JP2001035495A - Positive electrode paste composition for lithium secondary battery, positive electrode, and its manufacture - Google Patents

Positive electrode paste composition for lithium secondary battery, positive electrode, and its manufacture

Info

Publication number
JP2001035495A
JP2001035495A JP11211481A JP21148199A JP2001035495A JP 2001035495 A JP2001035495 A JP 2001035495A JP 11211481 A JP11211481 A JP 11211481A JP 21148199 A JP21148199 A JP 21148199A JP 2001035495 A JP2001035495 A JP 2001035495A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
paste composition
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11211481A
Other languages
Japanese (ja)
Other versions
JP4497585B2 (en
Inventor
Osamu Hiruta
修 蛭田
Naruaki Okuda
匠昭 奥田
Hideyuki Nakano
秀之 中野
Toshihiko Inoue
俊彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP21148199A priority Critical patent/JP4497585B2/en
Publication of JP2001035495A publication Critical patent/JP2001035495A/en
Application granted granted Critical
Publication of JP4497585B2 publication Critical patent/JP4497585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode paste composition for lithium secondary battery excellent in the performance as required of lithium secondary battery and also suitable for mass-production, provide a positive electrode using the paste composition, and offer a method for manufacturing such positive electrodes. SOLUTION: A positive electrode active material consisting of lithium-nickel series compound oxide having a stratified crystalline structure, a conductive substance to give conductivity to this active material, and a binder to couple them together are dispersed in a solvent, and thereto 0.1-3 pts.wt. organic acid of divalent or more is added relative to 100 pts.wt. positive electrode active material. This paste composition is applied to an electricity collector followed by drying so that an intended positive electrode for lithium secondary battery is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に関し、さらに詳しくは、層状岩塩型結晶構造を持つリ
チウムニッケル複合酸化物を正極活物質として用いるリ
チウム二次電池の正極材料として好適な正極ペースト組
成物およびそれを用いたリチウム二次電池用正極並びに
その製造方法に関するものである。
The present invention relates to a lithium secondary battery, and more particularly, to a positive electrode suitable as a positive electrode material for a lithium secondary battery using a lithium nickel composite oxide having a layered rock salt type crystal structure as a positive electrode active material. The present invention relates to a paste composition, a positive electrode for a lithium secondary battery using the same, and a method for producing the same.

【0002】[0002]

【従来の技術】この種のリチウム二次電池は、高電圧・
高エネルギー密度が得られ、小型・軽量化が図れるとい
うことで、パソコンや携帯電話等の情報通信機器の関連
分野では既に実用化され、また資源問題や環境問題から
電気自動車やハイブリッド電気自動車に搭載される電源
用に採用することも実用的にかなり進められてきた。
2. Description of the Related Art A lithium secondary battery of this type has a high voltage and a high voltage.
High energy density can be obtained and it can be made smaller and lighter, so it has already been put into practical use in the field of information and communication equipment such as personal computers and mobile phones. It is also used in electric vehicles and hybrid electric vehicles due to resource and environmental issues. Practical use has also been advanced considerably for power supplies.

【0003】そのような状況の中で、リチウム二次電池
用の正極ペースト組成物も種々検討が加えられ、例え
ば、その組成物中の正極活物質については、当初リチウ
ムコバルト複合酸化物(LiCoO)が用いられ、コ
ストや資源問題からスピネル型結晶構造のリチウムマン
ガン系複合酸化物(LiMn)も採用され、さら
に高温度での充放電サイクル特性に優れるということで
層状岩塩型結晶構造を持つリチウムニッケル系複合酸化
物(LiNiO)も注目されている。
In such a situation, various studies have been made on a positive electrode paste composition for a lithium secondary battery. For example, regarding a positive electrode active material in the composition, a lithium cobalt composite oxide (LiCoO 2 ), A lithium manganese-based composite oxide (LiMn 2 O 4 ) having a spinel-type crystal structure due to cost and resource issues, and a layered rock-salt-type crystal structure having excellent charge-discharge cycle characteristics at high temperatures. lithium-nickel-based composite oxide having a (LiNiO 2) has also been noted.

【0004】この正極ペースト組成物は、一般には、上
述したような正極活物質と、この正極活物質に導電性を
付与するための導電性物質(例えは、アセチレンブラッ
クなど)との混合粉末電極材料を、有機バインダー樹脂
を溶剤に溶かしたバインダー溶液中に分散させて正極合
剤スラリーとしたものであり、この正極合剤スラリーを
金属電極箔(例えば、Al箔)または金属網等からなる
集電体上に塗布乾燥し、さらにプレスによりその塗布材
料を集電体上に圧着して正極シートとしている。
This positive electrode paste composition is generally prepared by mixing a positive electrode active material as described above and a conductive material (for example, acetylene black or the like) for imparting conductivity to the positive electrode active material. The material is dispersed in a binder solution obtained by dissolving an organic binder resin in a solvent to form a positive electrode mixture slurry, and the positive electrode mixture slurry is collected from a metal electrode foil (for example, Al foil) or a metal mesh. The positive electrode sheet is formed by applying and drying the material on a current collector and pressing the applied material onto the current collector by pressing.

【0005】また負極シートについても、負極活物質を
同じように有機バインダー樹脂を溶剤に溶かしたバイン
ダー溶液中に分散させて負極合剤スラリーとし、これを
集電体上に塗布乾燥し、プレスすることにより製作して
いる。そして正極シートと負極シートとの間に絶縁性
の、かつイオン移動性を有する多孔質のセパレータシー
トを介装させた状態で非水系の有機電解液に浸漬するこ
とによりリチウム二次電池が構成されるものである。
In the negative electrode sheet, a negative electrode active material is similarly dispersed in a binder solution obtained by dissolving an organic binder resin in a solvent to form a negative electrode mixture slurry, which is coated on a current collector, dried and pressed. It is made by doing. Then, a lithium secondary battery is formed by immersing the battery in a non-aqueous organic electrolyte with a porous separator sheet having insulation and ion mobility interposed between the positive electrode sheet and the negative electrode sheet. Things.

【0006】このような技術的背景において、正極ペー
スト組成物に用いられるバインダー溶液としては、例え
ば、特開平6−93025号公報や特開平6−1724
52号公報に示されるように、各種のフッ化ビニリデン
系重合体(PVDF)が耐薬品性、耐候性、耐汚染性等
に優れ、かつ非水系の電解液に対して安定していること
に着目し、これをN−メチル−2−ピロリドン(NM
P)、ジメチルホルムアミドなどの極性溶媒に溶解した
ものが知られている。
In such a technical background, examples of the binder solution used in the positive electrode paste composition include, for example, JP-A-6-93025 and JP-A-6-1724.
As shown in Japanese Patent Publication No. 52, various kinds of vinylidene fluoride polymers (PVDF) are excellent in chemical resistance, weather resistance, stain resistance, etc., and are stable with respect to non-aqueous electrolytes. Attention was paid to this, and N-methyl-2-pyrrolidone (NM
Those dissolved in a polar solvent such as P) and dimethylformamide are known.

【0007】また例えば、特開平10−255808号
公報に示されるように、フッ化ビニリデン系重合体を有
機溶媒に溶かしてバインダー溶液を製造する際に、フッ
化ビニリデン系重合体を加熱あるいはアルカリ物質の添
加により脱フッ酸処理してフッ酸を含有させ、更にフッ
酸以外の酸(有機酸)を添加することにより電極ペース
ト組成物と集電体との接着性を改善するようにしたもの
もある。
For example, as disclosed in Japanese Patent Application Laid-Open No. 10-255808, when a vinylidene fluoride polymer is dissolved in an organic solvent to produce a binder solution, the vinylidene fluoride polymer is heated or treated with an alkaline substance. In addition, there is also a method of improving the adhesion between the electrode paste composition and the current collector by adding an acid (organic acid) other than hydrofluoric acid by removing hydrofluoric acid by adding hydrofluoric acid, and further adding an acid (organic acid) other than hydrofluoric acid. is there.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、例え
ば、電気自動車用のリチウム二次電池に用いられる電極
シートは、厚さが数十μmから数百μmと薄く、かつ大
面積のものを用いることが必須となってきている。その
ような場合かかる薄膜で、かつ大面積の電極シートを工
業的に安価に製造する方法としては、連続生産ライン上
で集電体シートを搬送しながらそのシート面に電極合剤
スラリー(前述のバインダー溶液に粉末電極材料等を分
散させたもの)を塗布乾燥し、さらにロールプレスによ
りその塗布材料を集電体シート面に圧着させるという方
法が採られることになる。
However, for example, an electrode sheet used for a lithium secondary battery for an electric vehicle, which is as thin as tens of μm to several hundred μm and has a large area, may be used. It is becoming mandatory. In such a case, as a method for industrially and inexpensively manufacturing such a thin-film and large-area electrode sheet, an electrode mixture slurry (described above) is conveyed on a sheet surface while a current collector sheet is transported on a continuous production line. A method in which a powder electrode material or the like is dispersed in a binder solution) is applied and dried, and the applied material is pressed against the surface of the current collector sheet by a roll press.

【0009】そしてこのような製造方法を採用した場
合、前述の正極ペースト組成物のバインダー溶液に用い
られるフッ化ビニリデン系重合体は、粉末電極材料との
結着力や集電体との接着力が比較的弱いため、使用中に
活物質等の粉末電極材料の脱落や、これら粉末電極材料
を含む電極合剤層の集電体からの剥離などの現象が見ら
れた。特に、正極活物質として高温度での電池性能に優
れる層状リチウムニッケル複合酸化物を用いた場合、フ
ッ化ビニリデン系重合体との結着力が非常に弱いため、
塗工後のプレス時に、活物質が脱落し、ロールに付着し
たり、プレスにより発生するストレスで集電体から剥離
したりして、大面積のプレスが不可能となる問題があ
り、層状リチウムニッケル複合酸化物を正極活物質とし
て用いたリチウム二次電池では、自動車用電池のような
大型電池を多量に製造することができなかった。
When such a production method is adopted, the vinylidene fluoride polymer used for the binder solution of the above-mentioned positive electrode paste composition has a low binding force to the powder electrode material and a low adhesion force to the current collector. Since the powder electrode material is relatively weak, phenomena such as dropping of the powdered electrode material such as the active material during use and separation of the electrode mixture layer containing the powdered electrode material from the current collector were observed. In particular, when a layered lithium nickel composite oxide having excellent battery performance at high temperatures is used as the positive electrode active material, the binding force with the vinylidene fluoride-based polymer is very weak.
At the time of pressing after coating, there is a problem that the active material falls off and adheres to the rolls or peels off from the current collector due to the stress generated by the pressing, making it impossible to press the large area. In a lithium secondary battery using a nickel composite oxide as a positive electrode active material, a large battery such as an automobile battery could not be manufactured in large quantities.

【0010】上述の問題を解決するために、バインダー
であるフッ化ビニリデン系重合体を増量することが考え
られる。しかし、フッ化ビニリデン系重合体の増量は、
確かに結着力や接着力の向上をもたらすが、電極合剤層
中の活物質濃度が低下し、単位面積あたりの電気容量が
低下するという問題点がある。また、層状リチウムニッ
ケル複合酸化物の場合、バインダーを増量させても、十
分な結着力や接着力の向上が得られなかった。
In order to solve the above-mentioned problem, it is conceivable to increase the amount of a vinylidene fluoride-based polymer as a binder. However, the amount of vinylidene fluoride polymer increased,
Although the binding force and the adhesive force are certainly improved, there is a problem that the concentration of the active material in the electrode mixture layer is reduced, and the electric capacity per unit area is reduced. Moreover, in the case of the layered lithium nickel composite oxide, even if the amount of the binder was increased, sufficient improvement in the binding force and the adhesive force could not be obtained.

【0011】そして、層状リチウムニッケル複合酸化物
を用いた正極ペースト組成物が結着力や接着力に劣る原
因としては、正極活物質粒子、バインダーおよび集電体
の3者間の結合、すなわち、活物質粒子−活物質粒子
間、活物質粒子−バインダー間、活物質粒子−集電体間
およびバインダー−集電体間の結合力が弱いために、ロ
ールプレス時に、活物質粒子が脱落してロールに付着し
たり、集電体から剥離したりするものと考えられる。
[0011] The reason why the positive electrode paste composition using the layered lithium nickel composite oxide is inferior in the binding force or the adhesive force is a bond between the three members of the positive electrode active material particles, the binder and the current collector. Since the bonding force between the material particles and the active material particles, between the active material particles and the binder, between the active material particles and the current collector, and between the binder and the current collector is weak, the active material particles fall off during roll pressing and the roll It is considered that it adheres to the surface or peels off from the current collector.

【0012】また特開平10−255808号公報に示
されるバインダー溶液によれば、有機酸の添加量が微量
であるために、やはりロールプレス時に活物質粒子が脱
落してロールに付着したり、集電体シートから剥離する
という問題は解消されず、さらにこのバインダー溶液を
製造するには、フッ化ビニリデン系重合体を加熱あるい
はアルカリ物質の添加により脱フッ酸処理を行なうとい
う工程が必要となるため電極シートの生産コストが高く
なるという問題もある。
According to the binder solution disclosed in Japanese Patent Application Laid-Open No. 10-255808, since the amount of the organic acid added is very small, the active material particles also fall off during roll pressing and adhere to the roll, The problem of peeling off from the electrical sheet is not solved, and the production of this binder solution requires a step of heating the vinylidene fluoride-based polymer or removing hydrofluoric acid by adding an alkali substance. There is also a problem that the production cost of the electrode sheet increases.

【0013】本発明者らは、層状リチウムニッケル複合
酸化物粒子、バインダー、集電体の3者間の結合力をさ
らに強くすれば、ロールプレス時に発生する上述の問題
を解決できるのではないかと考えた。そして鋭意努力検
討した結果、正極ペースト組成中に2価以上の有機酸を
配合すると共に、その有機酸の配合量を調整することに
よって、層状リチウムニッケル複合酸化物粒子、バイン
ダー、集電体の3者間の結合力が強くなって活物質粒子
のロールへの付着の問題が解消されることを見出し、本
発明を想到するに至ったものである。
The present inventors believe that if the bonding force between the layered lithium-nickel composite oxide particles, the binder, and the current collector is further increased, the above-described problem that occurs during roll pressing can be solved. Thought. As a result of intensive studies, it was found that by mixing a divalent or higher valent organic acid into the positive electrode paste composition and adjusting the amount of the organic acid, the layered lithium-nickel composite oxide particles, the binder, and the current collector were mixed. It has been found that the bonding force between the members is increased and the problem of the adhesion of the active material particles to the roll is solved, and the present invention has been reached.

【0014】本発明の解決しようとする課題は、正極活
物質として電池性能に優れ、特に自動車用電源などとし
ての高温度での使用環境下においても高い充放電サイク
ル特性を発揮し得るリチウムニッケル複合酸化物を用い
た時にも、活物質間の結合力や活物質の集電体への定着
性が良く、大型電池を多量製造するのに適した正極ペー
スト組成物を提供することにある。また、そのペースト
組成物を用いたリチウム二次電池およびその製造方法を
提供することにある。
An object of the present invention is to provide a lithium-nickel composite which is excellent in battery performance as a positive electrode active material, and which can exhibit high charge / discharge cycle characteristics even in a high-temperature use environment such as an automobile power supply. It is an object of the present invention to provide a positive electrode paste composition which has good bonding strength between active materials and fixability of the active materials to a current collector even when an oxide is used, and is suitable for mass-producing large batteries. Another object of the present invention is to provide a lithium secondary battery using the paste composition and a method for manufacturing the same.

【0015】[0015]

【課題を解決するための手段】この課題を解決するため
に本発明に係るリチウム二次電池用正極ペースト組成物
は、請求項1に記載のように、層状結晶構造をもつリチ
ウムニッケル系複合酸化物を正極活物質とし、この正極
活物質と、該活物質に導電性を付与する導電性物質と、
両物質を結合するバインダとを溶剤に分散し、これに2
価以上の有機酸を正極活物質100重量部に対して0.
1〜3重量部配合していることを特徴とすることを要旨
とするものである。
According to the present invention, there is provided a positive electrode paste composition for a lithium secondary battery according to the present invention, which comprises a lithium nickel composite oxide having a layered crystal structure. The material as a positive electrode active material, this positive electrode active material, a conductive material that imparts conductivity to the active material,
A binder that binds both substances is dispersed in a solvent, and 2
Organic acid having a valency of at least 0.1 part by weight per 100 parts by weight of the positive electrode active material
The gist of the invention is that 1 to 3 parts by weight are blended.

【0016】この場合に層状リチウムニッケル系複合酸
化物は、結晶構造が層状岩塩構造をなすものであり、リ
チウムコバルト系複合酸化物と同じ結晶構造をもつ。そ
してスピネル型結晶構造のリチウムマンガン系複合酸化
物よりも高温度での充放電サイクル特性に優れる。この
層状リチウムニッケル系複合酸化物は、リチウムとニッ
ケルを主成分とする遷移金属との複合酸化物を指称し、
組成式LiNi1−X(Mは、Ti、Mn、C
o、Al、Mg、Gaなどの1種または2種以上からな
る。0≦x<1)で表される複合酸化物を用いることが
できる。いずれを活物質として使用する場合であって
も、微粒子粉末状のものを使用するのがよく、粒子径で
1〜30μmの範囲のものを使用するのが好ましい。
In this case, the layered lithium-nickel-based composite oxide has a layered rock-salt structure, and has the same crystal structure as the lithium-cobalt-based composite oxide. And, it is excellent in charge / discharge cycle characteristics at a higher temperature than a lithium manganese composite oxide having a spinel type crystal structure. This layered lithium nickel-based composite oxide refers to a composite oxide of lithium and a transition metal containing nickel as a main component,
Composition formula LiNi 1-X M X O 2 (M is, Ti, Mn, C
It is composed of one or more of o, Al, Mg, Ga and the like. A composite oxide represented by 0 ≦ x <1) can be used. Whichever active material is used, it is preferable to use a fine particle powder, and it is preferable to use one having a particle diameter in the range of 1 to 30 μm.

【0017】導電性物質は、正極活物質に適量混合して
正極層に導電性を付与できるものであれば、特に制限は
ない。例えば、カーボンブラック、アセチレンブラッ
ク、黒鉛等の炭素物質粉状体のうち1種または2種以上
のものを混合して用いることができる。また、使用する
電極電位で安定な金属粉末を用いることもできる。
The conductive material is not particularly limited as long as it can be mixed with an appropriate amount of the positive electrode active material to impart conductivity to the positive electrode layer. For example, one or more of carbon material powders such as carbon black, acetylene black, and graphite can be used in combination. In addition, a metal powder that is stable at the electrode potential used can be used.

【0018】バインダーは、有機系のバインダーが一般
的に用いられる。この有機バインダーは、正極活物質お
よび導電性物質の粒子を繋ぎ止める役割を果たすもの
で、非水電解液等に対して安定である必要があり、耐候
性、耐薬品性、耐熱性、難燃性等が良好なことが要求さ
れる。例えば、テトラフルオロエチレン重合体、フッ化
ビニリデン重合体、フッ素ゴム等の含フッ素ポリマー、
ポリプロピレン、ポリエチレン等の熱可塑性ポリマー等
を用いることができる。また、スチレンブタジエンゴム
ラテックス、カルボキシ変性スチレンブタジエンゴムラ
テックス等の合成ゴム系ラテックスを用いることも可能
である。
As the binder, an organic binder is generally used. The organic binder plays a role of binding the particles of the positive electrode active material and the conductive material, and needs to be stable to a non-aqueous electrolyte, etc., and has weather resistance, chemical resistance, heat resistance, and flame retardancy. Good properties are required. For example, a tetrafluoroethylene polymer, a vinylidene fluoride polymer, a fluoropolymer such as fluororubber,
Thermoplastic polymers such as polypropylene and polyethylene can be used. It is also possible to use synthetic rubber-based latex such as styrene-butadiene rubber latex and carboxy-modified styrene-butadiene rubber latex.

【0019】溶剤は、正極活物質、導電性物質、有機バ
インダーを均一に分散させる役割を果たすとともに、こ
れらを混合して得られる正極ペースト組成物の粘度を調
整する役割をも果たす。上記有機バインダーを溶解可能
でかつ容易に乾燥できるものであれば、適宜選択するこ
とができる。具体的には、n−メチル−2−ピロリド
ン、ジメチルフォルムアミド等が挙げられる。
The solvent plays a role of uniformly dispersing the cathode active material, the conductive material, and the organic binder, and also plays a role of adjusting the viscosity of the cathode paste composition obtained by mixing them. As long as the organic binder can be dissolved and can be easily dried, it can be appropriately selected. Specific examples include n-methyl-2-pyrrolidone and dimethylformamide.

【0020】そして、これに配合される2価以上の有機
酸は、正極活物質粒子、バインダー、集電体の3者間の
結合力を強める役割を果たすもので、溶剤に可溶であれ
ば特に制限はない。例えば、分子内にカルボキシル基を
2個もつジカルボン酸として、シュウ酸、マロン酸、コ
ハク酸、グルタル酸等の脂肪族飽和ジカルボン酸、マレ
イン酸等の脂肪族不飽和ジカルボン酸、フタル酸等の芳
香族ジカルボン酸が挙げられる。また、分子内にカルボ
キシル基を3個もつトリカルボン酸としては、トリカル
バリル酸、ベンゼントリカルボン酸等が挙げられる。そ
して有機酸の配合割合は、正極活物質粒子の結着力を十
分に向上させるために、正極活物質100重量部に対し
て0.1重量部以上とするのが好ましい。また、有機酸
が3重量部を越えると、結着力の向上効果が低下すると
ともに、電池容量の低下を招く等電池性能に問題が生じ
る。
The organic acid having a valency of 2 or more is used to strengthen the bonding force between the positive electrode active material particles, the binder, and the current collector. There is no particular limitation. For example, as dicarboxylic acids having two carboxyl groups in the molecule, aromatic saturated dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, and glutaric acid; aliphatic unsaturated dicarboxylic acids such as maleic acid; and aromatics such as phthalic acid. Group dicarboxylic acids. Examples of tricarboxylic acids having three carboxyl groups in the molecule include tricarballylic acid and benzenetricarboxylic acid. The mixing ratio of the organic acid is preferably 0.1 part by weight or more with respect to 100 parts by weight of the positive electrode active material in order to sufficiently improve the binding force of the positive electrode active material particles. On the other hand, when the amount of the organic acid exceeds 3 parts by weight, the effect of improving the binding force decreases, and a problem occurs in battery performance such as reduction in battery capacity.

【0021】2価以上の有機酸が、正極活物質粒子、バ
インダー、集電体間の結合力を強める効果が大きい理由
としては、2価以上の有機酸は1分子中に他の物質と結
合可能な部位を2つ以上有しているため、正極ペースト
組成物に2価以上の有機酸を適量配合すると、1つの結
合部位が、その組成物中の正極活物質である層状リチウ
ムニッケル複合酸化物粒子、導電性物質粒子、バインダ
ーと結合し、残った結合部位が他の層状リチウムニッケ
ル複合酸化物粒子、導電性物質粒子、バインダーと結合
し、正極材料間の結着力を向上させ、さらに、集電体に
塗布した場合には、残った結合部位が集電体表面と結合
し、正極材料と集電体間の密着力を向上させるものと考
えられる。
The reason why the organic acid having a valency of 2 or more has a large effect of strengthening the bonding force between the positive electrode active material particles, the binder and the current collector is that the organic acid having a valency of 2 or more binds to another substance in one molecule. Since there are two or more possible sites, when an appropriate amount of a divalent or higher valent organic acid is added to the positive electrode paste composition, one bonding site is formed into a layered lithium nickel composite oxide, which is a positive electrode active material in the composition. Material particles, conductive material particles, and a binder, and the remaining bonding sites are bonded to other layered lithium-nickel composite oxide particles, conductive material particles, and a binder to improve the binding force between the positive electrode materials, When applied to the current collector, it is considered that the remaining bonding site is bonded to the surface of the current collector, and the adhesion between the positive electrode material and the current collector is improved.

【0022】また本発明のリチウム二次電池用正極は、
請求項1に記載のペースト組成物を集電体に塗布乾燥し
たものであることを要旨とするものである。このリチウ
ム二次電池用正極によれば、電池に組み込んだ時に高温
度の使用環境下においても高い充放電サイクル特性が得
られる。
Further, the positive electrode for a lithium secondary battery of the present invention comprises:
The gist is that the paste composition according to claim 1 is applied to a current collector and dried. According to this positive electrode for a lithium secondary battery, high charge / discharge cycle characteristics can be obtained even when used in a high-temperature environment when incorporated in a battery.

【0023】さらに本発明に係るリチウム二次電池用正
極の製造方法は、リチウム合金系正極活物質と導電性物
質とバインダとを溶剤に分散し、これに2価以上の有機
酸を正極活物質100重量部に対し0.1〜3重量部配
合して正極ペーストを作成し、これを集電体に塗布乾燥
して製造することを要旨とするものである。これにより
電池特性に優れたリチウム二次電池用正極が製造される
こととなる。
Further, in the method of manufacturing a positive electrode for a lithium secondary battery according to the present invention, a lithium alloy-based positive electrode active material, a conductive material, and a binder are dispersed in a solvent, and a divalent or higher valent organic acid is dispersed in the solvent. The gist is that a positive electrode paste is prepared by mixing 0.1 to 3 parts by weight with respect to 100 parts by weight, and this is applied to a current collector and dried to produce the positive electrode paste. As a result, a positive electrode for a lithium secondary battery having excellent battery characteristics is manufactured.

【0024】[0024]

【発明の実施の形態】以下に本発明の好適な実施の形態
を詳細に説明する。 <正極ペースト組成物の構成および作製方法>前述のよ
うに本発明の正極ペースト組成物は、リチウムを吸蔵放
出可能な活物質である層状リチウムニッケル複合酸化物
粒子と、この正極活物質粒子に導電性を付与する導電性
物質と、これらの正極活物質粒子と導電性物質とを結合
する有機バインダーと、これらを均一な分散状態とする
溶剤と、さらにこの溶剤に配合する2価以上の有機酸と
から構成される。そして、この正極ペースト組成物を製
造するに際しては、正極活物質と導電性物質を有機バイ
ンダーと混合し、これを溶剤に配合して分散させ、さら
に有機酸を加えてペースト状の正極合材スラリーを作製
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. <Configuration and Preparation Method of Positive Electrode Paste Composition> As described above, the positive electrode paste composition of the present invention comprises a layered lithium nickel composite oxide particle which is an active material capable of inserting and extracting lithium, A conductive material that imparts properties, an organic binder that binds these positive electrode active material particles to the conductive material, a solvent that uniformly disperses them, and a divalent or higher valent organic acid that is added to the solvent. It is composed of When producing the positive electrode paste composition, the positive electrode active material and the conductive material are mixed with an organic binder, and the mixture is mixed and dispersed in a solvent. Is prepared.

【0025】この際、正極活物質の配合割合は、作製さ
れる正極ペースト組成物の全体を100%とした場合、
充分な電池容量を得るために、30wt%以上とするの
が望ましい。また、導電性物質の配合割合は、充分な導
電性を得るために、2wt%以上とするのが望ましく、
有機バインダーの配合割合は、充分な結着性を得るため
に、2wt%以上とするのが望ましい。また、有機酸の
配合割合は、前述したように、正極活物質粒子の結着性
向上の効果を得るために、正極活物質100重量部に対
して0.1重量部以上必要であるので0.5wt%以上
とするのが望ましい。
At this time, the mixing ratio of the positive electrode active material is as follows, assuming that the whole of the prepared positive electrode paste composition is 100%.
In order to obtain a sufficient battery capacity, the content is desirably 30 wt% or more. Further, the mixing ratio of the conductive substance is desirably 2 wt% or more in order to obtain sufficient conductivity.
The mixing ratio of the organic binder is desirably 2 wt% or more in order to obtain sufficient binding properties. As described above, the mixing ratio of the organic acid is 0.1 part by weight or more with respect to 100 parts by weight of the positive electrode active material in order to obtain the effect of improving the binding property of the positive electrode active material particles. It is desirably at least 0.5 wt%.

【0026】但し、導電性物質が20wt%を越えた
り、有機バインダーが10wt%を越えたり、有機酸が
正極活物質100重量部に対して3重量部を越えたりす
ると、電池容量の低下を招く等、電池性能に問題が生じ
る。また、溶剤の配合割合は、前記組成物を均一に分散
させたり、塗工での均一性や表面平滑性等に問題が生じ
ないようにするために、30wt%以上とすることが望
ましく、60wt%を越えると、粘度が低くなり、塗工
時にタレが生じる等の問題が発生する。
However, when the amount of the conductive material exceeds 20 wt%, the amount of the organic binder exceeds 10 wt%, or the amount of the organic acid exceeds 3 parts by weight with respect to 100 parts by weight of the positive electrode active material, the battery capacity is reduced. And other problems in battery performance. Further, the compounding ratio of the solvent is desirably 30 wt% or more, in order to uniformly disperse the composition or to prevent problems in uniformity and surface smoothness in coating, and to be 60 wt% or more. %, The viscosity decreases, and problems such as sagging during coating occur.

【0027】正極ペースト組成物は、良好な電池性能を
確保するため、上記各成分物質が充分にかつ均一に、混
練、分散されている必要がある。したがって、混練分散
工程は回転する羽根を有する攪拌機、ボールミル、媒体
攪拌ミル等を用いて行うのが望ましい。
In the positive electrode paste composition, it is necessary that the above-mentioned respective component substances are sufficiently and uniformly kneaded and dispersed in order to ensure good battery performance. Therefore, the kneading and dispersing step is desirably performed using a stirrer having rotating blades, a ball mill, a medium stirring mill, or the like.

【0028】<正極の作製方法>リチウム二次電池の正
極は、上記のように調整、作製された正極ペースト組成
物を集電体シートの表面に塗工し、正極層を形成させる
ことによって行われる。塗工される基材となる集電体シ
ートには、アルミニウム等の金属箔が用いられる。塗工
に用いられる装置としては、帯状の集電体シートに連続
して電極ペースト組成物を塗布乾燥できるコーター方式
の塗工機を用いるのが便利である。
<Method of Producing Positive Electrode> The positive electrode of the lithium secondary battery was prepared by applying the positive electrode paste composition prepared and prepared as described above to the surface of a current collector sheet to form a positive electrode layer. Will be A metal foil such as aluminum is used for the current collector sheet serving as a base material to be coated. As a device used for coating, it is convenient to use a coater-type coating machine that can continuously apply and dry the electrode paste composition on the belt-shaped current collector sheet.

【0029】塗工機の塗布部には、塗布する組成物が比
較的高粘度であることから、コンマコート、スクィーズ
コート、ダイコート、リップコート等の塗布方式を採用
するのが好ましい。正極ペースト組成物の塗布厚さは、
50〜500μmの間で任意のものとすることができ
る。
Since the composition to be coated has a relatively high viscosity, it is preferable to adopt a coating method such as a comma coat, a squeeze coat, a die coat, and a lip coat in the coating section of the coating machine. The coating thickness of the positive electrode paste composition is
Any value between 50 and 500 μm can be used.

【0030】塗工機の乾燥部は、コーター方式の場合連
続炉であって、乾燥には、熱風、赤外線等種々のものが
採用できる。乾燥温度は、80℃以上であることが好ま
しい。80℃未満の場合は、乾燥が不充分となり、正極
層内に溶剤が残留する可能性があり、電池性能を低下さ
せるおそれがあるからである。ただし、あまり乾燥温度
を上げすぎると表面のみ乾燥が進行し、均一な乾燥がで
きないことが予想されるため注意を要する。そして電極
層の膜厚を所定の厚さとし、電極密度を高め、さらに表
面平滑性を高めるため、乾燥後にプレスを行う。これ
は、電池のエネルギー密度を高めるのに効果的である。
プレスに用いられる装置としては、帯状の集電体シート
上に電極ペーストを塗布乾燥した後、連続的にプレスで
きるロールプレスが一般的に用いられる。
The drying section of the coating machine is a continuous furnace in the case of a coater system, and various types of drying such as hot air and infrared rays can be employed for drying. The drying temperature is preferably 80 ° C. or higher. If the temperature is lower than 80 ° C., the drying becomes insufficient, the solvent may remain in the positive electrode layer, and the battery performance may be reduced. However, care must be taken because if the drying temperature is too high, drying proceeds only on the surface and uniform drying cannot be achieved. Then, in order to make the thickness of the electrode layer a predetermined thickness, increase the electrode density, and further enhance the surface smoothness, pressing is performed after drying. This is effective in increasing the energy density of the battery.
As a device used for pressing, a roll press capable of continuously pressing after applying and drying an electrode paste on a belt-shaped current collector sheet is generally used.

【0031】<リチウム二次電池の構造>上記のように
作製した電極を用いたリチウム二次電池について説明す
る。リチウム二次電池は一般に、正極と、負極と、正極
と負極との間に挟装されるセパレータと、非水電解液と
から構成される。以下に、上述した正極を除いた構成要
素について順に説明する。
<Structure of Lithium Secondary Battery> A lithium secondary battery using the electrode manufactured as described above will be described. A lithium secondary battery generally includes a positive electrode, a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and a non-aqueous electrolyte. Hereinafter, components except for the above-described positive electrode will be sequentially described.

【0032】負極活物質には、金属リチウム、リチウム
化合物、リチウム合金等を使用できるが、充放電の繰り
返しに伴うデンドライトの析出という問題があるため、
これらに代え、リチウムを吸蔵放出可能な粉末状の炭素
材料を負極活物質とするのが良い。炭素材料を負極活物
質とする場合、この炭素材料にバインダーを混合し、必
要に応じて適当な溶剤を加えて負極ペースト組成物と
し、これを正極同様、銅箔等の負極集電体シートの表面
に塗布乾燥し、負極層を形成させて作製する。
As the negative electrode active material, metallic lithium, a lithium compound, a lithium alloy or the like can be used, but there is a problem that dendrite is precipitated due to repetition of charge and discharge.
Instead, a negative electrode active material is preferably a powdery carbon material capable of inserting and extracting lithium. When a carbon material is used as a negative electrode active material, a binder is mixed with the carbon material, and an appropriate solvent is added as necessary to form a negative electrode paste composition. It is prepared by coating and drying the surface to form a negative electrode layer.

【0033】負極活物質として用いることのできる炭素
材料としては、天然黒鉛、人造黒鉛、コークス、カーボ
ンブラック、気相成長炭素、炭素繊維、有機高分子系化
合物を炭素化した材料、またはこれらを熱処理、混合し
た材料等が挙げることができる。負極の製作にあたって
は、負極活物質を結着させるバインダー、溶剤、負極ペ
ースト組成物の混練分散、塗布乾燥方法等については、
正極と同様のものを、または同様の方法を用いることが
できる。
Examples of the carbon material usable as the negative electrode active material include natural graphite, artificial graphite, coke, carbon black, vapor grown carbon, carbon fiber, a material obtained by carbonizing an organic polymer compound, or a heat treatment of these materials. And mixed materials. In the production of the negative electrode, a binder for binding the negative electrode active material, a solvent, kneading and dispersing the negative electrode paste composition, a coating and drying method, and the like,
The same material as the positive electrode or a similar method can be used.

【0034】正極と負極との間に挟装されるセパレータ
は、正極と負極とを分離し、電解液を保持してリチウム
イオンを通過させる機能を有するものである。このセパ
レータには、ポリエチレン、ポリプロピレン等の多孔質
フィルム、不織布または織布等を用いることができる。
セパレータの厚さが10〜200μm程度とすることが
好ましい。
The separator sandwiched between the positive electrode and the negative electrode has a function of separating the positive electrode and the negative electrode, holding an electrolyte, and passing lithium ions. For this separator, a porous film such as polyethylene or polypropylene, a nonwoven fabric or a woven fabric can be used.
It is preferable that the thickness of the separator be about 10 to 200 μm.

【0035】非水電解液には、上記正極活物質および負
極活物質に対して安定であり、かつリチウムイオンがこ
の正極活物質および負極活物質と電気化学反応するため
イオン移動性を有する非水物質であれば、いずれも使用
することができる。通常は、電解質であるリチウム塩を
有機溶媒に溶解させて用いる。電解質に使用できる塩
は、具体的には、LiPF、LiAsF、LiSb
、LiBF、LiClO、LiI、LiBr、
LiCl、LiAlCl、LiHF、LiSCN、L
iSOCF等が挙げられる。これらのうちで特に、
LiPF、LiBF、LiClOが好適である。
The non-aqueous electrolyte contains a non-aqueous electrolyte which is stable with respect to the positive electrode active material and the negative electrode active material and has ion mobility since lithium ions undergo an electrochemical reaction with the positive electrode active material and the negative electrode active material. Any substance can be used. Usually, a lithium salt as an electrolyte is used by dissolving it in an organic solvent. Salts which can be used for the electrolyte, specifically, LiPF 6, LiAsF 6, LiSb
F 6 , LiBF 4 , LiClO 4 , LiI, LiBr,
LiCl, LiAlCl, LiHF 2 , LiSCN, L
ISO 3 CF 2, and the like. Of these,
LiPF 6 , LiBF 4 and LiClO 4 are preferred.

【0036】この電解質を溶解する溶媒は任意に選択で
きるが、比較的高誘電率の有機溶媒が好適なものとして
用いられる。例えば、エチレンカーボネート、プロピレ
ンカーボネート等の環状カーボネート類、ジメチルカー
ボネート、エチルメチルカーボネート等の非環状カーボ
ネート類、テトラヒドロフラン、2−メチルテトラヒド
ロフラン等のグライム類、γ−ブチルラクトン等のラク
トン類、スルフォラン等の硫黄化合物、アセトニトリル
等のニトリル類等の1種または2種以上の溶媒が挙げら
れる。これらのうちで特に、エチレンカーボネート、プ
ロピレンカーボネート等の環状カーボネート類、ジメチ
ルカーボネート、エチルメチルカーボネート等の非環状
カーボネート類から選ばれた1種または2種以上の混合
溶媒が好適なものとして用いられる。
The solvent for dissolving the electrolyte can be arbitrarily selected, but an organic solvent having a relatively high dielectric constant is preferably used. For example, ethylene carbonate, cyclic carbonates such as propylene carbonate, dimethyl carbonate, non-cyclic carbonates such as ethyl methyl carbonate, tetrahydrofuran, glimes such as 2-methyltetrahydrofuran, lactones such as γ-butyl lactone, sulfur such as sulfolane. One or more solvents such as compounds, nitriles such as acetonitrile and the like can be mentioned. Among these, in particular, one or more mixed solvents selected from cyclic carbonates such as ethylene carbonate and propylene carbonate, and non-cyclic carbonates such as dimethyl carbonate and ethyl methyl carbonate are preferably used.

【0037】また、上記非水電解液に代えて固体電解質
として、上記非水電解液を例えばポリエチレンオキサイ
ド、ポリプロピレンオキサイド、ポリエチレンオキサイ
ドのイソシアネート架橋体、フェニレンオキシド、フェ
ニレンスルフィド系ポリマー等の重合体に含浸させた有
機固体電解質、LiN、LiBCl、LiSiO
、LiBO等のリチウムガラスの無機固体電解質
を使用することもできる。
Further, the above non-aqueous electrolyte is impregnated with a polymer such as polyethylene oxide, polypropylene oxide, a crosslinked isocyanate of polyethylene oxide, phenylene oxide, or a phenylene sulfide polymer as a solid electrolyte in place of the above non-aqueous electrolyte. Organic solid electrolyte, Li 3 N, LiBCl 4 , Li 4 SiO
4 , an inorganic solid electrolyte of lithium glass such as Li 3 BO 3 can also be used.

【0038】以上のように構成されるリチウム二次電池
の形状としては、円筒型、箱型、ペーパー型、カード型
等、種々のものとすることができる。いずれの形状を採
る場合であっても、正極および負極にセパレータを挟装
させた電極体とし、正極集電体および負極集電体から外
部に通ずる正極端子および負極端子までの集電用リード
等を用いて接続し、この電極体を非水電解液とともに電
池ケースに密閉して、リチウム二次電池を完成させる。
As the shape of the lithium secondary battery configured as described above, various shapes such as a cylindrical type, a box type, a paper type, and a card type can be used. Regardless of the shape, an electrode body in which a separator is sandwiched between a positive electrode and a negative electrode, a current collecting lead from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal, etc. The electrode body is sealed in a battery case together with the non-aqueous electrolyte to complete a lithium secondary battery.

【0039】上記の実施形態に基づいて、実施例とし
て、実際に正極ペースト組成物を作製した。また、これ
とは別に、本発明で規定した範囲外にある正極ペースト
組成物を、比較例として作製した。この実施例および比
較例の正極ペースト組成物を用いて集電体シート面に塗
工乾燥・ロールプレスにより正極を作製した。さらに実
際に円筒セル型のリチウム二次電池を作製した。そし
て、プレス時のロールへの正極活物質の付着状態、プレ
ス後の正極層の密着性、さらに電池容量(初期放電容
量)と高温度(60℃)での充放電サイクル特性を比較
して、本発明の正極ペースト組成物が有効なものである
ことを確かめた。
Based on the above embodiment, as a working example, a positive electrode paste composition was actually produced. Separately, a cathode paste composition outside the range specified in the present invention was prepared as a comparative example. Using the positive electrode paste compositions of Examples and Comparative Examples, a positive electrode was produced by coating and drying and roll pressing on the surface of the current collector sheet. Furthermore, a cylindrical cell type lithium secondary battery was actually manufactured. Then, the state of attachment of the positive electrode active material to the roll during pressing, the adhesion of the positive electrode layer after pressing, and the battery capacity (initial discharge capacity) and the charge / discharge cycle characteristics at high temperature (60 ° C.) are compared. It was confirmed that the positive electrode paste composition of the present invention was effective.

【0040】[0040]

【実施例】以下に、実施例および比較例の正極ペースト
組成物、正極の作製、電池の製作、及び実験データの比
較結果について順に説明する。各供試正極ペースト組成
物の成分比較を表1に示す。
EXAMPLES The positive electrode paste compositions of Examples and Comparative Examples, the production of the positive electrode, the production of the battery, and the results of comparison of the experimental data will be described in order. Table 1 shows a comparison of the components of each test cathode paste composition.

【0041】<実施例1>上記した本発明の実施形態に
基づくこの実施例1の正極ペースト組成物は、正極活物
質にリチウムニッケル複合酸化物の結晶粒子を用い、導
電性物質としてアセチレンブラックを用いた。また有機
バインダーにはフッ化ビニリデン重合体(以下、PVD
Fと略す)を用い、有機酸には2価の原子価を有するシ
ュウ酸を用いると共に、溶剤としてn−メチル−2−ピ
ロリドン(以下、「NMP」と略す)をそれぞれ用い
た。正極ペースト組成物におけるそれぞれの配合割合
は、リチウムニッケル複合酸化物100重量部に対して
シュウ酸が0.1重量部となるように調整し、全体に対
する各物質の調整比率は、リチウムニッケル複合酸化物
45.9wt%、アセチレンブラックが5.4wt%、
PVDF2.7wt%、シュウ酸0.5wt%、NMP
46.0wt%とした。
Example 1 The positive electrode paste composition of Example 1 based on the above-described embodiment of the present invention uses lithium nickel composite oxide crystal particles as a positive electrode active material and acetylene black as a conductive material. Using. As the organic binder, a vinylidene fluoride polymer (hereinafter, referred to as PVD) is used.
F), oxalic acid having a divalent valence was used as an organic acid, and n-methyl-2-pyrrolidone (hereinafter abbreviated as “NMP”) was used as a solvent. The mixing ratio of each of the positive electrode paste compositions was adjusted so that oxalic acid was 0.1 part by weight with respect to 100 parts by weight of lithium nickel composite oxide. 45.9 wt%, acetylene black 5.4 wt%,
PVDF 2.7wt%, oxalic acid 0.5wt%, NMP
46.0 wt%.

【0042】正極ペースト組成物の混練分散は、分散機
(ウルトラビスコミル:アイメックス製)を用いた。本
分散機は、容量が2.0リットルで、攪拌ディスクが5
枚あり、直径2mmのジルコニアビーズが1.4リット
ル投入されている。攪拌ディスクを回転速度1000r
pmで回転させ、150ml/分で正極ペースト組成物
を連続処理して混練分散し、正極ペーストとした。
For the kneading and dispersing of the positive electrode paste composition, a disperser (Ultraviscomil: manufactured by IMEX) was used. The disperser has a capacity of 2.0 liters and a stirring disk of 5 liters.
There are 1.4 liters of zirconia beads having a diameter of 2 mm. Rotating speed of stirring disk 1000r
The mixture was rotated at pm, and the positive electrode paste composition was continuously processed at 150 ml / min and kneaded and dispersed to obtain a positive electrode paste.

【0043】<実施例2>上記した本発明の実施形態に
基づくこの実施例2の正極ペースト組成物は、シュウ酸
の配合量をリチウムニッケル複合酸化物100重量部に
対して3重量部とした以外は、実施例1と各成分材料、
作製条件は同じであって、各成分の配合割合は、リチウ
ムニッケル複合酸化物44.8wt%、アセチレンブラ
ックが5.3wt%、PVDF2.6wt%、シュウ酸
1.3wt%、NMP46.0wt%とした。
Example 2 In the positive electrode paste composition of Example 2 based on the above-described embodiment of the present invention, the amount of oxalic acid was adjusted to 3 parts by weight based on 100 parts by weight of lithium nickel composite oxide. Except for Example 1 and each component material,
The production conditions were the same, and the mixing ratio of each component was 44.8 wt% of lithium nickel composite oxide, 5.3 wt% of acetylene black, 2.6 wt% of PVDF, 1.3 wt% of oxalic acid, and 46.0 wt% of NMP. did.

【0044】<比較例1>正極ペースト組成物に有機酸
(シュウ酸)を配合しないものであって、それ以外は実
施例1と各成分材料、作製条件は同じである。各成分の
配合割合は、リチウムニッケル複合酸化物45.9wt
%、アセチレンブラックが5.4wt%、PVDF2.
7wt%、NMP46.0wt%とした。
<Comparative Example 1> The positive electrode paste composition did not contain an organic acid (oxalic acid), and the other components and production conditions were the same as in Example 1 except for the above. The mixing ratio of each component was 45.9 wt% of lithium nickel composite oxide.
%, Acetylene black is 5.4 wt%, PVDF2.
7 wt% and NMP 46.0 wt%.

【0045】<比較例2>正極ペースト組成物における
有機酸の配合割合を規定よりも多くした以外は実施例1
および2と各成分材料、作製条件が同一である。この比
較例2では、シュウ酸の配合量をリチウムニッケル複合
酸化物100重量部に対して4重量部としている。各成
分材料の配合割合は、リチウムニッケル複合酸化物4
4.4wt%、アセチレンブラックが5.2wt%、P
VDF2.6wt%、シュウ酸1.8wt%、NMP4
6.0wt%とした。
Comparative Example 2 Example 1 was repeated except that the mixing ratio of the organic acid in the positive electrode paste composition was higher than the prescribed ratio.
Each component material and manufacturing conditions are the same as those of the second and third embodiments. In Comparative Example 2, the amount of oxalic acid was 4 parts by weight with respect to 100 parts by weight of lithium nickel composite oxide. The mixing ratio of each component material is lithium nickel composite oxide 4
4.4 wt%, acetylene black is 5.2 wt%, P
VDF 2.6 wt%, oxalic acid 1.8 wt%, NMP4
6.0 wt%.

【0046】<比較例3>正極ペースト組成物に有機酸
を配合するも、それは1価の原子価を有する酢酸であっ
て、その配合量は実施例2の場合と同じくリチウムニッ
ケル複合酸化物100重量部に対して3重量部とした。
各成分の配合割合は、リチウムニッケル複合酸化物4
4.8wt%、アセチレンブラックが5.3wt%、P
VDF2.6wt%、酢酸1.3wt%、NMP46.
0wt%である。
Comparative Example 3 An organic acid was added to the positive electrode paste composition, but it was acetic acid having a monovalent valence. 3 parts by weight with respect to parts by weight.
The mixing ratio of each component is as follows.
4.8 wt%, acetylene black 5.3 wt%, P
VDF 2.6 wt%, acetic acid 1.3 wt%, NMP46.
0 wt%.

【0047】[0047]

【表1】 [Table 1]

【0048】こうして作製された正極ペーストを厚さ2
0μmのアルミ箔(幅200mm、長さ250m)上に
コンマコーターを用いて片面塗布後、80℃で5分間乾
燥し、乾燥後同様に裏面についても塗布乾燥し、前後端
をカットして両面に正極材料が塗布された長さ200m
の正極シートを得た。次に、線圧1000kgf/cm
でロールプレスを行い、膜厚を100μmとした後、所
定の形状に切り取り、正極を作製した。
The positive electrode paste thus prepared was applied to a thickness of 2
On a 0 μm aluminum foil (width 200 mm, length 250 m), apply one side using a comma coater, dry at 80 ° C. for 5 minutes, then apply and dry the back side as well. 200 m length coated with positive electrode material
Was obtained. Next, a linear pressure of 1000 kgf / cm
And then cut into a predetermined shape to form a positive electrode.

【0049】負極ペースト組成物には、負極活物質とし
てメソカーボンマイクロビーズを用い、これを有機バイ
ンダーであるフッ化ビニリデン重合体(PVDF)と混
合し、溶剤であるn−メチル−2−ピロリドン(NM
P)に分散させたものを用いた。負極ペースト組成物に
おけるそれぞれの配合割合は、メソカーボンマイクロビ
ーズ45.0wt%、PVDF5.0wt%、NMP5
0.0wt%とした。そして正極ペースト組成物と同様
にして混練分散した負極ペーストを厚さ20μmの銅箔
上にコンマコーターを用いて片面塗布後、80℃で5分
間乾燥し、乾燥後同様に裏面についても塗布乾燥し、両
面に負極材料が塗布された負極シートを得た。次に、線
圧1000kgf/cmでロールプレスを行い、膜厚を
100μmとした後、所定の形状に切り取り、負極を作
製した。
For the negative electrode paste composition, mesocarbon microbeads were used as a negative electrode active material, mixed with vinylidene fluoride polymer (PVDF) as an organic binder, and n-methyl-2-pyrrolidone (solvent) was used. NM
What was dispersed in P) was used. The mixing ratio in the negative electrode paste composition was 45.0 wt% of mesocarbon microbeads, 5.0 wt% of PVDF, and 5 wt% of NMP5.
0.0 wt%. Then, the negative electrode paste kneaded and dispersed in the same manner as the positive electrode paste composition was applied on one side using a comma coater on a copper foil having a thickness of 20 μm, and then dried at 80 ° C. for 5 minutes. Thus, a negative electrode sheet having both surfaces coated with a negative electrode material was obtained. Next, roll pressing was performed at a linear pressure of 1000 kgf / cm to make the film thickness 100 μm, and then cut into a predetermined shape to produce a negative electrode.

【0050】次に、得られた正極と負極の間に厚さ20
μmのポリエチレン製セパレーターを挟装して、渦巻上
に巻き上げて円筒セルとし、非水系電解液が充填される
電池缶に装着した。電解液は、エチレンカーボネートと
ジエチルカーボネートの等容量混合液に、支持塩として
LiPFを濃度1mol/lで溶解したものを用い
た。
Next, a thickness of 20 mm was provided between the obtained positive electrode and negative electrode.
A separator made of polyethylene having a thickness of μm was sandwiched and wound up on a spiral to form a cylindrical cell, which was then mounted on a battery can filled with a non-aqueous electrolyte. As the electrolytic solution, a solution obtained by dissolving LiPF 6 as a supporting salt at a concentration of 1 mol / l in a mixed solution of equal volumes of ethylene carbonate and diethyl carbonate was used.

【0051】<比較結果>本発明品である実施例1およ
び2、比較品である比較例1、2および3の正極ペース
ト組成物について、塗布乾燥後のロールプレスにおける
ロールへの正極材料の密着性をテープ剥離試験で比較評
価した。テープ剥離試験は、正極表面にセロハンテープ
を貼り付け、すばやく剥がすものであり、剥離した面を
目視観察して密着性を評価した。
<Comparative Results> Adhesion of the positive electrode material to the rolls in a roll press after coating and drying was performed on the positive electrode paste compositions of Examples 1 and 2 of the present invention and Comparative Examples 1, 2 and 3 of the comparative products. The properties were compared and evaluated by a tape peel test. In the tape peeling test, a cellophane tape was adhered to the positive electrode surface and quickly peeled off, and the peeled surface was visually observed to evaluate the adhesion.

【0052】さらに、それぞれの正極ペースト組成物を
用いて作製した円筒セルについて、初期放電容量および
高温度(60℃)での充放電サイクル特性を比較評価し
た。初期放電容量は、充電電流500mA・放電電流5
00mAの定電流充放電を、電圧3.0〜4.1Vの範
囲で行なった。また高温度(60℃)での充放電サイク
ル特性は、この条件での充放電を繰り返し、初期放電容
量に対する100サイクル後の放電容量維持率で評価し
た。これらの結果を表2に示す。
Further, the initial discharge capacity and the charge / discharge cycle characteristics at a high temperature (60 ° C.) of the cylindrical cells prepared using the respective positive electrode paste compositions were comparatively evaluated. The initial discharge capacity is a charge current of 500 mA and a discharge current of 5
A constant current charge / discharge of 00 mA was performed in a voltage range of 3.0 to 4.1 V. The charge / discharge cycle characteristics at a high temperature (60 ° C.) were evaluated by repeating the charge / discharge under these conditions and maintaining the discharge capacity after 100 cycles with respect to the initial discharge capacity. Table 2 shows the results.

【0053】[0053]

【表2】 [Table 2]

【0054】上記表2に示すように、比較例1の正極ペ
ースト組成物では、ロールプレスにおいて50mプレス
時点でロールに付着物があって正極材料の結着性が低
く、集電体表面から正極材料が剥離して集電体表面に対
する密着性も低かった。これは、比較例1の正極ペース
ト組成物には2価以上の有機酸が配合されていなかった
ために、正極材料の結着性や密着性低下が発生したこと
による。
As shown in Table 2 above, in the positive electrode paste composition of Comparative Example 1, there was a deposit on the roll at the time of 50 m press in a roll press, and the binding property of the positive electrode material was low. The material was peeled off and the adhesion to the current collector surface was low. This is because the positive electrode paste composition of Comparative Example 1 did not contain an organic acid having a valency of 2 or more, so that the binding property and the adhesion of the positive electrode material were reduced.

【0055】また、比較例2の正極ペースト組成物で
は、結着性や密着性は実施例1および2と同等であった
が、作製した電池の初期の放電容量が1080mAhと
低かった。これは、比較例2の正極ペーストには有機酸
が、正極活物質100重量部に対して3重量部を越える
4重量部配合されていたために、電池の容量自体が低下
したものと考えられる。
Further, in the positive electrode paste composition of Comparative Example 2, although the binding property and the adhesion were equal to those of Examples 1 and 2, the initial discharge capacity of the produced battery was as low as 1080 mAh. This is considered to be because the organic acid was mixed in the positive electrode paste of Comparative Example 2 in an amount of more than 3 parts by weight to 4 parts by weight with respect to 100 parts by weight of the positive electrode active material, so that the capacity of the battery itself was reduced.

【0056】また、比較例3の正極ペースト組成物で
は、80mプレス時点でロールに付着物があり、正極材
料の結着性が低く、集電体表面から正極材料が剥離し、
集電体表面に対する密着性も低かった。これは、比較例
3の正極ペーストには有機酸として1価の酢酸が配合さ
れていたために、正極材料の結着性や密着性低下が発生
したものと考えられる。
In the positive electrode paste composition of Comparative Example 3, there was a deposit on the roll at the time of pressing 80 m, the binding property of the positive electrode material was low, and the positive electrode material was peeled off from the current collector surface.
Adhesion to the current collector surface was also low. This is probably because the positive electrode paste of Comparative Example 3 was mixed with monovalent acetic acid as an organic acid, so that the binding property and adhesion of the positive electrode material were reduced.

【0057】これに対して、本発明の実施形態に基づい
た実施例1および2の正極ペースト組成物では、2価の
有機酸の配合により結着性や密着性が向上し、200m
プレス時点でロールへの正極材料の付着がなく、正極材
料が集電体表面から剥離することもなかった。また、作
製した電池の初期放電容量の低下も認められなかった。
この結果から、本発明の正極ペースト組成物は、結着性
や密着性に優れた正極ペースト組成物であることが実証
された。
On the other hand, in the positive electrode paste compositions of Examples 1 and 2 based on the embodiment of the present invention, the binding property and adhesion were improved by the addition of the divalent organic acid, and 200 m
At the time of pressing, the positive electrode material did not adhere to the roll, and the positive electrode material did not peel off from the current collector surface. Also, no decrease in the initial discharge capacity of the manufactured battery was observed.
From this result, it was demonstrated that the positive electrode paste composition of the present invention was a positive electrode paste composition having excellent binding properties and adhesion.

【0058】また高温度(60℃)での充放電サイクル
特性についても、正極ペースト組成物中の正極活物質に
リチウムニッケル複合酸化物を用いているために、いず
れの試作品も高い放電容量維持率を発揮することが確認
された。そして、このような結果が得られたことは、物
質反応メカニズムとして次のように考察される。2価以
上の有機酸は、1分子中に他の物質と結合可能な部位を
2つ以上有しているため、正極ペースト組成物に2価以
上の有機酸を適量配合すると、1つの結合部位が、その
組成物中の正極活物質である層状リチウムニッケル複合
酸化物粒子、導電性物質粒子、バインダーと結合し、残
った結合部位が他の層状リチウムニッケル複合酸化物粒
子、導電性物質粒子、バインダーと結合し、正極材料間
の結着力を向上させ、さらに、集電体に塗布した場合に
は、残った結合部位が集電体表面と結合し、正極材料と
集電体間の密着力を向上させたものと考えられる。
Regarding the charge / discharge cycle characteristics at a high temperature (60 ° C.), all the prototypes have a high discharge capacity because the lithium nickel composite oxide is used as the positive electrode active material in the positive electrode paste composition. It was confirmed that the rate was exhibited. The fact that such a result is obtained is considered as a substance reaction mechanism as follows. Since a divalent or higher valent organic acid has two or more sites capable of binding to another substance in one molecule, when a suitable amount of a divalent or higher valent organic acid is added to the positive electrode paste composition, one bonding site However, the layered lithium-nickel composite oxide particles that are the positive electrode active material in the composition, the conductive material particles, bond with the binder, the remaining binding site is another layered lithium-nickel composite oxide particles, conductive material particles, Combines with the binder to improve the binding force between the positive electrode material and, when applied to the current collector, the remaining bonding site binds to the current collector surface, and the adhesion between the positive electrode material and the current collector It is thought that this was improved.

【0059】本発明は、上記した実施例に何ら限定され
るものではなく、本発明の趣旨を逸脱しない範囲で種々
の改変が可能である。例えば、上記実施例では、2価の
有機酸としてシュウ酸の例を示したが、それ以外のマレ
イン酸、マロン酸、コハク酸などのジカルボン酸類、あ
るいはトリカルボン酸その他の2価以上の各種の有機酸
が適用されることは、本発明の有機酸の効用から明らか
なことである。また、導電性物質、バインダー等も実施
例のものに限定されるものではない。そして層状リチウ
ムニッケル系複合酸化物についても、ニッケル元素の一
部を他の金属元素に置換することにより電池特性の安定
化を図る等の改善は勿論可能である。
The present invention is not limited to the above-described embodiment at all, and various modifications can be made without departing from the gist of the present invention. For example, in the above examples, oxalic acid was shown as an example of a divalent organic acid, but other dicarboxylic acids such as maleic acid, malonic acid, and succinic acid, or tricarboxylic acids and other various organic compounds having two or more valences are also used. The application of the acid is clear from the utility of the organic acid of the present invention. Further, the conductive material, the binder, and the like are not limited to those of the embodiment. Also for the layered lithium-nickel-based composite oxide, it is of course possible to stabilize battery characteristics by substituting a part of the nickel element with another metal element.

【0060】[0060]

【発明の効果】本発明の正極ペースト組成物によれば、
正極活物質に層状リチウムニッケル系複合酸化物を用い
ていることによりリチウム二次電池としての高温度(6
0℃以上)での電池特性(充放電サイクル特性など)に
優れるばかりでなく、その組成物中に2価以上の多価の
有機酸を適量配合することで電極シート製造時における
ペーストの集電体に対する接着性を向上させ、塗工後の
プレス時の塗膜のロールへの付着をなくすことが可能と
なった。そのためこの正極ペースト組成物を、特に高温
度での使用環境に置かれる電気自動車の電源などに適用
することは電池性能面で有効であることはもとより、量
産性にも適していて正極活物質の集電体からの剥脱が少
ないことによる電池性能の安定性と製造コストの低廉化
にも寄与するものである。本発明は、電気自動車用二次
電池のように短時間に多量の電極層を作製する必要があ
る用途に、層状ニッケル酸リチウムを用いる可能性を拓
くものとなっている。
According to the positive electrode paste composition of the present invention,
By using a layered lithium-nickel-based composite oxide as the positive electrode active material, a high temperature (6
(0 ° C. or higher), not only excellent in battery characteristics (such as charge-discharge cycle characteristics), but also by collecting an appropriate amount of a divalent or higher polyvalent organic acid into the composition to collect the paste during the production of the electrode sheet. It is possible to improve the adhesiveness to the body and eliminate the adhesion of the coating film to the roll at the time of pressing after coating. Therefore, applying this positive electrode paste composition to a power source of an electric vehicle placed in an environment of use at a high temperature is effective not only in battery performance, but also suitable for mass production and is suitable for a positive electrode active material. This also contributes to stability of battery performance due to less exfoliation from the current collector and reduction of manufacturing cost. The present invention opens up the possibility of using layered lithium nickelate for applications in which a large number of electrode layers need to be produced in a short time, such as a secondary battery for an electric vehicle.

【0061】また本発明のリチウム二次電池用正極は、
上記ペースト組成物を集電体に塗布乾燥したものである
から、リチウム二次電池にこの正極を組み込んだ時に高
温度での充放電サイクル特性などに優れた電池特性を発
揮することができる。
Further, the positive electrode for a lithium secondary battery of the present invention comprises:
Since the paste composition is applied to a current collector and dried, when the positive electrode is incorporated in a lithium secondary battery, excellent battery characteristics such as high-temperature charge / discharge cycle characteristics can be exhibited.

【0062】さらに本発明に係るリチウム二次電池用正
極の製造方法によれば、上述したような優れた電池特性
を有するリチウム二次電池の正極が得られるものであ
る。
Further, according to the method of manufacturing a positive electrode for a lithium secondary battery according to the present invention, a positive electrode of a lithium secondary battery having excellent battery characteristics as described above can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥田 匠昭 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 中野 秀之 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 井上 俊彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H003 AA04 BA03 BB05 BB11 BB14 BC06 BD04 5H014 AA02 BB01 BB06 BB08 EE10 HH01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuaki Okuda 41-Cho, Yokomichi, Nagakute-machi, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory, Inc. (72) Inventor Hideyuki Nakano Nagakute-cho, Aichi-gun, Aichi Prefecture 41 Chuo-ku Yokomichi 1 Toyota Central Research Laboratory Co., Ltd. (72) Inventor Toshihiko Inoue 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 5H003 AA04 BA03 BB05 BB11 BB14 BC06 BD04 5H014 AA02 BB01 BB06 BB08 EE10 HH01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 層状結晶構造をもつリチウムニッケル系
複合酸化物を正極活物質とし、この正極活物質と、該活
物質に導電性を付与する導電性物質と、両物質を結合す
るバインダとを溶剤に分散し、これに2価以上の有機酸
を正極活物質100重量部に対して0.1〜3重量部配
合していることを特徴とするリチウム二次電池用正極ペ
ースト組成物。
1. A lithium nickel composite oxide having a layered crystal structure is used as a positive electrode active material, and the positive electrode active material, a conductive material that imparts conductivity to the active material, and a binder that binds both materials are used. A positive electrode paste composition for a lithium secondary battery, wherein the positive electrode paste composition is dispersed in a solvent and contains 0.1 to 3 parts by weight of a divalent or higher valent organic acid per 100 parts by weight of the positive electrode active material.
【請求項2】 前記請求項1に記載のペースト組成物を
集電体に塗布乾燥してなることを特徴とするリチウム二
次電池用正極。
2. A positive electrode for a lithium secondary battery, wherein the paste composition according to claim 1 is applied to a current collector and dried.
【請求項3】 リチウム合金系正極活物質と導電性物質
とバインダとを溶剤に分散し、これに2価以上の有機酸
を正極活物質100重量部に対し0.1〜3重量部配合
して正極ペーストを作成し、これを集電体に塗布乾燥し
て製造することを特徴とするリチウム二次電池用正極の
製造方法。
3. A lithium alloy-based positive electrode active material, a conductive material and a binder are dispersed in a solvent, and 0.1 to 3 parts by weight of a divalent or higher organic acid is mixed with 100 parts by weight of the positive electrode active material. Producing a positive electrode paste for a lithium secondary battery by applying a positive electrode paste to a current collector and drying it.
JP21148199A 1999-07-27 1999-07-27 Positive electrode paste composition for lithium secondary battery and positive electrode for lithium secondary battery Expired - Fee Related JP4497585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21148199A JP4497585B2 (en) 1999-07-27 1999-07-27 Positive electrode paste composition for lithium secondary battery and positive electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21148199A JP4497585B2 (en) 1999-07-27 1999-07-27 Positive electrode paste composition for lithium secondary battery and positive electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001035495A true JP2001035495A (en) 2001-02-09
JP4497585B2 JP4497585B2 (en) 2010-07-07

Family

ID=16606678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21148199A Expired - Fee Related JP4497585B2 (en) 1999-07-27 1999-07-27 Positive electrode paste composition for lithium secondary battery and positive electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4497585B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101869A1 (en) * 2001-06-07 2002-12-19 Mitsubishi Chemical Corporation Lithium secondary cell
JP2003086249A (en) * 2001-06-07 2003-03-20 Mitsubishi Chemicals Corp Lithium secondary battery
JP2005011594A (en) * 2003-06-17 2005-01-13 Sony Corp Electrode mixture, electrode, and battery
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
KR101193991B1 (en) 2007-10-18 2012-10-24 시마네켄 Metal-graphite composite material having high thermal conductivity and production method therefor
KR101201136B1 (en) 2005-03-08 2012-11-13 삼성에스디아이 주식회사 Positive electrode slurry composition for lithium secondary battery and Lithium secondary battery using the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2013196898A (en) * 2012-03-19 2013-09-30 Toshiba Corp Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and binder for electrode
US8986895B2 (en) 2009-02-04 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
US9236612B2 (en) 2007-11-14 2016-01-12 Kureha Corporation Positive electrode mixture for nonaqueous battery and positive electrode structure
US9531036B2 (en) 2013-08-23 2016-12-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type ion conducting oxide, complex, lithium secondary battery, manufacturing method of garnet-type ion conducting oxide and manufacturing method of complex
CN107732228A (en) * 2017-05-08 2018-02-23 东莞市创明电池技术有限公司 Nickelic anode sizing agent and its conjunction paste-making method and coating method, battery core, lithium battery
JP2018092707A (en) * 2016-11-30 2018-06-14 三洋電機株式会社 Method for manufacturing positive electrode plate, method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019093313A1 (en) * 2017-11-08 2019-05-16 株式会社Gsユアサ Positive electrode, nonaqueous electrolyte electricity storage element, method for producing positive electrode, and method for producing nonaqueous electrolyte electricity storage element
US10530015B2 (en) 2011-06-20 2020-01-07 Kabushiki Kaisha Toyota Chuo Kenkyusho All-solid-state lithium secondary battery and method for producing the same
JPWO2020026486A1 (en) * 2018-07-31 2021-08-02 パナソニックIpマネジメント株式会社 Positive electrode material and secondary battery
US11245107B2 (en) 2016-03-18 2022-02-08 Envision Aesc Japan Ltd. Positive electrode mixture for secondary battery, method for manufacturing positive electrode for secondary battery, and method for manufacturing secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131501A1 (en) * 2021-08-04 2023-02-08 VARTA Microbattery GmbH Cathode paste, method for manufacturing same and use of same
WO2023011914A1 (en) * 2021-08-04 2023-02-09 Varta Microbattery Gmbh Cathode paste, method for producing same, and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306502A (en) * 1996-05-17 1997-11-28 Kureha Chem Ind Co Ltd Electrode mix for nonaqueous battery, and nonaqueous battery
JPH11176425A (en) * 1997-12-09 1999-07-02 Tdk Corp Manufacture of electrode for battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306502A (en) * 1996-05-17 1997-11-28 Kureha Chem Ind Co Ltd Electrode mix for nonaqueous battery, and nonaqueous battery
JPH11176425A (en) * 1997-12-09 1999-07-02 Tdk Corp Manufacture of electrode for battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2003086249A (en) * 2001-06-07 2003-03-20 Mitsubishi Chemicals Corp Lithium secondary battery
WO2002101869A1 (en) * 2001-06-07 2002-12-19 Mitsubishi Chemical Corporation Lithium secondary cell
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4656366B2 (en) * 2003-06-17 2011-03-23 ソニー株式会社 Electrode mixture, electrode and secondary battery
JP2005011594A (en) * 2003-06-17 2005-01-13 Sony Corp Electrode mixture, electrode, and battery
KR101201136B1 (en) 2005-03-08 2012-11-13 삼성에스디아이 주식회사 Positive electrode slurry composition for lithium secondary battery and Lithium secondary battery using the same
KR101193991B1 (en) 2007-10-18 2012-10-24 시마네켄 Metal-graphite composite material having high thermal conductivity and production method therefor
US9236612B2 (en) 2007-11-14 2016-01-12 Kureha Corporation Positive electrode mixture for nonaqueous battery and positive electrode structure
US8986895B2 (en) 2009-02-04 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
US10530015B2 (en) 2011-06-20 2020-01-07 Kabushiki Kaisha Toyota Chuo Kenkyusho All-solid-state lithium secondary battery and method for producing the same
JP2013196898A (en) * 2012-03-19 2013-09-30 Toshiba Corp Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and binder for electrode
US9531036B2 (en) 2013-08-23 2016-12-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type ion conducting oxide, complex, lithium secondary battery, manufacturing method of garnet-type ion conducting oxide and manufacturing method of complex
US11245107B2 (en) 2016-03-18 2022-02-08 Envision Aesc Japan Ltd. Positive electrode mixture for secondary battery, method for manufacturing positive electrode for secondary battery, and method for manufacturing secondary battery
JP2018092707A (en) * 2016-11-30 2018-06-14 三洋電機株式会社 Method for manufacturing positive electrode plate, method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN107732228A (en) * 2017-05-08 2018-02-23 东莞市创明电池技术有限公司 Nickelic anode sizing agent and its conjunction paste-making method and coating method, battery core, lithium battery
CN107732228B (en) * 2017-05-08 2020-04-14 东莞市创明电池技术有限公司 High-nickel positive electrode slurry, slurry mixing method and coating method thereof, battery cell and lithium battery
WO2019093313A1 (en) * 2017-11-08 2019-05-16 株式会社Gsユアサ Positive electrode, nonaqueous electrolyte electricity storage element, method for producing positive electrode, and method for producing nonaqueous electrolyte electricity storage element
JPWO2019093313A1 (en) * 2017-11-08 2020-12-03 株式会社Gsユアサ Positive electrode, non-aqueous electrolyte storage element, positive electrode manufacturing method, and non-aqueous electrolyte storage element manufacturing method
JP7205484B2 (en) 2017-11-08 2023-01-17 株式会社Gsユアサ Positive Electrode, Non-Aqueous Electrolyte Storage Element, Method for Manufacturing Positive Electrode, and Method for Manufacturing Non-Aqueous Electrolyte Storage Element
JPWO2020026486A1 (en) * 2018-07-31 2021-08-02 パナソニックIpマネジメント株式会社 Positive electrode material and secondary battery
JP7223980B2 (en) 2018-07-31 2023-02-17 パナソニックIpマネジメント株式会社 Cathode materials and secondary batteries

Also Published As

Publication number Publication date
JP4497585B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP4497585B2 (en) Positive electrode paste composition for lithium secondary battery and positive electrode for lithium secondary battery
JP4717847B2 (en) Positive electrode active material and lithium secondary battery including the same
CN110574191B (en) Method for forming lithium metal and inorganic material composite thin film, and method for prelithiating negative electrode of lithium secondary battery using the same
JPWO2017141735A1 (en) Solid electrolyte composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
CN110268557B (en) Prelithiation using lithium metal and inorganic composite layers
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
EP2908370B1 (en) Low resistance electrode for electrochemical element, method for manufacturing same, and electrochemical element including same
CN105470576A (en) High voltage lithium battery cell and preparation method therefor, and lithium ion battery
CN102522539A (en) Cathode active material and lithium secondary battery containing the same
CN103762351A (en) Cathode active material and lithium secondary battery containing the same
JP2023520192A (en) secondary battery
CN105474449B (en) Lithium secondary battery
CN108365164B (en) Method for manufacturing battery
JP6808948B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
JP2012022858A (en) Method for manufacturing electrode
CN113273014A (en) Lithium secondary battery and method for manufacturing same
KR20140134541A (en) Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
JP4561041B2 (en) Lithium secondary battery
JP2022547501A (en) Method for manufacturing secondary battery
KR20190029320A (en) Double layer electrode, and lithium secondary battery comprising the same
WO2012086186A1 (en) Positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2000228199A (en) Nonaqueous electrolyte solution secondary battery
KR102066704B1 (en) Method of making electrodes for lithium secondary battery and Electrodes manufactured therefrom
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6825701B2 (en) Spacer-containing electrode structure and its application to high energy density and fast-chargeable lithium-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees