JP3969072B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3969072B2
JP3969072B2 JP2001360563A JP2001360563A JP3969072B2 JP 3969072 B2 JP3969072 B2 JP 3969072B2 JP 2001360563 A JP2001360563 A JP 2001360563A JP 2001360563 A JP2001360563 A JP 2001360563A JP 3969072 B2 JP3969072 B2 JP 3969072B2
Authority
JP
Japan
Prior art keywords
lithium
battery
secondary battery
negative electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001360563A
Other languages
Japanese (ja)
Other versions
JP2003163029A5 (en
JP2003163029A (en
Inventor
忠義 ▲高▼橋
真一 川口
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001360563A priority Critical patent/JP3969072B2/en
Publication of JP2003163029A publication Critical patent/JP2003163029A/en
Publication of JP2003163029A5 publication Critical patent/JP2003163029A5/ja
Application granted granted Critical
Publication of JP3969072B2 publication Critical patent/JP3969072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、組成式Li4/3Ti5/34で示されるスピネル型リチウムチタン酸化物(以下、Li4/3Ti5/34と記す)を負極活物質として用い、高負荷放電特性の改善した非水電解質二次電池に関する。
【0002】
【従来の技術】
近年のエレクトロニクス技術の急速な発展により、電子機器の小型が進み、それら機器の主電源やバックアップ用電源として、小型軽量で高エネルギー密度を有する電池の需要が高まっている。このような要望に応える電池の活物質材料として、Li4/3Ti5/34が注目されている。Li4/3Ti5/34は、結晶構造がリチウムの吸蔵・放出反応に対して強固であることから、充放電の繰返しによる劣化の進行速度が小さく、非常に安定である。さらに過充電・過充電に伴うデンドライト状の金属リチウムの析出がなく、安全性に優れている。これら特徴を有することからバックアップ用電源として実用化されている。しかし、最近では機器用途の多様化に伴いバックアップ用電池の使用環境も過酷になってきており、耐過放電や耐過充電の特性に加え、高負荷での放電特性等の充足が極めて重要な課題である。
【0003】
このような課題に対して、負極にLi4/3Ti5/34を用い、正極にコバルトやマンガン等のリチウム含有遷移金属酸化物と用いた電池では、負極容量規制とした構成により耐過放電特性や耐過充電特性を向上させることが提案されている(特開平7−335261号公報、特開平10−27626号公報、及び特開平10−69922号公報)。
【0004】
【発明が解決しようとする課題】
しかし、上記提案でも高負荷放電特性を満足する電池を得ることは困難であった。なぜなら上記提案は負極容量規制を採用することで、過充電・過放電特性の改善を図ったものであり、高負荷放電特性については何ら考慮されていない。一般に高負荷放電特性は、電極の導電性による影響を大きく受けてしまう。Li4/3Ti5/34等のリチウムチタン酸化物の導電性は、リチウムを吸蔵した状態では若干の向上を認められるが、炭素材料に比べて大幅に低い。このため、炭素材料を用いた電池に比べて高負荷放電特性に劣ることは明らかである。そこで、リチウムチタン酸化物を活物質に用いた電極の導電性を改善するために、黒鉛やカーボンブラックなどの導電材を所定の比率で電極に添加する方法が提案されている。しかし、導電剤の添加比率を高めることで高負荷放電特性は向上させることはできるが、添加量の増大に伴って活物質量が相対的に減少してしまう。このため、電極の電気容量密度の低下を招き、電池の実用性を大きく損ねてしまう問題点を有している。
【0005】
本発明は、Li4/3Ti5/34を負極活物質に用いた電池において、導電材の添加比率を高めること無くリチウムチタン酸化物負極の導電性を向上させ、これにより高負荷放電特性を改善することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明の非水電解質二次電池は、Li4/3Ti5/34を負極に用いる非水電解液二次電池において、非水電解液にプロパンサルトンあるいはエチレンサルファイト等のS=O結合を有する化合物を含有させることにより、Li4/3Ti5/34を含む電極の導電性が改善されるという発見に基づいている。
【0007】
すなわち、本発明は、組成式Li4/3Ti5/34で示され、スピネル型構造を有するリチウムチタン酸化物を活物質とする負極と、3V(vsLi/Li+)以上の電位でリチウムイオンの挿入脱離が可能な物質を活物質とする正極と、非水電解液とを基本構成とする二次電池であって、該非水電解液がプロパンサルトン、エチレンサルファイトの少なくとも一方を含有することを特徴とする。
【0008】
負極活物質であるLi4/3Ti5/34は、通常、500〜1000℃の熱処理過程を経て合成される。このとき、熱処理による生成物は完全な均一相ではなく、粒子表面の一部がルチル型二酸化チタン層にて覆われた混晶体となってしまう。本発明者らが詳細な検討を行った結果、Li4/3Ti5/34の表面を被覆するルチル型二酸化チタンが極少量であるにもかかわらず、前記二酸化チタンが負極の導電性に悪影響を与え、電池の高負荷放電特性を著しく低下させてしまうことを見出し、さらに前記低下の原因が以下の事由によることも見出した。
【0009】
すなわち、Li4/3Ti5/34とリチウムとの反応電位が、リチウム電極基準で約1.55Vにあるのに対して、ルチル型二酸化チタンの反応電位は1.5〜1.3Vにあり、Li4/3Ti5/34の電位よりも少し低い値を示す。このため充電時には、リチウムが先ずLi4/3Ti5/34に挿入された後、ルチル型二酸化チタンに挿入される。一方、放電時には、ルチル型二酸化チタンが先にリチウムが離脱し、次いでLi4/3Ti5/34から脱離する。従って、Li4/3Ti5/34の充放電反応は、リチウムが存在しないルチル型二酸化チタン相を通してリチウムイオンが移動することによって進行する。リチウムが存在しないルチル型二酸化チタン相は、導電性が低いことから、リチウムの移動を阻害することになる。これにより、Li4/3Ti5/34からのリチウムの離脱が抑制され、、Li4 /3Ti5/34を負極活物質に用いた電池では高率の放電が困難になり、特に高負荷での放電特性を著しく損ねてしまう。
【0010】
本発明は、上記の通り非水電解液に分子構造にS=O結合を有する物質を含有、添加させるものである。その中でもプロパンサルトン、エチレンサルファイトの少なくとも一方(以下、添加剤)を含む非水電解液を用い、負極にLi4/3Ti5/34を用いた電池では、充電時にLi4/3Ti5/34の表面相を形成するルチル型二酸化チタンとS=O結合を有する物質とが反応し、Ti−O−Sの3元系の化合物が形成される。この化合物の導電性は、ルチル型二酸化チタンより著しく良好であることから、高負荷放電特性の向上に寄与したものと推察する。尚、Ti−O−Sの3元系の化合物がLi4/3Ti5/34の表面に形成されていることは、表面分析においてSが導入されていることによって確認した。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施形態について説明する。
【0012】
本発明の非水電解液二次電池は、Li4/3Ti5/34を主たる活物質とする負極と、3V(vsLi/Li-)以上の電位でリチウムイオンの挿入脱離が可能な物質を活物質とする正極、溶質と非水溶媒からなる非水電解液を備える電池であって、非水電解液がプロパンサルトン、エチレンサルファイトの少なくとも何れか一方を含有する。
【0013】
本発明の電池に適用される負極としては、Li4/3Ti5/34を主成分としており、他の負極活物質が混晶したものであってもよい。また、負極に用いられる導電剤には、アセチレンブラック、カーボンブラック、黒鉛などを用いることができ、結着剤にはスチレン・ブタジエンラテックス(SBR)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチレンプロピレンジエン共重合体(EPDM)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)などをもちいることができる。
【0014】
一方、正極としては、3V(vsLi/Li+)以上の電位でリチウムイオンの挿入脱離が可能な遷移金属酸化物が用いられる。具体的には3V(vsLi/Li+)程度の電位を有する3V級のLiMnO2,V25に加え、4V(vsLi/Li+)程度の電位を示す4V級のLiCoO2,LiNiO2,LiMn24等の遷移金属酸化物が適用される。そして、これら活物質に組み合わされて正極を構成する結着材、導電剤としては、上記負極と同様のものが使用可能である。
【0015】
さらに正極にリチウムを含有させる方法としては、3V級の遷移金属酸化物の場合には、電池組立時に負極のLi4/3Ti5/34にリチウム金属を接触させて組み込むことで、放電電圧が1.5V程度の電池が得られる。一方、4V級の遷移金属複合酸化物の場合には、活物質の合成時に含有させるので上記処理を施すことなく、放電電圧が2.5V程度の電池が得られる。
【0016】
非水電解液を構成する非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、スルホラン(SLF)、γ−ブチロラクトン(γ−BL)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、1,2−ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジオキソラン(DOL)から選ばれる少なくとも一種であることが好ましい。
【0017】
非水電解液を構成する溶質のリチウム塩としては、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22などを一種類または混合して用いることができる。好ましくは、LiPF6、LiBF4である。溶質の電解液中の濃度としては、0.3〜2.0mol/lが好ましく、より好ましくは0.8〜1.5mol/lである。
【0018】
上記非水電解液に対してプロパンサルトンの添加量は、0.1〜10重量%が好ましい。0.1重量%未満になるとプロパンサルトンにより形成される有機被膜がリチウムチタン酸化物の表面を完全に被覆できない場合がある。また、10重量%より多くなるとプロパンサルトンに起因する有機被膜が厚くなるに伴い有機被膜の抵抗成分が大きくなる。したがって負極の充放電時の分極抵抗が大きくなり、電気負荷特性が低下する。
【0019】
上記非水電解液に対してエチレンサルファイトの添加量は、0.05〜2.0重量%が好ましい。0.05重量%未満になるとエチレンサルファイトにより形成される有機被膜がLi4/3Ti5/34の表面を完全に被覆できない場合がある。また、3.0重量%より多くなるとエチレンサルファイトに起因する有機被膜が厚くなるに伴い有機被膜の抵抗成分が大きくなる。したがって負極の充放電時の分極抵抗が大きくなり、電気負荷特性が低下する。
【0020】
以上、詳細にわたって述べたように、本発明は、Li4/3Ti5/34を主成分とする負極、リチウムイオンを挿入脱離可能な正極および非水溶媒および溶質とからなる非水電解液とを備えた非水電解液二次電池において、プロパンサルトンを0.1〜10重量%又はエチレンサルファイトを0.05〜2.0重量%含有している非水電解液を用いることにより、高負荷放電特性に優れたリチウムイオン二次電池を得ることが可能となった。
【0021】
【実施例】
以下、実施例により本発明を詳しく説明する。
【0022】
図1に本実施例で用いたコイン型電池の断面図を示す。正極ケース1、負極ケース2はそれぞれステンレス鋼製であり、正極ケース1の電解液に接する内面側にはアルミニウムがステンレス表面を完全被覆してある。絶縁パッキング3はポリプロピレン製であり、正極ケース1と負極ケース2とを絶縁、密封口する。
【0023】
正極4は、活物質のコバルト酸リチウム(LiCoO2)を88重量%、導電剤としてアセチレンブラックを5重量%、結着剤としてポリテトラフルオロエチレンを7重量%の混合比で混合し乾燥した合剤約250mgを2ton/cm2で直径16mmのペレットに加圧成形し、200℃で乾燥し作製した。また、負極5は、活物質のLi4/3Ti5/34を88重量%、導電剤としてアセチレンブラックを5重量%、結着剤としてスチレン・ブタジエンラテックス水分散物を固形分で7重量%の混合比で混合し乾燥した合剤約185mgを2ton/cm2で直径16mmのペレットに加圧成形し、200℃で乾燥し作製した。正極4及び負極5は、ポリプロピレン製の不織布からなるセパレータ6を介して対向配置される。
【0024】
非水電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:1で混合した非水溶媒に、リチウム六フッ化リンを1mol/lの濃度で溶解したものに、添加剤としてのプロパンサルトンを1.0重量%添加したものを使用した。電池には上記電解液を90mg注液した。この電池寸法は直径20mm、厚み2.0mmである。上記構成にて作成したものを本発明の電池Aとした。
【0025】
電池Aにおいて、添加剤としてのプロパンサルトンの代わりに、エチレンサルファイトを0.5重量%加え、その他は同様にして本発明の電池Bを作製した。
【0026】
さらに比較電池として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:1で混合した非水溶媒に、リチウム六フッ化リンを1mol/lの濃度で溶解した非水電解液を用いた以外、電池Aと同様な構成とした電池を組立てた。
【0027】
これら本発明の電池Aと電池B及び比較電池の非水電解液二次電池は各々3個について、次のように放電率特性を評価した。充電は周囲温度25℃で、外部回路に5Ωの充電抵抗を接続して印加電圧2.6Vの一定電圧で24時間行なった。一方、放電は同温度で2、5、10、15、20mAの各電流値について、定電流で終止電圧1.5Vまで行い、放電容量を測定した。その結果を表1に示す。なお、ここで放電電流5〜15mAでの放電においては、終止電圧までの放電後、引き続いて2mAで終止電圧1.5Vまで放電を行なった後、次の充電を行なった。
【0028】
【表1】

Figure 0003969072
【0029】
表1の結果からも明らかなように、本発明の電池A及びBは、放電電流5mA以上で比較例の電池に比べて大きな容量が得られ、プロパンサルトンあるいはエチレンサルファイトを添加した効果が認められる。
【0030】
本実施例では正極にコバルト酸リチウムについて述べたがニッケル酸リチウム、マンガン酸リチウムについても同様の結果が得られる。電池形状については本実施例で説明したコイン型に限らず、円筒型、角型電池についても適用が可能である。
【0031】
【発明の効果】
以上の説明からも明らかなように、Li4/3Ti5/34を負極活物質に用いた非水電解液二次電池において、非水電解液にプロパンサルトン、エチレンサルファイトを含有させることにより、高負荷放電特性に優れたリチウムイオン二次電池を提供することができ、その工業的価値は大なるものである。
【図面の簡単な説明】
【図1】本実施例における非水電解液電池の構成を示す断面図
【符号の説明】
1 正極缶
2 負極缶
3 ガスケット
4 正極
5 負極
6 セパレータ[0001]
BACKGROUND OF THE INVENTION
The present invention uses a spinel-type lithium titanium oxide represented by the composition formula Li 4/3 Ti 5/3 O 4 (hereinafter referred to as Li 4/3 Ti 5/3 O 4 ) as a negative electrode active material, and has a high load. The present invention relates to a non-aqueous electrolyte secondary battery with improved discharge characteristics.
[0002]
[Prior art]
Due to the rapid development of electronics technology in recent years, electronic devices have been reduced in size, and the demand for small, light and high energy density batteries as the main power source and backup power source for these devices has increased. Li 4/3 Ti 5/3 O 4 has attracted attention as an active material for batteries that meet such demands. Li 4/3 Ti 5/3 O 4 is very stable because its crystal structure is strong against lithium occlusion / release reactions, and the rate of deterioration due to repeated charge / discharge is small. In addition, there is no precipitation of dendritic metallic lithium associated with overcharging and overcharging, which is excellent in safety. Because of these characteristics, it has been put to practical use as a backup power source. However, recently, with the diversification of equipment applications, the usage environment of backup batteries has become harsh, and in addition to the characteristics of overdischarge and overcharge resistance, it is extremely important to satisfy discharge characteristics at high loads. It is a problem.
[0003]
In response to such a problem, a battery using Li 4/3 Ti 5/3 O 4 for the negative electrode and a lithium-containing transition metal oxide such as cobalt or manganese for the positive electrode is resistant to the negative electrode capacity. It has been proposed to improve overdischarge characteristics and overcharge resistance characteristics (JP-A-7-335261, JP-A-10-27626, and JP-A-10-69922).
[0004]
[Problems to be solved by the invention]
However, even with the above proposal, it is difficult to obtain a battery that satisfies the high load discharge characteristics. This is because the above-mentioned proposal is intended to improve the overcharge / overdischarge characteristics by adopting negative electrode capacity regulation, and no consideration is given to the high load discharge characteristics. In general, the high load discharge characteristics are greatly affected by the conductivity of the electrodes. The conductivity of lithium titanium oxides such as Li 4/3 Ti 5/3 O 4 is slightly improved in the state where lithium is occluded, but is significantly lower than that of carbon materials. For this reason, it is clear that it is inferior to a high load discharge characteristic compared with the battery using a carbon material. In order to improve the conductivity of the electrode using lithium titanium oxide as an active material, a method of adding a conductive material such as graphite or carbon black to the electrode at a predetermined ratio has been proposed. However, although the high load discharge characteristics can be improved by increasing the addition ratio of the conductive agent, the amount of the active material is relatively decreased as the addition amount is increased. For this reason, there is a problem that the electric capacity density of the electrode is lowered and the practicality of the battery is greatly impaired.
[0005]
The present invention improves the conductivity of the lithium titanium oxide negative electrode without increasing the additive ratio of the conductive material in the battery using Li 4/3 Ti 5/3 O 4 as the negative electrode active material, thereby high-load discharge The purpose is to improve the characteristics.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery using Li 4/3 Ti 5/3 O 4 as a negative electrode. This is based on the discovery that inclusion of a compound having an S═O bond such as ethylene sulfite improves the conductivity of the electrode containing Li 4/3 Ti 5/3 O 4 .
[0007]
That is, the present invention is represented by a composition formula Li 4/3 Ti 5/3 O 4 , and a negative electrode using a lithium titanium oxide having a spinel structure as an active material, and a potential of 3 V (vsLi / Li + ) or more. A secondary battery comprising a positive electrode having a material capable of inserting and releasing lithium ions as an active material and a non-aqueous electrolyte, wherein the non-aqueous electrolyte is at least one of propane sultone and ethylene sulfite It is characterized by containing.
[0008]
Li 4/3 Ti 5/3 O 4 which is a negative electrode active material is usually synthesized through a heat treatment process at 500 to 1000 ° C. At this time, the product obtained by the heat treatment is not a complete homogeneous phase, but becomes a mixed crystal in which part of the particle surface is covered with a rutile-type titanium dioxide layer. As a result of detailed investigations by the present inventors, the titanium dioxide has a negative conductivity even though the amount of rutile titanium dioxide covering the surface of Li 4/3 Ti 5/3 O 4 is extremely small. It has also been found that the high load discharge characteristics of the battery are remarkably deteriorated, and that the cause of the decrease is due to the following reasons.
[0009]
That is, the reaction potential of Li 4/3 Ti 5/3 O 4 and lithium is about 1.55 V with respect to the lithium electrode, whereas the reaction potential of rutile titanium dioxide is 1.5 to 1.3 V. And a value slightly lower than the potential of Li 4/3 Ti 5/3 O 4 . Therefore, at the time of charging, lithium is first inserted into Li 4/3 Ti 5/3 O 4 and then inserted into rutile titanium dioxide. On the other hand, at the time of discharge, lithium is first released from the rutile titanium dioxide, and then released from Li 4/3 Ti 5/3 O 4 . Therefore, the charge / discharge reaction of Li 4/3 Ti 5/3 O 4 proceeds as lithium ions move through the rutile-type titanium dioxide phase in which no lithium is present. The rutile type titanium dioxide phase in which no lithium is present has a low conductivity, and therefore inhibits lithium migration. Thus, high rate of discharge becomes difficult in batteries using the extraction of lithium from Li 4/3 Ti 5/3 O 4 is suppressed ,, Li 4/3 Ti 5/3 O 4 anode active material In particular, the discharge characteristics at a high load are significantly impaired.
[0010]
In the present invention, a substance having an S═O bond in the molecular structure is contained and added to the non-aqueous electrolyte as described above. Among them, in a battery using a non-aqueous electrolyte containing at least one of propane sultone and ethylene sulfite (hereinafter referred to as an additive) and using Li 4/3 Ti 5/3 O 4 for the negative electrode, Li 4 / A rutile titanium dioxide forming a surface phase of 3 Ti 5/3 O 4 reacts with a substance having an S═O bond to form a Ti—O—S ternary compound. Since the conductivity of this compound is remarkably better than that of rutile titanium dioxide, it is presumed that it contributed to the improvement of the high load discharge characteristics. Incidentally, the compound of the ternary Ti-O-S is formed on the surface of Li 4/3 Ti 5/3 O 4 was confirmed by S have been introduced in the surface analysis.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0012]
The nonaqueous electrolyte secondary battery of the present invention can insert and desorb lithium ions at a potential of 3 V (vsLi / Li ) or higher with a negative electrode mainly composed of Li 4/3 Ti 5/3 O 4. The battery includes a positive electrode using a non-active material as an active material, and a non-aqueous electrolyte composed of a solute and a non-aqueous solvent, and the non-aqueous electrolyte contains at least one of propane sultone and ethylene sulfite.
[0013]
As a negative electrode applied to the battery of the present invention, Li 4/3 Ti 5/3 O 4 as a main component may be a mixed crystal of other negative electrode active materials. As the conductive agent used for the negative electrode, acetylene black, carbon black, graphite or the like can be used. As the binder, styrene-butadiene latex (SBR), carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTFE) can be used. ), Polyvinylidene fluoride (PVDF), ethylene propylene diene copolymer (EPDM), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and the like.
[0014]
On the other hand, as the positive electrode, a transition metal oxide capable of inserting and desorbing lithium ions at a potential of 3 V (vsLi / Li + ) or higher is used. Specifically addition to LiMnO 2, V 2 O 5 of 3V class having a potential of about 3V (vsLi / Li +), 4V (vsLi / Li +) of about 4V class LiCoO 2, LiNiO 2 showing potentials, Transition metal oxides such as LiMn 2 O 4 are applied. And as a binder and a conductive agent that constitute a positive electrode in combination with these active materials, the same materials as those of the negative electrode can be used.
[0015]
Furthermore, as a method of incorporating lithium into the positive electrode, in the case of a transition metal oxide of 3V class, discharge is performed by bringing lithium metal into contact with Li 4/3 Ti 5/3 O 4 of the negative electrode during battery assembly. A battery having a voltage of about 1.5V is obtained. On the other hand, in the case of a transition metal composite oxide of 4V class, a battery having a discharge voltage of about 2.5V can be obtained without performing the above treatment because it is contained during the synthesis of the active material.
[0016]
Non-aqueous solvents constituting the non-aqueous electrolyte include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), sulfolane (SLF), γ-butyrolactone (γ-BL), dimethyl carbonate (DMC) , Ethyl methyl carbonate (EMC), diethyl carbonate (DEC), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), and dioxolane (DOL).
[0017]
Examples of the solute lithium salt constituting the non-aqueous electrolyte include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and the like. They can be used alone or in combination. LiPF 6 and LiBF 4 are preferable. The concentration of the solute in the electrolytic solution is preferably 0.3 to 2.0 mol / l, more preferably 0.8 to 1.5 mol / l.
[0018]
The amount of propane sultone added to the non-aqueous electrolyte is preferably 0.1 to 10% by weight. If it is less than 0.1% by weight, the organic coating formed by propane sultone may not completely cover the surface of the lithium titanium oxide. On the other hand, when the content exceeds 10% by weight, the resistance component of the organic coating increases as the thickness of the organic coating due to propane sultone increases. Therefore, the polarization resistance at the time of charging / discharging of the negative electrode is increased, and the electric load characteristics are deteriorated.
[0019]
The amount of ethylene sulfite added to the non-aqueous electrolyte is preferably 0.05 to 2.0% by weight. If it is less than 0.05% by weight, the organic coating formed by ethylene sulfite may not completely cover the surface of Li 4/3 Ti 5/3 O 4 . On the other hand, when the amount exceeds 3.0% by weight, the resistance component of the organic coating increases as the thickness of the organic coating due to ethylene sulfite increases. Therefore, the polarization resistance at the time of charging / discharging of the negative electrode is increased, and the electric load characteristics are deteriorated.
[0020]
As described above in detail, the present invention is a nonaqueous solution comprising a negative electrode mainly composed of Li 4/3 Ti 5/3 O 4 , a positive electrode capable of inserting and removing lithium ions, a nonaqueous solvent and a solute. In a non-aqueous electrolyte secondary battery comprising an electrolyte solution, a non-aqueous electrolyte solution containing 0.1 to 10% by weight of propane sultone or 0.05 to 2.0% by weight of ethylene sulfite is used. This makes it possible to obtain a lithium ion secondary battery with excellent high-load discharge characteristics.
[0021]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
[0022]
FIG. 1 shows a cross-sectional view of a coin-type battery used in this example. Each of the positive electrode case 1 and the negative electrode case 2 is made of stainless steel, and the inner surface of the positive electrode case 1 in contact with the electrolytic solution is completely covered with aluminum. The insulating packing 3 is made of polypropylene, and insulates and seals the positive electrode case 1 and the negative electrode case 2.
[0023]
The positive electrode 4 was prepared by mixing 88% by weight of an active material lithium cobaltate (LiCoO 2 ), 5% by weight of acetylene black as a conductive agent, and 7% by weight of polytetrafluoroethylene as a binder, and drying it. About 250 mg of the agent was pressed into pellets having a diameter of 16 mm at 2 ton / cm 2 and dried at 200 ° C. The negative electrode 5 is composed of 88% by weight of Li 4/3 Ti 5/3 O 4 as an active material, 5% by weight of acetylene black as a conductive agent, and 7% solid content of a styrene / butadiene latex aqueous dispersion as a binder. About 185 mg of the mixture, which was mixed and dried at a mixing ratio of% by weight, was pressed into pellets having a diameter of 16 mm at 2 ton / cm 2 and dried at 200 ° C. The positive electrode 4 and the negative electrode 5 are disposed to face each other with a separator 6 made of a polypropylene nonwoven fabric.
[0024]
The non-aqueous electrolyte is prepared by dissolving lithium phosphorus hexafluoride at a concentration of 1 mol / l in a non-aqueous solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 1: 1. A propane sultone added as an additive was added at 1.0% by weight. 90 mg of the above electrolyte was injected into the battery. This battery has a diameter of 20 mm and a thickness of 2.0 mm. The battery A of the present invention was prepared with the above configuration.
[0025]
In the battery A, 0.5% by weight of ethylene sulfite was added in place of propane sultone as an additive, and a battery B of the present invention was produced in the same manner except that.
[0026]
Further, as a comparative battery, a nonaqueous electrolytic solution in which lithium hexafluoride was dissolved at a concentration of 1 mol / l in a nonaqueous solvent in which ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were mixed at a volume ratio of 1: 1. A battery having the same configuration as battery A was assembled except that was used.
[0027]
The battery A and battery B of the present invention and the non-aqueous electrolyte secondary battery of the comparative battery were evaluated for the discharge rate characteristics as follows for three each. Charging was performed at an ambient temperature of 25 ° C. with a 5Ω charging resistor connected to an external circuit at a constant voltage of 2.6 V for 24 hours. On the other hand, discharging was performed at a constant current up to a final voltage of 1.5 V for each current value of 2, 5, 10, 15, and 20 mA at the same temperature, and the discharge capacity was measured. The results are shown in Table 1. Here, in the discharge at a discharge current of 5 to 15 mA, after the discharge to the end voltage, the discharge was subsequently performed to the end voltage of 1.5 V at 2 mA, and then the next charge was performed.
[0028]
[Table 1]
Figure 0003969072
[0029]
As is clear from the results in Table 1, the batteries A and B of the present invention have a discharge current of 5 mA or more and a large capacity compared to the battery of the comparative example, and the effect of adding propane sultone or ethylene sulfite is effective. Is recognized.
[0030]
In this example, lithium cobaltate was described for the positive electrode, but similar results can be obtained for lithium nickelate and lithium manganate. The battery shape is not limited to the coin type described in the present embodiment, but can be applied to a cylindrical type or a square type battery.
[0031]
【The invention's effect】
As is clear from the above description, in the non-aqueous electrolyte secondary battery using Li 4/3 Ti 5/3 O 4 as the negative electrode active material, the non-aqueous electrolyte contains propane sultone and ethylene sulfite. By doing so, a lithium ion secondary battery excellent in high-load discharge characteristics can be provided, and its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the configuration of a nonaqueous electrolyte battery in this embodiment.
1 Positive electrode can 2 Negative electrode can 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator

Claims (2)

組成式Li4/3Ti5/34で示され、スピネル型構造を有するリチウムチタン酸化物を活物質とする負極と、3V(vsLi/Li+)以上の電位でリチウムイオンの挿入脱離が可能な物質を活物質とする正極と、非水電解液とを基本構成とする二次電池であって、該非水電解液がプロパンサルトンを0.1〜10重量%またはエチレンサルファイトを0.05〜2 . 0重量%含有することを特徴とする非水電解液二次電池。Insertion and desorption of lithium ions at a potential of 3 V (vsLi / Li + ) or more with a negative electrode having a composition formula Li 4/3 Ti 5/3 O 4 and having a spinel structure as a lithium titanium oxide A secondary battery having a non-aqueous electrolyte as a basic component, and a non-aqueous electrolyte containing 0.1 to 10% by weight of propane sultone or ethylene sulfite. 0.05 to 2.0 wt% non-aqueous electrolyte secondary battery characterized by containing. 正極が、コバルト、ニッケル、マンガンの少なくとも1種を含むリチウム複合酸化物である請求項1記載の非水電解質二次電池。  The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is a lithium composite oxide containing at least one of cobalt, nickel, and manganese.
JP2001360563A 2001-11-27 2001-11-27 Nonaqueous electrolyte secondary battery Expired - Lifetime JP3969072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360563A JP3969072B2 (en) 2001-11-27 2001-11-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360563A JP3969072B2 (en) 2001-11-27 2001-11-27 Nonaqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2003163029A JP2003163029A (en) 2003-06-06
JP2003163029A5 JP2003163029A5 (en) 2005-04-07
JP3969072B2 true JP3969072B2 (en) 2007-08-29

Family

ID=19171350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360563A Expired - Lifetime JP3969072B2 (en) 2001-11-27 2001-11-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3969072B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561037B2 (en) * 2003-03-12 2010-10-13 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4346565B2 (en) 2004-03-30 2009-10-21 株式会社東芝 Nonaqueous electrolyte secondary battery
JP4941623B2 (en) * 2004-07-28 2012-05-30 株式会社Gsユアサ Electrode material for electrochemical device, method for producing the same, electrode for electrochemical device, and electrochemical device
JP4709710B2 (en) * 2006-08-04 2011-06-22 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile
JP5392449B2 (en) * 2006-09-05 2014-01-22 株式会社Gsユアサ Non-aqueous electrolyte battery and manufacturing method thereof
JP5626709B2 (en) * 2006-09-05 2014-11-19 株式会社Gsユアサ Non-aqueous electrolyte battery
JP5508674B2 (en) * 2007-01-04 2014-06-04 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile
JP5995161B2 (en) * 2012-03-14 2016-09-21 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JPWO2013137273A1 (en) * 2012-03-15 2015-08-03 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack
JP6074728B2 (en) * 2015-12-17 2017-02-08 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2003163029A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
US10454138B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte comprising the same, and lithium secondary battery including non-aqueous electrolyte
KR102117622B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2004047180A (en) Nonaqueous electrolytic solution battery
JP2005071678A (en) Battery
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
JP2008140683A (en) Battery
JPH11329494A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
CA2528827A1 (en) Lithium ion battery having an improved conserved property at a high temperature
JP4867161B2 (en) Nonaqueous electrolyte secondary battery
KR20180086141A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2002025609A (en) Lithium secondary battery
JP2009129632A (en) Nonaqueous electrolyte battery
JP4915101B2 (en) Flat type non-aqueous electrolyte secondary battery
JP2003331922A (en) Cell
JP2002025626A (en) Aging method for lithium secondary battery
JP2000149987A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JP2010135115A (en) Nonaqueous electrolyte secondary battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
JP2000082492A (en) Nonaqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R151 Written notification of patent or utility model registration

Ref document number: 3969072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

EXPY Cancellation because of completion of term