JP5199522B2 - Spinel-type lithium / manganese composite oxide, its production method and use - Google Patents

Spinel-type lithium / manganese composite oxide, its production method and use Download PDF

Info

Publication number
JP5199522B2
JP5199522B2 JP23033799A JP23033799A JP5199522B2 JP 5199522 B2 JP5199522 B2 JP 5199522B2 JP 23033799 A JP23033799 A JP 23033799A JP 23033799 A JP23033799 A JP 23033799A JP 5199522 B2 JP5199522 B2 JP 5199522B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
positive electrode
manganese composite
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23033799A
Other languages
Japanese (ja)
Other versions
JP2001048547A (en
Inventor
辺 政 喜 渡
井 雅 春 坂
脇 茂 男 西
科 正 行 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP23033799A priority Critical patent/JP5199522B2/en
Publication of JP2001048547A publication Critical patent/JP2001048547A/en
Application granted granted Critical
Publication of JP5199522B2 publication Critical patent/JP5199522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の技術分野】
本発明は、リチウムイオン二次電池用正極活物質として有用な、スピネル構造を有するリチウム・マンガン複合酸化物およびその製造方法に関する。また本発明は、前記リチウム・マンガン複合酸化物を正極活物質として用いる、リチウムイオン二次電池に関する。
【0002】
【発明の技術的背景】
リチウムイオン電池の正極を構成する正極活物質として、コバルト酸リチウム、ニッケル酸リチウムおよびマンガン酸リチウムなどが一部実用化を含めて開発が進められている。
これらのうち、コバルト酸リチウムは原料のコバルトが高価であり、また実効蓄電量が理論量の50%程度しかないという問題があった。また、ニッケル酸リチウムは安価で実効蓄電量がコバルト酸リチウムの約1.4倍であるという特性を有しているものの、安全性に若干問題があった。これに対し、マンガン酸リチウムは実効蓄電量はコバルト酸リチウムより若干劣るが、原料のマンガンが安価なこと、安全性がコバルト酸リチウムと同等であることなどからリチウムイオン電池用の正極活物質として期待されている。
【0003】
しかしながら、従来のマンガン酸リチウムを正極活物質として用いたリチウムイオン電池では、充放電を繰り返していると、次第に放電容量が低下するという、いわゆるサイクル特性がコバルト酸リチウムに比べて劣るという問題点があった。これは、正極活物質中のマンガンが電解液中に溶解したり、さらには充放電の繰り返しによるマンガン酸リチウム結晶のひずみの発生によって、次第に放電容量が低下するためと考えられている。
【0004】
以上のようなマンガン酸リチウムを正極活物質として使用する際の問題点を解決するため、種々のリチウム・マンガン複合酸化物が提案されている。
例えば、マンガン酸リチウムのマンガンの一部をAl,Ni,Co,Fe,Cr,Ta,V,Ti,Mg等の金属元素と置換した、リチウム・マンガン複合酸化物が提案されている(特開平2−220358号公報、特開平4−141954号公報、特開平6−187993号公報、特開平9−147867号公報参照)。また、マンガンの一部をホウ素と置換した、リチウム・マンガン複合酸化物も提案されている(特開平4−237970号公報、特開平8−79215号公報、特開平8−195200号公報参照)。
【0005】
しかしながら、これらのマンガンの一部が異種元素で置換された従来のリチウム・マンガン複合酸化物を用いたリチウムイオン電池では、高温におけるサイクル特性が劣っていたり、あるいは高温サイクル特性が必ずしも満足するものではなく実用的にはまだ不十分であった。
また、これらの正極活物質は、微粒子状に加工して正極用合剤中に配合され、正極形成に使用される。ところで、一定容積の電池中にできる限り多くの正極活物質を充填した方が、電池容量を向上させることができるので、正極用合剤中にはできるだけ多くの正極活物質が配合されることが望ましいが、合剤中に配合し得る正極活物質の量にも制限がある。
【0006】
そこで、緻密な充填密度の大きい微粒子状正極活物質を用いれば、単位体積当たりに充填される正極活物質の重量が多くなり、充放電容量の大きい電池を得ることができる。すなわち、重量当たりの放電容量と同時に体積当たりの放電容量(重量当たり放電容量×充填密度)の大きい正極活物質が好ましい。
しかしながら、従来のマンガン酸リチウムの微粒子は同じ粒径のコバルト酸リチウムと比較して充填密度が小さく、このようなマンガン酸リチウムを使用した正極活物質では、体積当たりの放電容量が低く、コバルト酸リチウムの50〜60%程度しかないという問題点もあった。
【0007】
【発明の目的】
本発明は、上記のような従来のリチウム・マンガン複合酸化物の問題点を解決するもので、リチウムイオン電池の正極活物質として用いたときに、高温でのサイクル特性および保存性に優れるとともに、体積当たり放電容量が高い新規なリチウム・マンガン複合酸化物およびその製造方法、さらにこのような新規なリチウム・マンガン複合酸化物を正極活物質として用いたリチウムイオン二次電池を提供することを目的とする。
【0008】
【発明の概要】
本発明に係るスピネル型リチウム・マンガン複合酸化物は、下記の一般式で表される。
Li(x+y)Mn(2-y-p-q)M1pM2q(4-a)a
(式中、1.0≦x<1.2 , 0<y≦0.2 , 1.0<x+y≦1.2 ,
0<p≦1.0 , 0.0005≦q≦0.1 , 0≦a≦1.0 であり、
M1:Ni,Co,Mg,Fe,Al,Crから選ばれる少なくとも1種の金属、
M2:酸化物の融点が800℃以下の元素から選ばれる少なくとも1種の元素である)
上記スピネル型リチウム・マンガン複合酸化物の比表面積は、0.1〜2.0m2/gの範囲にあることが好ましい。
【0009】
本発明に係るスピネル型リチウム・マンガン複合酸化物の製造方法は、
(i)リチウム化合物、(ii)マンガン化合物、(iii)Ni,Co,Mg,Fe,Al,Crから選ばれる少なくとも1種の金属(M1)の化合物、(iv)酸化物の融点が800℃以下の元素(M2)から選ばれる少なくとも1種の化合物、および(v)フッ素化合物を、
Li:Mn:M1:M2:Fの原子比が(x+y):(2−y−p−q):p:q:a(ただし、1.0≦x<1.2、0<y≦0.2、1.0<x+y≦1.2、0<p≦1.0、0.0005≦q≦0.1、0≦a≦1.0)の比率で混合して水懸濁液を調製し、
該水懸濁液を乾燥したのち、
650〜900℃の温度で焼成することを特徴としている。
【0010】
本発明に係るリチウムイオン二次電池は、前記スピネル型リチウム・マンガン複合酸化物を正極活物質として含む正極を有している。
【0011】
【発明の具体的説明】
本発明に係るスピネル型リチウム・マンガン複合酸化物は、下記一般式で表される。
Li(x+y)Mn(2-y-p-q)M1pM2q(4-a)a
(式中、1.0≦x<1.2 , 0<y≦0.2 , 1.0<x+y≦1.2
0<p≦1.0 , 0.0005≦q≦0.1 , 0≦a≦1.0 であり、
M1:Ni,Co,Mg,Fe,Al,Crから選ばれる少なくとも1種の金属、
M2:酸化物の融点が800℃以下の元素から選ばれる少なくとも1種の元素である)
このようなリチウム・マンガン複合酸化物は、スピネル構造を有し、しかも結晶構造中のマンガン原子の一部が、金属M1および元素M2と置換し、さらにマンガン原子の一部がリチウム原子と置換した構造を有していると推定される。
【0012】
上記の金属M1の置換量は、前記の一般式において、0<p≦1、好ましくは0.02≦P≦0.2の範囲にある。このような範囲にあれば、正極活物質として用いたときに、一定の放電容量を確保し、高温サイクル特性を維持することができる。なお、金属M1の置換量が多くなると、正極活物質として用いたときの電池の高温サイクル特性は向上するものの、電池の放電容量が低下してしまうことがある。
【0013】
酸化物の融点が800℃以下の元素M2としては、具体的にはB(B23;融点460℃)、P(P25;融点420℃)、Pb(PbO;融点290℃)、Sb(Sb23;融点655℃)、V(V25;融点680℃)などが挙げられる。これらのうち、特に好ましい元素はBまたはVである。
これらの元素M2は、最終的に得られるリチウム・マンガン複合酸化物中でMnの一部と置換した構造を構成しているものと考えられる。
【0014】
M2の量は、前記の一般式において、0.0005≦q≦0.1、好ましくは0.005≦q≦0.05の範囲にあることが望ましい。元素M2が、リチウム・マンガン複合酸化物中に上記の範囲内で含まれていれば、得られるリチウム・マンガン複合酸化物は十分に結晶が成長している。qが0.0005未満では結晶成長および微粒子焼結の効果が期待できず、0.1を越すと正極活物質として用いたときの電池の放電容量が低下することがある。
【0015】
本発明において、これらの元素M2は、スピネル結晶の生成および成長を促進させるために添加されている。すなわち、これらの元素M2は、スピネル結晶の生成過程で上記の元素の酸化物が融剤として作用して、結晶の生成および成長を促進し、さらに結晶粒子(一次粒子)が集合した微粒子(二次粒子)の焼結を促進する。その結果、比表面積が小さく、きわめて緻密なリチウム・マンガン複合酸化物を得ることができる。
【0016】
すなわち本発明に係るスピネル型リチウム・マンガン複合酸化物は、粒径が0.1〜5.0μmの範囲の結晶粒子(一次粒子)、およびこの一次粒子が集合して焼結した約2〜30μmの範囲の二次粒子からなり、その比表面積は、0.1〜2.0m2/g、好ましくは0.2〜0.8m2/gであり、充填密度は、1.5〜2.5g/mlの範囲にある。
【0017】
以上のようなスピネル型リチウム・マンガン複合酸化物微粒子は、一定容積の容器に充填したときの充填密度が従来のリチウム・マンガン複合酸化物より大きい。したがって、正極活物質として用いた場合に一定容積の電池内に充填し得る正極活物質の重量が多くなり、従来の正極活物質に比較して体積当たりの放電容量を大きくすることができる。
【0018】
また、結晶が十分に成長しているのでこれを正極活物質として用いた場合、電解液と接触したときの電解液中に溶解するMnの量が従来のリチウム・マンガン複合酸化物に比べて高温でも少ないことから、高温での充放電の繰り返しによる放電容量の低下が少なく、すなわち高温のサイクル特性の向上を図ることができる。
【0019】
なお、比表面積が0.1m2/gより小さいと、Mn溶解量は減るものの、正極中で正極活物質と導電剤との接触および電解液との接触が不十分となることがある。また、2.0m2/gより大きくなると充填密度が小さくなり、体積当たりの放電容量の向上が見られなかったり、また、Mn溶解量の増加によってサイクル特性の向上しなくなることがある。
【0020】
本発明に係るリチウム・マンガン複合酸化物は、さらにMnの一部がLiと置換している。リチウムイオン電池の正極活物質として用いられるスピネル構造のリチウム・マンガン複合酸化物におけるLiの理論値は1であるが、本発明では理論値より過剰のLiが含まれている。この過剰のLiの一部または全部に見合う分だけMn量を少なくすることにより、Liの少なくとも一部がMnと置換した構造をとっている。すなわち、前記の一般式において、Liの総量(x+y)は1.0<(x+y)≦1.2、好ましくは1.05<(x+y)≦1.15の範囲にあることが望ましい。また、Mnと置換しているLi量(y)は、0<y≦0.2、好ましくは0.05<y≦0.15の範囲にあることが望ましい。Liの置換量(y)が多くなると、電池の充放電容量は若干低下するものの、サイクル特性が向上する。しかしながら、yが0.2(x+yが1.2)より多くなってもサイクル特性の向上効果は見られない。また、Li総量(x+y)が1.0以下になると不純物となる異相が生成され、電池の充放電性能が低下する。
【0021】
本発明に係るスピネル型リチウム・マンガン複合酸化物では、さらにリチウム・マンガン複合酸化物中にフッ素が含まれていてもよい。このフッ素は、スピネル構造中で酸素の一部と置換した構造をとるものと推定される。フッ素を添加した正極活物質を用いることにより、リチウムイオン電池の充放電容量の増加が可能となる。
【0022】
本発明のリチウム・マンガン複合酸化物は、例えばリチウム化合物、マンガン化合物および元素M1、M2の化合物の粉末を混合したのち、混合物を酸素含有ガス雰囲気中で焼成することによって製造することができる。特に好適であるのは、本出願人が先に出願した特開平10−172567号に基づき、リチウム化合物、マンガン化合物、元素M1、M2の化合物およびフッ素化合物を所定の割合で混合した水懸濁液を調製し、これを乾燥したのち650〜900℃で焼成する方法である。
【0023】
以下、このような本発明に係る製造方法について、具体的に説明する。
まずマンガン化合物、置換元素M1化合物およびフッ素化合物が水に分散した、あるいはその一部が溶解した水懸濁液(以後水懸濁液Aという)を調製する。
マンガン化合物としては、電解二酸化マンガン、化学合成二酸化マンガンなどのマンガン酸化物、または水酸化マンガン、炭酸マンガン、硝酸マンガンなどの熱分解して二酸化マンガンとなるマンガン化合物が用いられる。このようなマンガン化合物は粉砕等の手段で、予めその平均粒径を10μm以下、好ましくは0.1〜5μmの範囲に調整することが好ましい。
【0024】
元素M1(Ni,Co,Mg,Fe,Al,Crから選ばれる1種または2種以上の金属)の化合物としては、塩基性炭酸ニッケル、塩基性炭酸コバルトなどの炭酸塩、アルミナ、マグネシアなどの酸化物があげられる。これらの化合物もマンガン化合物と同様に平均粒径を10μm以下、好ましくは0.1〜5μmの範囲に調整することが好ましい。
【0025】
粒度調整は上記の化合物をそれぞれ別に行ってもよく、上記化合物をすべて混合したのち行ってもよい。このような範囲に水懸濁液中の固形分の平均粒径を調整しておくと、懸濁液中で固形分が固液分離することなく、均一な状態で次の乾燥工程に付することができる。その結果、各化合物がきわめて均一に混合した乾燥粉体が得られる。そして、この乾燥物を焼成すれば、マンガン、リチウム、置換元素との固相反応が容易に進行し、従来の固体粉末同士の混合物の焼成物よりもより高純度の複合酸化物を得ることができる。
フッ素元素を添加する場合は、たとえばフッ化アンモニアム、フッ化水素酸、フッ化リチウムなどが上記の水懸濁液Aに混合される。
【0026】
上記のようにして調製された水懸濁液A中にリチウム化合物および酸化物の融点が800℃以下の元素M2の化合物を混合する。
リチウム化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウムなどの水溶性リチウム化合物が挙げられる。また、M2の化合物としては、元素M2を含む酸、水溶性塩などが挙げられ、具体的には硼酸、硼砂などの水溶性硼素化合物、メタバナジン酸アンモニウムなどの水溶性バナジウム化合物などが例示される。
【0027】
上記のリチウム化合物および酸化物の融点が800℃以下の元素M2の化合物は、調製しておいた水懸濁液Aに直接混合してもよく、また、水溶液として前記の水懸濁液Aに混合してもよい。
上記のようにして調製されたリチウム化合物、マンガン化合物、元素M1、M2の化合物およびフッ素化合物を所定の割合で含む水懸濁液(水懸濁液Bという)は、新たに水を加えるなどにより、固形分濃度が5〜30重量%の範囲となるように調整することが望ましい。
【0028】
上記の方法で調製された水懸濁液Bは、次に乾燥操作に付される。
乾燥方法としては特に制限はなく、たとえば、スプレードライヤー、バンド乾燥機、棚型乾燥機などによる方法が挙げられる。
特に、スプレードライヤーを使用すれば、球状のリチウム・マンガン複合酸化物微粒子が得られる。このときの乾燥条件としては、スプレードライヤーの乾燥用熱風の入口温度が約290〜310℃、出口温度が約110〜120℃の範囲が好ましい。
【0029】
乾燥後の微粒子は、次いで酸素含有ガス雰囲気中で、650〜900℃の範囲の温度で焼成される。この焼成操作によって、スピネル構造のリチウム・マンガン複合酸化物が生成し、かつ結晶成長が進むとともに結晶粒子が集合した微粒子(二次粒子)の焼結が促進され、上記したようなリチウム・マンガン複合酸化物が得られる。
【0030】
焼成は、トンネル炉、マッフル炉、ロータリーキルンなど通常の焼成炉により、空気などの酸素含有ガス中で行われる。
なお、本発明のリチウム・マンガン複合酸化物の比表面積は、上記の焼成温度を高くしたり、また融剤として作用する元素M2の化合物の添加量が多くすると、小さくなる。本発明では、前記元素M2の添加量に応じて焼成温度を適宜選ぶことによって、比表面積が0.1〜2.0m2/gの範囲のリチウム・マンガン複合酸化物を得ることができる。
【0031】
さらに、上記範囲の温度で焼成すれば結晶粒子が集合した微粒子(二次粒子)の焼結が進み、従来の方法で得られる二次粒子よりも充填密度が大きい緻密な微粒子が得られる。
【0032】
【発明の効果】
本発明に係るリチウム・マンガン複合酸化物は、Mnの一部がNi,Co,Mg,Fe,Al,Crから選ばれる金属元素と置換されており、これを正極活物質として用いたリチウムイオン電池は、高温での保存性、高温サイクル特性などの高温特性が優れている。
【0033】
さらに、Bなどの酸化物の融点が800℃以下の元素が添加されていることにより、結晶が十分に成長し、また結晶粒子同士の集合体である微粒子も十分に焼結しているので、比表面積が小さく、微粒子の充填密度も大きい。したがって、これを正極活物質として用いたリチウムイオン電池の体積当たりの放電容量が優れると同時に、高温での保存性などの高温特性が、Ni,Co,Mg,Fe,Al,Cr等の金属元素とのみの置換物よりもさらに向上している。
【0034】
また、Mnの一部がLiと置換されているので、これを正極活物質として用いたリチウムイオン電池は、高温サイクル特性が向上している。
さらにまた、本発明に係るリチウム・マンガン複合酸化物の酸素の一部をフッ素で置換したものを正極活物質として用いると、リチウムイオン電池の充放電容量の向上を図ることができる。
【0035】
【実施例】
以下、本発明について実施例に基づき説明するが、本発明はこれらの実施例に何ら限定されるものではない。
【0036】
【実施例1】
電解二酸化マンガン粉末(γ−MnO2、純度92%)と炭酸コバルト粉末(CoCO3、純度93%)を、Mn:Co=90:10(原子比)の割合で湿式粉砕器に仕込み、平均粒径0.5μmに粉砕した。この混合物スラリーに、Li:Co:Mn:B=1.1:0.189:1.701:0.0095(原子比)になるように水酸化リチウム水溶液および硼酸水溶液を加えて、固形分濃度20重量%のスラリーを調製した。
【0037】
このスラリーをスプレードライヤーで乾燥した。スプレードライヤーの条件は、熱風入口温度300〜310℃、出口温度110〜150℃とした。次いで、乾燥粉末を空気流通下850℃で6時間焼成することにより、Li1.1Co0.189Mn1.7010.00954(x=1.0,y=0.1)の組成を有する結晶性リチウム・マンガン複合酸化物の微粒子を得た。
【0038】
上記の微粒子の平均粒径、比表面積および充填密度を表1に示す。
なお、測定方法は次のとおりである。
平均粒径:レーザー回折散乱式粒度分布測定装置(堀場製作所製、LA-700)
比表面積:自動表面積測定装置(ユアサアイオニクス社製、マルチソープ-12)
充填密度:50mlのメスシリンダーに試料を25g採取し、木製テーブル上で3分間タッピングしたのちその容積(V)を測り、次式により求めた。
【0039】
充填密度(g/ml)=25/V
【0040】
【実施例2】
リチウム、コバルト、マンガンおよび硼素の原子比が、Li:Co:Mn:B=1.1:0.095:1.796:0.0095となるように原料を配合したした以外は、実施例1と同様の合成条件で、Li1.1Co0.095Mn1.7960.00954(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を調製した。
【0041】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0042】
【実施例3】
リチウム、コバルト、マンガンおよび硼素の原子比が、Li:Co:Mn:B=1.1:0.019:1.872:0.0095になるように原料を配合した以外は、実施例1と同様の合成条件で、Li1.1Co0.019Mn1.8720.00954(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を調製した。
【0043】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0044】
【実施例4】
リチウム、コバルト、マンガンおよび硼素の原子比が、Li:Co:Mn:B=1.1:0.092:1.751:0.057になるように原料を配合した以外は、実施例1と同様の合成条件で、Li1.1Co0.092Mn1.7510.0574(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を調製した。
【0045】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0046】
【実施例5】
アルミニウム化合物としてγ−Al23(純度:95%)を用い、リチウム、アルミニウム、マンガンおよび硼素の原子比をLi:Al:Mn:B=1.1:0.095:1.796:0.0095になるように原料を配合した以外は、実施例1と同様の合成条件で、Li1.1Al0.095Mn1.7960.00954(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
【0047】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0048】
【実施例6】
マグネシウム化合物として酸化マグネシウム(MgO,純度:99.8%)を使用し、リチウム、マグネシウム、マンガンおよび硼素の原子比が、Li:Mg:Mn:B=1.1:0.047:1.843:0.0095になるように原料を配合した以外は、実施例1と同様の合成条件で、Li1.1Mg0.047Mn1.8430.00954(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
【0049】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0050】
【実施例7】
ニッケル化合物として水酸化ニッケル(Ni(OH)2、純度:100%)を用いた。リチウム、ニッケル、マンガンおよび硼素の原子比が、Li:Ni:Mn:B=1.1:0.095:1.796:0.0095になるように原料を配合した以外は、実施例1と同様の合成条件で、Li1.1Ni0.095Mn1.7960.00954(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
【0051】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0052】
【実施例8】
クロム化合物として無水クロム酸(CrO3、純度:99.8%)を用い、リチウム、クロム、マンガンおよび硼素の原子比が、Li:Cr:Mn:B=1.1:0.095:1.796:0.0095になるように原料を配合した以外は、実施例1と同様の合成条件で、Li1.1Cr0.095Mn1.7960.00954(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
【0053】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0054】
【実施例9】
鉄化合物として酸化鉄(Fe2O3,純度:98%)を用いて、リチウム、鉄、マンガンおよび硼素の原子比が、Li:Fe:Mn:B=1.1:0.047:1.843:0.0095になるように原料を配合した以外は、実施例1と同様の合成条件で、Li1.1Fe0.047Mn1.8430.00954(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
【0055】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0056】
【実施例10】
電解二酸化マンガン粉末(γ−MnO2、純度92%)と水酸化ニッケル粉末(Ni(OH)2、純度100%)を、Mn:Ni=95:5(原子比)の割合で湿式粉砕器に仕込み、平均粒径0.5μmに粉砕した。この混合物スラリーに、Li:Ni:Mn:B:F=1.1:0.095:1.796:0.0095:0.095(原子比)になるように水酸化リチウム水溶液、硼酸水溶液およびフッ化アンモニウム水溶液を加えて、固形分濃度20重量%のスラリーを調製した。
【0057】
このスラリーを実施例1と同一条件のスプレードライヤーで乾燥した。次いで、乾燥粉末を空気流通下850℃で6時間焼成することにより、Li1.1Ni0.095Mn1.7960.00953.9050.095(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0058】
【実施例11】
リチウム、ニッケル、マンガン、硼素およびフッ素の原子比が、Li:Ni:Mn:B:F=1.1:0.095:1.796:0.0095:0.19になるようにした以外は、実施例10と同様の合成条件で、Li1.1Ni0.095Mn1.7960.00953.810.19(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
【0059】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0060】
【比較例1】
ホウ素を添加せず、リチウムおよびコバルトの量を実施例2と同じにした以外は、実施例1と同様の合成条件で、Li1.1Co0.095Mn1.8054(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0061】
【比較例2】
リチウム、マンガンおよび硼素の原子比が、Li:Mn:B=1.1:1.89:0.0095になるようにした以外は、実施例1と同様の合成条件で、LiおよびB以外の置換元素のないLi1.1Mn1.890.00954(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
【0062】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0063】
【比較例3】
Liを理論量とし、CoおよびBの置換量を実施例2と同じとした以外は、実施例1と同様の合成条件で、Li1.0Co0.10Mn1.890.00954(x=1.0,y=0)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0064】
【比較例4】
実施例1で用いた電解二酸化マンガン、炭酸コバルト、水酸化リチウムおよび硼酸それぞれの粉末を、Li:Co:Mn:B=1.1:0.095:1.796:0.0095(原子比)になるように乳鉢に採取し、粉砕したのち、混合した。次にこの混合物を、空気流通下、850℃で6時間焼成し、Li1.1Co0.095Mn1.7960.00954(x=1.0,y=0.1)からなる結晶性リチウム・マンガン複合酸化物の微粒子を得た。
【0065】
得られた微粒子の平均粒径、比表面積および充填密度を表1に示す。
【0066】
【表1】

Figure 0005199522
【0067】
【実施例12】
実施例1〜11で得られた結晶性リチウム・マンガン複合酸化物を正極活物質として含む正極を用いて試験用リチウムイオン電池を作成し、電池性能を評価した。
まず、それぞれの結晶性リチウム・マンガン複合酸化物の微粒子と導電材としてのアセチレンブラックおよびバインダーとしてのポリ四フッ化エチレンパウダーを、75:20:5の重量比で混合し、乳鉢で混練して正極用合剤を調製した。この合剤を展伸ローラーで厚さ0.1mmのシートとし、16mmφに型抜きした後110℃で真空乾燥して試験用正極を作成した。
【0068】
これらの正極と金属リチウム箔(厚さ0.2μm)を、セパレーター(商品名:セルガード)を介してコイン型電池ケースに積層し、体積比1:1のエチレンカーボネートとジメチルカーボネート混合溶媒に1mol/lのLiPF6を溶解した電解液を注入して試験用電池を作成した。
上記の電池について、放電容量、高温サイクル特性および高温劣化試験を行った。
(1)放電容量
定電流で0.5mA/cm2の電流密度、充電電位4.3Vまで、放電電位3.0Vまでの電位規制の条件で、まず重量当たりの放電容量を測定したのち、次式により体積当たりの放電容量を算出した。
【0069】
体積当たりの放電容量=重量当たりの放電容量×充填密度
(2)高温サイクル特性
試験用電池を60℃の恒温槽に設置し、上記と同一の条件で30回の充放電試験を行い、高温サイクル特性を次式の容量維持率で評価した。
容量維持率(%)=
(1回目の重量当たり放電容量/30回目の重量当たり放電容量)×100
(3)高温劣化試験(高温保存性の評価)
高温の電解液中に一定時間浸したあとの正極活物質の性能劣化を放電容量の回復率を指標として評価した。
【0070】
まず、正極活物質試料を110℃で3時間乾燥後、その約10gを容積50mlのふた付ステンレス製容器に採取した。これを露点約−70℃のアルゴンガス循環グローブボックス内に移し、体積比1:1のエチレンカーボネートとジメチルカーボネート混合溶媒に1mol/lのLiPF6を溶解した有機溶媒10mlを加えた。容器を密閉後グローブボックスから取り出し、85℃に設定された恒温槽に移し、7日間保持した。次いで容器を取り出し室温まで冷却後、容器内の試料と有機溶媒とを濾別し、110℃で3時間乾燥した。
【0071】
こうして処理された正極活物質を用いて、上記同様の試験用正極および試験用電池を作成した。
これらの試験用電極の充放電試験を上記した条件で行い、次式により回復率を算出した。
A:処理後の正極活物質を用いた電池の放電容量
B:未処理の正極活物質を用いた電池の放電容量
回復率(%)=(A/B)×100
(なお、放電容量は2サイクル目の値)
上記で得られた放電容量、高温サイクル特性および回復率の結果を表2に示す。
【0072】
【比較例5】
比較例1〜4で得られた結晶性リチウム・マンガン複合酸化物を正極活物質として含む正極を用いて、実施例12と同様にして試験用リチウムイオン電池を作成し、電池性能を評価した。
結果を表2に示す。
【0073】
【表2】
Figure 0005199522
【0074】
以上の実施例および比較例から、以下のことがわかる。
(1)硼素添加の有無以外は同一組成の実施例2と比較例1とを比べると、実施例2の方が、比表面積が小さく、充填密度も大きい。したがって、容量維持率、回復率ともに比較例1に比べて優れている。
(2)置換金属M1の有無以外は同一組成の実施例1と比較例2と比べると、実施例1の方が、容量維持率、回復率ともに優れている。
(3) 比較例3のようにリチウムが理論量(1.0)の場合は、リチウムが1.0以上でMnと置換している各実施例と比べて、容量維持率が劣る。
(4)実施例10および11のように、実施例7にフッ素を添加すると、放電容量が向上する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium-manganese composite oxide having a spinel structure, which is useful as a positive electrode active material for lithium ion secondary batteries, and a method for producing the same. The present invention also relates to a lithium ion secondary battery using the lithium / manganese composite oxide as a positive electrode active material.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
As a positive electrode active material constituting a positive electrode of a lithium ion battery, lithium cobaltate, lithium nickelate, lithium manganate, and the like have been developed, including some practical applications.
Among these, lithium cobaltate has a problem that the raw material cobalt is expensive and the effective storage amount is only about 50% of the theoretical amount. Further, although lithium nickelate has the characteristics that it is inexpensive and has an effective storage capacity that is about 1.4 times that of lithium cobaltate, it has some safety problems. On the other hand, lithium manganate has a slightly lower effective energy storage capacity than lithium cobaltate, but as a positive electrode active material for lithium-ion batteries, the raw material manganese is inexpensive and safety is equivalent to lithium cobaltate. Expected.
[0003]
However, in the conventional lithium ion battery using lithium manganate as the positive electrode active material, when charging and discharging are repeated, the discharge capacity gradually decreases, so-called cycle characteristics are inferior to lithium cobaltate. there were. This is thought to be due to the fact that the discharge capacity is gradually reduced due to the dissolution of manganese in the positive electrode active material in the electrolyte solution and the generation of distortion of the lithium manganate crystal due to repeated charge and discharge.
[0004]
In order to solve the problems in using lithium manganate as a positive electrode active material, various lithium / manganese composite oxides have been proposed.
For example, a lithium-manganese composite oxide is proposed in which a part of manganese of lithium manganate is replaced with a metal element such as Al, Ni, Co, Fe, Cr, Ta, V, Ti, Mg, etc. No. 2-235858, JP-A-4-141945, JP-A-6-187993, JP-A-9-147867). In addition, lithium-manganese composite oxides in which a part of manganese is substituted with boron have been proposed (see Japanese Patent Laid-Open Nos. 4-237970, 8-79215, and 8-195200).
[0005]
However, the lithium ion battery using the conventional lithium-manganese composite oxide in which a part of these manganese is substituted with different elements does not have inferior high-temperature cycle characteristics or does not necessarily satisfy high-temperature cycle characteristics. It was still insufficient for practical use.
Further, these positive electrode active materials are processed into fine particles and blended in a positive electrode mixture, and used for positive electrode formation. By the way, it is possible to improve the battery capacity by filling as much positive electrode active material as possible in a battery of a certain volume, so that as much positive electrode active material as possible can be blended in the positive electrode mixture. Although desirable, the amount of the positive electrode active material that can be blended in the mixture is also limited.
[0006]
Therefore, when a fine particulate positive electrode active material having a high packing density is used, the weight of the positive electrode active material filled per unit volume increases, and a battery having a large charge / discharge capacity can be obtained. That is, a positive electrode active material having a large discharge capacity per volume (discharge capacity per weight × packing density) simultaneously with the discharge capacity per weight is preferable.
However, conventional lithium manganate fine particles have a smaller packing density than lithium cobaltate having the same particle size, and the positive electrode active material using such lithium manganate has a low discharge capacity per volume, and cobalt acid There was also a problem that there was only about 50 to 60% of lithium.
[0007]
OBJECT OF THE INVENTION
The present invention solves the problems of the conventional lithium-manganese composite oxide as described above, and when used as a positive electrode active material of a lithium ion battery, it has excellent high-temperature cycle characteristics and storage stability, An object of the present invention is to provide a novel lithium / manganese composite oxide having a high discharge capacity per volume, a method for producing the same, and a lithium ion secondary battery using such a novel lithium / manganese composite oxide as a positive electrode active material. To do.
[0008]
Summary of the Invention
The spinel-type lithium / manganese composite oxide according to the present invention is represented by the following general formula.
Li(x + y)Mn(2-ypq)M1pM2qO(4-a)Fa
(Where 1.0 ≦ x <1.2, 0 <y ≦ 0.2, 1.0 <x + y ≦ 1.2,
0 <p ≦ 1.0, 0.0005 ≦ q ≦ 0.1, 0 ≦ a ≦ 1.0,
M1: at least one metal selected from Ni, Co, Mg, Fe, Al, Cr,
M2: At least one element selected from elements having an oxide melting point of 800 ° C. or lower)
The specific surface area of the spinel type lithium / manganese composite oxide is 0.1 to 2.0 m.2/ G is preferable.
[0009]
The method for producing the spinel type lithium-manganese composite oxide according to the present invention,
(i) a lithium compound, (ii) a manganese compound, (iii) a compound of at least one metal (M1) selected from Ni, Co, Mg, Fe, Al, and Cr, and (iv) a melting point of the oxide of 800 ° C. At least one compound selected from the following elements (M2), and (v) a fluorine compound,
Li: Mn: M1: M2: F atomic ratio is (x + y) :( 2-yp-q): p: q: a (where 1.0 ≦ x <1.2, 0 <y ≦ 0.2, 1.0 <x + y ≦ 1.2, 0 <p ≦ 1.0, 0.0005 ≦ q ≦ 0.1, 0 ≦ a ≦ 1.0) to prepare an aqueous suspension,
After drying the aqueous suspension,
It is characterized by firing at a temperature of 650 to 900 ° C.
[0010]
The lithium ion secondary battery according to the present invention has a positive electrode containing the spinel type lithium / manganese composite oxide as a positive electrode active material.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The spinel-type lithium / manganese composite oxide according to the present invention is represented by the following general formula.
Li(x + y)Mn(2-ypq)M1pM2qO(4-a)Fa
(Where 1.0 ≦ x <1.2, 0 <y ≦ 0.2, 1.0 <x + y ≦ 1.2
0 <p ≦ 1.0, 0.0005 ≦ q ≦ 0.1, 0 ≦ a ≦ 1.0,
M1: at least one metal selected from Ni, Co, Mg, Fe, Al, Cr,
M2: At least one element selected from elements having an oxide melting point of 800 ° C. or lower)
Such a lithium-manganese composite oxide has a spinel structure, and a part of the manganese atom in the crystal structure is substituted with the metal M1 and the element M2, and a part of the manganese atom is substituted with the lithium atom. Presumed to have a structure.
[0012]
The amount of substitution of the metal M1 is in the range of 0 <p ≦ 1, preferably 0.02 ≦ P ≦ 0.2 in the above general formula. If it exists in such a range, when it uses as a positive electrode active material, fixed discharge capacity can be ensured and a high temperature cycling characteristic can be maintained. Note that when the amount of substitution of the metal M1 is increased, the high-temperature cycle characteristics of the battery when used as the positive electrode active material is improved, but the discharge capacity of the battery may be reduced.
[0013]
As the element M2 whose oxide has a melting point of 800 ° C. or lower, specifically, B (B2OThreeMelting point 460 ° C.), P (P2OFiveMelting point 420 ° C.), Pb (PbO; melting point 290 ° C.), Sb (Sb2OThreeMelting point 655 ° C.), V (V2OFiveA melting point of 680 ° C.). Among these, a particularly preferable element is B or V.
These elements M2 are considered to constitute a structure in which a part of Mn is substituted in the finally obtained lithium / manganese composite oxide.
[0014]
The amount of M2 is preferably in the range of 0.0005 ≦ q ≦ 0.1, preferably 0.005 ≦ q ≦ 0.05 in the above general formula. If the element M2 is contained in the lithium-manganese composite oxide within the above range, the resulting lithium-manganese composite oxide has sufficiently grown crystals. If q is less than 0.0005, the effects of crystal growth and fine particle sintering cannot be expected, and if it exceeds 0.1, the discharge capacity of the battery when used as a positive electrode active material may decrease.
[0015]
In the present invention, these elements M2 are added to promote the formation and growth of spinel crystals. That is, these elements M2 are fine particles (secondary particles) in which crystal oxides (primary particles) are aggregated by promoting the formation and growth of crystals by the action of oxides of the above elements as fluxes in the process of forming spinel crystals. Promotes sintering of secondary particles). As a result, an extremely dense lithium / manganese composite oxide having a small specific surface area can be obtained.
[0016]
That is, the spinel type lithium / manganese composite oxide according to the present invention has a crystal particle (primary particle) having a particle size in the range of 0.1 to 5.0 μm, and about 2 to 30 μm in which the primary particles are aggregated and sintered. Secondary particles having a specific surface area of 0.1 to 2.0 m.2/ G, preferably 0.2 to 0.8 m2The packing density is in the range of 1.5 to 2.5 g / ml.
[0017]
The spinel type lithium / manganese composite oxide fine particles as described above have a filling density larger than that of the conventional lithium / manganese composite oxide when filled in a container of a constant volume. Therefore, when used as a positive electrode active material, the weight of the positive electrode active material that can be filled in a battery of a constant volume increases, and the discharge capacity per volume can be increased as compared with the conventional positive electrode active material.
[0018]
In addition, since the crystals are sufficiently grown, when this is used as the positive electrode active material, the amount of Mn dissolved in the electrolyte when contacted with the electrolyte is higher than that of the conventional lithium / manganese composite oxide. However, since there are few, the fall of the discharge capacity by repetition of charging / discharging at high temperature is few, ie, the improvement of cycling characteristics at high temperature can be aimed at.
[0019]
The specific surface area is 0.1m2If it is less than / g, the amount of dissolved Mn decreases, but the contact between the positive electrode active material and the conductive agent and the contact with the electrolytic solution in the positive electrode may be insufficient. 2.0m2If it exceeds / g, the packing density decreases, and the discharge capacity per unit volume may not be improved, or the cycle characteristics may not be improved due to an increase in the dissolved amount of Mn.
[0020]
In the lithium-manganese composite oxide according to the present invention, part of Mn is further substituted with Li. The theoretical value of Li is 1 in the lithium-manganese composite oxide having a spinel structure used as the positive electrode active material of the lithium ion battery, but in the present invention, an excessive amount of Li is included. By reducing the amount of Mn by an amount corresponding to a part or all of this excess Li, a structure in which at least a part of Li is replaced with Mn is taken. That is, in the above general formula, the total amount of Li (x + y) is desirably in the range of 1.0 <(x + y) ≦ 1.2, preferably 1.05 <(x + y) ≦ 1.15. Further, the Li amount (y) substituting Mn is desirably in the range of 0 <y ≦ 0.2, preferably 0.05 <y ≦ 0.15. When the substitution amount (y) of Li is increased, the charge / discharge capacity of the battery is slightly reduced, but the cycle characteristics are improved. However, even if y is greater than 0.2 (x + y is 1.2), the effect of improving the cycle characteristics is not observed. Moreover, when Li total amount (x + y) becomes 1.0 or less, a heterogeneous phase that is an impurity is generated, and the charge / discharge performance of the battery is lowered.
[0021]
In the spinel type lithium / manganese composite oxide according to the present invention, the lithium / manganese composite oxide may further contain fluorine. This fluorine is presumed to have a structure in which a part of oxygen is substituted in the spinel structure. By using the positive electrode active material to which fluorine is added, the charge / discharge capacity of the lithium ion battery can be increased.
[0022]
The lithium-manganese composite oxide of the present invention can be produced, for example, by mixing a lithium compound, a manganese compound, and powders of the elements M1 and M2 and then firing the mixture in an oxygen-containing gas atmosphere. Particularly suitable is an aqueous suspension in which a lithium compound, a manganese compound, a compound of elements M1, M2 and a fluorine compound are mixed in a predetermined ratio based on JP-A-10-172567 filed earlier by the present applicant. Is prepared, dried, and then fired at 650 to 900 ° C.
[0023]
Hereinafter, the manufacturing method according to the present invention will be specifically described.
First, an aqueous suspension (hereinafter referred to as an aqueous suspension A) in which a manganese compound, a substitution element M1 compound and a fluorine compound are dispersed in water or a part thereof is dissolved is prepared.
As the manganese compound, manganese oxides such as electrolytic manganese dioxide and chemically synthesized manganese dioxide, or manganese compounds such as manganese hydroxide, manganese carbonate, and manganese nitrate that are thermally decomposed to become manganese dioxide are used. Such a manganese compound is preferably adjusted in advance to an average particle size of 10 μm or less, preferably 0.1 to 5 μm by means of pulverization or the like.
[0024]
Examples of the compound of element M1 (one or more metals selected from Ni, Co, Mg, Fe, Al, and Cr) include carbonates such as basic nickel carbonate and basic cobalt carbonate, alumina, magnesia, and the like. Oxides. These compounds also have an average particle diameter of 10 μm or less, preferably 0.1 to 5 μm, similarly to the manganese compound.
[0025]
The particle size adjustment may be performed separately for each of the above compounds, or may be performed after mixing all the above compounds. If the average particle size of the solid content in the aqueous suspension is adjusted to such a range, the solid content in the suspension does not undergo solid-liquid separation and is subjected to the next drying step in a uniform state. be able to. As a result, a dry powder in which each compound is mixed extremely uniformly is obtained. If this dried product is fired, solid-state reaction with manganese, lithium, and a substitution element easily proceeds, and a higher-purity composite oxide than a fired product of a mixture of conventional solid powders can be obtained. it can.
In the case of adding elemental fluorine, for example, ammonia fluoride, hydrofluoric acid, lithium fluoride, and the like are mixed into the aqueous suspension A described above.
[0026]
In the aqueous suspension A prepared as described above, a compound of the element M2 whose melting point of the lithium compound and oxide is 800 ° C. or less is mixed.
Examples of the lithium compound include water-soluble lithium compounds such as lithium hydroxide, lithium carbonate, and lithium nitrate. Examples of the M2 compound include acids containing the element M2, water-soluble salts, and the like. Specific examples include water-soluble boron compounds such as boric acid and borax, and water-soluble vanadium compounds such as ammonium metavanadate. .
[0027]
The above-mentioned lithium compound and the compound of the element M2 whose melting point of the oxide is 800 ° C. or less may be directly mixed in the prepared aqueous suspension A. You may mix.
An aqueous suspension (referred to as water suspension B) containing lithium compounds, manganese compounds, elements M1, M2 and fluorine compounds prepared as described above in a predetermined ratio can be obtained by newly adding water. It is desirable to adjust the solid content concentration to be in the range of 5 to 30% by weight.
[0028]
The aqueous suspension B prepared by the above method is then subjected to a drying operation.
There is no restriction | limiting in particular as a drying method, For example, the method by a spray dryer, a band dryer, a shelf type dryer etc. is mentioned.
In particular, if a spray dryer is used, spherical lithium-manganese composite oxide fine particles can be obtained. As drying conditions at this time, it is preferable that the inlet temperature of the hot air for drying of the spray dryer is in the range of about 290 to 310 ° C and the outlet temperature is about 110 to 120 ° C.
[0029]
The fine particles after drying are then fired at a temperature in the range of 650 to 900 ° C. in an oxygen-containing gas atmosphere. This firing operation produces a lithium-manganese composite oxide having a spinel structure and promotes the sintering of fine particles (secondary particles) in which crystal particles are aggregated as crystal growth proceeds. An oxide is obtained.
[0030]
Firing is performed in an oxygen-containing gas such as air by an ordinary firing furnace such as a tunnel furnace, a muffle furnace, or a rotary kiln.
The specific surface area of the lithium / manganese composite oxide of the present invention decreases as the firing temperature is increased or the amount of the element M2 compound acting as a flux is increased. In the present invention, the specific surface area is 0.1 to 2.0 m by appropriately selecting the firing temperature according to the amount of the element M2.2Lithium / manganese composite oxide in the range of / g can be obtained.
[0031]
Furthermore, if the firing is performed at a temperature within the above range, the sintering of the fine particles (secondary particles) in which the crystal particles are aggregated proceeds, and fine fine particles having a larger packing density than the secondary particles obtained by the conventional method can be obtained.
[0032]
【Effect of the invention】
In the lithium-manganese composite oxide according to the present invention, a part of Mn is substituted with a metal element selected from Ni, Co, Mg, Fe, Al, and Cr, and a lithium ion battery using this as a positive electrode active material Has excellent high-temperature characteristics such as storage stability at high temperatures and high-temperature cycle characteristics.
[0033]
Furthermore, by adding an element having a melting point of an oxide such as B of 800 ° C. or lower, the crystal is sufficiently grown, and the fine particles that are aggregates of crystal particles are also sufficiently sintered. The specific surface area is small and the packing density of fine particles is also large. Therefore, the lithium ion battery using this as a positive electrode active material has excellent discharge capacity per volume and high temperature characteristics such as storage stability at high temperatures, such as Ni, Co, Mg, Fe, Al, and Cr. And even better than just the replacement.
[0034]
In addition, since a part of Mn is replaced with Li, a lithium ion battery using this as a positive electrode active material has improved high temperature cycle characteristics.
Furthermore, when the lithium-manganese composite oxide according to the present invention in which part of oxygen is substituted with fluorine is used as the positive electrode active material, the charge / discharge capacity of the lithium ion battery can be improved.
[0035]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples at all.
[0036]
[Example 1]
Electrolytic manganese dioxide powder (γ-MnO2, Purity 92%) and cobalt carbonate powder (CoCOThree, Purity 93%) was charged into a wet pulverizer at a ratio of Mn: Co = 90: 10 (atomic ratio) and pulverized to an average particle size of 0.5 μm. Lithium hydroxide aqueous solution and boric acid aqueous solution were added to this mixture slurry so that Li: Co: Mn: B = 1.1: 0.189: 1.701: 0.0095 (atomic ratio) to obtain a solid content concentration. A 20 wt% slurry was prepared.
[0037]
This slurry was dried with a spray dryer. The conditions of the spray dryer were a hot air inlet temperature of 300 to 310 ° C and an outlet temperature of 110 to 150 ° C. Next, the dried powder is calcined at 850 ° C. for 6 hours under air flow, whereby Li1.1Co0.189Mn1.701B0.0095OFourCrystalline lithium / manganese composite oxide fine particles having a composition of (x = 1.0, y = 0.1) were obtained.
[0038]
Table 1 shows the average particle diameter, specific surface area and packing density of the fine particles.
The measurement method is as follows.
Average particle diameter: Laser diffraction / scattering particle size distribution analyzer (Horiba, LA-700)
Specific surface area: Automatic surface area measuring device (manufactured by Yuasa Ionics, Multi Soap-12)
Packing density: 25 g of a sample was taken into a 50 ml graduated cylinder, tapped on a wooden table for 3 minutes, its volume (V) was measured, and the following formula was obtained.
[0039]
Packing density (g / ml) = 25 / V
[0040]
[Example 2]
Example 1 except that the raw materials were blended so that the atomic ratio of lithium, cobalt, manganese and boron was Li: Co: Mn: B = 1.1: 0.095: 1.796: 0.0095 Li under the same synthesis conditions as1.1Co0.095Mn1.796B0.0095OFourCrystalline lithium / manganese composite oxide fine particles (x = 1.0, y = 0.1) were prepared.
[0041]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0042]
[Example 3]
Example 1 except that the raw materials were blended so that the atomic ratio of lithium, cobalt, manganese and boron was Li: Co: Mn: B = 1.1: 0.019: 1.872: 0.0095 Under similar synthesis conditions, Li1.1Co0.019Mn1.872B0.0095OFourCrystalline lithium / manganese composite oxide fine particles (x = 1.0, y = 0.1) were prepared.
[0043]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0044]
[Example 4]
Example 1 except that the raw materials were blended so that the atomic ratio of lithium, cobalt, manganese and boron was Li: Co: Mn: B = 1.1: 0.092: 1.751: 0.057 Under similar synthesis conditions, Li1.1Co0.092Mn1.751B0.057OFourCrystalline lithium / manganese composite oxide fine particles (x = 1.0, y = 0.1) were prepared.
[0045]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0046]
[Example 5]
Γ-Al as an aluminum compound2OThree(Purity: 95%) and the raw materials are blended so that the atomic ratio of lithium, aluminum, manganese and boron is Li: Al: Mn: B = 1.1: 0.095: 1.796: 0.0095 Except for the above, under the same synthesis conditions as in Example 1, Li1.1Al0.095Mn1.796B0.0095OFourCrystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
[0047]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0048]
[Example 6]
Magnesium oxide (MgO, purity: 99.8%) is used as the magnesium compound, and the atomic ratio of lithium, magnesium, manganese and boron is Li: Mg: Mn: B = 1.1: 0.047: 1.843. : Li under the same synthesis conditions as in Example 1 except that the raw materials were blended so as to be 0.00951.1Mg0.047Mn1.843B0.0095OFourCrystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
[0049]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0050]
[Example 7]
Nickel hydroxide (Ni (OH) as a nickel compound2, Purity: 100%). Example 1 except that the raw materials were blended so that the atomic ratio of lithium, nickel, manganese and boron was Li: Ni: Mn: B = 1.1: 0.095: 1.796: 0.0095 Under similar synthesis conditions, Li1.1Ni0.095Mn1.796B0.0095OFourCrystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
[0051]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0052]
[Example 8]
Chromium anhydride (CrOThree, Purity: 99.8%), and the atomic ratio of lithium, chromium, manganese and boron is Li: Cr: Mn: B = 1.1: 0.095: 1.796: 0.0095 With the same synthesis conditions as in Example 1 except that the raw materials were blended, Li1.1Cr0.095Mn1.796B0.0095OFourCrystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
[0053]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0054]
[Example 9]
Iron oxide (Fe2OThree, Purity: 98%), and the atomic ratio of lithium, iron, manganese, and boron is Li: Fe: Mn: B = 1.1: 0.047: 1.843: 0.0095 Except for blending, under the same synthesis conditions as in Example 1, Li1.1Fe0.047Mn1.843B0.0095OFourCrystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
[0055]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0056]
[Example 10]
Electrolytic manganese dioxide powder (γ-MnO2, Purity 92%) and nickel hydroxide powder (Ni (OH)2, Purity 100%) was charged into a wet pulverizer at a ratio of Mn: Ni = 95: 5 (atomic ratio) and pulverized to an average particle size of 0.5 μm. Lithium hydroxide aqueous solution, boric acid aqueous solution and Li / Ni: Mn: B: F were added to this mixture slurry so as to be 1.1: 0.095: 1.796: 0.0095: 0.095 (atomic ratio). An aqueous ammonium fluoride solution was added to prepare a slurry having a solid concentration of 20% by weight.
[0057]
This slurry was dried with a spray dryer under the same conditions as in Example 1. Next, the dried powder is calcined at 850 ° C. for 6 hours under air flow, whereby Li1.1Ni0.095Mn1.796B0.0095O3.905F0.095Crystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0058]
Example 11
Except that the atomic ratio of lithium, nickel, manganese, boron and fluorine is Li: Ni: Mn: B: F = 1.1: 0.095: 1.796: 0.0095: 0.19 Under the same synthesis conditions as in Example 10, Li1.1Ni0.095Mn1.796B0.0095O3.81F0.19Crystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
[0059]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0060]
[Comparative Example 1]
Li was the same as in Example 1 except that no boron was added and the amounts of lithium and cobalt were the same as in Example 2.1.1Co0.095Mn1.805OFourCrystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0061]
[Comparative Example 2]
Except for the atomic ratio of lithium, manganese and boron being Li: Mn: B = 1.1: 1.89: 0.0095, the same synthesis conditions as in Example 1 were used except for Li and B. Li without substitution elements1.1Mn1.89B0.0095OFourCrystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
[0062]
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0063]
[Comparative Example 3]
Under the same synthesis conditions as in Example 1, except that Li is the theoretical amount and the substitution amounts of Co and B are the same as in Example 2, Li1.0Co0.10Mn1.89B0.0095OFourCrystalline lithium / manganese composite oxide particles (x = 1.0, y = 0) were obtained.
Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0064]
[Comparative Example 4]
  The powders of electrolytic manganese dioxide, cobalt carbonate, lithium hydroxide and boric acid used in Example 1 were respectively replaced with Li: Co: Mn: B = 1.1: 0.095: 1.796: 0.0095 (atomic ratio). Then, the mixture was collected in a mortar, ground, and mixed. The mixture is then calcined at 850 ° C. for 6 hours under air flow.1.1Co0.095Mn1.796B0.0095OFourCrystalline lithium / manganese composite oxide particles (x = 1.0, y = 0.1) were obtained.
[0065]
  Table 1 shows the average particle diameter, specific surface area, and packing density of the obtained fine particles.
[0066]
[Table 1]
Figure 0005199522
[0067]
Example 12
Test lithium ion batteries were prepared using the positive electrodes containing the crystalline lithium / manganese composite oxides obtained in Examples 1 to 11 as the positive electrode active material, and the battery performance was evaluated.
First, fine particles of each crystalline lithium / manganese composite oxide, acetylene black as a conductive material, and polytetrafluoroethylene powder as a binder are mixed at a weight ratio of 75: 20: 5 and kneaded in a mortar. A positive electrode mixture was prepared. This mixture was made into a sheet having a thickness of 0.1 mm with a stretch roller, die-cut to 16 mmφ, and vacuum dried at 110 ° C. to prepare a test positive electrode.
[0068]
These positive electrode and metallic lithium foil (thickness 0.2 μm) are laminated on a coin-type battery case via a separator (trade name: Celgard), and 1 mol / l in a 1: 1 volume ratio of ethylene carbonate and dimethyl carbonate mixed solvent. l LiPF6A battery for test was prepared by injecting an electrolytic solution in which the solution was dissolved.
The above battery was subjected to discharge capacity, high temperature cycle characteristics, and high temperature deterioration test.
(1) Discharge capacity
0.5mA / cm at constant current2First, the discharge capacity per weight was measured under the conditions of potential regulation up to the current density, charge potential 4.3V, and discharge potential 3.0V, and then the discharge capacity per volume was calculated according to the following equation.
[0069]
Discharge capacity per volume = discharge capacity per weight x packing density
(2) High temperature cycle characteristics
The test battery was placed in a constant temperature bath at 60 ° C., 30 charge / discharge tests were performed under the same conditions as described above, and the high temperature cycle characteristics were evaluated by the capacity retention rate of the following equation.
Capacity maintenance rate (%) =
(Discharge capacity per first weight / discharge capacity per 30th weight) × 100
(3) High temperature degradation test (Evaluation of high temperature storage stability)
The performance degradation of the positive electrode active material after being immersed in a high temperature electrolyte for a certain time was evaluated using the recovery rate of the discharge capacity as an index.
[0070]
First, the positive electrode active material sample was dried at 110 ° C. for 3 hours, and about 10 g thereof was collected in a stainless steel container with a lid having a volume of 50 ml. This was transferred into an argon gas circulation glove box having a dew point of about -70 ° C., and 1 mol / l LiPF in a 1: 1 volume ratio of ethylene carbonate and dimethyl carbonate mixed solvent.610 ml of an organic solvent in which was dissolved was added. After sealing the container, it was taken out from the glove box, transferred to a constant temperature bath set at 85 ° C., and held for 7 days. Next, the container was taken out and cooled to room temperature, and then the sample in the container and the organic solvent were separated by filtration and dried at 110 ° C. for 3 hours.
[0071]
Using the positive electrode active material thus treated, the same test positive electrode and test battery as described above were prepared.
The charge / discharge test of these test electrodes was performed under the conditions described above, and the recovery rate was calculated by the following formula.
A: Discharge capacity of battery using positive electrode active material after treatment
B: Discharge capacity of battery using untreated positive electrode active material
Recovery rate (%) = (A / B) × 100
(The discharge capacity is the value at the second cycle)
Table 2 shows the results of the discharge capacity, high-temperature cycle characteristics and recovery rate obtained above.
[0072]
[Comparative Example 5]
  Using the positive electrode containing the crystalline lithium / manganese composite oxide obtained in Comparative Examples 1 to 4 as a positive electrode active material, a test lithium ion battery was prepared in the same manner as in Example 12, and the battery performance was evaluated.
  The results are shown in Table 2.
[0073]
[Table 2]
Figure 0005199522
[0074]
The following can be understood from the above examples and comparative examples.
(1) Comparing Example 2 and Comparative Example 1 having the same composition except for the presence or absence of boron addition, Example 2 has a smaller specific surface area and a larger packing density. Therefore, both the capacity retention rate and the recovery rate are superior to those of Comparative Example 1.
(2) Compared with Example 1 and Comparative Example 2 having the same composition except for the presence or absence of the substitution metal M1, Example 1 is superior in both capacity retention rate and recovery rate.
(3) When the lithium is the theoretical amount (1.0) as in Comparative Example 3, the capacity retention rate is inferior to each of the Examples in which lithium is 1.0 or more and Mn is substituted.
(4) As in Examples 10 and 11, when fluorine is added to Example 7, the discharge capacity is improved.

Claims (4)

下記の一般式で表され、リチウムイオン二次電池の正極活物質として用いられるスピネル型リチウム・マンガン複合酸化物。
Li(x+y)Mn(2-y-p-q)M1pM2q4
(式中、1.0≦x<1.2 , 0<y≦0.2 , 1.0<x+y≦1.2 ,0<p≦1.0 , 0.0005≦q≦0.1 ,M1:Mg,Alから選ばれる少なくとも1種の金属、M2:B(ホウ素)である。)
Represented by the following general formula, the positive electrode active used as substances that spinel-type lithium-manganese composite oxide of the lithium ion secondary battery.
Li (x + y) Mn (2-ypq) M1 p M2 q O 4
(In the formula, 1.0 ≦ x <1.2, 0 <y ≦ 0.2, 1.0 <x + y ≦ 1.2, 0 <p ≦ 1.0, 0.0005 ≦ q ≦ 0.1, M1: At least one metal selected from Mg and Al, M2: B (boron).
比表面積が0.1〜2.0m2/gの範囲にあることを特徴とする請求項1に記載のリチウムイオン二次電池の正極活物質として用いられるスピネル型リチウム・マンガン複合酸化物。 2. The spinel-type lithium-manganese composite oxide used as a positive electrode active material of a lithium ion secondary battery according to claim 1, wherein the specific surface area is in the range of 0.1 to 2.0 m 2 / g. (i)リチウム化合物、(ii)マンガン化合物、(iii)Mg,Alから選ばれる少なくとも1種の金属(M1)の化合物、(iv)ホウ素(M2)の化合物、Li:Mn:M1:M2の原子比が(x+y):(2−y−p−q):p:q(ただし、1.0≦x<1.2、0<y≦0.2、1.0<x+y≦1.2、0<p≦1.0、0.0005≦q≦0.1)の比率で混合して水懸濁液を調製し、該水懸濁液を乾燥したのち、650〜900℃の温度で焼成することを特徴とするリチウムイオン二次電池の正極活物質として用いられるスピネル型リチウム・マンガン複合酸化物の製造方法。(I) a lithium compound, (ii) a manganese compound, (iii) a compound of at least one metal (M1) selected from Mg, Al, (iv) a compound of boron (M2), Li: Mn: M1: M2 The atomic ratio is (x + y) :( 2-ypq): p: q (where 1.0 ≦ x <1.2, 0 <y ≦ 0.2, 1.0 <x + y ≦ 1.2) , 0 <p ≦ 1.0, 0.0005 ≦ q ≦ 0.1) to prepare an aqueous suspension, and after drying the aqueous suspension, at a temperature of 650 to 900 ° C. A method for producing a spinel type lithium / manganese composite oxide used as a positive electrode active material of a lithium ion secondary battery , characterized by firing. 請求項1に記載のスピネル型リチウム・マンガン複合酸化物を正極活物質として含む正極を有するリチウムイオン二次電池。  The lithium ion secondary battery which has a positive electrode containing the spinel type lithium manganese composite oxide of Claim 1 as a positive electrode active material.
JP23033799A 1999-08-17 1999-08-17 Spinel-type lithium / manganese composite oxide, its production method and use Expired - Lifetime JP5199522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23033799A JP5199522B2 (en) 1999-08-17 1999-08-17 Spinel-type lithium / manganese composite oxide, its production method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23033799A JP5199522B2 (en) 1999-08-17 1999-08-17 Spinel-type lithium / manganese composite oxide, its production method and use

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011241713A Division JP5632350B2 (en) 2011-11-02 2011-11-02 Spinel-type lithium-manganese composite oxide and method for producing the same
JP2011241714A Division JP5539946B2 (en) 2011-11-02 2011-11-02 Method for producing spinel-type lithium-manganese composite oxide

Publications (2)

Publication Number Publication Date
JP2001048547A JP2001048547A (en) 2001-02-20
JP5199522B2 true JP5199522B2 (en) 2013-05-15

Family

ID=16906271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23033799A Expired - Lifetime JP5199522B2 (en) 1999-08-17 1999-08-17 Spinel-type lithium / manganese composite oxide, its production method and use

Country Status (1)

Country Link
JP (1) JP5199522B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319653A (en) * 2000-05-12 2001-11-16 Hitachi Maxell Ltd Non-aqueous secondary battery
JP4868271B2 (en) * 2001-03-15 2012-02-01 日立金属株式会社 Method for producing positive electrode active material for non-aqueous lithium secondary battery, positive electrode using this active material, and non-aqueous lithium secondary battery
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
JP5053489B2 (en) * 2001-07-27 2012-10-17 株式会社東芝 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4774661B2 (en) * 2001-09-25 2011-09-14 三菱化学株式会社 Lithium transition metal composite oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method for producing lithium transition metal composite oxide
US7011907B2 (en) 2001-11-27 2006-03-14 Nec Corporation Secondary battery cathode active material, secondary battery cathode and secondary battery using the same
CN1300869C (en) * 2002-05-20 2007-02-14 日亚化学工业株式会社 Positive pole active material for nonaqueous electrolyte secondary battery
JP4940530B2 (en) * 2003-02-05 2012-05-30 日亜化学工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery
JP5044882B2 (en) * 2003-08-21 2012-10-10 日亜化学工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR100801637B1 (en) * 2006-05-29 2008-02-11 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Containing Them
CN101855754B (en) 2007-11-12 2013-07-03 户田工业株式会社 Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP5229472B2 (en) * 2007-11-12 2013-07-03 戸田工業株式会社 Lithium manganate particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
DE102008029804A1 (en) * 2008-06-24 2010-07-08 Süd-Chemie AG Mixed oxide containing a lithium manganese spinel and process for its preparation
KR101593725B1 (en) 2008-09-18 2016-02-12 도다 고교 가부시끼가이샤 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
JP2010108928A (en) * 2008-10-01 2010-05-13 Daiken Chemical Co Ltd Process of producing lithium cell active material, lithium cell active material, and lithium system secondary battery
CA2738291A1 (en) * 2008-10-01 2010-04-08 Toda Kogyo Corporation Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
KR101129368B1 (en) * 2009-03-31 2012-03-26 미쓰이 긴조꾸 고교 가부시키가이샤 Positive electrode active material for lithium battery
JP2009164138A (en) * 2009-04-20 2009-07-23 Toyo Tanso Kk Positive electrode active material for nonaqueous electrolyte secondary battery
JP2009164139A (en) * 2009-04-20 2009-07-23 Toyo Tanso Kk Method of manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
US8496855B2 (en) 2009-07-27 2013-07-30 Samsung Electronics Co., Ltd. Cathode active material, cathode including cathode active material, and lithium battery including cathode
KR101520903B1 (en) * 2010-03-29 2015-05-18 주식회사 포스코이에스엠 Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP5634828B2 (en) * 2010-10-29 2014-12-03 日揮触媒化成株式会社 Manufacturing method and use of spinel type lithium manganese composite oxide particles
JP5872279B2 (en) * 2011-12-21 2016-03-01 日揮触媒化成株式会社 Spinel-type lithium-manganese composite oxide
CN104160531B (en) 2012-02-23 2016-09-21 户田工业株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery particle powder and manufacture method thereof and rechargeable nonaqueous electrolytic battery
KR101409973B1 (en) * 2012-11-15 2014-06-19 주식회사 포스코이에스엠 Lithium manganese composite oxide comprising primary particle having controlled vertical angle, and manufacturing method of the same
JP6177554B2 (en) * 2013-03-19 2017-08-09 日揮触媒化成株式会社 Method for producing lithium manganate
JP6350321B2 (en) * 2014-03-24 2018-07-04 日亜化学工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152497B2 (en) * 1992-03-31 2001-04-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP3229769B2 (en) * 1994-03-08 2001-11-19 三洋電機株式会社 Lithium secondary battery
JP2893327B2 (en) * 1996-04-01 1999-05-17 脇原 将孝 Electrodes and lithium secondary batteries
JPH11240721A (en) * 1997-05-07 1999-09-07 Fuji Chem Ind Co Ltd New production of spinel type lithium manganese compound oxide and positive electrode active substance for secondary battery
JP3813001B2 (en) * 1997-08-29 2006-08-23 旭化成エレクトロニクス株式会社 Non-aqueous secondary battery
JPH11111291A (en) * 1997-10-06 1999-04-23 Mitsui Mining & Smelting Co Ltd Positive electrode material for nonaqueous secondary battery and battery using this
JP4124522B2 (en) * 1997-10-08 2008-07-23 日揮化学株式会社 Lithium / manganese composite oxide, production method and use thereof
JP3928231B2 (en) * 1997-12-15 2007-06-13 株式会社日立製作所 Lithium secondary battery
JPH11189419A (en) * 1997-12-24 1999-07-13 Masayuki Yoshio Spinel manganese oxide or lithium secondary battery
JP2001048545A (en) * 1999-08-09 2001-02-20 Mitsubishi Chemicals Corp Production of lithium-manganese multiple oxide and secondary battery using the same

Also Published As

Publication number Publication date
JP2001048547A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP4353808B2 (en) Particulate cathode active material for lithium secondary battery
US9437873B2 (en) Spinel-type lithium manganese-based composite oxide
TWI526397B (en) A lithium manganate powder for a nonaqueous electrolyte storage battery and a method for producing the same, and a nonaqueous electrolyte battery
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP6650956B2 (en) Positive active material for lithium ion battery, lithium ion battery, and method for producing positive active material for lithium ion battery
JP4124522B2 (en) Lithium / manganese composite oxide, production method and use thereof
JP3775552B2 (en) Positive electrode active material and non-aqueous secondary battery
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP2002316823A (en) Lithium manganese multi component oxide and method for manufacturing the same as well as application for the same
JP2003068305A (en) Negative material for secondary lithium battery and its manufacturing method
JP4655453B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
KR101196948B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
JP4374930B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP5539946B2 (en) Method for producing spinel-type lithium-manganese composite oxide
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
JP2006012616A (en) Positive electrode material for lithium secondary battery and its manufacturing method
JP2001206722A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode, lithium secondary cell, and manufacturing method of lithium manganese multiple oxide
JP5632350B2 (en) Spinel-type lithium-manganese composite oxide and method for producing the same
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP2003146662A (en) Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
JP2012116746A (en) Spinel type lithium manganese composite oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5199522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term