JP2009123474A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2009123474A
JP2009123474A JP2007295303A JP2007295303A JP2009123474A JP 2009123474 A JP2009123474 A JP 2009123474A JP 2007295303 A JP2007295303 A JP 2007295303A JP 2007295303 A JP2007295303 A JP 2007295303A JP 2009123474 A JP2009123474 A JP 2009123474A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
peak intensity
carbon material
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007295303A
Other languages
Japanese (ja)
Inventor
Mikio Watanabe
美樹男 渡邉
Hideki Nakai
秀樹 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007295303A priority Critical patent/JP2009123474A/en
Publication of JP2009123474A publication Critical patent/JP2009123474A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery capable of obtaining enough cycle characteristics, even in case a positive electrode material with an olivine structure is used. <P>SOLUTION: A negative electrode active material layer 22B contains a negative electrode active material capable of doping and dedoping lithium. The negative electrode active material contains a carbon material with a ratio (I<SB>1360</SB>/I<SB>1580</SB>) of a peak intensity (I<SB>1360</SB>) of 1,360 cm<SP>-1</SP>to a peak intensity (I<SB>1580</SB>) of 1,580 cm<SP>-1</SP>, of 0.25 or more to 2 or less, and that, with a ratio (I<SB>1620</SB>/I<SB>1580</SB>) of a peak intensity (I<SB>1620</SB>) of 1,620 cm<SP>-1</SP>to a peak intensity (I<SB>1580</SB>) of 1,580 cm<SP>-1</SP>, of 0.10 or more, obtained by Raman spectrum analysis measured using argon laser light with a wavelength of 514.52 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、非水電解質電池に関する。さらに詳しくは、正極にオリビン構造のリチウムリン酸化合物を含む非水電解質電池に関する。   The present invention relates to a non-aqueous electrolyte battery. More specifically, the present invention relates to a non-aqueous electrolyte battery including a lithium phosphate compound having an olivine structure in a positive electrode.

近年、カメラー体型VTR(Video Tape Recorder)、携帯電話、ラップトップコンピュータなどのポータブル電子機器が多く登場し、その小型軽量化が図られている。そしてこれらの電子機器のポータブル電源として、電池、特に二次電池について、エネルギー密度を向上させるための研究開発が活発に進められている。   In recent years, many portable electronic devices such as a camera-type VTR (Video Tape Recorder), a mobile phone, and a laptop computer have appeared, and their size and weight have been reduced. As portable power sources for these electronic devices, research and development for improving the energy density of batteries, particularly secondary batteries, are being actively promoted.

非水電解液を用いた電池、中でも、リチウムイオン二次電池は、従来の水溶液系電解液二次電池である鉛電池、ニッケルカドミウム電池と比較して大きなエネルギー密度が得られるため、期待度が大きくなっており、市場も著しく成長している。   Batteries using non-aqueous electrolytes, especially lithium ion secondary batteries, are expected to have higher energy density than lead batteries and nickel cadmium batteries, which are conventional aqueous electrolyte secondary batteries. The market is growing and the market is growing significantly.

とりわけ近年、リチウムイオン二次電池の軽量、高エネルギー密度という特徴が電気自動車やハイブリッド電気自動車用途に適することから、同電池の大型化、高出力化を目指した検討が盛んとなっている。   In particular, since the characteristics of lithium ion secondary batteries such as light weight and high energy density are suitable for use in electric vehicles and hybrid electric vehicles, studies aiming to increase the size and output of the batteries have become active.

リチウムイオン二次電池に代表される非水系二次電池では、正極活物質としてLiCoO2、LiNiO2、LiMn24などの酸化物正極が用いられることが一般的である。これは高容量、高電圧が得られ、かつ高充填性に優れるため、携帯機器の小型・軽量化に有利であるためである。 In a nonaqueous secondary battery represented by a lithium ion secondary battery, an oxide positive electrode such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is generally used as a positive electrode active material. This is because a high capacity, a high voltage can be obtained, and a high filling property can be obtained, which is advantageous for reducing the size and weight of portable devices.

しかし、これらの正極は、充電状態で加熱すると200℃〜300℃において酸素放出を開始する。酸素放出が始まると、電解液として可燃性の有機電解液を用いるため、電池が熱暴走する危険性がある。よって、酸化物正極を用いた場合には、特に大型電池での安全性確保が容易ではない。   However, these positive electrodes start releasing oxygen at 200 ° C. to 300 ° C. when heated in a charged state. When oxygen release starts, a flammable organic electrolytic solution is used as the electrolytic solution. Therefore, when an oxide positive electrode is used, it is not easy to ensure safety particularly in a large battery.

これに対して、A.K.Padhi等が報告しているオリビン構造を有する正極材料では、350℃を超えても酸素放出が起こらず、安全性に非常に優れることが示されている。(非特許文献1参照)   In contrast, A. K. It has been shown that the positive electrode material having an olivine structure reported by Padhi et al. Does not release oxygen even when the temperature exceeds 350 ° C. and is extremely excellent in safety. (See Non-Patent Document 1)

J.Electrochem.Soc.,Vol.144,p.1188J. et al. Electrochem. Soc. , Vol. 144, p. 1188

このオリビン構造を有する正極材料では、充放電がLiFePO4、FePO4の二層共存状態で進行するため、電位平坦性が非常に高い。このため、通常のリチウムイオン電池の充電方式である、定電流・定電圧充電を行うと、ほとんど定電流充電状態で充電が行われるという特徴がある。したがって、オリビン構造を有する正極材料を用いた電池では、LiCoO2、LiNiO2、LiMn24などの従来の正極材料に比べ、同じ充電レートで充電した場合、充電時間の短縮が可能である。 In the positive electrode material having this olivine structure, charge / discharge proceeds in a two-layer coexistence state of LiFePO 4 and FePO 4 , so that the potential flatness is very high. For this reason, when performing constant current / constant voltage charging, which is a charging method of a normal lithium ion battery, there is a feature that charging is performed almost in a constant current charging state. Therefore, in a battery using a positive electrode material having an olivine structure, charging time can be shortened when charged at the same charge rate as compared with conventional positive electrode materials such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .

しかしながら、オリビン構造を有する正極材料を用いた電池では、高い電流値での充電が比較的長く続くため、負極内でのLiイオンの移動が追従せず、負極と電解液との界面でのLiイオン濃度が高まり、負極上へLi金属が析出しやすくなってしまう。この結果、従来の負極炭素材料を用いた場合に、オリビン構造を有する正極材料を用いた電池では、十分なサイクル特性が得られなかった。   However, in a battery using a positive electrode material having an olivine structure, since charging at a high current value continues for a relatively long time, the movement of Li ions in the negative electrode does not follow, and Li at the interface between the negative electrode and the electrolyte solution The ion concentration increases, and Li metal tends to be deposited on the negative electrode. As a result, when a conventional negative electrode carbon material was used, sufficient cycle characteristics could not be obtained in a battery using a positive electrode material having an olivine structure.

したがって、この発明の目的は、オリビン構造を有する正極材料を用いた場合でも、十分なサイクル特性を得ることができる非水電解質電池を提供することにある。   Therefore, an object of the present invention is to provide a nonaqueous electrolyte battery that can obtain sufficient cycle characteristics even when a positive electrode material having an olivine structure is used.

上述した課題を解決するために、
この発明は、オリビン構造を有するリチウムリン酸化合物を含む正極と、負極活物質を有する負極と、非水電解質と、を備え、
負極活物質は、波長514.52nmのアルゴンレーザ光を用いて測定したラマンスペクトル分析により得られた1580cm-1のピーク強度(I1580)と1360cm-1のピーク強度(I1360)との比(I1360/I1580)が0.25以上2以下であり、且つ
1580cm-1のピーク強度(I1580)と1620cm-1のピーク強度(I1620)との比(I1620/I1580)が0.10以上である炭素材料を含むこと
を特徴とする非水電解質電池である。
In order to solve the above-mentioned problems,
The present invention comprises a positive electrode containing a lithium phosphate compound having an olivine structure, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte,
The negative electrode active material, the ratio of the peak intensity of 1580 cm -1 obtained by Raman spectrum analysis was measured by using an argon laser beam having a wavelength of 514.52nm (I 1580) and the peak intensity of 1360cm -1 (I 1360) ( I 1360 / I 1580) is 0.25 to 2, and the ratio of the peak intensity of 1580cm -1 (I 1580) and the peak intensity of 1620cm -1 (I 1620) (I 1620 / I 1580) is 0 It is a nonaqueous electrolyte battery characterized by including the carbon material which is 10 or more.

この発明では、負極活物質は、オリビン構造を有するリチウムリン酸化合物を含む正極と、負極活物質を有する負極と、非水電解質と、を備え、
負極活物質は、波長514.52nmのアルゴンレーザ光を用いて測定したラマンスペクトル分析により得られた1580cm-1のピーク強度(I1580)と1360cm-1のピーク強度(I1360)との比(I1360/I1580)が0.25以上2以下であり、且つ
1580cm-1のピーク強度(I1580)と1620cm-1のピーク強度(I1620)との比(I1620/I1580)が0.10以上である炭素材料を含むので、オリビン構造を有するリチウムリン酸化合物を用いた場合でも、十分なサイクル特性を得ることができる。
In this invention, the negative electrode active material comprises a positive electrode containing a lithium phosphate compound having an olivine structure, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte,
The negative electrode active material, the ratio of the peak intensity of 1580 cm -1 obtained by Raman spectrum analysis was measured by using an argon laser beam having a wavelength of 514.52nm (I 1580) and the peak intensity of 1360cm -1 (I 1360) ( I 1360 / I 1580) is 0.25 to 2, and the ratio of the peak intensity of 1580cm -1 (I 1580) and the peak intensity of 1620cm -1 (I 1620) (I 1620 / I 1580) is 0 Since the carbon material is 10 or more, sufficient cycle characteristics can be obtained even when a lithium phosphate compound having an olivine structure is used.

この発明によれば、オリビン構造を有する正極材料を用いた場合でも、十分なサイクル特性を得ることができる。   According to the present invention, sufficient cycle characteristics can be obtained even when a positive electrode material having an olivine structure is used.

以下、この発明の実施の形態について図面を参照して説明する。図1は、この発明の一実施形態による非水電解液電池の断面構造を示す。この電池は、例えば非水電解液二次電池であり、例えばリチウムイオン二次電池である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional structure of a nonaqueous electrolyte battery according to an embodiment of the present invention. This battery is, for example, a non-aqueous electrolyte secondary battery, for example, a lithium ion secondary battery.

図1に示すように、この二次電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、帯状の正極21と帯状の負極22とがセパレータ23を介して巻回された巻回電極体20を有している。電池缶11は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12,13がそれぞれ配置されている。   As shown in FIG. 1, this secondary battery is a so-called cylindrical type, and a strip-shaped positive electrode 21 and a strip-shaped negative electrode 22 are interposed in a substantially hollow cylindrical battery can 11 via a separator 23. The wound electrode body 20 is wound. The battery can 11 is made of, for example, iron (Fe) plated with nickel (Ni), and has one end closed and the other end open. Inside the battery can 11, a pair of insulating plates 12 and 13 are arranged perpendicular to the winding peripheral surface so as to sandwich the winding electrode body 20.

電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、ガスケット17を介してかしめられることにより取り付けられており、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。   At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 provided inside the battery lid 14 and a heat sensitive resistance element (Positive Temperature Coefficient; PTC element) 16 are interposed via a gasket 17. It is attached by caulking, and the inside of the battery can 11 is sealed. The battery lid 14 is made of, for example, the same material as the battery can 11.

安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。熱感抵抗素子16は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。   The safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16, and the disk plate 15A is reversed when the internal pressure of the battery exceeds a certain level due to an internal short circuit or external heating. Thus, the electrical connection between the battery lid 14 and the wound electrode body 20 is cut off. When the temperature rises, the heat sensitive resistance element 16 limits the current by increasing the resistance value and prevents abnormal heat generation due to a large current. The gasket 17 is made of, for example, an insulating material, and asphalt is applied to the surface.

巻回電極体20は、例えば、センターピン24を中心に巻回されている。巻回電極体20の正極21にはアルミニウム(Al)などよりなる正極リード25が接続されており、負極22にはニッケル(Ni)などよりなる負極リード26が接続されている。正極リード25は安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接され電気的に接続されている。   The wound electrode body 20 is wound around a center pin 24, for example. A positive electrode lead 25 made of aluminum (Al) or the like is connected to the positive electrode 21 of the spirally wound electrode body 20, and a negative electrode lead 26 made of nickel (Ni) or the like is connected to the negative electrode 22. The positive electrode lead 25 is electrically connected to the battery lid 14 by being welded to the safety valve mechanism 15, and the negative electrode lead 26 is welded to and electrically connected to the battery can 11.

図2は図1に示した巻回電極体20の一部を拡大して表すものである。正極21は、例えば、対向する一対の面を有する正極集電体21Aと、正極集電体21Aの両面に設けられた正極活物質層21Bとを有している。なお、正極集電体21Aの片面のみに正極活物質層21Bが存在する領域を有するようにしてもよい。正極集電体21Aは、例えば、アルミニウム(Al)箔などの金属箔により構成されている。   FIG. 2 shows an enlarged part of the spirally wound electrode body 20 shown in FIG. The positive electrode 21 includes, for example, a positive electrode current collector 21A having a pair of opposed surfaces, and a positive electrode active material layer 21B provided on both surfaces of the positive electrode current collector 21A. In addition, you may make it have the area | region where the positive electrode active material layer 21B exists only in the single side | surface of 21 A of positive electrode collectors. The positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum (Al) foil.

正極活物質層21Bは、例えば、正極活物質を含んでおり、必要に応じてカーボンブラックやグラファイトなどの導電剤と、ポリフッ化ビニリデンなどの結着剤とを含んでいてもよい。正極活物質としては、例えば、オリビン構造を有するリチウムリン酸化合物を用いる。   The positive electrode active material layer 21B includes, for example, a positive electrode active material, and may include a conductive agent such as carbon black or graphite and a binder such as polyvinylidene fluoride as necessary. As the positive electrode active material, for example, a lithium phosphate compound having an olivine structure is used.

オリビン構造を有するリチウムリン酸化合物としては、例えば、化Iで表される化合物を挙げることができる。
(化I)
LiFe1-yyPO4
(式中、Mはマンガン(Mn)、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、亜鉛(Zn)、クロム(Cr)、チタン(Ti)、バナジウム(V)よりなる群から選ばれる少なくとも1種である。yは0≦y≦0.8である。)
Examples of the lithium phosphate compound having an olivine structure include a compound represented by Formula I.
(Chemical I)
LiFe 1-y M y PO 4
Wherein M is selected from the group consisting of manganese (Mn), cobalt (Co), nickel (Ni), magnesium (Mg), zinc (Zn), chromium (Cr), titanium (Ti), and vanadium (V). Y is 0 ≦ y ≦ 0.8.)

負極22は、例えば、対向する一対の面を有する負極集電体22Aと、負極集電体22Aの両面に設けられた負極活物質層22Bとを有している。なお、負極集電体22Aの片面のみに負極活物質層22Bが存在する領域を有するようにしてもよい。負極集電体22Aは、例えば銅(Cu)箔などの金属箔により構成されている。   The negative electrode 22 includes, for example, a negative electrode current collector 22A having a pair of opposed surfaces and a negative electrode active material layer 22B provided on both surfaces of the negative electrode current collector 22A. In addition, you may make it have the area | region where the negative electrode active material layer 22B exists only in the single side | surface of 22 A of negative electrode collectors. The anode current collector 22A is made of a metal foil such as a copper (Cu) foil.

負極活物質層22Bは、リチウムをドープおよび脱ドープ可能な負極活物質を含んでおり、必要に応じてポリフッ化ビニリデンなどの結着剤を含んでいてもよい。   The negative electrode active material layer 22B contains a negative electrode active material that can be doped and dedoped with lithium, and may contain a binder such as polyvinylidene fluoride as necessary.

負極活物質は、波長514.52nmのアルゴンレーザ光を用いて測定したラマンスペクトル分析により得られた1580cm-1のピーク強度(I1580)と1360cm-1のピーク強度(I1360)との比(I1360/I1580)が0.25以上2以下であり、且つ
1580cm-1のピーク強度(I1580)と1620cm-1のピーク強度(I1620)との比(I1620/I1580)が0.10以上である炭素材料を含む。
The negative electrode active material, the ratio of the peak intensity of 1580 cm -1 obtained by Raman spectrum analysis was measured by using an argon laser beam having a wavelength of 514.52nm (I 1580) and the peak intensity of 1360cm -1 (I 1360) ( I 1360 / I 1580) is 0.25 to 2, and the ratio of the peak intensity of 1580cm -1 (I 1580) and the peak intensity of 1620cm -1 (I 1620) (I 1620 / I 1580) is 0 .10 or more carbon materials.

なお、黒鉛材料へのラマン分析の結果として、グラファイト構造に起因する1580cm−1のラマンバンド(Gバンド)とグラファイト構造の乱れに起因する1360、1620cm-1のラマンバンド(D、D’バンド)が観測される。Gバンドに対する、Dバンドの強度比は、一般的には黒鉛材料の結晶化度を示す指標としてR値(1580cm-1のピーク強度(I1580)と1360cm-1のピーク強度(I1360)の比(I1360/I1580)と呼ばれている。一方、1620cm-1のD’バンドは、黒鉛材料の結晶化がより低くなるとGバンドに起因するピーク半値幅が大きくなるため、そのピークに隠れて観測されにくくなる場合が多い。 As a result of the Raman analysis of the graphite material, the 1580 cm- 1 Raman band (G band) resulting from the graphite structure and the 1360 and 1620 cm- 1 Raman bands (D, D 'bands) resulting from the disorder of the graphite structure. Is observed. For G-band intensity ratio of D band, generally R value as an index indicating the crystallinity of the graphite material of (peak intensity of 1580 cm -1 (peak intensity (I 1360 of I 1580) and 1360 cm -1) is called a ratio (I 1360 / I 1580). on the other hand, D 'band of 1620 cm -1 is the peak half-width caused by the G-band when the crystallization of graphite material is lower is increased, its peak Often hidden and difficult to observe.

この炭素材料は、例えば、コールタールピッチなどの有機材料を高温熱処理し、粉砕・分級することにより得られる。高温熱処理は、例えば、アルゴンガスなどの不活性ガス雰囲気において、1800℃〜2400℃の範囲で、適宜の時間で保持することにより行われる。   This carbon material can be obtained, for example, by subjecting an organic material such as coal tar pitch to high-temperature heat treatment, pulverization and classification. The high-temperature heat treatment is performed, for example, by maintaining the temperature in the range of 1800 ° C. to 2400 ° C. for an appropriate time in an inert gas atmosphere such as argon gas.

負極活物質は、上記炭素材料と物性の異なる他の炭素材料を含むものであってもよい。その際の上記炭素材料の含有量は、サイクル特性を改善する効果と直流抵抗を低減する効果を勘案すると、負極活物質層22Bに対して、7wt%〜50wt%の範囲内が好ましい。物性の異なる他の炭素材料は、例えば、コールタールピッチなどの有機材料を不活性ガス雰囲気下、1800℃未満または2400℃より高い温度で熱処理し、粉砕・分級して得ることが可能である。   The negative electrode active material may include other carbon materials having different physical properties from the carbon material. The content of the carbon material at that time is preferably in the range of 7 wt% to 50 wt% with respect to the negative electrode active material layer 22 </ b> B in consideration of the effect of improving cycle characteristics and the effect of reducing DC resistance. Other carbon materials having different physical properties can be obtained, for example, by subjecting an organic material such as coal tar pitch to heat treatment at a temperature of less than 1800 ° C. or higher than 2400 ° C. in an inert gas atmosphere, and pulverizing and classifying.

セパレータ23としては、例えば、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム、合成樹脂製不織布などを用いることができる。セパレータ23には、液状の電解質である電解液が含浸されている。   As the separator 23, for example, a polyethylene porous film, a polypropylene porous film, a synthetic resin nonwoven fabric, or the like can be used. The separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte.

電解液は、液状の溶媒、例えば有機溶媒などの非水溶媒と、この非水溶媒に溶解された電解質塩とを含むものである。   The electrolytic solution includes a liquid solvent, for example, a nonaqueous solvent such as an organic solvent, and an electrolyte salt dissolved in the nonaqueous solvent.

非水溶媒は、例えば、エチレンカーボネートおよびプロピレンカーボネートなどの環状炭酸エステルのうちの少なくとも1種を含んでいることが好ましい。サイクル特性を向上させることができるからである。特に、エチレンカーボネートと、プロピレンカーボネートとを混合して含むようにすれば、よりサイクル特性を向上させることができるので好ましい。   The non-aqueous solvent preferably contains at least one of cyclic carbonates such as ethylene carbonate and propylene carbonate. This is because the cycle characteristics can be improved. In particular, it is preferable to mix and contain ethylene carbonate and propylene carbonate because cycle characteristics can be further improved.

非水溶媒は、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートあるいはメチルプロピルカーボネートなどの鎖状炭酸エステルのうちの少なくとも1種を含んでいることが好ましい。サイクル特性をより向上させることができるからである。   The non-aqueous solvent preferably contains at least one of chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate. This is because the cycle characteristics can be further improved.

非水溶媒は、さらに、2,4−ジフルオロアニソールおよびビニレンカーボネートのうちの少なくとも一方を含んでいることが好ましい。2,4−ジフルオロアニソールは放電容量を改善することができ、ビニレンカーボネートはサイクル特性をより向上させることができるからである。特に、これらを混合して含んでいれば、放電容量およびサイクル特性を共に向上させることができるのでより好ましい。   The non-aqueous solvent preferably further contains at least one of 2,4-difluoroanisole and vinylene carbonate. This is because 2,4-difluoroanisole can improve discharge capacity, and vinylene carbonate can further improve cycle characteristics. In particular, it is more preferable that they are mixed and contained because both the discharge capacity and the cycle characteristics can be improved.

非水溶媒は、さらに、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、これら化合物の水素基の一部または全部をフッ素基で置換したもの、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピロニトリル、N,N−ジメチルフォルムアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドあるいはリン酸トリメチルなどのいずれか1種または2種以上を含んでいてもよい。   Non-aqueous solvents further include butylene carbonate, γ-butyrolactone, γ-valerolactone, those obtained by substituting some or all of the hydrogen groups of these compounds with fluorine groups, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran. 1,3-dioxolane, 4-methyl-1,3-dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropyronitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxide, or trimethyl phosphate may be included.

組み合わせる電極によっては、上記非水溶媒群に含まれる物質の水素原子の一部または全部をフッ素原子で置換したものを用いることにより、電極反応の可逆性が向上する場合がある。したがって、これらの物質を適宜用いることも可能である。   Depending on the electrode to be combined, the reversibility of the electrode reaction may be improved by using a material in which part or all of the hydrogen atoms of the substance contained in the non-aqueous solvent group are substituted with fluorine atoms. Therefore, these substances can be used as appropriate.

電解質塩としては、リチウム塩を用いることができる。リチウム塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、LiB(C654、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6、LiCl、LiBF2(ox)〔リチウムジフルオロオキサレートボレート〕、LiBOB(リチウムビスオキサレートボレート)、LiBrなどが適当であり、これらのうちのいずれか1種をまたは2種以上を混合して、用いる。なかでも、LiPF6は、高いイオン伝導性を得ることができるとともに、サイクル特性を向上させることができるので好ましい。 A lithium salt can be used as the electrolyte salt. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, LiBF 2 (ox) [lithium difluorooxalate borate], LiBOB (lithium bisoxalate borate), LiBr, etc. are suitable, and among these, Any one kind or a mixture of two or more kinds is used. Among them, LiPF 6 is preferable because it can obtain high ion conductivity and can improve cycle characteristics.

この二次電池は、例えば以下に説明するようにして、製造することができる。まず、例えば、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチルピロリドンなどの溶剤に分散させて正極合剤スラリーとする。続いて、この正極合剤スラリーを正極集電体21Aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して正極活物質層21Bを形成し、正極21を作製する。   This secondary battery can be manufactured, for example, as described below. First, for example, a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to obtain a positive electrode mixture slurry. . Subsequently, the positive electrode mixture slurry is applied to the positive electrode current collector 21A and the solvent is dried. Then, the positive electrode active material layer 21B is formed by compression molding using a roll press or the like, and the positive electrode 21 is manufactured.

また、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN−メチルピロリドンなどの溶剤に分散させて負極合剤スラリーとする。続いて、この負極合剤スラリーを負極集電体22Aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して負極活物質層22Bを形成し、負極22を作製する。   Further, for example, a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to obtain a negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is applied to the negative electrode current collector 22A, and the solvent is dried. Then, the negative electrode active material layer 22B is formed by compression molding using a roll press or the like, and the negative electrode 22 is manufactured.

次いで、正極集電体21に正極リード25を溶接などにより取り付けるとともに、負極集電体22に負極リード26を溶接などにより取り付ける。そののち、正極21と負極22とをセパレータ23を介して巻回し、正極リード25の先端部を安全弁機構15に溶接すると共に、負極リード26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12,13で挟み電池缶11の内部に収納する。   Next, the positive electrode lead 25 is attached to the positive electrode current collector 21 by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22 by welding or the like. After that, the positive electrode 21 and the negative electrode 22 are wound through the separator 23, and the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tip of the negative electrode lead 26 is welded to the battery can 11. The positive electrode 21 and the negative electrode 22 are sandwiched between a pair of insulating plates 12 and 13 and stored in the battery can 11.

正極21および負極22を電池缶11の内部に収納したのち、上述した電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。そののち、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16を、ガスケット17を介してかしめることにより固定する。以上により、図1に示した二次電池を製造できる。   After the positive electrode 21 and the negative electrode 22 are accommodated in the battery can 11, the electrolyte solution described above is injected into the battery can 11 and impregnated in the separator 23. After that, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking through the gasket 17. As described above, the secondary battery shown in FIG. 1 can be manufactured.

この二次電池では、充電を行うと、例えば、正極21からリチウムイオンが離脱し、電解液を介して負極22に吸蔵される。放電を行うと、例えば、負極22からリチウムイオンが離脱し、電解液を介して正極21に吸蔵される。   In this secondary battery, when charged, for example, lithium ions are released from the positive electrode 21 and inserted in the negative electrode 22 through the electrolytic solution. When discharging is performed, for example, lithium ions are released from the negative electrode 22 and are inserted in the positive electrode 21 through the electrolytic solution.

この発明の具体的な実施例について詳細に説明する。ただし、この発明はこれらの実施例に限定されるものではない。   Specific embodiments of the present invention will be described in detail. However, the present invention is not limited to these examples.

<実施例1> <Example 1>

[炭素材料(I)の作製]
コールタールピッチを不活性ガス雰囲気下で1900℃にて加熱処理し、炭素材料(I)を得た。
[Production of carbon material (I)]
The coal tar pitch was heat-treated at 1900 ° C. in an inert gas atmosphere to obtain a carbon material (I).

[円筒セルの作製]
炭素材料(I)92質量部とポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た。この負極合剤塗料を、厚さ15μmの銅箔の両面に塗布し、乾燥後、プレスして帯状の負極電極を作製した。
[Production of cylindrical cell]
92 parts by mass of carbon material (I), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the quantity were kneaded to obtain a negative electrode mixture paint. This negative electrode mixture paint was applied to both sides of a copper foil having a thickness of 15 μm, dried and pressed to prepare a strip-like negative electrode.

LiCO3と、FeSO4・7H2Oと、NH42PO4とを所定量混合し、さらに前記混合粉とカーボンブラックとを97:3の重量比となるように混合した後、ボールミルにて乾式混合を10時間行った。この混合粉を窒素雰囲気下にて550℃焼成を行い、カーボンを被覆したLiFePO4で表されたオリビン構造を有するリチウムリン酸化合物を得た。 A predetermined amount of LiCO 3 , FeSO 4 .7H 2 O, and NH 4 H 2 PO 4 is mixed, and the mixed powder and carbon black are mixed at a weight ratio of 97: 3. And dry mixing for 10 hours. The mixed powder was baked at 550 ° C. in a nitrogen atmosphere to obtain a lithium phosphate compound having an olivine structure represented by LiFePO 4 coated with carbon.

このリチウムリン酸化合物85質量部と、ポリフッ化ビニリデン10質量部と、人造黒鉛5質量部と、分量外のN−メチル−2−ピロリドンとを混練し、正極合剤塗料を得た。この正極合剤塗料を厚さ15μmのアルミニウム箔の両面に塗布し、乾燥後、プレスして帯状の正極電極を作製した。   85 parts by mass of this lithium phosphate compound, 10 parts by mass of polyvinylidene fluoride, 5 parts by mass of artificial graphite, and N-methyl-2-pyrrolidone outside the quantity were kneaded to obtain a positive electrode mixture paint. This positive electrode mixture paint was applied on both sides of an aluminum foil having a thickness of 15 μm, dried and pressed to prepare a strip-like positive electrode.

正極電極と負極電極との間に厚さ25μmのポリプロピレン製微孔フィルムをはさんで巻回し、エチレンカーボネートとジメチルカーボネートとを等容量で混合した混合溶媒にLiPF61mol/lを溶解させた非水電解液とともに直径18mm、高さ65mmの金属ケースに入れ、容量が1.1Ahの18650サイズの実施例1の円筒セルを作製した。 A polypropylene microporous film having a thickness of 25 μm was wound between the positive electrode and the negative electrode, and LiPF 6 1 mol / l was dissolved in a mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed in an equal volume. A cylindrical cell of Example 1 having a capacity of 1.1 Ah and 18650 size was prepared together with a water electrolyte in a metal case having a diameter of 18 mm and a height of 65 mm.

<実施例2>
[炭素材料(II)の作製]
コールタールピッチを不活性ガス雰囲気下で3000℃にて加熱処理し、炭素材料(II)を得た。
<Example 2>
[Production of carbon material (II)]
The coal tar pitch was heat-treated at 3000 ° C. in an inert gas atmosphere to obtain a carbon material (II).

[円筒セルの作製]
炭素材料(I)7質量部と、炭素材料(II)85質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た。以上の点以外は、実施例1と同様にして、実施例2の円筒セルを作製した。
[Production of cylindrical cell]
7 parts by mass of carbon material (I), 85 parts by mass of carbon material (II), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the quantity were kneaded to obtain a negative electrode mixture paint. . Except for the above, a cylindrical cell of Example 2 was produced in the same manner as Example 1.

<実施例3>
[円筒セルの作製]
炭素材料(I)42質量部と、炭素材料(II)50質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た。以上の点以外は、実施例1と同様にして、実施例3の円筒セルを作製した。
<Example 3>
[Production of cylindrical cell]
42 parts by mass of carbon material (I), 50 parts by mass of carbon material (II), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the quantity were kneaded to obtain a negative electrode mixture paint. . Except for the above, a cylindrical cell of Example 3 was produced in the same manner as Example 1.

<実施例4>
[円筒セルの作製]
炭素材料(I)52質量部と、炭素材料(II)40質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た点以外は、実施例1と同様にして、実施例4の円筒セルを作製した。
<Example 4>
[Production of cylindrical cell]
52 parts by mass of carbon material (I), 40 parts by mass of carbon material (II), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the quantity were kneaded to obtain a negative electrode mixture paint. A cylindrical cell of Example 4 was produced in the same manner as Example 1 except for the points.

<実施例5>
[炭素材料(III)の作製]
コールタールピッチを不活性ガス雰囲気下で2200℃にて加熱処理し、炭素材料(III)を得た。
<Example 5>
[Production of carbon material (III)]
The coal tar pitch was heat-treated at 2200 ° C. in an inert gas atmosphere to obtain a carbon material (III).

[円筒セルの作製]
炭素材料(III)92質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た。以上の点以外は、実施例1と同様にして、実施例5の円筒セルを作製した。
[Production of cylindrical cell]
92 parts by mass of the carbon material (III), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the amount were kneaded to obtain a negative electrode mixture paint. Except for the above, a cylindrical cell of Example 5 was produced in the same manner as Example 1.

<実施例6>
[円筒セルの作製]
炭素材料(I)5質量部と、炭素材料(II)87質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た点以外は、実施例1と同様にして、実施例6の円筒セルを作製した。
<Example 6>
[Production of cylindrical cell]
5 parts by mass of carbon material (I), 87 parts by mass of carbon material (II), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the amount were kneaded to obtain a negative electrode mixture paint. A cylindrical cell of Example 6 was produced in the same manner as Example 1 except for the point.

<実施例7>
[円筒セルの作製]
Li2Co3と、MnCO3と、FeSO4・7H2Oと、NH42PO4とを所定量混合し、さらに前記混合粉とカーボンブラックとを97:3の重量比となるように混合した後、ボールミルにて乾式混合を10時間行った。この混合粉を窒素雰囲気下にて550℃焼成を行い、LiMn0.7Fe0.3PO4で表されるMnFeオリビン正極活物質材料を得た。このMnFeオリビン正極活物質材料85質量部と、ポリフッ化ビニリデン10質量部と、人造黒鉛5質量部と、分量外のN−メチル−2−ピロリドンとを混練し、正極合剤塗料を得た。以上の点以外は、実施例1と同様にして、実施例7の円筒セルを作製した。
<Example 7>
[Production of cylindrical cell]
A predetermined amount of Li 2 Co 3 , MnCO 3 , FeSO 4 .7H 2 O and NH 4 H 2 PO 4 is mixed, and the mixed powder and carbon black are mixed at a weight ratio of 97: 3. After mixing, dry mixing was performed for 10 hours in a ball mill. This mixed powder was baked at 550 ° C. in a nitrogen atmosphere to obtain a MnFe olivine positive electrode active material represented by LiMn 0.7 Fe 0.3 PO 4 . 85 parts by mass of this MnFe olivine positive electrode active material, 10 parts by mass of polyvinylidene fluoride, 5 parts by mass of artificial graphite, and N-methyl-2-pyrrolidone out of the amount were kneaded to obtain a positive electrode mixture paint. Except for the above, a cylindrical cell of Example 7 was produced in the same manner as Example 1.

<比較例1>
[円筒セルの作製]
炭素材料(II)92質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た。以上の点以外は、実施例1と同様にして、比較例1の円筒セルを作製した。
<Comparative Example 1>
[Production of cylindrical cell]
92 parts by mass of carbon material (II), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the quantity were kneaded to obtain a negative electrode mixture paint. Except for the above, a cylindrical cell of Comparative Example 1 was produced in the same manner as Example 1.

<比較例2>
[炭素材料(IV)の作製]
コールタールピッチを不活性ガス雰囲気下で1300℃にて加熱処理し、炭素材料(IV)を得た。
<Comparative example 2>
[Production of carbon material (IV)]
The coal tar pitch was heat-treated at 1300 ° C. in an inert gas atmosphere to obtain a carbon material (IV).

[円筒セルの作製]
炭素材料(IV)92質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た。以上の点以外は、実施例1と同様にして、比較例2の円筒セルを作製した。
[Production of cylindrical cell]
92 parts by mass of the carbon material (IV), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the quantity were kneaded to obtain a negative electrode mixture paint. Except for the above, a cylindrical cell of Comparative Example 2 was produced in the same manner as Example 1.

<比較例3>
[円筒セルの作製]
コバルト酸リチウム85質量部と、ポリフッ化ビニリデン10質量部と、人造黒鉛5質量部と、分量外のN−メチル−2−ピロリドンとを混練し、正極合剤塗料を得た。以上の点以外は、比較例1と同様にして、比較例3の円筒セルを作製した。
<Comparative Example 3>
[Production of cylindrical cell]
85 parts by mass of lithium cobaltate, 10 parts by mass of polyvinylidene fluoride, 5 parts by mass of artificial graphite, and N-methyl-2-pyrrolidone outside the quantity were kneaded to obtain a positive electrode mixture paint. Except for the above, a cylindrical cell of Comparative Example 3 was produced in the same manner as Comparative Example 1.

<比較例4>
コバルト酸リチウム85質量部と、ポリフッ化ビニリデン10質量部と、人造黒鉛5質量部と、分量外のN−メチル−2−ピロリドンとを混練し、正極合剤塗料を得た。以上の点以外は、実施例1と同様にして、比較例4の円筒セルを作製した。
<Comparative example 4>
85 parts by mass of lithium cobaltate, 10 parts by mass of polyvinylidene fluoride, 5 parts by mass of artificial graphite, and N-methyl-2-pyrrolidone outside the quantity were kneaded to obtain a positive electrode mixture paint. Except for the above, a cylindrical cell of Comparative Example 4 was produced in the same manner as Example 1.

<比較例5>
[炭素材料Vの作製]
コールタールピッチを不活性ガス雰囲気下で2500℃にて加熱処理し、炭素材料(V)を得た。
<Comparative Example 5>
[Production of carbon material V]
The coal tar pitch was heat-treated at 2500 ° C. in an inert gas atmosphere to obtain a carbon material (V).

[円筒セルの作製]
炭素材料(V)92質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た。以上の点以外は、実施例1と同様にして、比較例5の円筒セルを作製した。
[Production of cylindrical cell]
92 parts by mass of the carbon material (V), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the amount were kneaded to obtain a negative electrode mixture paint. Except for the above, a cylindrical cell of Comparative Example 5 was produced in the same manner as Example 1.

<比較例6>
[炭素材料(VI)の作製]
コールタールピッチを不活性ガス雰囲気下で800℃にて加熱処理し、炭素材料(VI)を得た。
<Comparative Example 6>
[Production of carbon material (VI)]
The coal tar pitch was heat-treated at 800 ° C. in an inert gas atmosphere to obtain a carbon material (VI).

[円筒セルの作製]
炭素材料(VI)92質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た。以上の点以外は、実施例1と同様にして、比較例6の円筒セルを作製した。
[Production of cylindrical cell]
92 parts by mass of the carbon material (VI), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the amount were kneaded to obtain a negative electrode mixture paint. Except for the above, a cylindrical cell of Comparative Example 6 was produced in the same manner as Example 1.

<比較例7>
[円筒セルの作製]
炭素材料(II)92質量部と、ポリフッ化ビニリデン8質量部と、分量外のN−メチル−2−ピロリドンとを混練し、負極合剤塗料を得た。以上の点以外は、実施例7と同様にして、比較例7の円筒セルを作製した。
<Comparative Example 7>
[Production of cylindrical cell]
92 parts by mass of carbon material (II), 8 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone out of the quantity were kneaded to obtain a negative electrode mixture paint. Except for the above, a cylindrical cell of Comparative Example 7 was produced in the same manner as Example 7.

(評価)
実施例1〜実施例7および比較例1〜比較例7について、以下に説明する(I)〜(IV)の評価を行った。
(Evaluation)
Regarding Examples 1 to 7 and Comparative Examples 1 to 7, evaluations (I) to (IV) described below were performed.

(I)ラマン測定
炭素材料(I)〜(III)、炭素材料(V)について、波長514.52nmのアルゴンレーザーを測定物上で1.5mWの照射パワーになるような条件にてラマン測定を行い、得られたラマンスペクトルから1580cm-1のピーク強度(I1580)と1360cm-1のピーク強度(I1360)の比(I1360/I1580)と、1580cm-1のピーク強度(I1580)と1620cm-1のピーク強度(I1620)の比(I1620/I1580)を求めた。測定結果を図3に示す。
(I) Raman measurement With respect to the carbon materials (I) to (III) and the carbon material (V), Raman measurement is performed under the condition that an argon laser with a wavelength of 514.52 nm has an irradiation power of 1.5 mW on the measurement object. performed, the ratio of the obtained peak intensity of 1580 cm -1 from the Raman spectrum (I 1580) and the peak intensity of 1360cm -1 (I 1360) (I 1360 / I 1580), the peak intensity of 1580cm -1 (I 1580) And the ratio (I 1620 / I 1580 ) of the peak intensity (I 1620 ) at 1620 cm −1 . The measurement results are shown in FIG.

図3に示すように、実施例1で得た炭素材料(I)、実施例5で得た炭素材料(III)は、580cm-1のピーク強度(I1580)と1360cm-1のピーク強度(I1360)との比(I1360/I1580)が0.25以上2以下であり、且つ1580cm-1のピーク強度(I1580)と1620cm-1のピーク強度(I1620)との比(I1620/I1580)が0.10以上であることが確認できた。また、比較例1で得た炭素材料(II)、比較例5で得た炭素材料(V)は、両炭素材料とも、(I1360/I1580)および(I1620/I1580)が、上記数値範囲外であった。 As shown in FIG. 3, the carbon material obtained in Example 1 (I), the carbon material obtained in Example 5 (III), the peak intensity of 580cm -1 (I 1580) and the peak intensity of 1360 cm -1 ( I 1360) the ratio between (I 1360 / I 1580) is 0.25 to 2, and the ratio of the peak intensity of 1580cm -1 (I 1580) and the peak intensity of 1620cm -1 (I 1620) (I 1620 / I 1580 ) was confirmed to be 0.10 or more. Further, the carbon material (II) obtained in Comparative Example 1 and the carbon material (V) obtained in Comparative Example 5 are both (I 1360 / I 1580 ) and (I 1620 / I 1580 ) as described above. It was out of the numerical range.

また、炭素材料(IV)と炭素材料(VI)について、同様にラマン測定を行ったところ、(I1360/I1580)は、2.0、2.2とそれぞれ観測されたが、1620cm-1のピークは、両炭素材料とも観測されなかった。 Further, when the Raman measurement was similarly performed on the carbon material (IV) and the carbon material (VI), (I 1360 / I 1580 ) was observed as 2.0 and 2.2, respectively, but 1620 cm −1. This peak was not observed for both carbon materials.

(II)サイクル特性評価
実施例1〜実施例7および比較例1〜比較例7の円筒セルについて、それぞれ定電流定電圧充電(1A 3.6V 0.1Acut)と、定電流放電(7A 2.0V)とを繰り返す、サイクル試験を行い、1サイクル時の放電容量に対する500サイクル時の放電容量の容量維持率を求め、実施例および比較例それぞれの容量維持率を棒グラフにまとめた。図4に、実施例1〜実施例7および比較例1〜比較例7のサイクル容量維持率をまとめたグラフを示す。
(II) Cycle Characteristic Evaluation Regarding the cylindrical cells of Examples 1 to 7 and Comparative Examples 1 to 7, constant current and constant voltage charging (1A 3.6V 0.1 Acut) and constant current discharging (7A 2. 0V) was repeated, and the capacity retention rate of the discharge capacity at 500 cycles with respect to the discharge capacity at 1 cycle was determined, and the capacity retention rates of the examples and comparative examples were summarized in a bar graph. FIG. 4 shows a graph summarizing the cycle capacity retention rates of Examples 1 to 7 and Comparative Examples 1 to 7.

図4に示すように、実施例1〜実施例6、比較例1より、正極にオリビン構造を有するLiFePO4を用いた場合において、負極に炭素材料(I)または炭素材料(III)を含むことで、優れたサイクル特性が得られることがわかった。 As shown in FIG. 4, from Examples 1 to 6 and Comparative Example 1, when LiFePO 4 having an olivine structure is used for the positive electrode, the negative electrode contains carbon material (I) or carbon material (III). It was found that excellent cycle characteristics can be obtained.

また、正極活物質がLiCoO2である比較例3と比較例4との比較によるとサイクル特性に差異が認められなかった。これはLiFePO4に比べて充電時に定電流領域が短いため、負極違いによるサイクル特性への影響が小さかったと考えられる。 Further, according to the comparison between Comparative Example 3 and Comparative Example 4 in which the positive electrode active material was LiCoO 2 , no difference was observed in the cycle characteristics. This is probably because the constant current region during charging was shorter than that of LiFePO 4, and thus the influence on the cycle characteristics due to the difference in the negative electrode was small.

同様に実施例7と比較例7との比較からわかるように、正極活物質として、LiMn0.7Fe0.3PO4を用いた場合にサイクル特性の改善効果があるが、正極活物質として、LiFePO4を用いた場合ほどの改善効果は得られないことがわかった。 Similarly, as can be seen from the comparison between Example 7 and Comparative Example 7, when LiMn 0.7 Fe 0.3 PO 4 is used as the positive electrode active material, there is an effect of improving the cycle characteristics, but LiFePO 4 is used as the positive electrode active material. It turned out that the improvement effect as used is not obtained.

(III)負極電極容量比較
実施例1〜実施例4、実施例6、比較例1と同様の負極合剤塗料をそれぞれ作製した。この負極合剤塗料を、厚さ15μmの銅箔の片面にのみ塗布した後、乾燥してプレスし、15mmφに打ち抜くことによりコインセル用の電極を作製した。なお、粉体塗布量は、5mg/cm2〜10mg/cm2(片面)であることが望ましいので、粉体塗布量をこの範囲内になるように調整した。
(III) Negative electrode capacity comparison Negative electrode mixture paints similar to those in Examples 1 to 4, Example 6, and Comparative Example 1 were prepared. This negative electrode mixture paint was applied only to one side of a 15 μm thick copper foil, dried and pressed, and punched to 15 mmφ to produce a coin cell electrode. Incidentally, the powder coating amount, since it is desirable that the 5mg / cm 2 ~10mg / cm 2 ( one side) was adjusted to the powder coating amount within this range.

作製したコインセル用と対極としてのLi金属との間に、厚さ25μmのポリプロピレン製微多孔フィルムをはさみ、電解液は実施例1と同じ組成のものを用いて、コインセルを作製した。このコインセルについて、定電流定電圧充電(0.1C−0V−15h)、放電(0.1C 2V)にて1サイクル充放電を行い、0.1C放電容量を測定し、負極活物質重量あたりの放電容量を求めた。   A coin cell was produced using a microporous film made of polypropylene having a thickness of 25 μm sandwiched between the produced coin cell and a Li metal as a counter electrode, and the electrolytic solution having the same composition as in Example 1. About this coin cell, one cycle charge / discharge is performed by constant current and constant voltage charge (0.1C-0V-15h) and discharge (0.1C 2V), and the 0.1C discharge capacity is measured. The discharge capacity was determined.

(IV)直流抵抗測定
実施例1〜実施例4、実施例6および比較例1の円筒セルについて、満充電状態の状態から10A放電を行い、1秒後の電圧V1と放電直前の電圧V0を用いて直流抵抗を(式1)により算出した。
直流抵抗=(V0−V1)/10・・・(式1)
(IV) DC resistance measurement For the cylindrical cells of Examples 1 to 4, Example 6, and Comparative Example 1, 10 A discharge was performed from the fully charged state, and the voltage V1 after 1 second and the voltage V0 immediately before the discharge were obtained. The direct current resistance was calculated by (Equation 1).
DC resistance = (V0−V1) / 10 (Expression 1)

(III)〜(IV)の測定結果を表1に示す。なお、(IV)については、比較例1の直流抵抗値を100%とした場合の比較値をまとめたものである。   Table 1 shows the measurement results of (III) to (IV). Note that (IV) is a summary of comparative values when the DC resistance value of Comparative Example 1 is 100%.

Figure 2009123474
Figure 2009123474

比較例1で得た炭素材料(II)は、黒鉛構造が発達しているため、高容量が得られるが、実施例1で得た炭素材料(I)は、黒鉛構造が未発達であるため、容量が低いことがわかった。   Since the carbon material (II) obtained in Comparative Example 1 has a developed graphite structure, a high capacity can be obtained. However, the carbon material (I) obtained in Example 1 has an undeveloped graphite structure. , Found that the capacity is low.

実施例2、実施例3、実施例6、比較例1によると、実施例1で得た炭素材料(I)は、比較例1で得た炭素材料(II)に比べ、直流抵抗を下げる効果があることがわかった。しかしながら、炭素材料(I)の混合量が多くなると、負極での容量が低くなるため、負極の塗布量を増加させる必要が生じるため、実施例1のように電池の直流抵抗が大きくなるという弊害が生じた。   According to Example 2, Example 3, Example 6, and Comparative Example 1, the carbon material (I) obtained in Example 1 has an effect of lowering the DC resistance as compared with the carbon material (II) obtained in Comparative Example 1. I found out that However, when the amount of carbon material (I) is increased, the capacity at the negative electrode is reduced, and thus the amount of application of the negative electrode needs to be increased. Thus, as in Example 1, the DC resistance of the battery is increased. Occurred.

以上、サイクル特性の改善効果と直流抵抗低減の効果から勘案して、負極活物質層に含まれる炭素材料(I)の含有量しては、7wt%以上50wt%以下の範囲内であることが望ましいことがわかった。   As described above, in consideration of the effect of improving the cycle characteristics and the effect of reducing the direct current resistance, the content of the carbon material (I) contained in the negative electrode active material layer is within the range of 7 wt% or more and 50 wt% or less. I found it desirable.

この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、上述した実施形態では、円筒型電池を例に挙げて説明したが、この発明はこれに限定されるものではなく、例えば角型電池、コイン型電池、ボタン型電池などといった外装材に金属製容器などを用いた電池、薄型電池といった外装材にラミネートフィルムなどを用いた電池など、様々な形状や大きさにすることも可能である。   The present invention is not limited to the above-described embodiments of the present invention, and various modifications and applications are possible without departing from the spirit of the present invention. For example, in the above-described embodiment, a cylindrical battery has been described as an example. However, the present invention is not limited to this, and for example, a metal for an exterior material such as a square battery, a coin battery, a button battery, or the like. Various shapes and sizes, such as a battery using a container or the like, or a battery using a laminate film as an exterior material such as a thin battery, can also be used.

また、例えば、電解液に代えて、他の電解質、例えば高分子化合物に電解液を保持させたゲル状の電解質を用いてもよい。電解液(すなわち液状の溶媒、電解質塩および添加剤)については上述のとおりであり、高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリフッ化ビニリデンとポリヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレン、ポリカーボネートが挙げられる。特に電気化学的な安定性を考慮すると、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイドなどが好ましい。   For example, instead of the electrolytic solution, another electrolyte, for example, a gel electrolyte in which the electrolytic solution is held in a polymer compound may be used. The electrolyte solution (that is, liquid solvent, electrolyte salt, and additive) is as described above. Examples of the polymer compound include polyacrylonitrile, polyvinylidene fluoride, and a copolymer of polyvinylidene fluoride and polyhexafluoropropylene. , Polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile -Butadiene rubber, polystyrene, polycarbonate. In particular, in consideration of electrochemical stability, polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene, polyethylene oxide, and the like are preferable.

また、他の電解質としては、イオン伝導性高分子を利用した高分子固体電解質、またはイオン伝導性無機材料を利用した無機固体電解質なども挙げられ、これらを単独あるいは他の電解質と組み合わせて用いてもよい。高分子固体電解質に用いることができる高分子化合物としては、ポリエーテル、ポリエステル、ポリフォスファゼン、あるいはポリシロキサンなどが挙げられる。無機固体電解質としては、イオン伝導性セラミックス、イオン伝導性結晶、あるいはイオン伝導性ガラスなどが挙げられる   Examples of other electrolytes include solid polymer electrolytes using ion conductive polymers, and inorganic solid electrolytes using ion conductive inorganic materials. These can be used alone or in combination with other electrolytes. Also good. Examples of the polymer compound that can be used for the polymer solid electrolyte include polyether, polyester, polyphosphazene, and polysiloxane. Examples of the inorganic solid electrolyte include ion conductive ceramics, ion conductive crystals, and ion conductive glass.

この発明の一実施形態による非水電解液電池の構成を表す断面図である。It is sectional drawing showing the structure of the nonaqueous electrolyte battery by one Embodiment of this invention. 図1に示した巻回電極体の一部を拡大して表す断面図であるIt is sectional drawing which expands and represents a part of winding electrode body shown in FIG. 炭素材料のラマン測定により得られたピーク強度の比をプロットしたグラフである。It is the graph which plotted ratio of the peak intensity obtained by the Raman measurement of a carbon material. 実施例1〜実施例6よび比較例1〜比較例4の500サイクル時の容量維持率をまとめたグラフである。It is the graph which put together the capacity | capacitance maintenance factor at the time of 500 cycles of Example 1- Example 6 and Comparative Example 1- Comparative Example 4. FIG.

符号の説明Explanation of symbols

11・・・電池缶
12,13・・・絶縁板
14・・・電池蓋
15・・・安全弁機構
16・・・熱抵抗素子
17・・・ガスケット
20・・・巻回電極体
21・・・正極
21A・・・正極集電体
21B・・・正極活物質層
22・・・負極
22A・・・負極集電体
22B・・・負極活物質層
23・・・セパレータ
24・・・センターピン
25・・・正極リード
26・・・負極リード
DESCRIPTION OF SYMBOLS 11 ... Battery can 12, 13 ... Insulating plate 14 ... Battery cover 15 ... Safety valve mechanism 16 ... Thermal resistance element 17 ... Gasket 20 ... Winding electrode body 21 ... Positive electrode 21A ... Positive electrode current collector 21B ... Positive electrode active material layer 22 ... Negative electrode 22A ... Negative electrode current collector 22B ... Negative electrode active material layer 23 ... Separator 24 ... Center pin 25 ... Positive electrode lead 26 ... Negative electrode lead

Claims (3)

オリビン構造を有するリチウムリン酸化合物を含む正極と、負極活物質を有する負極と、非水電解質と、を備え、
上記負極活物質は、波長514.52nmのアルゴンレーザ光を用いて測定したラマンスペクトル分析により得られた1580cm-1のピーク強度(I1580)と1360cm-1のピーク強度(I1360)との比(I1360/I1580)が0.25以上2以下であり、且つ
1580cm-1のピーク強度(I1580)と1620cm-1のピーク強度(I1620)との比(I1620/I1580)が0.10以上である炭素材料を含むこと
を特徴とする非水電解質電池。
A positive electrode containing a lithium phosphate compound having an olivine structure, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte,
The ratio of the negative electrode active material, a peak intensity of 1580 cm -1 obtained by Raman spectrum analysis was measured by using an argon laser beam having a wavelength of 514.52nm (I 1580) and the peak intensity of 1360cm -1 (I 1360) (I 1360 / I 1580) is 0.25 to 2, and the peak intensity of 1580cm -1 (I 1580) and the peak intensity of 1620 cm -1 ratio of (I 1620) (I 1620 / I 1580) is A non-aqueous electrolyte battery comprising a carbon material of 0.10 or more.
負極活物質層に含まれる上記炭素材料の含有量が、7wt%〜50wt%であること
を特徴とする請求項1記載の非水電解質電池。
The nonaqueous electrolyte battery according to claim 1, wherein the content of the carbon material contained in the negative electrode active material layer is 7 wt% to 50 wt%.
上記オリビン構造を有するリチウムリン酸化合物は、LiFePO4であること
を特徴とする請求項1記載の非水電解質電池。
The lithium phosphate compound having an olivine structure, a non-aqueous electrolyte battery according to claim 1, wherein it is LiFePO 4.
JP2007295303A 2007-11-14 2007-11-14 Nonaqueous electrolyte battery Pending JP2009123474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295303A JP2009123474A (en) 2007-11-14 2007-11-14 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295303A JP2009123474A (en) 2007-11-14 2007-11-14 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2009123474A true JP2009123474A (en) 2009-06-04

Family

ID=40815420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295303A Pending JP2009123474A (en) 2007-11-14 2007-11-14 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2009123474A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013018181A1 (en) * 2011-07-29 2015-03-02 トヨタ自動車株式会社 Lithium ion secondary battery
CN105280891A (en) * 2014-06-02 2016-01-27 三星Sdi株式会社 Negative active material, cathode and rechargeable lithium battery including same
WO2016067876A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, method for producing same, and membrane electrode assembly and fuel cell using catalyst layer
WO2016067879A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst layer for fuel cell, and fuel cell membrane electrode assembly and fuel cell using said catalyst layer
WO2016067881A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst for fuel cell, production method thereof, fuel cell electrode catalyst layer containing said catalyst, fuel cell membrane-electrode assembly using said catalyst or catalyst layer, and fuel cell
KR20160060716A (en) 2013-09-25 2016-05-30 고쿠리츠다이가쿠호징 도쿄다이가쿠 Nonaqueous secondary battery
EP3214679A4 (en) * 2014-10-29 2017-11-22 Nissan Motor Co., Ltd Electrode catalyst layer for fuel cell, manufacturing method for same, and membrane electrode assembly and fuel cell using same
US10686223B2 (en) 2013-09-25 2020-06-16 Kabushiki Kaisha Toyota Jidoshokki Nonaqueous electrolyte secondary battery
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013018181A1 (en) * 2011-07-29 2015-03-02 トヨタ自動車株式会社 Lithium ion secondary battery
US10686223B2 (en) 2013-09-25 2020-06-16 Kabushiki Kaisha Toyota Jidoshokki Nonaqueous electrolyte secondary battery
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery
KR20160060716A (en) 2013-09-25 2016-05-30 고쿠리츠다이가쿠호징 도쿄다이가쿠 Nonaqueous secondary battery
US11411213B2 (en) 2014-06-02 2022-08-09 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, and rechargeable lithium battery including same
CN105280891B (en) * 2014-06-02 2020-11-10 三星Sdi株式会社 Negative active material, negative electrode including the same, and rechargeable lithium battery including the same
CN105280891A (en) * 2014-06-02 2016-01-27 三星Sdi株式会社 Negative active material, cathode and rechargeable lithium battery including same
CN106922203A (en) * 2014-10-29 2017-07-04 日产自动车株式会社 The fuel battery membrane electrode assembly and fuel cell of electrode catalyst for fuel cell and its manufacture method, the electrode catalyst for fuel cell layer containing the catalyst and the use catalyst or catalyst layer
JPWO2016067881A1 (en) * 2014-10-29 2017-08-31 日産自動車株式会社 FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING THE SAME, ELECTRODE CATALYST FOR FUEL CELL CONTAINING THE CATALYST, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL USING THE CATALYST OR CATALYST
WO2016067879A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst layer for fuel cell, and fuel cell membrane electrode assembly and fuel cell using said catalyst layer
CN107078307A (en) * 2014-10-29 2017-08-18 日产自动车株式会社 Electrode catalyst for fuel cell, electrode catalyst for fuel cell layer, its manufacture method and the membrane-electrode assembly and fuel cell using the catalyst layer
EP3214678A4 (en) * 2014-10-29 2017-11-15 Nissan Motor Co., Ltd Electrode catalyst for fuel cell, production method thereof, fuel cell electrode catalyst layer containing said catalyst, fuel cell membrane-electrode assembly using said catalyst or catalyst layer, and fuel cell
EP3214680A4 (en) * 2014-10-29 2017-11-08 Nissan Motor Co., Ltd Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, method for producing same, and membrane electrode assembly and fuel cell using catalyst layer
EP3214679A4 (en) * 2014-10-29 2017-11-22 Nissan Motor Co., Ltd Electrode catalyst layer for fuel cell, manufacturing method for same, and membrane electrode assembly and fuel cell using same
EP3214681A4 (en) * 2014-10-29 2018-01-24 Nissan Motor Co., Ltd Electrode catalyst layer for fuel cell, and fuel cell membrane electrode assembly and fuel cell using said catalyst layer
WO2016067876A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, method for producing same, and membrane electrode assembly and fuel cell using catalyst layer
US10714762B2 (en) 2014-10-29 2020-07-14 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, and fuel cell membrane electrode assembly and fuel cell using the catalyst layer
WO2016067881A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst for fuel cell, production method thereof, fuel cell electrode catalyst layer containing said catalyst, fuel cell membrane-electrode assembly using said catalyst or catalyst layer, and fuel cell
JPWO2016067879A1 (en) * 2014-10-29 2017-08-31 日産自動車株式会社 Electrode catalyst layer for fuel cell, membrane electrode assembly for fuel cell and fuel cell using the catalyst layer
JPWO2016067876A1 (en) * 2014-10-29 2017-09-07 日産自動車株式会社 FUEL CELL ELECTRODE CATALYST, FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLING AND FUEL CELL

Similar Documents

Publication Publication Date Title
US6884546B1 (en) Secondary battery
JP5070753B2 (en) battery
US9786904B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery having the same
EP2863468B1 (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
JP5262175B2 (en) Negative electrode and secondary battery
US10044072B2 (en) Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
US20090191462A1 (en) Anode active material, anode, battery, and method of manufacturing anode
JP2009193744A (en) Positive electrode and nonaqueous electrolyte battery
JP2009123474A (en) Nonaqueous electrolyte battery
JP4968225B2 (en) Non-aqueous electrolyte battery
JP5412843B2 (en) battery
KR20160091864A (en) Nonaqueous electrolyte secondary battery
JP4797577B2 (en) battery
JP2009134970A (en) Nonaqueous electrolytic battery
JP4715848B2 (en) battery
JP5177211B2 (en) Negative electrode active material, negative electrode and battery
JP2008103311A (en) Battery
JP4424895B2 (en) Lithium secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
KR101521646B1 (en) Secondary battery with high capacity and longevity comprising silazane-based compound
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP2007157538A (en) Battery
JP2010135115A (en) Nonaqueous electrolyte secondary battery
JP2002117903A (en) Nonaqueous electrolyte battery
JP3722462B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same