JP3541481B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3541481B2
JP3541481B2 JP04245695A JP4245695A JP3541481B2 JP 3541481 B2 JP3541481 B2 JP 3541481B2 JP 04245695 A JP04245695 A JP 04245695A JP 4245695 A JP4245695 A JP 4245695A JP 3541481 B2 JP3541481 B2 JP 3541481B2
Authority
JP
Japan
Prior art keywords
negative electrode
aqueous electrolyte
carbon material
electrolyte secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04245695A
Other languages
Japanese (ja)
Other versions
JPH08213001A (en
Inventor
朋仁 岡本
正直 寺崎
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP04245695A priority Critical patent/JP3541481B2/en
Publication of JPH08213001A publication Critical patent/JPH08213001A/en
Application granted granted Critical
Publication of JP3541481B2 publication Critical patent/JP3541481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、炭素材料を負極に用いる非水電解液二次電池に関し、初期クーロン効率と放電容量の向上、及び充放電サイクル寿命の安定を目的とした当該負極の改良に関する。
【0002】
【従来の技術】
負極活物質としてリチウムを、正極活物質として金属カルコゲン化物や金属酸化物を用い、電解液として非プロトン性溶媒に種々の塩を溶解させたものを用いた非水電解液二次電池は、高エネルギー密度の二次電池として注目され、研究がさかんに行われている。
【0003】
しかしながら、従来の非水電解液二次電池には、充放電を繰り返すうちに、負極活物質のリチウムがデンドライト状リチウムとして析出することによる内部短絡や、リチウムと電解液との副反応による劣化などの問題点を有している。
【0004】
このような欠点の少ない負極として、炭素材料が非水電解液二次電池に用いられるようになってきた。また炭素を負極に用いることに伴い、正極活物質として、LiCoO2 、LiNiO2 、LiMn2 4 や、これら活物質のCo、Ni、及びMnの一部を他の金属元素で置換した複合酸化物などの利用が考えられている。LiCoO2 などのリチウム含有複合金属酸化物を正極に用い、リチウムイオンを吸蔵・放出し得る炭素材料を負極に用いた非水電解液二次電池は、4V程の高電圧を有する高エネルギー密度の二次電池である。
【0005】
これらの電池は、放電状態で組み立てられ、充電を行って、正極のリチウム含有複合金属酸化物からリチウムイオンを抜き取り、負極の炭素材料に保持させることにより、電池が放電可能になる。
【0006】
【発明が解決しようとする課題】
ところが、炭素材料を負極に用いて充放電した場合には、1サイクル目の充電効率が悪く、正極のリチウムイオンを有効に利用することができなかった。効率の悪い原因は、1サイクル目の充電の初期に観察される、リチウム電位に対して0.8V付近で電位のプラトーを示す不可逆反応に起因している。
【0007】
これは溶媒の分解による炭素負極表面への皮膜形成反応であることが、多くの研究で明らかになりつつある。しかし、その不働態皮膜がどの様な反応で生成し、どの様な化学組成、あるいは構造を有しているかは明らかになっていない。
【0008】
また、この不可逆反応は、炭素材料表面に存在する有機官能基(−OH、−COOHなどの官能基)とリチウムとの反応に起因すると考え、熱処理、還元処理などにより有機残基を除去する研究も行われている。(菊池ら、第33回電池討論会講演要旨集、p193、1993)(駒沢ら、電気化学会秋季大会講演要旨集、p205、1993)
このような不可逆反応のために、正極のリチウムイオンが有効に利用されず、電池のエネルギー密度は低下した。また、不可逆反応にともないガスの発生が観察され、充放電サイクル寿命にも悪影響があった。
【0009】
この発明の目的は、このような従来のリチウムイオンを含有する充放電可能な正極と、リチウムイオンを吸蔵・放出する炭素材料を主体とする負極とを備えた非水電解液二次電池の問題点を解決し、初期クーロン効率、放電容量の向上、及び充放電サイクル寿命の安定した非水電解液二次電池を提供することである。
【0010】
【課題を解決するための手段】
炭素負極に起因する不可逆反応を解明するために、各種炭素材料を用いて検討した結果、不可逆反応は炭素負極の比表面積に比例することが判明した。そこで、各種樹脂を負極に添加し、炭素材料の表面を被覆することを検討した。その結果、炭素負極の被覆剤としてポリエチレンオキサイドが優れていることが判明した。本発明は、リチウムイオンを含有する充放電可能な正極と、リチウムイオンを吸蔵・放出する炭素材料を負極に備えた非水電解液二次電池において、炭素負極の被覆剤としてポリエチレンオキサイドを用い、負極結着剤として、PVdF、PVP、ポリオレフィン、ポリイミド、ポリ塩化ビニル、ポリ塩化ビニリデンからなる群から選ばれた少なくとも1種を用いたことを特徴とする。
【0011】
【作用】
本発明電池は、炭素負極をポリエチレンオキサイドで被覆し、負極結着剤として、PVdF、PVP、ポリオレフィン、ポリイミド、ポリ塩化ビニル、ポリ塩化ビニリデンからなる群から選ばれた少なくとも1種を用いることにより、初期のクーロン効率と放電容量を高めることができ、ガスの発生も少なく、充放電サイクル数が経過しても基板からの剥離も生じないことから、安定したサイクル特性も得ることができる。また、この方法には、熱処理や還元処理といったような工程が不要であり、電極の作製が簡単にできるという利点がある。
【0012】
従来、炭素材料の結着剤として使用されているポリフッ化ビニリデンやポリオレフィン、ポリビニルピロリドン、各種エラストマー等は絶縁性が高く、多量に使用して炭素材料の表面を被覆すると、導電性が低下し、充放電ができなくなった。
【0013】
本発明の作用は明らかでないが、ポリエチレンオキサイドは電極反応を妨げることなく、不可逆反応を減少させることから、非水電解液を吸収して膨潤し、リチウムイオン伝導性の被膜として炭素負極の表面を被覆しているものと考えられる。
【0014】
【実施例】
以下に、好適な実施例と比較例を用いて本発明を説明する。
[実施例1]
図1は、コイン形電池の縦断面図である。1はステンレス(SUS316)鋼板を打ち抜き加工した正極端子を兼ねる正極ケース、2はステンレス(SUS316)鋼板を打ち抜き加工した負極端子を兼ねる封口板である。3は正極、4は負極、5は非水電解液を含浸した微孔性ポリプロピレンからなるセパレーターである。非水電解液としては、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した溶媒に、六フッ化燐酸リチウムを1モル/リットルの濃度で溶解させたものを、150μl注液した。このコイン形電池は、正極ケース1の開口端部を内方へかしめ、ガスケット6を介して封口板2の外周を締めつけることにより、密閉封口されている。電池寸法は、直径20mm、高さ2.0mmである。
【0015】
正極は、リチウムコバルト複合酸化物(LiCoO2 )と導電剤としての炭素および結着剤としてのフッ素樹脂粉末とを90:3:7の重量比で充分混合し、N−メチル−2−ピロリドン(NMP)を適量加えてペースト状にした後、ステンレス箔上に厚さ約250μmで塗布し、温度200℃で真空乾燥後、圧延して、直径16mmの円板状に打ち抜いたものである。ここで使用した正極の電気容量は、負極の完全充放電サイクル試験を行うため、負極の電気容量に対して充分大きな容量を持つような構成とした。
【0016】
負極は、炭素材料として人造黒鉛粉末を用いた。人造黒鉛粉末100に対して2重量部(2%)のポリエチレンオキサイド(分子量180,000)を加え、N,Nジメチルホルムアミドを適量加えてペースト状にし、温度150℃で真空乾燥した。乾燥後、乳鉢で軽く粉砕し、ポリエチレンオキサイドで被覆された炭素材料を得た。
【0017】
ポリエチレンオキサイドで被覆された炭素材料102部に対して、16部のポリフッ化ビニリデン(PVdF)を結着剤として混合し、NMPを適量加えてペーストとし、銅箔上に約200μmの厚さに塗布した。150℃で真空乾燥後、圧延して、直径16mmの円板状に打ち抜いて負極とした。この負極を用いた電池を本発明実施電池Aとした。
【0018】
一方、本発明の実施例と比較する従来例として、被覆剤で処理しない炭素材料を用い、結着剤として、炭素材料100部に対して16部のPVdFを使用した負極を作製した。それ以外は、本発明の実施例と全く同様に電池を構成し、従来例の電池アとした。
【0019】
これらの電池を、1mAの定電流で端子電圧4.1Vまで充電し、その後端子電圧2.75Vまで放電して、電池の初期特性を求めた。表1に実施例および従来例の電池について、1サイクル目の充電容量、放電容量および初期クーロン効率を示した。充電容量、放電容量は、負極に使用した炭素材料の単位重量当たりの容量に換算して表示した。
【0020】
被覆剤にポリエチレンオキサイドを用いたものは、放電容量、初期クーロン効率ともに向上し、不可逆反応が抑制されていることがわかる。
【0021】
[実施例2]
本発明実施電池Aと同じ正極を使用し、ポリエチレンオキサイドで被覆された炭素材料の負極の結着剤として、PVdFの代わりにポリビニルピロリドン(PVP)を使用して試験電池を構成した。すなわち、ポリエチレンオキサイドで被覆された炭素材料102部に対して、16部のPVPを結着剤として混合し、NMPを適量加えてペーストとし、銅箔上に約200μmの厚さに塗布した。150℃で真空乾燥後、圧延して、直径16mmの円板状に打ち抜いて負極とした。この負極を用いた電池を本発明実施電池Bとした。
【0022】
一方、本発明の実施例電池Bと比較する従来例として、被覆剤で処理しない炭素材料を用い、結着剤として炭素材料100部に対して16部のPVPを使用した負極を作製した。それ以外は、本発明の実施例電池Bと全く同様に電池を構成し、従来例の電池イとした。
【0023】
これらの電池を、1mAの定電流で端子電圧4.1Vまで充電し、その後端子電圧2.75Vまで放電して、電池の初期特性を求めた。表2に実施例および従来例の電池について、1サイクル目の充電容量、放電容量および初期クーロン効率を示した。充電容量、放電容量は、負極に使用した炭素材料の単位重量当たりの容量に換算して表示した。
【0024】
被覆剤にポリエチレンオキサイドを用いたものは、放電容量、初期クーロン効率ともに向上し、不可逆反応が抑制されていることがわかる。なお、結着剤としてPVPを用いたものは、負極の集電性が悪いために、充電容量、放電容量、クーロン効率はPVdFを用いたものより少なかった。
【0025】
[実施例3]
実施例1及び2で作製した本発明電池AとBおよび従来電池アとイを用いて、1mAの電流で4.1Vまで充電し、同じく1mAの電流で2.75Vまで放電する充放電サイクル試験を100サイクル行った。
【0026】
試験開始前の電池高さは、何れも2.0mmであり、内部抵抗は0.8Ωであった。100サイクル試験後、本発明電池AとBは何れも電池高さ2.1mmとなり、内部抵抗は1.0Ωと1.3Ωとなっていた。本発明電池は、内部抵抗の増加割合が少なく、安定した充放電特性が得られた。一方従来電池アは、電池高さが2.3mmとなり、内部抵抗は1.5Ωと増加していた。従来電池イは、電池高さが2.5mmとなり、内部抵抗は30Ωとなって、放電できなくなった。従来電池アとイは、非水電解液の分解によりガスを発生し、内圧の増加により電池高さが高くなり、また電池内部での接触が悪くなって内部抵抗が増加したものと思われる。
【0027】
[実施例4]
負極は、炭素材料として人造黒鉛粉末を用いた。人造黒鉛粉末100部に対して0.05〜20部(0.05〜20%)のポリエチレンオキサイド(分子量180,000)を加え、N,Nジメチルホルムアミドを適量加えてペースト状にし、温度150℃で真空乾燥した。乾燥後、乳鉢で軽く粉砕し、各種濃度のポリエチレンオキサイドで被覆された炭素材料を得た。
【0028】
ポリエチレンオキサイドの重量を除いた炭素材料のみの重量100部に対して、16部のポリフッ化ビニリデン(PVdF)を結着剤として混合し、NMPを適量加えてペーストとし、銅箔上に約200μmの厚さに塗布した。150℃で真空乾燥後、圧延して、直径16mmの円板状に打ち抜いて負極とした。
【0029】
負極以外は、実施例1と同様の正極及び電池構成を使用してボタン形電池を作製した。これらの電池を、1mAの定電流で端子電圧4.1Vまで充電し、その後端子電圧2.75Vまで放電して、電池の初期特性を求めた。表3に各種電池の、1サイクル目の充電容量、放電容量および初期クーロン効率を示した。充電容量、放電容量は、負極に使用した炭素材料の単位重量当たりの容量に換算して表示した。
【0030】
被覆剤に使用したポリエチレンオキサイドの量が0.1%以上で、放電容量、初期クーロン効率ともに向上し、負極の不可逆反応が抑制された。ポリエチレンオキサイドの添加量は20%以上でも効果が期待されるが、添加量が多いと電極容積が増大し、容積当たりのエネルギー密度が低下するために20%以下で充分と思われる。
【0031】
【発明の効果】
本発明は、炭素負極の被覆剤としてポリエチレンオキサイドを用いることにより、放電容量が高く、サイクル劣化も少ない等の優れた効果を有する、炭素材料からなる負極を備える非水電解液二次電池を提供するものである。
【0032】
ポリエチレンオキサイドは種々の分子量の製品があるが、平均分子量3000〜600000程度のものが取扱いが容易であり、本発明に使用可能である。なお、負極結着剤としては、結着効果の高いPVdF、PVP、ポリオレフィン、ポリイミド、ポリ塩化ビニル、ポリ塩化ビニリデンからなる群から選ばれた少なくとも1種を用いる
【0033】
本発明の実施例では正極にLiCoO2 を用いたがLiNiO2 、LiMn2 4 などのリチウム複合酸化物や、LiTiS2 、LiV2 5 、LiMoO3 などいた場合においても、同様の効果が得られる。また、負極の炭素材料には高温で熱処理した人造黒鉛を用いたが、低温焼成のカーボンや炭素繊維などの種々炭素材料単体もしくはこれらの混合物を用いてもよい。
【0034】
なお、実施例における電池は、いずれもコイン形電池であるが、本発明は円筒形、角形またはペーパー形電池にも適用可能である。
【図面の簡単な説明】
【図1】本発明の一例であるコイン形非水電解液二次電池の内部構造を示した図である。
【符号の説明】
1 正極ケース
2 封口板
3 正極
4 負極
5 セパレーター
6 ガスケット
【表1】

Figure 0003541481
【表2】
Figure 0003541481
【表3】
Figure 0003541481
[0001]
[Industrial applications]
The present invention relates to a non-aqueous electrolyte secondary battery using a carbon material for a negative electrode, and relates to an improvement in the negative electrode for the purpose of improving initial coulomb efficiency and discharge capacity and stabilizing a charge / discharge cycle life.
[0002]
[Prior art]
Non-aqueous electrolyte secondary batteries using lithium as a negative electrode active material, metal chalcogenide or metal oxide as a positive electrode active material, and a solution in which various salts are dissolved in an aprotic solvent as an electrolytic solution have a high performance. Attention has been paid to energy density secondary batteries, and research is being actively conducted.
[0003]
However, conventional non-aqueous electrolyte secondary batteries have internal short-circuits due to the precipitation of lithium as the negative electrode active material as dendritic lithium during repeated charging and discharging, and deterioration due to side reactions between lithium and the electrolyte. Problem.
[0004]
As a negative electrode having few such defects, a carbon material has been used for a non-aqueous electrolyte secondary battery. In addition, with the use of carbon for the negative electrode, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 as the positive electrode active material, and composite oxides in which Co, Ni, and Mn of these active materials are partially replaced with other metal elements. Use of things is considered. A non-aqueous electrolyte secondary battery using a lithium-containing composite metal oxide such as LiCoO 2 for a positive electrode and a carbon material capable of occluding and releasing lithium ions for a negative electrode has a high energy density having a high voltage of about 4 V. It is a secondary battery.
[0005]
These batteries are assembled in a discharged state, charged, and lithium ions are extracted from the lithium-containing composite metal oxide of the positive electrode and held in the carbon material of the negative electrode, so that the batteries can be discharged.
[0006]
[Problems to be solved by the invention]
However, when charging and discharging were performed using the carbon material for the negative electrode, the charging efficiency in the first cycle was poor, and lithium ions of the positive electrode could not be used effectively. The cause of the inefficiency is due to an irreversible reaction observed at an early stage of the first cycle charging, showing a plateau of the potential at around 0.8 V with respect to the lithium potential.
[0007]
Many studies have revealed that this is a film formation reaction on the surface of the carbon negative electrode due to decomposition of the solvent. However, it is not clear what kind of reaction the passivation film forms and what kind of chemical composition or structure it has.
[0008]
This irreversible reaction is considered to be caused by a reaction between lithium and an organic functional group (functional groups such as -OH and -COOH) present on the surface of the carbon material. Has also been done. (Kikuchi et al., Proceedings of the 33rd Battery Symposium, p193, 1993) (Komazawa et al., Proceedings of the IEICE Autumn Conference, p205, 1993)
Due to such an irreversible reaction, lithium ions of the positive electrode were not effectively used, and the energy density of the battery was reduced. In addition, generation of gas was observed due to the irreversible reaction, which had an adverse effect on the charge / discharge cycle life.
[0009]
It is an object of the present invention to provide a non-aqueous electrolyte secondary battery including such a conventional chargeable / dischargeable positive electrode containing lithium ions and a negative electrode mainly composed of a carbon material that occludes and releases lithium ions. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery having a stable initial coulomb efficiency, an improved discharge capacity, and a stable charge / discharge cycle life.
[0010]
[Means for Solving the Problems]
In order to elucidate the irreversible reaction caused by the carbon anode, various carbon materials were used. As a result, it was found that the irreversible reaction was proportional to the specific surface area of the carbon anode. Therefore, it was studied to add various resins to the negative electrode and coat the surface of the carbon material. As a result, it was found that polyethylene oxide was excellent as a coating material for the carbon negative electrode. The present invention is a non-aqueous electrolyte secondary battery including a chargeable / dischargeable positive electrode containing lithium ions and a carbon material that occludes and releases lithium ions in the negative electrode, using polyethylene oxide as a coating material for the carbon negative electrode , As the negative electrode binder, at least one selected from the group consisting of PVdF, PVP, polyolefin, polyimide, polyvinyl chloride, and polyvinylidene chloride is used .
[0011]
[Action]
The present invention cell the carbon anode is coated with polyethylene oxide, a negative electrode binder, PVdF, PVP, polyolefins, polyimides, polyvinyl chloride, by Rukoto using at least one selected from the group consisting of polyvinylidene chloride In addition, the initial coulomb efficiency and discharge capacity can be increased, the generation of gas is small, and there is no separation from the substrate even after the number of charge / discharge cycles has elapsed, so that stable cycle characteristics can be obtained. In addition, this method has an advantage in that steps such as heat treatment and reduction treatment are not required, and the fabrication of the electrode can be simplified.
[0012]
Conventionally, polyvinylidene fluoride and polyolefins, polyvinylpyrrolidone, various elastomers, etc., which have been used as a binder for carbon materials, have high insulating properties, and when used in large amounts to cover the surface of the carbon material, the conductivity decreases, Charging and discharging became impossible.
[0013]
Although the function of the present invention is not clear, since polyethylene oxide does not hinder the electrode reaction and reduces the irreversible reaction, it absorbs the nonaqueous electrolyte and swells to form a lithium ion conductive coating on the surface of the carbon anode. It is considered to be coating.
[0014]
【Example】
Hereinafter, the present invention will be described using preferred examples and comparative examples.
[Example 1]
FIG. 1 is a longitudinal sectional view of a coin-type battery. Reference numeral 1 denotes a positive electrode case also serving as a positive electrode terminal punched out of a stainless steel (SUS316) steel plate, and reference numeral 2 denotes a sealing plate serving also as a negative electrode terminal punched out of a stainless steel (SUS316) steel plate. Reference numeral 3 denotes a positive electrode, 4 denotes a negative electrode, and 5 denotes a separator made of microporous polypropylene impregnated with a non-aqueous electrolyte. As the non-aqueous electrolyte, 150 μl of a solution obtained by dissolving lithium hexafluorophosphate at a concentration of 1 mol / liter in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was injected. This coin-shaped battery is hermetically sealed by caulking the open end of the positive electrode case 1 inward and tightening the outer periphery of the sealing plate 2 via the gasket 6. The battery dimensions are 20 mm in diameter and 2.0 mm in height.
[0015]
The positive electrode was sufficiently mixed with lithium cobalt composite oxide (LiCoO 2 ), carbon as a conductive agent, and a fluororesin powder as a binder in a weight ratio of 90: 3: 7, and N-methyl-2-pyrrolidone ( A suitable amount of NMP) was added to form a paste, applied on a stainless steel foil with a thickness of about 250 μm, dried in vacuum at a temperature of 200 ° C., rolled, and punched into a disk having a diameter of 16 mm. The electric capacity of the positive electrode used here was configured to have a sufficiently large capacity with respect to the electric capacity of the negative electrode in order to perform a complete charge / discharge cycle test of the negative electrode.
[0016]
For the negative electrode, artificial graphite powder was used as a carbon material. 2 parts by weight (2%) of polyethylene oxide (molecular weight 180,000) was added to 100 parts of the artificial graphite powder, and an appropriate amount of N, N dimethylformamide was added to form a paste, followed by vacuum drying at a temperature of 150 ° C. After drying, the mixture was lightly ground in a mortar to obtain a carbon material coated with polyethylene oxide.
[0017]
To 102 parts of the carbon material coated with polyethylene oxide, 16 parts of polyvinylidene fluoride (PVdF) is mixed as a binder, NMP is added in an appropriate amount to form a paste, and applied to a thickness of about 200 μm on a copper foil. did. After vacuum drying at 150 ° C., it was rolled and punched into a disk having a diameter of 16 mm to obtain a negative electrode. A battery using this negative electrode was designated as Inventive Battery A.
[0018]
On the other hand, as a conventional example to be compared with the example of the present invention, a negative electrode was manufactured using a carbon material not treated with a coating agent and using 16 parts of PVdF with respect to 100 parts of the carbon material as a binder. Otherwise, the battery was constructed in exactly the same manner as in the example of the present invention, and was used as a conventional battery.
[0019]
These batteries were charged to a terminal voltage of 4.1 V at a constant current of 1 mA, and then discharged to a terminal voltage of 2.75 V to determine the initial characteristics of the batteries. Table 1 shows the charge capacity, the discharge capacity and the initial Coulomb efficiency of the first cycle for the batteries of the example and the conventional example. The charge capacity and the discharge capacity were expressed by converting the capacity per unit weight of the carbon material used for the negative electrode.
[0020]
It can be seen that in the case of using polyethylene oxide as the coating agent, both the discharge capacity and the initial coulomb efficiency were improved, and the irreversible reaction was suppressed.
[0021]
[Example 2]
Using the same positive electrode as the battery A of the present invention, a test battery was constructed using polyvinylpyrrolidone (PVP) instead of PVdF as a binder for a negative electrode of a carbon material coated with polyethylene oxide. That is, with respect to 102 parts of the carbon material coated with polyethylene oxide, 16 parts of PVP was mixed as a binder, NMP was added in an appropriate amount to form a paste, and the paste was applied on a copper foil to a thickness of about 200 μm. After vacuum drying at 150 ° C., it was rolled and punched into a disk having a diameter of 16 mm to obtain a negative electrode. A battery using the negative electrode was designated as Battery B of the invention.
[0022]
On the other hand, as a conventional example in comparison with the battery B of the present invention, a negative electrode using a carbon material not treated with a coating agent and using 16 parts of PVP with respect to 100 parts of the carbon material as a binder was prepared. Otherwise, the battery was constructed in exactly the same manner as the battery B of the example of the present invention, and was designated as battery A of the conventional example.
[0023]
These batteries were charged to a terminal voltage of 4.1 V at a constant current of 1 mA, and then discharged to a terminal voltage of 2.75 V to determine the initial characteristics of the batteries. Table 2 shows the charge capacity, the discharge capacity, and the initial Coulomb efficiency of the first cycle for the batteries of the example and the conventional example. The charge capacity and the discharge capacity were expressed by converting the capacity per unit weight of the carbon material used for the negative electrode.
[0024]
It can be seen that in the case of using polyethylene oxide as the coating agent, both the discharge capacity and the initial coulomb efficiency were improved, and the irreversible reaction was suppressed. In the case of using PVP as the binder, the charge capacity, the discharge capacity, and the Coulomb efficiency were smaller than those in which PVdF was used, because the current collecting property of the negative electrode was poor.
[0025]
[Example 3]
A charge / discharge cycle test in which the batteries A and B of the present invention and the conventional batteries A and B prepared in Examples 1 and 2 were charged to 4.1 V at a current of 1 mA and discharged to 2.75 V at a current of 1 mA. For 100 cycles.
[0026]
The battery height before the start of each test was 2.0 mm, and the internal resistance was 0.8Ω. After the 100 cycle test, both of the batteries A and B of the present invention had a battery height of 2.1 mm and internal resistances of 1.0Ω and 1.3Ω. In the battery of the present invention, the rate of increase in the internal resistance was small, and stable charge / discharge characteristics were obtained. On the other hand, in the conventional battery A, the battery height was 2.3 mm, and the internal resistance was increased to 1.5Ω. Conventional battery A had a battery height of 2.5 mm, an internal resistance of 30Ω, and could not be discharged. It is considered that the conventional batteries A and B generated gas by decomposition of the non-aqueous electrolyte, increased the internal pressure, increased the battery height, and deteriorated the contact inside the battery to increase the internal resistance.
[0027]
[Example 4]
For the negative electrode, artificial graphite powder was used as a carbon material. 0.05 to 20 parts (0.05 to 20%) of polyethylene oxide (molecular weight: 180,000) is added to 100 parts of artificial graphite powder, and an appropriate amount of N, N dimethylformamide is added to form a paste. And vacuum dried. After drying, the mixture was lightly pulverized with a mortar to obtain a carbon material coated with polyethylene oxide of various concentrations.
[0028]
16 parts of polyvinylidene fluoride (PVdF) was mixed as a binder with respect to 100 parts by weight of the carbon material alone excluding the weight of the polyethylene oxide, and NMP was added in an appropriate amount to form a paste. It was applied to a thickness. After vacuum drying at 150 ° C., it was rolled and punched into a disk having a diameter of 16 mm to obtain a negative electrode.
[0029]
A button-type battery was manufactured using the same positive electrode and battery configuration as in Example 1 except for the negative electrode. These batteries were charged to a terminal voltage of 4.1 V at a constant current of 1 mA, and then discharged to a terminal voltage of 2.75 V to determine the initial characteristics of the batteries. Table 3 shows the charge capacity, discharge capacity, and initial coulombic efficiency of the first cycle of various batteries. The charge capacity and the discharge capacity were expressed by converting the capacity per unit weight of the carbon material used for the negative electrode.
[0030]
When the amount of polyethylene oxide used in the coating agent was 0.1% or more, both the discharge capacity and the initial coulomb efficiency were improved, and the irreversible reaction of the negative electrode was suppressed. The effect is expected even if the addition amount of polyethylene oxide is 20% or more. However, if the addition amount is large, the electrode volume increases and the energy density per volume decreases, so it seems that 20% or less is sufficient.
[0031]
【The invention's effect】
The present invention provides a nonaqueous electrolyte secondary battery including a negative electrode made of a carbon material, which has excellent effects such as high discharge capacity and little cycle deterioration by using polyethylene oxide as a coating material for a carbon negative electrode. Is what you do.
[0032]
Polyethylene oxide is available in various molecular weights, but those having an average molecular weight of about 3,000 to 600,000 are easy to handle and can be used in the present invention. As the negative electrode binder, at least one selected from the group consisting of PVdF, PVP, polyolefin, polyimide, polyvinyl chloride, and polyvinylidene chloride having a high binding effect is used .
[0033]
In the embodiment of the present invention, LiCoO 2 was used for the positive electrode. However, the same effect can be obtained when lithium composite oxides such as LiNiO 2 and LiMn 2 O 4 and LiTiS 2 , LiV 2 O 5 , and LiMoO 3 are used. Can be In addition, although the artificial graphite heat-treated at a high temperature was used as the carbon material of the negative electrode, various carbon materials such as carbon or carbon fiber fired at a low temperature or a mixture thereof may be used.
[0034]
The batteries in the embodiments are all coin-shaped batteries, but the present invention is also applicable to cylindrical, square or paper batteries.
[Brief description of the drawings]
FIG. 1 is a diagram showing an internal structure of a coin-type non-aqueous electrolyte secondary battery which is an example of the present invention.
[Explanation of symbols]
1 Positive electrode case 2 Sealing plate 3 Positive electrode 4 Negative electrode 5 Separator 6 Gasket
Figure 0003541481
[Table 2]
Figure 0003541481
[Table 3]
Figure 0003541481

Claims (3)

リチウムイオンを含有する充放電可能な正極と、リチウムイオンを吸蔵・放出する炭素材料からなる負極とを備えた非水電解液二次電池において、ポリエチレンオキサイドで表面を被覆した炭素材料を負極に用い、負極結着剤として、PVdF、PVP、ポリオレフィン、ポリイミド、ポリ塩化ビニル、ポリ塩化ビニリデンからなる群から選ばれた少なくとも1種を用いたことを特徴とする非水電解液二次電池。In a non-aqueous electrolyte secondary battery including a chargeable / dischargeable positive electrode containing lithium ions and a negative electrode made of a carbon material that absorbs and releases lithium ions, a carbon material whose surface is coated with polyethylene oxide is used for the negative electrode. And a non-aqueous electrolyte secondary battery using at least one selected from the group consisting of PVdF, PVP, polyolefin, polyimide, polyvinyl chloride, and polyvinylidene chloride as a negative electrode binder . ポリエチレンオキサイドの量が炭素材料の重量当たり0.1〜20%である請求項1記載の非水電解液二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the polyethylene oxide is 0.1 to 20% based on the weight of the carbon material. ポリエチレンオキサイドの平均分子量が3000〜600000である、請求項1もしくは2記載の非水電解液二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the polyethylene oxide has an average molecular weight of 3,000 to 600,000.
JP04245695A 1995-02-06 1995-02-06 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3541481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04245695A JP3541481B2 (en) 1995-02-06 1995-02-06 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04245695A JP3541481B2 (en) 1995-02-06 1995-02-06 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08213001A JPH08213001A (en) 1996-08-20
JP3541481B2 true JP3541481B2 (en) 2004-07-14

Family

ID=12636578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04245695A Expired - Fee Related JP3541481B2 (en) 1995-02-06 1995-02-06 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3541481B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853917A (en) * 1997-03-06 1998-12-29 Mitsubishi Chemical Corporation Electrolytic cell having a controlled electrode surface interface
CN1296646A (en) * 1999-03-04 2001-05-23 日本电池株式会社 Composite active material and method for preparing active material, electrode and method for preparing electrode, and non-aqueous electrolyte cell
JP3868231B2 (en) * 2000-07-31 2007-01-17 Jfeケミカル株式会社 Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4804624B2 (en) * 2000-12-07 2011-11-02 パナソニック株式会社 Composite carbon material and electrode for lithium secondary battery
JP5070657B2 (en) * 2001-02-13 2012-11-14 ソニー株式会社 Nonaqueous electrolyte secondary battery and method for producing negative electrode of nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH08213001A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US7422826B2 (en) In situ thermal polymerization method for making gel polymer lithium ion rechargeable electrochemical cells
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2000021452A (en) Nonaqueous electrolyte secondary battery
JP2003132894A (en) Negative electrode collector, negative electrode plate using the same, and nonaqueous electrolyte secondary battery
JPH0982313A (en) Nonaqueous electrolyte secondary battery
CA2477065C (en) Electrochemical cell with carbonaceous material and molybdenum carbide as anode
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JPH08171936A (en) Lithium secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JPH08195197A (en) Nonaqueous electrolyte secondary battery
WO2000062358A1 (en) Rechargeable battery using nonaqueous electrolyte
JP3404929B2 (en) Non-aqueous electrolyte battery
JPH11273726A (en) Nonaqueous electrolyte secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JPH1154122A (en) Lithium ion secondary battery
JP2000285923A (en) Nonaqueous electrolyte secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JPH1131527A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees