JP3813001B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP3813001B2
JP3813001B2 JP24757897A JP24757897A JP3813001B2 JP 3813001 B2 JP3813001 B2 JP 3813001B2 JP 24757897 A JP24757897 A JP 24757897A JP 24757897 A JP24757897 A JP 24757897A JP 3813001 B2 JP3813001 B2 JP 3813001B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
secondary battery
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24757897A
Other languages
Japanese (ja)
Other versions
JPH1173962A (en
Inventor
真幸 芳尾
文茂 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP24757897A priority Critical patent/JP3813001B2/en
Publication of JPH1173962A publication Critical patent/JPH1173962A/en
Application granted granted Critical
Publication of JP3813001B2 publication Critical patent/JP3813001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムマンガン複合酸化物を正極に用いた非水系二次電池に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、薄型化、軽量化の傾向は著しく、それに伴い電源となる電池に対しても駆動用、バックアップ用を問わず小型化、薄型化、軽量化かつ、高エネルギー密度化の要求が高まっている。機器の小型化、軽量化が可能なことからリチウムイオン二次電池は、最近携帯電話やノート型パーソナルコンピューターなどの携帯機器に広く用いられるようになってきた。
【0003】
現在一般に市販されているリチウムイオン二次電池は、正極活物質にコバルト酸リチウムを、負極活物質に炭素が用いられている。しかし、正極活物質のコバルト酸リチウムは、コバルトが高価である上、埋蔵量が少ないことから将来供給不足になる可能性がある。これに対し最近、安価で、埋蔵量が豊富な上、コバルト酸リチウムより重量あたりの容量が大きいニッケル酸リチウムやコバルト酸リチウムと同等の高電圧でのリチウムの吸蔵・放出が可能な正極活物質としてスピネル系のリチウム含有マンガン酸化物が注目され、多くの研究がなされている。しかし、さらに高電圧の正極活物質が開発されれば、より一層の高エネルギー密度化が可能になる。さらには、高容量ではあるが電位が高いためコバルト酸リチウム正極との組み合わせではエネルギー密度が低くなってしまう金属酸化物や、
低温焼成炭素材料も負極に用いることも可能になる。
このような目的で、スピネル系マンガン酸リチウムのマンガンの一部をニッケルで置き換えることが検討されている(ジャーナル・オブ・エレクトロケミカルソサイティー1994年、141巻、2279頁)が、その電圧は4.6−4.7Vで、必ずしも十分とはいえない。
【0004】
【発明が解決しようとする課題】
本発明は、高電圧、高容量でサイクル性に優れ、さらに高温での保存およびサイクル性に優れた非水系二次電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、スピネル系のリチウムマンガン複合酸化物の一部をクロムおよびニッケルまたはコバルトで置換したニッケル、クロム含有マンガン酸リチウムあるいは、コバルト、クロム含有マンガン酸リチウムが金属リチウムに対し約4.8Vの高電圧を有し、かつサイクル特性が優れていることを見いだし本発明を完成するに至った。
【0006】
すなわち本発明は、リチウムイオンの吸蔵放出が可能な負極活物質と、リチウムイオンの吸蔵放出が可能なリチウム含有複合酸化物からなる正極活物質と、リチウムイオン伝導性の非水電解液を備えた非水系二次電池において、前記リチウム含有複合酸化物が次の一般式LiX Mn(2-Y-Z) Y CrZ (4+P) (ただし、MはNiまたはCoを示し、X 、Y 、Z 、P は各々1.00≦ X ≦1.15、0.2≦ Y ≦0.4、0.4≦ Z <0.8でかつ2Y +Z ≦X 、0≦P である)で表わされ、Li/Li+ に対して4.5V以上の電位を有するスピネル系のリチウムマンガン複合酸化物であることを特徴とする非水系二次電池である。
【0007】
以下本発明につき詳細に説明する。
本発明は、正極活物質としてのリチウム含有複合酸化物が、次の一般式LiX Mn(2-Y-Z) Y CrZ (4+P) (ただし、MはNiまたはCoを示し、X 、Y 、Z 、P は各々1.00≦ X ≦1.15、0.2≦ Y ≦0.4、0.4≦ Z <0.8でかつ2Y+Z ≦X 、0≦P である)で表わされ、Li/Li+ に対して4.5V以上の電位を有するスピネル系のリチウムマンガン複合酸化物であることを特徴とする非水系二次電池である。
LiMn2 4 であらわされるスピネル構造のリチウムマンガン複合酸化物の放電電位は、3V付近と4V付近に現れ、通常非水系二次電池正極としては4V領域が利用され、その容量は120mAh/g程度である。
【0008】
一方、LiMn2 4 のマンガンの一部をニッケルで置換したLiMn1.6 Ni0.4 4 では、高電位プラトーが4.4−4.7Vにあらわれ、サイクル特性は良好であるが、放電電位はまだ不十分である。また、マンガンの一部をクロムで置換したLiMn1.2 Cr0.8 4 は、高電位プラトーが4.9V−4.5Vにあらわれ、より一層の高電圧化が可能であるが、サイクル特性が悪い。
そこで、本発明者らはマンガンの一部をニッケルとクロムの両方で置換すると、高電位でかつサイクル特性に優れる正極材料が得られることを見いだした。さらには、コバルトとクロムの両方で置換しても同様の効果が得られることを見いだした。
【0009】
このようにマンガンの一部を他の金属元素で置換することによってこのような効果が得られる理由は明確ではないが、置換元素の4.5V以上の電圧での酸化還元が安定的に行なわれ(Ni、Coの2+から4+、Crの3+から4+)、かつ結晶構造の安定化が図られていると考えられる。
本発明の上記スピネル系のリチウムマンガン複合酸化物は、好ましくは上記X、Y 、Z の値が次の範囲のものである。
1.00≦X ≦1.15
0.2≦ Y ≦0.4
0.4≦Z <0.8
【0010】
本発明の上記スピネル系のリチウムマンガン複合酸化物を合成するためのマンガン化合物としては、電解二酸化マンガン、化学合成二酸化マンガン、γ−MnOOH、炭酸マンガン、硝酸マンガン等が用いられ、リチウム化合物としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム等が用いられ、そしてニッケル、コバルト、クロムの化合物としては、それぞれの酸化物、塩化物、硝酸塩、炭酸塩等を用いることができる。
【0011】
その際の加熱処理温度は、650℃〜900℃が好ましく、さらには750℃〜900℃がより好ましく、加熱雰囲気は、空気中あるいは酸素雰囲気下、または窒素雰囲気下が好ましい。
本発明の上記スピネル系のリチウムマンガン複合酸化物を合成する方法は、Li原子数がX モルとなる量のリチウム化合物と、マンガン原子数が(2-Y-Z) モルとなる量のマンガン化合物と、ニッケル原子数がY モルとなる量のニッケル化合物、又はコバルト原子数がY モルとなる量のコバルト化合物と、クロム原子数がZ モルとなる量のクロム化合物とを混合し、上記温度及び雰囲気で加熱することからなる。
【0012】
本発明のスピネル系リチウムマンガン複合酸化物よりなる正極活物質と組み合わせて用いられる負極活物質としては、通常この種の非水電解質二次電池に用いられる材料がいずれも使用可能で、例えば金属リチウム、リチウム合金、TiO2 、SnSiO3 などの金属酸化物、LiCoN2 等の金属窒化物、炭素材料などを用いることができる。炭素材料としてはコークス、天然黒鉛、人造黒鉛、難黒鉛化炭素等を用いることができる。また、負極活物質としては高容量ではあるが、電位が高いため現行のコバルト酸リチウム正極との組み合わせではエネルギー密度が低くなってしまう金属酸化物や、低温焼成炭素材料も不都合なく用いることができる。
【0013】
電解液としては、リチウム塩を電解質とし、非水溶媒に溶解したものを使用できる。電解質としては、LiClO4 、LiAsF6 、LiPF6 、LiBF4、LiCF3 SO3
、Li(CF3 SO2 2 Nなどを単独もしくは2種類以上を混合して用いることができる。
有機溶媒としては、特に限定されないが、カーボネート類、ラクトン類、エーテル類などが挙げられ、例えばエチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,3−ジオキソラン、γ−ブチロラクトンなどの溶媒を単独もしくは2種類以上を混合して用いることができる。これらの溶媒に溶解される電解質の濃度は0.5〜2.0モル/リットルで用いることができる。
【0014】
上記の他に、上記電解質を高分子マトリックスに均一分散させた固体または粘稠体、あるいはこれらに非水溶媒を含浸させたものを用いることができる。高分子マトリックスとしては、例えばポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデンなどを用いることができる。
また正極と負極の短絡防止のためのセパレーターとしては、ポリエチレン、ポリプロピレン、セルロースなどの材料の多孔性シート、不織布等が用いられる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
【実施例】
(実施例1)
正極活物質の合成は以下の手順で行った。硝酸マンガン、硝酸ニッケルと硝酸クロムをMn、Ni、Crの原子数が各々(2-Y-Z)=1.4 モル 、Y=0.2 モル、Z=0.4 モルとなるような割合で秤り取り混合し、精製水を加え硝酸水溶液を作った。次にLi原子数(X) が1.0 モルとなる量の水酸化リチウムと充分量のアンモニア水を加え、混合し沈殿を作った。その沈殿物を100℃で加熱し、次いで硝酸アンモニウムを除去するために、150℃で加熱、さらに450℃で加熱した。
【0016】
最後に空気中750℃12時間加熱処理を行うことによって、リチウム含有複合酸化物を得た。得られた生成物は、X線回折と化学分析によりスピネル系構造のLiMn1.4 Ni0.2 Cr0.4 4 であった。
このリチウムマンガン複合酸化物100重量部に対し、導電剤としてアセチレンブラック3重量部と鱗片状黒鉛3重量部を混合した後に、総重量に対し3重量部の割合でN−メチルピロリドン(NMP)を添加して湿式混合を行いペーストとした。次いでこのペーストを正極集電体である厚さ20μmのアルミ箔の両面に均一に塗布し乾燥させた後、150℃に加熱したローラープレス機で加圧成形して帯状の正極を得た。
【0017】
正極と負極としての金属リチウムを25μm厚のポリエチレン微多孔膜のセパレータを介して対向させ、三極式のガラスセルに組み、1.0モル/リットルのLiPF6 を溶解したエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合溶液(容量比1:2)を注入し、充放電容量とサイクル性の測定に供した。
次いで、黒鉛化メソカーボン繊維95重量部と鱗片状黒鉛5重量部の混合物に、カルボキシメチルセルロース1重量部とスチレンブタジエンゴム2重量部、溶剤として精製水を添加して湿式混合を行いペーストとした。このペーストを負極集電体である厚さ12μmの銅箔の両面に均一に塗布し、乾燥させた後加圧成形して帯状の負極を作製した。
【0018】
上記帯状正極と上記帯状負極の間にセパレーターとして25μmの厚さのポリエチレン微多孔膜を挟んでロール状に巻いて捲回体とした。
鉄製の角形缶の底部に絶縁性のフィルムを挿入し、前記捲回体を押し潰して挿入した。次いで捲回体から取り出した負極タブを閉塞蓋体に、正極タブを閉塞蓋体の正極ピンに各々溶接した。電池缶の中にエチレンカーボネートとジメチルカーボネートの1:2の混合溶媒に1モル/リットルの濃度でLiPF6 を溶解した電解液を注液した後、閉塞蓋体を溶接し、厚さ8.6mm、巾34mm、高さ48mmの角形電池を作製し、高温特性試験に供した。
【0019】
(実施例2)
実施例1と同様の方法でLiMn1.25Ni0.25Cr0.5 4 を合成した。得られたリチウムマンガン複合酸化物を用いて実施例1と同様にして電池を作製した
【0020】
(実施例
マンガン化合物として電解二酸化マンガン、リチウム化合物としてLiOH、コバルト化合物として硝酸コバルト、クロム化合物として硝酸クロムを用い、Mn、Li、Co、Crの原子数が各々(2-Y-Z)=1.4 モル、X=1.0 、Y =0.2 モル、Z =0.4 モルとなるような割合で秤り取り混合し、これを空気中で850℃で24時間加熱処理してLiMn1.4 Co0.2 Cr0.4 4 を得た。
得られたリチウムマンガン複合酸化物を用いて実施例1と同様にして電池を作製した。
【0021】
【0022】
得られたリチウムマンガン複合酸化物を用いて、電解液にエチレンカーボネートとジメチルカーボネートの1:2の混合溶媒に1モル/リットルの濃度でLiBF4 を溶解した
ものを使用した以外は実施例1と同様にして電池を作製した。
(比較例1)
実施例1と同様の方法で、LiMn1.6 Ni0.4 4 を合成した。得られたリチウムマンガン複合酸化物を用いて実施例1と同様にして電池を作製した。
【0023】
(比較例2)
実施例1と同様の方法で、LiMn1.2 Cr0.8 4 を合成した。
得られたリチウムマンガン複合酸化物を用いて実施例1と同様にして電池を作製した。
(比較例3)
電解二酸化マンガン、Li2 CO3 および硝酸クロムを用い、空気中900℃24hr加熱処理してLiMn1.5 Cr0.5 4 を合成した。
得られたリチウムマンガン複合酸化物を用いて実施例1と同様にして電池を作製した。
【0024】
(比較例4)
実施例1と同様の方法でLi1.0 Mn1.90Co0.1 4 を合成した。得られたリチウムマンガン複合酸化物を用いて、電解液にエチレンカーボネートとジメチルカーボネートの1:2の混合溶媒に1モル/リットルの濃度でLiBF4 を溶解したものを使用した以外は実施例1と同様にして電池を作製した。
(試験結果)
実施例及び比較例で作製した電池を以下のように評価した。
充電電圧5.2Vで5時間充電を行った後、放電レート0.3Cの電流で3.5Vまで放電を行い、1グラム当たりの容量を求めた。さらに室温(25℃)で、上記の充放電条件でサイクル試験を行った。
【0025】
実施例1及び比較例1〜2の放電曲線及びサイクル特性(25℃)は、図1(イ)〜(ハ)(右上がりの曲線は充電曲線、右下がりの曲線は放電曲線である。)及び図2に示されている。
図1〜図2に示すとおり、本発明の非水系二次電池は、次の一般式LiX Mn(2-Y-Z) Y CrZ (4+P) (ただし、MはNiまたはCoを示し、X 、Y 、Z 、P は各々1.00≦ X ≦1.15、0.2≦ Y ≦0.4、0.4≦ Z <0.8でかつ2Y +Z ≦X 、0≦P である)で表わされ、Li/Li+ に対して4.5V以上の電位を有するスピネル系のリチウムマンガン複合酸化物を正極活物質に用いることにより、高電圧、高容量でサイクル性に優れていることが判る。
【0026】
(試験結果)
さらに、高温特性評価用の電池を充電電圧5.2Vで5時間充電を行った後、放電レート0.5Cで3.5Vまで放電を行い電池容量を求めた。続いてこの充放電サイクルを5サイクル繰り返した後、5.2Vの充電状態で85℃下、120時間保存後、室温まで冷却し放電を行った。自己放電率は{1−(6サイクル目の放電量/5サイクル目の放電量)}×100により求めた。また、同時に作製した別のセルを用い、充電電圧5.2Vで5時間充電を行った後、放電レート0.5Cで3.5Vまで放電を行うサイクルを60℃下、100サイクル行い、1サイクル目の放電容量に対する100サイクル目の放電容量の比を求め、60℃でのサイクル維持率とした。
【0027】
この高温での保存とサイクルの試験の結果は、表1に示されている。
表1に示すとおり、本発明の非水系二次電池は、高温での保存およびサイクル性も優れていることが判る。
【0028】
【表1】

Figure 0003813001
【0029】
【発明の効果】
以上述べたように、本発明は次の一般式LiX Mn(2-Y-Z) Y CrZ (4+P) (ただし、MはNiまたはCoを示し、X 、Y 、Z 、P は各々1.00≦ X ≦1.15、0.2≦ Y ≦0.4、0.4≦ Z <0.8でかつ2Y +Z ≦X 、0≦P である)で表わされ、Li/Li+ に対して4.5V以上の電位を有するスピネル系のリチウムマンガン複合酸化物を正極活物質に用いることにより、高電圧、高容量でサイクル性に優れ、さらに高温での保存およびサイクル性にも優れた非水系二次電池を得ることができ、より高エネルギー密度の電池を提供できることからその工業的価値は非常に大きい。
【図面の簡単な説明】
【図1】 (イ)実施例1のLiMn1.4 Cr0.4 Ni0.2 4 の放電曲線を示す図である。
(ロ)比較例1のLiMn1.6 Ni0.4 4 の放電曲線を示す図である。
(ハ)比較例2のLiMn1.2 Cr0.8 4 の放電曲線を示す図である。
【図2】 実施例1及び比較例1〜2の電池のサイクル性(1グラム当たりの放電容量)を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery using a lithium manganese composite oxide as a positive electrode.
[0002]
[Prior art]
In recent years, electronic devices have become increasingly smaller, thinner and lighter, and as a result, batteries for power supplies can be reduced in size, thickness, weight and energy density regardless of whether they are for driving or backup. The demand is growing. Since it is possible to reduce the size and weight of devices, lithium ion secondary batteries have recently been widely used in mobile devices such as mobile phones and notebook personal computers.
[0003]
In lithium ion secondary batteries that are currently commercially available, lithium cobaltate is used as the positive electrode active material, and carbon is used as the negative electrode active material. However, lithium cobaltate, which is a positive electrode active material, may be insufficient in the future because cobalt is expensive and its reserves are small. On the other hand, recently, a cathode active material that is cheap, rich in reserves, and capable of occluding and releasing lithium at a high voltage equivalent to lithium nickelate or lithium cobaltate, which has a larger capacity per weight than lithium cobaltate. As a spinel lithium-containing manganese oxide, much research has been conducted. However, if a higher voltage positive electrode active material is developed, a higher energy density can be achieved. Furthermore, a metal oxide that has a high capacity but has a high potential, resulting in a low energy density in combination with a lithium cobaltate positive electrode,
A low-temperature fired carbon material can also be used for the negative electrode.
For this purpose, replacement of a part of manganese of spinel type lithium manganate with nickel has been examined (Journal of Electrochemical Society 1994, Vol. 141, p. 2279). 4.6-4.7V is not necessarily sufficient.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a nonaqueous secondary battery having high voltage, high capacity, excellent cycleability, and excellent storage at high temperatures and cycleability.
[0005]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, nickel, chromium-containing lithium manganate in which a part of the spinel-type lithium manganese composite oxide is replaced with chromium and nickel or cobalt, or cobalt and chromium-containing lithium manganate are converted into metal lithium. On the other hand, the present invention was completed by finding that it has a high voltage of about 4.8 V and excellent cycle characteristics.
[0006]
That is, the present invention includes a negative electrode active material capable of occluding and releasing lithium ions, a positive electrode active material comprising a lithium-containing composite oxide capable of occluding and releasing lithium ions, and a lithium ion conductive non-aqueous electrolyte. in the nonaqueous secondary battery, the lithium-containing composite oxide of the general formula Li X Mn (2-YZ) M Y Cr Z O (4 + P) ( however, M represents Ni or Co, X, Y , Z and P are 1.00 ≦ X ≦ 1.15, 0.2 ≦ Y ≦ 0.4, 0.4 ≦ Z <0.8 , and 2Y + Z ≦ X and 0 ≦ P, respectively. It is a non-aqueous secondary battery characterized by being a spinel-type lithium manganese composite oxide having a potential of 4.5 V or more with respect to Li / Li + .
[0007]
The present invention will be described in detail below.
The present invention is a lithium-containing composite oxide as a cathode active material, the general formula Li X Mn (2-YZ) M Y Cr Z O (4 + P) ( however, M represents Ni or Co, X Y, Z and P are 1.00 ≦ X ≦ 1.15, 0.2 ≦ Y ≦ 0.4, 0.4 ≦ Z <0.8 and 2Y + Z ≦ X and 0 ≦ P), respectively. This is a non-aqueous secondary battery characterized by being a spinel-type lithium manganese composite oxide having a potential of 4.5 V or more with respect to Li / Li + .
The discharge potential of the spinel-structure lithium manganese composite oxide represented by LiMn 2 O 4 appears in the vicinity of 3V and 4V. Usually, the 4V region is used as the positive electrode of the non-aqueous secondary battery, and its capacity is about 120 mAh / g. It is.
[0008]
On the other hand, in LiMn 1.6 Ni 0.4 O 4 in which a part of manganese of LiMn 2 O 4 is replaced with nickel, a high potential plateau appears at 4.4 to 4.7 V, the cycle characteristics are good, but the discharge potential is still It is insufficient. In addition, LiMn 1.2 Cr 0.8 O 4 in which a part of manganese is substituted with chromium has a high potential plateau of 4.9 V to 4.5 V, which can further increase the voltage, but has poor cycle characteristics.
Therefore, the present inventors have found that a positive electrode material having a high potential and excellent cycle characteristics can be obtained by replacing a part of manganese with both nickel and chromium. Furthermore, it has been found that the same effect can be obtained by substituting with both cobalt and chromium .
[0009]
The reason why such an effect can be obtained by substituting a part of manganese with another metal element is not clear, but the oxidation and reduction of the substitution element at a voltage of 4.5 V or more is stably performed. (Ni, Co 2+ to 4+, Cr 3+ to 4+) and stabilization of the crystal structure are considered.
The spinel-type lithium manganese composite oxide of the present invention preferably has X, Y and Z values in the following ranges.
1.00 ≦ X ≦ 1.15
0.2 ≦ Y ≦ 0.4
0.4 ≦ Z <0.8
[0010]
As the manganese compound for synthesizing the above spinel-type lithium manganese composite oxide of the present invention, electrolytic manganese dioxide, chemically synthesized manganese dioxide, γ-MnOOH, manganese carbonate, manganese nitrate, and the like are used. Lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate and the like are used, and as the nickel, cobalt and chromium compounds, respective oxides, chlorides, nitrates, carbonates and the like can be used.
[0011]
The heat treatment temperature at that time is preferably 650 ° C. to 900 ° C., more preferably 750 ° C. to 900 ° C., and the heating atmosphere is preferably in air, an oxygen atmosphere, or a nitrogen atmosphere.
The method of synthesizing the spinel-based lithium manganese composite oxide of the present invention includes a lithium compound in an amount such that the number of Li atoms is X mol, a manganese compound in which the number of manganese atoms is (2-YZ) mol, and A nickel compound with an amount of nickel atoms of Y mol, or a cobalt compound with an amount of cobalt atoms of Y mol and a chromium compound with an amount of chromium atoms of Z mol, are mixed at the above temperature and atmosphere. Consisting of heating.
[0012]
As the negative electrode active material used in combination with the positive electrode active material composed of the spinel-based lithium manganese composite oxide of the present invention, any material usually used for this type of non-aqueous electrolyte secondary battery can be used. , Lithium alloys, TiO 2 , SnSiO 3 and other metal oxides, LiCoN 2 and other metal nitrides, carbon materials, and the like can be used. As the carbon material, coke, natural graphite, artificial graphite, non-graphitizable carbon, or the like can be used. Moreover, although it has a high capacity as the negative electrode active material, a metal oxide or a low-temperature fired carbon material whose energy density becomes low when combined with the current lithium cobaltate positive electrode due to its high potential can be used without any problem. .
[0013]
As the electrolytic solution, a lithium salt as an electrolyte and dissolved in a non-aqueous solvent can be used. As the electrolyte, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3
Li (CF 3 SO 2 ) 2 N can be used alone or in combination of two or more.
Examples of the organic solvent include, but are not limited to, carbonates, lactones, ethers, and the like. For example, ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2 -Solvents such as diethoxyethane, tetrahydrofuran, 1,3-dioxolane, and γ-butyrolactone can be used alone or in admixture of two or more. The concentration of the electrolyte dissolved in these solvents can be 0.5 to 2.0 mol / liter.
[0014]
In addition to the above, a solid or viscous material in which the above electrolyte is uniformly dispersed in a polymer matrix, or a material in which a nonaqueous solvent is impregnated with these can be used. As the polymer matrix, for example, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, or the like can be used.
Moreover, as a separator for preventing a short circuit between the positive electrode and the negative electrode, a porous sheet made of a material such as polyethylene, polypropylene, or cellulose, a nonwoven fabric, or the like is used.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
【Example】
Example 1
The positive electrode active material was synthesized by the following procedure. Manganese nitrate, nickel nitrate, and chromium nitrate are weighed and mixed in such a ratio that the number of Mn, Ni, and Cr atoms is (2-YZ) = 1.4 mol, Y = 0.2 mol, and Z = 0.4 mol, respectively. Water was added to make an aqueous nitric acid solution. Next, lithium hydroxide in an amount such that the number of Li atoms (X) was 1.0 mol and a sufficient amount of aqueous ammonia were added and mixed to form a precipitate. The precipitate was heated at 100 ° C. and then heated at 150 ° C. and further at 450 ° C. to remove ammonium nitrate.
[0016]
Finally, a heat treatment was performed in air at 750 ° C. for 12 hours to obtain a lithium-containing composite oxide. The obtained product was LiMn 1.4 Ni 0.2 Cr 0.4 O 4 having a spinel structure by X-ray diffraction and chemical analysis.
After mixing 3 parts by weight of acetylene black and 3 parts by weight of flaky graphite as a conductive agent with respect to 100 parts by weight of this lithium manganese composite oxide, N-methylpyrrolidone (NMP) was added at a ratio of 3 parts by weight with respect to the total weight. It was added and wet-mixed to obtain a paste. Next, the paste was uniformly applied to both surfaces of a 20 μm-thick aluminum foil as a positive electrode current collector and dried, followed by pressure molding with a roller press machine heated to 150 ° C. to obtain a belt-like positive electrode.
[0017]
Ethylene carbonate (EC) in which 1.0 m / liter of LiPF 6 is dissolved with metallic lithium as a positive electrode and a negative electrode facing each other through a separator of a 25 μm thick polyethylene microporous membrane, assembled in a tripolar glass cell, and A mixed solution of dimethyl carbonate (DMC) (capacity ratio 1: 2) was injected to measure charge / discharge capacity and cycleability.
Next, a mixture of 95 parts by weight of graphitized mesocarbon fiber and 5 parts by weight of flaky graphite was added with 1 part by weight of carboxymethyl cellulose, 2 parts by weight of styrene butadiene rubber, and purified water as a solvent to perform wet mixing to obtain a paste. This paste was uniformly applied to both sides of a 12 μm thick copper foil as a negative electrode current collector, dried and then pressure-molded to produce a strip-shaped negative electrode.
[0018]
A 25 μm-thick polyethylene microporous film was sandwiched between the belt-like positive electrode and the belt-like negative electrode as a separator and wound into a roll to obtain a wound body.
An insulating film was inserted into the bottom of the iron square can, and the wound body was crushed and inserted. Next, the negative electrode tab taken out from the wound body was welded to the closing lid body, and the positive electrode tab was welded to the positive electrode pin of the closing lid body. After pouring an electrolytic solution in which LiPF 6 was dissolved in a 1: 2 mixed solvent of ethylene carbonate and dimethyl carbonate into a battery can at a concentration of 1 mol / liter, the closure lid was welded to a thickness of 8.6 mm. A square battery having a width of 34 mm and a height of 48 mm was produced and subjected to a high temperature characteristic test.
[0019]
(Example 2)
LiMn 1.25 Ni 0.25 Cr 0.5 O 4 was synthesized in the same manner as in Example 1. A battery was produced in the same manner as in Example 1 using the obtained lithium manganese composite oxide .
[0020]
(Example 3 )
Electrolytic manganese dioxide as a manganese compound, LiOH as a lithium compound, cobalt nitrate as a cobalt compound, chromium nitrate as a chromium compound, and the number of atoms of Mn, Li, Co, and Cr are (2-YZ) = 1.4 mol, X = 1.0 , Y = 0.2 mol and Z = 0.4 mol were weighed and mixed, and this was heat-treated in air at 850 ° C. for 24 hours to obtain LiMn 1.4 Co 0.2 Cr 0.4 O 4 .
A battery was produced in the same manner as in Example 1 using the obtained lithium manganese composite oxide.
[0021]
[0022]
Example 1 except that the obtained lithium manganese composite oxide was used in which an electrolyte was prepared by dissolving LiBF 4 at a concentration of 1 mol / liter in a 1: 2 mixed solvent of ethylene carbonate and dimethyl carbonate. A battery was produced in the same manner.
(Comparative Example 1)
LiMn 1.6 Ni 0.4 O 4 was synthesized in the same manner as in Example 1. A battery was produced in the same manner as in Example 1 using the obtained lithium manganese composite oxide.
[0023]
(Comparative Example 2)
LiMn 1.2 Cr 0.8 O 4 was synthesized in the same manner as in Example 1.
A battery was produced in the same manner as in Example 1 using the obtained lithium manganese composite oxide.
(Comparative Example 3)
LiMn 1.5 Cr 0.5 O 4 was synthesized by heat treatment in air at 900 ° C. for 24 hours using electrolytic manganese dioxide, Li 2 CO 3 and chromium nitrate.
A battery was produced in the same manner as in Example 1 using the obtained lithium manganese composite oxide.
[0024]
(Comparative Example 4)
Li 1.0 Mn 1.90 Co 0.1 0 4 was synthesized in the same manner as in Example 1. Example 1 except that the obtained lithium manganese composite oxide was used in which an electrolyte was prepared by dissolving LiBF 4 at a concentration of 1 mol / liter in a 1: 2 mixed solvent of ethylene carbonate and dimethyl carbonate. A battery was produced in the same manner.
(Test results)
The batteries produced in the examples and comparative examples were evaluated as follows.
After charging for 5 hours at a charging voltage of 5.2 V, the battery was discharged to 3.5 V with a current at a discharge rate of 0.3 C, and the capacity per gram was determined. Further, a cycle test was performed at room temperature (25 ° C.) under the above charge / discharge conditions.
[0025]
The discharge curves and cycle characteristics (25 ° C.) of Example 1 and Comparative Examples 1 and 2 are shown in FIGS. 1A to 1C (the upward curve is a charging curve, and the downward curve is a discharging curve.) And shown in FIG.
As shown in FIGS. 1-2, a nonaqueous secondary battery of the present invention have the general formula Li X Mn (2-YZ) M Y Cr Z O (4 + P) ( however, M a is Ni or Co X, Y, Z, and P are 1.00 ≦ X ≦ 1.15, 0.2 ≦ Y ≦ 0.4, 0.4 ≦ Z <0.8 , and 2Y + Z ≦ X, 0 ≦ P, respectively. And a spinel-type lithium manganese composite oxide having a potential of 4.5 V or more with respect to Li / Li + is used as the positive electrode active material, thereby providing high voltage, high capacity, and excellent cycleability. You can see that
[0026]
(Test results)
Furthermore, after charging the battery for high temperature characteristic evaluation with the charging voltage 5.2V for 5 hours, it discharged to 3.5V with the discharge rate 0.5C, and calculated | required battery capacity. Subsequently, this charge / discharge cycle was repeated 5 cycles, and then stored in a charged state of 5.2 V at 85 ° C. for 120 hours, followed by cooling to room temperature and discharging. The self-discharge rate was determined by {1- (discharge amount at the sixth cycle / discharge amount at the fifth cycle)} × 100. In addition, using another cell produced at the same time, after charging for 5 hours at a charging voltage of 5.2 V, a cycle of discharging to 3.5 V at a discharge rate of 0.5 C was performed at 60 ° C. for 100 cycles, and 1 cycle. The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the eye was determined and used as the cycle retention rate at 60 ° C.
[0027]
The results of this high temperature storage and cycling test are shown in Table 1.
As shown in Table 1, it can be seen that the nonaqueous secondary battery of the present invention is excellent in storage and cycleability at high temperatures.
[0028]
[Table 1]
Figure 0003813001
[0029]
【The invention's effect】
As described above, the present invention is the general formula Li X Mn (2-YZ) M Y Cr Z O (4 + P) ( however, M represents Ni or Co, X, Y, Z, P is 1.00 ≦ X ≦ 1.15, 0.2 ≦ Y ≦ 0.4, 0.4 ≦ Z <0.8 and 2Y + Z ≦ X, 0 ≦ P, respectively), Li / By using a spinel-type lithium manganese composite oxide having a potential of 4.5 V or higher with respect to Li + as a positive electrode active material, high voltage, high capacity, excellent cycleability, and high temperature storage and cycleability In addition, an excellent non-aqueous secondary battery can be obtained, and a battery having a higher energy density can be provided. Therefore, its industrial value is very large.
[Brief description of the drawings]
1A is a diagram showing a discharge curve of LiMn 1.4 Cr 0.4 Ni 0.2 O 4 of Example 1. FIG.
(B) is a diagram showing discharge curves of LiMn 1.6 Ni 0.4 O 4 of Comparative Example 1.
(C) is a diagram showing discharge curves of LiMn 1.2 Cr 0.8 O 4 of Comparative Example 2.
FIG. 2 is a diagram showing the cycle characteristics (discharge capacity per gram) of the batteries of Example 1 and Comparative Examples 1 and 2;

Claims (1)

リチウムイオンの吸蔵放出が可能な負極活物質と、リチウムイオンの吸蔵放出が可能なリチウム含有複合酸化物からなる正極活物質と、リチウムイオン伝導性の非水電解液を備えた非水系二次電池において、前記リチウム含有複合酸化物が次の一般式LiX Mn(2-Y-Z) Y CrZ (4+P) (ただし、MはNiまたはCoを示し、X 、Y 、Z 、P は各々1.00≦ X ≦1.15、0.2≦ Y ≦0.4、0.4≦ Z <0.8でかつ2Y +Z ≦X 、0≦P である)で表わされ、Li/Li+ に対して4.5V以上の電位を有するスピネル系のリチウムマンガン複合酸化物であることを特徴とする非水系二次電池。」A non-aqueous secondary battery comprising a negative electrode active material capable of occluding and releasing lithium ions, a positive electrode active material comprising a lithium-containing composite oxide capable of occluding and releasing lithium ions, and a lithium ion conductive non-aqueous electrolyte The lithium-containing composite oxide has the following general formula: Li X Mn (2-YZ) M Y Cr Z O (4 + P) (where M represents Ni or Co, and X, Y, Z and P are 1.00 ≦ X ≦ 1.15, 0.2 ≦ Y ≦ 0.4, 0.4 ≦ Z <0.8 and 2Y + Z ≦ X, 0 ≦ P, respectively), Li / A non-aqueous secondary battery, which is a spinel lithium manganese composite oxide having a potential of 4.5 V or more with respect to Li + . "
JP24757897A 1997-08-29 1997-08-29 Non-aqueous secondary battery Expired - Fee Related JP3813001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24757897A JP3813001B2 (en) 1997-08-29 1997-08-29 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24757897A JP3813001B2 (en) 1997-08-29 1997-08-29 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH1173962A JPH1173962A (en) 1999-03-16
JP3813001B2 true JP3813001B2 (en) 2006-08-23

Family

ID=17165591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24757897A Expired - Fee Related JP3813001B2 (en) 1997-08-29 1997-08-29 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3813001B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142522B2 (en) 1998-07-13 2001-03-07 日本碍子株式会社 Lithium secondary battery
JP3634694B2 (en) 1998-12-18 2005-03-30 三洋電機株式会社 Lithium secondary battery
JP2001023614A (en) * 1999-07-09 2001-01-26 Sony Corp Positive electrode and secondary battery using it
US6964830B2 (en) 1999-07-30 2005-11-15 Ngk Insulators, Ltd. Lithium secondary battery
JP5199522B2 (en) * 1999-08-17 2013-05-15 日揮触媒化成株式会社 Spinel-type lithium / manganese composite oxide, its production method and use
JP2001176557A (en) * 1999-12-20 2001-06-29 Toyota Central Res & Dev Lab Inc Non-aqueous electrolyte secondary battery
JP2001216970A (en) * 2000-02-04 2001-08-10 Sony Corp Nonaqueous electrolyte battery
JP3611190B2 (en) 2000-03-03 2005-01-19 日産自動車株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2001250550A (en) 2000-03-03 2001-09-14 Nissan Motor Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP3611188B2 (en) 2000-03-03 2005-01-19 日産自動車株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3611189B2 (en) 2000-03-03 2005-01-19 日産自動車株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4836371B2 (en) 2001-09-13 2011-12-14 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
CN100373670C (en) * 2002-03-01 2008-03-05 松下电器产业株式会社 Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP4197237B2 (en) * 2002-03-01 2008-12-17 パナソニック株式会社 Method for producing positive electrode active material
WO2012077472A1 (en) 2010-12-09 2012-06-14 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using same
JP5647069B2 (en) 2011-05-18 2014-12-24 日立マクセル株式会社 Non-aqueous secondary battery
JP5539946B2 (en) * 2011-11-02 2014-07-02 日揮触媒化成株式会社 Method for producing spinel-type lithium-manganese composite oxide
JP5632350B2 (en) * 2011-11-02 2014-11-26 日揮触媒化成株式会社 Spinel-type lithium-manganese composite oxide and method for producing the same
GB2516185A (en) 2012-04-27 2015-01-14 Mitsui Mining & Smelting Co Manganese spinel-type lithium transition metal oxide
US20150214571A1 (en) * 2012-08-16 2015-07-30 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for producing same
KR101487468B1 (en) 2012-08-24 2015-01-28 미쓰이금속광업주식회사 Spinel type lithium-manganese-nickel-containing composite oxide
KR101529951B1 (en) 2012-09-25 2015-06-18 미쓰이금속광업주식회사 Spinel-type lithium-manganese composite oxide
US10468672B2 (en) 2013-05-17 2019-11-05 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium secondary battery
KR102188380B1 (en) 2013-05-17 2020-12-08 미쓰이금속광업주식회사 Positive electrode active material for lithium secondary battery
GB2536166B (en) 2013-12-04 2018-03-07 Mitsui Mining & Smelting Co Spinel-type lithium cobalt manganese-containing complex oxide
US10276867B2 (en) 2015-04-30 2019-04-30 Mitsui Mining & Smelting Co., Ltd. 5V-class spinel-type lithium-manganese-containing composite oxide
US10446842B2 (en) 2015-04-30 2019-10-15 Mitsui Mining & Smelting Co., Ltd. 5V-class spinel-type lithium-manganese-containing composite oxide
JP6178037B1 (en) 2015-09-17 2017-08-09 三井金属鉱業株式会社 Spinel-type lithium nickel manganese-containing composite oxide
EP3425705B1 (en) 2016-02-29 2021-06-16 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium-manganese-containing complex oxide
US11799079B2 (en) 2017-03-14 2023-10-24 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium nickel manganese-containing composite oxide
WO2019035418A1 (en) 2017-08-14 2019-02-21 三井金属鉱業株式会社 Positive electrode active material for all-solid-state lithium secondary batteries

Also Published As

Publication number Publication date
JPH1173962A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP3813001B2 (en) Non-aqueous secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5078334B2 (en) Nonaqueous electrolyte secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
US20060292446A1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US20080286657A1 (en) Non-aqueous electrolyte secondary battery
US7635542B2 (en) Non-aqueous electrolyte secondary battery
JP2002075367A (en) Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
KR100946006B1 (en) Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
CA2522107A1 (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
JP2004047180A (en) Nonaqueous electrolytic solution battery
JP2001243943A (en) Non-aqueous electrolyte secondary battery
JP2000195513A (en) Nonaqueous electrolyte secondary battery
JPH07235291A (en) Secondary battery
JP2008091041A (en) Nonaqueous secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2001160395A (en) Material for positive electrode of lithium secondary battery
JP4103168B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2001243954A (en) Positive electrode material for lithium secondary battery
JP2002170566A (en) Lithium secondary cell
JPH08138649A (en) Non-aqueous secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP3111927B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH10302766A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees