JP2000285923A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000285923A
JP2000285923A JP11087711A JP8771199A JP2000285923A JP 2000285923 A JP2000285923 A JP 2000285923A JP 11087711 A JP11087711 A JP 11087711A JP 8771199 A JP8771199 A JP 8771199A JP 2000285923 A JP2000285923 A JP 2000285923A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
powder
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP11087711A
Other languages
Japanese (ja)
Inventor
Koji Higashimoto
晃二 東本
Kenji Hara
賢二 原
Katsunori Suzuki
克典 鈴木
Tomohiro Iguchi
智博 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP11087711A priority Critical patent/JP2000285923A/en
Publication of JP2000285923A publication Critical patent/JP2000285923A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a cycle life characteristic and a shelf characteristic, by containing a material that absorbs electrolyte to expand its volume in a positive electrode active material layer. SOLUTION: A lithium manganate powder, carbon powder, and polyvinylidene fluoride as a binder are mixed at a prescribed ratio. A positive electrode active material is produced by mixing 90 wt.% this mixed powder and 10 wt.% powder of polyvinylidene fluoride homopolymer and copolymer powder of vinylidene fluoride and propylene hexafluoride. The fluorine-based polymer is a material that absorbs electrolyte to swell. Containing of such material improves contact between particles in a positive electrode active material layer and therefore improves a collecting characteristic. A battery containing such positive electrode active material layer has high capacity retention and is excellent even when number of repeating cycles increases or the battery is left for a long time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は正極活物質層にマン
ガン酸リチウムを用いた非水電解液二次電池において、
サイクル寿命特性及び放置特性の改良に関するものであ
る。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery using lithium manganate for a positive electrode active material layer,
The present invention relates to improvement of cycle life characteristics and standing characteristics.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される非水電解
液二次電池は、高エネルギー密度であるメリットを活か
して、主にVTRカメラやノートパソコン、携帯電話な
どのポータブル機器に使用されている。特に近年は負極
にリチウムイオンの吸蔵、放出が可能な炭素材等を用い
たリチウムイオン二次電池が普及している。この電池の
内部構造は通常捲回式である。すなわち、金属箔に活物
質層が塗着された正極及び負極を作製し、該正極及び負
極をセパレータを挟んで捲回し、それを容器となる円筒
形の缶に収納し、電解液を注液した後にキャップをつけ
て封口している。
2. Description of the Related Art A non-aqueous electrolyte secondary battery represented by a lithium secondary battery takes advantage of its high energy density and is mainly used in portable equipment such as VTR cameras, notebook computers, and mobile phones. I have. In particular, in recent years, lithium ion secondary batteries using a carbon material or the like capable of inserting and extracting lithium ions for the negative electrode have become widespread. The internal structure of this battery is usually of a wound type. That is, a positive electrode and a negative electrode in which an active material layer is coated on a metal foil are produced, the positive electrode and the negative electrode are wound around a separator, and the resultant is housed in a cylindrical can serving as a container, and an electrolyte is injected. After that, put on the cap and seal.

【0003】電池組立時では負極活物質として用いる炭
素材は、いわばリチウムイオンが放出しきった状態、す
なわち放電状態である。従って、通常は正極活物質にも
放電状態のコバルト酸リチウム(LiCoO2)、ニッケル酸
リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4
等が用いられている。そして、電池を組み立てた後に初
充電をする事によって、リチウムイオン二次電池とな
る。
At the time of battery assembly, the carbon material used as the negative electrode active material is in a state where lithium ions have been completely released, that is, in a discharged state. Therefore, usually, lithium cobalt oxide (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) in a discharged state also exist in the positive electrode active material.
Etc. are used. Then, after the battery is assembled, the battery is charged for the first time, so that a lithium ion secondary battery is obtained.

【0004】なお、上記した各種の正極活物質は、十分
な電子伝導性を有しないという問題点がある。そこで、
一般的には前記した正極活物質と、黒鉛やカーボンブラ
ックなどの導電剤及びバインダとの混合物を、アルミニ
ウム箔などの集電体に塗着して正極活物質層を形成して
いる。なお、結晶にスピネル構造を有するマンガン酸リ
チウムは、コバルト酸リチウムやニッケル酸リチウムと
比べて熱的安定性に優れるという特徴がある。そこで、
マンガン酸リチウムを正極活物質に用いた電池は、安全
性の高い電池として電力貯蔵用や電気自動車用等を目的
とする、大形のリチウムイオン二次電池に適するものと
して注目されている。
[0004] The above-mentioned various positive electrode active materials have a problem that they do not have sufficient electron conductivity. Therefore,
Generally, a mixture of the above-described positive electrode active material, a conductive agent such as graphite or carbon black, and a binder is applied to a current collector such as an aluminum foil to form a positive electrode active material layer. Note that lithium manganate having a spinel structure in the crystal is characterized by being superior in thermal stability as compared with lithium cobaltate and lithium nickelate. Therefore,
Batteries using lithium manganate as a positive electrode active material have attracted attention as high-safety batteries suitable for large-sized lithium ion secondary batteries for power storage, electric vehicles, and the like.

【0005】しかしながら、前記したマンガン酸リチウ
ムを用いたリチウムイオン二次電池は、充放電サイクル
の進行や長期間の放置によって放電容量が低下するとい
う問題点がある。この原因として、充放電によるリチウ
ムイオンの脱離・挿入に伴い、マンガン酸リチウムの結
晶が膨張・収縮を繰り返すことや、マンガンイオンの溶
出などにより、正極活物質層内の集電特性が低下するこ
となどが考えられている。そして、前記した黒鉛やカー
ボンブラックなどの導電剤の添加のみでは、この解決が
難しいことが明らかになってきた。
[0005] However, the lithium ion secondary battery using lithium manganate has a problem that the discharge capacity is reduced due to the progress of the charge / discharge cycle and the long-term storage. The reason for this is that the lithium manganate crystal repeatedly expands and contracts due to the desorption and insertion of lithium ions due to charge and discharge, and the elution of manganese ions causes the current collection characteristics in the positive electrode active material layer to deteriorate. Things are considered. And it has become clear that this solution is difficult only by adding the above-mentioned conductive agent such as graphite or carbon black.

【0006】[0006]

【発明が解決しようとする課題】本発明は、正極活物質
としてマンガン酸リチウムを用いた非水電解液二次電池
の、サイクル寿命特性及び放置特性の向上を目的として
いる。
SUMMARY OF THE INVENTION An object of the present invention is to improve the cycle life characteristics and standing characteristics of a nonaqueous electrolyte secondary battery using lithium manganate as a positive electrode active material.

【0007】[0007]

【課題を解決するための手段】上記した問題点を解決す
るために、第一の発明では、放電、充電によりリチウム
を吸蔵、放出が可能なマンガン酸リチウムを正極活物質
層に用いるリチウム二次電池において、前記正極活物質
層に電解液を吸って体積が膨張する材料を含有すること
を特徴とし、第二の発明では、前記材料はゴム系の樹脂
であることを特徴としている。
Means for Solving the Problems In order to solve the above-mentioned problems, a first aspect of the present invention provides a lithium secondary battery in which lithium manganate capable of occluding and releasing lithium by discharging and charging is used for a positive electrode active material layer. In the battery, the positive electrode active material layer contains a material that expands in volume by absorbing an electrolytic solution, and the second invention is characterized in that the material is a rubber-based resin.

【0008】[0008]

【発明の実施の形態】図1は本発明を実施した、スパイ
ラル構造の円筒形密閉リチウムイオン二次電池の断面図
である。
FIG. 1 is a sectional view of a cylindrical sealed lithium ion secondary battery having a spiral structure embodying the present invention.

【0009】1.正極の作製 正極は、厚さ20μmのアルミニウム箔(正極集電体1)と
正極活物質層2で構成される(図1)。マンガン酸リチ
ウムの粉末、炭素粉末及びバインダーであるポリフッ化
ビニリデン(以下、PVDFと略す)とを重量比で80:
15:5として混合して混合粉末Aを作製する。後述する
本実施例では、この混合粉末Aに各種の材料を添加して
再び混合し、混合粉末Bを作製する。この混合粉末A又
は混合粉末Bに、分散溶媒となるNMPを適量加えて十
分に混練、分散させてスラリーにする。このスラリーを
ロール to ロールの転写によって正極集電体の両面に
塗着して乾燥する。その後、ロ−ルプレス機でプレス
(80℃〜120℃に加熱したロールを使用、0.2〜0.5kgf/
cmの圧力でプレス)し、正極活物質層の密度が約2.8g/c
m3になるまで圧縮した。
1. Preparation of Positive Electrode The positive electrode is composed of a 20 μm-thick aluminum foil (positive electrode current collector 1) and a positive electrode active material layer 2 (FIG. 1). Lithium manganate powder, carbon powder, and polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder in a weight ratio of 80:
The mixed powder A is prepared by mixing at 15: 5. In the present embodiment described later, various materials are added to the mixed powder A and mixed again to prepare a mixed powder B. To this mixed powder A or mixed powder B, an appropriate amount of NMP serving as a dispersion solvent is added, and the mixture is sufficiently kneaded and dispersed to form a slurry. This slurry is applied on both sides of the positive electrode current collector by roll-to-roll transfer and dried. Then, press with a roll press (using a roll heated to 80 to 120 ° C, 0.2 to 0.5 kgf /
cm) and the density of the positive electrode active material layer is about 2.8 g / c.
It was compressed until the m 3.

【0010】2.負極の作製 負極活物質として非晶質炭素(商標名:カーボトロン
P、呉羽化学工業株式会社製)、バインダーとしてポリ
フッ化ビニリデン(PVDF)を用いた。非晶質炭素及
びPVDFを重量比で90:10となるように混合し、そこ
へ分散溶媒であるNMPを適量加えて十分に混練し、分
散させてスラリーにする。このスラリーをロール to
ロールの転写により、負極集電体となる厚さ15μmの銅
箔の両面に塗着して乾燥する。その後、ロ−ルプレス機
でプレス(80℃〜120℃に加熱したロールを使用、0.2〜
0.5kgf/cmの圧力でプレス)し、負極活物質層の密度が
約1.05 g/cm3になるまで圧縮した。
[0010] 2. Preparation of Negative Electrode Amorphous carbon (trade name: CARBOTRON P, manufactured by Kureha Chemical Industry Co., Ltd.) was used as a negative electrode active material, and polyvinylidene fluoride (PVDF) was used as a binder. Amorphous carbon and PVDF are mixed at a weight ratio of 90:10, and an appropriate amount of NMP as a dispersing solvent is added thereto, sufficiently kneaded and dispersed to form a slurry. Roll this slurry
By transferring the roll, it is applied to both sides of a copper foil having a thickness of 15 μm as a negative electrode current collector and dried. Then, press with a roll press (using a roll heated to 80 to 120 ° C, 0.2 to
Pressing was performed under a pressure of 0.5 kgf / cm) until the density of the negative electrode active material layer reached about 1.05 g / cm 3 .

【0011】3.電池の作製 得られた正極板、負極板を短冊状に切断し、タブ端子を
超音波溶接法で取り付けた後、帯状のセパレータ5を介
して捲回して捲回物を作製し、該捲回物を電池缶6に挿
入する。セパレータ5は、厚さ25μmの微多孔性のポリエ
チレン製フィルムである。そして負極集電体3に予め溶
接しておいた負極タブ端子(図なし)を、ニッケルメッ
キした電池缶6に溶接する。そして、正極タブ端子8を正
極キャップ7に抵抗溶接する。次に、エチレンカーボネ
ートとジメチルカーボネートを体積比で1:2で混合した
溶液に、LiPF6を1mol/lの濃度で溶解して作製した電解
液を、電池缶6内に5ml注入する。正極キャップ7を電池
缶の上部に配置させ、絶縁性のガスケット9を介して電
池缶上部をかしめて密閉し、高さ65mm、直径18mmの円筒
形リチウムイオン二次電池(公称容量1400mAh)を作製
した。ここで、正極キャップ7内には、電池内圧の上昇
に応じて作動する電流遮断機構(圧力スイッチ)と、前
記電流遮断機構よりも高い圧力で作動する弁機構が組み
込まれている。本実施例では、作動圧が9kgf/cm2の電流
遮断機構と、作動圧が20kgf/cm2の弁機構を用いた。
3. Production of Battery The obtained positive electrode plate and negative electrode plate were cut into strips, tab terminals were attached by ultrasonic welding, and then wound through a strip-shaped separator 5 to produce a wound product. The object is inserted into the battery can 6. The separator 5 is a 25 μm-thick microporous polyethylene film. Then, the negative electrode tab terminal (not shown) welded to the negative electrode current collector 3 in advance is welded to the nickel-plated battery can 6. Then, the positive electrode tab terminal 8 is resistance-welded to the positive electrode cap 7. Next, 5 ml of an electrolyte prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a solution obtained by mixing ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 2 is injected into the battery can 6. The positive electrode cap 7 is placed on the upper part of the battery can, and the upper part of the battery can is caulked and sealed via the insulating gasket 9 to produce a cylindrical lithium ion secondary battery with a height of 65 mm and a diameter of 18 mm (nominal capacity of 1400 mAh). did. Here, in the positive electrode cap 7, a current cutoff mechanism (pressure switch) that operates according to an increase in battery internal pressure and a valve mechanism that operates at a higher pressure than the current cutoff mechanism are incorporated. In this embodiment, operating pressure and the current interrupt device of 9 kgf / cm 2, working pressure was used valve mechanism 20 kgf / cm 2.

【0012】4.充放電サイクル寿命試験及び放置試験 4.1 サイクル寿命試験 作製した電池は、下記の条件で充放電サイクル試験を
し、初期の放電容量を100とした場合に対する、200サイ
クル目の放電容量を比較した(以下、200サイクル目の
容量維持率(%)と呼ぶ)。
4. Charge / discharge cycle life test and storage test 4.1 Cycle life test The prepared batteries were subjected to a charge / discharge cycle test under the following conditions, and the discharge capacity at the 200th cycle was compared with the initial discharge capacity of 100. (Hereinafter, this is referred to as the capacity maintenance rate (%) at the 200th cycle).

【0013】(1)充放電サイクル試験条件 充電条件: 4.2V(定電圧充電)、1400mA(制限電
流)、3h、50℃ 放電条件: 1400mA(定電流放電)、24分、50℃ 充電、放電の間に、休止時間を10分間設けた。
(1) Charge / discharge cycle test conditions Charge conditions: 4.2V (constant voltage charge), 1400mA (limit current), 3h, 50 ° C Discharge conditions: 1400mA (constant current discharge), 24 minutes, 50 ° C charge, discharge In between, a pause was provided for 10 minutes.

【0014】(2)200サイクル目の放電容量試験条件 充電条件: 4.2V(定電圧充電)、1400mA(制限電
流)、3h、50℃ 放電条件: 1400mA(定電流放電)、2.7V(放電終止電
圧)、50℃ 充電、放電の間に、休止時間を10分間設けた。
(2) Discharge capacity test condition at the 200th cycle Charge condition: 4.2V (constant voltage charge), 1400mA (limit current), 3h, 50 ° C Discharge condition: 1400mA (constant current discharge), 2.7V (discharge end) Voltage), 50 ° C. A pause time of 10 minutes was provided between charging and discharging.

【0015】4.2 放置試験 作製した電池は、満充電状態で50℃、30日間放置した
後、以下の条件で容量ぬき試験をした後、充放電をして
放置後の放電容量を測定した。そして、放置前の放電容
量を100とした場合に対する、放置後の放電容量を比較
した(以下、30日放置後の容量維持率(%)と呼ぶ)。
4.2 Leaving Test The produced battery was left in a fully charged state at 50 ° C. for 30 days, then subjected to a capacity elimination test under the following conditions, charged and discharged, and the discharge capacity after being left was measured. . Then, the discharge capacity after standing was compared with the case where the discharge capacity before standing was set to 100 (hereinafter, referred to as a capacity retention rate (%) after standing for 30 days).

【0016】(1)容量ぬき試験条件 放電条件: 1400mA(定電流放電)、2.7V(放電終止電
圧)、50℃ (2)放置後の放電容量試験条件 充電条件: 4.2V(定電圧充電)、1400mA(制限電
流)、3h、50℃ 放電条件: 1400mA(定電流放電)、2.7V(放電終止電
圧)、50℃
(1) Capacity removal test condition Discharge condition: 1400 mA (constant current discharge), 2.7 V (discharge end voltage), 50 ° C. (2) Discharge capacity test condition after standing Charge condition: 4.2 V (constant voltage charge) , 1400mA (limit current), 3h, 50 ° C Discharge conditions: 1400mA (constant current discharge), 2.7V (discharge end voltage), 50 ° C

【0017】[0017]

【実施例】以下に実施した正極活物質の組成を示す。 (実施例1)上記した混合粉末A(90wt.%)と、ポリフ
ッ化ビニリデンホモポリマーとフッ化ビニリデン・六フ
ッ化プロピレン共重合体の粉末(10wt.%)との混合粉末
を用いて正極を作製した。なお、ポリフッ化ビニリデン
ホモポリマーとフッ化ビニリデン・六フッ化プロピレン
共重合体は、電解液を吸って膨潤する材料である。その
他の試験条件等は前記したものである。
EXAMPLES The compositions of the positive electrode active materials implemented are shown below. (Example 1) A positive electrode was prepared by using a mixed powder of the mixed powder A (90 wt.%) And a powder of polyvinylidene fluoride homopolymer and a powder of vinylidene fluoride / propylene hexafluoride copolymer (10 wt.%). Produced. The polyvinylidene fluoride homopolymer and the vinylidene fluoride / propylene hexafluoride copolymer are materials that swell by absorbing an electrolytic solution. Other test conditions are as described above.

【0018】(実施例2)上記した混合粉末A(90wt.
%)と、ポリアクリロニトリル(10wt.%)との混合粉末
を用いて正極を作製した。なお、ポリアクリロニトリル
は、電解液を吸って膨潤する材料である。その他の試験
条件等は前記したものである。
(Example 2) The above mixed powder A (90 wt.
%) And polyacrylonitrile (10 wt.%) To prepare a positive electrode. Note that polyacrylonitrile is a material that swells by absorbing an electrolytic solution. Other test conditions are as described above.

【0019】(実施例3)上記した混合粉末A(90wt.
%)と、スチレンブタジエンゴム(10wt.%)との混合粉
末を用いて正極を作製した。なお、ポリアクリロニトリ
ルは、電解液を吸って膨潤する材料である。その他の試
験条件等は前記したものである。
Example 3 The above mixed powder A (90 wt.
%) And styrene-butadiene rubber (10 wt.%) To prepare a positive electrode. Note that polyacrylonitrile is a material that swells by absorbing an electrolytic solution. Other test conditions are as described above.

【0020】(比較例)比較例として、混合粉末Aのみ
を用いた正極を作製した。その他の試験条件等は前記し
たものである。
Comparative Example As a comparative example, a positive electrode using only the mixed powder A was prepared. Other test conditions are as described above.

【0021】表1にこれらの試験結果を示す。本発明を
用いた(実施例1〜3)は(比較例)より200サイクル
目の容量維持率や30日放置後の容量維持率が高く優れて
いる。正極活物質層にポリフッ化ビニリデンホモポリマ
ーとフッ化ビニリデン・六フッ化プロピレン共重合体や
ポリアクリロニトリルなどの、電解液を吸って体積が膨
張する材料を含有させることによって、正極活物質層内
における粒子間の接触が良好になり、その結果、集電特
性が向上したためと考えられる。
Table 1 shows the results of these tests. (Examples 1 to 3) using the present invention are superior to (Comparative Example) in the capacity retention rate at the 200th cycle and the capacity retention rate after standing for 30 days. The positive electrode active material layer contains a material whose volume expands by absorbing an electrolytic solution, such as polyvinylidene fluoride homopolymer and vinylidene fluoride / propylene hexafluoride copolymer or polyacrylonitrile. It is considered that the contact between the particles was improved, and as a result, the current collection characteristics were improved.

【0022】[0022]

【表1】 [Table 1]

【0023】本実施例では、電解液を吸って膨張する材
料として、ポリフッ化ビニリデンホモポリマーとフッ化
ビニリデン・六フッ化プロピレン共重合体、ポリアクリ
ロニトリル又はスチレンブタジエンゴムを用いた。 なお、ポリアクリルアミド、ポリ-2-アクリルアミド-2-
メチルプロパンスルホン酸、ポリアクリル酸、ポリアク
リロキシプロパンスルホン酸、ポリイソブチレン・マレ
イン酸共重合体、ポリ−N−イソプロピルアクリルアミ
ド、ポリエチレンオキシド・ホリエチレングリコール、
ポリオルガノシロキサン、ポリクロロメチルスチレン、
ポリジメチルアミノプロピルアクリルアミド、ポリスチ
レン、ポリスチロール、ポリ−2−ヒドロキシエチルメ
タクリレート、ポリメタクリル酸メチル、ポリメトキシ
エチレングリコールメタクリレート、ポリエチレレンオ
キシド、ポリフッ化ビニリデンなどを用いた場合でも同
様の効果が得られた。また、ゴム系の樹脂材料として、
ニトリルブタジエンゴム、ニトリルイソプレンゴム、ア
クリルゴム、フッ素ゴム、ブタジエンゴム、エチレンプ
ロピレンゴム、エチレン酢酸ビニル共重合体、イソプレ
ンゴムなどを用いた場合でも同様の効果が得られた。
In the present embodiment, polyvinylidene fluoride homopolymer, vinylidene fluoride / propylene hexafluoride copolymer, polyacrylonitrile or styrene butadiene rubber was used as the material which expands by absorbing the electrolytic solution. In addition, polyacrylamide, poly-2-acrylamide-2-
Methylpropanesulfonic acid, polyacrylic acid, polyacryloxypropanesulfonic acid, polyisobutylene / maleic acid copolymer, poly-N-isopropylacrylamide, polyethylene oxide / polyethylene glycol,
Polyorganosiloxane, polychloromethylstyrene,
Similar effects were obtained even when using polydimethylaminopropyl acrylamide, polystyrene, polystyrene, poly-2-hydroxyethyl methacrylate, polymethyl methacrylate, polymethoxyethylene glycol methacrylate, polyethylene oxide, polyvinylidene fluoride, etc. . In addition, as a rubber-based resin material,
Similar effects were obtained when nitrile butadiene rubber, nitrile isoprene rubber, acrylic rubber, fluoro rubber, butadiene rubber, ethylene propylene rubber, ethylene vinyl acetate copolymer, isoprene rubber, etc. were used.

【0024】[0024]

【発明の効果】本発明は、放電、充電によりリチウムを
吸蔵、放出が可能なマンガン酸リチウムを活物質として
用いるリチウム二次電池において、正極の活物質層に電
解液を吸って体積が膨張する材料を含有することを特徴
している。本発明を用いると、サイクル寿命特性及び放
置特性の優れた非水電解液二次電池を得ることができ
る。
According to the present invention, in a lithium secondary battery using lithium manganate as an active material capable of occluding and releasing lithium by discharging and charging, the volume is expanded by absorbing an electrolytic solution into the active material layer of the positive electrode. It is characterized by containing a material. According to the present invention, a non-aqueous electrolyte secondary battery having excellent cycle life characteristics and standing characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した円筒形リチウムイオン二次電
池の断面図である。
FIG. 1 is a sectional view of a cylindrical lithium ion secondary battery embodying the present invention.

【符号の説明】[Explanation of symbols]

1:正極集電体、2:正極活物質層、3:負極集電体、
4:負極活物質層、5:セパレータ、6:電池缶、7:
正極キャップ、8:正極タブ端子、9:ガスケット
1: positive electrode current collector, 2: positive electrode active material layer, 3: negative electrode current collector,
4: negative electrode active material layer, 5: separator, 6: battery can, 7:
Positive electrode cap, 8: positive electrode tab terminal, 9: gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 智博 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H003 AA03 AA04 BA03 BB05 BB12 BB13 BC01 5H014 AA02 AA06 BB06 EE01 EE10 5H029 AJ04 AJ05 AK03 AL06 AL08 AM03 AM05 AM07 CJ08 DJ08 DJ16 EJ14  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomohiro Iguchi 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H003 AA03 AA04 BA03 BB05 BB12 BB13 BC01 5H014 AA02 AA06 BB06 EE01 EE10 5H029 AJ04 AJ05 AK03 AL06 AL08 AM03 AM05 AM07 CJ08 DJ08 DJ16 EJ14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】放電、充電によりリチウムを吸蔵、放出が
可能なマンガン酸リチウムを正極活物質層に用いるリチ
ウム二次電池において、前記正極活物質層に電解液を吸
って体積が膨張する材料を含有することを特徴とする非
水電解液二次電池。
1. A lithium secondary battery in which lithium manganate capable of inserting and extracting lithium by discharging and charging is used for a positive electrode active material layer. Non-aqueous electrolyte secondary battery characterized by containing.
【請求項2】前記材料はゴム系の樹脂であることを特徴
とする請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein said material is a rubber-based resin.
JP11087711A 1999-03-30 1999-03-30 Nonaqueous electrolyte secondary battery Abandoned JP2000285923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087711A JP2000285923A (en) 1999-03-30 1999-03-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087711A JP2000285923A (en) 1999-03-30 1999-03-30 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000285923A true JP2000285923A (en) 2000-10-13

Family

ID=13922503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087711A Abandoned JP2000285923A (en) 1999-03-30 1999-03-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000285923A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030008514A (en) * 2001-07-18 2003-01-29 성남전자공업주식회사 Method for manufacturing lithium polymer battery
KR100377320B1 (en) * 2000-04-11 2003-03-26 주식회사 엘지화학 Lithium ion polymer battery having superior rate and temperature performance, and manufacturing methods of the same
JPWO2007088979A1 (en) * 2006-02-02 2009-06-25 Jsr株式会社 Polymer composition, secondary battery electrode paste, and secondary battery electrode
JP2013206598A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Composite particle for secondary battery cathode, secondary battery cathode, and secondary battery
WO2022196201A1 (en) * 2021-03-17 2022-09-22 パナソニックIpマネジメント株式会社 Method for manufacturing positive electrode mixture for flat lithium primary battery and flat lithium primary battery
WO2024021025A1 (en) * 2022-07-29 2024-02-01 宁德时代新能源科技股份有限公司 Electrode sheet, electrode assembly, battery cell, battery, and electric device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100377320B1 (en) * 2000-04-11 2003-03-26 주식회사 엘지화학 Lithium ion polymer battery having superior rate and temperature performance, and manufacturing methods of the same
KR20030008514A (en) * 2001-07-18 2003-01-29 성남전자공업주식회사 Method for manufacturing lithium polymer battery
JPWO2007088979A1 (en) * 2006-02-02 2009-06-25 Jsr株式会社 Polymer composition, secondary battery electrode paste, and secondary battery electrode
JP5365001B2 (en) * 2006-02-02 2013-12-11 Jsr株式会社 Polymer composition, secondary battery electrode paste, and secondary battery electrode
JP2013206598A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Composite particle for secondary battery cathode, secondary battery cathode, and secondary battery
WO2022196201A1 (en) * 2021-03-17 2022-09-22 パナソニックIpマネジメント株式会社 Method for manufacturing positive electrode mixture for flat lithium primary battery and flat lithium primary battery
WO2024021025A1 (en) * 2022-07-29 2024-02-01 宁德时代新能源科技股份有限公司 Electrode sheet, electrode assembly, battery cell, battery, and electric device

Similar Documents

Publication Publication Date Title
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JPH10144298A (en) Lithium secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JP2548460B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2000021452A (en) Nonaqueous electrolyte secondary battery
JP2001307735A (en) Lithium secondary battery
JP2000285923A (en) Nonaqueous electrolyte secondary battery
JPH1154120A (en) Lithium ion secondary battery
JPH0997626A (en) Nonaqueous electrolytic battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2008243441A (en) Nonaqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2000331686A (en) Nonaqueous electrolyte secondary battery
JP4830180B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JPH0696801A (en) Thin non-aqueous electrolyte battery
JPH11273726A (en) Nonaqueous electrolyte secondary battery
JP3404929B2 (en) Non-aqueous electrolyte battery
JP3508464B2 (en) Non-aqueous electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JP2002198101A (en) Nonaqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20031209