JPH11185733A - Manufacture of lithium polymer secondary battery - Google Patents

Manufacture of lithium polymer secondary battery

Info

Publication number
JPH11185733A
JPH11185733A JP9352927A JP35292797A JPH11185733A JP H11185733 A JPH11185733 A JP H11185733A JP 9352927 A JP9352927 A JP 9352927A JP 35292797 A JP35292797 A JP 35292797A JP H11185733 A JPH11185733 A JP H11185733A
Authority
JP
Japan
Prior art keywords
layer
layers
viscosity
electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9352927A
Other languages
Japanese (ja)
Inventor
Akira Matsumoto
章 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9352927A priority Critical patent/JPH11185733A/en
Publication of JPH11185733A publication Critical patent/JPH11185733A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method superior in adhesion and adhesiveness between respective constituting layer boundaries, and reducing internal impedance being a problem in the case of electron movement between the layer boundaries. SOLUTION: In a manufacturing method for a lithium polymer secondary battery formed by applying at least a primer layer, electrode layers containing active materials, and two layers or more selected among polymer electrolyte layers to a conductive support body, a method superimposing the coatings of at least two or more layers among them into layer-like in a liquid state, and applying the whole as one layer thereto simultaneously is used, or a method applying one layer onto other wet state applied layer without any post- treatment, repeating the same process, and finally conducting post-treatment for all layers simultaneously is used, and the viscosity of the respective layer coatings used in that case shows in a range of 10<-3> to 5×10<2> Pa.s in dynamic viscosity coefficient when shearing velocity of 2×1<2> s<-1> is imparted. Further coating viscosity difference between adjoining layers is within 10<2> Pa.s in the comparison of dynamic viscosity coefficients at the above mentioned shearing velocity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムポリマー
二次電池の正極塗膜層、負極塗膜層、ポリマー含有電解
質層、および不随する各層の塗布法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating a positive electrode coating layer, a negative electrode coating layer, a polymer-containing electrolyte layer, and associated layers of a lithium polymer secondary battery.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR装置、オーデ
ィオ機器、携帯型コンピュータ、携帯電話等様々な機器
の小型化、軽量化が進んでおり、これら機器の電源とし
ての電池に対する高性能化要請が高まっている。中でも
電気自動車の動力源の電池として、高電圧、高エネルギ
ー密度で、且つ優れたサイクル特性の実現が可能なリチ
ウム二次電池の開発が盛んになっている。
2. Description of the Related Art In recent years, various devices such as a camera-integrated VTR device, an audio device, a portable computer, and a cellular phone have been reduced in size and weight, and there has been a demand for higher performance of a battery as a power supply for these devices. Is growing. Above all, development of lithium secondary batteries capable of realizing high voltage, high energy density and excellent cycle characteristics as batteries for power sources of electric vehicles has been active.

【0003】リチウム二次電池は、リチウムイオンを吸
蔵放出可能な正極と負極及び非水電解質液とからなり、
従来、これら高電圧系電池の電解液として非水系の電解
液が用いられていた。ところが、非水系電解液を用いた
電池は濾液や発火の危険を有していることから近年で
は、安全性を向上させるために非水電解液を、例えばゲ
ル状ポリマーに電解液を含有させた電解質の開発が行わ
れている。特にリチウム二次電池においては液体電解質
を用いた際のリチウムのデンドライトの析出による内部
短絡からくる発熱、発火が問題となっており、ポリマー
電解質の適応が望まれていた。
A lithium secondary battery comprises a positive electrode capable of inserting and extracting lithium ions, a negative electrode, and a non-aqueous electrolyte solution.
Conventionally, non-aqueous electrolytes have been used as electrolytes for these high-voltage batteries. However, since batteries using a non-aqueous electrolyte have a risk of filtrate and ignition, in recent years, non-aqueous electrolytes have been added to improve safety, for example, a gel polymer contains an electrolyte. Electrolyte development is underway. In particular, in a lithium secondary battery, heat generation and ignition resulting from an internal short circuit due to precipitation of lithium dendrites when a liquid electrolyte is used poses a problem, and application of a polymer electrolyte has been desired.

【0004】さらに上記のような、ゲル高分子中に電解
液を含有した電解質等を含めたポリマー電解質は、従来
のリチウム二次電池と異なりセパレータを用いずとも、
この二次電池系て使用されるセパレーターの代用を勧め
ることが可能となるので、ポリマー電解質を挟んで正極
と負極とを接合させて用いることが出来る。この様なポ
リマーは液系に比して軽量で形状柔軟性を有するので、
例えばシート状の様な薄膜化が可能であり、軽量、省ス
ペースな電池が作成可能となる有利な点がある。
Further, unlike the conventional lithium secondary battery, a polymer electrolyte including an electrolyte containing an electrolyte solution in a gel polymer as described above can be used without using a separator.
Since it is possible to recommend a substitute for the separator used in the secondary battery system, the positive electrode and the negative electrode can be used by joining the polymer electrolyte. Since such a polymer is lighter and has shape flexibility compared to a liquid system,
For example, there is an advantage that a thin battery such as a sheet can be formed, and a lightweight and space-saving battery can be manufactured.

【0005】リチウムポリマー二次電池の作製法は多種
多様であり、その中で、特に活物質を中心構成物質とす
る正負電極膜および電解質層の形成には、しばしば各種
塗布法が用いられている。しかし必要な各構成層を作る
ための塗布法としては、層の数だけ塗布・後処理を繰り
返して作るwet−on−dry法が一般的手法であ
り、手間がかかると同時に、各層間の密着度が不充分な
ことに由来する内部インピーダンスの増大・および性能
のばらつきが問題点となることが多い。
[0005] There are a variety of methods for producing a lithium polymer secondary battery, and among them, various coating methods are often used for forming a positive / negative electrode film and an electrolyte layer mainly using an active material as a main constituent material. . However, as a coating method for forming each of the necessary constituent layers, a wet-on-dry method in which coating and post-processing are repeated as many times as the number of layers is a general method. In many cases, an increase in internal impedance and a variation in performance due to insufficient degree are problems.

【0006】[0006]

【発明が解決しようとする課題】この様なポリマー電池
において、電解質のイオン伝導は主に電解質中の非水電
解液相を介して行われるため、イオン伝導度、分解電圧
等の電気化学的な性質は非水電解液にその主たる部分は
従うが、この非水電解液を含有するポリマーマトリック
スが力学的な強度を維持するため流動性が極めて低く、
正極又は負極の活物質との接合界面が少ないことから高
率での充放電が悪いという問題点を有していた。
In such a polymer battery, the ionic conduction of the electrolyte is mainly carried out through the non-aqueous electrolyte phase in the electrolyte. Although the main part of the properties follows the non-aqueous electrolyte, the polymer matrix containing this non-aqueous electrolyte has a very low fluidity to maintain its mechanical strength,
There is a problem that charge / discharge at a high rate is poor because the bonding interface between the positive electrode and the negative electrode with the active material is small.

【0007】ここで、リチウム二次電池の充放電過程で
は電解質を介して移動するリチウムイオンと電極(にお
ける活物質)との間で電子の授受が行われるため、電池
の電極はイオン伝導性と電子伝導性を兼ね備える必要が
ある。液体状の電解質を用いたリチウム二次電池の場合
には、電極中の活物質中と電解質中でのリチウムイオン
の伝導性を比べた場合、電解質中でのイオン伝導性の方
が高い。その結果、電極中での電子の移動は電極中の活
物質やカーボンブラックの様な導電材によって行われ、
リチウムイオンの移動は主として電極中に存在する空孔
内に浸透した電解質によって行われる。
Here, in the charging / discharging process of the lithium secondary battery, electrons are exchanged between the lithium ion moving through the electrolyte and the electrode (the active material in the electrode). It is necessary to have electron conductivity. In the case of a lithium secondary battery using a liquid electrolyte, the ion conductivity in the electrolyte is higher when the conductivity of lithium ions in the active material in the electrode is compared with that in the electrolyte. As a result, the movement of electrons in the electrode is performed by an active material in the electrode and a conductive material such as carbon black,
The movement of lithium ions is mainly performed by the electrolyte that has penetrated into pores existing in the electrode.

【0008】本発明は、かかる従来技術における種々の
問題点を改善すべくなされたもので、各構成層境界間の
密着性・接着性に優れ、充放電時におけるリチウムイオ
ンあるいは電子の層境界間移動の際に問題となる電池と
しての内部インピーダンスを低減させ、また、その結果
電池としての性能のばらつき低減に効果があると同時
に、製造上の観点からもプロセスの大幅な短縮というメ
リットがある。この様な優れた性能、安定性を持ったリ
チウムポリマー二次電池の製法を提供する事を目的とす
る。
The present invention has been made in order to improve various problems in the prior art, and has excellent adhesion and adhesion between boundaries of constituent layers. This has the effect of reducing the internal impedance of the battery, which is a problem when moving, and as a result has the effect of reducing the variation in the performance of the battery, and at the same time has the merit of significantly shortening the process from the viewpoint of manufacturing. An object of the present invention is to provide a method for producing a lithium polymer secondary battery having such excellent performance and stability.

【0009】[0009]

【課題を解決するための手段】本発明者の研究によれ
ば、リチウムイオン錯体含有ポリマー電解質、可塑剤含
有型ポリマー電解質、ゲル型ポリマー電解質あるいは完
全固体型電解質を含むリチウムポリマー二次電池等に於
いて、その各構成層間の密着性・接着性の問題は、通常
の液系と称されるリチウムイオン電池の場合に比べ、電
池性能に多大なる影響を与えることがわかっている。こ
の問題点を解決すべく鋭意研究を進めた結果、電池製作
にあたり、その各構成層の塗布工程の改良、すなわち従
来から行われている手法である各層を構成層ごとに単層
塗布・後処理して重ねていくwet−on−dry法よ
りも、同時に液状態で多層状態を形成し塗布する多層同
時塗布法、あるいは充分に湿潤状態にある塗布層に後処
理無く他層を重ね塗りするいわゆる多層wet−on−
wet法を採用することで、内部インピーダンス、およ
び充放電に関する電池性能のばらつきを大幅に低減する
ことができることがわかり、本発明に至った。
According to the study of the present inventors, the present invention relates to a polymer electrolyte containing a lithium ion complex, a polymer electrolyte containing a plasticizer, a gel polymer electrolyte or a lithium polymer secondary battery containing a completely solid electrolyte. Here, it has been found that the problem of adhesion and adhesion between the constituent layers greatly affects battery performance as compared with the case of a lithium-ion battery called a normal liquid system. As a result of intensive research to solve this problem, we improved the coating process of each constituent layer in battery production, that is, a single layer coating and post-treatment for each constituent layer, which is a conventional method A so-called multi-layer simultaneous coating method in which a multi-layer state is formed and applied simultaneously in a liquid state, or a so-called multi-layer coating method in which a coating layer in a sufficiently wet state is overcoated with another layer without post-processing, rather than a wet-on-dry method in which the layers are overlapped. Multilayer wet-on-
By adopting the wet method, it was found that variations in battery performance related to internal impedance and charge / discharge can be significantly reduced, and the present invention has been achieved.

【0010】本発明の要旨は、導電性支持体上に、少な
くとも、プライマー層、活物質を含む電極層、及びポリ
マー電解質層から選ばれる、二層以上を塗布してなるリ
チウムポリマー二次電池の製造方法であって、そのうち
少なくとも二つ以上の層の塗料を液状態で層状に重ね、
これ全体を一層として同時に塗布する方法を用い、かつ
その際に用いる各層の塗料の粘度は、2×102 -1
せん断速度を付与したときの動的粘性率において10-3
〜5×102 Pa・sの範囲を示すものを用い、更に隣
り合う層間の塗料の粘度差が、上記せん断速度における
動的粘性率の比較において、102 Pa・s以内である
ことを特徴とするリチウムポリマー二次電池の製造方法
又は導電性支持体上に、少なくとも、プライマー層、活
物質を含む電極層、及びポリマー電解質層から選ばれ
る、二層以上を塗布してなるリチウムポリマー二次電池
の製造方法であって、湿潤状態にある一つの塗布層上に
後処理無しに他層を塗布することを繰り返し、最後に全
層同時に後処理を行う方法を用い、かつその際に用いる
各層の塗料の粘度は、2×102 -1のせん断速度を付
与したときの動的粘性率において10-3〜5×102
a・sの範囲を示すものを用い、また重ね塗りする際の
上層の粘度が、せん断速度における動的粘性率の比較に
おいて、下層の粘度に対し、下層粘度+102 Pa・s
以下であることを特徴とするリチウムポリマー二次電池
の製造方法にある。
The gist of the present invention is to provide a lithium polymer secondary battery in which at least two layers selected from a primer layer, an electrode layer containing an active material, and a polymer electrolyte layer are coated on a conductive support. A production method, wherein at least two or more layers of the paint are layered in a liquid state,
The method of simultaneously applying the whole as a single layer is used, and the viscosity of the coating material of each layer used at that time is 10 −3 in terms of the dynamic viscosity when a shear rate of 2 × 10 2 s −1 is applied.
55 × 10 2 Pa · s, and the difference in the viscosity of the paint between adjacent layers is within 10 2 Pa · s in comparison of the dynamic viscosity at the above shear rate. A method for producing a lithium polymer secondary battery or a conductive support, on which at least two layers selected from a primer layer, an electrode layer containing an active material, and a polymer electrolyte layer, are coated with a lithium polymer secondary A method for producing a battery, wherein a method of repeatedly applying another layer without post-processing on one coating layer in a wet state, and finally performing post-processing simultaneously on all layers, and each layer used at that time The viscosity of the paint is 10 −3 to 5 × 10 2 P in the dynamic viscosity when a shear rate of 2 × 10 2 s −1 is applied.
In the comparison of the dynamic viscosity at the shear rate, the viscosity of the upper layer is lower than the viscosity of the lower layer by 10 2 Pa · s.
A method for producing a lithium polymer secondary battery, characterized in that:

【0011】[0011]

【発明の実施の形態】本発明に於ける層とは、Al、C
uなどの導電性支持体上に直接乃至は間接的に塗布され
形成される層であって、各種の活物質含有層である電極
層以外に、この電極層と導電性支持体との間に設けられ
る層、すなわち導電性かつ接着性を高めるためのアンカ
ー効果を持つプライマー層、あるいは電極層上に設けら
れるポリマー電解質層等の、電池の性能発現のために必
要となる全ての層を指す。
BEST MODE FOR CARRYING OUT THE INVENTION The layers in the present invention are Al, C
u is a layer formed by being applied directly or indirectly on a conductive support such as u, and in addition to the electrode layers that are various active material-containing layers, between this electrode layer and the conductive support. It refers to all the layers required for battery performance, such as a layer provided, that is, a primer layer having an anchor effect for enhancing conductivity and adhesion, or a polymer electrolyte layer provided on an electrode layer.

【0012】これらの電池において、本願発明により各
層間の密着性・接着性が向上し、結果的に内部インピー
ダンスが低減される理由としては、各層が充分に湿潤状
態にあるうちに接触させ、その後に乾燥や硬化反応を起
こさせることで、まず、湿潤状態の層間は相互の界面張
力によりなじみが向上すること、また充分な湿潤状態で
接触した際に層界面が極微量互いに混じり合うことで互
いにアンカー効果を生むためと考えられる。従来の逐次
wet−on−dry法では、各層ごとに逐次後処理を
伴うため、上記の界面張力的な親和性およびアンカー効
果が生じにくく、結果的に界面剥離に近い状態が生じ本
来の材料の性能を充分に引き出せていないと考えられ
る。
In these batteries, the reason why the present invention improves the adhesion / adhesion between the respective layers and consequently the internal impedance is reduced is that the layers are brought into contact with each other while they are in a sufficiently wet state. By causing a drying and curing reaction to occur, first, the compatibility between the wet layers is improved by the interfacial tension between them, and when the layers are contacted in a sufficiently wet state, a very small amount of the layer interfaces are mixed with each other, and It is considered that this is to create an anchor effect. In the conventional sequential wet-on-dry method, since a sequential post-treatment is performed for each layer, the above-mentioned affinity in terms of interfacial tension and an anchor effect are hardly generated, and as a result, a state close to interfacial peeling occurs and the original material is removed. It is considered that the performance has not been sufficiently brought out.

【0013】塗布装置に関しては特に限定されないが、
本願第1発明の多層同時塗布の場合、各ペーストを液
(半固体)状態の段階で多層状態としておき、その後支
持体上に乗せることで多層同時の塗布を実現する方式で
ある。これには、スライドコーティングやエクストルー
ジョン型のダイコーティングなどが挙げられるが、ペー
スト粘度および塗布膜厚等を考慮すると通常この後者の
エクストルージョン方式が最も優れている方式と言え
る。
The coating device is not particularly limited,
In the case of the multi-layer simultaneous application of the first invention of the present application, each paste is formed into a multi-layer state in a liquid (semi-solid) state, and is then placed on a support to realize multi-layer simultaneous application. This includes slide coating and extrusion type die coating. The latter extrusion method is usually the best method in consideration of paste viscosity and coating film thickness.

【0014】また、本願第2発明である湿潤状態の層上
に他層を塗布する、いわゆる逐次wet−on−wet
方式により多層塗布した場合、請求項1の多層同時塗布
法で作製したものと比較して、ほぼ同等の性能を有する
ことを確認しており、この方法に於いては、上記エクス
トルージョンダイ方式の他に、リバースロール、グラビ
ア、ナイフコーター、キスコーター、マイクログラビ
ア、ナイフコーター、ロッドコーター、ブレードコータ
ー等、可能であれば、何らその塗布手法は限定されず、
多層同時法よりも一層多様な塗布方式を組み合わせて採
用することができる。また、下層の湿潤状態、粘度によ
っては、別の支持体に塗布済みの湿潤状態の別層を転写
ラミネート塗布しその上層とすることも可能である。
Further, another layer is coated on the layer in the wet state according to the second invention of the present application, that is, so-called sequential wet-on-wet.
It has been confirmed that, when a multilayer coating is performed by a method, the performance is almost the same as that produced by the multilayer simultaneous coating method of claim 1. In this method, the extrusion die method is used. Besides, a reverse roll, a gravure, a knife coater, a kiss coater, a microgravure, a knife coater, a rod coater, a blade coater, etc., if possible, the application method is not limited at all,
More various coating methods can be used in combination than the multilayer simultaneous method. Further, depending on the wet state and viscosity of the lower layer, another layer in a wet state, which has been applied to another support, may be transfer-laminated and applied as an upper layer.

【0015】その他、塗布液に関しては、溶剤を含有す
るしないに関わらず、例えばいわゆる可塑剤と称される
有機溶剤を含まないモノマー含有タイプであっても、塗
布後に熱・光・電子線硬化などの処理にて目標の塗膜性
能を持たせることのできるものであり、かつ適切な塗布
法の選択により湿潤状態塗布が可能でさえあれば、全て
本願の請求範囲に入る。
Regarding the coating liquid, regardless of whether it contains a solvent or not, even if it is a monomer-containing type that does not contain an organic solvent called a so-called plasticizer, it can be cured by heat, light, electron beam, etc. after coating. If the wet coating can be carried out by selecting the appropriate coating method and the wet state coating is possible, all the processes fall within the scope of the present invention.

【0016】本願第1発明では、二層以上の多層同時塗
布を行う場合に、各層の塗料の粘度が、2×102 -1
のせん断速度を付与したときの動的粘性率において10
-3〜5×102 Pa・sの範囲を示すものを用い、更に
隣り合う層間の塗料の粘度差が、上記せん断速度におけ
る動的粘性率の比較において、102 Pa・s以内であ
ることを特徴とする。特に各液の粘弾性に制限はない。
尚、その中の特定の層を薄膜塗布する場合には、通常動
的粘性率において、各液間の差が1Pa・s以内とする
事が望ましく、かつ各液に関するCasson′s p
lotにおける傾きをなるべく近くする方がより望まし
い。
In the first invention of the present application, when two or more layers are simultaneously coated, the viscosity of the paint in each layer is 2 × 10 2 s −1.
Dynamic viscosity at a shear rate of 10
-3 to 5 × 10 2 Pa · s, and the difference in viscosity between paints between adjacent layers is within 10 2 Pa · s in comparison of the dynamic viscosity at the above shear rate. It is characterized by. There is no particular limitation on the viscoelasticity of each liquid.
When a specific layer is applied as a thin film, it is usually desirable that the difference between the respective liquids is within 1 Pa · s in dynamic viscosity, and Casson's sp.
It is more desirable to make the slope in lot as close as possible.

【0017】本願薄膜における範囲の粘度ペーストを用
いることで、多層化した流体間における液の相互攪乱が
小さくなり、界面を均一に保つことが可能になる。そし
てこのCaasson′ plotにおける傾きを近づ
けることで、一層流体は近似的液性を持ち合わせるよう
になるため、流体力学的見地からも界面の攪乱は小さく
なり、より薄膜化させることが出来ると思われる。これ
らのことから、電池内の正・負極の短絡が減り、電池の
性能バラツキ、収率の向上に結びつく。
By using the viscosity paste in the range of the thin film of the present invention, mutual disturbance of the liquid between the multilayered fluids is reduced, and the interface can be kept uniform. By approaching the slope at this Caasson 'plot, the fluid has more approximate liquid properties, and hence from the hydrodynamic point of view, disturbance at the interface is reduced, and it is thought that the film can be made thinner. From these facts, the short circuit between the positive electrode and the negative electrode in the battery is reduced, which leads to variation in the performance of the battery and improvement in the yield.

【0018】本願第2発明の二層以上の逐次wet−o
n−wet塗布を行う場合は各層の塗料の粘度が、2×
102 -1のせん断速度を付与したときの動的粘性率に
おいて10-3〜5×102 Pa・sの範囲を示すものを
用い、また重ね塗りする際の上層の粘度が、せん断速度
における動的粘性率の比較において、下層の粘度に対
し、下層粘度+102 Pa・s以下であることを特徴と
する。特に各液の粘弾性に制限はない。
According to the second invention of the present application, two or more sequential wet-o
When n-wet coating is performed, the viscosity of the paint in each layer is 2 ×
When the shear viscosity of 10 2 s −1 is applied , a dynamic viscosity of 10 −3 to 5 × 10 2 Pa · s is used. Is characterized in that the viscosity of the lower layer is equal to or lower than the viscosity of the lower layer + 10 2 Pa · s with respect to the viscosity of the lower layer. There is no particular limitation on the viscoelasticity of each liquid.

【0019】上記範囲に入らない条件の場合、例えば低
粘度の電解質の上にこれよりも10 2 Pa・s以上高粘
度の正極あるいは負極を塗る場合、下層電解質ペースト
が上層の電極ペーストから受ける応力を支えきれず界面
に乱れを生じ、その結果電池内の正・負極の短絡、必要
以上の界面の混じりが起こるため、性能のバラツキ・収
率の低下につながると考えられる。
In the case of a condition outside the above range, for example,
Over 10 on electrolyte of viscosity TwoHigh viscosity over Pa · s
When applying a positive electrode or a negative electrode, the lower electrolyte paste
Interface cannot support the stress received from the upper electrode paste
Of the battery, resulting in a short circuit between the positive and negative electrodes in the battery.
Because of the interfacial mixing described above, variations in performance and yield
It is thought that this will lead to a lower rate.

【0020】本発明のリチウム二次電池は正極、負極及
びポリマー電解質を主たる構成要件としている。まず本
発明のリチウム二次電池における電極について説明す
る。一般的に、リチウム二次電池における正極や負極
は、アルミニウム板や銅板の様な集電体上に正極(負
極)活物質、導電材料、及び結合樹脂(バインダー)、
溶媒等を含有する塗料を塗布、乾燥して製造する。
The lithium secondary battery of the present invention mainly comprises a positive electrode, a negative electrode and a polymer electrolyte. First, the electrodes in the lithium secondary battery of the present invention will be described. Generally, a positive electrode and a negative electrode in a lithium secondary battery are formed by forming a positive electrode (negative electrode) active material, a conductive material, and a binding resin (binder) on a current collector such as an aluminum plate or a copper plate.
It is manufactured by applying and drying a paint containing a solvent and the like.

【0021】本発明における正極に用いる活物質であ
る、リチウムイオンを吸蔵放出可能な化合物としては、
無機化合物としてはFe、Co、Ni、Mn、等の遷移
金属の遷移金属酸化物、リチウムと遷移金属との複合酸
化物、遷移金属硫化物等が挙げられる。具体的には、M
nO、V2 5 、V6 13、TiO2 等の遷移金属酸化
物粉末、ニッケル酸リチウム、コバルト酸リチウムなど
のリチウムと遷移金属との複合酸化物粉末、TiS2
FeSなどの遷移金属硫化物粉末が挙げられる。有機化
合物としては、例えばポリアニリン等の導電性ポリマー
等が挙げられる。又無機化合物、有機化合物などを混合
して用いても良い。
The compound capable of inserting and extracting lithium ions, which is an active material used for the positive electrode in the present invention, includes:
Examples of the inorganic compound include transition metal oxides of transition metals such as Fe, Co, Ni, and Mn, composite oxides of lithium and transition metals, and transition metal sulfides. Specifically, M
transition metal oxide powders such as nO, V 2 O 5 , V 6 O 13 and TiO 2 , composite oxide powders of lithium and transition metal such as lithium nickelate and lithium cobalt oxide, TiS 2 ,
Transition metal sulfide powder such as FeS can be used. Examples of the organic compound include a conductive polymer such as polyaniline. Further, an inorganic compound, an organic compound and the like may be mixed and used.

【0022】負極材料としては、Li金属箔の他にLi
イオンを吸蔵放出可能な化合物としてグラファイトやコ
ークス等を用いる。これら正極、負極の活物質の粒径は
電池のその他の構成要件とのかねあいで適宜選択すれば
よいが、通常1〜30μm、特に5〜20μmとするこ
とで、電池特性が良好であるという効果があるので好ま
しい。バインダーとしては、電解液等に対して安定であ
る必要があり、耐候性、耐薬品性、耐熱性、難燃性等が
望まれる。さらにイオン伝導性に優れた材料が望まし
く、例えば架橋性のポリエチレンオキシド樹脂等が挙げ
られる。さらに好ましくは、ポリエチレンオキシド樹脂
末端にアクリル基、メタクリル基等を導入し熱や紫外線
等により架橋させることが望ましい。
As the negative electrode material, in addition to the Li metal foil, Li
Graphite, coke, or the like is used as a compound capable of inserting and extracting ions. The particle size of the active material of the positive electrode and the negative electrode may be appropriately selected in consideration of the other constituent elements of the battery, but is usually 1 to 30 μm, and particularly preferably 5 to 20 μm, whereby the battery characteristics are good. Is preferred. The binder needs to be stable to an electrolytic solution or the like, and is desired to have weather resistance, chemical resistance, heat resistance, flame retardancy, and the like. Further, a material having excellent ion conductivity is desirable, and examples thereof include a cross-linkable polyethylene oxide resin. More preferably, it is desirable to introduce an acryl group, a methacryl group, or the like into the terminal of the polyethylene oxide resin and to crosslink with heat, ultraviolet rays, or the like.

【0023】導電性物質としては、リチウムを吸蔵放出
可能な化合物粉末に適量混合して導電性を付与できる物
であれば特に制限は無いが、アセチレンブラック、カー
ボンブラック、黒鉛などの炭素系粉末や、使用する電極
電位で安定な金属粉末などが挙げられる。これら導電性
物質のDBP吸油量は120cc/100g以上が好ま
しく、特に150cc/100g以上が電解液を保持す
るという理由から好ましい。活物質とバインダーの重量
比は、98/2〜80/20の範囲が好ましい。
The conductive substance is not particularly limited as long as it is a substance capable of imparting conductivity by mixing a proper amount of lithium with a compound powder capable of inserting and extracting lithium, and carbon-based powders such as acetylene black, carbon black and graphite can be used. And a metal powder that is stable at the electrode potential used. The DBP oil absorption of these conductive substances is preferably 120 cc / 100 g or more, particularly preferably 150 cc / 100 g or more because the electrolyte retains the electrolyte. The weight ratio between the active material and the binder is preferably in the range of 98/2 to 80/20.

【0024】正極の集電体としては、一般的にアルミ箔
を用いる。負極の集電体としては、銅箔を用いる。これ
ら集電体表面には予め粗化処理を行うと結着効果が高く
なるので好ましい。表面の粗面化方法としては、機械的
研磨法、電解研磨法または化学研磨法が挙げられる。機
械的研磨法としては、研磨剤粒子を固着した研磨布紙、
砥石、エメリバフ、鋼線などを備えたワイヤーブラシな
どで集電体表面を研磨する方法が挙げられる。
An aluminum foil is generally used as a current collector of the positive electrode. A copper foil is used as a current collector of the negative electrode. It is preferable that the surface of the current collector be subjected to a roughening treatment in advance, since the binding effect is enhanced. Examples of the surface roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. As the mechanical polishing method, abrasive cloth paper to which abrasive particles are fixed,
A method of polishing the surface of the current collector with a wire brush provided with a grindstone, emery buff, steel wire, or the like can be given.

【0025】次に、ポリマー電解質について説明する。
ポリマー電解質としては、一般的には、ゲル状ポリマー
中に電解液を含有するもの(以下、これを単にポリマー
電解質ということがある)を用いる。ゲル状ポリマーに
含有させる電解液は非水電解液が好適であり、これは非
水溶媒に電解質を溶解させたものを用いるのが一般的で
ある。ポリマー電解質に用いる電解液としては、電解質
として上記正極活物質及び負極活物質に対して安定であ
り、かつリチウムイオンが前記正極活物質あるいは負極
活物質と電気化学反応をするための移動を行い得る非水
物質であればいずれのものでも使用することができる。
Next, the polymer electrolyte will be described.
Generally, a polymer electrolyte containing an electrolyte solution in a gel polymer (hereinafter, this may be simply referred to as a polymer electrolyte) is used as the polymer electrolyte. A non-aqueous electrolytic solution is preferably used as the electrolytic solution to be contained in the gel polymer. In general, a solution obtained by dissolving an electrolyte in a non-aqueous solvent is used. As the electrolyte solution used for the polymer electrolyte, the electrolyte is stable with respect to the positive electrode active material and the negative electrode active material, and lithium ions can move to perform an electrochemical reaction with the positive electrode active material or the negative electrode active material. Any non-aqueous substance can be used.

【0026】具体的にはLiPF6 、LiAsF6 、L
iSbF6 、LiBF4 、LiClO4 、Lil、Li
Br、LiCl、LiAlCl、LiHF2 、LiSC
N、LiSO3 CF2 等が挙げられる。これらのうちで
は特にLiPF6 、LiClO4 が好適である。これら
電解質の電解液における含有量は、一般的に0.5〜
2.5mol/lである。
Specifically, LiPF 6 , LiAsF 6 , L
iSbF 6 , LiBF 4 , LiClO 4 , Lil, Li
Br, LiCl, LiAlCl, LiHF 2 , LiSC
N, LiSO 3 CF 2 and the like. Among them, LiPF 6 and LiClO 4 are particularly preferable. The content of these electrolytes in the electrolyte is generally 0.5 to
2.5 mol / l.

【0027】このポリマー電解質を溶解する溶媒は特に
限定されないが、比較的高誘電率の溶媒が好適に用いら
れる。具体的にはエチレンカーボネート、プロピレンカ
ーボネート等の環状カーボネート類、ジメチルカーボネ
ート、ジエチルカーボネート、エチルメチルカーボネー
トなどの非環状カーボネート類、テトラヒドロフラン、
2−メチルテトラヒドロフラン、ジメトキシエタン等の
グライム類、γ−ブチルラクトン等のラクトン類、スル
フォラン等の硫黄化合物、アセトニトリル等のニトリル
類等の1種又は2種以上の混合物を挙げることができ
る。これらのうちでは、特にエチレンカーボネート、プ
ロピレンカーボネート等の環状カーボネート類、ジメチ
ルカーボネート、ジエチルカーボネート、エチルメチル
カーボネートなどの非環状カーボネート類から選ばれた
1種又は2種以上の混合溶液が好適である。
The solvent for dissolving the polymer electrolyte is not particularly limited, but a solvent having a relatively high dielectric constant is preferably used. Specifically, ethylene carbonate, cyclic carbonates such as propylene carbonate, dimethyl carbonate, diethyl carbonate, acyclic carbonates such as ethyl methyl carbonate, tetrahydrofuran,
One or a mixture of two or more of glymes such as 2-methyltetrahydrofuran and dimethoxyethane, lactones such as γ-butyllactone, sulfur compounds such as sulfolane, and nitriles such as acetonitrile can be mentioned. Among these, one or more mixed solutions selected from cyclic carbonates such as ethylene carbonate and propylene carbonate, and acyclic carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are particularly suitable.

【0028】上記電解質溶解液をポリエチレンオキシ
ド、ポリプロピレンオキシド、ポリエチレンオキシドの
イソシアネート架橋体、フェニレンオキシド、フェニレ
ンスルフィド系ポリマー等の重合体に浸しゲル状電解質
を作成する。本発明のリチウム2次電池の形状は、円筒
型、箱形、ペーパー型、カード型、円型など種々の形状
とすることができる。
The above-mentioned electrolyte solution is immersed in a polymer such as polyethylene oxide, polypropylene oxide, a crosslinked isocyanate of polyethylene oxide, phenylene oxide, or a phenylene sulfide polymer to prepare a gel electrolyte. The shape of the lithium secondary battery of the present invention can be various shapes such as a cylindrical shape, a box shape, a paper type, a card type, and a circular shape.

【0029】[0029]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。なお、以
下のペーストの粘度測定には、東機産業製RE−550
Uを用いた。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the present invention. Is possible. The viscosity measurement of the following paste was performed using RE-550 manufactured by Toki Sangyo.
U was used.

【0030】 〔正極ペーストの調製〕 組成(1) コバルト酸リチウム(日本化学工業製 セルシードC10) 88.0wt% アセチレンブラック(電気化学工業製 デンカブラック) 4.0wt% バインダー(Henkel社製 Photomer4050) 8.0wt% 重合開始剤(Akuzo Nobel社製 Trignox42) 0.1wt% 溶剤(三菱化学製プロピレンカーボネート) 100.0wt%[Preparation of Positive Electrode Paste] Composition (1) Lithium cobaltate (Cellseed C10 manufactured by Nippon Chemical Industry) 88.0 wt% Acetylene black (Denka Black manufactured by Denki Kagaku Kogyo) 4.0 wt% Binder (Photomer 4050 manufactured by Henkel) 8 0.0 wt% Polymerization initiator (Trignox 42 manufactured by Akuzo Nobel) 0.1 wt% Solvent (propylene carbonate manufactured by Mitsubishi Chemical) 100.0 wt%

【0031】上記組成の内、重合開始剤を除いた全ての
原料について、混練機により2時間混練。調製したペー
ストに、使用直前に重合開始剤を添加し、撹拌して正極
ペーストとした。このペーストについて、2×102
-1のせん断速度を付与したときの動的粘性率は、1×1
2 Pa・sを示した。
From the above composition, all the raw materials except the polymerization initiator were kneaded for 2 hours by a kneader. A polymerization initiator was added to the prepared paste immediately before use, followed by stirring to obtain a positive electrode paste. For this paste, 2 × 10 2 s
The dynamic viscosity at a shear rate of -1 is 1 × 1
0 2 Pa · s was shown.

【0032】 組成(2) コバルト酸リチウム(日本化学工業製 セルシードC10) 88.0wt% アセチレンブラック(電気化学工業製 デンカブラック) 4.0wt% バインダー(Henkel社製 Photomer4050) 8.0wt% 重合開始剤(Akuzo Nobel社製 Trignox42) 0.1wt% 溶剤(三菱化学製プロピレンカーボネート) 70.0wt%Composition (2) Lithium cobaltate (Cell seed C10 manufactured by Nippon Chemical Industry) 88.0 wt% Acetylene black (Denka Black manufactured by Denki Kagaku Kogyo) 4.0 wt% Binder (Photomer 4050 manufactured by Henkel) 8.0 wt% Polymerization initiator (Trignox42 manufactured by Akuzo Nobel) 0.1 wt% Solvent (propylene carbonate manufactured by Mitsubishi Chemical) 70.0 wt%

【0033】上記組成の内、重合開始剤を除いた全ての
原料について、混練機により2時間混練。調製したペー
ストに、使用直前に重合開始剤を添加し、撹拌して正極
ペーストとした。このペーストについて、2×102
-1のせん断速度を付与したときの動的粘性率は、4×1
2 Pa・sを示した。
From the above composition, all the raw materials except the polymerization initiator were kneaded for 2 hours by a kneader. A polymerization initiator was added to the prepared paste immediately before use, followed by stirring to obtain a positive electrode paste. For this paste, 2 × 10 2 s
The dynamic viscosity at a shear rate of -1 is 4 × 1
0 2 Pa · s was shown.

【0034】 〔負極ペーストの調製〕 コークス(三菱化学製 MBC) 92.0wt% バインダー(Henkel社製 Photomer4050) 8.0wt% 重合開始剤(Akuzo Nobel社製 Trignox42) 0.1wt% 溶剤(三菱化学製プロピレンカーボネート) 100.0wt%[Preparation of Negative Electrode Paste] Coke (MBC manufactured by Mitsubishi Chemical) 92.0 wt% Binder (Photomer 4050 manufactured by Henkel) 8.0 wt% Polymerization initiator (Trignox 42 manufactured by Akuzo Nobel) 0.1 wt% Solvent (manufactured by Mitsubishi Chemical) Propylene carbonate) 100.0wt%

【0035】正極と同様、上記組成の内、重合開始剤を
除いた全ての原料について、混練機により2時間混練。
調製したペーストに、使用直前に重合開始剤を添加し、
撹拌して負極ペーストとした。このペーストについて、
2×102 -1のせん断速度を付与したときの動的粘性
率は8×101 Pa・sを示した。
As in the case of the positive electrode, all the raw materials in the above composition except for the polymerization initiator were kneaded for 2 hours by a kneader.
A polymerization initiator is added to the prepared paste immediately before use,
The mixture was stirred to obtain a negative electrode paste. About this paste,
The dynamic viscosity at the time of applying a shear rate of 2 × 10 2 s −1 was 8 × 10 1 Pa · s.

【0036】 〔ポリマー含有電解質調製〕 バインダー(Henkel社製 Photomer4050) 20.0wt% バインダー(ポリエチレンオキシド) 2.0wt% 過塩素酸リチウム 15.0wt% 重合開始剤(Akuzo Nobel社製 Trignox42) 0.5wt% 溶剤(三菱化学製プロピレンカーボネート) 100.0wt%[Preparation of Polymer-Containing Electrolyte] Binder (Photomer 4050 manufactured by Henkel) 20.0 wt% Binder (polyethylene oxide) 2.0 wt% Lithium perchlorate 15.0 wt% Polymerization initiator (Trignox 42 manufactured by Akuzo Nobel) 0.5 wt% % Solvent (Mitsubishi Chemical propylene carbonate) 100.0wt%

【0037】上記組成全部を混合撹拌溶解し、ポリマー
含有電解質ペーストとした。このペーストについて、2
×102 -1のせん断速度を付与したときの動的粘性率
は2×10Pa・sを示した。
All of the above compositions were mixed, stirred and dissolved to obtain a polymer-containing electrolyte paste. About this paste, 2
The dynamic viscosity at the time of applying a shear rate of × 10 2 s −1 was 2 × 10 Pa · s.

【0038】〔基材〕 アルミニウム箔(東洋アルミニウム製) 20μm厚 銅箔(日本製箔製) 20μm厚 〔各層塗布厚み〕 正極層 100μm 負極層 100μm 電解質層 30μm[Substrate] Aluminum foil (made by Toyo Aluminum) 20 μm thick Copper foil (made by Japanese foil) 20 μm [Thickness of each layer coated] Positive layer 100 μm Negative layer 100 μm Electrolyte layer 30 μm

【0039】・実施例1 エクストルージョン型ダイ多層同時塗布方式により、正
極ペースト(1)、電解質、負極ペーストの順となるよ
うこの三層を所定膜厚に同時に押し出し、全体で一層状
態としてアルミニウム箔上に塗布した。そして、未処理
のうちに、この塗布体の上に銅箔をラミネートし、全五
層よりなる未処理塗布体にした。これについて、80℃
下10分間熱硬化させ、所定の形状に加工し、電池性能
評価を行った。
Example 1 By an extrusion die multi-layer simultaneous coating method, these three layers were simultaneously extruded to a predetermined film thickness in the order of the positive electrode paste (1), the electrolyte, and the negative electrode paste. Coated on top. Then, during the untreated state, a copper foil was laminated on the coated body to obtain an untreated coated body composed of all five layers. About 80 ° C
Heat curing was performed for 10 minutes, processed into a predetermined shape, and evaluated for battery performance.

【0040】・実施例2 エクストルージョン型ダイ多層同時塗布方式により、負
極ペースト、電解質、正極ペースト(1)の順となるよ
うこの三層を所定膜厚に同時に押し出し、全体で一層状
態として銅箔上に塗布した。そして、未処理のうちに、
この塗布体の上にアルミ箔をラミネートし、全五層より
なる未処理塗布体にした。これについて、80℃下10
分間熱硬化させ、所定の形状に加工し、電池性能評価を
行った。
Example 2 By an extrusion die multi-layer simultaneous coating method, these three layers are simultaneously extruded to a predetermined film thickness in the order of the negative electrode paste, the electrolyte, and the positive electrode paste (1). Coated on top. And, unprocessed,
An aluminum foil was laminated on the coated body to obtain an untreated coated body composed of all five layers. About 10
It was heat-cured for a minute, processed into a predetermined shape, and evaluated for battery performance.

【0041】・実施例3 エクストルージョン型ダイ単層塗布方式により、アルミ
ニウム箔上に正極ペースト(1)を所定膜厚に塗布し、
未処理の内にこの上に同単層塗布方式にて電解質層を所
定膜厚となるように塗布した。また、銅箔上に同方式に
て負極ペーストを所定膜厚となるよう塗布し、未処理の
まま上記塗布済のアルミ箔上にラミネートし、全五層か
らなる未処理塗布体とした。これについて、80℃下1
0分間熱硬化させ、所定の形状に加工し、電池性能評価
を行った。
Example 3 A positive electrode paste (1) was applied to a predetermined thickness on an aluminum foil by an extrusion die single layer coating method.
An electrolyte layer was applied to the untreated layer so as to have a predetermined thickness by the same single-layer coating method. Further, a negative electrode paste was applied on a copper foil by the same method so as to have a predetermined film thickness, and was laminated on the above-mentioned coated aluminum foil without any treatment to obtain an untreated coated body composed of all five layers. About 1
It was heat-cured for 0 minutes, processed into a predetermined shape, and evaluated for battery performance.

【0042】・実施例4 エクストルージョン型ダイ単層塗布方式により、アルミ
ニウム箔上に正極ペースト(1)を所定膜厚に塗布し、
未処理の内にこの上に同単層塗布方式にて電解質層、更
には負極ペーストを所定膜厚となるように塗布した。そ
の後、この塗布体の上に銅箔をラミネートし、全五層か
らなる未処理塗布体とした。これについて、80℃下1
0分間熱硬化させ、所定の形状に加工し、電池性能評価
を行った。
Example 4 A positive electrode paste (1) was applied to a predetermined thickness on an aluminum foil by an extrusion die single layer coating method.
An electrolyte layer and further a negative electrode paste were applied thereon by a single-layer coating method so as to have a predetermined thickness. Thereafter, a copper foil was laminated on the coated body to obtain an untreated coated body composed of all five layers. About 1
It was heat-cured for 0 minutes, processed into a predetermined shape, and evaluated for battery performance.

【0043】・比較例1 エクストルージョン型ダイ単層塗布方式により、アルミ
ニウム箔上および銅箔上に、それぞれ正極ペースト
(1)、負極ペーストを所定膜厚となるように塗布し、
この上に表面粗さRaが10nmの10μm厚ポリエチ
レンテレフタレートフィルムをそれぞれラミネートし
て、このまま80℃下10分間熱硬化させた。その後こ
のラミネートフィルムを剥離することで、所定の正極、
負極フィルムを得た。この正極電極層上に、同塗布方式
により所定膜厚となるよう電解質層を塗布。同様にポリ
エチレンテレフタレートフィルムによりラミネート・熱
硬化させ、フィルム剥離後に上記硬化済の負極フィルム
と重ねた。この積層フィルムについて、更に層間の密着
性を向上させるべく、線圧0.1kgf/cmの金属ロ
ール間を3回通し処理した。
Comparative Example 1 A positive electrode paste (1) and a negative electrode paste were respectively applied to an aluminum foil and a copper foil so as to have a predetermined thickness by an extrusion die single layer coating method.
A 10 μm-thick polyethylene terephthalate film having a surface roughness Ra of 10 nm was laminated thereon, respectively, and thermally cured at 80 ° C. for 10 minutes. After that, by peeling off the laminated film, a predetermined positive electrode,
A negative electrode film was obtained. An electrolyte layer is coated on the positive electrode layer by the same coating method so as to have a predetermined thickness. Similarly, it was laminated and heat-cured with a polyethylene terephthalate film, and after peeling off the film, it was overlapped with the cured negative electrode film. This laminated film was passed through a metal roll having a linear pressure of 0.1 kgf / cm three times in order to further improve the adhesion between the layers.

【0044】・比較例2 エクストルージョン型ダイ単層塗布方式により、アルミ
ニウム箔上に、正極ペーストを所定膜厚となるように塗
布し、この上に表面粗さRaが10nmの10μm厚ポ
リエチレンテレフタレートフィルムをそれぞれラミネー
トして、このまま80℃下10分間熱硬化させた。その
後このラミネートフィルムを剥離することで、所定の正
極フィルムを得た。この正極電極層上に、同塗布方式に
より所定膜厚となるよう電解質層を塗布。同様にポリエ
チレンテレフタレートフィルムによりラミネート・熱硬
化させ、フィルムを剥離した。同塗布方式により、銅箔
上に負極ペーストを所定膜厚となるように塗布し、未処
理のまま、上記負極・電解質を塗布した電解質面にラミ
ネートした。この積層フィルムについて、80℃下10
分間熱硬化させた後、更に層間の密着性を向上させるべ
く、線圧0.1kgf/cmの金属ロール間を3回通し
処理した。これについて所定の形状に加工し、電池性能
評価を行った。
Comparative Example 2 A positive electrode paste was applied on an aluminum foil to a predetermined thickness by an extrusion die single layer coating method, and a 10 μm thick polyethylene terephthalate film having a surface roughness Ra of 10 nm was applied thereon. Were respectively laminated and thermally cured at 80 ° C. for 10 minutes. Thereafter, the laminate film was peeled off to obtain a predetermined positive electrode film. An electrolyte layer is coated on the positive electrode layer by the same coating method so as to have a predetermined thickness. Similarly, lamination and heat curing were performed with a polyethylene terephthalate film, and the film was peeled off. According to the same coating method, a negative electrode paste was applied on a copper foil so as to have a predetermined thickness, and was untreated and laminated on the electrolyte surface coated with the negative electrode / electrolyte. About this laminated film, 10
After heat-curing for 3 minutes, in order to further improve the adhesion between the layers, the sheet was passed through a metal roll having a linear pressure of 0.1 kgf / cm three times. This was processed into a predetermined shape, and the battery performance was evaluated.

【0045】・比較例3 エクストルージョン型ダイ単層塗布方式により、アルミ
ニウム箔上に、正極ペースト(1)を所定膜厚となるよ
うに塗布し、この上に表面粗さRaが10nmの10μ
m厚ポリエチレンテレフタレートフィルムをそれぞれラ
ミネートして、このまま80℃下10分間熱硬化させ
た。その後このラミネートフィルムを剥離することで、
所定の正極フィルムを得た。この正極電極層上に、同塗
布方式により所定膜厚となるよう電解質層を塗布。ま
た、同塗布法により、銅箔上に負極層を所定膜厚となる
よう塗布。未処理のまま、上記の正極・未処理電解質フ
ィルム上にラミネートした。この積層フィルムについ
て、80℃下10分間熱硬化させた後、更に層間の密着
性を向上させるべく、線圧0.1kgf/cmの金属ロ
ール間を3回通し処理した。これについて所定の形状に
加工し、電池性能評価を行った。
Comparative Example 3 A positive electrode paste (1) was applied on an aluminum foil so as to have a predetermined film thickness by an extrusion die single layer coating method, and a surface roughness Ra of 10 μm was applied to the aluminum foil.
Each of the m-thick polyethylene terephthalate films was laminated and thermally cured at 80 ° C. for 10 minutes. Then, by peeling this laminate film,
A predetermined positive electrode film was obtained. An electrolyte layer is coated on the positive electrode layer by the same coating method so as to have a predetermined thickness. Further, the negative electrode layer is applied on the copper foil to have a predetermined thickness by the same coating method. While untreated, it was laminated on the above-mentioned positive electrode / untreated electrolyte film. This laminated film was heat-cured at 80 ° C. for 10 minutes, and then passed between metal rolls having a linear pressure of 0.1 kgf / cm three times in order to further improve the adhesion between layers. This was processed into a predetermined shape, and the battery performance was evaluated.

【0046】・比較例4 エクストルージョン型ダイ多層同時塗布方式により、正
極ペースト(2)、電解質、負極ペーストの順となるよ
うこの三層を所定膜厚に同時に押し出し、全体で一層状
態としてアルミニウム箔上に塗布した。そして、未処理
のうちに、この塗布体の上に銅箔をラミネートし、全五
層よりなる未処理塗布体にした。これについて、80℃
下10分間熱硬化させ、所定の形状に加工し、電池性能
評価を行った。
Comparative Example 4 The three layers were simultaneously extruded to a predetermined thickness so that the positive electrode paste (2), the electrolyte, and the negative electrode paste were formed in the order of the extrusion die multi-layer simultaneous coating method. Coated on top. Then, during the untreated state, a copper foil was laminated on the coated body to obtain an untreated coated body composed of all five layers. About 80 ° C
Heat curing was performed for 10 minutes, processed into a predetermined shape, and evaluated for battery performance.

【0047】・比較例5 エクストルージョン型ダイ単層塗布方式により、銅箔上
に負極ペーストを所定膜厚に塗布し、未処理の内にこの
上に同単層塗布方式にて電解質層、更には正極ペースト
(2)を所定膜厚となるように塗布した。その後、この
塗布体の上にアルミニウム箔をラミネートし、全五層か
らなる未処理塗布体とした。これについて、80℃下1
0分間熱硬化させ、所定の形状に加工し、電池性能評価
を行った。
Comparative Example 5 A negative electrode paste was applied to a predetermined thickness on a copper foil by an extrusion die single-layer coating method, and an untreated electrolytic paste was applied thereon by the same single-layer coating method. Was applied with a positive electrode paste (2) so as to have a predetermined film thickness. Thereafter, an aluminum foil was laminated on the coated body to obtain an untreated coated body composed of all five layers. About 1
It was heat-cured for 0 minutes, processed into a predetermined shape, and evaluated for battery performance.

【0048】上記実施例、比較例に関し、各条件サンプ
ル20個について初期充放電が可能であったサンプルの
個数を表1に示す。また、実施例1の初期放電容量を1
00とした時の各例の放電容量比も併せて表1に示す。
ここで、充電は0.2C(5時間で満充電になる電流
量)で行い、放電を0.2Cおよび1Cで行った時の結
果を示す。また、初期充放電が可能であったサンプルに
ついて、その各20サンプルの充放電サイクル試験後の
放電容量維持率80%達成個数を表2に示す。
Table 1 shows the number of samples that could be initially charged and discharged for 20 condition samples for the above Examples and Comparative Examples. Further, the initial discharge capacity of Example 1 was set to 1
Table 1 also shows the discharge capacity ratio of each example when it was set to 00.
Here, the results when charging was performed at 0.2 C (the amount of current that would be fully charged in 5 hours) and discharging was performed at 0.2 C and 1 C are shown. Table 2 shows the number of the samples which were capable of initial charge / discharge and achieved a discharge capacity retention ratio of 80% after the charge / discharge cycle test of each of the 20 samples.

【0049】[0049]

【表1】 表1 初期充放電可能個数 初期放電容量比 0.2C 1C ──────────────────────────── 実施例1 20 100 100 実施例2 19 99 98 実施例3 20 96 98 実施例4 19 98 98 比較例1 12 76 61 比較例2 15 81 66 比較例3 16 90 78 比較例4 10 96 82 比較例5 8 92 80[Table 1] Table 1 Initial chargeable / dischargeable number Initial discharge capacity ratio 0.2C 1C ──────────────────────────── Example 1 20 100 100 Example 2 1999 9 98 Example 3 20 96 98 Example 4 19 98 98 Comparative Example 1 12 76 61 Comparative Example 2 15 81 66 Comparative Example 3 16 90 78 Comparative Example 4 10 96 82 Comparative Example 5 8 92 80

【0050】[0050]

【表2】 表2 充放電サイクル数(回) 50 100 150 200 300 ───────────────────────────── 実施例1 20 20 20 19 19 実施例2 20 20 19 19 19 実施例3 20 20 20 19 19 実施例4 20 20 19 19 18 比較例1 8 2 0 0 0 比較例2 10 5 2 1 0 比較例3 15 10 8 5 3 比較例4 18 16 15 12 10 比較例5 16 13 10 9 7Table 2 Number of charge / discharge cycles (times) 50 100 150 200 300 ───────────────────────────── Example 1 20 20 20 19 19 Example 2 20 20 19 19 19 Example 3 20 20 20 19 19 Example 4 20 20 19 19 18 Comparative Example 1 8 2 0 0 Comparative Example 2 10 5 2 10 Comparative Example 3 15 10 8 5 3 Comparative Example 4 18 16 15 12 10 Comparative Example 5 16 13 10 9 7

【0051】[0051]

【発明の効果】本発明により、従来の塗布方式に比べ、
電極−電解質界面の接着性および界面均一性が大きく向
上し、電池の界面抵抗に関する内部インピーダンスの低
減、更には電池容量の向上につなげることができる。ま
た、電池のサイクル特性を大きく向上させ、かつ電池間
のばらつきを小さくすることができる。生産面において
も、生産工程の短縮に寄与するところ大である。
According to the present invention, compared to the conventional coating method,
Adhesiveness and interface uniformity at the electrode-electrolyte interface are greatly improved, which can lead to a reduction in internal impedance related to the interfacial resistance of the battery and an improvement in battery capacity. In addition, the cycle characteristics of the batteries can be greatly improved, and variations among the batteries can be reduced. In terms of production, it greatly contributes to shortening the production process.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体上に、少なくとも、プライ
マー層、活物質を含む電極層、及びポリマー電解質層か
ら選ばれる、二層以上を塗布してなるリチウムポリマー
二次電池の製造方法であって、そのうち少なくとも二つ
以上の層の塗料を液状態で層状に重ね、これ全体を一層
として同時に塗布する方法を用い、かつその際に用いる
各層の塗料の粘度は、2×102 -1のせん断速度を付
与したときの動的粘性率において10-3〜5×102
a・sの範囲を示すものを用い、更に隣り合う層間の塗
料の粘度差が、上記せん断速度における動的粘性率の比
較において、102 Pa・s以内であることを特徴とす
るリチウムポリマー二次電池の製造方法。
1. A method for producing a lithium polymer secondary battery, comprising applying at least two layers selected from a primer layer, an electrode layer containing an active material, and a polymer electrolyte layer on a conductive support. A method is used in which at least two or more layers of the paints are layered in a liquid state in a liquid state, and the whole is coated simultaneously as a single layer, and the viscosity of the paint in each layer used at that time is 2 × 10 2 s −1. 10 −3 to 5 × 10 2 P in the dynamic viscosity when a shear rate of
a.s is used, and the difference in viscosity of the paint between adjacent layers is within 10 2 Pa · s in comparison of the dynamic viscosity at the above-mentioned shear rate. Manufacturing method of secondary battery.
【請求項2】 導電性支持体上に、少なくとも、プライ
マー層、活物質を含む電極層、及びポリマー電解質層か
ら選ばれる、二層以上を塗布してなるリチウムポリマー
二次電池の製造方法であって、湿潤状態にある一つの塗
布層上に後処理無しに他層を塗布することを繰り返し、
最後に全層同時に後処理を行う方法を用い、かつその際
に用いる各層の塗料の粘度は、2×102 -1のせん断
速度を付与したときの動的粘性率において10-3〜5×
102 Pa・sの範囲を示すものを用い、また重ね塗り
する際の上層の粘度が、せん断速度における動的粘性率
の比較において、下層の粘度に対し、下層粘度+102
Pa・s以下であることを特徴とするリチウムポリマー
二次電池の製造方法。
2. A method for producing a lithium polymer secondary battery, comprising applying at least two layers selected from a primer layer, an electrode layer containing an active material, and a polymer electrolyte layer on a conductive support. Repeating the application of another layer without post-processing on one application layer in the wet state,
Finally, the method of performing post-treatment simultaneously on all layers is used, and the viscosity of the paint of each layer used at that time is 10 −3 to 5 in dynamic viscosity when a shear rate of 2 × 10 2 s −1 is applied. ×
Used as indicating the scope of the 10 2 Pa · s, also the upper layer of the viscosity at the time of recoating, in comparison of the dynamic viscosity at a shear rate, with respect to the lower viscosity, lower viscosity +10 2
A method for producing a lithium polymer secondary battery, which is not more than Pa · s.
JP9352927A 1997-12-22 1997-12-22 Manufacture of lithium polymer secondary battery Pending JPH11185733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9352927A JPH11185733A (en) 1997-12-22 1997-12-22 Manufacture of lithium polymer secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9352927A JPH11185733A (en) 1997-12-22 1997-12-22 Manufacture of lithium polymer secondary battery

Publications (1)

Publication Number Publication Date
JPH11185733A true JPH11185733A (en) 1999-07-09

Family

ID=18427413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9352927A Pending JPH11185733A (en) 1997-12-22 1997-12-22 Manufacture of lithium polymer secondary battery

Country Status (1)

Country Link
JP (1) JPH11185733A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266943A (en) * 2000-03-17 2001-09-28 Sony Corp Manufacturing method of battery and application device used for it
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method
JP2008198596A (en) * 2007-01-18 2008-08-28 Hitachi Maxell Ltd Positive electrode for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2008251225A (en) * 2007-03-29 2008-10-16 Tdk Corp All-solid lithium ion secondary battery and its manufacturing method
JP2010113819A (en) * 2008-11-04 2010-05-20 Konica Minolta Holdings Inc Secondary battery, method of manufacturing the same, and laminate type secondary battery
WO2012020942A3 (en) * 2010-08-09 2012-05-03 주식회사 엘지화학 Cathode current collector coated with a primer and magnesium secondary battery including same
US9039939B2 (en) 2007-03-29 2015-05-26 Tdk Corporation Production method of active material, and active material
KR20150083831A (en) 2012-09-14 2015-07-20 미꾸니 시끼소 가부시키가이샤 Slurry containing dispersed acetylene black, and lithium-ion secondary battery
US9246193B2 (en) 2007-03-29 2016-01-26 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
KR20160118986A (en) * 2015-04-02 2016-10-12 에스케이이노베이션 주식회사 Adhesive and multi-layered lithium ion battery separator and method of manufacturing the same
CN107004858A (en) * 2014-12-16 2017-08-01 株式会社Lg化学 The manufacture method of electrode for secondary battery containing ptc material and the thus electrode of method manufacture

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524510B2 (en) * 2000-03-17 2010-08-18 ソニー株式会社 Battery manufacturing method and coating apparatus used therefor
JP2001266943A (en) * 2000-03-17 2001-09-28 Sony Corp Manufacturing method of battery and application device used for it
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method
JP2008198596A (en) * 2007-01-18 2008-08-28 Hitachi Maxell Ltd Positive electrode for lithium secondary battery, its manufacturing method, and lithium secondary battery
US9246193B2 (en) 2007-03-29 2016-01-26 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
JP2008251225A (en) * 2007-03-29 2008-10-16 Tdk Corp All-solid lithium ion secondary battery and its manufacturing method
US9419308B2 (en) 2007-03-29 2016-08-16 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
US9039939B2 (en) 2007-03-29 2015-05-26 Tdk Corporation Production method of active material, and active material
JP2010113819A (en) * 2008-11-04 2010-05-20 Konica Minolta Holdings Inc Secondary battery, method of manufacturing the same, and laminate type secondary battery
US9379387B2 (en) 2010-08-09 2016-06-28 Lg Chem, Ltd. Cathode current collector coated with primer and magnesium secondary battery comprising the same
WO2012020942A3 (en) * 2010-08-09 2012-05-03 주식회사 엘지화학 Cathode current collector coated with a primer and magnesium secondary battery including same
KR20150083831A (en) 2012-09-14 2015-07-20 미꾸니 시끼소 가부시키가이샤 Slurry containing dispersed acetylene black, and lithium-ion secondary battery
KR20200100205A (en) 2012-09-14 2020-08-25 미꾸니 시끼소 가부시키가이샤 Slurry containing dispersed acetylene black, and lithium-ion secondary battery
CN107004858A (en) * 2014-12-16 2017-08-01 株式会社Lg化学 The manufacture method of electrode for secondary battery containing ptc material and the thus electrode of method manufacture
JP2018505507A (en) * 2014-12-16 2018-02-22 エルジー・ケム・リミテッド Method for manufacturing electrode for secondary battery containing PTC material and electrode manufactured thereby
US10608289B2 (en) 2014-12-16 2020-03-31 Lg Chem, Ltd. Method of manufacturing secondary battery electrode containing PTC material and electrode manufactured thereby
CN107004858B (en) * 2014-12-16 2020-09-18 株式会社Lg化学 Method for manufacturing secondary battery electrode containing PTC material and electrode manufactured by the method
KR20160118986A (en) * 2015-04-02 2016-10-12 에스케이이노베이션 주식회사 Adhesive and multi-layered lithium ion battery separator and method of manufacturing the same
JP2018510472A (en) * 2015-04-02 2018-04-12 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Fusion composite separation membrane for lithium secondary battery and method for producing the same
US10985356B2 (en) 2015-04-02 2021-04-20 Sk Innovation Co., Ltd. Composite separation membrane for lithium secondary battery and manufacturing method therefor

Similar Documents

Publication Publication Date Title
CN1251347C (en) Solid polymer elecrolytes
JP4136344B2 (en) Lithium secondary battery and manufacturing method thereof
CN109565034B (en) Method for manufacturing an electrode comprising a polymer electrolyte and electrode thus obtained
KR20140137660A (en) Electrode for secondary battery and secondary battery comprising the same
JP6893253B2 (en) A method for producing a solid electrolyte composition, a solid electrolyte-containing sheet, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery, and a solid electrolyte-containing sheet and an all-solid secondary battery.
JP2012517660A (en) Flat electrodes for electrochemical energy storage elements with optimized power and energy density
KR20170093754A (en) Anode active material and secondary battery comprising the same
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
DE112013002190T5 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
EP3696886A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid secondary battery, and production methods for solid electrolyte-containing sheet and all-solid secondary battery
JP2001035495A (en) Positive electrode paste composition for lithium secondary battery, positive electrode, and its manufacture
EP3751642A1 (en) Solid electrolyte composition and method for producing same, solid electrolyte-containing sheet, and methods for manufacturing all-solid secondary battery electrode sheet and all-solid secondary battery
JPH11185733A (en) Manufacture of lithium polymer secondary battery
JP5517385B2 (en) Film for electrochemical structural member and method for producing the film
CN111247673B (en) Composition for forming active material layer, battery, electrode sheet, and related manufacturing methods
JP4053657B2 (en) Lithium secondary battery and manufacturing method thereof
JP5200329B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP2023508273A (en) Positive electrode for secondary battery, method for producing the same, and lithium secondary battery including the same
JP3478077B2 (en) Lithium secondary battery
JP2000100443A (en) Electrode base material film for secondary battery and secondary battery
JP2000003728A (en) Lithium secondary battery and manufacture thereof
JP2000311715A (en) Lithium secondary battery
JP4843833B2 (en) Method for improving low temperature characteristics of lithium secondary battery
JP2001006741A (en) Unit cell element, and layer-built cell