JPH08138649A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JPH08138649A
JPH08138649A JP6274872A JP27487294A JPH08138649A JP H08138649 A JPH08138649 A JP H08138649A JP 6274872 A JP6274872 A JP 6274872A JP 27487294 A JP27487294 A JP 27487294A JP H08138649 A JPH08138649 A JP H08138649A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
aqueous secondary
capacity
mah
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6274872A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuda
良夫 松田
Jun Tsukamoto
遵 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6274872A priority Critical patent/JPH08138649A/en
Publication of JPH08138649A publication Critical patent/JPH08138649A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a secondary battery with large capacity by making a positive electrode, at least the part of which is coated with an electrolytic oxide film, have a specified value of a bulk density of higher. CONSTITUTION: About 0.01-5.0mol/liter concentration of a substance (e.g. acrylonitrile, phenol, aniline, pyrrole, etc.) which can form an electrolytic oxide film is added to an electrolytic liquid and after the assembly of a battery, the battery is charged and discharged one time. As a result, the initial capacity loss of the negative electrode is solved and a secondary battery with high energy can be obtained. The weight ratio of the electrolytic oxide film in the positive electrode is preferably 5-10 pts. by wt. and in the case the weight ratio is less than 1 pts. by wt., the conpensating effect is too small and in the case the weight ratio is more than 20 pts. by wt., the positive material may be cracked at the time of polymerization and peeled out of an electric collector. The bulk density of the positive electrode should be 2.2g/cm<3> or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水系二次電池に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】近年、ビデオカメラやノート型パソコン
などのポータブル機器の普及に伴い、小型高容量の二次
電池に対する需要が高まっている。現在使用されている
二次電池のほとんどはアルカリ電解液を用いたニッケル
−カドミウム電池であるが、電池電圧が約1.2Vと低
く、エネルギー密度の向上は困難である。そのため、負
極にリチウム金属を使用するリチウム二次電池が検討さ
れた。
2. Description of the Related Art In recent years, with the widespread use of portable devices such as video cameras and notebook computers, demand for small and high capacity secondary batteries has increased. Most of the secondary batteries currently used are nickel-cadmium batteries using an alkaline electrolyte, but the battery voltage is low at about 1.2 V, and it is difficult to improve the energy density. Therefore, a lithium secondary battery using lithium metal for the negative electrode has been studied.

【0003】ところが、リチウム金属を負極に使用する
二次電池では、充放電の繰り返しによってリチウムが樹
枝状(デンドライト)に成長し、短絡を起こしたり寿命
が短くなるなどの不都合が生じやすかった。そこで、負
極に各種炭素質材料を用いて、リチウムイオンをドーピ
ング、脱ドーピングすることにより使用する二次電池が
提案された。また、このような各種炭素質材料は、アニ
オンをドーピングして正極として用いることも可能であ
る。上記の炭素質材料へのリチウムイオンあるいはアニ
オンのドーピングを利用した電極を利用した二次電池と
しては、特開昭57−208079号公報、特開昭58
−93176号公報、特開昭58−192266号公
報、特開昭62−90863号公報、特開昭62−12
2066号公報、特開平2−66856号公報等が公知
である。
However, in a secondary battery in which lithium metal is used as the negative electrode, lithium tends to grow into dendrites due to repeated charging / discharging, resulting in short circuits and shortened life. Therefore, there has been proposed a secondary battery in which various carbonaceous materials are used for the negative electrode and used by doping and dedoping with lithium ions. Further, such various carbonaceous materials can be used as a positive electrode after being doped with anions. Secondary batteries using electrodes made by doping lithium ions or anions into the above carbonaceous materials are disclosed in JP-A-57-208079 and JP-A-58.
-93176, JP-A-58-192266, JP-A-62-90863, and JP-A-62-12.
Japanese Laid-Open Patent Publication No. 2066 and Japanese Laid-Open Patent Publication No. 2-66856 are known.

【0004】このような炭素質材料としては、粉末の形
状のもの、炭素繊維あるいは炭素繊維構造体など、いず
れの形態で用いてもよい。
Such carbonaceous material may be used in any form such as powder, carbon fiber or carbon fiber structure.

【0005】さらに、最近では、高エネルギー密度化の
要求に応えるべく、高容量を示す活物質の探索、開発が
進められ、アルカリ金属を含む遷移金属酸化物や遷移金
属カルコゲンなどの無機化合物が知られている。なかで
も、Lix CoO2 (0<x≦1.0)、Lix NiO
2 (0<x≦1.0)およびLix Coy Ni1-y 2
(0<x≦1.0、0<y≦1.0)などが、高電位、
安定性、長寿命という点から最も有望であると考えてい
る。
Further, recently, in order to meet the demand for higher energy density, the search and development of active materials exhibiting high capacity have been promoted, and transition metal oxides containing alkali metals and inorganic compounds such as transition metal chalcogens have been known. Has been. Among them, Li x CoO 2 (0 <x ≦ 1.0), Li x NiO
2 (0 <x ≦ 1.0) and Li x Co y Ni 1-y O 2
(0 <x ≦ 1.0, 0 <y ≦ 1.0) is a high potential,
We believe that it is the most promising in terms of stability and long life.

【0006】しかしながら、上記のような従来の二次電
池では、負極活物質の初期容量ロスに基づく容量低下を
補償するために、正極活物質を過剰に充填せねばなら
ず、エネルギー密度を低下させる要因となっていた。こ
こで、負極活物質の初期容量ロスとは、初回の充電容量
と放電容量の差をいい、放電容量のほうが小さく、特
に、炭素質材料を負極活物質に用いた場合、大きいこと
が知られている。この原因としては、充電時における、
電解液の分解等の副反応、残存水分の電気分解、そし
て、充電時に負極活物質中に収蔵されたリチウムイオン
の一部が、放電時に出てこないこと、などが考えられて
いる。
However, in the conventional secondary battery as described above, in order to compensate for the capacity decrease due to the initial capacity loss of the negative electrode active material, the positive electrode active material must be overfilled, which lowers the energy density. It was a factor. Here, the initial capacity loss of the negative electrode active material refers to the difference between the initial charge capacity and the discharge capacity, and the discharge capacity is smaller, and it is known that it is particularly large when a carbonaceous material is used as the negative electrode active material. ing. The reason for this is that when charging,
It is considered that side reactions such as decomposition of the electrolytic solution, electrolysis of residual moisture, and that part of lithium ions stored in the negative electrode active material during charging do not come out during discharging.

【0007】この初期容量ロス対策として、前述の正極
活物質の増量以外に、負極活物質の改質、正極活物質中
のリチウム濃度の増加などが検討されてきた。特に、リ
チウム濃度の増加については、原料調整時に過剰にリチ
ウム塩を加えて、例えば、Lix CoO2 (x>1)、
Lix NiO2 (x>1)などを合成して対応しようと
試みられている。しかし、このようにして合成したリチ
ウム複合酸化物は、雰囲気中の水分に不安定で、LiC
oO2 、LiNiO2 とLiOHに分解してしまうため
に、粉砕等の後工程で乾燥雰囲気にしなければならない
という課題がある。また、特開平5−135760号に
は、正極をブチルリチウム、フェニルリチウム、ナフチ
ルリチウムあるいはヨウ化リチウムというリチウム化剤
を含む溶液に浸漬してLix CoO2 (x>1)、Li
x NiO2 (x>1)などを合成する方法が開示されて
いる。
As measures against this initial capacity loss, reforming of the negative electrode active material and increase of the lithium concentration in the positive electrode active material have been studied in addition to the above-mentioned increase of the positive electrode active material. In particular, with respect to the increase of the lithium concentration, an excessive amount of a lithium salt is added at the time of adjusting the raw material, and for example, Li x CoO 2 (x> 1),
Attempts have been made to synthesize Li x NiO 2 (x> 1) and the like to deal with it. However, the lithium composite oxide synthesized in this manner is unstable to moisture in the atmosphere, and LiC
Since it decomposes into oO 2 , LiNiO 2 and LiOH, there is a problem that a dry atmosphere must be used in a post-process such as crushing. Further, in JP-A-5-135760, the positive electrode is immersed in a solution containing a lithiating agent such as butyllithium, phenyllithium, naphthyllithium or lithium iodide to obtain Li x CoO 2 (x> 1), Li.
A method of synthesizing x NiO 2 (x> 1) and the like is disclosed.

【0008】しかしながら、上述の正極活物質中のリチ
ウム濃度を高める方法には、リチウム複合酸化物が水分
に不安定、処理(浸漬)時間が長い、残存リチウム化剤
の影響、補償する容量が正極活物質の構造安定性から大
きくできない、などの課題があった。
However, in the method of increasing the lithium concentration in the positive electrode active material described above, the lithium composite oxide is unstable in water, the treatment (immersion) time is long, the effect of the remaining lithium-forming agent, and the compensating capacity is positive. There was a problem that it could not be increased due to the structural stability of the active material.

【0009】ここで、非水系二次電池の正極活物質中に
アニリン、または、ポリアニリン、ポリピロールなどを
配合した例として、特開平5−258772号公報、特
開平5−114399号公報、特開平6−68866号
公報がある。
Here, as an example in which aniline, polyaniline, polypyrrole or the like is blended in the positive electrode active material of a non-aqueous secondary battery, JP-A-5-258772, JP-A-5-114399, and JP-A-6-1999 are cited. There is a publication of -68866.

【0010】特開平5−258772号公報では、正極
活物質にオキシ塩化鉄とアニリンを反応させて合成した
非晶質のFeOOHを用いており、一部残存している有
機物質が過充電時の緩衝作用(酸化反応)を発現すると
記載されている。この残存有機物質は合成方法からポリ
アニリンと考えられるが、正極内での分散状態が、混合
状態であるため、容量が低いという問題がある。
In Japanese Unexamined Patent Publication (Kokai) No. 5-258772, amorphous FeOOH synthesized by reacting iron oxychloride and aniline is used as a positive electrode active material, and a part of the remaining organic material is overcharged. It is described as expressing a buffering action (oxidation reaction). This residual organic substance is considered to be polyaniline from the synthetic method, but there is a problem that the capacity is low because the dispersed state in the positive electrode is a mixed state.

【0011】特開平5−114399号公報および特開
平6−68866号公報は、ともに正極にポリアニリン
やポリピロールという導電性高分子を添加している。し
かしながら、これについても、正極内の分散状態は混合
状態であるため、上記と同様の問題がある。さらに、特
開平5−114399号公報では、正極の嵩密度が0.
6〜2.0g/cm3 であることを特徴としているが、
この場合にも、容量が低いという問題があった。
In both JP-A-5-114399 and JP-A-6-68866, conductive polymers such as polyaniline and polypyrrole are added to the positive electrode. However, also in this case, since the dispersed state in the positive electrode is a mixed state, there is the same problem as described above. Further, in JP-A-5-114399, the positive electrode has a bulk density of 0.
It is characterized by 6 to 2.0 g / cm 3 ,
Also in this case, there is a problem that the capacity is low.

【0012】[0012]

【発明が解決しようとする課題】本発明は、かかる従来
技術の欠点を解消しようとするものであり、高容量の二
次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is intended to solve the drawbacks of the prior art, and an object thereof is to provide a high capacity secondary battery.

【0013】[0013]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下の構成を有するものである。
The present invention has the following constitution in order to solve the above problems.

【0014】「少なくとも一部が電解酸化膜で覆われて
いる正極を用いた非水系二次電池であって、かつ、該正
極の嵩密度が2.2g/cm3 以上であることを非水系二次
電池。」本発明の二次電池は、上述のようにアルカリ金
属塩を含む非水電解液を用いた二次電池として好ましく
用いられる。そこで、以下、リチウムイオン二次電池を
例に取り挙げ、具体例を挙げながら詳述する。
"A non-aqueous secondary battery using a positive electrode at least a part of which is covered with an electrolytic oxide film, and the bulk density of the positive electrode is 2.2 g / cm 3 or more. Secondary Battery. ”As described above, the secondary battery of the present invention is preferably used as a secondary battery using a nonaqueous electrolytic solution containing an alkali metal salt. Therefore, the lithium ion secondary battery will be described below as an example and will be described in detail with specific examples.

【0015】本発明者らは、前述の初期容量ロスの低減
対策を鋭意検討した結果、電解液中にピロールを添加し
た場合、この初期容量ロスが低減されることを見い出し
た。さらに、ピロール以外にも、アクリロニトリル、フ
ェノール、アニリン、チオフェンなども初期容量ロス低
減効果を有することを見い出した。このロスの低減は、
正極表面で上記モノマが酸化されて電解酸化膜が重合さ
れることに起因すると考えられる。すなわち、電極表面
で、アクリロニトリル重合体、フェノール重合体、ポリ
ピロール、ポリアニリン、ポリチオフェン等の重合薄膜
が初期の充電時に形成されることが、初期容量ロスの低
減対策に有効である。
As a result of intensive studies on the above-mentioned measures for reducing the initial capacity loss, the present inventors have found that the initial capacity loss is reduced when pyrrole is added to the electrolytic solution. In addition to pyrrole, it was found that acrylonitrile, phenol, aniline, thiophene, etc. also have an initial capacity loss reducing effect. This loss reduction is
It is considered that this is because the above-mentioned monomer is oxidized on the surface of the positive electrode and the electrolytic oxide film is polymerized. That is, it is effective for reducing the initial capacity loss that a polymerized thin film of acrylonitrile polymer, phenol polymer, polypyrrole, polyaniline, polythiophene or the like is formed on the electrode surface during the initial charge.

【0016】充電時に、正極電位の上昇にともなって副
反応が起き、正極活物質からリチウムイオンが電解液中
に放出されるとともに、電解液中のモノマ(ピロール
等)が、電子を正極に与えることによって、電解液中の
モノマーの電解酸化重合反応が生じる。このとき、負極
側では、電解液中から負極活物質にリチウムイオンが挿
入される。このため、電解液中のリチウムイオン濃度は
減少するが、通常用いられている電解液中のリチウム塩
濃度は1モル以上と大過剰であり、問題はない。さら
に、重合した電解酸化膜がポリピロール、ポリアニリ
ン、チオフェンなどのような導電性膜である場合、電極
抵抗の低下にも寄与し好適である。一般的に、このよう
な電解酸化反応では、水素ガスが発生するが、多くは電
解液中に溶解し、問題はないが、多量に発生する場合
は、電池缶内に水素吸蔵合金のような水素吸蔵物質を配
置すると良い。
During charging, a side reaction occurs with the rise of the positive electrode potential, lithium ions are released from the positive electrode active material into the electrolytic solution, and a monomer (pyrrole or the like) in the electrolytic solution gives electrons to the positive electrode. As a result, an electrolytic oxidative polymerization reaction of the monomer in the electrolytic solution occurs. At this time, on the negative electrode side, lithium ions are inserted into the negative electrode active material from the electrolytic solution. Therefore, the lithium ion concentration in the electrolytic solution is reduced, but the lithium salt concentration in the commonly used electrolytic solution is a large excess of 1 mol or more, and there is no problem. Furthermore, when the polymerized electrolytic oxide film is a conductive film such as polypyrrole, polyaniline, or thiophene, it is suitable because it contributes to the reduction of the electrode resistance. Generally, in such an electrolytic oxidation reaction, hydrogen gas is generated, but most of it dissolves in the electrolytic solution and there is no problem. It is advisable to place a hydrogen storage material.

【0017】電解液に、0.01〜5.0mol /リット
ル程度の濃度の、電解酸化膜を形成可能な物質(アクロ
ニトリル、フェノールおよびその誘導体、アニリン、ピ
ロール、チオフェン、パラフェニレン、フェニレンビニ
レンおよびその誘導体など)を添加しておき、電池に組
み立てた後、1回充放電することによって、負極初期容
量ロスは解消され、高エネルギーの二次電池が得られ
る。ここで、電解酸化膜を形成可能な物質の重合体(例
えばポリアニリンなど)を正極中に分散混合したものと
は、その正極内の分散状態が異なるので、明快に区別で
きる。すなわち、本発明の場合、電解酸化重合は、正極
のいたるところで均一に起こり、電解酸化膜が形成され
るのに対して、重合体を正極中に分散混合したものは、
あくまでも混合物であるため、重合体の塊が分散すると
いう具合で、膜状には存在しない。電解酸化時の電流が
大きすぎると、正極表面近傍に電解酸化膜が比較的多く
存在する場合があるが、この場合も、重合体の塊の分散
状態とは全く異なる。
Substances capable of forming an electrolytic oxide film (acrylonitrile, phenol and its derivatives, aniline, pyrrole, thiophene, paraphenylene, phenylenevinylene and the like) having a concentration of about 0.01 to 5.0 mol / liter in an electrolytic solution. (Derivatives thereof, etc.) are added and the battery is assembled and then charged and discharged once to eliminate the initial capacity loss of the negative electrode and obtain a high energy secondary battery. Here, since the dispersion state in the positive electrode is different from that in which a polymer of a substance capable of forming an electrolytic oxide film (for example, polyaniline) is dispersed and mixed, it can be clearly distinguished. That is, in the case of the present invention, electrolytic oxidative polymerization uniformly occurs everywhere in the positive electrode, and an electrolytic oxide film is formed, whereas the one obtained by dispersing and mixing the polymer in the positive electrode is
Since it is a mixture to the last, it does not exist in the form of a film because the polymer mass is dispersed. If the current during electrolytic oxidation is too large, there may be a relatively large amount of electrolytic oxide film near the surface of the positive electrode, but in this case as well, the state of dispersion of polymer lumps is quite different.

【0018】本発明において、電解酸化膜の正極におけ
る重量比率は、1〜20重量部であることが好ましく、
さらには、5〜10重量部であることが好ましい。1重
量部未満だと補償効果が小さすぎ、また、20重量部を
越えると、電解酸化重合時に正極材がひび割れたり、集
電体から剥離してしまう。1〜20重量部とすることに
より、初期ロス解消に有効な補償効果が得られ、かつ、
サイクル寿命特性など安定な正極性能が得られる。すな
わち、嵩密度で表すと、2.2g/cm3 以上であることが
必要である。
In the present invention, the weight ratio of the electrolytic oxide film to the positive electrode is preferably 1 to 20 parts by weight,
Further, it is preferably 5 to 10 parts by weight. If it is less than 1 part by weight, the compensation effect is too small, and if it exceeds 20 parts by weight, the positive electrode material is cracked or peeled off from the current collector during electrolytic oxidation polymerization. By adjusting the amount to 1 to 20 parts by weight, a compensating effect effective for eliminating the initial loss can be obtained, and
Stable positive electrode performance such as cycle life characteristics can be obtained. That is, when expressed in bulk density, it must be 2.2 g / cm 3 or more.

【0019】本発明に用いられる正極活物質としては、
アルカリ金属を含む遷移金属酸化物や遷移金属カルコゲ
ンなどの無機化合物、ポリパラフェニレン、ポリフェニ
レンビニレン、ポリアニリン、ポリピロール、ポリチオ
フェンなどの共役系高分子、ジスルフィド結合を有する
架橋高分子など、通常の二次電池において用いられる正
極を挙げることができる。これらの中で、リチウム塩を
含む非水電解液を用いた二次電池の場合には、コバル
ト、マンガン、モリブデン、バナジウム、クロム、鉄、
銅、チタンなどの遷移金属酸化物や遷移金属カルコゲン
が好ましく用いられる。特に前述のように、Lix Co
2 (0<x≦1.0)、Lix NiO2(0<x≦
1.0)およびLix Coy Ni1-y 2 (0<x≦
1.0、0<y≦1.0)などが、高電位、安定性、長
寿命という点から最も有望であると考えている。
As the positive electrode active material used in the present invention,
Inorganic compounds such as transition metal oxides and chalcogens containing alkali metals, conjugated polymers such as polyparaphenylene, polyphenylene vinylene, polyaniline, polypyrrole and polythiophene, crosslinked polymers with disulfide bonds, etc. The positive electrode used in can be mentioned. Among these, in the case of a secondary battery using a non-aqueous electrolyte containing a lithium salt, cobalt, manganese, molybdenum, vanadium, chromium, iron,
Transition metal oxides such as copper and titanium and transition metal chalcogens are preferably used. In particular, as mentioned above, Li x Co
O 2 (0 <x ≦ 1.0), Li x NiO 2 (0 <x ≦
1.0) and Li x Co y Ni 1-y O 2 (0 <x ≦
1.0, 0 <y ≦ 1.0) and the like are considered to be the most promising in terms of high potential, stability, and long life.

【0020】本発明の負極としては、炭素質材料が好ま
しく用いられる。炭素質材料としては、特に限定される
ものではなく、一般に有機物を焼成したものが用いられ
る。炭素質材料の電子伝導性が集電の目的に対して充分
に高い場合は、導電剤を添加する必要はない。
A carbonaceous material is preferably used for the negative electrode of the present invention. The carbonaceous material is not particularly limited, and a material obtained by firing an organic material is generally used. When the electron conductivity of the carbonaceous material is sufficiently high for the purpose of collecting electricity, it is not necessary to add a conductive agent.

【0021】本発明の電極の対極として炭素繊維が用い
られる場合、どのような形態をとっても構わないが、一
軸方向に配置したり、もしくは布帛状やフェルト状の構
造体にするなどが、好ましい形態となる。
When a carbon fiber is used as the counter electrode of the electrode of the present invention, it may have any form, but it is preferably arranged in a uniaxial direction or a fabric-like or felt-like structure. Becomes

【0022】本発明の電極を用いた二次電池の電解液と
しては、特に限定されることなく従来の電解液が用いら
れ、例えば酸あるいはアルカリ水溶液、または非水溶媒
などが挙げられる。この中で、上述のアルカリ金属塩を
含む非水電解液からなる二次電池の電解液としては、プ
ロピレンカーボネート(PC)、エチレンカーボネート
(EC)、γ−ブチロラクトン(BL)、N−メチルピ
ロリドン(MP)、アセトニトリル(AN)、N,N−
ジメチルホルムアミド、ジメチルスルフォキシド、テト
ラヒドロフラン(THF)、1,3−ジオキソラン、ギ
酸メチル、スルホラン(SL)、オキサゾリドン、塩化
チオニル、1,2−ジメトキシエタン(DME)、ジエ
チレンカーボネート(DEC)、ジメチルカーボネート
(DMC)や、これらの誘導体や混合物などが好ましく
用いられる。電解液に含まれる電解質としては、アルカ
リ金属、特にリチウムのハロゲン化物、過塩素酸塩、チ
オシアン塩、ホウフッ化塩、リンフッ化塩、砒素フッ化
塩、アルミニウムフッ化塩、トリフルオロメチル硫酸塩
などが好ましく用いられる。
The electrolytic solution of the secondary battery using the electrode of the present invention is not particularly limited, and a conventional electrolytic solution may be used, and examples thereof include an acid or alkaline aqueous solution or a non-aqueous solvent. Among them, as an electrolyte solution of a secondary battery composed of the above-mentioned non-aqueous electrolyte solution containing an alkali metal salt, propylene carbonate (PC), ethylene carbonate (EC), γ-butyrolactone (BL), N-methylpyrrolidone ( MP), acetonitrile (AN), N, N-
Dimethylformamide, dimethylsulfoxide, tetrahydrofuran (THF), 1,3-dioxolane, methyl formate, sulfolane (SL), oxazolidone, thionyl chloride, 1,2-dimethoxyethane (DME), diethylene carbonate (DEC), dimethyl carbonate. (DMC) and derivatives and mixtures of these are preferably used. As the electrolyte contained in the electrolytic solution, alkali metal, particularly lithium halide, perchlorate, thiocyanate, borofluoride, phosphorus fluoride, arsenic fluoride, aluminum fluoride, trifluoromethyl sulfate, etc. Is preferably used.

【0023】本発明の電極を用いた二次電池の用途とし
ては、軽量かつ高容量で高エネルギー密度の特徴を利用
して、ビデオカメラ、パソコン、ワープロ、ラジカセ、
携帯電話などの携帯用小型電子機器に広く利用可能であ
る。
The secondary battery using the electrode of the present invention can be used as a video camera, a personal computer, a word processor, a radio-cassette, by utilizing the features of light weight, high capacity and high energy density.
It is widely applicable to portable small electronic devices such as mobile phones.

【0024】[0024]

【実施例】本発明の具体的実施態様を以下に実施例をも
って述べるが、本発明はこれに限定されるものではな
い。なお、高容量(高エネルギー)の二次電池の判断
は、市販の単3形リチウムイオン二次電池(US61#
14500;ソニー・エナージー・テック社製)の容
量、350mAhより多いかどうかで行った。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto. It should be noted that the judgment of a high capacity (high energy) secondary battery is based on a commercially available AA lithium ion secondary battery (US61 #
14500; manufactured by Sony Energy Tech Co., Ltd.) with a capacity of 350 mAh.

【0025】実施例1 市販の炭酸リチウム(Li2 CO3 )と塩基性炭酸コバ
ルト(2CoCO3 ・3Co(OH)2 をモル比でLi
/Co=1/1となるように秤量、ジルコニア製ボール
ミルで湿式混合(粉砕溶媒にエタノール使用)後、90
0℃で20時間熱処理してLiCoO2 を合成した。こ
れを上記ボールミルで粉砕してLiCoO2 粉末を得
た。この粉末に導電剤としてアセチレンブラックを、結
着剤としてポリフッ化ビニリデン(以下PVDFと略称
する)をそれぞれ4重量部、7重量部添加し、溶媒のN
MPで粘度調整してペースト状にした。これを、予め表
面をn−ヘキサンで脱脂しておいた厚さ13μmのアル
ミ箔上に塗布し、乾燥後、さらに200℃で15分間熱
処理して、電極部の幅50mm、長さ200mmのLi
CoO2 電極シートを作製した。この電極シートを、線
圧約100kgf/cmでローラープレスしてアルミ集
電体に圧着した後、カッティングして放電容量測定用試
料とした。また、正極材の厚み、面積、重量から嵩密度
を求めたところ、3.15g/cm3 であった。
Example 1 Commercially available lithium carbonate (Li 2 CO 3 ) and basic cobalt carbonate (2CoCO 3 .3Co (OH) 2 were used in a molar ratio of Li.
/ Co = 1/1, weighed with a zirconia ball mill (we use ethanol as a grinding solvent), and then 90
LiCoO 2 was synthesized by heat treatment at 0 ° C. for 20 hours. This was crushed with the above ball mill to obtain LiCoO 2 powder. To this powder, acetylene black was added as a conductive agent, and polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder was added in an amount of 4 parts by weight and 7 parts by weight, respectively.
The viscosity was adjusted with MP to obtain a paste. This is applied on an aluminum foil having a thickness of 13 μm whose surface has been degreased in advance with n-hexane, dried and further heat-treated at 200 ° C. for 15 minutes to form a Li electrode having a width of 50 mm and a length of 200 mm.
A CoO 2 electrode sheet was prepared. The electrode sheet was roller-pressed at a linear pressure of about 100 kgf / cm to be pressure-bonded to an aluminum current collector, and then cut to obtain a discharge capacity measurement sample. Further, the bulk density was calculated from the thickness, area and weight of the positive electrode material and was found to be 3.15 g / cm 3 .

【0026】こうして作製したLiCoO2 正極に、市
販のPAN系炭素繊維(“トレカ”T−300、東レ
(株)製)3ストランド(3K:3000本)を負極に
し、多孔質ポリプロピレンフィルム(セルガード#25
00、ダイセル化学(株)製)のセパレータを介して重
ね合わせて、ガラスセル二次電池を作製した。電解液
は、1MLiBF4 含むECとDEC(体積比1:1)
を用い、0.1mol/リットルの濃度のピロールを添加し
た。このようにして作製した二次電池を用いて、LiC
oO2 当たりの電流密度30mA/gの定電流で、4.
3V(vs.Li+ /Li)まで充電した。充電後、30mA/g
の定電流で3.0V(vs.Li+ /Li)まで放電した。このと
き、電荷量から求められる電池当たりの充電容量は、
6.7mAhで、放電容量は5.5mAhであった。さ
らに、2回目の充放電における容量は、充電容量が5.
5mAhで、放電容量は5.5mAhであった。これ
は、単3形電池換算で約500mAhとなり、高容量
(高エネルギー)の二次電池である。電池容量測定後、
ガラスセルを分解し、フーリエ変換赤外線分光器(FT
−IR510;Nicolet Analytical Instruments社製)
を用いて、正極表面の全反射スペクトルを測定したとこ
ろ、ポリピロールの生成が確認された。
A commercially available PAN-based carbon fiber (“Torayca” T-300, manufactured by Toray Industries, Inc.) 3 strands (3K: 3000 pieces) was used as a negative electrode on the LiCoO 2 positive electrode thus prepared, and a porous polypropylene film (Celguard # 25
No. 00, manufactured by Daicel Chemical Industries, Ltd., and the glass cell secondary battery was manufactured by stacking them via a separator. The electrolyte is 1M LiBF 4 containing EC and DEC (volume ratio 1: 1).
And pyrrole having a concentration of 0.1 mol / liter was added. Using the secondary battery produced in this way, LiC
3. With constant current of 30 mA / g of current density per oO 2 .
It was charged to 3V (vs. Li + / Li). 30 mA / g after charging
At a constant current of 3.0 V (vs. Li + / Li). At this time, the charge capacity per battery calculated from the charge amount is
The discharge capacity was 6.7 mAh and the discharge capacity was 5.5 mAh. Further, the charge capacity of the second charge / discharge is 5.
At 5 mAh, the discharge capacity was 5.5 mAh. This is a high-capacity (high-energy) secondary battery with an AA battery conversion of about 500 mAh. After measuring the battery capacity,
The glass cell is disassembled and the Fourier transform infrared spectroscope (FT
-IR510; manufactured by Nicolet Analytical Instruments)
When the total reflection spectrum of the positive electrode surface was measured using, the formation of polypyrrole was confirmed.

【0027】比較例1 ピロールを添加しないこと以外は、実施例1と同様にし
てガラスセル二次電池を作製し、充放電評価を行った。
1回目の充電容量は、5.5mAhで、放電容量は3.
1mAhであった。さらに、2回目の充放電における容
量は、充電容量が3.2mAhで、放電容量は3.1m
Ahであった。これは単3形電池換算で約280mAh
となる。
Comparative Example 1 A glass cell secondary battery was prepared in the same manner as in Example 1 except that pyrrole was not added, and charge / discharge evaluation was performed.
The first charge capacity is 5.5 mAh and the discharge capacity is 3.
It was 1 mAh. Furthermore, regarding the capacity in the second charge / discharge, the charge capacity is 3.2 mAh and the discharge capacity is 3.1 m.
It was Ah. This is approximately 280 mAh in terms of AA batteries
Becomes

【0028】実施例2 塩基性炭酸コバルトの代わりに、塩基性炭酸ニッケル
(NiCO3 ・2Ni(OH)2 ・4H2 O)を用い、
酸素100%の雰囲気で熱処理してLiNiO2を合成
したほかは、実施例1と同様にしてガラスセル二次電池
を作製した。このとき用いた正極材の嵩密度は、3.2
0g/cm3 であった。次に、このようにして作製したガラ
スセル二次電池を用いて、充電電位を4.2V(vs.Li+
/Li)とした以外は、実施例1と同様に、電解液に所定量
のピロールを添加して充放電評価を行った。この時の1
回目の充電容量は、7.6mAhで、放電容量は6.5
mAhであった。さらに、2回目の充放電における容量
は、充電容量が6.5mAhで、放電容量は6.5mA
hであった。これは、単3形電池換算で約590mAh
となり、高容量(高エネルギー)の二次電池である。
Example 2 Basic nickel carbonate (NiCO 3 .2Ni (OH) 2 .4H 2 O) was used in place of basic cobalt carbonate,
A glass cell secondary battery was produced in the same manner as in Example 1 except that LiNiO 2 was synthesized by heat treatment in an atmosphere of 100% oxygen. The bulk density of the positive electrode material used at this time was 3.2.
It was 0 g / cm 3 . Next, using the glass cell secondary battery thus produced, the charging potential was 4.2 V (vs. Li +
Charge / discharge evaluation was performed by adding a predetermined amount of pyrrole to the electrolytic solution in the same manner as in Example 1 except that / Li) was used. 1 at this time
The charge capacity of the first time is 7.6 mAh and the discharge capacity is 6.5.
It was mAh. Further, regarding the capacity in the second charge / discharge, the charge capacity is 6.5 mAh and the discharge capacity is 6.5 mA.
It was h. This is approximately 590 mAh in terms of AA batteries.
It is a high capacity (high energy) secondary battery.

【0029】電池容量測定後、実施例1と同様に、フー
リエ変換赤外線分光器を用いて、正極表面の全反射スペ
クトルを測定したところ、ポリピロールの生成が確認さ
れた。
After measuring the battery capacity, the total reflection spectrum on the surface of the positive electrode was measured by using a Fourier transform infrared spectroscope in the same manner as in Example 1, and it was confirmed that polypyrrole was produced.

【0030】比較例2 ピロールを添加しないこと以外は、実施例2と同様にガ
ラスセルを作製し、充放電評価を行った。この時の1回
目の充電容量は、6.5mAhで、放電容量は3.7m
Ahであった。さらに、2回目の充放電における容量
は、充電容量が3.8mAhで、放電容量は3.7mA
hであった。これは単3形電池換算で約340mAhと
なる。
Comparative Example 2 A glass cell was prepared in the same manner as in Example 2 except that pyrrole was not added, and charge / discharge evaluation was performed. At this time, the first charge capacity is 6.5 mAh and the discharge capacity is 3.7 m.
It was Ah. Furthermore, regarding the second charge / discharge capacity, the charge capacity was 3.8 mAh and the discharge capacity was 3.7 mA.
It was h. This is about 340 mAh in terms of AA batteries.

【0031】実施例3 実施例1および実施例2で用いた電極活物質原料を用い
て、酸化物換算でLi1.0 (Co0.5 Ni0.5 )O2
なるように、秤量、混合後、実施例1と同様にして正極
を作製した。このとき用いた正極材の嵩密度は、3.1
8g/cm3 であった。次に、このようにして作製した正極
を用いて、電解液に0.1mol/リットルの濃度のアニリ
ンを添加した以外は実施例1と同様にして充放電評価を
行った。この時の1回目の充電容量は、7.2mAh
で、放電容量は6.0mAhであった。さらに、2回目
の充放電における容量は、充電容量が6.3mAhで、
放電容量は6.0mAhであった。これは単3形電池換
算で約550mAhとなり、高容量(高エネルギー)の
二次電池である。
Example 3 The electrode active material raw materials used in Examples 1 and 2 were weighed and mixed to obtain Li 1.0 (Co 0.5 Ni 0.5 ) O 2 in terms of oxide. A positive electrode was produced in the same manner as in 1. The bulk density of the positive electrode material used at this time was 3.1.
It was 8 g / cm 3 . Next, using the positive electrode thus manufactured, charge and discharge evaluation was performed in the same manner as in Example 1 except that aniline having a concentration of 0.1 mol / liter was added to the electrolytic solution. The first charge capacity at this time is 7.2 mAh.
The discharge capacity was 6.0 mAh. Furthermore, the capacity in the second charge and discharge is 6.3 mAh,
The discharge capacity was 6.0 mAh. This is a secondary battery of high capacity (high energy), which is about 550 mAh in terms of AA battery.

【0032】電池容量測定後、実施例1と同様に、フー
リエ変換赤外線分光器を用いて、正極表面の全反射スペ
クトルを測定したところ、ポリアニリンの生成が確認さ
れた。
After measuring the battery capacity, the total reflection spectrum of the positive electrode surface was measured using a Fourier transform infrared spectroscope in the same manner as in Example 1, and it was confirmed that polyaniline was produced.

【0033】比較例3 アニリンを添加しないこと以外は、実施例3と同じLi
1.0 (Co0.5 Ni0. 5 )O2 を用いて、実施例3と同
様にガラスセル二次電池を作製し、充放電評価を行っ
た。この時の1回目の充電容量は、6.2mAhで、放
電容量は3.3mAhであった。さらに、2回目の充放
電における容量は、充電容量が3.3mAhで、放電容
量は3.3mAhであった。これは単3形電池換算で約
300mAhとなる。
Comparative Example 3 The same Li as in Example 3 except that aniline was not added.
1.0 using (Co 0.5 Ni 0. 5) O 2, was prepared in the same manner as the glass cell secondary battery as in Example 3, it was subjected to a charge and discharge evaluation. At this time, the first charge capacity was 6.2 mAh and the discharge capacity was 3.3 mAh. Further, regarding the capacity in the second charge / discharge, the charge capacity was 3.3 mAh and the discharge capacity was 3.3 mAh. This is about 300 mAh in terms of AA batteries.

【0034】実施例4 負極活物質に市販のピッチコークスを用い、該ピッチコ
ークスを90重量部、PVDFを10重量部として秤
量、混合後、NMPで粘度調整してペースト状にし、厚
み13μmの銅箔上に展開後、正極同様に乾燥、プレス
して作製した負極を用いた以外は、実施例1と同様にし
てガラスセル二次電池を作製し、充放電評価を行った。
この時の1回目の充電容量は、5.6mAhで、放電容
量は4.3mAhであった。さらに、2回目の充放電に
おける容量は、充電容量が4.4mAhで、放電容量は
4.3mAhであった。これは、単3形電池換算で約3
90mAhとなり、高容量(高エネルギー)の二次電池
である。
Example 4 A commercially available pitch coke was used as the negative electrode active material, and 90 parts by weight of the pitch coke and 10 parts by weight of PVDF were weighed and mixed, and then the viscosity was adjusted with NMP to form a paste. A glass cell secondary battery was prepared in the same manner as in Example 1 except that a negative electrode prepared by drying and pressing the same as the positive electrode after spreading on a foil was used, and charge / discharge evaluation was performed.
At this time, the first charge capacity was 5.6 mAh and the discharge capacity was 4.3 mAh. Further, regarding the capacities in the second charge and discharge, the charge capacity was 4.4 mAh and the discharge capacity was 4.3 mAh. This is about 3 AA batteries.
The rechargeable battery has a high capacity (high energy) of 90 mAh.

【0035】電池容量測定後、実施例1と同様に、フー
リエ変換赤外線分光器を用いて、正極表面の全反射スペ
クトルを測定したところ、ポリピロールの生成が確認さ
れた。
After measuring the battery capacity, the total reflection spectrum of the positive electrode surface was measured by using a Fourier transform infrared spectroscope in the same manner as in Example 1, and it was confirmed that polypyrrole was produced.

【0036】比較例4 ピロールを添加しないこと以外は、実施例4と同様にし
てガラスセル二次電池を作製し、充放電評価を行った。
1回目の充電容量は、4.3mAhで、放電容量は2.
3mAhであった。さらに、2回目の充放電における容
量は、充電容量が2.4mAhで、放電容量は2.3m
Ahであった。これは単3形電池換算で約210mAh
となる。
Comparative Example 4 A glass cell secondary battery was prepared in the same manner as in Example 4 except that pyrrole was not added, and charge / discharge evaluation was performed.
The first charge capacity is 4.3 mAh and the discharge capacity is 2.
It was 3 mAh. Furthermore, regarding the capacity in the second charge / discharge, the charge capacity is 2.4 mAh and the discharge capacity is 2.3 m.
It was Ah. This is approximately 210 mAh in terms of AA batteries.
Becomes

【0037】[0037]

【発明の効果】本発明により、高容量(高エネルギー)
の二次電池の作製が可能になる。
According to the present invention, high capacity (high energy)
The secondary battery can be manufactured.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一部が電解酸化膜で覆われてい
る正極を用いた非水系二次電池であって、かつ、該正極
の嵩密度が2.2g/cm3 以上であることを非水系二次電
池。
1. A non-aqueous secondary battery using a positive electrode, at least a portion of which is covered with an electrolytic oxide film, wherein the positive electrode has a bulk density of 2.2 g / cm 3 or more. Aqueous secondary battery.
【請求項2】該電解酸化膜が高分子膜であることを特徴
とする請求項1記載の非水系二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the electrolytic oxide film is a polymer film.
【請求項3】該高分子が、アクリロニトリル重合体、フ
ェノール重合体およびその誘導体の中から選ばれること
を特徴とする請求項2記載の非水系二次電池。
3. The non-aqueous secondary battery according to claim 2, wherein the polymer is selected from an acrylonitrile polymer, a phenol polymer and a derivative thereof.
【請求項4】該高分子膜が、導電性高分子膜であること
を特徴とする請求項2記載の非水系二次電池。
4. The non-aqueous secondary battery according to claim 2, wherein the polymer film is a conductive polymer film.
【請求項5】該導電性高分子膜が、ポリアニリン、ポリ
ピロール、ポリチオフェン、ポリパラフェニレンおよび
ポリフェニレンビニレンから選ばれる共役系高分子、お
よびその誘導体の中から選ばれたものであることを特徴
とする請求項4記載の非水系二次電池。
5. The conductive polymer film is selected from a conjugated polymer selected from polyaniline, polypyrrole, polythiophene, polyparaphenylene and polyphenylenevinylene, and a derivative thereof. The non-aqueous secondary battery according to claim 4.
【請求項6】電池缶内に、水素吸蔵物質を配置している
ことを特徴とする請求項5記載の非水系二次電池。
6. The non-aqueous secondary battery according to claim 5, wherein a hydrogen storage material is arranged in the battery can.
【請求項7】正極活物質がリチウム複合酸化物であるこ
とを特徴とする請求項1〜6のいずれか1項に記載の非
水系二次電池。
7. The non-aqueous secondary battery according to claim 1, wherein the positive electrode active material is a lithium composite oxide.
【請求項8】該リチウム複合酸化物が、Lix CoO2
(0<x≦1.0)、Lix NiO2 (0<x≦1.
0)およびLix Coy Ni1-y 2 (0<x≦1.
0、0<y≦1.0)の中から選ばれたものであること
を特徴とする請求項7記載の非水系二次電池。
8. The lithium composite oxide is Li x CoO 2
(0 <x ≦ 1.0), Li x NiO 2 (0 <x ≦ 1.
0) and Li x Co y Ni 1-y O 2 (0 <x ≦ 1.
The non-aqueous secondary battery according to claim 7, wherein the non-aqueous secondary battery is selected from the group consisting of 0, 0 <y ≤ 1.0).
【請求項9】負極活物質として、炭素質材料を用いるこ
とを特徴とする請求項1〜8のいずれか1項に記載の非
水系二次電池。
9. The non-aqueous secondary battery according to claim 1, wherein a carbonaceous material is used as the negative electrode active material.
【請求項10】該炭素質材料が炭素繊維であることを特
徴とする請求項9記載の非水系二次電池。
10. The non-aqueous secondary battery according to claim 9, wherein the carbonaceous material is carbon fiber.
JP6274872A 1994-11-09 1994-11-09 Non-aqueous secondary battery Pending JPH08138649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6274872A JPH08138649A (en) 1994-11-09 1994-11-09 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6274872A JPH08138649A (en) 1994-11-09 1994-11-09 Non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH08138649A true JPH08138649A (en) 1996-05-31

Family

ID=17547740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6274872A Pending JPH08138649A (en) 1994-11-09 1994-11-09 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH08138649A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
JP2002237301A (en) * 2001-02-07 2002-08-23 Denso Corp Nonaqueous electrolytic solution secondary battery
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
KR100412524B1 (en) * 2001-05-10 2003-12-31 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
US7008728B2 (en) 2001-04-09 2006-03-07 Samsung Sdi Co., Ltd. Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2011159568A (en) * 2010-02-03 2011-08-18 Kri Inc Positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery using the same
US9847551B2 (en) 2012-06-08 2017-12-19 Nec Corporation Lithium-ion secondary battery
WO2018088208A1 (en) * 2016-11-08 2018-05-17 株式会社日立製作所 Secondary battery system
CN114639878A (en) * 2020-12-16 2022-06-17 中国科学院理化技术研究所 Aqueous lithium ion battery electrolyte based on oligomer and application thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
US6794085B2 (en) 1997-05-15 2004-09-21 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US7074382B2 (en) 1998-11-13 2006-07-11 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
US6620400B2 (en) 1998-11-13 2003-09-16 Fmc Corporation Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
JP2002237301A (en) * 2001-02-07 2002-08-23 Denso Corp Nonaqueous electrolytic solution secondary battery
US7008728B2 (en) 2001-04-09 2006-03-07 Samsung Sdi Co., Ltd. Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100412524B1 (en) * 2001-05-10 2003-12-31 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
JP2011159568A (en) * 2010-02-03 2011-08-18 Kri Inc Positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery using the same
US9847551B2 (en) 2012-06-08 2017-12-19 Nec Corporation Lithium-ion secondary battery
WO2018088208A1 (en) * 2016-11-08 2018-05-17 株式会社日立製作所 Secondary battery system
CN114639878A (en) * 2020-12-16 2022-06-17 中国科学院理化技术研究所 Aqueous lithium ion battery electrolyte based on oligomer and application thereof

Similar Documents

Publication Publication Date Title
US9786904B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery having the same
EP1722430B1 (en) Secondary battery using a radical compound as active electrode material
US6007947A (en) Mixed lithium manganese oxide and lithium nickel cobalt oxide positive electrodes
JP3416016B2 (en) Ion conductor for lithium secondary battery and lithium secondary battery using the same
US6497980B2 (en) Organic electrolytic solution and lithium secondary battery adopting the same
JPH1173962A (en) Nonaqueous system secondary battery
JP2001023687A (en) Nonaqueous electrolyte battery
JP2009123474A (en) Nonaqueous electrolyte battery
JPH08195199A (en) Electrode for battery and secondary battery using it
JPH08138649A (en) Non-aqueous secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JP2001015156A (en) Nonaqueous electrolyte battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP4172061B2 (en) Non-aqueous electrolyte secondary battery
JP4103168B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4166295B2 (en) Non-aqueous electrolyte battery
JP2002175836A (en) Nonaqueous electrolyte battery
JPH10172610A (en) Lithium secondary battery
JP4085481B2 (en) battery
JP4224681B2 (en) Nonaqueous electrolyte secondary battery
US20020127476A1 (en) Non-aqueous electrolyte secondary battery
JP2002270222A (en) Non-aqueous electrolyte and secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH08180878A (en) Lithium secondary battery
JP3394020B2 (en) Lithium ion secondary battery