JP2002015776A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JP2002015776A
JP2002015776A JP2000199939A JP2000199939A JP2002015776A JP 2002015776 A JP2002015776 A JP 2002015776A JP 2000199939 A JP2000199939 A JP 2000199939A JP 2000199939 A JP2000199939 A JP 2000199939A JP 2002015776 A JP2002015776 A JP 2002015776A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000199939A
Other languages
Japanese (ja)
Inventor
Koichi Kubo
光一 久保
Hideyuki Kanai
秀之 金井
Shuji Yamada
修司 山田
Motoi Kanda
基 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000199939A priority Critical patent/JP2002015776A/en
Publication of JP2002015776A publication Critical patent/JP2002015776A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary cell with high energy density having higher safety. SOLUTION: The nonaqueous electrolyte secondary cell comprises a positive electrode 4 including lithium containing compound, a negative electrode 5, and a nonaqueous electrolyte, and the surface of active material particle contained in the positive electrode 4 contains lanthanoid and covered by lithium containing conductive compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は活物質としてリチウ
ム含有化合物を含む正極を備えた非水電解液二次電池に
関するものである。
The present invention relates to a nonaqueous electrolyte secondary battery provided with a positive electrode containing a lithium-containing compound as an active material.

【0002】[0002]

【従来の技術】近年、非水電解液二次電池が注目されて
いる。これは比較的安全な負極材料の開発の成功と非水
電解液の分解電圧を高めることにより高電圧の電池を実
現したことが大きな理由であろうと思われる。中でもリ
チウムイオンを用いた二次電池は、放電電位が特に高い
ため、高エネルギー密度を有する電池を実現できるもの
として期待されている。このリチウムイオンを用いる非
水電解液二次電池の正極には、活物質と呼ばれる遷移元
素酸化物と結着剤と一般にこの活物質の導電性が不十分
であるため高導電性を有する導電剤を付与してある。こ
の導電剤には高い導電率に加え、活物質との接触によっ
ても酸化されることのない耐酸化性が要求され、さらに
活物質同士を電気的に接触させやすくするための構造た
とえば線維状にする等が要求される。
2. Description of the Related Art In recent years, non-aqueous electrolyte secondary batteries have attracted attention. This is probably because the successful development of a relatively safe negative electrode material and the realization of a high-voltage battery by increasing the decomposition voltage of the non-aqueous electrolyte were considered. Among them, a secondary battery using lithium ions has a particularly high discharge potential, and thus is expected to realize a battery having a high energy density. The positive electrode of a non-aqueous electrolyte secondary battery using lithium ions has a transition element oxide called an active material, a binder, and a conductive agent having high conductivity due to insufficient conductivity of the active material in general. Is given. In addition to high conductivity, the conductive agent is required to have oxidation resistance that is not oxidized by contact with the active material, and further has a structure, such as a fibrous shape, for facilitating electrical contact between the active materials. Is required.

【0003】この上記の条件にさらに軽量であることや
コスト等を考慮し、従来からカーボン系のアセチレンブ
ラック等の導電剤が用いられてきている。実際にLiC
oO を正極活物質として用いた電池においてはこの導
電剤を用いて満足しうる特性が得られている。
[0003] Under the above conditions, it is necessary to further reduce the weight.
Considering cost, etc., carbon-based acetylene
Conductive agents such as racks have been used. Actually LiC
oO 2This battery is used in batteries that use
Satisfactory characteristics have been obtained using an electric agent.

【0004】[0004]

【発明が解決しようとする課題】近年、Coの材料コス
トの高さからより安価な材料を用いた電池、またさらに
エネルギー密度の高い電池および出力密度の高い電池が
求められている。この新規な活物質のあるものは高エネ
ルギー密度を有するもののCo系活物質に比べ充電後の
熱安定性が悪い、あるいは電子伝導性が悪いためジュー
ル熱の発生が無視し得ない等の問題点を有することが判
明してきている。このため活物質自体を改善しようとす
る試みに加え他の方法が求められている。
In recent years, due to the high material cost of Co, there has been a demand for batteries using less expensive materials, batteries with higher energy density and batteries with higher output density. Some of these new active materials have high energy density, but have poor thermal stability after charging compared to Co-based active materials, or have poor electron conductivity, so that the generation of Joule heat cannot be ignored. Has been found to have For this reason, other methods are required in addition to attempts to improve the active material itself.

【0005】従って、本発明の目的は、高エネルギー密
度を有する電池においてより高い安全性を有する非水電
解液二次電池を提供しようとするものである。
Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having higher safety in a battery having a high energy density.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の非水電解液二次電池は、リチウム含有化合
物を含む正極と負極と非水電解液とを備えてなる非水電
解液二次電池であって、前記正極に含まれる活物質粒子
の表面が下式に示すLiを含む導電性化合物により被覆
されている事を特徴とする。
In order to achieve the above object, a non-aqueous electrolyte secondary battery of the present invention comprises a non-aqueous electrolyte comprising a positive electrode containing a lithium-containing compound, a negative electrode, and a non-aqueous electrolyte. A liquid secondary battery, wherein the surface of the active material particles contained in the positive electrode is coated with a conductive compound containing Li represented by the following formula.

【0007】Li1−xBO3−z (0≦x<1、0≦y<1、0<z≦3) (ただし、Aは1価または2価の典型元素、ランタノイ
ド元素またはこれらの組み合わせからなる群から選ばれ
た少なくとも一種であり、BはIVa属、Va属、VI
a属、VIIa属、8属及びIb属の遷移元素から選ば
れた少なくとも1種である)。
Li 1-x A y BO 3-z F z (0 ≦ x <1, 0 ≦ y <1, 0 <z ≦ 3) (where A is a monovalent or divalent typical element, a lanthanoid element) Or at least one selected from the group consisting of combinations thereof, wherein B is of the genus IVa, Va, or VI
a, VIIa, 8 and Ib).

