JP3776230B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP3776230B2
JP3776230B2 JP04671898A JP4671898A JP3776230B2 JP 3776230 B2 JP3776230 B2 JP 3776230B2 JP 04671898 A JP04671898 A JP 04671898A JP 4671898 A JP4671898 A JP 4671898A JP 3776230 B2 JP3776230 B2 JP 3776230B2
Authority
JP
Japan
Prior art keywords
positive electrode
composite oxide
lithium
zinc
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04671898A
Other languages
Japanese (ja)
Other versions
JPH11250936A (en
Inventor
敦志 柳井
義人 近野
育郎 米津
俊之 能間
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04671898A priority Critical patent/JP3776230B2/en
Publication of JPH11250936A publication Critical patent/JPH11250936A/en
Application granted granted Critical
Publication of JP3776230B2 publication Critical patent/JP3776230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム含有複合酸化物正極と炭素負極を用いたリチウム二次電池に関する。
【0002】
【従来の技術】
リチウムイオンを吸蔵・脱離することができる炭素負極と、リチウムを吸蔵・脱離することができるリチウム含有複合酸化物を用いた正極とが、セパレータを介して配置されたリチウム二次電池は、軽量かつ高容量であり、しかもサイクル寿命が長いという特徴を有する。この特徴を生かし、この種のリチウム二次電池は、移動体通信用電源などの用途で広く利用されている。そして、最近では動力用電源としての利用が拡大しつつあり、このような用途では、高容量・高出力と共にサイクル特性や高率放電特性に一層優れた電池が要求される。
【0003】
ところで、リチウム二次電池の正極には、従来よりLiCoO2 やLiNiO2 などのリチウム含有複合酸化物が用いられていたが、LiCoO2 は高価であり、LiNiO2 はサイクル劣化が大きいなどの問題がある。また、これらの複合酸化物は、いずれも放電容量が十分でないと共に高率放電特性が悪いという問題がある。
【0004】
このため、特開平9−293505号公報では、リチウム含有ニッケル複合酸化物中のニッケルの一部を他の元素で置換することにより、正極活物質としてのリチウム含有ニッケル複合酸化物のサイクル特性を向上させる技術が提案されており、この公報の記載に従って作製したリチウム含有複合酸化物では、放電容量やサイクル特性が改善する。しかしながら、電気化学的特性の改善程度は未だ十分ではなく、特に高率放電特性が十分でない。よって、リチウム二次電池の一層の性能アップを図るために、金属複合酸化物正極の更なる改良と共に、このような正極と好適に組み合わせることのできる負極が求められている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、容量が大きく、かつサイクル特性と高率放電特性の両特性にも優れた金属複合酸化物正極を案出すると共に、この金属複合酸化物正極とこの正極の能力を十分に生かし得る負極とを組み合わせて、一層高性能なリチウム二次電池を提供しようとするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するための本発明は、次のように構成される
亜鉛元素を1原子%添加してなるリチウム含有ニッケルコバルト複合酸化物LiNi X Co 1-x 2 (但し、0.675≦X≦0.750)を正極材料とする正極と、リチウムイオンを吸蔵・脱離することができる天然黒鉛と、リチウムイオンを吸蔵・脱離することができる易黒鉛化炭素とが、重量比4:1で混合された混合物を負極材料とする負極と、非水電解液とを備えることを特徴とするリチウム二次電池である
【0007】
亜鉛元素を添加してなるリチウム含有ニッケルコバルト複合酸化物(このものを金属複合酸化物と略称することがある)は、亜鉛を添加しないリチウム含有ニッケルコバルト複合酸化物に比較して、容量が大きく、サイクル特性や高率放電特性等の電気化学的特性にも優れる。したがって、このような金属複合酸化物を正極構成材料として用いた正極は、電気化学的特性に優れる。
【0008】
他方、天然黒鉛は密度が高いので体積エネルギー密度が大きく、電圧平坦性に優れるが、サイクル劣化し易いという弱点を有する。然るに、このような天然黒鉛に易黒鉛化炭素を混ぜて混合物とすると、天然黒鉛のみを用いた場合や易黒鉛化炭素のみを用いた場合に比較し、負極容量が高まると共に、サイクル劣化も少なくなる。つまり、天然黒鉛に易黒鉛化炭素を混ぜると、各々の炭素材料の総和よりも電気化学的特性に優れた炭素負極が構成できる。
【0009】
したがって、上記正極とこのような負極とを組み合わせてなるリチウム二次電池は、電池容量が高く、サイクル特性や高率放電特性等に優れる。なお、リチウム含有ニッケルコバルト複合酸化物に亜鉛元素を添加すると、電気化学的特性が高まる理由は明確ではないが、亜鉛とコバルトとが相乗的に作用して複合酸化物の導電性を高め、または複合酸化物の構造内に取り込まれた亜鉛が結晶構造を好適に改善するためではないかと推察される。
【0010】
リチウム含有ニッケルコバルト複合酸化物に対する亜鉛添加の割合が原子%に規制された金属複合酸化物を用いた正極であると、上述した効果が一層確実かつ顕著に現れる。
【0012】
LiNi X Co 1-x 2 (但し、0.675≦X≦0.750)で表されるリチウム含有ニッケルコバルト複合酸化物は、平均放電電位及び重量エネルギー密度が大きい。したがって、このリチウム含有ニッケルコバルト複合酸化物に亜鉛を添加してなる正極であると、高電圧で重量エネルギー密度が高く、しかもサイクル特性や高率放電特性に優れたものとなる。ここで、上記LiNiXCo1-x2におけるXの範囲は、好ましくは0.675〜0.750とし、より好ましくは0.70〜0.725とするのが更によい。Xがこの範囲であると、一層重量エネルギー密度が高まるからである。
【0013】
【実施の形態】
本発明でいうリチウム含有ニッケルコバルト複合酸化物には、LiNiX Co 1-X2 で表される広範なリチウム含有ニッケルコバルト複合酸化物が含まれるが、上記Xが0.675≦X ≦0.750の範囲に規定されるものが好ましい。そして、リチウム含有ニッケルコバルト複合酸化物に亜鉛を添加してなる本発明にかかる金属複合酸化物としては、LiNiX Co 1-X2 に亜鉛が添加されて固溶体となっているもの、添加された亜鉛の一部がLiNiX Co 1-X2 と固溶し、残りが粉末状態で存在しているもの、またはLiNiX Co 1-X
2 粉末と亜鉛粉末が混合された状態のものなどの亜鉛の存在形態が例示できる。
【0014】
このような金属複合酸化物の作製方法としては、例えばリチウム含有複合酸化物粉末と亜鉛粉末とを所定の元素モル比で混合し、乾燥空気雰囲気中で700℃〜900℃の温度で20時間加熱処理する方法や、リチウム化合物(例えばLiOH)と、コバルト化合物〔例えばCo(OH)2 〕と、ニッケル化合物〔例えばNi(OH)2 〕と、亜鉛化合物〔例えばZn(OH)2 〕を所定の元素モル比で混合し、上記と同様な温度・時間条件で加熱処理する方法などが例示できる。
【0015】
混合における元素モル比としては、好ましくはリチウム含有複合酸化物に対して亜鉛元素を1〜5原子%とし、Li、Co、Niの各元素については、LiNiX Co 1-X2 におけるXが、0.675≦X ≦0.750の範囲になるようにする。
【0016】
他方、本発明で好適に使用することのできる天然黒鉛としては、例えばX線回折法で求められる(002)面の面間隔が3.35Å以上、3.37Å以下、結晶子厚みLcが800Å以上が例示でき、また易黒鉛化炭素(軟質炭素ともいう)としては、(002)面の面間隔が3.40〜3.70Å、結晶子の厚みLcが10〜150Åを有するものが例示でき、このようなものとしてコークスがある。
【0017】
更に、非水電解液としては、公知の種々の組成の非水電解液が使用できる。例えばエチレンカーボネート、ビニレンカーボネート、プロピレンカーボネートなどの有機溶媒が使用でき、またこれの有機溶媒と、例えばジエチルカーボネート、ジメチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタンなどの低融点溶媒との混合溶媒が使用できる。
【0018】
なお、正負電極および電池の作製方法としては、公知の方法に従えばよく、特別な方法を用いる必要はない。
【0019】
【実施例】
初めに予備実験により、リチウム含有コバルトニッケル複合酸化物に対する亜鉛添加の影響を明らかにする。次に本発明にかかるリチウム二次電池について説明する。
【0020】
(予備実験1)
予備実験では、正極活物質の組成のみを変えた5種の金属複合酸化物正極a〜dを作製すると共に、これらの正極と共通の負極を用いて電池A〜Dを作製し、この電池を用いて各種金属複合酸化物の電気化学的特性を調べた。以下、順次説明する。
【0021】
正極a
水酸化リチウムLiOHと水酸化ニッケルNi(OH)2 と水酸化コバルトCo(OH)2 および水酸化亜鉛Zn(OH)2 を、元素モル比がLi:Ni:Co:Zn=1.05:0.7:0.3:0.05となるように混合した後、700℃の温度で熱処理し金属複合酸化物となした。これを粉砕して粒径約6μmの粉末となし、正極活物質aとした。この正極活物質と、導電剤としての炭素粉末と、結着剤としてのポリフッ化ビニリデン(Nメチル2ピロリドンに溶解して使用)とを、重量比90:6:4の比率で混合し正極合剤となし、この正極合剤を厚さ20μmのアルミニウム箔の片面に塗布し乾燥した後、厚み50μmに圧延した。しかる後、直径20mmの円盤状に打ち抜き、このものを100℃で2時間熱処理して金属複合酸化物正極aを作製した。
【0022】
正極b
金属元素のモル比をLi:Ni:Co:Zn=1.01:0.7:0.3:0.01としたこと以外については、上記正極aと同様にして、金属複合酸化物正極bを作製した。
【0023】
正極c
水酸化亜鉛Zn(OH)2 を加えなかったこと以外は、上記正極aと同様にして、比較正極cを作製した。
【0024】
正極d
水酸化亜鉛Zn(OH)2 に代えて、水酸化チタンTi(OH)4 を用いたこと以外は、上記正極aと同様にして、比較正極dを作製した。
【0025】
なお、上記した方法で作製した各種の金属複合酸化物の元素組成を原子吸光分析法を用いて分析したところ、正極a、b、dにおける金属複合酸化物の元素モル比は主発原料における元素モル比と同じであり、正極cにおける金属複合酸化物は、Li:Ni:Co=1.0:0.7:0.3であることが確認された。
【0026】
以上で作製した正極a〜dを用い、負極等の他の電池構成部材を共通として電池A〜Dを作製した。作製方法は次の通りである。負極としては、0.4mm厚のリチウム圧延板を直径20mmに打ち抜いたものを用いた。また非水電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との等体積混合液に、LiPF6 を1M濃度(モル/リットル)溶解したものを用いた。更にセパレータとしては、ポリプロピレン製の微多孔質膜を使用し、電池に組み込む前に上記非水電解液をセパレータに含浸させたものを用いた。そして、これらの部材を常法に従って組み立てて、図2の断面模式図に示すような、直径24.0mm、厚さ3.0mmのコイン型電池A〜D(A〜Dは正極a〜dに対応)を作製した。
【0027】
図2中、1は正極、2は負極、3は正負電極を離間するセパレータ、4は正極缶、5は負極缶であり、正負極缶4、5は金属材料からなる。また6は正極集電体、7は負極集電体、8は絶縁パッキングである。図2に示すように、正極1と負極2は、非水電解液を含浸したセパレータ3を介し対向して、正負極缶4、5で構成される電池ケース内に収納されており、電気エネルギーは、正極缶4および負極缶5の両端子を介して外部に取り出すことができる構造になっている。
【0028】
(正極性能の評価)
電池A〜Dの放電容量を測定した。その結果を表1、2に示す。ここで表1は、充電電流密度0.25mA/cm2 で充電終止電圧4.3Vまで充電した後、放電電流密度3mA/cm2 で放電終止電圧2.0Vまで放電したときにおける放電容量の測定結果であり、表2は、充電電流密度0.25mA/cm2 で充電終止電圧4.3Vまで充電した後、放電電流密度1.5mA/cm2 で放電終止電圧2.0Vまで放電したときにおける放電容量の測定結果である。
【0029】
表1において、亜鉛を5原子%含むリチウム含有ニッケルコバルト複合酸化物を正極活物質として用いた電池A(使用電極;正極a)は、亜鉛無添加の電池C(使用電極;正極c)、および亜鉛に代えてチタンを5原子%添加した電池D(使用電極;正極d)に比べて、高率放電容量が向上することが認められる。
【0030】
また表2において、少なくとも亜鉛の添加量が1〜5原子%(電池A、B)であれば、亜鉛無添加の場合(電池C)に比べて、放電容量が高まることが判る。
【0031】
【表1】

Figure 0003776230
【0032】
【表2】
Figure 0003776230
【0033】
(予備実験2)
予備実験2では、元素組成比の異なるリチウム含有ニッケルコバルト複合酸化物(亜鉛等の金属を添加しないもの)自体の放電電位および重量エネルギー密度を調べた。
具体的には、水酸化亜鉛を添加しなかったことを除き、上記予備実験1に記載したと同様な方法で、LiNiX Co 1-X2 におけるXを異ならせたリチウム含有ニッケルコバルト複合酸化物を種々作製し、予備実験1と同様にして試験用正極および試験用電池を作製し、この電池を用いて正極電位と放電容量を測定し、この結果に基づいて複合酸化物の平均放電電位と重量エネルギー密度Wh/kgを算出した。これらの結果をXの値と平均放電電位および重量エネルギー密度Wh/kgとの関係で図1に示す。
【0034】
図1から明らかなように、少なくともX値が0.65〜0.75の範囲であれば、良好な平均放電電位および重量エネルギー密度が維持されることが認められる。そして、X値は、好ましくは0.675〜0.750、より好ましくは0.70〜0.725とするのがよいことが判る。そして、この結果と予備実験1の結果とを考え合わせると、好ましくはLiNiX Co 1-X2 におけるXが0.675〜0.75である複合酸化物に亜鉛元素を含ませると、放電電位や重量エネルギー密度が高く、かつサイクル特性や高率放電特性にも優れた金属複合酸化物正極が得られることが判る。
【0035】
以下では、本発明実施例を比較例との関係で説明する。
(実施例)
上記予備実験で作製した正極bと混合炭素負極とを組み合わせ、その他の事項については上記予備実験と同様な方法で実施例にかかるリチウム二次電池を作製した。混合炭素負極の作製は次のようにして行った。
X線回折法による(002)面の面間隔が3.35Å〜3.37Å以下、結晶子厚みLcが800Å以上の天然黒鉛(平均粒径8μm)と、面間隔が3.44Å、結晶子厚みLcが32Åのコークス(平均粒径18μm))を重量比4:1で混合した混合物と、結着剤としてのポリフッ化ビニリデン(Nメチル2ピロリドンに溶解して使用)とを、重量比85:15で混合して負極合剤となし、この負極合剤を、厚み18μmの銅箔の片面に塗布し乾燥させて、混合炭素負極を作製した。
【0036】
(比較例)
上記予備実験における正極cを用いたこと以外は、上記実施例と同様にして、比較例にかかるリチウム二次電池を作製した。
【0037】
電池放電容量の測定
実施例電池と比較例電池について、充電電流210mAで充電終止電圧4.1Vまで充電した後、放電電流210mAで放電終止電圧2.7Vまで放電するという充放電サイクルを繰り返して、11サイクル目の放電容量を測定した。その結果を表3に示す。
【0038】
【表3】
Figure 0003776230
【0039】
表3において、亜鉛を1原子%含んでなるリチウム含有ニッケルコバルト複合酸化物正極と、天然黒鉛とコークスを重量比4:1で混合してなる混合炭素負極とを組み合わせた実施例電池は、亜鉛無添加のリチウム含有ニッケルコバルト複合酸化物正極と混合炭素負極を組み合わせた比較例電池に比べて、11サイクル後の放電容量に優れることが認められた。この結果から、実施例電池は、比較例電池に比べサイクル特性に優れることが判る。
【0040】
【発明の効果】
以上に説明したように、一般式LiNiX Co 1-X2 (X=0.675〜0.750)で表されるリチウム含有ニッケルコバルト複合酸化物に亜鉛を添加してなる金属複合酸化物は、放電電位や重量エネルギー密度が高く、かつサイクル特性や高率放電特性にも優れる。したがって、このような金属複合酸化物を用いてなる正極と、サイクル特性に優れる混合炭素負極とを組み合わせた本発明によると、放電容量やサイクル特性等に優れたリチウム二次電池が提供できる。
【図面の簡単な説明】
【図1】LiNiX Co 1-X2 (リチウム含有ニッケルコバルト複合酸化物)のXの値と、平均放電電位および重量エネルギー密度との関係を示すグラフである。
【図2】実施例で作製したリチウム二次電池の構造を示す断面模式図である。
【符号の説明】
1 金属複合酸化物正極
2 混合炭素負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery using a lithium-containing composite oxide positive electrode and a carbon negative electrode.
[0002]
[Prior art]
A lithium secondary battery in which a carbon negative electrode capable of inserting and extracting lithium ions and a positive electrode using a lithium-containing composite oxide capable of inserting and extracting lithium are arranged via a separator, It is lightweight and has a high capacity and has a long cycle life. Taking advantage of this feature, this type of lithium secondary battery is widely used in applications such as a mobile communication power source. Recently, the use as a power source for power is expanding, and in such applications, a battery having a higher capacity and a higher output as well as a cycle characteristic and a high rate discharge characteristic is required.
[0003]
By the way, lithium-containing composite oxides such as LiCoO 2 and LiNiO 2 have been conventionally used for the positive electrode of the lithium secondary battery. However, LiCoO 2 is expensive, and LiNiO 2 has problems such as large cycle deterioration. is there. In addition, these complex oxides have a problem that the discharge capacity is not sufficient and the high rate discharge characteristics are poor.
[0004]
For this reason, JP-A-9-293505 improves the cycle characteristics of the lithium-containing nickel composite oxide as the positive electrode active material by substituting a part of nickel in the lithium-containing nickel composite oxide with another element. The lithium-containing composite oxide produced according to the description in this publication improves the discharge capacity and cycle characteristics. However, the degree of improvement in electrochemical characteristics is not yet sufficient, and particularly high rate discharge characteristics are not sufficient. Therefore, in order to further improve the performance of the lithium secondary battery, a further improvement of the metal composite oxide positive electrode and a negative electrode that can be suitably combined with such a positive electrode are required.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to devise a metal composite oxide positive electrode having a large capacity and excellent in both cycle characteristics and high rate discharge characteristics, and sufficient capacity of the metal composite oxide positive electrode and the positive electrode is obtained. It is intended to provide a lithium secondary battery with higher performance in combination with a negative electrode that can be utilized.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows .
Lithium-containing nickel-cobalt composite oxide LiNi x Co 1-x O 2 (0.675 ≦ X ≦ 0.750) containing 1 atomic% of zinc element as a positive electrode material and occlusion of lithium ions A negative electrode comprising a mixture of natural graphite that can be desorbed and graphitizable carbon that can occlude and desorb lithium ions in a weight ratio of 4: 1 ; and non-aqueous electrolysis It is a lithium secondary battery characterized by including a liquid.
[0007]
The lithium-containing nickel-cobalt composite oxide added with zinc element (sometimes abbreviated as metal composite oxide) has a larger capacity than the lithium-containing nickel-cobalt composite oxide not added with zinc. Also, it is excellent in electrochemical characteristics such as cycle characteristics and high rate discharge characteristics. Therefore, a positive electrode using such a metal composite oxide as a positive electrode constituent material is excellent in electrochemical characteristics.
[0008]
On the other hand, since natural graphite has a high density, it has a large volumetric energy density and excellent voltage flatness, but it has a weak point that it easily undergoes cycle deterioration. However, when such graphitized carbon is mixed with natural graphite to form a mixture, the negative electrode capacity is increased and the cycle deterioration is less than when only natural graphite or only graphitizable carbon is used. Become. That is, when easily graphitized carbon is mixed with natural graphite, a carbon negative electrode having better electrochemical characteristics than the sum of the carbon materials can be formed.
[0009]
Therefore, a lithium secondary battery obtained by combining the positive electrode and such a negative electrode has a high battery capacity and excellent cycle characteristics, high rate discharge characteristics, and the like. In addition, when zinc element is added to lithium-containing nickel-cobalt composite oxide, the reason why the electrochemical characteristics increase is not clear, but zinc and cobalt act synergistically to increase the conductivity of the composite oxide, or It is presumed that zinc taken into the structure of the complex oxide is to improve the crystal structure suitably.
[0010]
The effect described above appears more reliably and significantly when the positive electrode uses a metal composite oxide in which the ratio of zinc addition to the lithium- containing nickel cobalt composite oxide is regulated to 1 atomic%.
[0012]
The lithium-containing nickel-cobalt composite oxide represented by LiNi x Co 1-x O 2 (where 0.675 ≦ X ≦ 0.750) has a large average discharge potential and weight energy density. Therefore, a positive electrode formed by adding zinc to this lithium-containing nickel-cobalt composite oxide has a high weight energy density at a high voltage, and is excellent in cycle characteristics and high rate discharge characteristics. Here, the range of X in the LiNi x Co 1-x O 2 is preferably 0.675 to 0.750, more preferably 0.70 to 0.725. This is because the weight energy density is further increased when X is within this range.
[0013]
Embodiment
The lithium-containing nickel cobalt composite oxide in the present invention, LiNi X Co 1-X is O extensive lithium-containing nickel cobalt composite oxide represented by 2 is contained, the X is 0.675 ≦ X ≦ 0 Those defined in the range of .750 are preferred. The metal composite oxide according to the present invention obtained by adding zinc to the lithium-containing nickel cobalt composite oxide is a solid solution obtained by adding zinc to LiNi X Co 1-X O 2. A part of zinc is dissolved in LiNi x Co 1-x O 2 and the rest is present in a powder state, or LiNi x Co 1-x
Existence forms of zinc such as a mixture of O 2 powder and zinc powder can be exemplified.
[0014]
As a method for producing such a metal composite oxide, for example, a lithium-containing composite oxide powder and zinc powder are mixed at a predetermined element molar ratio and heated at a temperature of 700 ° C. to 900 ° C. for 20 hours in a dry air atmosphere. A treatment method, a lithium compound (for example, LiOH), a cobalt compound [for example, Co (OH) 2 ], a nickel compound [for example, Ni (OH) 2 ], and a zinc compound [for example, Zn (OH) 2 ] Examples of the method include mixing at an element molar ratio and performing a heat treatment under the same temperature and time conditions as described above.
[0015]
The element molar ratio in the mixing is preferably such that the zinc element is 1 to 5 atomic% with respect to the lithium-containing composite oxide, and for each element of Li, Co, and Ni, X in LiNi X Co 1-X O 2 is , 0.675 ≦ X ≦ 0.750.
[0016]
On the other hand, as natural graphite that can be suitably used in the present invention, for example, the (002) plane spacing obtained by the X-ray diffraction method is 3.35 mm or more and 3.37 mm or less, and the crystallite thickness Lc is 800 mm or more. Examples of graphitizable carbon (also referred to as soft carbon) include those having a (002) plane spacing of 3.40 to 3.70 mm and a crystallite thickness Lc of 10 to 150 mm, There is coke as such.
[0017]
Furthermore, as the nonaqueous electrolytic solution, known nonaqueous electrolytic solutions having various compositions can be used. For example, an organic solvent such as ethylene carbonate, vinylene carbonate, and propylene carbonate can be used. For example, diethyl carbonate, dimethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxy A mixed solvent with a low melting point solvent such as methoxyethane can be used.
[0018]
In addition, as a manufacturing method of a positive / negative electrode and a battery, what is necessary is just to follow a well-known method, and it is not necessary to use a special method.
[0019]
【Example】
First, preliminary experiments will clarify the effect of zinc addition on lithium-containing cobalt-nickel composite oxide. Next, the lithium secondary battery according to the present invention will be described.
[0020]
(Preliminary experiment 1)
In the preliminary experiment, five types of metal composite oxide positive electrodes a to d in which only the composition of the positive electrode active material was changed were produced, and batteries A to D were produced using negative electrodes common to these positive electrodes. The electrochemical characteristics of various metal complex oxides were investigated. Hereinafter, description will be made sequentially.
[0021]
Positive electrode a
Lithium hydroxide LiOH, nickel hydroxide Ni (OH) 2 , cobalt hydroxide Co (OH) 2 and zinc hydroxide Zn (OH) 2 with an element molar ratio of Li: Ni: Co: Zn = 1.05: 0 .7: 0.3: 0.05, and then heat-treated at a temperature of 700 ° C. to obtain a metal composite oxide. This was pulverized into a powder having a particle size of about 6 μm, and used as a positive electrode active material a. This positive electrode active material, carbon powder as a conductive agent, and polyvinylidene fluoride as a binder (dissolved in N-methyl 2-pyrrolidone) are mixed in a weight ratio of 90: 6: 4 to mix the positive electrode. This positive electrode mixture was applied to one side of a 20 μm thick aluminum foil, dried, and then rolled to a thickness of 50 μm. Thereafter, it was punched into a disk shape having a diameter of 20 mm, and this was heat-treated at 100 ° C. for 2 hours to produce a metal composite oxide positive electrode a.
[0022]
Positive electrode b
The metal composite oxide positive electrode b was the same as the positive electrode a except that the molar ratio of the metal elements was Li: Ni: Co: Zn = 1.01: 0.7: 0.3: 0.01. Was made.
[0023]
Positive electrode c
A comparative positive electrode c was produced in the same manner as the positive electrode a except that zinc hydroxide Zn (OH) 2 was not added.
[0024]
Positive electrode d
A comparative positive electrode d was produced in the same manner as the positive electrode a except that titanium hydroxide Ti (OH) 4 was used instead of zinc hydroxide Zn (OH) 2 .
[0025]
In addition, when the elemental composition of the various metal composite oxides produced by the above-described method was analyzed using atomic absorption spectrometry, the element molar ratio of the metal composite oxide in the positive electrodes a, b, and d was the element in the main starting material. It was the same as the molar ratio, and it was confirmed that the metal composite oxide in the positive electrode c was Li: Ni: Co = 1.0: 0.7: 0.3.
[0026]
Using the positive electrodes a to d produced above, batteries A to D were produced using other battery components such as a negative electrode in common. The manufacturing method is as follows. As the negative electrode, a 0.4 mm thick lithium rolled plate punched out to a diameter of 20 mm was used. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 in a 1M concentration (mol / liter) in an equal volume mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) was used. Further, as the separator, a polypropylene microporous membrane was used, and the separator was impregnated with the non-aqueous electrolyte before being incorporated into the battery. Then, these members are assembled according to a conventional method, and coin batteries A to D (A to D are connected to the positive electrodes a to d) having a diameter of 24.0 mm and a thickness of 3.0 mm as shown in the schematic cross-sectional view of FIG. Corresponding).
[0027]
In FIG. 2, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator separating positive and negative electrodes, 4 is a positive electrode can, 5 is a negative electrode can, and the positive and negative electrode cans 4 and 5 are made of a metal material. Reference numeral 6 denotes a positive electrode current collector, 7 denotes a negative electrode current collector, and 8 denotes an insulating packing. As shown in FIG. 2, the positive electrode 1 and the negative electrode 2 face each other with a separator 3 impregnated with a non-aqueous electrolyte, and are accommodated in a battery case composed of positive and negative electrode cans 4, 5. Has a structure that can be taken out via both terminals of the positive electrode can 4 and the negative electrode can 5.
[0028]
(Evaluation of positive electrode performance)
The discharge capacities of the batteries A to D were measured. The results are shown in Tables 1 and 2. Here, Table 1 shows the measurement of the discharge capacity when the discharge current density is 0.25 mA / cm 2 and the discharge end voltage is 4.3 V, and then the discharge current density is 3 mA / cm 2 and the discharge end voltage is 2.0 V. Table 2 shows the results when charging was performed at a charging current density of 0.25 mA / cm 2 to an end-of-charge voltage of 4.3 V, and then discharged at a discharging current density of 1.5 mA / cm 2 to an end-of-discharge voltage of 2.0 V. It is a measurement result of discharge capacity.
[0029]
In Table 1, a battery A (use electrode; positive electrode a) using a lithium-containing nickel-cobalt composite oxide containing 5 atomic% of zinc as a positive electrode active material is a battery C (use electrode; positive electrode c) containing no zinc, and It is recognized that the high rate discharge capacity is improved as compared with the battery D (electrode used; positive electrode d) in which 5 atomic% of titanium is added instead of zinc.
[0030]
In Table 2, it can be seen that when at least the amount of zinc added is 1 to 5 atomic% (batteries A and B), the discharge capacity is increased as compared with the case where zinc is not added (battery C).
[0031]
[Table 1]
Figure 0003776230
[0032]
[Table 2]
Figure 0003776230
[0033]
(Preliminary experiment 2)
In preliminary experiment 2, the discharge potential and the weight energy density of lithium-containing nickel-cobalt composite oxides (without addition of metals such as zinc) having different elemental composition ratios themselves were examined.
Specifically, lithium-containing nickel-cobalt composite oxidation in which X in LiNi x Co 1-x O 2 is varied in the same manner as described in the preliminary experiment 1 except that zinc hydroxide is not added. The test positive electrode and the test battery were prepared in the same manner as in Preliminary Experiment 1, the positive electrode potential and the discharge capacity were measured using this battery, and the average discharge potential of the composite oxide was determined based on the results. And the weight energy density Wh / kg was calculated. These results are shown in FIG. 1 in relation to the value of X and the average discharge potential and weight energy density Wh / kg.
[0034]
As is apparent from FIG. 1, it is recognized that a good average discharge potential and weight energy density are maintained when at least the X value is in the range of 0.65 to 0.75. It can be seen that the X value is preferably 0.675 to 0.750, more preferably 0.70 to 0.725. Then, considering this result and the result of the preliminary experiment 1, it is preferable that the zinc oxide element is contained in the complex oxide in which X in LiNi x Co 1-x O 2 is 0.675 to 0.75. It can be seen that a metal composite oxide positive electrode having high potential and weight energy density and excellent cycle characteristics and high rate discharge characteristics can be obtained.
[0035]
Below, this invention Example is demonstrated in relation to a comparative example.
(Example)
The positive electrode b and the mixed carbon negative electrode produced in the preliminary experiment were combined, and the lithium secondary battery according to the example was produced in the same manner as in the preliminary experiment with respect to other matters. The mixed carbon negative electrode was produced as follows.
Natural graphite (average particle size 8 μm) having an (002) plane spacing of 3.35 mm to 3.37 mm and a crystallite thickness Lc of 800 mm or more by X-ray diffraction method, a plane spacing of 3.44 mm and a crystallite thickness A mixture of coke having a Lc of 32 kg (average particle size 18 μm) in a weight ratio of 4: 1 and polyvinylidene fluoride as a binder (dissolved in N-methyl 2-pyrrolidone) is used in a weight ratio of 85: 15 was used as a negative electrode mixture, and this negative electrode mixture was applied to one side of a 18 μm thick copper foil and dried to prepare a mixed carbon negative electrode.
[0036]
(Comparative example)
A lithium secondary battery according to a comparative example was produced in the same manner as in the above example except that the positive electrode c in the preliminary experiment was used.
[0037]
Measurement of battery discharge capacity Charge and discharge cycles of Example battery and Comparative battery after charging to a final charge voltage of 4.1 V with a charging current of 210 mA and then discharging to a final discharge voltage of 2.7 V with a discharge current of 210 mA. Was repeated to measure the discharge capacity at the 11th cycle. The results are shown in Table 3.
[0038]
[Table 3]
Figure 0003776230
[0039]
In Table 3, an example battery in which a lithium-containing nickel-cobalt composite oxide positive electrode containing 1 atomic% of zinc and a mixed carbon negative electrode formed by mixing natural graphite and coke at a weight ratio of 4: 1 is zinc It was recognized that the discharge capacity after 11 cycles was excellent as compared with a comparative battery in which an additive-free lithium-containing nickel cobalt composite oxide positive electrode and a mixed carbon negative electrode were combined. From this result, it can be seen that the example battery is superior in cycle characteristics as compared with the comparative example battery.
[0040]
【The invention's effect】
As described above, the general formula LiNi X Co 1-X O 2 (X = 0.675~0.750) metal composite oxides obtained by adding zinc to the lithium-containing nickel cobalt composite oxide expressed by Has a high discharge potential and weight energy density, and is excellent in cycle characteristics and high rate discharge characteristics. Therefore, according to the present invention in which a positive electrode using such a metal composite oxide and a mixed carbon negative electrode excellent in cycle characteristics are combined, a lithium secondary battery excellent in discharge capacity, cycle characteristics and the like can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the value of X of LiNi X Co 1-X O 2 (lithium-containing nickel cobalt composite oxide) and the average discharge potential and weight energy density.
FIG. 2 is a schematic cross-sectional view showing the structure of a lithium secondary battery produced in an example.
[Explanation of symbols]
1 Metal composite oxide positive electrode 2 Mixed carbon negative electrode

Claims (1)

亜鉛元素を1原子%添加してなるリチウム含有ニッケルコバルト複合酸化物LiNi X Co 1-x 2 (但し、0.675≦X≦0.750)を正極材料とする正極と
リチウムイオンを吸蔵・脱離することができる天然黒鉛と、リチウムイオンを吸蔵・脱離することができる易黒鉛化炭素とが、重量比4:1で混合された混合物を負極材料とする負極と
非水電解液と
を備えることを特徴とするリチウム二次電池。
A positive electrode using a lithium-containing nickel-cobalt composite oxide LiNi x Co 1-x O 2 (where 0.675 ≦ X ≦ 0.750) as a positive electrode material to which 1 atomic% of zinc is added ;
A negative electrode using as a negative electrode material a mixture of natural graphite capable of occluding and desorbing lithium ions and graphitizable carbon capable of occluding and desorbing lithium ions in a weight ratio of 4: 1 ; ,
A non-aqueous electrolyte ,
A lithium secondary battery comprising:
JP04671898A 1998-02-27 1998-02-27 Lithium secondary battery Expired - Fee Related JP3776230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04671898A JP3776230B2 (en) 1998-02-27 1998-02-27 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04671898A JP3776230B2 (en) 1998-02-27 1998-02-27 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11250936A JPH11250936A (en) 1999-09-17
JP3776230B2 true JP3776230B2 (en) 2006-05-17

Family

ID=12755134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04671898A Expired - Fee Related JP3776230B2 (en) 1998-02-27 1998-02-27 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3776230B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070598A (en) * 2007-09-11 2009-04-02 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2010206018A (en) * 2009-03-04 2010-09-16 Daihatsu Motor Co Ltd Electrochemical capacitor
CN107112583A (en) * 2014-10-29 2017-08-29 日立麦克赛尔株式会社 Lithium rechargeable battery
JPWO2021132114A1 (en) 2019-12-24 2021-07-01

Also Published As

Publication number Publication date
JPH11250936A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
KR100609789B1 (en) Non-Aqueous Electrolyte Secondary Battery
JP5078334B2 (en) Nonaqueous electrolyte secondary battery
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JPH09330720A (en) Lithium battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP2002015776A (en) Nonaqueous electrolyte secondary cell
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP2001319647A (en) Positive electrode for lithium secondary battery and lithium ion battery using the same
JP3887317B2 (en) Nonaqueous electrolyte secondary battery
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JPH11250909A (en) Lithium secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP3776230B2 (en) Lithium secondary battery
JP4649691B2 (en) Positive electrode for lithium secondary battery
JPH08171936A (en) Lithium secondary battery
JPH11214001A (en) Nonaqueous electrolytic solution secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees