重量部 溶剤 :DMC(ジメチルカ−ボネ−ト、三菱化学社製)100重量部 架橋開始剤 :Trignox42(Akuzo Nobel社製) 0.1重量部Positive electrode material: LiCoO 2 powder (manufactured by FMC) 88 parts by weight Conductive material: acetylene black (manufactured by Denki Kagaku Kogyo) 4 parts by weight Binder: Photomer 4050 (manufactured by Henkel) 8 parts by weight Solvent: DMC (dimethyl carboxyl) Bonnet, manufactured by Mitsubishi Chemical Corporation) 100 parts by weight Crosslinking initiator: Trignox 42 (manufactured by Akuzo Nobel) 0.1 part by weight

【0036】上記正極用材料の混練・分散処理を行い塗
料化し、先に作成した易接着層付きのアルミ箔上にドク
タ−ブレ−ドを用い膜厚が150μmになるよう塗布し
た。その後、塗膜を120℃で乾燥・架橋し、電極材が
塗布されたシ−トを得た。次にプレス圧が800kgf
/cm2 となるようプレス処理を行った。その後、電解
液プロピレンカ−ボネ−トを塗膜に含浸させ、所定の形
状に打ち抜いて正極を作成した。次にここで得られた正
極上に厚さ50μmの電解質を塗布し、紫外線架橋を行
ってゲル状電解質層を作成した。ゲル状電解質層上に負
極として金属Li箔をラミネ−トし、シ−ト状の電池を
得た。
The above positive electrode material was kneaded and dispersed to form a paint, which was then applied to the aluminum foil with an easy-adhesion layer prepared above using a doctor blade to a thickness of 150 μm. Thereafter, the coating film was dried and crosslinked at 120 ° C. to obtain a sheet on which the electrode material was applied. Next, press pressure is 800kgf
/ Cm 2 . Thereafter, the coating film was impregnated with propylene carbonate as an electrolytic solution and punched into a predetermined shape to form a positive electrode. Next, an electrolyte having a thickness of 50 μm was applied on the positive electrode obtained here, and crosslinked by ultraviolet rays to form a gel electrolyte layer. A metal Li foil was laminated as a negative electrode on the gel electrolyte layer to obtain a sheet-like battery.

【0037】実施例2 易接着層の乾燥膜厚を5μmとした以外は、実施例1と
同様の方法で、シート状の電池を得た。 実施例3 導電性フィラーとして、平均粒子径が0.01μm、D
BP吸油量が45ml/100gの酸化錫を使用した以
外は、実施例1と同様の方法で、シート状の電池を得
た。
Example 2 A sheet-like battery was obtained in the same manner as in Example 1 except that the dry film thickness of the easy-adhesion layer was changed to 5 μm. Example 3 As a conductive filler, the average particle diameter was 0.01 μm, and D
A sheet-shaped battery was obtained in the same manner as in Example 1, except that tin oxide having a BP oil absorption of 45 ml / 100 g was used.

【0038】実施例4 導電性フィラーとして、平均粒子径が0.5μm、DB
P吸油量が20ml/100gの酸化錫を使用した以外
は、実施例1と同様の方法で、シート状の電池を得た。 比較例1 易接着層を設けなかった以外は、実施例1と同様の方法
で、シート状の電池を得た。
Example 4 As a conductive filler, the average particle diameter was 0.5 μm, and DB
A sheet-shaped battery was obtained in the same manner as in Example 1, except that tin oxide having a P oil absorption of 20 ml / 100 g was used. Comparative Example 1 A sheet-shaped battery was obtained in the same manner as in Example 1 except that the easy-adhesion layer was not provided.

【0039】比較例2 易接着層を設けず、研磨剤粒子を固着した研磨布紙でア
ルミ基材を研磨する処理を施した以外は、実施例1と同
様の方法で、シート状の電池を得た。 比較例3 導電性フィラーとして、平均粒子径が6μm、DBP吸
油量が120ml/100gのグラファイトを使用した
以外は、実施例1と同様の方法で、シート状の電池を得
た。
Comparative Example 2 A sheet-like battery was prepared in the same manner as in Example 1 except that the aluminum substrate was polished with abrasive cloth to which abrasive particles were fixed without providing an easy-adhesion layer. Obtained. Comparative Example 3 A sheet-shaped battery was obtained in the same manner as in Example 1, except that graphite having an average particle diameter of 6 μm and a DBP oil absorption of 120 ml / 100 g was used as the conductive filler.

【0040】比較例4 導電性フィラーとして、平均粒子径が6μm、DBP吸
油量が120ml/100gのグラファイトを使用し、
易接着層の乾燥膜厚を5μmとした以外は、実施例1と
同様の方法で、シート状の電池を得た。 比較例5 易接着層の乾燥膜厚を10μmとした以外は、実施例1
と同様の方法で、シート状の電池を得た。
Comparative Example 4 Graphite having an average particle diameter of 6 μm and a DBP oil absorption of 120 ml / 100 g was used as a conductive filler.
A sheet-shaped battery was obtained in the same manner as in Example 1, except that the dry film thickness of the easy-adhesion layer was 5 μm. Comparative Example 5 Example 1 except that the dry film thickness of the easily adhesive layer was 10 μm.
A sheet-shaped battery was obtained in the same manner as described above.

【0041】比較例6 易接着層の乾燥膜厚を0.005μmとした以外は、実
施例1と同様の方法で、シート状の電池を得た。 比較例7 導電性フィラーとして、平均粒子径が1.0μm、DB
P吸油量が15ml/100gの酸化錫を使用した以外
は、実施例1と同様の方法で、シート状の電池を得た。
Comparative Example 6 A sheet-shaped battery was obtained in the same manner as in Example 1, except that the dry film thickness of the easy-adhesion layer was changed to 0.005 μm. Comparative Example 7 As a conductive filler, the average particle diameter was 1.0 μm, and DB
A sheet-shaped battery was obtained in the same manner as in Example 1 except that tin oxide having a P oil absorption of 15 ml / 100 g was used.

【0042】比較例8 導電性フィラーとして、平均粒子径が0.005μm、
DBP吸油量が60ml/100gの酸化錫を使用した
以外は、実施例1と同様の方法で、シート状の電池を得
た。 実施例1〜3および比較例1〜8について、接着性、初
期放電容量、サイクル特性を評価し、その結果を表1に
示す。
Comparative Example 8 As the conductive filler, the average particle diameter was 0.005 μm,
A sheet-shaped battery was obtained in the same manner as in Example 1, except that tin oxide having a DBP oil absorption of 60 ml / 100 g was used. Examples 1 to 3 and Comparative Examples 1 to 8 were evaluated for adhesion, initial discharge capacity, and cycle characteristics, and the results are shown in Table 1.

【0043】[0043]

【表1】 表1 接着性 初期放電容量 サイクル特性 (mAh/g) (サイクル) 実施例1 24時間で剥離なし 125±2 300以上 実施例2 24時間で剥離なし 123±2 300以上 実施例3 20時間で剥離 117±5 300±7 実施例4 18時間で剥離 115±6 280±9 比較例1 1分で剥離 122±5 30±20 比較例2 20分で剥離 119±15 50±18 比較例3 6時間で剥離 115±12 100±10 比較例4 6時間で剥離 113±18 100±18 比較例5 18時間で剥離 108±10 180±18 比較例6 20時間で剥離 118±18 200±20 比較例7 10時間で剥離 105±14 150±20 比較例8 8時間で剥離 110±18 120±23Table 1 Adhesive property Initial discharge capacity Cycle characteristics (mAh / g) (Cycle) Example 1 No peeling in 24 hours 125 ± 2 300 or more Example 2 No peeling in 24 hours 123 ± 2 300 or more Example 3 Peel in 20 hours 117 ± 5 300 ± 7 Example 4 Peel in 18 hours 115 ± 6 280 ± 9 Comparative Example 1 Peel in 1 minute 122 ± 5 30 ± 20 Comparative Example 2 Peel in 20 minutes 119 ± 15 50 ± 18 Compare Example 3 Peeled in 6 hours 115 ± 12 100 ± 10 Comparative Example 4 Peeled in 6 hours 113 ± 18 100 ± 18 Comparative Example 5 Peeled in 18 hours 108 ± 10 180 ± 18 Comparative Example 6 Peeled in 20 hours 118 ± 18 200 ± 20 Comparative Example 7 Peeled off in 10 hours 105 ± 14 150 ± 20 Comparative Example 8 Peeled out in 8 hours 110 ± 18 120 ± 23

【0044】[0044]

【発明の効果】本発明の易接着層を用いたリチウム電池
は、良好な接着性が得られ、電池の性能のばらつきが少
なく、サイクル特性に優れた電池となる。
The lithium battery using the easy-adhesion layer of the present invention has good adhesiveness, has little variation in battery performance, and has excellent cycle characteristics.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集電体と電池活物質層との間に易接着層
を施したリチウム二次電池において、該易接着層中に、
平均粒子径が0.5μm以下かつDBP吸油量が50m
l/100g以下の導電性フィラーを含み、該易接着層
の乾燥膜厚が0.01〜5μmであることを特徴とする
リチウム二次電池。
1. A lithium secondary battery in which an easy-adhesion layer is provided between a current collector and a battery active material layer, wherein in the easy-adhesion layer,
Average particle size is 0.5 μm or less and DBP oil absorption is 50 m
A lithium secondary battery comprising 1/100 g or less of a conductive filler, wherein the dry film thickness of the easy-adhesion layer is 0.01 to 5 μm.
【請求項2】 導電性フィラーが酸化錫であることを特
徴とする請求項1記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the conductive filler is tin oxide.
【請求項3】 正極、負極及びポリマー電解質を備えた
リチウム二次電池であって、正極が正極集電体上に易接
着層、リチウムイオンを吸蔵放出可能な化合物を含む正
極活物質層を順次設けたものであり、該易接着層中に平
均粒子径が0.5μm以下、DBP吸油量が50ml/
100g以下の導電性フィラーを含み、かつ該易接着層
の乾燥膜厚が0.01〜5μmであることを特徴とする
リチウム二次電池。
3. A lithium secondary battery comprising a positive electrode, a negative electrode and a polymer electrolyte, wherein the positive electrode comprises a positive electrode current collector, an easy-adhesion layer, and a positive electrode active material layer containing a compound capable of inserting and extracting lithium ions. Having an average particle diameter of 0.5 μm or less and a DBP oil absorption of 50 ml /
A lithium secondary battery comprising 100 g or less of a conductive filler, and a dry film thickness of the easy-adhesion layer is 0.01 to 5 μm.
【請求項4】 ポリマー電解質が、非水電解液含有ゲル
状ポリマーからなる電解質であることを特徴とする請求
項3記載のリチウム二次電池。
4. The lithium secondary battery according to claim 3, wherein the polymer electrolyte is an electrolyte comprising a gel polymer containing a non-aqueous electrolyte.
JP22466997A 1997-08-21 1997-08-21 Lithium secondary battery Expired - Lifetime JP3478077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22466997A JP3478077B2 (en) 1997-08-21 1997-08-21 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22466997A JP3478077B2 (en) 1997-08-21 1997-08-21 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH1167277A true JPH1167277A (en) 1999-03-09
JP3478077B2 JP3478077B2 (en) 2003-12-10

Family

ID=16817368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22466997A Expired - Lifetime JP3478077B2 (en) 1997-08-21 1997-08-21 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3478077B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164003A (en) * 1997-06-13 1999-03-05 Denso Corp Angular velocity sensor
KR100354249B1 (en) * 2000-01-06 2002-09-28 삼성에스디아이 주식회사 Lithium polymer battery
KR100402955B1 (en) * 2001-03-26 2003-10-30 대한민국(관리청:특허청장, 승계청:경상대학교총장) Inorganic Ceramic Filler for Composite Polymer Electrolyte in Lithium Polymer Batteries and Polymer Electrolyte Comprising the Same
JP2004296863A (en) * 2003-03-27 2004-10-21 Tdk Corp Electrode for electrochemical capacitor and manufacturing method thereof, and electrochemical capacitor and manufacturing method thereof
JP2010050476A (en) * 2003-03-31 2010-03-04 Fuji Heavy Ind Ltd Organic electrolyte capacitor
WO2010084622A1 (en) * 2009-01-26 2010-07-29 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and use thereof
JP2015109214A (en) * 2013-12-05 2015-06-11 株式会社豊田自動織機 Collector and lithium ion secondary battery
CN107464698A (en) * 2016-06-02 2017-12-12 太阳诱电株式会社 The manufacture method of electrochemical device electrode and electrochemical device electrode
WO2021000546A1 (en) * 2019-07-01 2021-01-07 宁德时代新能源科技股份有限公司 Positive pole piece, electrochemical device, and device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138609A (en) * 1993-09-14 1995-05-30 Katayama Tokushu Kogyo Kk Metallic porous body and its production
JPH07201362A (en) * 1993-12-29 1995-08-04 Tdk Corp Lithium secondary battery
JPH07201363A (en) * 1993-12-29 1995-08-04 Tdk Corp Lithium secondary battery
JPH08130015A (en) * 1994-10-27 1996-05-21 Mitsubishi Cable Ind Ltd Negative electrode material, its negative electrode, and lithium secondary battery
JPH0922700A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH10144298A (en) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH10199524A (en) * 1997-01-17 1998-07-31 Yuasa Corp Non-aqueous electrolyte battery
JPH10208740A (en) * 1997-01-24 1998-08-07 Yuasa Corp Non-aqueous electrolyte battery
JPH10284129A (en) * 1997-04-10 1998-10-23 Yuasa Corp Nonaqueous electrolyte battery
JPH10308222A (en) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery using thereof
JPH11505660A (en) * 1994-08-02 1999-05-21 レグザム グラフィックス インコーポレイテッド Current collector having conductive primer layer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138609A (en) * 1993-09-14 1995-05-30 Katayama Tokushu Kogyo Kk Metallic porous body and its production
JPH07201362A (en) * 1993-12-29 1995-08-04 Tdk Corp Lithium secondary battery
JPH07201363A (en) * 1993-12-29 1995-08-04 Tdk Corp Lithium secondary battery
JPH11505660A (en) * 1994-08-02 1999-05-21 レグザム グラフィックス インコーポレイテッド Current collector having conductive primer layer
JPH08130015A (en) * 1994-10-27 1996-05-21 Mitsubishi Cable Ind Ltd Negative electrode material, its negative electrode, and lithium secondary battery
JPH0922700A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH10144298A (en) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH10199524A (en) * 1997-01-17 1998-07-31 Yuasa Corp Non-aqueous electrolyte battery
JPH10208740A (en) * 1997-01-24 1998-08-07 Yuasa Corp Non-aqueous electrolyte battery
JPH10284129A (en) * 1997-04-10 1998-10-23 Yuasa Corp Nonaqueous electrolyte battery
JPH10308222A (en) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery using thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164003A (en) * 1997-06-13 1999-03-05 Denso Corp Angular velocity sensor
KR100354249B1 (en) * 2000-01-06 2002-09-28 삼성에스디아이 주식회사 Lithium polymer battery
KR100402955B1 (en) * 2001-03-26 2003-10-30 대한민국(관리청:특허청장, 승계청:경상대학교총장) Inorganic Ceramic Filler for Composite Polymer Electrolyte in Lithium Polymer Batteries and Polymer Electrolyte Comprising the Same
JP2004296863A (en) * 2003-03-27 2004-10-21 Tdk Corp Electrode for electrochemical capacitor and manufacturing method thereof, and electrochemical capacitor and manufacturing method thereof
JP2010050476A (en) * 2003-03-31 2010-03-04 Fuji Heavy Ind Ltd Organic electrolyte capacitor
WO2010084622A1 (en) * 2009-01-26 2010-07-29 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and use thereof
JP5158452B2 (en) * 2009-01-26 2013-03-06 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and its utilization
US8586239B2 (en) 2009-01-26 2013-11-19 Toyota Jidosha Kabushiki Kaisha Positive electrode for lithium secondary batteries and use thereof
JP2015109214A (en) * 2013-12-05 2015-06-11 株式会社豊田自動織機 Collector and lithium ion secondary battery
CN107464698A (en) * 2016-06-02 2017-12-12 太阳诱电株式会社 The manufacture method of electrochemical device electrode and electrochemical device electrode
US10439199B2 (en) 2016-06-02 2019-10-08 Taiyo Yuden Co., Ltd. Electrochemical device electrode and method for manufacturing electrochemical device electrode
CN107464698B (en) * 2016-06-02 2019-11-12 太阳诱电株式会社 The manufacturing method of electrochemical device electrode and electrochemical device electrode
WO2021000546A1 (en) * 2019-07-01 2021-01-07 宁德时代新能源科技股份有限公司 Positive pole piece, electrochemical device, and device
US11804604B2 (en) 2019-07-01 2023-10-31 Contemporary Amperex Technology Co., Limited Positive electrode piece in a battery, electrochemical device and apparatus

Also Published As

Publication number Publication date
JP3478077B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
JP4237074B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4116784B2 (en) Negative electrode coating composition, negative electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
JP3593776B2 (en) Method of manufacturing positive electrode for lithium secondary battery and lithium secondary battery
JP4751502B2 (en) Polymer battery
JP4053657B2 (en) Lithium secondary battery and manufacturing method thereof
JP3478077B2 (en) Lithium secondary battery
JP5200329B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
JP4075109B2 (en) Non-aqueous secondary battery
JP4016464B2 (en) Gel electrolyte secondary battery
JPH1097874A (en) Nonaqueous secondary battery
JPH11185733A (en) Manufacture of lithium polymer secondary battery
JP4834975B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP5662746B2 (en) Lithium ion secondary battery
JP2021182484A (en) Negative electrode agent for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPH06150906A (en) Nonaqueous secondary battery
JP2003317721A (en) Nonaqueous electrolyte secondary battery
JP4527423B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPH09283139A (en) Lithium secondary battery and manufacture thereof
JP2006269302A (en) Annealed lithium-cobalt complex oxide, manufacturing method of same, anode active substance using same, and lithium secondary battery
JPH1131533A (en) Lithium secondary battery
JPH11297327A (en) Lithium secondary battery
JPH10270081A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

EXPY Cancellation because of completion of term