【0008】[0008]

【発明の実施の形態】以下本発明に係る非水電解液二次
電池(例えば円筒型非水電解液二次電池)を図1を参照
して説明する。例えばステンレスからなる有底円筒状の
容器1は、底部に絶縁体2が配置されている。電極群3
は、前記容器1内に収納されている。前記電極群3は、
正極4、セパレータ5及び負極6をこの順序で積層した
帯状物を前記負極6が外側に位置するように渦巻き状に
巻回した構造になっている。前記セパレータ5は、例え
ば合成樹脂不織布、ポリエチレン多孔質フィルム、ポロ
プロピレン多孔質フィルムから形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery (for example, a cylindrical non-aqueous electrolyte secondary battery) according to the present invention will be described below with reference to FIG. For example, a cylindrical container 1 with a bottom made of stainless steel has an insulator 2 disposed at the bottom. Electrode group 3
Are stored in the container 1. The electrode group 3 includes:
It has a structure in which a belt-like material in which the positive electrode 4, the separator 5, and the negative electrode 6 are laminated in this order is spirally wound so that the negative electrode 6 is located outside. The separator 5 is formed of, for example, a synthetic resin nonwoven fabric, a polyethylene porous film, or a polypropylene porous film.

【0009】前記容器1内には、電解液が収容されてい
る。中央部が開口された絶縁紙7は、前記容器1内の前
記電極群3の上方に載置されている。絶縁封口板8は、
前記容器1の上部開口部に配置され、かつ前記上部開口
部付近を内側にかしめ加工することにより前記封口板8
は前記容器1に液密に固定されている。正極端子9は、
前記絶縁封口板8の中央に嵌合されている。正極リード
10の一端は、前記正極4に、他端は前記正極端子9に
それぞれ接続されている。前記負極6は、図示しない負
極リードを介して負極端子である前記容器1に接続され
ている。次に前記正極4、前記負極6および前記非水電
解液の構成について具体的に説明する。 1)正極4の構成 この正極4は、活物質表面に被覆する導電剤として比抵
抗が1×10−3(Ωm)以下の前記リチウム含有導電
性化合物を用いる。
An electrolyte is contained in the container 1. The insulating paper 7 having a central portion opened is placed above the electrode group 3 in the container 1. The insulating sealing plate 8
The sealing plate 8 is disposed at the upper opening of the container 1 and caulked in the vicinity of the upper opening inward.
Is fixed to the container 1 in a liquid-tight manner. The positive terminal 9 is
It is fitted to the center of the insulating sealing plate 8. One end of the positive electrode lead 10 is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9. The negative electrode 6 is connected to the container 1 as a negative electrode terminal via a negative electrode lead (not shown). Next, the configurations of the positive electrode 4, the negative electrode 6, and the non-aqueous electrolyte will be specifically described. 1) Configuration of Positive Electrode 4 The positive electrode 4 uses the above-described lithium-containing conductive compound having a specific resistance of 1 × 10 −3 (Ωm) or less as a conductive agent for coating the active material surface.

【0010】前記正極4は、例えば、活物質としてリチ
ウム含有コバルト酸化物(LiCoO)やリチウム含
有ニッケル酸化物(LiNiO)、リチウム含有マン
ガン酸化物(LiMn)またはそれら活物質の結
晶内に他の元素を添加又は部分置換したもの等を用いる
ことができる。
The positive electrode 4 is made of, for example, a lithium-containing cobalt oxide (LiCoO 2 ), a lithium-containing nickel oxide (LiNiO 2 ), a lithium-containing manganese oxide (LiMn 2 O 4 ) or a crystal of the active material. A material in which another element is added or partially substituted can be used.

【0011】またこれらの表面に被覆する導電剤として
あるいは活物質自身としてランタンリチウムニッケル複
合フッ素酸化物((La,Li)Ni(O,F))や
ランタンリチウム銅フッ化酸化物((La,Li)Cu
(O,F))、ランタンリチウムバナジウムフッ化酸
化物((La,Li)V(O,F))、ランタンリチ
ウムマンガンフッ化酸化物((La,Li)Mn(O,
F))、ランタンリチウム鉄フッ化酸化物((La,
Li)Fe(O,F))、ランタンリチウムチタンフ
ッ化酸化物((La,Li)Ti(O,F))、ラン
タンリチウムクロムフッ化酸化物((La,Li)Cr
(O,F))、ランタンリチウムルテニウムフッ化酸
化物((La,Li)Ru(O,F))、ランタンリ
チウムイリジウムフッ化酸化物((La,Li)Ir
(O,F))などのリチウム含有導電性化合物を用い
ることができる。
[0011] Further, as a conductive agent coated on these surfaces or as an active material itself, lanthanum lithium nickel composite fluorine oxide ((La, Li) Ni (O, F) 3 ) or lanthanum lithium copper fluoride ((La) , Li) Cu
(O, F) 3 ), lanthanum lithium vanadium fluoride ((La, Li) V (O, F) 3 ), lanthanum lithium manganese fluoride ((La, Li) Mn (O,
F) 3 ), lanthanum lithium iron fluoride ((La,
Li) Fe (O, F) 3 ), lanthanum lithium titanium fluoride ((La, Li) Ti (O, F) 3 ), lanthanum lithium chromium fluoride ((La, Li) Cr
(O, F) 3 ), lanthanum lithium ruthenium fluoride ((La, Li) Ru (O, F) 3 ), lanthanum lithium iridium fluoride ((La, Li) Ir
A lithium-containing conductive compound such as (O, F) 3 ) can be used.

【0012】前記膜の厚さは0.3nm以上にすること
が好ましい。これは次のような理由によるものである。
前記膜の厚さを0.3nm未満にすると、前記活物質と
前記膜の材料の相互拡散により低抵抗な膜の形成が困難
である。またさらに安定に作製ができ量産性に富む範囲
としてより好ましい膜厚は10nm以上の範囲である。
またこれらのリチウム含有導電性化合物はリチウムイオ
ン伝導性と電子伝導性を兼ね備えているためそれ自身活
物質としても用いる事ができる。
Preferably, the thickness of the film is 0.3 nm or more. This is due to the following reasons.
When the thickness of the film is less than 0.3 nm, it is difficult to form a low-resistance film due to mutual diffusion of the active material and the material of the film. A more preferable film thickness is a range of 10 nm or more as a range that can be manufactured more stably and has high mass productivity.
Further, since these lithium-containing conductive compounds have both lithium ion conductivity and electron conductivity, they can be used as active materials themselves.

【0013】この前記活物質とアセチレンブラック等の
カーボン系導電剤および結着剤を適当な溶媒に懸濁し、
この懸濁物を集電体に塗布、乾燥して薄板状にすること
により正極4が作製される。
The active material, a carbon-based conductive agent such as acetylene black and a binder are suspended in a suitable solvent,
The positive electrode 4 is produced by applying the suspension to a current collector and drying the suspension to form a thin plate.

【0014】前記結着剤としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)等
を用いることができる。
As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR) and the like are used. it can.

【0015】前記集電体としては、例えばアルミニウム
箔、ステンレス箔、チタン箔等を用いることが好まし
い。 2)負極6の構成 この負極6としては、例えばリチウムイオンを吸蔵脱蔵
する物質(例えば炭素質物や、カルコゲン化合物)を含
むもの、軽金属からなるもの等を用いることができる。
中でも、リチウムイオンを吸蔵脱蔵する炭素質物又はカ
ルコゲン化合物を含む負極は、前記二次電池のサイクル
寿命などの電池特性が向上するために好ましい。
As the current collector, it is preferable to use, for example, an aluminum foil, a stainless steel foil, a titanium foil or the like. 2) Configuration of Negative Electrode 6 As the negative electrode 6, for example, a material containing a substance that absorbs and desorbs lithium ions (for example, a carbonaceous material or a chalcogen compound), a material containing a light metal, or the like can be used.
Above all, a negative electrode containing a carbonaceous substance or a chalcogen compound which stores and desorbs lithium ions is preferable because battery characteristics such as cycle life of the secondary battery are improved.

【0016】前記リチウムイオンを吸蔵脱蔵する炭素質
物としては、例えばコークス、炭素線維、熱分解気相成
長炭素物質、黒鉛、樹脂焼成体、メソフェーズピッチ系
炭素繊維又はメソフェース球状カーボンの焼成体などを
挙げることができる。中でも、2500℃以上で黒鉛化
したメソフェーズピッチ系炭素繊維又はメソフェース球
状カーボンが電極容量が高くなるために好ましい。
Examples of the carbonaceous material for storing and desorbing lithium ions include coke, carbon fiber, pyrolytic vapor-grown carbon material, graphite, fired resin, fired mesophase pitch-based carbon fiber, and fired mesophase spherical carbon. Can be mentioned. Above all, mesophase pitch-based carbon fibers or mesophase spherical carbon graphitized at 2500 ° C. or higher are preferable because the electrode capacity is increased.

【0017】前記炭素質物は、特に示差熱分析で700
℃以上に発熱ピーク、より好ましくは800℃以上に発
熱ピークを有し、X線回折による黒鉛構造の(101)
回折ピーク(P101)と(100)回折ピーク(P1
00)の強度比P101/P100が0.7〜2.2の
範囲にあることが好ましい。このような炭素質物を含む
負極はリチウムイオンの急速な吸蔵脱蔵ができるため、
前記二次電池の急速充放電性能が向上される。
[0017] The carbonaceous material is particularly 700 ppm by differential thermal analysis.
It has an exothermic peak at a temperature of 800 ° C. or more, more preferably an exothermic peak at a temperature of 800 ° C. or more.
Diffraction peak (P101) and (100) diffraction peak (P1
00) is preferably in the range of 0.7 to 2.2. Since the negative electrode containing such a carbonaceous material can rapidly store and remove lithium ions,
The rapid charge / discharge performance of the secondary battery is improved.

【0018】前記リチウムイオンを吸蔵脱蔵するカルコ
ゲン化合物としては、二硫化チタン(TiS)、二硫
化モリブデン(MoS)、セレン化ニオブ(NbSe
)などを挙げることができる。このようなカルコゲン
化合物負極に用いると、前記二次電池の電圧は低下する
ものの前記負極の容量が増加するため、前記二次電池の
容量が向上される。さらに、前記負極はリチウムイオン
の拡散速度が大きいため、前記二次電池の急速充放電性
能が向上される。
The chalcogen compounds that occlude and desorb lithium ions include titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), and niobium selenide (NbSe).
2 ) and the like. When used for such a chalcogen compound negative electrode, although the voltage of the secondary battery decreases, the capacity of the negative electrode increases, so that the capacity of the secondary battery is improved. Further, since the negative electrode has a high diffusion rate of lithium ions, the rapid charge / discharge performance of the secondary battery is improved.

【0019】前記軽金属としては、アルミニウム、アル
ミニウム合金、マグネシウム合金、リチウム金属、リチ
ウム合金などを挙げることができる。リチウムイオンを
吸蔵脱蔵する物質を含む負極は、例えば前記物質及び結
着剤を適当な溶媒に懸濁し、この懸濁物を集電体に塗布
し、乾燥した後、プレスすることにより作製される。
Examples of the light metal include aluminum, aluminum alloy, magnesium alloy, lithium metal, lithium alloy and the like. A negative electrode containing a substance that occludes and desorbs lithium ions is produced by, for example, suspending the substance and a binder in an appropriate solvent, applying the suspension to a current collector, drying, and pressing. You.

【0020】前記結着剤としては、例えば、ポリテトラ
フルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)、
カルボキシメチルセルロース(CMC)等を用いること
ができる。前記集電体としては、例えば銅箔、ステンレ
ス箔、ニッケル箔等を用いることが好ましい。 3)非水電解液の構成 この非水電解液としては、非水溶媒に電解質(リチウム
塩)を溶解させたものが用いられる。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR),
Carboxymethyl cellulose (CMC) or the like can be used. As the current collector, for example, a copper foil, a stainless steel foil, a nickel foil, or the like is preferably used. 3) Configuration of Non-Aqueous Electrolyte As the non-aqueous electrolyte, a solution in which an electrolyte (lithium salt) is dissolved in a non-aqueous solvent is used.

