JPH10144298A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10144298A
JPH10144298A JP8304599A JP30459996A JPH10144298A JP H10144298 A JPH10144298 A JP H10144298A JP 8304599 A JP8304599 A JP 8304599A JP 30459996 A JP30459996 A JP 30459996A JP H10144298 A JPH10144298 A JP H10144298A
Authority
JP
Japan
Prior art keywords
active material
adhesive layer
binder
graphite
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8304599A
Other languages
Japanese (ja)
Inventor
Akira Matsuo
明 松尾
Satoshi Ubukawa
訓 生川
Kazuo Moriwaki
和郎 森脇
Masatoshi Takahashi
昌利 高橋
Hironori Honda
浩則 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8304599A priority Critical patent/JPH10144298A/en
Publication of JPH10144298A publication Critical patent/JPH10144298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To proivde a non-aqueous electrolyte lithium secondary battery excellent in high rate discharging characteristics and long term chargign/discharging cyclic characteristics. SOLUTION: In the lithum secondary battery equipped with a positive electrode composed of compound oxide containing lithium, a negative electrode making carbon material active material, and with non-aqueous electrolyte, the aforesaid negative electrode is formed out of a current collector, an adhesive layer to be closely contacted to the current collector, and of active material closely contacted to the adhesive layer, and furthermore, the aforesaid adhesive layer is formed so as to contain graphite and binder, concurrently, a weight ratio of binder to graphite in the aforesaid adhesive layer shall be 1/99 to 12/88, and moreover, it is so specified that the weight ratio of binder to graphite in the adhesive layer is larger than the weight ratio of binder to active material in the aforesaid active materail.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に関し、詳しくは負極構造に特徴を有するリチウム二次
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery having a negative electrode structure.

【0002】[0002]

【従来の技術】非水電解液を用いたリチウム二次電池
は、電解質のイオン伝導速度が小さいため、十分な電流
密度が得られにくく、重負荷特性が悪いという欠点があ
る。このため、この種の電池では、金属箔等(集電体)
の上に薄い活物質層を形成して電極となし、この電極を
セパレータを介して対極と積層または渦巻状に巻回する
などの方法により、非水電解液との接触面積や対極との
対向面積を大きくする工夫がなされている。しかし、集
電体上に極薄の活物質層を形成した電極であっても、電
極の集電率が集電体と活物質層の密着性により左右さ
れ、またこの密着性が充放電サイクルの進行に伴い劣化
するため、重負荷特性やサイクル特性を十分に高め難い
という課題を有している。
2. Description of the Related Art A lithium secondary battery using a non-aqueous electrolyte has the drawback that it is difficult to obtain a sufficient current density and has a poor heavy load characteristic because the ionic conduction speed of the electrolyte is low. For this reason, in this type of battery, metal foil etc. (current collector)
An electrode is formed by forming a thin active material layer on the electrode, and this electrode is laminated with a counter electrode via a separator or wound in a spiral shape. A device has been devised to increase the area. However, even for an electrode having an extremely thin active material layer formed on a current collector, the current collection rate of the electrode is affected by the adhesion between the current collector and the active material layer, and this adhesion is also affected by the charge / discharge cycle. Therefore, there is a problem that it is difficult to sufficiently improve heavy load characteristics and cycle characteristics.

【0003】この課題に対し、従来より種々な提案がな
されており、例えば特開昭62−160656号公報で
は、正極集電体を兼ねる金属箔に導電性フィラーとして
の炭素粉と、ポリアクリル酸またはアクリル酸とアクリ
ル酸エステルとの共重合体(結着剤)を含む導電性塗料
を塗布し、この導電性塗料層の上に正極活物質層を形成
する技術が提案されている。また、特開平7−2013
62号公報では、集電体上にカーボンブラック、高分子
化合物、及び熱硬化性架橋剤を含有してなる下地層を形
成し、この下地層の上に活物質層を形成する技術が提案
されている。
Various proposals have been made to solve this problem. For example, Japanese Patent Application Laid-Open No. Sho 62-160656 discloses that a metal foil also serving as a positive electrode current collector contains carbon powder as a conductive filler and polyacrylic acid. Alternatively, a technique has been proposed in which a conductive paint containing a copolymer of acrylic acid and an acrylic acid ester (binder) is applied, and a positive electrode active material layer is formed on the conductive paint layer. Also, Japanese Patent Application Laid-Open No. 7-2013
No. 62 discloses a technique in which a base layer containing carbon black, a polymer compound, and a thermosetting crosslinking agent is formed on a current collector, and an active material layer is formed on the base layer. ing.

【0004】しかし、リチウム等のアルカリ金属イオン
をドープ・脱ドープ、若しくはインターカレート・脱イ
ンターカレートする炭素材料を用いたリチウム二次電池
用の負極では、金属イオンのドープ・脱ドープにより負
極活物質層が大きく膨張または収縮し、この際集電体と
活物質層との間にかなり強力な剪断応力が作用する。こ
のため、この種の負極は、特に集電体/活物質層界面の
密着性が劣化し易く、充放電の繰り返しにより次第に内
部抵抗が大きくなるという問題がある。また、上記剪断
応力の作用を受け活物質が脱落するので、充放電の繰り
返しにより次第に電極容量が低下するとともに、脱落片
に起因する内部短絡の発生という問題もある。然るに、
上記技術はこのような問題を十分に解決できておらず、
更なる改良が望まれている。
However, in a negative electrode for a lithium secondary battery using a carbon material capable of doping / dedoping or intercalating / deintercalating an alkali metal ion such as lithium, the negative electrode is doped and dedoped with a metal ion. The active material layer expands or contracts greatly, and at this time, a considerably strong shear stress acts between the current collector and the active material layer. For this reason, this type of negative electrode has a problem that the adhesiveness particularly at the current collector / active material layer interface is likely to be deteriorated, and the internal resistance is gradually increased by repeated charging and discharging. Further, since the active material falls off under the action of the shear stress, there is a problem that the electrode capacity gradually decreases due to the repetition of charging and discharging, and an internal short circuit occurs due to the dropped pieces. Anyway,
The above technology has not been able to solve such problems sufficiently,
Further improvements are desired.

【0005】他方、特公平7−123053号公報で
は、有機固体電解質二次電池において、カーボン負極の
集電体の上に炭素粒子と接着ゴムからなる接着層を形成
し、この上に活物質層を形成する技術が提案されてい
る。この技術は、接着ゴムが剪断応力を吸収するので、
活物質層の剥離や密着性の低下を防止するには有効であ
るが、剪断応力を十分に吸収させるためには、かなりの
量(接着層中15%以上)の接着ゴムを使用する必要が
ある。しかし、接着ゴムは非導電性であるので、使用量
を増やすと接着層の導電性が低下し却って内部抵抗が上
昇する。したがって、この技術によってサイクル寿命の
向上を図ろうとすると、ハイレート放電特性の低下とい
う新たな問題が生じる。
On the other hand, Japanese Patent Publication No. Hei 7-123053 discloses that in an organic solid electrolyte secondary battery, an adhesive layer composed of carbon particles and adhesive rubber is formed on a current collector of a carbon anode, and an active material layer is formed thereon. A technique for forming a hologram has been proposed. This technology uses an adhesive rubber that absorbs shear stress,
Although effective in preventing the peeling of the active material layer and the decrease in adhesion, it is necessary to use a considerable amount of adhesive rubber (15% or more in the adhesive layer) in order to sufficiently absorb the shear stress. is there. However, since the adhesive rubber is non-conductive, if the amount used is increased, the conductivity of the adhesive layer is reduced, and the internal resistance is increased instead. Therefore, if an attempt is made to improve the cycle life by using this technique, a new problem of lowering the high-rate discharge characteristics arises.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術にかかる問題点を解決し、炭素材料を活物質とする負
極電極において、集電効率に優れ、かつ充放電サイクル
の繰り返しによっても集電効率の低下や活物質の脱落に
起因する電極容量の低下の少ない負極構造を案出し、も
ってハイレート放電特性および長期充放電サイクル特性
に優れたリチウム二次電池を提供しようとするものであ
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides a negative electrode using a carbon material as an active material which has excellent current collection efficiency and can be collected by repeating charge / discharge cycles. It is an object of the present invention to devise a negative electrode structure in which the electrode capacity is less reduced due to a decrease in electric efficiency and a drop in an active material, and to provide a lithium secondary battery having excellent high-rate discharge characteristics and long-term charge / discharge cycle characteristics.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は次の構成を有する。リチウム
含有複合酸化物正極と、炭素材料を活物質とする負極
と、非水電解液とを備えたリチウム二次電池において、
前記負極は、集電体と、集電体に密着する接着層と、接
着層に密着する活物質層とからなり、かつ前記接着層が
黒鉛とバインダーを含み、前記接着層におけるバインダ
ー/黒鉛の重量比が、〔1/99〕〜〔12/88〕で
あり、更に前記接着層のバインダー/黒鉛の重量比が、
前記活物質層のバインダー/活物質の重量比よりも大き
い。
Means for Solving the Problems To solve the above problems, the invention according to claim 1 has the following configuration. In a lithium secondary battery including a lithium-containing composite oxide positive electrode, a negative electrode using a carbon material as an active material, and a non-aqueous electrolyte,
The negative electrode includes a current collector, an adhesive layer that is in close contact with the current collector, and an active material layer that is in close contact with the adhesive layer, and the adhesive layer contains graphite and a binder. The weight ratio is [1/99] to [12/88], and the weight ratio of the binder / graphite of the adhesive layer is:
It is larger than the binder / active material weight ratio of the active material layer.

【0008】上記構成であると、接着層中の黒鉛が集電
体と活物質層の導電性を向上させるように作用し、バイ
ンダーが導電性物質である黒鉛相互を結着し、また活物
質層と集電体を結着するように作用する。特に上記構成
では、接着層のバインダー/黒鉛比が〔1/99〕〜
〔12/88〕に規定され、かつ〔接着層のバインダー
/黒鉛比〕が〔活物質層のバインダー/活物質比〕より
も大に規定されているので、接着層の導電性が常に一定
以上に確保され、かつ接着層の結着力が活物質層の結着
力よりも大きくなっている。このような接着層である
と、集電体と活物質層間の密着性・導電性が向上し、集
電効率の良い負極とできる。よって、電池のハイレート
放電特性および長期充放電サイクル特性が向上する。
[0008] With the above structure, the graphite in the adhesive layer acts to improve the conductivity of the current collector and the active material layer, and the binder binds the graphite, which is a conductive material, to each other. Acts to bind the layer and the current collector. In particular, in the above configuration, the binder / graphite ratio of the adhesive layer is [1/99] to
[12/88] and the [binder / graphite ratio of the adhesive layer] is set to be larger than the [binder / active material ratio of the active material layer]. And the binding force of the adhesive layer is larger than the binding force of the active material layer. With such an adhesive layer, the adhesion and conductivity between the current collector and the active material layer are improved, and a negative electrode with good current collection efficiency can be obtained. Therefore, the high rate discharge characteristics and the long-term charge / discharge cycle characteristics of the battery are improved.

【0009】請求項2記載の発明は、請求項1記載のリ
チウム二次電池において、前記接着層のバインダー/黒
鉛の重量比が前記活物質層のバインダー/活物質の重量
比の1.8〜2.0倍であることを特徴とする。接着層
のバインダー/黒鉛の重量比と活物質層のバインダー/
活物質の重量比の関係をこの倍率とすると、ハイレート
放電特性の低下を招くことなく長期サイクル特性を向上
させることができる。
According to a second aspect of the present invention, in the lithium secondary battery according to the first aspect, the binder / graphite weight ratio of the adhesive layer is 1.8 to 1.8 of the binder / active material weight ratio of the active material layer. It is characterized by 2.0 times. Adhesive layer binder / graphite weight ratio and active material layer binder /
When the relation of the weight ratio of the active material is set to this magnification, the long-term cycle characteristics can be improved without lowering the high-rate discharge characteristics.

【0010】請求項3記載の発明は、請求項1または2
記載のリチウム二次電池において、前記活物質層が、活
物質層重量に対し0.3〜7重量%のバインダーを含む
ことを特徴とする。このバインダー量であると、活物質
粒子同志が必要十分に結着され、かつ活物質層の電気抵
抗が過度に増大することがないので、上記接着層の作用
効果と相まって、一層ハイレート放電特性に優れたリチ
ウム二次電池が得られる。
[0010] The third aspect of the present invention is the first or second aspect.
In the above described lithium secondary battery, the active material layer contains a binder in an amount of 0.3 to 7% by weight based on the weight of the active material layer. With this binder amount, the active material particles are bound to each other as necessary and sufficiently, and the electric resistance of the active material layer does not excessively increase. An excellent lithium secondary battery can be obtained.

【0011】請求項4記載の発明は、請求項1、2また
は3記載のリチウム二次電池において、前記接着層の厚
みが、0.1μm〜30μmであることを特徴とする。
この厚みの接着層であると、集電体と活物質層の密着性
を十分に高めることができるので、ハイレート放電特性
等が向上する。
According to a fourth aspect of the present invention, in the lithium secondary battery of the first, second or third aspect, the adhesive layer has a thickness of 0.1 μm to 30 μm.
When the adhesive layer has this thickness, the adhesiveness between the current collector and the active material layer can be sufficiently increased, so that high-rate discharge characteristics and the like are improved.

【0012】請求項5記載の発明は、請求項1、2、3
または4記載のリチウム二次電池において、前記黒鉛の
平均粒径が20μm以下であることを特徴とする。導電
性フィラーである黒鉛の平均粒径が20μm以下である
と、必要かつ十分な密度でもって接着層中に黒鉛粒子を
分散させることができる。したがって、効率よく接着層
の導電性を高めることができる。
[0012] The invention according to claim 5 is the invention according to claims 1, 2, and 3.
5. The lithium secondary battery according to 4, wherein the graphite has an average particle size of 20 μm or less. When the average particle size of graphite as the conductive filler is 20 μm or less, the graphite particles can be dispersed in the adhesive layer with a necessary and sufficient density. Therefore, the conductivity of the adhesive layer can be efficiently increased.

【0013】請求項6記載の発明は、請求項1、2、
3、4または5記載のリチウム二次電池において、前記
黒鉛のX線広角回折法による002面の面間隔d
002 が、3.44Å以下であることを特徴とする。上記
で規定される黒鉛は十分な導電性を有する。したがっ
て、この黒鉛を導電性フィラーとして用いると、接着層
の導電性を一層高めることができる。
[0013] The invention according to claim 6 is the first or second invention.
6. The lithium secondary battery according to 3, 4, or 5, wherein a surface distance d of the 002 plane of the graphite by an X-ray wide-angle diffraction method.
002 is equal to or less than 3.44 °. The graphite defined above has sufficient conductivity. Therefore, when this graphite is used as a conductive filler, the conductivity of the adhesive layer can be further increased.

【0014】[0014]

【実施の形態】本発明にかかる接着層のバインダー/黒
鉛の重量比としては、〔0.5/99.5〕から〔15
/85〕の範囲とし、より好ましくは〔1/99〕から
〔12/88〕の範囲とする。バインダー/黒鉛比が1
/99未満であると、結着力が不足するため、黒鉛相互
間の結着が不十分になるとともに、短期の充放電サイク
ルによって集電体/活物質層界面の密着性が低下する。
一方、バインダー/黒鉛比が12/88を超えると、黒
鉛の割合が過少になる。よって、接着層の導電性が低下
し集電効率が悪くなる。以上から、バインダー/黒鉛比
は、接着層の接着性と導電性を好適にバランスさせる必
要があり、充放電サイクルによる内部抵抗の上昇を有効
に抑制するためには、バインダー/黒鉛比を〔1/9
9〕から〔12/88〕の範囲とする必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The binder / graphite weight ratio of the adhesive layer according to the present invention is from [0.5 / 99.5] to [15].
/ 85], more preferably [1/99] to [12/88]. Binder / graphite ratio is 1
When the ratio is less than / 99, the binding force is insufficient, so that the binding between the graphites is insufficient, and the adhesion at the current collector / active material layer interface is reduced by a short charge / discharge cycle.
On the other hand, when the binder / graphite ratio exceeds 12/88, the ratio of graphite becomes too small. Therefore, the conductivity of the adhesive layer is reduced, and the current collection efficiency is deteriorated. From the above, it is necessary to appropriately balance the adhesiveness and conductivity of the adhesive layer with respect to the binder / graphite ratio. In order to effectively suppress the increase in internal resistance due to charge / discharge cycles, the binder / graphite ratio is set to [1 / 9
9] to [12/88].

【0015】更に、本発明では、接着層のバインダー/
黒鉛比を活物質層のバインダー/活物質比よりも大と
し、より好ましくは活物質層のバインダー/活物質比の
1.8〜2倍とする。接着層のバインダー/黒鉛比を活
物質層のバインダー/活物質比と同等以下にした場合、
接着層の結着力が活物質層の結着力よりも弱く(同等を
含む)なり、集電体と活物質層とをより強力に密着させ
ようとする接着層の意義が失われるが、接着層のバイン
ダー/黒鉛比を活物質層のバインダー/活物質比よりも
大きくすれば、ハイレート放電特性の低下を抑制するこ
とができ、特に接着層のバインダー/黒鉛比を活物質層
のバインダー/活物質比の1.8〜2倍とすれば、ハイ
レート放電特性の低下を招くことなくサイクル特性を向
上させることができる。
Furthermore, in the present invention, the binder /
The graphite ratio is set to be larger than the binder / active material ratio of the active material layer, and more preferably 1.8 to 2 times the binder / active material ratio of the active material layer. When the binder / graphite ratio of the adhesive layer is equal to or less than the binder / active material ratio of the active material layer,
The adhesive force of the adhesive layer is weaker (including the equivalent) than the active material layer, and the significance of the adhesive layer that makes the current collector and the active material layer adhere more strongly is lost. When the binder / graphite ratio of the active material layer is made larger than the binder / active material ratio of the active material layer, a decrease in the high-rate discharge characteristics can be suppressed. In particular, the binder / graphite ratio of the adhesive layer is set to the binder / active material of the active material layer. When the ratio is 1.8 to 2 times, the cycle characteristics can be improved without lowering the high-rate discharge characteristics.

【0016】上記活物質層のバインダー量としては、好
ましくは活物質層重量に対し0.3〜7重量%とし、よ
り好ましくは0.5〜5重量%とするのがよい。バイン
ダー量が、0.3重量%未満であると、活物質相互を十
分に結着できず、その一方、7重量%を超えると活物質
層の内部抵抗が増大し、ハイレート特性の低下や電池容
量の低下を招くので好ましくない。
The amount of the binder in the active material layer is preferably from 0.3 to 7% by weight, more preferably from 0.5 to 5% by weight, based on the weight of the active material layer. When the amount of the binder is less than 0.3% by weight, the active materials cannot be sufficiently bonded to each other. On the other hand, when the amount of the binder exceeds 7% by weight, the internal resistance of the active material layer increases, and the high-rate characteristics deteriorate and It is not preferable because the capacity is reduced.

【0017】接着層の厚みは、特に規定されるものでは
ないが、好ましくは0.1μm〜30μmとするのがよ
い。0.1μm未満の厚みであると、集電体と活物質層
を十分に接合できないので、接着層を介在させる意義が
なくなる一方、30μmを超える厚さにすると、接合性
の向上によるプラス効果(密着性向上効果)よりも、活
物質層と集電体の距離が大きくなることによるマイナス
効果(内部抵抗の上昇)の方が大きくなるからである。
The thickness of the adhesive layer is not particularly limited, but is preferably 0.1 μm to 30 μm. When the thickness is less than 0.1 μm, the current collector and the active material layer cannot be sufficiently bonded, so that it is not meaningful to interpose the adhesive layer. On the other hand, when the thickness is more than 30 μm, the positive effect due to the improvement in bonding properties ( This is because the negative effect (increase in internal resistance) due to the increase in the distance between the active material layer and the current collector is larger than the effect of improving the adhesion.

【0018】接着層を組成するバインダーとしては、分
子内にフッ素を含むフッ素系高分子化合物や、熱可塑性
樹脂、ゴム弾性を有する高分子化合物、合成粘着剤、更
には粘着性を有する多糖類などが使用できる。これらの
バインダーは単独でも使用でき、また2種類以上を組み
合わせて使用してもよい。
Examples of the binder constituting the adhesive layer include a fluorine-based polymer compound containing fluorine in a molecule, a thermoplastic resin, a polymer compound having rubber elasticity, a synthetic pressure-sensitive adhesive, and a polysaccharide having tackiness. Can be used. These binders can be used alone or in combination of two or more.

【0019】上記分子内にフッ素を含むフッ素系高分子
化合物としては、例えばポリテトラフルオロエチレン、
ポリクロロトリフルオロエチレン、ポリフッ化ビニリデ
ン、フッ化ビニリデン−ヘキサフルオロプロピレン共重
合体、ポリフッ化ビニル等が例示できる。また、熱可塑
性樹脂、ゴム弾性を有する高分子化合物、合成粘着剤と
しては、アクリル樹脂、ウレタン樹脂、エチレン−プロ
ピレン−ジエンーモノマー(EPDM)、スルホン化E
PDM、ポリエチレン、ポリプロピレン、スチレンプロ
ピレンゴム、ポリブタジエン、ポリエチレンオキシド、
ポリビニルアルコール、ポリビニルクロリド、ポリビニ
ルピロリドンが例示できる。更に、粘着性を有する多糖
類としては、澱粉、カルボキシメチルセルロース、再生
セルロース、ジアセチルセルロースなどが例示できる。
Examples of the fluorine-based polymer compound containing fluorine in the molecule include polytetrafluoroethylene and
Examples thereof include polychlorotrifluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, and polyvinyl fluoride. In addition, thermoplastic resins, polymer compounds having rubber elasticity, and synthetic adhesives include acrylic resin, urethane resin, ethylene-propylene-diene-monomer (EPDM), sulfonated E
PDM, polyethylene, polypropylene, styrene propylene rubber, polybutadiene, polyethylene oxide,
Examples thereof include polyvinyl alcohol, polyvinyl chloride, and polyvinylpyrrolidone. Further, examples of the polysaccharide having tackiness include starch, carboxymethyl cellulose, regenerated cellulose, diacetyl cellulose and the like.

【0020】なお、多糖類のようにリチウムと反応する
官能基を有するバインダーを用いる場合には、これと共
に例えばイソシアネート基を有する化合物などを添加す
るなどして、バインダーが有する反応性官能基を失活さ
せることが望ましい。
When a binder having a functional group that reacts with lithium, such as a polysaccharide, is used, a reactive functional group of the binder is lost by adding, for example, a compound having an isocyanate group. It is desirable to make use of it.

【0021】本発明にかかる接着層を組成する黒鉛とし
ては、好ましくは平均粒径が20μm以下のものを使用
するのがよい。平均粒径が20μmを超える黒鉛である
と、接着層中における黒鉛粒子の密度が過少になるの
で、接着層の導電性が低下すること、及び20μmを超
える黒鉛を用いた場合、30μm以下の厚さの接着層の
作製が困難になるからである。また、接着層を組成する
黒鉛としては、002面の面間隔d002 が3.44Å以
下の黒鉛を用いるのが好ましい。002面の面間隔d
002 が3.44Å以下の黒鉛は導電性が良いので、この
ような黒鉛で接着層を組成すれば、導電性に優れた接着
層が得られる。
As the graphite constituting the adhesive layer according to the present invention, those having an average particle size of 20 μm or less are preferably used. If the average particle size of the graphite is more than 20 μm, the density of the graphite particles in the adhesive layer is too low, so that the conductivity of the adhesive layer is reduced. If graphite exceeding 20 μm is used, the thickness is 30 μm or less. This is because the production of the adhesive layer becomes difficult. Further, as the graphite constituting the adhesive layer, it is preferable to use a graphite having a surface distance d 002 of the 002 plane of 3.44 ° or less. 002 spacing d
Since graphite having a 002 of 3.44 ° or less has good conductivity, if the bonding layer is composed of such graphite, a bonding layer having excellent conductivity can be obtained.

【0022】更に、上記黒鉛としては、いわゆる鱗片状
のものではなく、球形状やカプセル形状等をした粒状黒
鉛を用いるのが好ましい。粒状黒鉛は鱗片状黒鉛に比べ
割れにくい。したがって、電極圧延工程における圧力に
より、粒状黒鉛が活物質層や集電体表面にアンカー的に
食い込み、これによって集電体と接着層との密着性およ
び導電性が高まる。これに対し、鱗片状黒鉛であると、
活物質スラリーの塗布が円滑になし得ないとともに、電
極圧延工程における圧力により割れて新たな劈開面が現
れ易い。この劈開面はバインダーの結着効果を低減させ
るように作用するので、結果として集電体と活物質層の
接着強度が低下することになる。
Further, as the graphite, it is preferable to use granular graphite having a spherical shape, a capsule shape or the like, instead of a so-called scale-like graphite. Granular graphite is less likely to break than flake graphite. Therefore, the pressure in the electrode rolling process causes the granular graphite to bite into the active material layer and the surface of the current collector in an anchoring manner, thereby increasing the adhesion and conductivity between the current collector and the adhesive layer. On the other hand, if it is flaky graphite,
The active material slurry cannot be applied smoothly, and is easily broken by a pressure in the electrode rolling step to form a new cleavage plane. This cleavage plane acts to reduce the binding effect of the binder, and as a result, the adhesive strength between the current collector and the active material layer is reduced.

【0023】本発明では、正極活物質であるリチウム含
有酸化物や、負極活物質である炭素材料、及び非水電解
液の種類は特に限定されるものではなく、リチウム二次
電池に使用可能な種々の材料が使用できる。例えば、前
記リチウム含有酸化物としては、コバルト、ニッケル、
マンガンのうち少なくとも1つの金属を含む種々のリチ
ウム含有金属酸化物が使用でき、また負極活物質として
は、黒鉛の他、リチウムイオンをドープ、脱ドープする
種々の炭素材料が使用できる。更に、非水電解液として
は、例えばエチレンカーボネート、プロピレンカーボネ
ート、ジメチルカーボネート、エチルメチルカーボネー
ト、ジエチルカーボネート等の鎖状炭酸エステル、プロ
ピオン酸メチル、プロピオン酸エチル等の脂肪族エステ
ルを単体又は混合したものが使用できる。
In the present invention, the types of the lithium-containing oxide serving as the positive electrode active material, the carbon material serving as the negative electrode active material, and the nonaqueous electrolyte are not particularly limited, and can be used for a lithium secondary battery. Various materials can be used. For example, as the lithium-containing oxide, cobalt, nickel,
Various lithium-containing metal oxides containing at least one metal of manganese can be used. As the negative electrode active material, various carbon materials capable of doping and undoping lithium ions can be used in addition to graphite. Further, as the non-aqueous electrolyte, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, chain carbonates such as diethyl carbonate, and aliphatic ester such as methyl propionate, ethyl propionate alone or a mixture thereof Can be used.

【0024】ところで、負極集電体と負極活物質層の間
に黒鉛とバインダーとからなる接着層を設けた本発明で
は、接着層中の黒鉛が負極の集電効率を高めるように機
能する。これに対して、黒鉛の代わりに結晶構造をもた
ず比表面積の大きなカーボンブラックやアセチレンブラ
ック等を使用した場合、一般的に使用されている電解液
系(エチレンカーボネート、ジエチルカーボネート、ジ
メチルカーボネート、エチルメチルカーボネート等)で
は、電池容量の減少や充電時に電解液が分解し、ガスの
発生による電解液の漏液、というような悪影響が生じ
る。しかしながら、本発明では、黒鉛を使用しているの
で、上記のような電解液系の使用が可能となり、かつハ
イレート特性やサイクル特性に一層優れたリチウム二次
電池が得られるという効果もある。
In the present invention in which an adhesive layer made of graphite and a binder is provided between the negative electrode current collector and the negative electrode active material layer, the graphite in the adhesive layer functions to increase the current collection efficiency of the negative electrode. On the other hand, when carbon black or acetylene black having a large specific surface area without a crystal structure is used instead of graphite, a commonly used electrolytic solution system (ethylene carbonate, diethyl carbonate, dimethyl carbonate, In the case of ethyl methyl carbonate, etc., the electrolytic solution is decomposed at the time of battery capacity reduction or charging, and adverse effects such as leakage of the electrolytic solution due to gas generation occur. However, in the present invention, since graphite is used, it is possible to use the above-mentioned electrolyte system, and there is also an effect that a lithium secondary battery having more excellent high-rate characteristics and cycle characteristics can be obtained.

【0025】次に、筒形リチウム二次電池を例として、
本発明の実施の形態を更に具体的に説明する。なお、本
発明の適用は筒形に限られるものではなく、角形、コイ
ン形、ぺーパー形等の各種形状のリチウム二次電池に適
用できる。
Next, taking a cylindrical lithium secondary battery as an example,
Embodiments of the present invention will be described more specifically. The application of the present invention is not limited to a cylindrical shape, but can be applied to lithium secondary batteries having various shapes such as a square shape, a coin shape, and a paper shape.

【0026】図9に本発明を適用した円筒形リチウム二
次電池の断面模式図を示す。図9に示すように、この電
池は、LiCoO2 を活物質とする正極1と、黒鉛(炭
素材料)を活物質とする負極2とが非水電解液の含浸さ
れたセパレータ3を介して巻回されて渦巻電極体が構成
され、この渦巻電極体が負極外部端子を兼ねる有底円筒
状の外装缶7内に収納された構造をしている。そして、
外装缶7の上部開孔にはパッキング9を介して封口板8
が取り付けられ、封口板8の上部には正極外部端子を兼
ねる正極キャップ6が取り付けられており、封口板8と
正極キャップ6で囲まれる空間にはスプリング式の安全
弁機構が内蔵されている。更に、負極2は、負極集電タ
ブ5を介して外装缶7の底部と電気的に接続され、他
方、正極1は正極集電タブ4及び封口板8を介して正極
キャップ6と電気的に接続されている。
FIG. 9 is a schematic sectional view of a cylindrical lithium secondary battery to which the present invention is applied. As shown in FIG. 9, in this battery, a positive electrode 1 using LiCoO 2 as an active material and a negative electrode 2 using graphite (carbon material) as an active material are wound via a separator 3 impregnated with a non-aqueous electrolyte. The spiral electrode body is formed by being rotated, and the spiral electrode body is housed in a bottomed cylindrical outer can 7 also serving as a negative electrode external terminal. And
In the upper opening of the outer can 7, a sealing plate 8 is provided via a packing 9.
A positive electrode cap 6 also serving as a positive electrode external terminal is mounted on an upper portion of the sealing plate 8, and a spring-type safety valve mechanism is built in a space surrounded by the sealing plate 8 and the positive electrode cap 6. Further, the negative electrode 2 is electrically connected to the bottom of the outer can 7 via the negative electrode current collecting tab 5, while the positive electrode 1 is electrically connected to the positive electrode cap 6 via the positive electrode current collecting tab 4 and the sealing plate 8. It is connected.

【0027】上記構造の円筒形リチウム二次電池は次の
ようにして作製された。
The cylindrical lithium secondary battery having the above structure was manufactured as follows.

【0028】(正極の作製)先ず、四三化コバルト(C
3 4 )と炭酸リチウムを原子比1:1で混合したも
のを空気中で600℃で6時間焼成した後、粉砕し混合
し、更に850℃で12時間焼成して、正極活物質であ
るLiCoO2 (リチウムコバルト複合酸化物)を作製
した。次に、このLiCoO2 を90重量部と、導電剤
としてアセチレンブラック6重量部と、バインダーとし
てのポリフッ化ビニリデンを4重量部とを、N−メチル
−2−ピロリドンに分散し混合して活物質スラリーとな
し、このスラリーを正極集電体を兼ねる厚み20μmの
アルミニウム箔の両面に塗布し、圧延して厚み200μ
mの帯状正極1を作製した。
(Preparation of Positive Electrode) First, cobalt tetranitride (C
A mixture of o 3 O 4 ) and lithium carbonate at an atomic ratio of 1: 1 was fired in air at 600 ° C. for 6 hours, pulverized and mixed, and further fired at 850 ° C. for 12 hours to obtain a positive electrode active material. A certain LiCoO 2 (lithium-cobalt composite oxide) was produced. Next, 90 parts by weight of this LiCoO 2 , 6 parts by weight of acetylene black as a conductive agent, and 4 parts by weight of polyvinylidene fluoride as a binder were dispersed and mixed in N-methyl-2-pyrrolidone to form an active material. This slurry was applied to both sides of a 20 μm-thick aluminum foil serving also as a positive electrode current collector, and then rolled to a thickness of 200 μm.
m-shaped positive electrode 1 was produced.

【0029】(負極2)X線回折による格子面面間隔d
002 が3.37Åの黒鉛結晶を用い、粉砕時の条件を制
御する方法により平均粒径4μmの粒状黒鉛(導電性フ
ィラー)を作製した。この粒状黒鉛と、バインダーとし
てのポリテトラフルオロエチレンとを、バインダー/ 黒
鉛比=10/90(重量比)で混合し、これをN−メチ
ル−2−ピロリドンに分散し混合して接着層形成用スラ
リーを作製した。
(Negative electrode 2) Lattice plane distance d by X-ray diffraction
Granular graphite (conductive filler) having an average particle size of 4 μm was prepared by using a graphite crystal having a 002 of 3.37 ° and controlling the conditions at the time of pulverization. This granular graphite and polytetrafluoroethylene as a binder are mixed at a binder / graphite ratio of 10/90 (weight ratio), and this is dispersed and mixed in N-methyl-2-pyrrolidone to form an adhesive layer. A slurry was prepared.

【0030】他方、粉砕時の条件を制御する方法により
平均粒径約20μmの黒鉛粒子(d 002 3.37Å)を
作製し、この黒鉛粒子を負極活物質とし、黒鉛粒子95
重量部と、バインダーとしてのポリテトラフルオロエチ
レンを5重量部とを、N−メチル−2−ピロリドンに分
散し混合して負極活物質スラリーを作製した。
On the other hand, a method for controlling the conditions at the time of pulverization
Graphite particles having an average particle size of about 20 μm (d 0023.37Å)
Then, the graphite particles were used as a negative electrode active material.
Parts by weight and polytetrafluoroethylene as a binder
5 parts by weight of ren was separated into N-methyl-2-pyrrolidone.
This was dispersed and mixed to prepare a negative electrode active material slurry.

【0031】次いで、負極集電体を兼ねる厚さ10μm
の帯状の銅箔の両面に、前記接着層形成用スラリーを塗
布する方法により接着層を形成し、この接着層の上に前
記負極活物質スラリーを塗布し乾燥する方法により活物
質層を形成した。これを圧延して厚さ200μmの帯状
負極2を作製した。この帯状負極2の接着層の厚みは1
0μm、負極活物質層の厚さは190μmであった。
Next, a thickness of 10 μm also serving as a negative electrode current collector
An adhesive layer was formed on both surfaces of the strip-shaped copper foil by applying the adhesive layer forming slurry, and an active material layer was formed on the adhesive layer by applying the anode active material slurry and drying. . This was rolled to produce a 200 μm-thick strip-shaped negative electrode 2. The thickness of the adhesive layer of the strip-shaped negative electrode 2 is 1
0 μm, and the thickness of the negative electrode active material layer was 190 μm.

【0032】上記で作製した正極1と負極2とを、厚さ
30μmの微多孔ポリプロピレン製膜からなるセパレー
タ(ヘキストセラニーズ社;セルカード)を介して巻回
し渦巻電極体となし、この渦巻電極体と、エチレンカー
ボネートとジエチルカーボネートを含む電解液とを、外
装缶7に入れ、その後、外装缶7の開口を封口板8で封
口等して、公称容量1250mAHの本発明にかかる密
閉形のリチウム二次電池を作製した。なお、正負極の端
部には、活物質層の形成後、それぞれ正極集電タブ4、
負極集電タブ5をスポット溶接した。
The above-prepared positive electrode 1 and negative electrode 2 are wound through a separator (Hoechst Celanese Corporation; Cell Card) made of a microporous polypropylene film having a thickness of 30 μm to form a spiral electrode body. The body and an electrolytic solution containing ethylene carbonate and diethyl carbonate are placed in the outer can 7, and then the opening of the outer can 7 is sealed with a sealing plate 8, etc., so that the sealed lithium of the present invention having a nominal capacity of 1250 mAH is provided. A secondary battery was manufactured. After the active material layer is formed, the positive and negative electrode current collector tabs 4 and
The negative electrode current collecting tab 5 was spot-welded.

【0033】このリチウム二次電池のサイクル特性値
(500サイクル後の放電容量/初期放電容量)は0.
85、ハイレート放電特性値(2C/0.2C)は0.
98であった。なお、測定は下記記載の方法によって行
った。
The cycle characteristic value (discharge capacity after 500 cycles / initial discharge capacity) of this lithium secondary battery is 0.1.
85, the high-rate discharge characteristic value (2C / 0.2C) is 0.8.
98. The measurement was performed by the method described below.

【0034】実験の部 接着層のバインダー/黒鉛比、活物質層のバインダー/
活物質比、接着層の厚み、導電フィラーとしての黒鉛の
粒径及び002面の面間隔等を変化させた種々の電池を
作製し、これら電池を用いてバインダー/黒鉛比等の違
いがサイクル特性及びハイレート放電特性に及ぼす影響
を調べた。以下では、この実験に基づいて本発明の特徴
部分である接着層について説明する。なお、各実験で記
載した条件以外の条件は、上記作製方法と同様に行っ
た。
Experimental part : Binder / graphite ratio of adhesive layer, binder / active material layer binder /
Various batteries were manufactured in which the active material ratio, the thickness of the adhesive layer, the particle size of graphite as a conductive filler, and the 002 spacing were changed. And the effects on high-rate discharge characteristics were investigated. Hereinafter, the adhesive layer which is a feature of the present invention will be described based on this experiment. Note that conditions other than those described in each experiment were performed in the same manner as in the above-described manufacturing method.

【0035】〔実験1〕実験1では、d002 =3.37
Å、平均粒径4μmの黒鉛を用い、接着層の厚みを10
μmとし、接着層のバインダー/黒鉛比(重量比)及び
活物質層のバインダー/活物質比(重量比)を表1に示
すように変化させた9通りの電池を作製し、これら電池
についてサイクル特性試験を行い、バインダー/黒鉛比
がサイクル特性に及ぼす影響を調べた。なお、表1中の
バインダー/黒鉛比=0/100は、接着層を設けなか
ったものである。
[Experiment 1] In Experiment 1, d 002 = 3.37.
Å, using graphite having an average particle size of 4 μm, and setting the thickness of the adhesive layer to 10
and the binder / graphite ratio (weight ratio) of the adhesive layer and the binder / active material ratio (weight ratio) of the active material layer were changed as shown in Table 1. A characteristic test was performed to examine the effect of the binder / graphite ratio on cycle characteristics. Note that the binder / graphite ratio of 0/100 in Table 1 indicates that no adhesive layer was provided.

【0036】[0036]

【表1】 [Table 1]

【0037】サイクル特性試験は、電池電圧4.1Vに
達するまで1.25Aで充電し、更に電池電圧4.1V
を保持したままで充電電流値を徐々に20mAまで減じ
る方法で充電した後、電池電圧が2.75Vに達するま
で1.25Aの電流値で放電するサイクルを、25℃で
500回繰り返すという条件で行った。この充放電サイ
クルにおける初回放電容量に対する500サイクル後の
放電容量の比率をサイクル特性値とした。その結果を図
1に示す。
In the cycle characteristic test, the battery was charged at 1.25 A until the battery voltage reached 4.1 V, and the battery voltage was further increased to 4.1 V.
After the battery is charged by a method in which the charging current value is gradually reduced to 20 mA while maintaining the voltage, the cycle of discharging at a current value of 1.25 A until the battery voltage reaches 2.75 V is repeated 500 times at 25 ° C. went. The ratio of the discharge capacity after 500 cycles to the initial discharge capacity in this charge / discharge cycle was taken as the cycle characteristic value. The result is shown in FIG.

【0038】図1において、バインダー/黒鉛比=0/
100(接着層を設けないもの)とその他のものとの比
較から、接着層を設けるとサイクル特性が向上すること
が判る。また、バインダー/黒鉛比が〔1/99〕未満
ではサイクル特性値が顕著に低下し、他方12/88を
超えると徐々にサイクル特性が低下する傾向が認めら、
15/85を超えるとサイクル特性が大きく低下する。
バインダー/黒鉛比が〔1/99〕未満において急激に
サイクル特性が悪くなるのは、バインダー不足により、
充放電に伴う負極活物質層の膨張・収縮によって活物質
層と集電体との密着性が劣化し、その結果として集電効
率が低下したためと考えられる。他方、12/88を超
えるとサイクル特性が低下するのは、接着層の導電性が
減少するためと考えらる。
In FIG. 1, the binder / graphite ratio = 0 /
From a comparison between 100 (without the adhesive layer) and the others, it can be seen that providing the adhesive layer improves the cycle characteristics. Further, when the binder / graphite ratio is less than [1/99], the cycle characteristic value is remarkably reduced, while when it exceeds 12/88, the cycle characteristic tends to be gradually reduced.
If the ratio exceeds 15/85, the cycle characteristics are significantly reduced.
When the binder / graphite ratio is less than [1/99], the cycle characteristics suddenly deteriorate because the binder is insufficient.
It is considered that the expansion and contraction of the negative electrode active material layer accompanying charge and discharge deteriorated the adhesion between the active material layer and the current collector, and as a result, the current collection efficiency was reduced. On the other hand, when the ratio exceeds 12/88, the decrease in cycle characteristics is considered to be due to the decrease in the conductivity of the adhesive layer.

【0039】〔実験2〕実験1で用いた電池と同様な電
池を用い、1.25A(1C)の電流値で4.1Vまで
充電(20mAカットオフ充電)した後、0.25A
(0.2C)の電流値で電池電圧が2.75Vとなるま
で放電したときの放電容量C1 と、2.5A(2C)の
電流値で電池電圧が2.75Vとなるまで放電したとき
の放電容量C2 を測定した。そして、C1 に対するC2
の比(C2 /C1 ;ハイレート放電特性値)を求め、バ
インダー/黒鉛比がハイレート放電特性に及ぼす影響を
調べた。その結果を図2に示す。
[Experiment 2] A battery similar to the battery used in Experiment 1 was charged to 4.1 V at a current value of 1.25 A (1 C) (20 mA cut-off charge), and then 0.25 A
The discharge capacity C 1 when the battery voltage at a current of (0.2 C) was discharged until 2.75V, when the battery voltage discharges to a 2.75V at a current of 2.5A (2C) the discharge capacity C 2 was measured. And C 2 for C 1
(C 2 / C 1 ; high-rate discharge characteristic value), and the effect of the binder / graphite ratio on the high-rate discharge characteristic was examined. The result is shown in FIG.

【0040】図2において、ハイレート放電特性は、バ
インダー/黒鉛比が12/88を越えると悪くなり、1
5/85を越えると顕著に悪くなった。この理由は、バ
インダー比率の増加により相対的に黒鉛量が減少する結
果、接着層の導電性が低下したためと考えられる。上記
実験1と実験2の結果を合わせると、バインダー/黒鉛
比は、〔0.5/99.5〕〜〔15/85〕の範囲と
し、好ましくは〔1/99〕〜〔12/88〕の範囲と
するのがよいと結論される。
In FIG. 2, the high-rate discharge characteristics deteriorate when the binder / graphite ratio exceeds 12/88.
When it exceeded 5/85, it became significantly worse. It is considered that the reason for this is that the amount of graphite is relatively decreased by increasing the binder ratio, and as a result, the conductivity of the adhesive layer is decreased. When the results of Experiment 1 and Experiment 2 are combined, the binder / graphite ratio is in the range of [0.5 / 99.5] to [15/85], preferably [1/99] to [12/88]. It is concluded that it is better to set the range.

【0041】〔実験3〕実験3では、接着層のバインダ
ー/黒鉛比を1/99(上記好ましい範囲の下限)に固
定し、活物質層のバインダー/活物質比(活物質として
黒鉛を使用)を0.3/99.7、0.5/99.5、
0.7/99.3、1.0/99.0、2.0/98.
0に変化させた場合、及び接着層のバインダー/黒鉛比
を12/88(上記好ましい範囲の上限)に固定し、活
物質層のバインダー/活物質比(同上)を1/99、5
/95、7/93、10/90、20/80に変化させ
た場合について、活物質層中のバインダー/活物質比と
ハイレート放電特性(C2/C1 )の関係を調べた。そ
の結果を図3(バインダー/黒鉛比=1/99固定)、
及び図4(バインダー/黒鉛比=12/88固定)に示
す。
[Experiment 3] In Experiment 3, the binder / graphite ratio of the adhesive layer was fixed at 1/99 (the lower limit of the preferable range), and the binder / active material ratio of the active material layer (graphite was used as the active material). To 0.3 / 99.7, 0.5 / 99.5,
0.7 / 99.3, 1.0 / 99.0, 2.0 / 98.
When the ratio is changed to 0, and the binder / graphite ratio of the adhesive layer is fixed to 12/88 (the upper limit of the preferable range), and the binder / active material ratio of the active material layer (as described above) is 1/99, 5
When the ratio was changed to / 95, 7/93, 10/90, and 20/80, the relationship between the binder / active material ratio in the active material layer and the high-rate discharge characteristics (C 2 / C 1 ) was examined. The result is shown in FIG. 3 (binder / graphite ratio = 1/99 fixed),
And FIG. 4 (binder / graphite ratio = 12/88 fixed).

【0042】図3において、接着層のバインダー/黒鉛
比が1/99(固定)のとき、活物質層のバインダー/
活物質比が0.5/99.5を超えるとハイレート放電
特性が悪くなる傾向が認められ、図4において、接着層
のバインダー/黒鉛比を12/88(固定)としたと
き、活物質層のバインダー/活物質比が7/93を超え
るとハイレート放電特性が悪くなる傾向が認められた。
しかし、活物質層のバインダー/活物質比を接着層のバ
インダー/黒鉛比よりも小さくすれば(前者では1/9
9より小、後者では12/88より小とすれば)、ハイ
レート放電特性値の低下率を0.9%〜3.5%程度の
低下に抑えることができ(図3、4参照)、更に活物質
層のバインダー/活物質比を接着層のバインダー/黒鉛
比の0.5倍〔∵(0.5/99.5)÷(1/99)
≒0.50〕から0.55倍〔∵(7/93)÷(12
/88)≒0.55〕とすれば、ハイレート放電特性の
低下を防止できる。
In FIG. 3, when the binder / graphite ratio of the adhesive layer is 1/99 (fixed), the binder / graphite of the active material layer
When the active material ratio exceeds 0.5 / 99.5, the high-rate discharge characteristics tend to be deteriorated. In FIG. 4, when the binder / graphite ratio of the adhesive layer is 12/88 (fixed), the active material layer When the binder / active material ratio exceeds 7/93, high-rate discharge characteristics tended to deteriorate.
However, if the binder / active material ratio of the active material layer is made smaller than the binder / graphite ratio of the adhesive layer (1/9 in the former case).
9 and less than 12/88 in the latter), the rate of decrease in the high-rate discharge characteristic value can be suppressed to about 0.9% to 3.5% (see FIGS. 3 and 4). The binder / active material ratio of the active material layer is 0.5 times the binder / graphite ratio of the adhesive layer [{(0.5 / 99.5)} (1/99)
{0.50] to 0.55 times [{(7/93)} (12
/88)≒0.55], it is possible to prevent a decrease in high-rate discharge characteristics.

【0043】上記実験1〜3の結果を総合すると、接着
層のバインダー/黒鉛比を〔1/99〕〜〔12/8
8〕の範囲とし、かつ接着層のバインダー/黒鉛比を活
物質層のバインダー/活物質比より大きくし、より好ま
しくは1.8(≒1/0.55) 倍 〜2.0(1/
0.5)倍とするのがよいことが判る。
When the results of Experiments 1 to 3 are combined, the binder / graphite ratio of the adhesive layer was changed from [1/99] to [12/8].
8], and the binder / graphite ratio of the adhesive layer is made larger than the binder / active material ratio of the active material layer, more preferably 1.8 (≒ 1 / 0.55) times to 2.0 (1/2).
It can be seen that it is better to set it to 0.5) times.

【0044】〔実験4〕実験4では、バインダー/黒鉛
比を10/90一定とし、かつ接着層の厚みを0μm
(接着層を形成しないもの)、0.05μm、0.1μ
m、0.2μm、0.3μm、0.4μm、0.5μm
としたこと以外は、実験1と同様な条件で500回のサ
イクル特性試験を行い、接着層の厚みがサイクル特性に
及ぼす影響を調べた。その結果を図5に示す。
[Experiment 4] In Experiment 4, the binder / graphite ratio was fixed at 10/90, and the thickness of the adhesive layer was 0 μm.
(Without forming an adhesive layer), 0.05 μm, 0.1 μm
m, 0.2 μm, 0.3 μm, 0.4 μm, 0.5 μm
A cycle characteristic test was performed 500 times under the same conditions as in Experiment 1 except that the test was performed, and the effect of the thickness of the adhesive layer on the cycle characteristics was examined. The result is shown in FIG.

【0045】図5において、サイクル特性は、接着層の
厚みが0.1μm未満となると悪くなった。これは、接
着層の厚みが0.1μm未満であると、接着層が薄すぎ
るために、充放電にともなう活物質層の膨張・収縮(剪
断応力)を十分吸収できず、その結果として充放電サイ
クルの進行とともに集電体と活物質層界面の密着性が劣
化したためと考えられる。この結果から、接着層の厚み
は、少なくとも0.1μm以上とするのがよいことが判
る。
In FIG. 5, the cycle characteristics deteriorated when the thickness of the adhesive layer was less than 0.1 μm. This is because if the thickness of the adhesive layer is less than 0.1 μm, the expansion and contraction (shear stress) of the active material layer due to charge and discharge cannot be sufficiently absorbed because the adhesive layer is too thin. It is considered that the adhesion between the current collector and the active material layer interface deteriorated with the progress of the cycle. From this result, it is found that the thickness of the adhesive layer is preferably at least 0.1 μm or more.

【0046】〔実験5〕実験5では、バインダー/黒鉛
比を10/90一定とし、かつ接着層の厚みを0μm
(接着層を形成しないもの)、5μm、10μm、15
μm、20μm、25μm、30μm、35μmとした
こと以外は、実験2と同様な条件でハイレート特性試験
を行い、接着層の厚みがハイレート特性に及ぼす影響を
調べた。その結果を図6に示す。
[Experiment 5] In Experiment 5, the binder / graphite ratio was fixed at 10/90, and the thickness of the adhesive layer was 0 μm.
(Without forming an adhesive layer) 5 μm, 10 μm, 15
A high-rate characteristic test was performed under the same conditions as in Experiment 2 except that the thickness was set to μm, 20 μm, 25 μm, 30 μm, and 35 μm, and the effect of the thickness of the adhesive layer on the high-rate characteristic was examined. FIG. 6 shows the result.

【0047】図6から、接着層の厚みが30μmを越え
た場合にハイレート放電特性が顕著に悪化する。このこ
とから、接着層の厚みの上限を30μm以下とするのが
よい。また、この結果と上記実験4の結果から、接着層
の厚みは0.1μm〜30μmに規定するのがよいこと
が判る。なお、接着層の厚みが30μmを越えると、ハ
イレート放電特性が悪くなったのは、集電体と活物質層
との距離が拡大し、内部抵抗が大きくなるためと考えら
れる。
FIG. 6 shows that when the thickness of the adhesive layer exceeds 30 μm, the high-rate discharge characteristics are significantly deteriorated. For this reason, the upper limit of the thickness of the adhesive layer is preferably set to 30 μm or less. From this result and the result of Experiment 4, it is understood that the thickness of the adhesive layer is preferably set to 0.1 μm to 30 μm. When the thickness of the adhesive layer exceeds 30 μm, the reason why the high-rate discharge characteristics deteriorate is considered to be that the distance between the current collector and the active material layer increases and the internal resistance increases.

【0048】〔実験6〕実験6では、バインダー/黒鉛
比を90/10、接着層の厚みを10μm、黒鉛のd
002 を3.37Å一定とし、黒鉛粒径を4μm、12μ
m、16μm、20μm、24μm、32μmに変えた
電池を作製し、他の条件は実験1と同様にして黒鉛粒径
の違いがサイクル特性に及ぼす影響を調べた。その結果
を図7に示す。
[Experiment 6] In Experiment 6, the binder / graphite ratio was 90/10, the thickness of the adhesive layer was 10 μm, and the d
002 is fixed at 3.37 ° and the graphite particle size is 4 μm, 12 μm
The batteries were changed to m, 16 μm, 20 μm, 24 μm, and 32 μm, and the effects of the difference in graphite particle size on the cycle characteristics were examined under the same conditions as in Experiment 1. FIG. 7 shows the result.

【0049】図7において、黒鉛の平均粒径が15μm
より大きくなるとサイクル特性が低下し、20μmを越
えると一層顕著に低下する。このことから、黒鉛粒径を
20μm以下とするのがよく、より好ましくは15μm
以下とするのがよい。なお、黒鉛粒径が大きくなるに従
いサイクル特性が悪化するのは、黒鉛粒径が大きいと接
着層形成用スラリーの作製に際し、接着層組成分の分散
が不均一になり、また集電板に均一に塗布し難くなる結
果、良好な接着層を形成し得ないこと、及び接着層中の
黒鉛の粒子密度が低下する結果、集電効率が悪くなった
ためと考えられる。
In FIG. 7, the average particle size of graphite is 15 μm.
When it is larger, the cycle characteristics deteriorate, and when it exceeds 20 μm, it deteriorates more remarkably. For this reason, the graphite particle size is preferably set to 20 μm or less, more preferably 15 μm
It is better to do the following. The cycle characteristics deteriorate as the graphite particle size increases. When the graphite particle size is large, the dispersion of the composition of the adhesive layer becomes non-uniform when preparing the slurry for forming the adhesive layer, and the uniformity of the current collector plate. It is considered that as a result, it was difficult to form a good adhesive layer as a result of the difficulty in coating, and a decrease in the particle density of graphite in the adhesive layer resulted in a decrease in current collection efficiency.

【0050】〔実験7〕実験7では、バインダー/黒鉛
比を90/10、接着層の厚みを10μm、黒鉛粒径を
4μm一定とし、黒鉛のd002 を3.35Å、3.37
Å、3.38Å、3.42Å、3.44Å、3.47Å
に変化させた電池を作製し、他の条件は実験1と同様に
して黒鉛結晶の面間隔d002 の違いがサイクル特性に及
ぼす影響を調べた。その結果を図8に示す。
[Experiment 7] In Experiment 7, the binder / graphite ratio was 90/10, the thickness of the adhesive layer was 10 μm, the graphite particle size was constant at 4 μm, and the d 002 of graphite was 3.35%, 3.37.
Å, 3.38Å, 3.42Å, 3.44Å, 3.47Å
And the other conditions were the same as in Experiment 1, and the effect of the difference in the interplanar spacing d 002 of the graphite crystals on the cycle characteristics was examined. FIG. 8 shows the result.

【0051】図8から、黒鉛のd002 が3.44を越え
るとサイクル特性が顕著に悪くなることが判る。これは
002 が3.44を越える黒鉛の導電性が悪いためと考
えられる。このことから、黒鉛のd002 を3.44以下
に規定するのがよい。
FIG. 8 shows that when d 002 of graphite exceeds 3.44, the cycle characteristics are significantly deteriorated. This is probably because graphite having d 002 exceeding 3.44 has poor conductivity. For this reason, the d 002 of graphite is preferably set to 3.44 or less.

【0052】[0052]

【発明の効果】以上に説明したように、接着層のバイン
ダー/黒鉛比および活物質層のバインダー/活物質比を
好適に規定してなる本発明にかかる負極接着層では、黒
鉛が接着層の導電性を高める一方、バインダーが実質的
に接着層の導電性を低下させずに黒鉛相互及び集電体と
活物質層とを適正に結着する。よって、このような接着
層が集電体と活物質層の間に介在された負極は、密着性
・集電効率に優れ、かつ負極活物質の膨張・収縮に起因
する密着性の低下が少ない。よって、このような負極を
用いてなる本発明リチウム二次電池は、ハイレート放電
特性や充放電サイクル特性に優れたものとなる。
As described above, in the negative electrode adhesive layer according to the present invention in which the binder / graphite ratio of the adhesive layer and the binder / active material ratio of the active material layer are suitably defined, graphite is used for the adhesive layer. While increasing the conductivity, the binder properly binds the graphite and the current collector to the active material layer without substantially reducing the conductivity of the adhesive layer. Therefore, the negative electrode in which such an adhesive layer is interposed between the current collector and the active material layer has excellent adhesion and current collection efficiency, and has a small decrease in adhesion due to expansion and contraction of the negative electrode active material. . Therefore, the lithium secondary battery of the present invention using such a negative electrode has excellent high-rate discharge characteristics and charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】接着層のバインダー/黒鉛比とサイクル特性の
関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a binder / graphite ratio of an adhesive layer and cycle characteristics.

【図2】接着層のバインダー/黒鉛比とハイレート放電
特性の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a binder / graphite ratio of an adhesive layer and high-rate discharge characteristics.

【図3】活物質層のバインダー/活物質比(バインダー
/黒鉛比=1/99一定)とハイレート放電特性の関係
を示すグラフである。
FIG. 3 is a graph showing a relationship between a binder / active material ratio (binder / graphite ratio = 1/99 constant) of an active material layer and high-rate discharge characteristics.

【図4】活物質層バインダー/活物質比(バインダー/
黒鉛比=12/88一定)とハイレート放電特性の関係
を示すグラフである。
FIG. 4 shows an active material layer binder / active material ratio (binder /
9 is a graph showing the relationship between the graphite ratio = 12/88 constant) and high-rate discharge characteristics.

【図5】接着層の厚みとサイクル特性の関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between the thickness of an adhesive layer and cycle characteristics.

【図6】接着層の厚みとハイレート放電特性の関係を示
すグラフである。
FIG. 6 is a graph showing the relationship between the thickness of an adhesive layer and high-rate discharge characteristics.

【図7】粒状黒鉛の平均粒径とサイクル特性の関係を示
すグラフである。
FIG. 7 is a graph showing the relationship between the average particle size of granular graphite and cycle characteristics.

【図8】黒鉛の002面の面間隔とサイクル特性の関係
を示すグラフである。
FIG. 8 is a graph showing the relationship between the interval between the 002 surfaces of graphite and the cycle characteristics.

【図9】本発明にかかるリチウム二次電池の断面模式図
である。
FIG. 9 is a schematic sectional view of a lithium secondary battery according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 昌利 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 本田 浩則 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masatoshi Takahashi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Hironori Honda 2-5-5, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物正極と、炭素材
料を活物質とする負極と、非水電解液とを備えたリチウ
ム二次電池において、 前記負極は、集電体と、集電体に密着する接着層と、接
着層に密着する活物質層とからなり、かつ前記接着層が
黒鉛とバインダーを含み構成されるとともに、前記接着
層におけるバインダー/黒鉛の重量比が、〔1/99〕
〜〔12/88〕であり、更に前記接着層のバインダー
/黒鉛の重量比が、前記活物質層のバインダー/活物質
の重量比よりも大きいことを特徴とするリチウム二次電
池。
1. A lithium secondary battery comprising a lithium-containing composite oxide positive electrode, a negative electrode using a carbon material as an active material, and a non-aqueous electrolyte, wherein the negative electrode comprises a current collector and a current collector. The adhesive layer comprises an adhesive layer and an active material layer which is in close contact with the adhesive layer, and the adhesive layer comprises graphite and a binder. The weight ratio of binder / graphite in the adhesive layer is [1/99].
[12/88], wherein the weight ratio of binder / graphite of the adhesive layer is larger than the weight ratio of binder / active material of the active material layer.
【請求項2】 前記接着層のバインダー/黒鉛の重量比
が、前記活物質層のバインダー/活物質の重量比の1.
8〜2.0倍であることを特徴とする請求項1記載のリ
チウム二次電池。
2. The binder / graphite weight ratio of the adhesive layer is 1.50% of the binder / active material weight ratio of the active material layer.
The lithium secondary battery according to claim 1, wherein the ratio is 8 to 2.0 times.
【請求項3】 前記活物質層は、活物質層重量に対し
0.3〜7重量%のバインダーを含むことを特徴とす
る、請求項1または2記載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the active material layer contains 0.3 to 7% by weight of a binder based on the weight of the active material layer.
【請求項4】 前記接着層の厚みが、0.1μm〜30
μmであることを特徴とする請求項1、2または3記載
のリチウム二次電池。
4. The thickness of the adhesive layer is 0.1 μm to 30 μm.
The lithium secondary battery according to claim 1, 2 or 3, wherein the thickness is μm.
【請求項5】 前記黒鉛の平均粒径が、20μm以下で
あることを特徴とする請求項1、2、3または4記載の
リチウム二次電池。
5. The lithium secondary battery according to claim 1, wherein the average particle size of the graphite is 20 μm or less.
【請求項6】 前記黒鉛のX線広角回折法による002
面の面間隔d002 が、3.44Å以下であることを特徴
とする請求項1、2、3、4または5記載のリチウム二
次電池。
6. The X-ray wide angle diffraction method of said graphite 002.
Plane spacing d 002 of face, a lithium secondary battery according to claim 1, 2, 3, 4 or 5, wherein not more than 3.44A.
JP8304599A 1996-11-15 1996-11-15 Lithium secondary battery Pending JPH10144298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8304599A JPH10144298A (en) 1996-11-15 1996-11-15 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8304599A JPH10144298A (en) 1996-11-15 1996-11-15 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10144298A true JPH10144298A (en) 1998-05-29

Family

ID=17934950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8304599A Pending JPH10144298A (en) 1996-11-15 1996-11-15 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10144298A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167277A (en) * 1997-08-21 1999-03-09 Mitsubishi Chem Corp Lithium secondary battery
JP2000173658A (en) * 1998-12-02 2000-06-23 Nitto Denko Corp Glue, adhesive or adhesive tape sheet for battery
WO2002084764A1 (en) * 2001-04-10 2002-10-24 Mitsubishi Materials Corporation Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
JP2002324583A (en) * 2001-04-24 2002-11-08 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2007226969A (en) * 2005-02-10 2007-09-06 Showa Denko Kk Current collector for secondary battery, positive electrode for the secondary battery, negative electrode for the secondary battery, the secondary battery, and manufacturing method of them
JP2009252396A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Lithium secondary battery cathode and method for manufacturing the same
JP2010003703A (en) * 2009-09-10 2010-01-07 Nippon Zeon Co Ltd Binder composition, slurry for battery electrode, electrode, and lithium secondary battery
JP2011146131A (en) * 2010-01-12 2011-07-28 Hitachi Ltd Electrode for lithium secondary battery
JP2012015297A (en) * 2010-06-30 2012-01-19 Dynic Corp Electrode for electrochemical element, and manufacturing method thereof
JP2012023050A (en) * 2005-02-10 2012-02-02 Showa Denko Kk Secondary battery collector, secondary battery positive electrode and secondary battery
JP2012048892A (en) * 2010-08-25 2012-03-08 Nippon Shokubai Co Ltd Conductive layer for lithium ion secondary battery
WO2012036288A1 (en) * 2010-09-17 2012-03-22 ダイキン工業株式会社 Paste for forming conductive protection layer on collector laminate in non-aqueous rechargeable electricity-storage device
EP2544268A1 (en) * 2011-07-06 2013-01-09 Samsung SDI Co., Ltd. Electrode for a secondary battery
US8663845B2 (en) 2005-02-10 2014-03-04 Showa Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2014093156A (en) * 2012-11-01 2014-05-19 Furukawa Co Ltd Electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of manufacturing all-solid-state lithium ion battery
WO2014167765A1 (en) * 2013-04-10 2014-10-16 株式会社豊田自動織機 Electrode having polytetrafluoroethylene-containing binder layer
US9685662B2 (en) 2011-10-25 2017-06-20 Kobe Steel, Ltd. Electrode material, electrode material manufacturing method, electrode, and secondary battery
JPWO2017090242A1 (en) * 2015-11-27 2018-09-13 日本ゼオン株式会社 Non-aqueous secondary battery adhesive layer composition, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
WO2019188488A1 (en) * 2018-03-28 2019-10-03 富士フイルム株式会社 Electrode sheet for fully solid-state secondary battery, and fully solid-state secondary battery
WO2022177023A1 (en) 2021-02-22 2022-08-25 株式会社Adeka Conductive undercoating agent

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167277A (en) * 1997-08-21 1999-03-09 Mitsubishi Chem Corp Lithium secondary battery
JP2000173658A (en) * 1998-12-02 2000-06-23 Nitto Denko Corp Glue, adhesive or adhesive tape sheet for battery
US7351498B2 (en) 2001-04-10 2008-04-01 Mitsubishi Materials Corporation Lithium ion polymer secondary battery its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
WO2002084764A1 (en) * 2001-04-10 2002-10-24 Mitsubishi Materials Corporation Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
EP1947715A2 (en) 2001-04-10 2008-07-23 Mitsubishi Materials Corporation Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
JP2002324583A (en) * 2001-04-24 2002-11-08 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP4694030B2 (en) * 2001-04-24 2011-06-01 東芝電池株式会社 Flat non-aqueous electrolyte secondary battery
JP2007226969A (en) * 2005-02-10 2007-09-06 Showa Denko Kk Current collector for secondary battery, positive electrode for the secondary battery, negative electrode for the secondary battery, the secondary battery, and manufacturing method of them
JP2012023050A (en) * 2005-02-10 2012-02-02 Showa Denko Kk Secondary battery collector, secondary battery positive electrode and secondary battery
JP4593488B2 (en) * 2005-02-10 2010-12-08 昭和電工株式会社 Secondary battery current collector, secondary battery positive electrode, secondary battery negative electrode, secondary battery, and production method thereof
US10033045B2 (en) 2005-02-10 2018-07-24 Showda Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
US8663845B2 (en) 2005-02-10 2014-03-04 Showa Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2009252396A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Lithium secondary battery cathode and method for manufacturing the same
JP2010003703A (en) * 2009-09-10 2010-01-07 Nippon Zeon Co Ltd Binder composition, slurry for battery electrode, electrode, and lithium secondary battery
JP2011146131A (en) * 2010-01-12 2011-07-28 Hitachi Ltd Electrode for lithium secondary battery
JP2012015297A (en) * 2010-06-30 2012-01-19 Dynic Corp Electrode for electrochemical element, and manufacturing method thereof
JP2012048892A (en) * 2010-08-25 2012-03-08 Nippon Shokubai Co Ltd Conductive layer for lithium ion secondary battery
US9373848B2 (en) 2010-09-17 2016-06-21 Daikin Industries, Ltd. Paste for forming conductive protection layer on collector laminate in non-aqueous rechargeable electricity-storage device
WO2012036288A1 (en) * 2010-09-17 2012-03-22 ダイキン工業株式会社 Paste for forming conductive protection layer on collector laminate in non-aqueous rechargeable electricity-storage device
JP2012084523A (en) * 2010-09-17 2012-04-26 Daikin Ind Ltd Paste for forming conductive protective layer of current collector laminate such as nonaqueous secondary battery
US10367205B2 (en) 2011-07-06 2019-07-30 Samsung Sdi Co., Ltd. Secondary battery
EP2544268A1 (en) * 2011-07-06 2013-01-09 Samsung SDI Co., Ltd. Electrode for a secondary battery
US9685662B2 (en) 2011-10-25 2017-06-20 Kobe Steel, Ltd. Electrode material, electrode material manufacturing method, electrode, and secondary battery
JP2014093156A (en) * 2012-11-01 2014-05-19 Furukawa Co Ltd Electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of manufacturing all-solid-state lithium ion battery
JP2015038818A (en) * 2013-04-10 2015-02-26 株式会社豊田自動織機 Electrode having polytetrafluoroethylene-containing binder layer
WO2014167765A1 (en) * 2013-04-10 2014-10-16 株式会社豊田自動織機 Electrode having polytetrafluoroethylene-containing binder layer
JPWO2017090242A1 (en) * 2015-11-27 2018-09-13 日本ゼオン株式会社 Non-aqueous secondary battery adhesive layer composition, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
WO2019188488A1 (en) * 2018-03-28 2019-10-03 富士フイルム株式会社 Electrode sheet for fully solid-state secondary battery, and fully solid-state secondary battery
JPWO2019188488A1 (en) * 2018-03-28 2020-10-22 富士フイルム株式会社 Electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
US11552300B2 (en) 2018-03-28 2023-01-10 Fujifilm Corporation Electrode sheet for all-solid state secondary battery and all-solid state secondary battery
WO2022177023A1 (en) 2021-02-22 2022-08-25 株式会社Adeka Conductive undercoating agent
KR20230148175A (en) 2021-02-22 2023-10-24 가부시키가이샤 아데카 Conductive undercoat agent

Similar Documents

Publication Publication Date Title
CN113299876B (en) Pole piece and lithium ion battery
JP4461498B2 (en) Nonaqueous electrolyte secondary battery and negative electrode thereof
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JPH10144298A (en) Lithium secondary battery
EP2113957B1 (en) Positive electrode for lithium secondary cell and lithium secondary cell using the same
JP5043344B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2007179864A (en) Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2001143702A (en) Non-aqueous secondary battery
KR20120093953A (en) Nonaqueous electrolyte solution type lithium ion secondary battery
JP3283805B2 (en) Lithium secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JPH11273674A (en) Organic electrolyte secondary battery
JP3139390B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2004095306A (en) Non-aqueous electrolyte secondary battery
KR20180028797A (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode
JPH11126600A (en) Lithium ion secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JP2000285923A (en) Nonaqueous electrolyte secondary battery
JP2021077531A (en) Non-aqueous electrolyte secondary battery
US20170149055A1 (en) Lithium-ion secondary battery
JP2000243376A (en) Lithium secondary battery
CN116705987B (en) Negative plate, electrochemical device and preparation method of electrochemical device
JP2004178879A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907