JPH0982313A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0982313A
JPH0982313A JP7255527A JP25552795A JPH0982313A JP H0982313 A JPH0982313 A JP H0982313A JP 7255527 A JP7255527 A JP 7255527A JP 25552795 A JP25552795 A JP 25552795A JP H0982313 A JPH0982313 A JP H0982313A
Authority
JP
Japan
Prior art keywords
carbon material
negative electrode
silicon compound
battery
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7255527A
Other languages
Japanese (ja)
Inventor
Takao Fukunaga
福永  孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7255527A priority Critical patent/JPH0982313A/en
Publication of JPH0982313A publication Critical patent/JPH0982313A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the charging efficiency and discharge capacity of a battery in the first cycle and stabilize the charge/discharge cycle life by forming a silicon compound film at least on a part of a carbon material for forming a negative electrode. SOLUTION: A coin type battery is sealed by caulking inward the opening end part of a positive case 1 and fastening the outer circumference of a sealing plate 2 through a gasket 6. A negative electrode 4 is formed by covering a carbon material with a silicon compound, crushing, forming paste together with a binder, then applying the paste to a current collector. Or, the pasty mixture of the carbon material and the binder, or the pasty mixture of the carbon material, the binder, and an additive for enhancing current collecting effect is applied to the current collector, dried, then the silicon compound film is formed on the surface of the carbon material. The silicon compound decreases irreversible reaction, absorbs a nonaqueous electrolyte to swell, and covers the surface of the carbon negative electrode 4 as a lithium ion conductive film, without disturbing electrode reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素材料を負極に用い
る非水電解液二次電池に関し、初期クーロン効率と放電
容量の向上、及び充放電サイクル寿命の安定を目的とし
た当該負極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode, and an improvement of the negative electrode for the purpose of improving initial Coulombic efficiency and discharge capacity and stabilizing charge / discharge cycle life. Regarding

【0002】[0002]

【従来の技術】負極活物質としてリチウムを、正極活物
質として金属カルコゲン化物や金属酸化物を、電解液と
して非プロトン性溶媒に種々の塩を溶解させたものを用
いた非水電解液二次電池は、高エネルギー密度の二次電
池として注目され、研究がさかんに行われている。
2. Description of the Related Art Secondary non-aqueous electrolytes using lithium as a negative electrode active material, metal chalcogenides and metal oxides as a positive electrode active material, and various salts dissolved in an aprotic solvent as an electrolyte. Batteries have attracted attention as secondary batteries with high energy density and are being actively researched.

【0003】しかしながら、従来の非水電解液二次電池
は、充放電を繰り返すうちに、負極活物質のリチウムが
デンドライト状リチウムとして析出し、内部短絡や、リ
チウムと電解液との副反応による劣化などの問題点を有
している。
However, in a conventional non-aqueous electrolyte secondary battery, lithium as a negative electrode active material is deposited as dendrite-like lithium during repeated charging / discharging, which causes deterioration due to an internal short circuit or a side reaction between lithium and the electrolyte. Have problems such as.

【0004】近年、上記欠点の少ない負極として、炭素
材料が非水電解液二次電池に用いられるようになり、さ
らには正極活物質として、LiCoO2 、LiNi
2 、LiMn2 4 やこれら活物質のCo、Niおよ
びMnの一部を他の金属元素で置換した複合酸化物など
の利用が考えられている。
In recent years, a carbon material has come to be used in a non-aqueous electrolyte secondary battery as a negative electrode with less defects as described above, and further, as a positive electrode active material, LiCoO 2 or LiNi.
The use of O 2 , LiMn 2 O 4 and composite oxides in which Co, Ni and Mn of these active materials are partially replaced with other metal elements are considered.

【0005】このようなLiCoO2 などのリチウム含
有複合金属酸化物を正極に用い、リチウムイオンを吸蔵
・放出し得る炭素材料を負極に用いた非水電解液二次電
池は、4Vという高い電圧で放電することができるとと
もに高エネルギー密度を有する。
A non-aqueous electrolyte secondary battery using such a lithium-containing composite metal oxide such as LiCoO 2 as a positive electrode and a carbon material capable of inserting and extracting lithium ions as a negative electrode has a high voltage of 4V. It can be discharged and has a high energy density.

【0006】これらの電池は、放電状態で組み立て、充
電を行って、正極のリチウム含有複合金属酸化物からリ
チウムイオンを放出し、負極の炭素材料に吸蔵させるこ
とにより、電池が放電可能になる。
These batteries can be discharged by assembling and charging them in a discharged state to release lithium ions from the lithium-containing composite metal oxide of the positive electrode and occlude them in the carbon material of the negative electrode.

【0007】[0007]

【発明が解決しようとする課題】ところが、炭素材料を
負極に用いて充放電した場合には、1サイクル目の充電
の初期に観察される、リチウム電位に対して0.8V付
近における電位のプラトーを示す不可逆反応に起因し
て、1サイクル目の充電効率が悪く、正極のリチウムイ
オンを有効に利用することができない。そのため、電池
のエネルギー密度が低下するとともに、この不可逆反応
によるガスの発生が観察され、充放電サイクル寿命にも
悪影響を及ぼしている。
However, when a carbon material is used for the negative electrode and charging / discharging, the plateau of the potential around 0.8 V with respect to the lithium potential observed at the beginning of the first cycle charging. Due to the irreversible reaction, the charging efficiency in the first cycle is poor and the lithium ions of the positive electrode cannot be effectively used. Therefore, the energy density of the battery is lowered, and the generation of gas due to this irreversible reaction is observed, which adversely affects the charge / discharge cycle life.

【0008】この不可逆反応は、多くの研究から、溶媒
の分解によって炭素負極表面に皮膜が形成されるために
起こることが明らかになりつつある。しかし、その不働
態皮膜がどの様な反応で生成し、どの様な化学組成、あ
るいは構造を有しているかは明らかになっていない。
[0008] From many studies, it is becoming clear that this irreversible reaction occurs because a film is formed on the surface of the carbon negative electrode by the decomposition of the solvent. However, it has not been clarified by what reaction the passive film is formed and what kind of chemical composition or structure it has.

【0009】一方では、この反応が炭素材料表面に存在
する有機官能基(−OH、−COOHなどの官能基)と
リチウムとの反応に起因すると考え、熱処理、還元処理
などにより有機残基を除去する研究も行われている。
(菊池ら、第33回電池討論会講演要旨集、p193、
1993)(駒沢ら、電気化学会秋季大会講演要旨集、
p205、1993)そこで、本発明は、このような従
来のリチウムイオンを含有する充放電可能な正極と、リ
チウムイオンを吸蔵・放出する炭素材料を主体とする負
極とを備えた非水電解液二次電池の上記問題点を解決
し、1サイクル目の充電効率及び放電容量の向上、並び
に充放電サイクル寿命の安定した非水電解液二次電池を
提供することを目的とする。
On the other hand, it is considered that this reaction is caused by the reaction between the organic functional group (functional group such as --OH or --COOH) existing on the surface of the carbon material and lithium, and the organic residue is removed by heat treatment, reduction treatment or the like. Research is also being conducted.
(Kikuchi et al., Proc. Of the 33rd Battery Symposium, p193,
1993) (Komazawa et al., Proceedings of Autumn Meeting of the Electrochemical Society of Japan,
Therefore, the present invention provides a non-aqueous electrolyte solution comprising such a conventional chargeable / dischargeable positive electrode containing lithium ions and a negative electrode mainly composed of a carbon material that absorbs / releases lithium ions. It is an object of the present invention to solve the above problems of the secondary battery and to provide a non-aqueous electrolyte secondary battery in which the charging efficiency and the discharge capacity in the first cycle are improved and the charge / discharge cycle life is stable.

【0010】[0010]

【課題を解決するための手段】第一の発明になる非水電
解液二次電池は、リチウムイオンを含有する充放電可能
な正極と、リチウムイオンを吸蔵・放出する、炭素材料
からなる負極とを備えてなり、該炭素材料の少なくとも
一部分にケイ素化合物の被膜が形成されたことを特徴と
し、第二の発明になる非水電解液二次電池は、リチウム
イオンを含有する充放電可能な正極と、リチウムイオン
を吸蔵・放出する、炭素材料からなる負極とを備えてな
り、該負極の少なくとも一部分にケイ素化合物の被膜が
形成されてなることを特徴とする。
A non-aqueous electrolyte secondary battery according to the first aspect of the present invention comprises a chargeable / dischargeable positive electrode containing lithium ions, and a negative electrode made of a carbon material that absorbs and releases lithium ions. A non-aqueous electrolyte secondary battery according to a second invention is characterized in that a film of a silicon compound is formed on at least a part of the carbon material. And a negative electrode made of a carbon material that absorbs and desorbs lithium ions, and a coating of a silicon compound is formed on at least a part of the negative electrode.

【0011】本発明者は、炭素負極に起因する不可逆反
応を解明するため、各種炭素材料を用いて検討した結
果、不可逆反応が炭素負極の比表面積に比例することを
明らかにした。そこで、各種樹脂を負極に添加し、炭素
材料の表面を被覆して比表面積を減少させることによ
り、上記問題点の解決を試みた。
The present inventor has conducted studies using various carbon materials in order to clarify the irreversible reaction caused by the carbon negative electrode, and has revealed that the irreversible reaction is proportional to the specific surface area of the carbon negative electrode. Therefore, various resins were added to the negative electrode to cover the surface of the carbon material to reduce the specific surface area, and an attempt was made to solve the above problems.

【0012】その結果、上記問題点の解決には、炭素負
極の被覆剤としてケイ素化合物が優れていることを見い
だし、初期クーロン効率、放電容量の向上、及び充放電
サイクル寿命の安定した非水電解液二次電池を提供する
ことを可能にした。
As a result, in order to solve the above problems, it was found that a silicon compound is excellent as a coating material for a carbon negative electrode, and a non-aqueous electrolysis with stable initial Coulombic efficiency, improved discharge capacity, and stable charge / discharge cycle life. It has become possible to provide a liquid secondary battery.

【0013】[0013]

【発明の実施の形態】本発明になる非水電解液電池は、
負極を構成する炭素材料をケイ素化合物で全体を被覆叉
は一部分に被膜を形成させることにより、また、負極の
活物質表面全体叉は一部分にケイ素化合物の被膜を形成
させることにより、1サイクル目の充電効率と放電容量
を高めることができ、ガスの発生も少なくなる。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte battery according to the present invention comprises:
By covering the entire carbon material of the negative electrode with a silicon compound or by forming a film on a part thereof, and by forming a film of the silicon compound on the whole or a part of the surface of the negative electrode active material, the first cycle Charge efficiency and discharge capacity can be increased, and gas generation is reduced.

【0014】加えて、充放電サイクル数が経過しても基
板からの剥離も生じないことから、安定したサイクル特
性を得ることができる。
In addition, since peeling from the substrate does not occur even after the number of charge / discharge cycles has elapsed, stable cycle characteristics can be obtained.

【0015】実施例中では、炭素材料にケイ素化合物を
被覆し、この炭素材料を軽く粉砕した後に結着材と共に
ペースト状にし、集電体に塗布して負極としているが、
ペースト状にした炭素材料と結着材あるいは炭素材料と
結着材と集電効果を上げる添加物とを集電体に塗布し、
乾燥後、炭素材料表面にケイ素化合物の被膜を形成させ
てもよい。
In the examples, a carbon material is coated with a silicon compound, the carbon material is lightly crushed, and then made into a paste with a binder, and the paste is applied to a current collector to form a negative electrode.
Apply the paste-like carbon material and the binder or the carbon material and the binder and the additive for improving the current collecting effect to the current collector,
After drying, a silicon compound film may be formed on the surface of the carbon material.

【0016】また、この方法には、熱処理や還元処理と
いったような工程が不要であり、電極の作製が非常に簡
単にできるという利点がある。
Further, this method has an advantage that steps such as heat treatment and reduction treatment are not required, and the electrode can be manufactured very easily.

【0017】従来、炭素材料の結着剤として使用されて
いるポリフッ化ビニリデンやポリオレフィン、ポリビニ
ルピロリドン、各種エラストマー等は絶縁性が高く、多
量に使用して炭素材料の表面を被覆すると、かえって導
電性が低下し、充放電ができなくなってしまう。
Conventionally, polyvinylidene fluoride, polyolefin, polyvinylpyrrolidone, various elastomers, etc., which have been used as a binder for carbon materials, have a high insulating property, and when used in a large amount to coat the surface of the carbon material, it becomes rather conductive. Deteriorates and charging / discharging becomes impossible.

【0018】しかし、本発明のようにケイ素化合物で被
膜を形成させたものは、従来の結着材とは異なり、導電
性が低下し、充放電ができなくなるといったことがな
い。
However, unlike the conventional binders, the one in which a film is formed of a silicon compound as in the present invention does not deteriorate in conductivity and cannot be charged and discharged.

【0019】これは、ケイ素化合物が、電極反応を妨げ
ることなく、不可逆反応を減少させることから、非水電
解液を吸収して膨潤し、リチウムイオン伝導性の被膜と
して炭素負極の表面を被覆しているものと考えられる。
This is because the silicon compound reduces the irreversible reaction without hindering the electrode reaction, so that it absorbs the non-aqueous electrolyte and swells to coat the surface of the carbon negative electrode as a lithium ion conductive coating. It is considered that

【0020】以下、好適な実施例と比較例を用いて本発
明を説明する。
The present invention will be described below with reference to preferred examples and comparative examples.

【0021】[実施例1]図1は、本発明の一実施の形
態にかかるコイン形非水電解液二次電池の断面図であ
る。
Example 1 FIG. 1 is a sectional view of a coin type non-aqueous electrolyte secondary battery according to one embodiment of the present invention.

【0022】図において、1はステンレス(SUS316)鋼
板を打ち抜き加工した正極端子を兼ねる正極ケース、2
はステンレス(SUS316)鋼板を打ち抜き加工した負極端
子を兼ねる封口板である。
In the figure, 1 is a positive electrode case which also functions as a positive electrode terminal made by punching out a stainless steel (SUS316) steel plate, 2
Is a sealing plate that also functions as a negative electrode terminal made by stamping a stainless steel (SUS316) steel plate.

【0023】3は正極、4は負極、5は非水電解液を含
浸した微孔性ポリプロピレンからなるセパレーターであ
る。
Reference numeral 3 is a positive electrode, 4 is a negative electrode, and 5 is a separator made of microporous polypropylene impregnated with a non-aqueous electrolyte.

【0024】非水電解液には、エチレンカーボネートと
ジエチルカーボネートとを体積比1:1で混合した溶媒
に、六フッ化燐酸リチウムを1モル/リットルの濃度で
溶解させたものを150ml注液した。
As the non-aqueous electrolyte, 150 ml of a solution prepared by dissolving lithium hexafluorophosphate at a concentration of 1 mol / liter in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was poured. .

【0025】このコイン形電池は、正極ケース1の開口
端部を内方へかしめ、ガスケット6を介して封口板2の
外周を締めつけることにより、密閉封口されている。電
池寸法は、直径20mm、高さ2.0mmである。
The coin-shaped battery is hermetically sealed by crimping the open end of the positive electrode case 1 inward and tightening the outer periphery of the sealing plate 2 via the gasket 6. The battery has a diameter of 20 mm and a height of 2.0 mm.

【0026】正極は、リチウムコバルト複合酸化物(L
iCoO2 )と導電剤としての炭素粉末および結着剤と
してのフッ素樹脂粉末とを90:3:7の重量比で充分
混合し、N−メチル−2−ピロリドン(NMP)を適量
加えてペースト状にした後、ステンレス箔上に厚さ約2
50μmで塗布し、温度200℃で真空乾燥後、圧延し
て、直径16mmの円板状に打ち抜いたものである。こ
こで使用した正極の電気容量は、負極の完全充放電サイ
クル試験を行うため、負極の電気容量に対して充分大き
な容量を持つような構成とした。
The positive electrode is a lithium cobalt composite oxide (L
iCoO 2 ) and carbon powder as a conductive agent and fluororesin powder as a binder are sufficiently mixed in a weight ratio of 90: 3: 7, and N-methyl-2-pyrrolidone (NMP) is added in an appropriate amount to form a paste. Then, the thickness is about 2 on the stainless steel foil.
It is applied in a thickness of 50 μm, vacuum dried at a temperature of 200 ° C., rolled, and punched into a disc shape having a diameter of 16 mm. The electric capacity of the positive electrode used here was set to have a capacity sufficiently larger than the electric capacity of the negative electrode in order to perform a complete charge / discharge cycle test of the negative electrode.

【0027】負極は、炭素材料として人造黒鉛粉末を用
いた。人造黒鉛粉末100重量部に対して2重量部(2
%)のアリルトリメチルシラン(SiC6 14)を加
え、N,Nジメチルホルムアミドを適量加えてペースト
状にし、温度150℃で真空乾燥した。乾燥後、乳鉢で
軽く粉砕し、アリルトリメチルシランで被覆された炭素
材料を得た。
For the negative electrode, artificial graphite powder was used as the carbon material. 2 parts by weight (2 parts by weight per 100 parts by weight of artificial graphite powder)
%) Allyltrimethylsilane (SiC 6 H 14 ) was added, and N, N dimethylformamide was added in an appropriate amount to form a paste, which was vacuum dried at a temperature of 150 ° C. After drying, it was lightly ground in a mortar to obtain a carbon material coated with allyltrimethylsilane.

【0028】アリルトリメチルシランで被覆された炭素
材料102部に対して、16部のポリフッ化ビニリデン
(PVdF)を結着剤として混合し、NMPを適量加え
てペーストとし、銅箔上に約200μmの厚さに塗布し
た。150℃で真空乾燥後、圧延して、直径16mmの
円板状に打ち抜いて負極とした。この負極を用いた電池
を本発明実施電池Aとした。
To 102 parts of the carbon material coated with allyltrimethylsilane, 16 parts of polyvinylidene fluoride (PVdF) was mixed as a binder, and NMP was added in an appropriate amount to form a paste. It was applied to a thickness. After vacuum drying at 150 ° C., it was rolled and punched into a disk shape with a diameter of 16 mm to obtain a negative electrode. A battery using this negative electrode was designated as Battery A of the present invention.

【0029】一方、本発明の実施例と比較する従来例と
して、被覆剤で処理しない炭素材料を用い、結着剤とし
て、炭素材料100部に対して16部のPVdFを使用
した負極を作製した。それ以外は、本発明の実施例と全
く同様に電池を構成し、従来例の電池Gとした。
On the other hand, as a conventional example to be compared with the examples of the present invention, a negative electrode was prepared in which a carbon material not treated with a coating agent was used and 16 parts of PVdF was used as a binder for 100 parts of the carbon material. . Other than that, the battery was constructed exactly as in the example of the present invention, and the battery G of the conventional example was obtained.

【0030】[実施例2]炭素材料の被覆剤としてアリ
ルトリメチルシランのかわりにクロロメチルジメチルク
ロロシラン(SiC3 8 Cl2 )を用いた以外は実施
例1の試験電池Aと同様にして電池を構成した。実施例
2の電池を試験電池Bとする。
Example 2 A battery was prepared in the same manner as in Test Battery A of Example 1 except that chloromethyldimethylchlorosilane (SiC 3 H 8 Cl 2 ) was used instead of allyltrimethylsilane as the coating material for the carbon material. Configured. The battery of Example 2 is referred to as test battery B.

【0031】[実施例3]炭素材料の被覆剤としてデカ
メチルシクロペンタシロキサン(Si5 10305
を用いた以外は実施例1と同様にして電池を構成した。
実施例3の電池を試験電池Cとする。
[Example 3] Decamethylcyclopentasiloxane (Si 5 C 10 H 30 O 5 ) as a coating material for a carbon material
A battery was constructed in the same manner as in Example 1 except that was used.
The battery of Example 3 is referred to as test battery C.

【0032】[実施例4]炭素材料の被覆剤としてヘキ
サメチルジシラザン(Si2 6 19N)を用いた以外
は実施例1と同様にして電池を構成した。実施例4の電
池を試験電池Dとする。
[Example 4] A battery was constructed in the same manner as in Example 1 except that hexamethyldisilazane (Si 2 C 6 H 19 N) was used as a coating material for the carbon material. The battery of Example 4 is referred to as test battery D.

【0033】[実施例5]炭素材料の被覆剤として3−
イソシアナートプロピルトリエトキシシラン(SiC10
21NO4 )を用いた以外は実施例1と同様にして電池
を構成した。実施例5の電池を試験電池Eとする。
[Example 5] 3-as a coating material for carbon materials
Isocyanatopropyltriethoxysilane (SiC 10
A battery was constructed in the same manner as in Example 1 except that H 21 NO 4 ) was used. The battery of Example 5 is referred to as test battery E.

【0034】[実施例6]炭素材料の被覆剤として(3
−メルカプトプロピル)メチルジメトキシシラン(Si
6 162 S)を用いた以外は実施例1と同様にして
電池を構成した。実施例6の電池を試験電池Fとする。
[Example 6] As a coating material for a carbon material (3
-Mercaptopropyl) methyldimethoxysilane (Si
A battery was constructed in the same manner as in Example 1 except that C 6 H 16 O 2 S) was used. The battery of Example 6 is designated as test battery F.

【0035】実施例1から6で作成したAからGの電池
を、1mAの定電流で端子電圧4.1Vまで充電し、そ
の後端子電圧2.75Vまで放電して、電池の初期特性
を求めた。
The batteries A to G prepared in Examples 1 to 6 were charged to a terminal voltage of 4.1 V with a constant current of 1 mA, and then discharged to a terminal voltage of 2.75 V to determine the initial characteristics of the batteries. .

【0036】表1にAからGの電池について、1サイク
ル目の充電容量、放電容量および初期クーロン効率を示
した。ここで、初期クーロン効率は1サイクル目の充電
容量に対する放電容量の割合とした。充電容量、放電容
量は、負極に使用した炭素材料の単位重量当たりの容量
に換算して表示した。
Table 1 shows the charge capacities, discharge capacities and initial Coulombic efficiencies at the first cycle for the batteries A to G. Here, the initial Coulombic efficiency was defined as the ratio of the discharge capacity to the charge capacity in the first cycle. The charge capacity and discharge capacity were converted to the capacity per unit weight of the carbon material used for the negative electrode and displayed.

【0037】[0037]

【表1】 [Table 1]

【0038】被覆剤にアリルトリメチルシラン、デカメ
チルシクロペンタシロキサン、ヘキサメチルジシラン、
3−イソシアナートプロピルトリエトキシシラン、(3
−メルカプトプロピル)メチルジメトキシシランを用い
たものは、放電容量、初期クーロン効率ともに向上し、
不可逆反応が抑制されていることがわかる。
Allyltrimethylsilane, decamethylcyclopentasiloxane, hexamethyldisilane,
3-isocyanatopropyltriethoxysilane, (3
-Mercaptopropyl) methyldimethoxysilane improves both discharge capacity and initial Coulombic efficiency,
It can be seen that the irreversible reaction is suppressed.

【0039】次に、本発明になる電池A、B、C、D、
E、Fおよび従来電池Gを用いて、1mAの電流で4.
1Vまで充電し、同じく1mAの電流で2.75Vまで
放電する充放電サイクル試験を100サイクル行った。
この試験結果を表2に示す。
Next, the batteries A, B, C, D according to the present invention,
3. Using E, F and conventional battery G, at a current of 1 mA.
A charging / discharging cycle test of charging to 1 V and discharging to 2.75 V at a current of 1 mA was performed 100 times.
Table 2 shows the test results.

【0040】[0040]

【表2】 [Table 2]

【0041】本発明になる電池はいずれも従来電池Gよ
り内部抵抗が低く、電池の厚みの増加が少なく、安定し
た充放電特性が得られた。
Each of the batteries according to the present invention had a lower internal resistance than the conventional battery G, little increase in the battery thickness, and stable charge / discharge characteristics were obtained.

【0042】一方、従来電池Gは、非水電解液の分解に
よりガスを発生し、内圧の増加により電池の厚みが大き
くなった。加えて、電池内部での接触が悪くなり、内部
抵抗が増加し、安定した充放電特性が得られなかった。
On the other hand, in the conventional battery G, gas is generated due to decomposition of the non-aqueous electrolyte, and the thickness of the battery is increased due to increase in internal pressure. In addition, the contact inside the battery deteriorated, the internal resistance increased, and stable charge / discharge characteristics could not be obtained.

【0043】[実施例7]負極は、炭素材料として人造
黒鉛粉末を用いた。人造黒鉛粉末100部に対して0.
05〜20部(0.05〜20%)のアリルトリメチル
シラン(SiC614)を加え、N,Nジメチルホルム
アミドを適量加えてペースト状にし、温度150℃で真
空乾燥した。乾燥後、乳鉢で軽く粉砕し、各種濃度のア
リルトリメチルシランで被覆された炭素材料を得た。
Example 7 For the negative electrode, artificial graphite powder was used as the carbon material. 0. 0 for 100 parts of artificial graphite powder.
05 to 20 parts (0.05 to 20%) of allyltrimethylsilane (SiC 6 H 14 ) was added, and N, N dimethylformamide was added in an appropriate amount to form a paste, which was vacuum dried at a temperature of 150 ° C. After drying, it was lightly ground in a mortar to obtain a carbon material coated with allyltrimethylsilane of various concentrations.

【0044】アリルトリメチルシランの重量を除いた炭
素材料のみの100重量部に対して、16重量部のポリ
フッ化ビニリデン(PVdF)を結着剤として混合し、
NMPを適量加えてペーストとし、銅箔上に約200μ
mの厚さに塗布した。150℃で真空乾燥後、圧延し
て、直径16mmの円板状に打ち抜いて負極とした。
16 parts by weight of polyvinylidene fluoride (PVdF) was mixed as a binder with 100 parts by weight of the carbon material only, excluding the weight of allyltrimethylsilane.
Add an appropriate amount of NMP to make a paste, and apply about 200μ on the copper foil.
m. After vacuum drying at 150 ° C., it was rolled and punched into a disk shape with a diameter of 16 mm to obtain a negative electrode.

【0045】負極以外は、実施例1と同様の正極及び電
池構成を使用してボタン形電池を作製した。
A button type battery was manufactured using the same positive electrode and battery structure as in Example 1 except for the negative electrode.

【0046】これらの電池を、1mAの定電流で端子電
圧4.1Vまで充電し、その後端子電圧2.75Vまで
放電して、電池の初期特性を求めた。表3に各種電池
の、1サイクル目の充電容量、放電容量および初期クー
ロン効率を示した。充電容量、放電容量は、負極に使用
した炭素材料の単位重量当たりの容量に換算して表示し
た。
These batteries were charged with a constant current of 1 mA to a terminal voltage of 4.1 V and then discharged to a terminal voltage of 2.75 V to determine the initial characteristics of the batteries. Table 3 shows the charge capacity, discharge capacity, and initial Coulombic efficiency of the various batteries in the first cycle. The charge capacity and discharge capacity were converted to the capacity per unit weight of the carbon material used for the negative electrode and displayed.

【0047】[0047]

【表3】 [Table 3]

【0048】被覆剤に使用したアリルトリメチルシラン
の量が0.1%以上で、放電容量、初期クーロン効率と
もに向上し、負極の不可逆反応が抑制された。アリルト
リメチルシランの添加量は20%以上でも効果が期待さ
れるが、添加量が多いと電極容積が増大し、容積当たり
のエネルギー密度が低下するために20%以下で充分と
考えられる。
When the amount of allyltrimethylsilane used in the coating material was 0.1% or more, both the discharge capacity and the initial Coulombic efficiency were improved, and the irreversible reaction of the negative electrode was suppressed. The effect is expected even if the addition amount of allyltrimethylsilane is 20% or more, but if the addition amount is large, the electrode volume increases and the energy density per volume decreases, so 20% or less is considered sufficient.

【0049】[0049]

【発明の効果】第一の発明になる非水電解液二次電池
は、リチウムイオンを含有する充放電可能な正極と、リ
チウムイオンを吸蔵・放出する、炭素材料からなる負極
とを備えてなり、該炭素材料の少なくとも一部分にケイ
素化合物の被膜が形成されたことを特徴とし、第二の発
明になる非水電解液二次電池は、リチウムイオンを含有
する充放電可能な正極と、リチウムイオンを吸蔵・放出
する、炭素材料からなる負極とを備えてなり、該負極の
少なくとも一部分にケイ素化合物の被膜が形成されてな
ることを特徴とする。
The non-aqueous electrolyte secondary battery according to the first invention comprises a chargeable / dischargeable positive electrode containing lithium ions, and a negative electrode made of a carbon material that absorbs and releases lithium ions. A non-aqueous electrolyte secondary battery according to a second invention is characterized in that a silicon compound film is formed on at least a part of the carbon material, and a lithium ion-containing chargeable / dischargeable positive electrode and a lithium ion And a negative electrode made of a carbon material for occluding and releasing carbon dioxide, wherein a film of a silicon compound is formed on at least a part of the negative electrode.

【0050】さらに、前記ケイ素化合物が、化1、化
2、化3、化4、化5叉は化6で表される少なくとも1
種であることを特徴とする。
Further, the silicon compound is at least 1 represented by Chemical formula 1, Chemical formula 2, Chemical formula 3, Chemical formula 4, Chemical formula 5, or Chemical formula 6.
It is a seed.

【0051】[0051]

【化1】[Chemical 1]

【0052】[0052]

【化2】Embedded image

【0053】[0053]

【化3】Embedded image

【0054】[0054]

【化4】Embedded image

【0055】[0055]

【化5】Embedded image

【0056】[0056]

【化6】ただし、上記化学式において、1≦A≦5、1
≦B≦48、1≦C≦46、1≦D≦4、1≦E≦6、
F=1、1≦G≦4である。
However, in the above chemical formula, 1 ≦ A ≦ 5, 1
≦ B ≦ 48, 1 ≦ C ≦ 46, 1 ≦ D ≦ 4, 1 ≦ E ≦ 6,
F = 1 and 1 ≦ G ≦ 4.

【0057】これによれば、従来のものに比べて、初期
クーロン効率及び放電容量が高く、かつサイクル劣化の
少ない非水電解液二次電池を提供することができる。
According to this, it is possible to provide a non-aqueous electrolyte secondary battery having higher initial Coulomb efficiency and discharge capacity and less cycle deterioration than the conventional one.

【0058】本発明の実施例では、被覆剤にアリルトリ
メチルシラン、デカメチルシクロペンタシロキサン、ヘ
キサメチルジシラザン、3−イソシアナートプロピルト
リエトキシシラン、(3−メルカプトプロピル)メチル
ジメトキシシランを用いたが、化1にもとづいたエチニ
ルトリメチルシラン(SiC5 10)、フェニルジメチ
ルシラン(SiC8 12)、フェニルシラン(SiC6
8 )、トリエチルシラン(SiC6 16)、トリメチ
ルビニルシラン(SiC5 12)、化2にもとづいたn
−ブチルジメチルクロロシラン(SiC6 15Cl)、
n−ブチルトリクロロシラン(SiC4 9 Cl3 )、
化3にもとづいたn−ブチルトリメトキシシラン(Si
7 183 )、ジメチルジメトキシシラン(SiC4
122 )、化4にもとづいた3−メルカプトプロピル
トリメトキシシラン(SiC6 163 S)、化5にも
とづいたN−トリメチルシリルイミダゾール(SiC6
122 )、叉は化6にもとづいたN−フェニルアミノ
メチルトリメトキシシラン(SiC1217NO3 )等も
同様の効果が期待でき、さらに、化1、化2、化3、化
4、化5叉は化6に示す化合物であれば、上記ケイ素化
合物のかぎりでないことは言うまでもない。加えて、混
合物であっても同様の効果が期待できる。
In the examples of the present invention, allyltrimethylsilane, decamethylcyclopentasiloxane, hexamethyldisilazane, 3-isocyanatopropyltriethoxysilane and (3-mercaptopropyl) methyldimethoxysilane were used as the coating agent. , Ethynyltrimethylsilane (SiC 5 H 10 ), phenyldimethylsilane (SiC 8 H 12 ), phenylsilane (SiC 6
H 8 ), triethylsilane (SiC 6 H 16 ), trimethylvinylsilane (SiC 5 H 12 ), n based on Chemical formula 2
- butyldimethylchlorosilane (SiC 6 H 15 Cl),
n-butyltrichlorosilane (SiC 4 H 9 Cl 3 ),
N-butyltrimethoxysilane (Si
C 7 H 18 O 3 ) and dimethyldimethoxysilane (SiC 4
H 12 O 2 ), 3-mercaptopropyltrimethoxysilane (SiC 6 H 16 O 3 S) based on Chemical formula 4, N-trimethylsilylimidazole (SiC 6 based on Chemical formula 5)
H 12 N 2 ), or N-phenylaminomethyltrimethoxysilane (SiC 12 H 17 NO 3 ) based on Chemical formula 6 can be expected to have similar effects. It goes without saying that the compounds shown in Chemical formula 4 and Chemical formula 5 or Chemical formula 6 are not limited to the above silicon compounds. In addition, the same effect can be expected even with a mixture.

【0059】本発明の実施例では、正極にLiCoO2
を用いたがLiNiO2 、LiMn2 4 などのリチウ
ム複合酸化物や、LiTiS2 、LiV2 5 、LiM
oO3 などを用いた場合においても、同様の効果が得ら
れる。
In the embodiment of the present invention, LiCoO 2 is used for the positive electrode.
Was used, but lithium composite oxides such as LiNiO 2 , LiMn 2 O 4 , LiTiS 2 , LiV 2 O 5 , and LiM were used.
Similar effects can be obtained even when oO 3 or the like is used.

【0060】負極の炭素材料には、高温で熱処理した人
造黒鉛を用いたが、これにかぎるものでなく、低温焼成
のカーボンや炭素繊維などの種々の炭素材料単体もしく
はこれらの混合物を用いてもよい。
As the carbon material for the negative electrode, artificial graphite heat-treated at a high temperature was used, but the carbon material is not limited to this, and various carbon materials such as low-temperature fired carbon and carbon fiber, or a mixture thereof may be used. Good.

【0061】なお、実施例における電池は、いずれもコ
イン形電池であるが、本発明は円筒形、角形またはペー
パー形電池にも適用可能である。
The batteries in the examples are all coin type batteries, but the present invention is also applicable to cylindrical, prismatic or paper type batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態にかかるコイン形非水電
解液二次電池の断面図である。
FIG. 1 is a cross-sectional view of a coin type non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極ケース 2 封口板 3 正極 4 負極 5 セパレーター 6 ガスケット 1 Positive electrode case 2 Sealing plate 3 Positive electrode 4 Negative electrode 5 Separator 6 Gasket

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを含有する充放電可能な
正極と、 リチウムイオンを吸蔵・放出する、炭素材料からなる負
極とを備えてなり、 該炭素材料の少なくとも一部分にケイ素化合物の被膜が
形成されたことを特徴とする非水電解液二次電池。
1. A chargeable / dischargeable positive electrode containing lithium ions, and a negative electrode made of a carbon material, which absorbs and releases lithium ions, and a silicon compound film is formed on at least a part of the carbon material. A non-aqueous electrolyte secondary battery characterized by the above.
【請求項2】 リチウムイオンを含有する充放電可能な
正極と、 リチウムイオンを吸蔵・放出する、炭素材料からなる負
極とを備えてなり、 該負極の少なくとも一部分にケイ素化合物の被膜が形成
されてなることを特徴とする非水電解液二次電池。
2. A chargeable / dischargeable positive electrode containing lithium ions, and a negative electrode made of a carbon material that occludes / releases lithium ions, wherein a film of a silicon compound is formed on at least a part of the negative electrode. And a non-aqueous electrolyte secondary battery.
【請求項3】 前記ケイ素化合物が、 化1、化2、化3、化4、化5叉は化6で表される少な
くとも1種であることを特徴とする請求項1叉は2記載
の非水電解液二次電池。 【化1】 【化2】 【化3】 【化4】 【化5】 【化6】 ただし、上記化学式において、1≦A≦5、1≦B≦4
8、1≦C≦46、1≦D≦4、1≦E≦6、F=1、
1≦G≦4である。
3. The silicon compound according to claim 1, wherein the silicon compound is at least one represented by the following chemical formula 1, chemical formula 2, chemical formula 3, chemical formula 4, chemical formula 5, or chemical formula 6. Non-aqueous electrolyte secondary battery. Embedded image Embedded image Embedded image Embedded image Embedded image [Chemical 6] However, in the above chemical formula, 1 ≦ A ≦ 5, 1 ≦ B ≦ 4
8, 1 ≦ C ≦ 46, 1 ≦ D ≦ 4, 1 ≦ E ≦ 6, F = 1,
1 ≦ G ≦ 4.
JP7255527A 1995-09-07 1995-09-07 Nonaqueous electrolyte secondary battery Pending JPH0982313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255527A JPH0982313A (en) 1995-09-07 1995-09-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255527A JPH0982313A (en) 1995-09-07 1995-09-07 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0982313A true JPH0982313A (en) 1997-03-28

Family

ID=17279984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255527A Pending JPH0982313A (en) 1995-09-07 1995-09-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0982313A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200604A (en) * 1999-01-07 2000-07-18 Samsung Yokohama Kenkyusho:Kk Carbon material for lithium ion secondary battery, lithium ion secondary battery, and manufacture of carbon material for lithium ion secondary battery
JP2002198053A (en) * 2000-12-26 2002-07-12 Mitsubishi Chemicals Corp Negative electrode material for lithium ion battery
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
JP2009245922A (en) * 2008-03-13 2009-10-22 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2011049046A (en) * 2009-08-27 2011-03-10 Nissan Motor Co Ltd Battery electrode and method of manufacturing the same
US9153843B2 (en) 2009-08-26 2015-10-06 Sony Corporation Negative electrode including solid electrolyte interface coating containing crosslinked isocyanate compound, nonaqueous electrolyte secondary battery and method for manufacturing the same
US20160172710A1 (en) * 2014-12-10 2016-06-16 The Regents Of The University Of California Electrolyte and negative electrode structure
CN110571425A (en) * 2019-09-24 2019-12-13 中国科学院化学研究所 Low-expansion-rate silicon-carbon composite material and preparation method thereof
US10608249B2 (en) 2017-08-01 2020-03-31 GM Global Technology Operations LLC Conformal coating of lithium anode via vapor deposition for rechargeable lithium ion batteries

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200604A (en) * 1999-01-07 2000-07-18 Samsung Yokohama Kenkyusho:Kk Carbon material for lithium ion secondary battery, lithium ion secondary battery, and manufacture of carbon material for lithium ion secondary battery
JP2002198053A (en) * 2000-12-26 2002-07-12 Mitsubishi Chemicals Corp Negative electrode material for lithium ion battery
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
JP2014013770A (en) * 2006-05-04 2014-01-23 Lg Chem Ltd Electrode active material with improved safety and electrochemical device using the same
JP2009245922A (en) * 2008-03-13 2009-10-22 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
US9153843B2 (en) 2009-08-26 2015-10-06 Sony Corporation Negative electrode including solid electrolyte interface coating containing crosslinked isocyanate compound, nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2011049046A (en) * 2009-08-27 2011-03-10 Nissan Motor Co Ltd Battery electrode and method of manufacturing the same
US20160172710A1 (en) * 2014-12-10 2016-06-16 The Regents Of The University Of California Electrolyte and negative electrode structure
US11101501B2 (en) 2014-12-10 2021-08-24 GM Global Technology Operations LLC Electrolyte and negative electrode structure
US10608249B2 (en) 2017-08-01 2020-03-31 GM Global Technology Operations LLC Conformal coating of lithium anode via vapor deposition for rechargeable lithium ion batteries
CN110571425A (en) * 2019-09-24 2019-12-13 中国科学院化学研究所 Low-expansion-rate silicon-carbon composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JPH08236114A (en) Lithium secondary battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
JPH11121012A (en) Nonaqueous electrolytic battery
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JP2000223117A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery with this negative electrode
JPH0982313A (en) Nonaqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JPH08306390A (en) Nonaqueous electrolyte secondary battery
JP4503964B2 (en) Nonaqueous electrolyte secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH08171936A (en) Lithium secondary battery
JP2002117832A (en) Lithium secondary battery
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JPH08195197A (en) Nonaqueous electrolyte secondary battery
JP3404929B2 (en) Non-aqueous electrolyte battery
JP2003331841A (en) Positive active material for lithium ion secondary battery and its manufacturing method, and lithium ion secondary battery
JP3596225B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP3776230B2 (en) Lithium secondary battery
JP2007128919A (en) Operation method for nonaqueous electrolyte secondary battery
JP2001229977A (en) Nonaqueous electrolyte secondary battery
JPH11154509A (en) Nonaqueous electrolyte secondary battery
JP2001351686A (en) Treatment method to improve low temperature characteristics of lithium secondary cell