【0021】前記非水溶媒としては、例えばエチレンカ
ーボネート(EC)、プロピレンカーボネート(PC)
などの環状カーボネート、例えばジメチルカーボネート
(DMC)、エチルメチルカーボネート(EMC)、ジ
エチルカーボネート(DEC)などの鎖状カーボネー
ト、ジメトキシエタン(DME)やジエトキシエタン
(DEE)、エトキシメトキシエタンなどの鎖状エーテ
ル、テトラヒドロフラン(THF)や2−メチルテトラ
ヒドロフラン(2−MeTHF)などの環状エーテルや
クラウンエーテル、γ−ブチロラクトン(γ−BL)な
どの脂肪酸エステル、アセトニトリル(AN)などの窒
素化合物、スルホラン(SL)やジメチルスルホキシド
(DMSO)などの硫黄化合物を挙げることができる。
前記非水溶媒は、単独で使用しても、2種以上混合して
使用してもよい。中でも、EC,PC,γ−BLから選
ばれる少なくとも一種からなるものや、EC、PC、γ
−BLから選ばれる少なくとも一種とDMC、EMC、
DEC、DME、DEE、THF、2−MeTHF、A
Nから選ばれる少なくとも一種とからなる混合溶媒を用
いることが望ましい。また負極に前記リチウムイオンを
吸蔵脱蔵する炭素質物を含むものを用いる場合に、前記
負極を備えた二次電池のサイクル寿命を向上させる観点
から、ECとPCとγ−BL、ECとPCとEMC、E
CとPCとDEC、ECとPCとDEE、ECとAN、
ECとEMC、PCとDMC、PCとDEC、ECとD
ECからなる混合溶媒を用いることが望ましい。
Examples of the non-aqueous solvent include ethylene carbonate (EC) and propylene carbonate (PC).
And cyclic carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC), and linear chains such as dimethoxyethane (DME), diethoxyethane (DEE), and ethoxymethoxyethane. Ethers, cyclic ethers and crown ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-MeTHF), fatty acid esters such as γ-butyrolactone (γ-BL), nitrogen compounds such as acetonitrile (AN), and sulfolane (SL) And dimethyl sulfoxide (DMSO).
The non-aqueous solvents may be used alone or in combination of two or more. Above all, one consisting of at least one selected from EC, PC, γ-BL, EC, PC, γ-BL
-At least one selected from BL and DMC, EMC,
DEC, DME, DEE, THF, 2-MeTHF, A
It is desirable to use a mixed solvent composed of at least one selected from N. Further, when using a negative electrode containing a carbonaceous material that occludes and desorbs lithium ions, from the viewpoint of improving the cycle life of a secondary battery including the negative electrode, EC, PC and γ-BL, and EC and PC EMC, E
C and PC and DEC, EC and PC and DEE, EC and AN,
EC and EMC, PC and DMC, PC and DEC, EC and D
It is desirable to use a mixed solvent composed of EC.

【0022】前記電解質としては、例えば過塩素酸リチ
ウム(LiClO)、六フッ化リン酸リチウム(Li
PF)、ホウフッ化リチウム(LiBF)、六フッ
化砒素リチウム(LiAsF6)、トリフルオロメタス
ルホン酸リチウム(LiCF SO)、ビストリフル
オロメチルスルホニルイミドリチウム(LiN(CF
SO)などのリチウム塩を挙げることができる。
中でもLiPF、LiBF、LiN(CF
を用いると導電性や安全性が向上されるために
好ましい。前記電解質の非水溶媒に対する溶解量は、
0.1モル/l〜3.0モル/lの範囲にすることが好
ましい。
The electrolyte may be, for example, lithium perchlorate.
(LiClO4), Lithium hexafluorophosphate (Li
PF6), Lithium borofluoride (LiBF4), Six foot
Lithium arsenide arsenide (LiAsF6), trifluorometas
Lithium sulfonate (LiCF 3SO3), Bistriflu
Oromethylsulfonylimide lithium (LiN (CF 3
SO2)2) And the like.
Among them, LiPF6, LiBF4, LiN (CF3S
O2)2Is used to improve conductivity and safety
preferable. The amount of the electrolyte dissolved in the non-aqueous solvent is
It is preferred to be in the range of 0.1 mol / l to 3.0 mol / l.
Good.

【0023】以上説明したようなリチウム含有導電性化
合物を正極活物質表面に被覆した正極を二次電池に組み
込むことによって、高容量化された二次電池において
も、高い安全性を実現することができる。実際に、表1
に示すように本発明に係る二次電池は、充電後の釘さし
試験において電極の発熱が抑制されるのに対し、本発明
を採用していない従来の二次電池の電極はある温度で発
熱あるいは燃焼反応が生じる。またリチウムを含有して
いない導電性酸化物を用いた場合に比してサイクル特性
が良好である。 (実施例)以下、本発明の実施例を図面を参照して詳細
に説明する。なお本発明は下記の実施例に何ら限定され
るものではなくその要旨を変更しない範囲において適宜
変更して実施することが可能である。 (実施例1) 〈正極の作製〉正極活物質であるLiCoOの粉末を
念入りに粉砕し粒度分布計により適宜測定し、凝集塊が
存在しなくなるまで粉砕を続ける。その後この活物質に
対しモル比で1%程度の量の硝酸ランタン、硝酸リチウ
ム、フッ化アンモニウムと硝酸銅を水に溶解し混合水溶
液を作製する。この水溶液にこの活物質粉末を加え攪拌
しながら加熱し溶媒を取り除く。これをさらに酸素中で
400℃に加熱し硝酸およびアンモニア成分を取り除き
表面にランタンリチウム銅フッ化酸化物((L
0.8,Li0.2)Cu(O2.6,F0.4))
の薄膜を形成する。前記活物質粉末と導電剤であるアセ
チレンブラック粉末およびグラファイト粉末と、結着剤
としてのPVDF粉末とを、適当な比率で混合しNメチ
ル2ピロリドン溶媒中で分散し正極合剤スラリーとし
た。このスラリーをアルミニウム箔上に塗工し乾燥した
後、圧延および裁断し正極を作製した。 〈負極の作製〉負極活物質と導電剤であるグラファイト
粉末と結着剤のスチレンブタジエンゴムを適当な比率で
混合し水を加え念入りに分散し負極合剤スラリーとしこ
れを銅箔上に塗工し乾燥した後、圧延及び裁断し負極を
作製した。 〈非水電解液の調整〉プロピレンカーボネート及びジメ
トキシエタンからなる混合溶媒に電解質としてのLiP
をその濃度が1mol/lになるように溶解させて
非水電解液を調整した。 〈評価用電池の作製〉得られた正極、負極シートとセパ
レータを十分に乾燥させた後、セパレータを介して正極
と負極を向かい合わせ、捲回しステンレス製の間に挿入
しアルゴン雰囲気中において電解液を注入して密封して
評価用電池を作製した。 (実施例2)以下に示す導電剤を正極活物質の表面被覆
に用いた以外は、実施例1と同様な構成で前述した図1
に示す正極評価用電池を組み立てた。活物質表面に被覆
する導電剤として、ランタンリチウムバナジウムフッ化
酸化物((La0.4,Li0.6)V(O2.8,F
0.2))粉末を用いた。 (実施例3)以下に示す導電剤を正極活物質の表面被覆
に用いた以外は、実施例1と同様な構成で前述した図1
に示す正極評価用電池を組み立てた。
[0023] Making lithium-containing conductive as described above
The positive electrode with the compound coated on the surface of the positive electrode active material is assembled into a secondary battery.
To increase the capacity of secondary batteries
However, high security can be achieved. In fact, Table 1
As shown in the figure, the secondary battery according to the present invention has a nail
In the test, the heat generation of the electrode is suppressed.
The electrodes of conventional secondary batteries that do not use
Heat or combustion reactions occur. Also contains lithium
Cycle characteristics compared to using non-conductive oxide
Is good. Embodiments of the present invention will be described below in detail with reference to the drawings.
Will be described. The present invention is not limited to the following examples.
Not to change the gist.
It can be changed and implemented. (Example 1) <Preparation of positive electrode> LiCoO as positive electrode active material2Powder
Carefully grind and measure appropriately with a particle size distribution analyzer,
Continue grinding until no longer present. Then to this active material
Lanthanum nitrate and lithium nitrate in a molar ratio of about 1%
Dissolve ammonium fluoride and copper nitrate in water
Make a liquid. Add this active material powder to this aqueous solution and stir
While heating, remove the solvent. This is further added in oxygen
Heat to 400 ° C to remove nitric acid and ammonia components
Lanthanum lithium copper fluoride ((L
a 0.8, Li0.2) Cu (O2.6, F0.4))
Is formed. The active material powder and the conductive agent
Tylene black powder and graphite powder, binder
And PVDF powder as the
Disperse in a 2pyrrolidone solvent to form a positive electrode mixture slurry.
Was. This slurry was applied on aluminum foil and dried
Thereafter, rolling and cutting were performed to produce a positive electrode. <Preparation of negative electrode> Negative electrode active material and graphite as conductive agent
Powder and styrene-butadiene rubber as binder in an appropriate ratio
Mix, add water and carefully disperse to form negative electrode mixture slurry.
After coating and drying on copper foil, rolling and cutting
Produced. <Preparation of non-aqueous electrolyte> Propylene carbonate and
LiP as electrolyte in mixed solvent consisting of toxicethane
F6Is dissolved to a concentration of 1 mol / l
A non-aqueous electrolyte was prepared. <Preparation of battery for evaluation>
After the generator has dried sufficiently, the positive electrode
And the negative electrode facing each other, wound and inserted between stainless steel
And inject electrolyte in an argon atmosphere and seal
An evaluation battery was manufactured. (Example 2) The following conductive agent was coated on the surface of a positive electrode active material.
1 except that it was used in FIG.
The positive electrode evaluation battery shown in FIG. Coating on active material surface
Lanthanum lithium vanadium fluoride
Oxide ((La0.4, Li0.6) V (O2.8, F
0.2)) Powder was used. (Example 3) The following conductive agent was coated on the surface of a positive electrode active material.
1 except that it was used in FIG.
The positive electrode evaluation battery shown in FIG.

