JPH10284129A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH10284129A
JPH10284129A JP9092083A JP9208397A JPH10284129A JP H10284129 A JPH10284129 A JP H10284129A JP 9092083 A JP9092083 A JP 9092083A JP 9208397 A JP9208397 A JP 9208397A JP H10284129 A JPH10284129 A JP H10284129A
Authority
JP
Japan
Prior art keywords
silicon
active material
negative electrode
lithium
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9092083A
Other languages
Japanese (ja)
Other versions
JP4161383B2 (en
Inventor
Tokuo Inamasu
徳雄 稲益
Seijiro Ochiai
誠二郎 落合
Aya Kobayashi
亜矢 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP09208397A priority Critical patent/JP4161383B2/en
Publication of JPH10284129A publication Critical patent/JPH10284129A/en
Application granted granted Critical
Publication of JP4161383B2 publication Critical patent/JP4161383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide excellent charge and discharge cycle characteristics at a high voltage, a high capacity and a high density and enhanced safety, by using a salt containing carbon for the main component material of an electrolyte and silicon with an electron conductivity of not less than a specific value for a negative active material. SOLUTION: A salt containing carbon is used for the main component solute of an electrolyte in a battery. It is preferable that an electron conductivity of silicon which is the main component material for a negative active material has not less than 10<-5> S cm<-1> at 20 deg.C. For the salt containing carbon, a lithium salt expressed by (R1 SO2 )(R2 SO2 )NLi is used. In the formula, R1 , R2 are expressed by CnF2n+1 , where (n) is an integer from 1 to 4, and R1 =R2 or R1 ≠R2 is preferable. As for the crystal system of silicon, single crystal is preferable since excellent charge and discharge characteristics can be obtained. A salt containing carbon is hard to be decomposed and hydrogen fluoride gas and the like are seldom discharged when reaction with water. Accordingly, an increase in an electric resistance of surface coating of the negative active material and a decrease in the ion conductivity are suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池に関
するもので、さらに詳しくはその負極活物質とその電池
に用いられる電解質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a negative electrode active material and an electrolyte used in the battery.

【0002】[0002]

【従来の技術】従来より非水電解質電池用の負極活物質
として、リチウムを用いることが代表的であったが、充
電時に生成するリチウムの樹枝状析出(デンドライト)
のため、サイクル寿命の点で問題があった。また、この
デンドライトはセパレーターを貫通し内部短絡を引き起
こしたり、発火の原因ともなっている。
2. Description of the Related Art Conventionally, lithium has been typically used as a negative electrode active material for a nonaqueous electrolyte battery. However, dendritic deposition of lithium generated during charging (dendrite)
Therefore, there was a problem in terms of cycle life. In addition, the dendrite penetrates through the separator, causing an internal short circuit and causing ignition.

【0003】また、上記のような充電時に生成するデン
ドライトを防止する目的でリチウム合金も用いられた
が、充電量が大きくなると負極の微細粉化や、負極活物
質の脱落などの問題があった。
Further, lithium alloys have been used for the purpose of preventing dendrite generated at the time of charging as described above. However, when the charge amount is increased, there are problems such as fine powdering of the negative electrode and falling off of the negative electrode active material. .

【0004】現在、長寿命化及び安全性のために負極に
炭素材料を用いる電池などが注目を集め一部実用化され
ている。しかしながら、負極に用いられる炭素材料は、
急速充電時、内部短絡や充電効率の低下という問題があ
った。これらの炭素材料は一般的に、炭素材料へのリチ
ウムのドープ電位が0Vに近いため、急速充電を行う場
合、電位が0V以下になり電極上にリチウムを析出する
ことがあった。そのため、セルの内部短絡を引き起こし
たり、放電効率を低下させる原因となっていた。また、
このような炭素材料は、サイクル寿命の点でかなりの改
善がなされているが、密度が比較的小さいため、体積当
たりの容量が低くなってしまうことになる。つまり、こ
の炭素材料は高エネルギー密度という点からは未だ不十
分である。その上、炭素上に被膜を形成する必要がある
ものについては初期充放電効率が低下し、この被膜形成
に使われる電気量は不可逆であるため、その電気量分の
容量低下につながる。従って、さらなる高容量、高エネ
ルギー密度で、サイクル寿命が長く、安全な非水電解質
電池用負極材料の開発が望まれている。
At present, batteries using a carbon material for the negative electrode have been attracting attention for their long life and safety, and some of them have been put to practical use. However, the carbon material used for the negative electrode is
At the time of quick charging, there was a problem that an internal short circuit or a reduction in charging efficiency occurred. Since these carbon materials generally have a lithium doping potential of the carbon material close to 0 V, when rapid charging is performed, the potential becomes 0 V or less and lithium may be deposited on the electrode. For this reason, it causes internal short circuit of the cell and lowers the discharge efficiency. Also,
Although such carbon materials have been significantly improved in terms of cycle life, their relatively low density results in low capacity per volume. That is, this carbon material is still insufficient in terms of high energy density. In addition, in the case where a film needs to be formed on carbon, the initial charge / discharge efficiency decreases, and the amount of electricity used for forming the film is irreversible, which leads to a reduction in capacity corresponding to the amount of electricity. Therefore, development of a safe negative electrode material for a non-aqueous electrolyte battery with a higher capacity, a higher energy density, a longer cycle life, and the like is desired.

【0005】[0005]

【発明が解決しようとする課題】既に、リチウムとシリ
コンの合金として、Binary Alloy Pha
se Diagrams(p2465)にあるように、
Li22Si5 までの組成で合金化することが知られてい
る。また、特開平5−74463号公報では、負極にシ
リコンの単結晶を用いることを報告している。しかしな
がら、急速充放電用非水電解質電池の負極材としてシリ
コンにリチウムをドープさせようと試みると、ほとんど
ドープが起こらずにリチウムが析出してしまうことが分
かった。そこで、本発明者は、すでに不純物(ドーパン
ト)を有する外来半導体について検討を行った結果、リ
チウムの吸蔵、放出が進行することが分かった。この吸
蔵反応は約0.1Vという極めてリチウム電位に近い電
位で進行し、理論容量に近いリチウムの吸蔵が起こり、
可逆性もあることが分かった。しかしながら、溶質とし
てLiBF4 を用いた電解質を用いた場合、各サイクル
の充放電効率が低く、サイクル劣化が起こることがわか
った。
As an alloy of lithium and silicon, Binary Alloy Pha has already been used.
As in se Diagrams (p2465),
It is known to alloy with compositions up to Li 22 Si 5 . Japanese Patent Application Laid-Open No. Hei 5-74463 reports that a single crystal of silicon is used for a negative electrode. However, when trying to dope lithium into silicon as a negative electrode material of a nonaqueous electrolyte battery for rapid charge / discharge, it was found that lithium was deposited with almost no doping. Then, the present inventor studied an extrinsic semiconductor already having an impurity (dopant), and found that the occlusion and release of lithium proceeded. This occlusion reaction proceeds at a potential very close to the lithium potential of about 0.1 V, and occlusion of lithium close to the theoretical capacity occurs.
It was found that there was also reversibility. However, it was found that when an electrolyte using LiBF 4 as the solute was used, the charge / discharge efficiency in each cycle was low, and cycle deterioration occurred.

【0006】つまり、負極としてリチウム金属やリチウ
ムと金属の合金を用いる場合は高電圧や、高容量、高エ
ネルギー密度としての利点はあるものの、サイクル性や
安全性の上で問題があり、炭素材料を用いる場合、高電
圧や、安全性の面で有利であるものの、高容量、高エネ
ルギー密度の面で不十分である。高容量、高エネルギー
密度が期待されるシリコンを負極活物質として用いた場
合、各サイクルの充放電効率が低く、サイクル劣化につ
ながることが問題であった。
That is, when lithium metal or an alloy of lithium and a metal is used as the negative electrode, there are advantages in terms of high voltage, high capacity, and high energy density, but there are problems in cycleability and safety. Is advantageous in terms of high voltage and safety, but insufficient in terms of high capacity and high energy density. When silicon, which is expected to have a high capacity and a high energy density, is used as a negative electrode active material, there is a problem that the charge and discharge efficiency of each cycle is low, leading to cycle deterioration.

【0007】このため、高電圧、高エネルギー密度で、
優れた充放電サイクル特性を示し、安全性の高い二次電
池を得るには、充放電時のリチウムの吸蔵放出の際に結
晶系の変化や体積変化が少なく、できるだけリチウム電
位に近い作動領域で、かつ可逆的にリチウムを吸蔵放出
可能な導電性のある化合物が望まれている。
For this reason, high voltage, high energy density,
In order to obtain a secondary battery with excellent charge-discharge cycle characteristics and high safety, there is little change in the crystal system or volume change during insertion and extraction of lithium during charging and discharging, and in an operating region as close to the lithium potential as possible. A conductive compound capable of reversibly inserting and extracting lithium has been desired.

【0008】[0008]

【課題を解決するための手段】本発明は上記問題点に鑑
みてなされたものであって、非水電解質電池に使用され
る負極活物質の主構成物質として、シリコンとリチウム
であることを特徴とする非水電解質電池において、該電
解質の主構成溶質として炭素を含む塩を用いることを特
徴とする。好ましくは、負極活物質の主構成物質である
シリコンの電子伝導度が20℃で10-5Scm-1以上であ
ることが望ましい。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is characterized in that silicon and lithium are the main constituent materials of a negative electrode active material used in a non-aqueous electrolyte battery. Wherein a salt containing carbon is used as a main constituent solute of the electrolyte. Preferably, the electronic conductivity of silicon, which is a main constituent material of the negative electrode active material, is not less than 10 -5 Scm -1 at 20 ° C.

【0009】さらに、上記に挙げた炭素を含む塩が、下
記一般式(1) (R1 SO2 )(R2 SO2 )NLi ・・・・ 一般式(1) からなることを特徴とする。好ましくは一般式(1)中
のR1 、R2 がCn 2n+1で表され、nは1から4まで
の数であり、R1 =R2 又はR1 ≠R2 であることが望
ましい。
Further, the above-mentioned carbon-containing salt is characterized by being represented by the following general formula (1): (R 1 SO 2 ) (R 2 SO 2 ) NLi... . Preferably, R 1 and R 2 in the general formula (1) are represented by C n F 2n + 1 , n is a number from 1 to 4, and R 1 = R 2 or R 1 ≠ R 2 Is desirable.

【0010】ここで、非水電解質電池において、従来一
般的に用いられていたLiBF4 やLiPF6 を電解質
に用いると、そのもののイオン伝導性は優れているもの
の、分解するとルイス酸や水との反応ではフッ化水素等
を生じることが分かっている。これらの溶質を用いてシ
リコンを負極活物質として用いた場合、溶質から生じる
不純物がシリコン表面に存在する被膜と反応し、その表
面被膜は電気抵抗が高くイオン伝導性の悪い被膜に変化
することが分かった。そのため、充放電を行う毎に電極
抵抗が増大し、充放電効率を低下させ、よってサイクル
劣化につながることが考えられる。
Here, in a non-aqueous electrolyte battery, when LiBF 4 or LiPF 6, which has been generally used in the past, is used as an electrolyte, the ion conductivity of the electrolyte itself is excellent, but when it is decomposed, it is not compatible with Lewis acid or water. It is known that the reaction produces hydrogen fluoride and the like. When silicon is used as a negative electrode active material by using these solutes, impurities generated from the solute react with the film existing on the silicon surface, and the surface film changes into a film having high electric resistance and poor ion conductivity. Do you get it. Therefore, it is conceivable that the electrode resistance increases each time charging / discharging is performed, which lowers the charging / discharging efficiency, thereby leading to cycle deterioration.

【0011】一方、炭素を含む塩は分解しにくく、水と
の反応においてもフッ化水素等をほとんど放出しないこ
とが分かった。よって、シリコンを負極活物質として用
いた場合、その表面被膜の電気抵抗増大や、イオン伝導
性の低下がが抑えられ、充放電効率が向上し、よってサ
イクル特性が向上することが考えられる。
On the other hand, it has been found that salts containing carbon are hardly decomposed and hardly release hydrogen fluoride or the like even in the reaction with water. Therefore, when silicon is used as the negative electrode active material, it is conceivable that an increase in the electrical resistance of the surface coating and a decrease in ionic conductivity are suppressed, the charge / discharge efficiency is improved, and the cycle characteristics are improved.

【0012】また、シリコンは、電子伝導性の優れたも
のがリチウムとの合金化に適していることも分かった。
特に電子伝導度が常温で10-5Scm-1以上、好ましく
は、1Scm-1以上である外来半導体が充放電特性に優れ
ていることが分かった。つまり、リチウムとシリコンの
合金は知られているものの、シリコン自身は元来真性半
導体であり、そのままでは電子伝導性が低く、電池負極
材料としての特性が悪かった。そのため、研究の対象に
なりにくい素材であったが、不純物をドーピングした外
来半導体、特にp型半導体、n型半導体、p−n接合を
有する半導体においては、不純物濃度が高く、電子伝導
性の良好なものが負極活物質としてより充放電特性の優
れたものが得られることを見い出し、本発明に至った。
It has also been found that silicon having excellent electron conductivity is suitable for alloying with lithium.
In particular, it has been found that a foreign semiconductor having an electron conductivity of 10 -5 Scm -1 or more at room temperature, preferably 1 Scm -1 or more has excellent charge / discharge characteristics. That is, although an alloy of lithium and silicon is known, silicon itself was originally an intrinsic semiconductor, and as it was, the electron conductivity was low, and the characteristics as a battery negative electrode material were poor. For this reason, it is a material that is difficult to be studied, but a foreign semiconductor doped with impurities, particularly a p-type semiconductor, an n-type semiconductor, and a semiconductor having a pn junction, have a high impurity concentration and good electron conductivity. The present inventors have found that a material having a better charge-discharge characteristic can be obtained as a negative electrode active material, and have reached the present invention.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0014】本発明で用いるシリコンについて、その結
晶系については、単結晶、多結晶、アモルファス等が挙
げられ、それらのうち単結晶については、特に優れた充
放電特性が得られるので好ましいが、これらに限定され
るものではない。
As for the silicon used in the present invention, the crystal system includes single crystal, polycrystal, amorphous and the like. Among them, single crystal is preferable because particularly excellent charge / discharge characteristics can be obtained. However, the present invention is not limited to this.

【0015】さらに、シリコンに不純物を添加すること
により、電子伝導度を向上させることができる。ここで
言う不純物とは周期律表のすべての元素のうち、ドナー
原子、アクセプター原子となり得るものであるが、好ま
しくはP,Al,As,Sb,B,Ga,In等であ
り、最も好ましくはBであるが、これらに限定されるも
のではない。また、多結晶などに見られる格子欠陥の存
在も電子伝導向上に寄与することが考えられる。
Further, by adding an impurity to silicon, electron conductivity can be improved. The term “impurity” as used herein means any of the elements in the periodic table that can be a donor atom or an acceptor atom, but is preferably P, Al, As, Sb, B, Ga, In or the like, and most preferably. B, but is not limited thereto. In addition, it is considered that the presence of lattice defects found in polycrystals and the like also contributes to improving electron conduction.

【0016】上記不純物のドーピング方法としては、C
Z法(チョクラルスキ法、または引き上げ法)、FZ
(フローティング・ゾーン法)、合金法、拡散法、イオ
ン注入法、エピタキシャル法等が挙げられるが、これら
に限定されるものではない。
As the method of doping the impurities, C
Z method (Czochralski method or lifting method), FZ
(Floating zone method), alloy method, diffusion method, ion implantation method, epitaxial method and the like, but are not limited thereto.

【0017】不純物添加の濃度については、通常シリコ
ン原子107 個から106 個にドナー原子あるいはアク
セプター原子1個の割合であるが、好ましくは高濃度の
ドーピングが適しており、シリコン原子104 個にドナ
ー原子あるいはアクセプター原子1個の割合、またはそ
れ以上の高濃度であることが望ましい。
The concentration of the impurity added is usually from 10 7 to 10 6 silicon atoms with one donor atom or one acceptor atom, but high-concentration doping is preferable, and 10 4 silicon atoms is suitable. It is desirable that the concentration be as high as one donor atom or one acceptor atom or more.

【0018】本発明に用いるシリコンは、電子伝導性の
優れたものがリチウムとの合金化に適しているが、特に
電子伝導度が常温で10-5Scm-1以上、好ましくは、1
Scm-1以上である外来半導体が充放電特性に優れてい
る。
The silicon used in the present invention has excellent electron conductivity and is suitable for alloying with lithium. The silicon has an electron conductivity of at least 10 -5 Scm -1 at room temperature, preferably 1 -5 Scm -1.
An extrinsic semiconductor having Scm -1 or more has excellent charge / discharge characteristics.

【0019】また、本発明に用いるシリコンは、厚みが
0.1〜500μmであるウエハー状の単板、もしくは
平均粒子サイズ0.1〜100μmである粉体が望まし
い。所定の形状を得る上で、ウエハー状の単板を得るた
めにはダイヤモンドカッターが用いられ、また粉体を得
るためには粉砕機や分級機が用いられる。粉体を得る場
合、例えば乳鉢、ボールミル、サンドミル、振動ボール
ミル、遊星ボールミル、ジェットミル、カウンタージェ
トミル、旋回気流型ジェットミルや篩等が用いられる。
粉砕時には水、あるいはヘキサン等の有機溶剤を共存さ
せた湿式粉砕を用いることもできる。分級方法として
は、特に限定はなく、篩や風力分級機などが乾式、湿式
ともに必要に応じて用いられる。
The silicon used in the present invention is desirably a single wafer-shaped plate having a thickness of 0.1 to 500 μm or a powder having an average particle size of 0.1 to 100 μm. In obtaining a predetermined shape, a diamond cutter is used to obtain a wafer-like veneer, and a pulverizer or a classifier is used to obtain powder. When powder is obtained, for example, a mortar, a ball mill, a sand mill, a vibration ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air jet mill, a sieve, and the like are used.
At the time of pulverization, wet pulverization in which an organic solvent such as water or hexane coexists can be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as needed in both dry and wet methods.

【0020】本発明に併せて用いることができる負極材
料としては、リチウム金属、リチウム合金などや、リチ
ウムイオンまたはリチウム金属を吸蔵放出できる焼成炭
素質化合物やカルコゲン化合物、メチルリチウム等のリ
チウムを含有する有機化合物等が挙げられる。また、リ
チウム金属やリチウム合金、リチウムを含有する有機化
合物を併用することによって、本発明に用いる外来半導
体にリチウムを電池内部で挿入することも可能である。
The negative electrode material that can be used in conjunction with the present invention includes lithium metal, lithium alloy, and the like, calcined carbonaceous compounds capable of inserting and extracting lithium ions or lithium metal, chalcogen compounds, and lithium such as methyllithium. Organic compounds and the like can be mentioned. In addition, by using lithium metal, a lithium alloy, and an organic compound containing lithium in combination, lithium can be inserted into the foreign semiconductor used in the present invention inside the battery.

【0021】本発明の外来半導体を粉末として用いる場
合、電極合剤として導電剤や結着剤やフィラー等を添加
することができる。導電剤としては、電池性能に悪影響
を及ぼさない電子伝導性材料であれば何でも良い。通
常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛な
ど)、人造黒鉛、カーボンブラック、アセチレンブラッ
ク、ケッチェンブラック、カーボンウイスカー、炭素繊
維や金属(銅、ニッケル、アルミニウム、銀、金など)
粉、金属繊維、金属の蒸着、導電性セラミックス材料等
の導電性材料を1種またはそれらの混合物として含ませ
ることができる。これらの中で、黒鉛とアセチレンブラ
ックとケッチェンブラックの併用が望ましい。その添加
量は1〜50重量%が好ましく、特に2〜30重量%が
好ましい。
When the foreign semiconductor of the present invention is used as a powder, a conductive agent, a binder, a filler or the like can be added as an electrode mixture. Any conductive material may be used as long as it does not adversely affect battery performance. Normally, natural graphite (scale graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fibers and metals (copper, nickel, aluminum, silver, gold, etc.)
A conductive material such as powder, metal fiber, metal deposition, and conductive ceramic material can be included as one type or a mixture thereof. Among these, the combined use of graphite, acetylene black and Ketjen black is desirable. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.

【0022】結着剤としては、通常、テトラフルオロエ
チレン、ポリフッ化ビニリデン、ポリエチレン、ポリプ
ロピレン、エチレン−プロピレンジエンターポリマー
(EPDM)、スルホン化EPDM、スチレンブタジエ
ンゴム(SBR)、フッ素ゴム、カルボキシメチルセル
ロース等といった熱可塑性樹脂、ゴム弾性を有するポリ
マー、多糖類等を1種または2種以上の混合物として用
いることができる。また、多糖類の様にリチウムと反応
する官能基を有する結着剤は、例えばメチル化するなど
してその官能基を失活させておくことが望ましい。その
添加量としては、1〜50重量%が好ましく、特に2〜
30重量%が好ましい。
As the binder, usually, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carboxymethyl cellulose, etc. Such as a thermoplastic resin, a polymer having rubber elasticity, a polysaccharide and the like can be used alone or as a mixture of two or more. Further, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly 2 to 50% by weight.
30% by weight is preferred.

【0023】フィラーとしては、電池性能に悪影響を及
ぼさない材料であれば何でも良い。通常、ポリプロピレ
ン、ポリエチレン等のオレフィン系ポリマー、アエロジ
ル、ゼオライト、ガラス、炭素等が用いられる。フィラ
ーの添加量は30重量%以下が好ましい。
As the filler, any material may be used as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The added amount of the filler is preferably 30% by weight or less.

【0024】電極活物質の集電体としては、構成された
電池において悪影響を及ぼさない電子伝導体であれば何
でもよい。例えば、正極材料として、アルミニウム、チ
タン、ステンレス鋼、ニッケル、焼成炭素、導電性高分
子、導電性ガラス等の他に、接着性、導電性、耐酸化性
向上の目的で、アルミニウムや銅等の表面をカーボン、
ニッケル、チタンや銀等で処理したものを用いることが
できる。負極材料として、銅、ステンレス鋼、ニッケ
ル、アルミニウム、チタン、焼成炭素、導電性高分子、
導電性ガラス、Al−Cd合金等の他に、接着性、導電
性、耐酸化性向上の目的で、銅等の表面をカーボン、ニ
ッケル、チタンや銀等で処理したものを用いることがで
きる。これらの材料については表面を酸化処理すること
も可能である。これらの形状については、フォイルの
他、フィルム、シート、ネット、パンチ、エキスパンド
されたもの、ラス体、多孔質体、発砲体、繊維群の形成
体等が用いられる。厚みは特に限定はないが、1〜50
0μmのものが用いられる。一方、正極活物質として
は、MnO2 ,MoO3 ,V2 5 ,Lix CoO2
Lix NiO2 ,Lix Mn2 4 ,等の金属酸化物
や、TiS2 ,MoS2,NbSe3 等の金属カルコゲ
ン化物、ポリアセン、ポリパラフェニレン、ポリピロー
ル、ポリアニリン等のグラファイト層間化合物、及び導
電性高分子等のアルカリ金属イオンや、アニオンを吸放
出可能な各種の物質を利用することができる。
The current collector of the electrode active material may be any collector as long as it does not adversely affect the constructed battery. For example, as a positive electrode material, in addition to aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, and the like, for the purpose of improving adhesiveness, conductivity, and oxidation resistance, aluminum and copper, etc. Surface carbon,
Those treated with nickel, titanium, silver, or the like can be used. As the negative electrode material, copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer,
In addition to conductive glass, Al-Cd alloy, and the like, those obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver, or the like for the purpose of improving adhesion, conductivity, and oxidation resistance can be used. These materials can be oxidized on the surface. For these shapes, in addition to foils, films, sheets, nets, punches, expanded ones, laths, porous bodies, foams, formed bodies of fibers, and the like are used. The thickness is not particularly limited, but is 1 to 50
One having a thickness of 0 μm is used. On the other hand, as the positive electrode active material, MnO 2 , MoO 3 , V 2 O 5 , Li x CoO 2 ,
Metal oxides such as Li x NiO 2 and Li x Mn 2 O 4 ; metal chalcogenides such as TiS 2 , MoS 2 and NbSe 3 ; graphite intercalation compounds such as polyacene, polyparaphenylene, polypyrrole and polyaniline; Various substances capable of absorbing and releasing an alkali metal ion such as a conductive polymer and an anion can be used.

【0025】特に本発明のシリコンを負極活物質として
用いる場合、高エネルギー密度という観点からV
2 5 ,MnO2 ,Lix CoO2 ,Lix NiO2
Lix Mn2 4 等の3〜4Vの電極電位を有するもの
が望ましい。特にLix CoO2 ,Lix NiO2 ,L
x Mn2 4 等のリチウム含有遷移金属酸化物が好ま
しい。
In particular, when the silicon of the present invention is used as a negative electrode active material, V
2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 ,
Those having an electrode potential of 3 to 4 V, such as Li x Mn 2 O 4, are desirable. In particular, Li x CoO 2 , Li x NiO 2 , L
i x Mn lithium-containing transition metal oxides such as 2 O 4 are preferred.

【0026】また、電解質としては、例えば有機電解
液、高分子固体電解質、無機固体電解質、溶融塩等を用
いることができ、この中でも有機電解液を用いることが
好ましい。この有機電解液の有機溶媒として、プロピレ
ンカーボネート、エチレンカーボネート、ブチレンカー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、メチルエチルカーボネート、γ−ブチロラクトン等
のエステル類や、テトラヒドロフラン、2−メチルテト
ラヒドロフラン等の置換テトラヒドロフラン、ジオキソ
ラン、ジエチルエーテル、ジメトキシエタン、ジエトキ
シエタン、メトキシエトキシエタン等のエーテル類、ジ
メチルスルホキシド、スルホラン、メチルスルホラン、
アセトニトリル、ギ酸メチル、酢酸メチル、N−メチル
ピロリドン、ジメチルフォルムアミド等が挙げられ、こ
れらを単独又は混合溶媒として用いることができる。
As the electrolyte, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used, and among them, an organic electrolyte is preferable. As the organic solvent of the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, esters such as γ-butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, Ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethylsulfoxide, sulfolane, methylsulfolane,
Acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide and the like can be mentioned, and these can be used alone or as a mixed solvent.

【0027】本発明に用いられる電解質の主構成溶質と
しては、炭素を含む塩であればよい。例えば、特開昭5
8−225045号公報で用いられている式:(Cn
2n+1Y)2 - ,M+ で表せるものや、下記一般式
(2)(3): (RSO2 3 - ,M+ ・・・・ 一般式(2) (RSO2 )O- ,M+ ・・・・ 一般式(3) で表せるものが好ましい。さらに好ましくは下記一般式(1) (R1 SO2 )(R2 SO2 )NLi ・・・・ 一般式(1) で表せるものを用いることである。
[0027] The main constituent solute of the electrolyte used in the present invention may be a salt containing carbon. For example, JP
Formula used in JP-A-8-225045: (C n X
2n + 1 Y) 2 N , M + , and the following general formulas (2) and (3): (RSO 2 ) 3 C , M + ... General formula (2) (RSO 2 ) O - , M + ... It is preferable to use a compound represented by the general formula (3). More preferably, a compound represented by the following general formula (1) (R 1 SO 2 ) (R 2 SO 2 ) NLi...

【0028】上記式中のYはSO2 又はCO、RはCn
2n+1、R1 、R2 はCn 2n+1であり、nは1から4
までの数であり、R1 =R2 又はR1 ≠R2 である。最
も好ましくはR1 =R2 =CF3 、R1 =R2 =C2
5 、あるいはR1 =CF3 、R2 =C4 9 である。
In the above formula, Y is SO 2 or CO, and R is C n
F 2n + 1 , R 1 , R 2 are C n F 2n + 1 , where n is 1 to 4
R 1 = R 2 or R 1 ≠ R 2 . Most preferably, R 1 = R 2 = CF 3 , R 1 = R 2 = C 2 F
5 or R 1 = CF 3 , R 2 = C 4 F 9 .

【0029】一方、固体電解質として、例えば無機固体
電解質、有機固体電解質、無機有機固体電解質、溶融塩
等を用いることができる。無機固体電解質には、リチウ
ムの窒化物、ハロゲン化物、酸素酸塩、硫化リン化合物
などがよく知られており、これらの1種または2種以上
を混合して用いることができる。なかでも、Li3 N,
LiI,Li5 NI2 ,Li3 N−LiI−LiOH,
Li4 SiO4 ,Li4 SiO4 −LiI−LiOH,
xLi3 PO4-(1-x) Li4 SiO4 ,Li2SiS3
等が有効である。一方、有機固体電解質では、ポリエチ
レンオキサイド誘導体か、少なくとも該誘導体を含むポ
リマー、ポリプロピレンオキサイド誘導体か、少なくと
も該誘導体を含むポリマー、ポリフォスファゼンや該誘
導体、イオン解離基を含むポリマー、リン酸エステルポ
リマー誘導体、さらにポリビニルピリジン誘導体、ビス
フェノールA誘導体、ポリアクリロニトリル、ポリビニ
リデンフルオライド、フッ素ゴム等に非水電解液を含有
させた高分子マトリックス材料(ゲル電解質)等が有効
である。
On the other hand, as the solid electrolyte, for example, an inorganic solid electrolyte, an organic solid electrolyte, an inorganic organic solid electrolyte, a molten salt, or the like can be used. Well known inorganic solid electrolytes include lithium nitrides, halides, oxyacid salts, phosphorus sulfide compounds, and the like, and one or more of these can be used in combination. Among them, Li 3 N,
LiI, Li 5 NI 2, Li 3 N-LiI-LiOH,
Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH,
xLi 3 PO 4- (1-x) Li 4 SiO 4 , Li 2 SiS 3
Etc. are effective. On the other hand, in an organic solid electrolyte, a polyethylene oxide derivative, a polymer containing at least the derivative, a polypropylene oxide derivative, a polymer containing at least the derivative, polyphosphazene or the derivative, a polymer containing an ion dissociating group, a phosphate ester polymer derivative Further, a polymer matrix material (gel electrolyte) in which a non-aqueous electrolyte is contained in a polyvinyl pyridine derivative, a bisphenol A derivative, polyacrylonitrile, polyvinylidene fluoride, fluorine rubber, or the like is effective.

【0030】セパレーターとしては、イオンの透過度が
優れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性からポリプロピレンやポリエ
チレンといったオレフィン系のポリマー、ガラス繊維、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等
からつくられたシート、微孔膜、不織布が用いられる。
セパレーターの孔径は、一般に電池に用いられる範囲の
ものであり、例えば0.01〜10μmである。またそ
の厚みについても同様で、一般に電池に用いられる範囲
のものであり、例えば5〜300μmである。
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Olefin polymers such as polypropylene and polyethylene, glass fiber, and organic solvent resistant and hydrophobic
Sheets, microporous membranes, and nonwoven fabrics made of polyvinylidene fluoride, polytetrafluoroethylene, or the like are used.
The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 10 μm. The same applies to the thickness, which is in the range generally used for batteries, for example, 5 to 300 μm.

【0031】本発明の外来半導体に於いてウエハー状の
板状の形状として用いる場合、集電をとる目的で集電体
と活物質の間に導電性接着層を設けることもできる。導
電性接着剤として通常、銀ペースト、カーボンペースト
が用いられる。また、結晶の一部をニッケルメッキする
ことによって、ハンダや銀ロウのような溶融した金属に
よる接合も可能である。またその形状は、ダイヤモンド
カッターやエッチング処理によって自由に加工する事が
できる。
When the foreign semiconductor of the present invention is used as a wafer-shaped plate, a conductive adhesive layer may be provided between the current collector and the active material for the purpose of collecting current. Usually, silver paste and carbon paste are used as the conductive adhesive. Further, by plating a part of the crystal with nickel, it is possible to join with a molten metal such as solder or silver brazing. The shape can be freely processed by a diamond cutter or an etching process.

【0032】この様に本発明は、負極活物質の主構成物
質が、シリコンである非水電解質電池において、該電解
質の主構成溶質として炭素を含む塩を用いることによ
り、金属リチウムに対し少なくとも0〜2Vの範囲でリ
チウムイオンを吸蔵放出することができ、またシリコン
が強固なことから、通常の合金に見られる充放電時の微
細粉化や負極活物質の部分的な孤立化が抑えられ、この
ような溶質を非水電解質として用いることにより、充放
電効率に優れ、サイクル特性が良好な充放電特性の優れ
た二次電池の負極として用いることができる。特に高濃
度の不純物をドープすることにより、結晶内部での電子
伝導性を向上させ、シリコンとリチウムの合金化をスム
ーズにし、充放電のレート特性が向上する。さらに負極
電位がリチウム電位に近く低いため、電池としての電圧
が高電圧となり、またその容量が大きいことから高エネ
ルギー密度が達成される。
As described above, according to the present invention, in a non-aqueous electrolyte battery in which the main constituent material of the negative electrode active material is silicon, by using a salt containing carbon as the main constituent solute of the electrolyte, at least 0 Lithium ions can be inserted and extracted in the range of up to 2 V, and since silicon is strong, fine powdering during charge and discharge and partial isolation of the negative electrode active material, which are observed in ordinary alloys, are suppressed. By using such a solute as a non-aqueous electrolyte, it can be used as a negative electrode of a secondary battery having excellent charge-discharge efficiency, good cycle characteristics, and excellent charge-discharge characteristics. In particular, by doping a high concentration of impurities, the electron conductivity inside the crystal is improved, the alloying of silicon and lithium is smoothly performed, and the charge / discharge rate characteristics are improved. Further, since the negative electrode potential is close to the lithium potential and low, the voltage of the battery becomes high, and a high energy density is achieved due to its large capacity.

【0033】[0033]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0034】(本発明)シリコン原子104 個にB原子
1個の割合でドープしたp型半導体であるシリコン単結
晶を(a)、p型半導体としてシリコン原子104 個に
B原子1個の割合でドープしたシリコン多結晶(b)、
99.99%の純度を持つ市販シリコン多結晶を
(c)、アモルファスシリコンにイオン注入法によりB
をシリコン原子104 個にB原子1個の割合で注入した
ものを(d)とし、それぞれを乳鉢で粉砕し、この負極
活物質を用いて次のようにしてコイン型非水電解質電池
を試作した。活物質とアセチレンブラック及びポリテト
ラフルオロエチレン粉末とを重量比85:10:5で混
合し、トルエンを加えて十分混練した。これをローラー
プレスにより厚み0.1mmのシート状に成形した。次
にこれを直径16mmの円形に打ち抜き、減圧下200
℃で15時間乾燥して負極2を得た。負極2は負極集電
体7の付いた負極缶5に圧着して用いた。正極1は、正
極活物質としてLiCoO2 とアセチレンブラック及び
ポリテトラフルオロエチレン粉末とを重量比85:1
0:5で混合し、トルエンを加えて十分混練した。これ
をローラープレスにより厚み0.8mmのシート状に成
形した。次にこれを直径16mmの円形に打ち抜き、減
圧下200℃で15時間乾燥して正極1を得た。正極1
は正極集電体6の付いた正極缶4に圧着して用いた。エ
チレンカーボネートとジエチルカーボネートとの体積比
1:1の混合溶剤に(C2 5 SO2 2 NLiを1m
ol/リットル溶解した電解液を用い、セパレータ3に
はポリプロピレン製微多孔膜を用いた。上記正極、負
極、電解液及びセパレータを用いて直径20mm、厚さ
1.6mmのコイン型リチウム電池を作製した。それぞ
れのシリコン(a)〜(d)を用いた電池をそれぞれ電
池(A1)〜(D1)とする。
(Invention) A silicon single crystal, which is a p-type semiconductor doped with 10 4 silicon atoms at a ratio of 1 B atom, is (a). As a p-type semiconductor, 10 4 silicon atoms have 1 B atom. Silicon polycrystal (b) doped in a proportion,
(C) A commercially available silicon polycrystal having a purity of 99.99% was implanted into amorphous silicon by ion implantation.
10 4 silicon atoms in those injected with a ratio of one B atom and (d), by grinding each in a mortar, prototype A coin type nonaqueous electrolyte battery as follows by using the negative electrode active material did. The active material, acetylene black and polytetrafluoroethylene powder were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.1 mm by a roller press. Next, this was punched into a circle having a diameter of 16 mm,
After drying at 15 ° C. for 15 hours, negative electrode 2 was obtained. The negative electrode 2 was used by being pressed against a negative electrode can 5 provided with a negative electrode current collector 7. The positive electrode 1 was prepared by mixing LiCoO 2 , acetylene black and polytetrafluoroethylene powder as a positive electrode active material in a weight ratio of 85: 1.
The mixture was mixed at 0: 5, and toluene was added and kneaded well. This was formed into a 0.8 mm thick sheet by a roller press. Next, this was punched out into a circle having a diameter of 16 mm and dried under reduced pressure at 200 ° C. for 15 hours to obtain a positive electrode 1. Positive electrode 1
Was press-bonded to a positive electrode can 4 having a positive electrode current collector 6. 1 m of (C 2 F 5 SO 2 ) 2 NLi was added to a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
ol / liter of an electrolytic solution was used, and a polypropylene microporous membrane was used for the separator 3. A coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was manufactured using the above-mentioned positive electrode, negative electrode, electrolyte and separator. Batteries using silicon (a) to (d) are referred to as batteries (A1) to (D1), respectively.

【0035】(比較例)電解液の溶質として、(C2
5 SO2 2 NLiの代わりにLiBF4 を用い、それ
以外は本発明と同様にして電池を作製した。得られた電
池を比較電池(A2)〜(D2)とする。
(Comparative Example) As a solute of the electrolytic solution, (C 2 F
A battery was prepared in the same manner as in the present invention except that LiBF 4 was used instead of 5 SO 2 ) 2 NLi. The obtained batteries are referred to as comparative batteries (A2) to (D2).

【0036】このようにして作製した本発明電池(A
1)〜(D1)、比較電池(A2)〜(D2)を用いて
充放電サイクル試験を行った。試験条件は、充電電流3
mA、充電終止電圧4.1V、放電電流3mA、放電終
止電圧3.0Vとした。これら作製した電池の充放電試
験の結果を表1に示す。
The battery of the present invention (A
A charge / discharge cycle test was performed using 1) to (D1) and comparative batteries (A2) to (D2). The test conditions were charging current 3
mA, a charge end voltage of 4.1 V, a discharge current of 3 mA, and a discharge end voltage of 3.0 V. Table 1 shows the results of the charge / discharge test of these batteries.

【0037】[0037]

【表1】 [Table 1]

【0038】表1から分かるように、本発明による電解
液の溶質に炭素を含む塩を用いた電池(A1)〜(D
1)は、電解液の溶質にLiBF4 を用いた比較電池
(A2)〜(D2)に比べて充放電特性に優れており、
10サイクル後の減少が小さかった。また、電池(A
1)〜(D1)の比較から、単結晶シリコンのサイクル
特性が、多結晶半導体よりも優れていることが分かる。
この理由については明確ではないが、次のように考えら
れる。即ち、多結晶半導体は、多くの小さな結晶の塊で
あり結晶と結晶の間には粒界が存在する。これらの材料
がリチウムを吸蔵、放出するにあたって結晶の体積変化
が伴う。つまり、この体積変化に伴って粒界部分に亀裂
が入り、活物質の孤立化、微粉末化が起こりサイクル劣
化が起こると考えられる。不純物としてホウ素をドーピ
ングしていない負極を用いた(C1)については、容量
の面で若干劣るものの、可逆性は認められた。また、ア
モルファスシリコンを用いた(D1)については、若干
容量が低下したもののサイクル特性は優れていることが
わかる。
As can be seen from Table 1, batteries (A1) to (D) using a salt containing carbon as a solute of the electrolytic solution according to the present invention.
1) has better charge / discharge characteristics than the comparative batteries (A2) to (D2) using LiBF 4 as a solute of the electrolytic solution,
The decrease after 10 cycles was small. The battery (A
From comparisons of 1) to (D1), it can be seen that the cycle characteristics of single crystal silicon are superior to those of polycrystalline semiconductors.
The reason for this is not clear, but is considered as follows. That is, a polycrystalline semiconductor is a mass of many small crystals, and a grain boundary exists between crystals. When these materials occlude and release lithium, the volume of the crystals changes. That is, it is considered that a crack is formed in the grain boundary portion with the change in volume, the active material is isolated, and the active material is pulverized, thereby causing cycle deterioration. With respect to (C1) using a negative electrode not doped with boron as an impurity, reversibility was recognized, although the capacity was slightly inferior. Further, it can be seen that the cycle characteristics of (D1) using amorphous silicon were excellent although the capacity was slightly reduced.

【0039】上記においては、電解液の溶質として(C
2 5 SO2 2 NLiについて挙げたが、同様の効果
が他の炭素を含む塩についても確認された。なお、本発
明は上記実施例に記載された活物質の出発原料、製造方
法、正極、負極、電解質、セパレータ及び電池形状など
に限定されるものではない。
In the above description, (C
Although 2F 5 SO 2 ) 2 NLi was mentioned, the same effect was confirmed for other carbon-containing salts. The present invention is not limited to the starting materials, the production method, the positive electrode, the negative electrode, the electrolyte, the separator, the shape of the battery, and the like of the active material described in the above-described embodiment.

【0040】[0040]

【発明の効果】本発明は上述の如く構成されているの
で、高電圧、高容量、高エネルギー密度で、優れた充放
電サイクル特性を示し、安全性の高い非水電解質電池を
提供できる。
Since the present invention is configured as described above, it is possible to provide a non-aqueous electrolyte battery having high voltage, high capacity, high energy density, excellent charge / discharge cycle characteristics, and high safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のに係るコイン型非水電解質電池の断面
図である。
FIG. 1 is a sectional view of a coin-type nonaqueous electrolyte battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング REFERENCE SIGNS LIST 1 positive electrode 2 negative electrode 3 separator 4 positive electrode can 5 negative electrode can 6 positive electrode current collector 7 negative electrode current collector 8 insulating packing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質の主構成物質が、シリコンで
ある非水電解質電池において、該電解質の主構成溶質と
して炭素を含む塩を用いることを特徴とする非水電解質
電池。
1. A non-aqueous electrolyte battery wherein the main constituent material of the negative electrode active material is silicon, wherein a salt containing carbon is used as a main constituent solute of the electrolyte.
【請求項2】 前記炭素を含む塩が、下記一般式(1) (R1 SO2 )(R2 SO2 )NLi ・・・・ 一般式(1) からなることを特徴とする請求項1記載の非水電解質電
池。
2. The carbon-containing salt is represented by the following general formula (1): (R 1 SO 2 ) (R 2 SO 2 ) NLi... General formula (1) The nonaqueous electrolyte battery according to any one of the preceding claims.
【請求項3】 前記炭素を含む塩の一般式(1)中のR
1 、R2 がCn 2n+1で表され、nは1から4までの数
であり、R1 =R2 又はR1 ≠R2 であることを特徴と
する請求項2記載の非水電解質電池。
3. The compound of the formula (1) wherein R
3. The method according to claim 2 , wherein 1 and R 2 are represented by C n F 2n + 1 , n is a number from 1 to 4, and R 1 = R 2 or R 1 ≠ R 2. Water electrolyte battery.
【請求項4】 前記負極活物質の主構成物質であるシリ
コンの電子伝導度が、20℃で10-5Scm-1以上である
ことを特徴とする請求項1〜3記載の非水電解質電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the electron conductivity of silicon as a main constituent material of the negative electrode active material is 10 −5 Scm −1 or more at 20 ° C. .
JP09208397A 1997-04-10 1997-04-10 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4161383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09208397A JP4161383B2 (en) 1997-04-10 1997-04-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09208397A JP4161383B2 (en) 1997-04-10 1997-04-10 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10284129A true JPH10284129A (en) 1998-10-23
JP4161383B2 JP4161383B2 (en) 2008-10-08

Family

ID=14044559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09208397A Expired - Fee Related JP4161383B2 (en) 1997-04-10 1997-04-10 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4161383B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167277A (en) * 1997-08-21 1999-03-09 Mitsubishi Chem Corp Lithium secondary battery
JP2004288525A (en) * 2003-03-24 2004-10-14 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
KR101105010B1 (en) 2008-10-07 2012-01-16 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167277A (en) * 1997-08-21 1999-03-09 Mitsubishi Chem Corp Lithium secondary battery
JP2004288525A (en) * 2003-03-24 2004-10-14 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
KR101105010B1 (en) 2008-10-07 2012-01-16 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP4161383B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP3620559B2 (en) Non-aqueous electrolyte battery
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
KR20030096089A (en) Negative Active Material, Negative Electrode Using the Same, Non-Aqueous Electrolyte Battery Using the Same, and Manufacturing Method for Negative Active Material
KR100660949B1 (en) Self-healing gallium alloy electrode, lithium secondary battery using thereof and manufacturing method of gallium alloy electrode
KR20150061695A (en) Anode active materials and lithium secondary battery comprising the same
JP2008059765A (en) Nonaqueous secondary battery
JP3906944B2 (en) Non-aqueous solid electrolyte battery
JP2012014993A (en) Nonaqueous electrolyte secondary battery
JP4281055B2 (en) Nonaqueous electrolyte, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery
JP3653717B2 (en) Non-aqueous electrolyte battery
CN113690405B (en) Electrode piece of perovskite vanadate blending active material
JP4029224B2 (en) Non-aqueous electrolyte battery
JP3992529B2 (en) Nonaqueous electrolyte secondary battery
JP2003187798A (en) Lithium secondary battery
KR101632358B1 (en) ZnO-MnO-C COMPOSITE, MANUFACTURING METHOD OF COMPOSITE CONTAINING ZINC OXIDE AND MANGANESE OXIDE AND ANODE ACTIVE MATERIAL CONTAINING THE SAME
JP3824111B2 (en) Non-aqueous electrolyte battery
JP4077294B2 (en) Nonaqueous electrolyte secondary battery
JP4355862B2 (en) Non-aqueous electrolyte battery
JP4193008B2 (en) Lithium secondary battery
JP4161383B2 (en) Nonaqueous electrolyte secondary battery
JP5499649B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4624500B2 (en) Non-aqueous electrolyte battery
JP3055892B2 (en) Lithium secondary battery
KR20230083877A (en) Rechargeable lithium battery
JP4872234B2 (en) Lithium primary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees