JPH08195199A - Electrode for battery and secondary battery using it - Google Patents

Electrode for battery and secondary battery using it

Info

Publication number
JPH08195199A
JPH08195199A JP7007234A JP723495A JPH08195199A JP H08195199 A JPH08195199 A JP H08195199A JP 7007234 A JP7007234 A JP 7007234A JP 723495 A JP723495 A JP 723495A JP H08195199 A JPH08195199 A JP H08195199A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
positive electrode
donating compound
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7007234A
Other languages
Japanese (ja)
Inventor
Gakuji Inoue
岳治 井上
Jun Tsukamoto
遵 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7007234A priority Critical patent/JPH08195199A/en
Publication of JPH08195199A publication Critical patent/JPH08195199A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To compensate the initial capacity loss and attain a high capacity by containing an electron donating compound capable of generating anions and cation radical salt in an electrolyte. CONSTITUTION: An electron donating compound forming anions and cation radical salt in an electrolyte is added to a positive electrode or the electrolyte to prevent the reduction of ion conduction of the electrolyte. When a battery is charged and discharged once after it is assembled, the initial capacity loss of a negative electrode is resolved, and high energy is attained. A condensation polycyclic aromatic compound or a heterocyclic compound is used for the electron donating compound. An inorganic compound such as a transition metal oxide containing an alkaline metal or transition metal chalcogen, or a conjugate polymer such as polyparaphenylene is used for a positive electrode active material. When a nonaqueous electrolyte containing lithium salt is used, a transition metal oxide such as cobalt or manganese or transition metal chalcogen is used. The initial charge capacity of a positive electrode is increased, and the capacity of the battery is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウムを吸蔵放出する
材料を正極及び負極に用いた二次電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery using a material that absorbs and releases lithium as a positive electrode and a negative electrode.

【0002】[0002]

【従来の技術】近年、ビデオカメラやノート型パソコン
などのポータブル機器の普及に伴い、小型高容量の二次
電池に対する需要が高まっている。現在使用されている
二次電池のほとんどはアルカリ電解液を用いたニッケル
−カドミウム電池であるが、電池電圧が約1.2Vと低
く、エネルギー密度の向上は困難である。そのため、負
極にリチウム金属を使用するリチウム二次電池が検討さ
れた。
2. Description of the Related Art In recent years, with the widespread use of portable devices such as video cameras and notebook computers, demand for small and high capacity secondary batteries has increased. Most of the secondary batteries currently used are nickel-cadmium batteries using an alkaline electrolyte, but the battery voltage is low at about 1.2 V, and it is difficult to improve the energy density. Therefore, a lithium secondary battery using lithium metal for the negative electrode has been studied.

【0003】ところが、リチウム金属を負極に使用する
二次電池では、充放電の繰り返しによってリチウムが樹
枝状(デンドライト)に成長し、短絡を起こしたり寿命
が短くなるなどの不都合が生じやすかった。そこで、負
極に各種炭素質材料を用いて、リチウムイオンをドーピ
ング、脱ドーピングすることにより使用する二次電池が
提案された。また、このような各種炭素質材料は、アニ
オンをドーピングして正極として用いることも可能であ
る。上記の炭素質材料へのリチウムイオンあるいはアニ
オンのドーピングを利用した電極を利用した二次電池と
しては、特開昭57−208079号公報、特開昭58
−93176号公報、特開昭58−192266号公
報、特開昭62−90863号公報、特開昭62−12
2066号公報、特開平2−66856号公報等が公知
である。
However, in a secondary battery in which lithium metal is used as the negative electrode, lithium tends to grow into dendrites due to repeated charging / discharging, resulting in short circuits and shortened life. Therefore, there has been proposed a secondary battery in which various carbonaceous materials are used for the negative electrode and used by doping and dedoping with lithium ions. Further, such various carbonaceous materials can be used as a positive electrode after being doped with anions. Secondary batteries using electrodes made by doping lithium ions or anions into the above carbonaceous materials are disclosed in JP-A-57-208079 and JP-A-58.
-93176, JP-A-58-192266, JP-A-62-90863, and JP-A-62-12.
Japanese Laid-Open Patent Publication No. 2066 and Japanese Laid-Open Patent Publication No. 2-66856 are known.

【0004】さらに、最近では、高エネルギー密度化の
要求に応えるべく、電池電圧が4V前後を示すものが現
れ、注目を浴びている。電池電圧の高電圧化は、正極に
高電位を示す活物質の探索、開発によって進められ、ア
ルカリ金属を含む遷移金属酸化物や遷移金属カルコゲン
などの無機化合物が知られている。なかでも、LiX
2 ( 0<x≦1.0)、LiX NiO2 ( 0<x≦
1.0)およびLiX CoY Ni1-Y 2 ( 0<x≦
1.0、0<y≦1.0)などが、高電位、安定性、長
寿命という点から最も有望であると考えられている。
Further, recently, in order to meet the demand for higher energy density, a battery voltage of around 4V has appeared and has been attracting attention. Higher battery voltage has been pursued by searching for and developing an active material exhibiting a high potential in the positive electrode, and inorganic compounds such as transition metal oxides and transition metal chalcogens containing alkali metals are known. Among them, Li X C
O 2 (0 <x ≦ 1.0), Li X NiO 2 (0 <x ≦
1.0) and Li X Co Y Ni 1-Y O 2 (0 <x ≦
1.0, 0 <y ≦ 1.0) and the like are considered to be the most promising in terms of high potential, stability, and long life.

【0005】しかしながら、上記のような従来の二次電
池では、負極活物質の初期容量ロスに基づく容量低下を
補償するために、正極活物質を過剰に充填せねばなら
ず、エネルギー密度を低下させる要因となっていた。こ
こで、負極活物質の初期容量ロスとは、初回の充電容量
と放電容量の差をいい、充電容量より放電容量のほうが
小さく、特に、炭素質材料を負極活物質に用いた場合、
この差が大きいことが知られている。この原因として
は、充電時の(1)電解液の分解等の副反応、(2)残
存水分の電気分解、そして、(3)充電時に負極活物質
中に収蔵されたリチウムイオンの一部が、放電時に出て
こない、などが考えられているが、結論は出ていない。
However, in the conventional secondary battery as described above, in order to compensate for the capacity decrease due to the initial capacity loss of the negative electrode active material, the positive electrode active material must be overfilled, which lowers the energy density. It was a factor. Here, the initial capacity loss of the negative electrode active material refers to the difference between the initial charge capacity and the discharge capacity, the discharge capacity is smaller than the charge capacity, especially when a carbonaceous material is used for the negative electrode active material,
It is known that this difference is large. This is caused by (1) side reactions such as decomposition of the electrolytic solution during charging, (2) electrolysis of residual water, and (3) part of the lithium ions stored in the negative electrode active material during charging. , It does not come out at the time of discharge, but it is not concluded.

【0006】この初期容量ロス対策として、前述の正極
活物質の増量以外に、(1)負極活物質の合成条件、
(2)負極活物質の表面処理、(3)正極活物質中のリ
チウム濃度を高める、などが検討されてきた。特に、
(3)については、原料調整時に過剰にリチウム塩を加
えて、例えば、LiX CoO2 ( 1<x)、LiX Ni
2 ( 1<x)などを合成して対応しようと試みられて
いるが、このようにして合成したリチウム複合酸化物
は、雰囲気中の水分に不安定で、LiCoO2 、 LiN
iO2 とLiOHに分解してしまうために、粉砕等の後
工程で乾燥雰囲気にしなければならないという問題があ
った。これに対して、特開平5−135760号公報に
は、正極をブチルリチウム、フェニルリチウム、ナフチ
ルリチウムあるいはヨウ化リチウムなどのリチウム化剤
を含む溶液に浸漬してLiX CoO2 (1<x)、Li
X NiO2 (1<x)などを合成する方法が開示してあ
る。
As measures against this initial capacity loss, in addition to the above-mentioned increase in the amount of the positive electrode active material, (1) conditions for synthesizing the negative electrode active material,
Studies have been conducted on (2) surface treatment of the negative electrode active material, and (3) increasing the lithium concentration in the positive electrode active material. In particular,
Regarding (3), for example, Li X CoO 2 (1 <x) or Li X Ni was added by adding an excessive lithium salt when adjusting the raw materials.
Attempts have been made to synthesize O 2 (1 <x) and the like, but the lithium composite oxide synthesized in this manner is unstable with respect to moisture in the atmosphere, and thus LiCoO 2 , LiN
Since it decomposes into iO 2 and LiOH, there is a problem that a dry atmosphere has to be used in a post-process such as crushing. On the other hand, in JP-A-5-135760, the positive electrode is immersed in a solution containing a lithiating agent such as butyllithium, phenyllithium, naphthyllithium, or lithium iodide, and Li x CoO 2 (1 <x). , Li
A method for synthesizing X NiO 2 (1 <x) and the like is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
方法でも、処理(浸漬)時間が長い、残存リチウム化剤
による悪影響、正極活物質中のリチウム組成が制限され
ることから補償する容量が大きくできない、などの課題
があった。
However, even in the above method, the capacity to be compensated cannot be increased because the treatment (immersion) time is long, the adverse effect of the residual lithium-imparting agent and the lithium composition in the positive electrode active material are limited. , And so on.

【0008】本発明は、かかる従来の欠点を解消しよう
とするものであり、初期容量ロスを補償することによ
り、高容量の二次電池およびそれに用いる電池用電極を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is intended to solve such a conventional defect, and an object thereof is to provide a high capacity secondary battery and a battery electrode used therefor by compensating for an initial capacity loss.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下の構成を有するものである。
The present invention has the following constitution in order to solve the above problems.

【0010】「(1) 電解液中の陰イオンと、陽イオンラ
ジカル塩を生成可能な電子供与性化合物を含んだ電池用
電極。
"(1) A battery electrode containing an anion in an electrolytic solution and an electron-donating compound capable of forming a cation radical salt.

【0011】(2) 上記の電池用電極を用いた二次電池。(2) A secondary battery using the above battery electrode.

【0012】(3) 陰イオンと、陽イオンラジカル塩を生
成可能な電子供与性化合物を含む電解液を用いた二次電
池。」 本発明において特に好ましい二次電池としては、上述の
ようにアルカリ金属塩を含む非水電解液を用いた二次電
池を挙げることができる。そこで、以下、リチウムイオ
ン二次電池を例に取り挙げ、具体例を挙げながら詳述す
る。本発明では、正極または電解液中に電子供与性化合
物を含んでいるため、充電時に、正極電位の上昇にとも
なって、正極で電子供与性化合物の電解酸化が行われ陽
イオンラジカルになり、電解液中の陰イオンと塩を形成
する。このとき、負極側では、電解液中から負極活物質
にリチウムイオンが挿入されるので、負極の初期容量ロ
ス分が、このリチウムイオンによって補償されることに
なる。この際、電解液中のリチウムイオン濃度は減少す
るが、電解液のイオン伝導の低下を防ぐためには、あら
かじめ過剰に入れれば良い。電解液中の陰イオンと塩を
形成するような電子供与性化合物を正極もしくは電解液
中に添加しておき、電池に組み立てた後、1回充放電す
ることによって、負極初期容量ロスは解消され、高エネ
ルギーの二次電池が得られる。
(3) A secondary battery using an electrolytic solution containing an anion and an electron-donating compound capable of forming a cation radical salt. As a particularly preferable secondary battery in the present invention, a secondary battery using a non-aqueous electrolytic solution containing an alkali metal salt as described above can be mentioned. Therefore, the lithium ion secondary battery will be described below as an example and will be described in detail with specific examples. In the present invention, since the positive electrode or the electrolytic solution contains an electron-donating compound, the positive electrode potential increases during charging, and the electron-donating compound is electrolytically oxidized at the positive electrode to become a cation radical, resulting in electrolysis. It forms a salt with the anion in the liquid. At this time, on the negative electrode side, lithium ions are inserted into the negative electrode active material from the electrolytic solution, so that the initial capacity loss of the negative electrode is compensated by the lithium ions. At this time, the lithium ion concentration in the electrolytic solution decreases, but in order to prevent the decrease in the ionic conductivity of the electrolytic solution, it may be added in advance in excess. The initial capacity loss of the negative electrode is eliminated by adding an electron-donating compound that forms a salt with the anion in the electrolytic solution to the positive electrode or the electrolytic solution, and then assembling the battery and charging and discharging once. A high energy secondary battery can be obtained.

【0013】本発明における電子供与性化合物としては
酸化電位が正極活物質の充電電位以上のものであれば限
定することなく用いられる。このような電子供与性化合
物として縮合多環芳香族、複素環含有化合物が用いられ
る。前記物質としてアントラセン、テトラセン、ピレ
ン、ペリレン、コロネン等の炭化水素、フェノチアジン
ン、アクリジン、ジチオピレン等のヘテロ元素を含む芳
香族、テトラチアフルバレン、テトラセレナフルバレ
ン、ビスエチレンジチオテトラチアフルバレン、テトラ
チアテトラセン等の複素環含有化合物が挙げられる。又
これらの化合物に、アルキル基、アミノ基、ハロゲン元
素、ヒドロキシ基等の置換基を有していてもよい。より
好ましくは、ピレン、フェノチアジン、エチレンジチオ
テトラチアフルバレン等があげられる。
The electron donating compound in the present invention may be used without limitation as long as it has an oxidation potential higher than the charging potential of the positive electrode active material. As such an electron-donating compound, a condensed polycyclic aromatic compound or a heterocyclic compound is used. As the substance, hydrocarbons such as anthracene, tetracene, pyrene, perylene, coronene, phenothiazine, acridine, aromatics containing a hetero element such as dithiopyrene, tetrathiafulvalene, tetraselenafulvalene, bisethylenedithiotetrathiafulvalene, tetrathia Heterocycle-containing compounds such as tetracene can be mentioned. Further, these compounds may have a substituent such as an alkyl group, an amino group, a halogen element and a hydroxy group. More preferred are pyrene, phenothiazine, ethylenedithiotetrathiafulvalene and the like.

【0014】本発明に用いられる正極活物質としては、
アルカリ金属を含む遷移金属酸化物や遷移金属カルコゲ
ンなどの無機化合物、ポリパラフェニレン、ポリフェニ
レンビニレン、ポリアニリン、ポリピロール、ポリチオ
フェンなどの共役系高分子、ジスルフィド結合を有する
架橋高分子など、通常の二次電池において用いられる正
極活物質を挙げることができる。これらの中で、リチウ
ム塩を含む非水電解液を用いた二次電池の場合には、コ
バルト、マンガン、モリブデン、バナジウム、クロム、
鉄、銅、チタンなどの遷移金属酸化物や遷移金属カルコ
ゲンが好ましく用いられる。特に前述のように、LiX
CoO2 ( 0<x≦1.0)、LiX NiO2 (0<x
≦1.0)およびLiX CoY Ni1-Y 2 ( 0<x≦
1.0、0<y≦1.0)などが、高電位、安定性、長
寿命という点から最も有望であると考えている。
As the positive electrode active material used in the present invention,
Inorganic compounds such as transition metal oxides and chalcogens containing alkali metals, conjugated polymers such as polyparaphenylene, polyphenylene vinylene, polyaniline, polypyrrole and polythiophene, crosslinked polymers with disulfide bonds, etc. Examples of the positive electrode active material used in. Among these, in the case of a secondary battery using a non-aqueous electrolyte containing a lithium salt, cobalt, manganese, molybdenum, vanadium, chromium,
Transition metal oxides such as iron, copper and titanium and transition metal chalcogens are preferably used. Especially as mentioned above, Li X
CoO 2 (0 <x ≦ 1.0), Li X NiO 2 (0 <x
≦ 1.0) and Li X Co Y Ni 1-Y O 2 (0 <x ≦
1.0, 0 <y ≦ 1.0) and the like are considered to be the most promising in terms of high potential, stability, and long life.

【0015】本発明の電極は、正極として用いることが
好ましく、その際、負極としては、特に限定されるもの
ではないが、炭素質材料が好ましく用いられる。炭素質
材料としては、特に限定されるものではなく、一般に有
機物を焼成したものが用いられる。炭素質材料の形態と
しては、粉末、繊維状、平均長さ5mm以下の短繊維
等、いずれでもよい。ここでかかる短繊維において、平
均長さは、例えば、SEM等の顕微鏡での観察により、
20個以上の短繊維の配向方向の長さを測定することに
より求める。
The electrode of the present invention is preferably used as a positive electrode. At this time, the negative electrode is not particularly limited, but a carbonaceous material is preferably used. The carbonaceous material is not particularly limited, and a material obtained by firing an organic material is generally used. The form of the carbonaceous material may be powder, fibrous, short fibers having an average length of 5 mm or less, and the like. Here, in such short fibers, the average length is, for example, by observation with a microscope such as SEM,
It is determined by measuring the length in the orientation direction of 20 or more short fibers.

【0016】炭素繊維を用いて電極にする際には、どの
ような形態をとっても構わないが、一軸方向に配置した
り、もしくは布帛状やフェルト状の構造体にするなど
が、好ましい形態となる。布帛状あるいはフェルト状な
どの構造体としては、織物、編物、組物、レース、網、
フェルト、紙、不織布、マットなどが挙げられるが、炭
素繊維の性質や電極特性などの点から、織物やフェルト
などが好ましい。又炭素繊維を短繊維化することで、粉
末状炭素と同様の手段で容易に電極が作製できる。
When the carbon fiber is used as an electrode, it may have any form, but it is preferably arranged uniaxially or made into a fabric-like or felt-like structure. . Examples of fabric-like or felt-like structures include woven fabrics, knitted fabrics, braids, laces, nets,
Examples thereof include felt, paper, non-woven fabric, and mat. Among them, woven fabric and felt are preferable from the viewpoint of properties of carbon fiber and electrode characteristics. Further, by shortening the carbon fiber, an electrode can be easily manufactured by the same means as for powder carbon.

【0017】また、炭素繊維として具体的には、ポリア
クリロニトリル(PAN)から得られるPAN系炭素繊
維、石炭もしくは石油などのピッチから得られるピッチ
系炭素繊維、セルロースから得られるセルロース系炭素
繊維、低分子量有機物の気体から得られる気相成長炭素
繊維などが好ましく用いられる。その他にも、ポリビニ
ルアルコール、リグニン、ポリ塩化ビニル、ポリアミ
ド、ポリイミド、フェノール樹脂、フルフリルアルコー
ルなどを焼成して得られる炭素繊維など、特に限定する
ことなく用いることができる。
Specific examples of the carbon fibers include PAN-based carbon fibers obtained from polyacrylonitrile (PAN), pitch-based carbon fibers obtained from pitch of coal or petroleum, cellulose-based carbon fibers obtained from cellulose, Vapor grown carbon fibers obtained from a gas of a molecular weight organic substance are preferably used. In addition, carbon fibers obtained by firing polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenol resin, furfuryl alcohol, etc. can be used without particular limitation.

【0018】本発明の電極を用いた二次電池の電解液と
しては、特に限定されることなく従来の電解液が用いら
れ、例えば酸あるいはアルカリ水溶液、または非水溶媒
などが挙げられる。この中で、上述のアルカリ金属塩を
含む非水電解液からなる二次電池の電解液としては、プ
ロピレンカーボネート(PC)、エチレンカーボネート
(EC)、γ- ブチロラクトン(BL)、N- メチルピ
ロリドン(MP)、アセトニトリル(AN)、N,N−
ジメチルホルムアミド、ジメチルスルフォキシド、テト
ラヒドロフラン(THF)、1,3−ジオキソラン、ギ
酸メチル、スルホラン(SL)、オキサゾリドン、塩化
チオニル、1,2−ジメトキシエタン(DME)、ジエ
チレンカーボネート(DEC)、ジメチルカーボネート
(DMC)や、これらの誘導体や混合物などが好ましく
用いられる。電解液に含まれる電解質としては、アルカ
リ金属、特にリチウムのハロゲン化物、過塩素酸塩、チ
オシアン塩、ホウフッ化塩、リンフッ化塩、砒素フッ化
塩、アルミニウムフッ化塩、トリフルオロメチル硫酸塩
などが好ましく用いられる。
The electrolytic solution of the secondary battery using the electrode of the present invention is not particularly limited, and a conventional electrolytic solution is used, and examples thereof include an acid or alkaline aqueous solution or a non-aqueous solvent. Among these, as the electrolytic solution of the secondary battery composed of the above-mentioned non-aqueous electrolytic solution containing an alkali metal salt, propylene carbonate (PC), ethylene carbonate (EC), γ-butyrolactone (BL), N-methylpyrrolidone ( MP), acetonitrile (AN), N, N-
Dimethylformamide, dimethylsulfoxide, tetrahydrofuran (THF), 1,3-dioxolane, methyl formate, sulfolane (SL), oxazolidone, thionyl chloride, 1,2-dimethoxyethane (DME), diethylene carbonate (DEC), dimethyl carbonate. (DMC) and derivatives and mixtures of these are preferably used. As the electrolyte contained in the electrolytic solution, alkali metal, particularly lithium halide, perchlorate, thiocyanate, borofluoride, phosphorus fluoride, arsenic fluoride, aluminum fluoride, trifluoromethyl sulfate, etc. Is preferably used.

【0019】本発明においては、これらの活物質を、必
要により、アセチレンブラック、ケッチェンブラック、
カーボンブラックなどの導電剤、また、ポリフッ化ビニ
リデン、メチルセルロース、カルボキシメチルセルロー
ス、ヒドロキシプロピルセルロメース、ポリビニルブチ
ラール、ポリエチレン、ポリビニルアルコール、ポリテ
トラフルオロエチレンなどの結着剤とともに混練して正
極合剤とし、アルミラニウムなどの集電体上に、塗布、
乾燥し、プレス加工してシート状に成形することによ
り、電極とすることができる。
In the present invention, if necessary, these active materials may be mixed with acetylene black, Ketjen black,
A conductive agent such as carbon black, and a positive electrode mixture by kneading with a binder such as polyvinylidene fluoride, methyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl butyral, polyethylene, polyvinyl alcohol, and polytetrafluoroethylene to form a positive electrode mixture. Coating on a collector such as Ni,
An electrode can be obtained by drying, pressing and forming into a sheet.

【0020】本発明の電極を用いた二次電池の用途とし
ては、軽量かつ高容量で高エネルギー密度の特徴を利用
して、ビデオカメラ、パソコン、ワープロ、ラジカセ、
携帯電話などの携帯用小型電子機器に広く利用可能であ
る。
The secondary battery using the electrode of the present invention can be used for a video camera, a personal computer, a word processor, a radio-cassette, by utilizing the features of light weight, high capacity and high energy density.
It is widely applicable to portable small electronic devices such as mobile phones.

【0021】[0021]

【実施例】【Example】

実施例1 LiCoO2 5.13gに導電剤としてアセチレンブラ
ック0.19g、結着剤としてオキシラン環含有化合物
(ナガセ化成工業(株)製 商品名“デナコールEX−
861”)0.06g、m−フェニレンジアミン0.0
08g、カルボキシメチルセルロースナトリウム(ダイ
セル化学工業(株)製“CMCダイセル品番129
0”)の2%水溶液2.58g、電子供与性化合物とし
てピレン0.27gを添加し、溶媒の水を加え混練して
ペースト状にした。これを、予め表面をn−ヘキサンで
脱脂しておいた厚さ13μmのアルミ箔上に塗布し、1
30℃で1時間乾燥し、電極部の幅50mm、長さ20
0mmのLiCoO2 電極シートを作製した。この電極
シートを、線圧約100kg/cmでローラープレスし
てアルミ集電体に圧着した後、カッティングして放電容
量測定用正極とした。
Example 1 5.13 g of LiCoO 2 and 0.19 g of acetylene black as a conductive agent, and an oxirane ring-containing compound as a binder (trade name “Denacol EX- manufactured by Nagase Kasei Co., Ltd.”
861 ") 0.06 g, m-phenylenediamine 0.0
08 g, carboxymethyl cellulose sodium (manufactured by Daicel Chemical Industries, Ltd., "CMC Daicel product number 129"
0 ") 2% aqueous solution (2.58 g) and pyrene (0.27 g) as an electron donating compound were added, and water as a solvent was added and kneaded to form a paste. This was degreased on the surface with n-hexane in advance. Apply it on an aluminum foil with a thickness of 13 μm
Dry at 30 ℃ for 1 hour, the electrode part width 50mm, length 20
A 0 mm LiCoO 2 electrode sheet was prepared. The electrode sheet was roller-pressed at a linear pressure of about 100 kg / cm to be pressure-bonded to an aluminum current collector, and then cut to obtain a positive electrode for measuring discharge capacity.

【0022】こうして作製した正極に、市販のPAN系
炭素繊維(“トレカ”T−300、東レ(株)製)17
mgを負極にし、多孔質ポリプロピレンフィルム(セル
ガード#2500、ダイセル化学(株)製)のセパレー
タを介して重ね合わせて、ガラスセル二次電池を作製し
た。電解液は、1MLiBF4 を含むECとDMC(体
積比3:7)を用いた。
A commercially available PAN-based carbon fiber (“Torayca” T-300, manufactured by Toray Industries, Inc.) 17 was added to the positive electrode thus prepared.
mg was used as a negative electrode, and the glass cell secondary battery was manufactured by stacking the films with a porous polypropylene film (Celguard # 2500, manufactured by Daicel Chemical Industries, Ltd.) interposed therebetween. As the electrolytic solution, EC and DMC (volume ratio 3: 7) containing 1M LiBF 4 were used.

【0023】このようにして作製した二次電池を用い
て、LiCoO2 当たりの電流密度55mA/gの定電
流で、4.3V(vs.Li+ /Li)まで充電した。充電後、2
7.5mA/gの定電流で3.0V(vs.Li+ /Li)まで放
電した。このときの電池当たりの充電量は10.0mA
hで、放電量は6.6mAhであった。
Using the secondary battery thus produced, it was charged to 4.3 V (vs. Li + / Li) with a constant current of 55 mA / g per LiCoO 2 . 2 after charging
It was discharged to 3.0 V (vs. Li + / Li) at a constant current of 7.5 mA / g. The amount of charge per battery at this time is 10.0 mA
At h, the discharge amount was 6.6 mAh.

【0024】実施例2 ピレンの代わりにフェノチアジン1.95gを用いたほ
かは、実施例1と同様にして正極を作製した。電解液と
して1MLiBF4 を含むPCとDME(体積比1:
1)を用い実施例1と同様に作製したガラスセル二次電
池を用い、実施例1と同じ条件で充放電評価を行った。
充電量10.3mAh、放電量6.8mAhであった。
Example 2 A positive electrode was prepared in the same manner as in Example 1 except that 1.95 g of phenothiazine was used instead of pyrene. PC and DME containing 1M LiBF 4 as an electrolyte (volume ratio 1:
Using the glass cell secondary battery prepared in the same manner as in Example 1 using 1), charge / discharge evaluation was performed under the same conditions as in Example 1.
The charge amount was 10.3 mAh and the discharge amount was 6.8 mAh.

【0025】実施例3 LiCoO2 2.54gに導電剤としてアセチレンブラ
ック0.21gを、結着剤としてポリフッ化ビニリデン
の10%NMP溶液1.78g、電子供与性化合物とし
てビスエチレンジチオテトラチアフルバレン0.21g
を添加し、溶媒のNMPで粘度調整してペースト状にし
た。これを、予め表面をn−ヘキサンで脱脂しておいた
厚さ13μmのアルミ箔上に塗布し、90℃で1時間乾
燥し、電極部の幅50mm、長さ200mmのLiCo
2 電極シートを作製した。この電極シートを、線圧約
100kg/cmでローラープレスしてアルミ集電体に
圧着した後、カッティングして放電容量測定用正極とし
た。
Example 3 2.54 g of LiCoO 2 and 0.21 g of acetylene black as a conductive agent, 1.78 g of a 10% NMP solution of polyvinylidene fluoride as a binder, and bisethylenedithiotetrathiafulvalene as an electron donating compound 0 .21 g
Was added, and the viscosity was adjusted with NMP as a solvent to form a paste. This was applied on an aluminum foil having a thickness of 13 μm, the surface of which was degreased with n-hexane in advance, and dried at 90 ° C. for 1 hour, and the width of the electrode portion was 50 mm and the length of LiCo was 200 mm.
An O 2 electrode sheet was prepared. The electrode sheet was roller-pressed at a linear pressure of about 100 kg / cm to be pressure-bonded to an aluminum current collector, and then cut to obtain a positive electrode for measuring discharge capacity.

【0026】市販のPAN系炭素短繊維(“トレカ”M
LD−30、繊維長30μm、東レ(株)製)8.5g
に導電剤としてアセチレンブラック0.49gを、結着
剤としてポリフッ化ビニリデンの10%NMP溶液9.
87gを添加し溶媒のNMPで粘度調整してペースト状
にした。これを、予め表面をn−ヘキサンで脱脂してお
いた厚さ13μmの銅箔上に塗布し、90℃で1時間乾
燥し、電極部の幅50mm、長さ200mmの負極シー
トを作製した。この電極シートを、線圧約100kg/
cmでローラープレスして銅集電体に圧着した後、カッ
ティングして放電容量測定用負極とした。
Commercially available short PAN-based carbon fibers ("Torayca" M
LD-30, fiber length 30 μm, manufactured by Toray Industries, Inc., 8.5 g
0.49 g of acetylene black as a conductive agent and a 10% NMP solution of polyvinylidene fluoride as a binder.
87 g was added and the viscosity was adjusted with NMP as a solvent to form a paste. This was applied on a copper foil having a thickness of 13 μm, the surface of which was degreased with n-hexane in advance, and dried at 90 ° C. for 1 hour to prepare a negative electrode sheet having an electrode portion width of 50 mm and a length of 200 mm. Apply this electrode sheet to a linear pressure of about 100 kg /
After being roller-pressed at 10 cm and press-bonded to a copper current collector, it was cut to obtain a negative electrode for measuring discharge capacity.

【0027】この正極、負極を用い、実施例1と同様の
セルで、同様の評価を行った結果、充電容量9.5mA
h、放電容量6.4mAhであった。
Using the positive electrode and the negative electrode, the same evaluation was performed in the same cell as in Example 1, and as a result, the charging capacity was 9.5 mA.
h, the discharge capacity was 6.4 mAh.

【0028】実施例4 ピレンを添加しないこと以外は、実施例1と同様にして
正極を作製し,電解液として1MLiBF4 を含むPC
とDMC(体積比3:7)50mlにピレン6.0mg
を溶かしたものを用い実施例1と同様に作製したガラス
セル二次電池を用い、実施例1と同じ条件で充放電評価
を行った。充電量9.6mAh、放電量6.6mAh/
gであった。
Example 4 A positive electrode was prepared in the same manner as in Example 1 except that pyrene was not added, and PC containing 1M LiBF 4 as an electrolytic solution was used.
And DMC (volume ratio 3: 7) 50 ml, pyrene 6.0 mg
Using a glass cell secondary battery prepared in the same manner as in Example 1 by using the melted material of Example 1, charge / discharge evaluation was performed under the same conditions as in Example 1. Charge amount 9.6mAh, discharge amount 6.6mAh /
g.

【0029】実施例5 ピレンの代わりにフェノチアジン65.5mgを用いた
ほかは、実施例4と同様に充放電評価を行った。充電量
9.9mAh、放電量6.5mAhであった。
Example 5 Charge / discharge evaluation was carried out in the same manner as in Example 4 except that 65.5 mg of phenothiazine was used instead of pyrene. The charge amount was 9.9 mAh and the discharge amount was 6.5 mAh.

【0030】比較例1 ピレンを添加しないこと以外は実施例1と同様に、充放
電評価を行った。充電容量8.4mAh、放電容量5.
2mAhであった
Comparative Example 1 Charge / discharge evaluation was carried out in the same manner as in Example 1 except that pyrene was not added. Charge capacity 8.4 mAh, discharge capacity 5.
It was 2 mAh

【0031】[0031]

【発明の効果】本発明により、正極の初期充電容量が増
大し、負極の初期容量ロスを補償することが可能とな
り、高容量(高エネルギー)の二次電池の作製が可能に
なる。
According to the present invention, the initial charge capacity of the positive electrode is increased, the initial capacity loss of the negative electrode can be compensated, and a high capacity (high energy) secondary battery can be manufactured.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】電解液中の陰イオンと、陽イオンラジカル
塩を生成可能な電子供与性化合物を含んだ電池用電極。
1. A battery electrode containing an anion in an electrolytic solution and an electron-donating compound capable of forming a cation radical salt.
【請求項2】該電子供与性化合物が、縮合多環芳香族お
よび/または複素環含有化合物である請求項1記載の電
池用電極。
2. The battery electrode according to claim 1, wherein the electron-donating compound is a condensed polycyclic aromatic and / or heterocyclic ring-containing compound.
【請求項3】該電子供与性化合物が、ピレン、フェノチ
アジンおよびビスエチレンジチオテトラチアフルバレン
から選ばれる少なくとも1つである請求項1または2記
載の電池用電極。
3. The battery electrode according to claim 1, wherein the electron-donating compound is at least one selected from pyrene, phenothiazine and bisethylenedithiotetrathiafulvalene.
【請求項4】正極活物質がリチウム複合酸化物であるこ
とを特徴とする請求項1〜3のいずれかに記載の電池用
電極。
4. The battery electrode according to claim 1, wherein the positive electrode active material is a lithium composite oxide.
【請求項5】該リチウム複合酸化物が、Lix CoO2
( 0<x≦1.0)、Lix NiO2 ( 0<x≦1.
0)およびLix CoY Ni 1-Y 2 (0<x≦1.
0、0<y≦1.0)から選ばれたものである請求項4
記載の電池用電極。
5. The lithium composite oxide is Li x CoO 2
(0 <x ≦ 1.0), Li x NiO 2 (0 <x ≦ 1.
0) and Li x Co Y Ni 1-Y O 2 (0 <x ≦ 1.
0, 0 <y ≤ 1.0).
The battery electrode described.
【請求項6】正極用として用いる請求項1〜5記載の電
池用電極。
6. The battery electrode according to claim 1, which is used for a positive electrode.
【請求項7】負極活物質が炭素質材料であることを特徴
とする請求項6記載の電池用電極。
7. The battery electrode according to claim 6, wherein the negative electrode active material is a carbonaceous material.
【請求項8】該炭素質材料が炭素繊維である請求項7記
載の電池用電極。
8. The battery electrode according to claim 7, wherein the carbonaceous material is carbon fiber.
【請求項9】該炭素質材料が平均長さ5mm以下の短繊
維である請求項8記載の電池用電極。
9. The battery electrode according to claim 8, wherein the carbonaceous material is a short fiber having an average length of 5 mm or less.
【請求項10】請求項1〜9のいずれかに記載の電池用
電極を用いた二次電池。
10. A secondary battery using the battery electrode according to claim 1.
【請求項11】陰イオンと、陽イオンラジカル塩を生成
可能な電子供与性化合物を含む電解液を用いた二次電
池。
11. A secondary battery using an electrolytic solution containing an anion and an electron-donating compound capable of forming a cation radical salt.
【請求項12】該電子供与性化合物が、縮合多環芳香族
および/または複素環含有化合物である請求項11記載
の二次電池。
12. The secondary battery according to claim 11, wherein the electron donating compound is a condensed polycyclic aromatic and / or heterocyclic ring-containing compound.
【請求項13】該電子供与性化合物が、ピレン、フェノ
チアジンおよびビスエチレンジチオテトラチアフルバレ
ンから選ばれる少なくとも1つである請求項11〜12
のいずれかに記載の二次電池。
13. The electron donating compound is at least one selected from pyrene, phenothiazine and bisethylenedithiotetrathiafulvalene.
The secondary battery according to any one of 1.
【請求項14】正極活物質がリチウム複合酸化物である
ことを特徴とする請求項11〜13のいずれかに記載の
二次電池。
14. The secondary battery according to claim 11, wherein the positive electrode active material is a lithium composite oxide.
【請求項15】該リチウム複合酸化物が、Lix CoO
2 ( 0<x≦1.0)、Lix NiO2 ( 0<x≦1.
0)およびLix CoY Ni 1-Y 2 (0<x≦1.
0、0<y≦1.0)から選ばれたものであることを特
徴とする請求項14記載の二次電池。
15. The lithium composite oxide is Li x CoO.
2 (0 <x ≦ 1.0), Li x NiO 2 (0 <x ≦ 1.
0) and Li x Co Y Ni 1-Y O 2 (0 <x ≦ 1.
15. The secondary battery according to claim 14, wherein the secondary battery is selected from 0, 0 <y ≦ 1.0).
【請求項16】負極活物質が炭素質材料であることを特
徴とする請求項11〜15のいずれかに記載の二次電
池。
16. The secondary battery according to claim 11, wherein the negative electrode active material is a carbonaceous material.
【請求項17】該炭素質材料が炭素繊維である請求項1
6記載の二次電池。
17. The carbonaceous material is carbon fiber.
The secondary battery according to item 6.
【請求項18】該炭素質材料が平均長さ5mm以下の短
繊維である請求項16記載の二次電池。
18. The secondary battery according to claim 16, wherein the carbonaceous material is a short fiber having an average length of 5 mm or less.
JP7007234A 1995-01-20 1995-01-20 Electrode for battery and secondary battery using it Pending JPH08195199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7007234A JPH08195199A (en) 1995-01-20 1995-01-20 Electrode for battery and secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7007234A JPH08195199A (en) 1995-01-20 1995-01-20 Electrode for battery and secondary battery using it

Publications (1)

Publication Number Publication Date
JPH08195199A true JPH08195199A (en) 1996-07-30

Family

ID=11660311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7007234A Pending JPH08195199A (en) 1995-01-20 1995-01-20 Electrode for battery and secondary battery using it

Country Status (1)

Country Link
JP (1) JPH08195199A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023687A (en) * 1999-07-09 2001-01-26 Sony Corp Nonaqueous electrolyte battery
JP2002298850A (en) * 2001-03-30 2002-10-11 Nec Corp Battery
JP2003036849A (en) * 2001-07-24 2003-02-07 Nec Corp Secondary battery
KR100413595B1 (en) * 2000-02-25 2003-12-31 닛본 덴끼 가부시끼가이샤 secondary battery
JP2005112691A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Method of manufacturing lithium-containing nickel oxyhydroxide and non-aqueous electrolyte electrochemical cell provided with electrode containing the lithium-containing nickel oxyhydroxide
US7122277B2 (en) 2001-07-09 2006-10-17 Nec Corporation Battery and battery electrode
US7282298B2 (en) * 2002-08-29 2007-10-16 Matsushita Electric Industrial Co., Ltd. Electrochemical device
WO2007116926A1 (en) * 2006-04-05 2007-10-18 Panasonic Corporation Method for manufacturing secondary battery and method for preparing positive electrode active material for secondary battery
JP2008192411A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Power storage device
JP2009140647A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2010272281A (en) * 2009-05-20 2010-12-02 Denso Corp Nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery
US20120156555A1 (en) * 2010-07-01 2012-06-21 Nobuhiko Hojo Non-aqueous electrolyte secondary battery
KR20140060175A (en) * 2012-11-09 2014-05-19 삼성에스디아이 주식회사 Electrolyte solution for seconndary lithium battery and secondary lithium battery using the same
CN110148775A (en) * 2019-05-29 2019-08-20 珠海冠宇电池有限公司 A kind of high-energy density high security lithium ion battery electrolyte and lithium ion battery
JP2020527843A (en) * 2017-07-20 2020-09-10 ボード オブ トラスティーズ オブ ミシガン ステイト ユニバーシティBoard Of Trustees Of Michigan State University Redox flow battery
US11094964B2 (en) 2016-11-22 2021-08-17 Board Of Trustees Of Michigan State University Rechargeable electrochemical cell
US11177513B2 (en) 2014-07-18 2021-11-16 Board Of Trustees Of Michigan State University Rechargeable lithium-ion cell

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023687A (en) * 1999-07-09 2001-01-26 Sony Corp Nonaqueous electrolyte battery
US7642011B2 (en) 2000-02-25 2010-01-05 Nec Corporation Secondary battery with a radical compound active material
KR100413595B1 (en) * 2000-02-25 2003-12-31 닛본 덴끼 가부시끼가이샤 secondary battery
US6866964B2 (en) 2000-02-25 2005-03-15 Nec Corporation Secondary battery
JP2002298850A (en) * 2001-03-30 2002-10-11 Nec Corp Battery
US7122277B2 (en) 2001-07-09 2006-10-17 Nec Corporation Battery and battery electrode
JP2003036849A (en) * 2001-07-24 2003-02-07 Nec Corp Secondary battery
EP1416553B1 (en) * 2002-08-29 2017-10-04 Panasonic Intellectual Property Management Co., Ltd. Electrochemical device with unsaturated Organic Electrode Material
US7282298B2 (en) * 2002-08-29 2007-10-16 Matsushita Electric Industrial Co., Ltd. Electrochemical device
JP2005112691A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Method of manufacturing lithium-containing nickel oxyhydroxide and non-aqueous electrolyte electrochemical cell provided with electrode containing the lithium-containing nickel oxyhydroxide
US8263241B2 (en) 2006-04-05 2012-09-11 Panasonic Corporation Method for manufacturing secondary battery and method for preparing positive electrode active material for secondary battery
WO2007116926A1 (en) * 2006-04-05 2007-10-18 Panasonic Corporation Method for manufacturing secondary battery and method for preparing positive electrode active material for secondary battery
JP2008192411A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Power storage device
JP2009140647A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2010272281A (en) * 2009-05-20 2010-12-02 Denso Corp Nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery
US20120156555A1 (en) * 2010-07-01 2012-06-21 Nobuhiko Hojo Non-aqueous electrolyte secondary battery
US8530086B2 (en) * 2010-07-01 2013-09-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
KR20140060175A (en) * 2012-11-09 2014-05-19 삼성에스디아이 주식회사 Electrolyte solution for seconndary lithium battery and secondary lithium battery using the same
JP2014096366A (en) * 2012-11-09 2014-05-22 Samsung Sdi Co Ltd Electrolyte for lithium secondary battery and lithium secondary battery including the same
US11177513B2 (en) 2014-07-18 2021-11-16 Board Of Trustees Of Michigan State University Rechargeable lithium-ion cell
USRE48859E1 (en) 2014-07-18 2021-12-21 Board Of Trustees Of Michigan State University Rechargeable lithium-ion cell
US11094964B2 (en) 2016-11-22 2021-08-17 Board Of Trustees Of Michigan State University Rechargeable electrochemical cell
JP2020527843A (en) * 2017-07-20 2020-09-10 ボード オブ トラスティーズ オブ ミシガン ステイト ユニバーシティBoard Of Trustees Of Michigan State University Redox flow battery
US11545691B2 (en) 2017-07-20 2023-01-03 Board Of Trustees Of Michigan State University Redox flow battery
CN110148775A (en) * 2019-05-29 2019-08-20 珠海冠宇电池有限公司 A kind of high-energy density high security lithium ion battery electrolyte and lithium ion battery

Similar Documents

Publication Publication Date Title
JP4159954B2 (en) Non-aqueous electrolyte battery
EP1722430B1 (en) Secondary battery using a radical compound as active electrode material
KR100463181B1 (en) An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
US9005820B2 (en) Lithium secondary battery using ionic liquid
US7241535B2 (en) Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
KR101130471B1 (en) Lithium secondary battery
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
US7267907B2 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
JPH08195199A (en) Electrode for battery and secondary battery using it
JPH076752A (en) Electrode, manufacture thereof, and secondary battery using this electrode
JPH10154531A (en) Secondary battery
JP2003157900A (en) Battery
JPH08306354A (en) Electrode and nonaqueous solvent type secondary battery using the electrode
JPH08138649A (en) Non-aqueous secondary battery
JP3557724B2 (en) Non-aqueous electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2002175807A (en) Nonaqueous electrolyte secondary battery
JPH08203525A (en) Electrode and nonaqueous solvent secondary battery
KR20020055572A (en) Non-aqueous electrolyte secondary battery
JP3722462B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH10106546A (en) Manufacture of electrode for battery
JP2005327645A (en) Organic sulfur secondary battery
JP2000058118A (en) Nonaqueous electrolyte secondary battery
US11201330B2 (en) Power storage device electrode, power storage device, and method of producing power storage device electrode