【0024】活物質表面に被覆する導電剤として、ラン
タンリチウムマンガンフッ化酸化物((La0.5,L
0.5)Mn(O2.6,F0.4))粉末を用い
た。 (実施例4)以下に示す導電剤を正極活物質の表面被服
に用いた以外は、実施例1と同様な構成で前述した図1
に示す正極評価用電池を組み立てた。活物質表面に被覆
する導電剤として、ランタンリチウムクロムフッ化酸化
物((La0.4,Li0.6)Cr(O2.8,F
0.2))粉末を用いた。 (実施例5)以下に示す活物質を用いた以外は、実施例
1と同様な構成で前述した図1に示す正極評価用電池を
組み立てた。正極活物質として、 LiMn粉末
を用いた。 (実施例6)以下に示す活物質を用いた以外は、実施例
1と同様な構成で前述した図1に示す正極評価用電池を
組み立てた。正極活物質として、 LiNi0.4Mn
1.6粉末を用いた。 (実施例7)以下に示す導電剤を正極活物質の表面被服
に用いた以外は、実施例1と同様な構成で前述した図1
に示す正極評価用電池を組み立てた。活物質表面に被覆
する導電剤として、ネオジムリチウム銅フッ化酸化物
((Nd 0.8,Li0.2)Cu(O2.6,F
0.4))粉末を用いた。 (実施例8)以下に示す導電剤を正極活物質の表面被服
に用いた以外は、実施例1と同様な構成で前述した図1
に示す正極評価用電池を組み立てた。活物質表面に被覆
する導電剤として、ネオジムリチウムバナジウムフッ化
酸化物((Nd0.4,Li0.6)V(O2.8,F
0.2))粉末を用いた。 (実施例9)以下に示す導電剤を正極活物質の表面被服
に用いた以外は、実施例1と同様な構成で前述した図1
に示す正極評価用電池を組み立てた。活物質表面に被覆
する導電剤として、ネオジムリチウムマンガンフッ化酸
化物((Nd0.5,Li0.5)Mn(O2.6,F
0.4))粉末を用いた。 (実施例10)以下に示す導電剤を正極活物質の表面被
服に用いた以外は、実施例1と同様な構成で前述した図
1に示す正極評価用電池を組み立てた。活物質表面に被
覆する導電剤として、ネオジムリチウムクロムフッ化酸
化物((Nd0.4,Li0.6)Cr(O2.8,F
0.2))粉末を用いた。 (実施例11)以下に示す活物質を用いた以外は、実施
例7と同様な構成で前述した図1に示す正極評価用電池
を組み立てた。正極活物質として、LiMn粉末
を用いた。 (実施例12)以下に示す活物質を用いた以外は、実施
例7と同様な構成で前述した図1に示す正極評価用電池
を組み立てた。正極活物質として、LiNi0.4Mn
1.6粉末を用いた。 (実施例13)以下に示す導電剤を正極活物質の表面被
服に用いた以外は、実施例1と同様な構成で前述した図
1に示す正極評価用電池を組み立てた。活物質表面に被
覆する導電剤として、ストロンチウムリチウム銅フッ化
酸化物((Sr0.8,Li0.2)Cu(O1.8
1.2))粉末を用いた。 (実施例14)以下に示す導電剤を正極活物質の表面被
服に用いた以外は、実施例1と同様な構成で前述した図
1に示す正極評価用電池を組み立てた。活物質表面に被
覆する導電剤として、ストロンチウムリチウムバナジウ
ムフッ化酸化物((Sr0.8,Li0.2)V(O
1.8,F0.2))粉末を用いた。 (実施例15)以下に示す導電剤を正極活物質の表面被
服に用いた以外は、実施例1と同様な構成で前述した図
1に示す正極評価用電池を組み立てた。活物質表面に被
覆する導電剤として、ストロンチウムリチウムマンガン
フッ化酸化物((Sr0.8,Li0.2)Mn(O
2.0,F1.0))粉末を用いた。 (実施例16)以下に示す導電剤を正極活物質の表面被
服に用いた以外は、実施例1と同様な構成で前述した図
1に示す正極評価用電池を組み立てた。活物質表面に被
覆する導電剤として、ストロンチウムリチウムクロムフ
ッ化酸化物((Sr0.8,Li0.2)Cr(O
2.8,F0.2))粉末を用いた。 (実施例17)以下に示す活物質を用いた以外は、実施
例13と同様な構成で前述した図1に示す正極評価用電
池を組み立てた。正極活物質として、 LiMn
粉末を用いた。 (実施例18)以下に示す活物質を用いた以外は、実施
例13と同様な構成で前述した図1に示す正極評価用電
池を組み立てた。正極活物質として、 LiNi0.4
Mn1.6粉末を用いた。 (比較例1)以下に示す導電剤を正極活物質の表面被服
に用いた以外は、実施例1と同様な構成で前述した図1
に示す正極評価用電池を組み立てた。活物質表面に被覆
する導電剤として、四三酸化鉄(Fe)粉末を用
いた。 (比較例2)正極活物質の表面被服を実施しなかった以
外は、実施例1と同様な構成で前述した図1に示す正極
評価用電池を組み立てた。 (比較例3)正極活物質として100μ程度の凝集塊を
含むものを用いた以外は、実施例1と同様な構成で前述
した図1に示す正極評価用電池を組み立てた。 (比較例4)以下に示す導電剤を正極活物質の表面被服
に用いた以外は、実施例1と同様な構成で前述した図1
に示す正極評価用電池を組み立てた。
As a conductive agent for coating the surface of the active material,
Tantalum manganese fluoride ((La0.5, L
i0.5) Mn (O2.6, F0.4)) Using powder
Was. Example 4 The following conductive agent was coated on the surface of a positive electrode active material.
1 except that it was used in FIG.
The positive electrode evaluation battery shown in FIG. Coating on active material surface
Lanthanum lithium chromium fluoridation as conductive agent
Things ((La0.4, Li0.6) Cr (O2.8, F
0.2)) Powder was used. Example 5 Example 5 was repeated except that the following active materials were used.
1. The positive electrode evaluation battery shown in FIG.
Assembled. LiMn as positive electrode active material2O4Powder
Was used. (Example 6) Example 6 was repeated except that the following active materials were used.
1. The positive electrode evaluation battery shown in FIG.
Assembled. LiNi as the positive electrode active material0.4Mn
1.6O4Powder was used. Example 7 The following conductive agent was coated on the surface of a positive electrode active material.
1 except that it was used in FIG.
The positive electrode evaluation battery shown in FIG. Coating on active material surface
Neodymium lithium copper fluoride as conductive agent
((Nd 0.8, Li0.2) Cu (O2.6, F
0.4)) Powder was used. Example 8 The following conductive agent was coated on the surface of a positive electrode active material.
1 except that it was used in FIG.
The positive electrode evaluation battery shown in FIG. Coating on active material surface
Neodymium lithium vanadium fluoride
Oxide ((Nd0.4, Li0.6) V (O2.8, F
0.2)) Powder was used. Example 9 The following conductive agent was coated on the surface of a positive electrode active material.
1 except that it was used in FIG.
The positive electrode evaluation battery shown in FIG. Coating on active material surface
Neodymium lithium manganese fluoride as conductive agent
((Nd0.5, Li0.5) Mn (O2.6, F
0.4)) Powder was used. (Example 10) The following conductive agent was coated on the surface of a positive electrode active material.
The above-mentioned figure has the same configuration as in Example 1 except that it is used for clothes.
1 was assembled. Active material surface
Neodymium lithium chromium fluoride as conductive agent to cover
((Nd0.4, Li0.6) Cr (O2.8, F
0.2)) Powder was used. (Example 11) Except that the following active materials were used,
The positive electrode evaluation battery shown in FIG. 1 described above with the same configuration as in Example 7.
Was assembled. LiMn as a positive electrode active material2O4Powder
Was used. Example 12 Example 12 was repeated except that the following active materials were used.
The positive electrode evaluation battery shown in FIG. 1 described above with the same configuration as in Example 7.
Was assembled. LiNi as the positive electrode active material0.4Mn
1.6O4Powder was used. (Example 13) A conductive agent shown below was coated on the surface of a positive electrode active material.
The above-mentioned figure has the same configuration as in Example 1 except that it is used for clothes.
1 was assembled. Active material surface
Strontium lithium copper fluoride
Oxide ((Sr0.8, Li0.2) Cu (O1.8,
F1.2)) Powder was used. (Example 14) A conductive agent shown below was coated on the surface of a positive electrode active material.
The above-mentioned figure has the same configuration as in Example 1 except that it is used for clothes.
1 was assembled. Active material surface
Strontium lithium vanadium as conductive agent to cover
Fluoride oxide ((Sr0.8, Li0.2) V (O
1.8, F0.2)) Powder was used. (Example 15) A conductive agent shown below was coated on the surface of a positive electrode active material.
The above-mentioned figure has the same configuration as in Example 1 except that it is used for clothes.
1 was assembled. Active material surface
Strontium lithium manganese as conductive agent to cover
Fluoride oxide ((Sr0.8, Li0.2) Mn (O
2.0, F1.0)) Powder was used. (Example 16) A conductive agent shown below was coated on the surface of a positive electrode active material.
The above-mentioned figure has the same configuration as in Example 1 except that it is used for clothes.
1 was assembled. Active material surface
Strontium lithium chromium
Oxide ((Sr0.8, Li0.2) Cr (O
2.8, F0.2)) Powder was used. (Example 17) Except that the following active materials were used,
The positive electrode evaluation electrode shown in FIG.
Assembled the pond. LiMn as positive electrode active material2O4
Powder was used. Example 18 Example 18 was repeated except that the following active materials were used.
The positive electrode evaluation electrode shown in FIG.
Assembled the pond. LiNi as the positive electrode active material0.4
Mn1.6O4Powder was used. (Comparative Example 1) The following conductive agent was coated on the surface of a positive electrode active material.
1 except that it was used in FIG.
The positive electrode evaluation battery shown in FIG. Coating on active material surface
Iron oxide (Fe)3O4Use powder
Was. (Comparative Example 2) The reason why the surface coating of the positive electrode active material was not performed
Outside, the positive electrode shown in FIG.
An evaluation battery was assembled. (Comparative Example 3) Agglomerates of about 100μ were used as the positive electrode active material.
The same configuration as in the first embodiment except that the
The assembled positive electrode evaluation battery shown in FIG. 1 was assembled. (Comparative Example 4) The following conductive agent was coated on the surface of a positive electrode active material.
1 except that it was used in FIG.
The positive electrode evaluation battery shown in FIG.

【0025】活物質表面に被覆する導電剤として、ニッ
ケル酸ランタン(LaNiO)粉末を用いた。 (比較例5)以下に示す導電剤を正極活物質の表面被覆
用いた以外は、実施例1と同様な構成で前述した図1に
示す正極評価用電池を組み立てた。
Lanthanum nickelate (LaNiO 3 ) powder was used as a conductive agent for coating the surface of the active material. (Comparative Example 5) The positive electrode evaluation battery shown in FIG. 1 described above was assembled with the same configuration as in Example 1 except that the following conductive agent was used to cover the surface of the positive electrode active material.

【0026】活物質表面に被覆する導電剤として、マン
ガン酸ランタンストロンチウム((La,Sr)MnO
)粉末を用いた。 (比較例6)以下に示す導電剤を正極活物質の表面被覆
に用いた以外は、実施例1と同様な構成で前述した図1
に示す正極評価用電池を組み立てた。
As a conductive agent for coating the active material surface, lanthanum strontium manganate ((La, Sr) MnO)
3 ) Powder was used. (Comparative Example 6) The same configuration as in Example 1 except that the following conductive agent was used for coating the surface of the positive electrode active material was used.
The positive electrode evaluation battery shown in FIG.

【0027】活物質表面に被覆する導電剤として、クロ
ム酸ストロンチウム(SrCrO)粉末を用いた。
Strontium chromate (SrCrO 3 ) powder was used as a conductive agent for coating the active material surface.

【0028】得られた実施例1及び比較例6の電池に充
電を電流値0.5Cで4.4Vに達した後、電圧を維持
するように電流を流し続け全充電時間が5時間になった
ら電流を停止する。実施例6,12,18については充
電を電流値0.5Cで4.6Vに達した後、電圧を維持
するように電流を流し続け全充電時間が5時間になった
ら電流を停止する。その後電池の熱安定性を次のように
して測定を行う。前記の充電処理を行った電池に速やか
に熱電対を貼り付け電池の側面から釘をさし電池の温度
の時間的変化を測定し、その発熱ピーク温度を測定し
た。また同時に同様の条件で作製した他の電池を用い充
放電サイクル特性も測定した。それらの結果を下記表
1、表2に示した。
After charging the batteries obtained in Example 1 and Comparative Example 6 to reach 4.4 V at a current value of 0.5 C, current was continuously supplied so as to maintain the voltage, and the total charging time became 5 hours. Then stop the current. In Examples 6, 12, and 18, after charging reached 4.6 V at a current value of 0.5 C, the current was continued to maintain the voltage, and the current was stopped when the total charging time reached 5 hours. Thereafter, the thermal stability of the battery is measured as follows. A thermocouple was immediately attached to the battery that had been subjected to the above-described charging treatment, a nail was inserted from the side of the battery, and a temporal change in the temperature of the battery was measured. At the same time, the charge / discharge cycle characteristics were measured using another battery manufactured under the same conditions. The results are shown in Tables 1 and 2 below.

【0029】表1、表2から明らかなように実施例1〜
18及び比較例4〜6の電極は発熱ピーク温度が低いこ
とがわかる。
As is clear from Tables 1 and 2, Examples 1 to
It can be seen that the electrodes 18 and Comparative Examples 4 to 6 have low exothermic peak temperatures.

【0030】しかしながら比較例1〜3の電極は導電剤
の電導度が不足するためまた比較例4〜6の電極はリチ
ウムイオンの伝導度が不足するためいずれも実施例の電
極に比しサイクル特性が劣ることがわかる。また比較例
2の電極は発火は免れたものの到達温度が高くガス噴出
を生じ好ましくない。比較例3の電極は発熱ピーク温度
が高すぎたため電池が発火したと思われる。
However, the electrodes of Comparative Examples 1 to 3 had insufficient conductivity of the conductive agent, and the electrodes of Comparative Examples 4 to 6 had insufficient conductivity of lithium ions. Is inferior. Further, the electrode of Comparative Example 2 was not preferable because ignition was avoided, but the temperature reached was high and gas was ejected. It is considered that the battery of Comparative Example 3 ignited because the peak heat generation temperature was too high.

【0031】総合判断の結果、実施例のいずれも比較例
に比べ優れていると判断された。
As a result of the comprehensive judgment, it was judged that all of the examples were superior to the comparative example.

【表1】 [Table 1]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上詳述したように本発明の非水電解液
二次電池によれば、導電性酸化物を活物質の表面被覆に
用いることにより充電状態の電池の熱安定性をより確実
なものとすることができ、安全性の極めて高い二次電池
を提供することとなる。
As described in detail above, according to the nonaqueous electrolyte secondary battery of the present invention, by using a conductive oxide for the surface coating of the active material, the thermal stability of the battery in a charged state can be more assured. Thus, a highly safe secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解液二次電池を示す断面
図。
FIG. 1 is a cross-sectional view showing a non-aqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1‐‐容器、 3‐‐電極群、 4‐‐正極、 5‐‐負極、 6‐‐セパレータ、 8‐‐封口板 1-container, 3-electrode group, 4-positive electrode, 5-negative electrode, 6-separator, 8--sealing plate

フロントページの続き (72)発明者 山田 修司 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 神田 基 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5H029 AJ12 AK03 AL04 AL06 AL07 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ08 DJ16 EJ04 EJ05 HJ02 5H050 AA15 BA17 CA08 CB05 CB07 CB08 DA02 DA10 EA08 EA12 FA17 HA02 Continuing from the front page (72) Inventor Shuji Yamada 1 Toshiba-cho, Komukai-shi, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Research and Development Center Co., Ltd. F-term in Toshiba R & D Center (reference) 5H029 AJ12 AK03 AL04 AL06 AL07 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ08 DJ16 EJ04 EJ05 HJ02 5H050 AA15 BA17 CA08 CB05 CB07 CB08 DA02 DA10 EA08 EA12 FA17 HA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有化合物を含む正極と負極と
非水電解液とを備えてなる非水電解液二次電池であっ
て、前記正極に含まれる活物質粒子の表面が下式であら
わされるぺロブスカイト構造を有しかつLiを含み且つ
自由電子を有する導電性化合物により被覆されている事
を特徴とする非水電解液二次電池。 Li1−xBO3−z (0≦x<1、0≦y<1、0<z≦3) (ただし、Aは1価または2価の典型元素、ランタノイ
ド元素またはこれらの組み合わせからなる群から選ばれ
た少なくとも一種であり、BはIVa属、Va属、VI
a属、VIIa属、VIII属及びIb属の遷移元素か
ら選ばれた少なくとも1種である)。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode containing a lithium-containing compound, a negative electrode, and a non-aqueous electrolyte, wherein the surface of active material particles contained in the positive electrode is represented by the following formula:非 A non-aqueous electrolyte secondary battery characterized by being coated with a conductive compound having a lobskite structure, containing Li, and having free electrons. Li 1-x A y BO 3 -z F z (0 ≦ x <1,0 ≦ y <1,0 <z ≦ 3) ( however, A is a monovalent or divalent typical elements, lanthanoid elements or their At least one member selected from the group consisting of combinations, wherein B is of the genus IVa, Va, or VI
a, VIIa, VIII and Ib).
【請求項2】 前記活物質が結晶成長により形成された
一次粒子またはそれ相等の隙間がなく滑らかな表面を有
する粒子のみからなることを特徴とする請求項1記載の
非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the active material comprises only primary particles formed by crystal growth or particles having a smooth surface without gaps such as phases. .
【請求項3】 前記活物質の粒子間には全てカーボン系
の導電剤が介在している正極を有することを特徴とする
請求項1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, further comprising a positive electrode having a carbon-based conductive agent interposed between all the particles of the active material.
JP2000199939A 2000-06-30 2000-06-30 Nonaqueous electrolyte secondary cell Pending JP2002015776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000199939A JP2002015776A (en) 2000-06-30 2000-06-30 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000199939A JP2002015776A (en) 2000-06-30 2000-06-30 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JP2002015776A true JP2002015776A (en) 2002-01-18

Family

ID=18697883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199939A Pending JP2002015776A (en) 2000-06-30 2000-06-30 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JP2002015776A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008812A1 (en) * 2003-07-17 2005-01-27 Yuasa Corporation Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JP2006318815A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
JP2008226495A (en) * 2007-03-08 2008-09-25 Agc Seimi Chemical Co Ltd Lithium-containing composite oxide particle for nonaqueous secondary battery, and its manufacturing method
CN100442577C (en) * 2003-07-17 2008-12-10 株式会社杰士汤浅 Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
WO2009157524A1 (en) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 Surface-modified lithium-containing complex oxide for positive electrode active material of lithium ion secondary battery and method for producing the same
WO2011067898A1 (en) * 2009-12-01 2011-06-09 パナソニック株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
US20180205073A1 (en) * 2017-01-19 2018-07-19 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818912B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818911B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833317B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
US11081687B2 (en) 2016-12-02 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery including positive-electrode active material
WO2023040704A1 (en) * 2021-09-14 2023-03-23 华为技术有限公司 Composite positive electrode material, positive electrode plate, secondary battery, and electronic device

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008812A1 (en) * 2003-07-17 2005-01-27 Yuasa Corporation Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JPWO2005008812A1 (en) * 2003-07-17 2006-09-07 株式会社ユアサコーポレーション Positive electrode active material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
CN100442577C (en) * 2003-07-17 2008-12-10 株式会社杰士汤浅 Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
US8153295B2 (en) 2003-07-17 2012-04-10 Gs Yuasa International Ltd. Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JP2006318815A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
JP2008226495A (en) * 2007-03-08 2008-09-25 Agc Seimi Chemical Co Ltd Lithium-containing composite oxide particle for nonaqueous secondary battery, and its manufacturing method
WO2009157524A1 (en) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 Surface-modified lithium-containing complex oxide for positive electrode active material of lithium ion secondary battery and method for producing the same
JPWO2009157524A1 (en) * 2008-06-26 2011-12-15 Agcセイミケミカル株式会社 Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same
JP5193223B2 (en) * 2008-06-26 2013-05-08 Agcセイミケミカル株式会社 Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same
WO2011067898A1 (en) * 2009-12-01 2011-06-09 パナソニック株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
US11637277B2 (en) 2015-07-23 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818911B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11588143B2 (en) 2015-09-16 2023-02-21 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818912B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11799067B2 (en) 2015-09-16 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US11721800B2 (en) 2015-09-16 2023-08-08 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833317B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US11710816B2 (en) 2015-09-16 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US11569492B2 (en) 2015-09-16 2023-01-31 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US11081687B2 (en) 2016-12-02 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery including positive-electrode active material
CN108336328B (en) * 2017-01-19 2022-09-06 松下知识产权经营株式会社 Positive electrode active material and battery
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
US20180205073A1 (en) * 2017-01-19 2018-07-19 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
US10833322B2 (en) 2017-01-19 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
CN108336328A (en) * 2017-01-19 2018-07-27 松下知识产权经营株式会社 Positive active material and battery
WO2023040704A1 (en) * 2021-09-14 2023-03-23 华为技术有限公司 Composite positive electrode material, positive electrode plate, secondary battery, and electronic device

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US7883798B2 (en) Active material for battery and method of preparing the same
JP5232631B2 (en) Non-aqueous electrolyte battery
JP3813001B2 (en) Non-aqueous secondary battery
US20040110064A1 (en) Non-aqueous electrolyte secondary battery
JP2002015776A (en) Nonaqueous electrolyte secondary cell
JP2001266879A (en) Non-aqueous electrolyte secondary battery
JP4706090B2 (en) Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery
JP4879226B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP4834901B2 (en) Positive electrode material for lithium secondary battery
JP3105204B2 (en) Non-aqueous electrolyte secondary battery
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3887317B2 (en) Nonaqueous electrolyte secondary battery
JPH08335465A (en) Nonaqueous electrolytic battery
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
JPH09245830A (en) Nonaqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH08339824A (en) Nonaqueous electrolyte secondary battery
JP3586270B2 (en) Cathode active material and non-aqueous electrolyte battery
JPH06267539A (en) Lithium secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JP4084973B2 (en) Non-aqueous electrolyte secondary battery
JPH1173989A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery