JP2001319647A - Positive electrode for lithium secondary battery and lithium ion battery using the same - Google Patents
Positive electrode for lithium secondary battery and lithium ion battery using the sameInfo
- Publication number
- JP2001319647A JP2001319647A JP2000134626A JP2000134626A JP2001319647A JP 2001319647 A JP2001319647 A JP 2001319647A JP 2000134626 A JP2000134626 A JP 2000134626A JP 2000134626 A JP2000134626 A JP 2000134626A JP 2001319647 A JP2001319647 A JP 2001319647A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- capacity
- mah
- active material
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウム−錫合金
あるいはリチウム−グラファイト(リチウム−カーボ
ン)などのインターカレーション化合物を負極活物質と
するリチウム二次電池において、ポリアニリン、金属酸
化物(スピネル系活物質およびLiCo1-yNiyO2)
および炭素系導電剤からなる正極に関する。The present invention relates to a lithium secondary battery using an intercalation compound such as lithium-tin alloy or lithium-graphite (lithium-carbon) as a negative electrode active material. Active material and LiCo 1-y Ni y O 2 )
And a positive electrode comprising a carbon-based conductive agent.
【0002】[0002]
【従来の技術】4V系高エネルギー密度型のリチウム二
次電池正極活物質には層状化合物であるLiNiO2,
LiCoO2およびスピネル構造のLiMn2O4が使用
可能であり、LiCoO2は小型二次電池用正極活物質
として既に実用化されている。しかしながら電気自動車
用や電力貯蔵用の大型電池を想定した場合、正極材料は
資源量が豊富で原料価格のやすいスピネル構造のLiM
n2O4に限定され、負極材料も天然グラファイトおよび
その化学処理品や錫酸化物となろう。2. Description of the Related Art As a positive electrode active material of a 4 V high energy density type lithium secondary battery, a layered compound such as LiNiO 2 ,
LiCoO 2 and LiMn 2 O 4 having a spinel structure can be used, and LiCoO 2 has already been put to practical use as a positive electrode active material for a small secondary battery. However, assuming large batteries for electric vehicles and power storage, the cathode material is a spinel-structured LiM
It is limited to n 2 O 4 , and the negative electrode material will also be natural graphite and its chemically treated product and tin oxide.
【0003】スピネル構造のLiMn2O4の電気化学特
性上の最大の問題点は初期充電容量およびその後の充放
電容量が小さいことであり、不可逆容量のある炭素系材
料や錫酸化物を負極とすると負極の不可逆容量をキャン
セルするのに一定量の正極容量が使用されるためLiM
n2O4を正極材料とするリチウムイオン電池の容量は著
しく低下する。炭素系負極の場合、不可逆容量は負極表
面での保護膜生成に使用され、ある程度の不可逆容量は
リチウムイオン電池を安定に作動させるには不可欠であ
る。また、錫系酸化物の場合も電気化学的に金属錫を生
成させるため、負極での大きな不可逆容量の存在は避け
られない。The biggest problem in electrochemical properties of LiMn 2 O 4 having a spinel structure is that the initial charge capacity and the subsequent charge / discharge capacity are small, and a carbon-based material or tin oxide having irreversible capacity is used as a negative electrode. Then, a certain amount of positive electrode capacity is used to cancel the irreversible capacity of the negative electrode.
The capacity of a lithium ion battery using n 2 O 4 as a cathode material is significantly reduced. In the case of a carbon-based negative electrode, the irreversible capacity is used for forming a protective film on the surface of the negative electrode, and a certain amount of irreversible capacity is indispensable for stable operation of a lithium ion battery. Also, in the case of tin-based oxides, since metal tin is generated electrochemically, the existence of a large irreversible capacity at the negative electrode is inevitable.
【0004】また、従来正極用製造に当たっては、結着
剤の使用が避けられず、結着剤を結着能を有する活物質
で置き換えることができれば電池容量は5〜10%増加
することとなる。[0004] Conventionally, in the production of a positive electrode, the use of a binder is unavoidable, and if the binder can be replaced with an active material having a binding ability, the battery capacity will increase by 5 to 10%. .
【0005】[0005]
【発明が解決しようとする課題】本発明は、かかる従来
技術の課題に鑑みなされたもので、初期充電容量の大き
な正極材料を主正極材料となるマンガン系スピネル化合
物と混合し、正極の充電容量を向上させことにより、リ
チウムイオン電池としての容量の向上を図るものであ
る。結着剤としても働くポリアニリンは3V領域に15
0mAh/gの容量を有し、充電時は高い導電率を有す
る酸化状態へと変化し、この過程で正極の初期充電容量
を増加させるのに寄与することになる。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and comprises mixing a positive electrode material having a large initial charge capacity with a manganese spinel compound serving as a main positive electrode material to form a charge capacity of the positive electrode. Thus, the capacity of the lithium ion battery is improved by improving the capacity. Polyaniline, which also acts as a binder, has 15
It has a capacity of 0 mAh / g and changes to an oxidized state with high conductivity during charging, and in this process contributes to increasing the initial charging capacity of the positive electrode.
【0006】[0006]
【課題を解決するための手段】マンガン系スピネル化合
物に混合する正極材料は充電容量が大きく、サイクル特
性が優れ、且つ充電生成物の熱安定性が高い方が望まし
い。これを満足する材料は現在小型リチウムイオン電池
正極材料に使用されているコバルト酸リチウムである。
コバルト酸リチウムは資源量や毒性の問題からその代替
材料が求められている状況であり、コバルトの使用量は
少ない程望ましい。It is desirable that the cathode material mixed with the manganese spinel compound has a large charge capacity, excellent cycle characteristics, and high thermal stability of the charge product. A material that satisfies this is lithium cobalt oxide, which is currently used for the cathode material of small lithium ion batteries.
Lithium cobaltate is a situation in which alternative materials are being sought in view of resource and toxicity issues, and the smaller the amount of cobalt used, the better.
【0007】本目的に使用する材料は充電容量がコバル
ト酸リチウムと同程度であれば放電容量が若干劣っても
負極の不可逆容量を補償するのに使用されるためリチウ
ムイオン電池容量には影響を与えない。[0007] The material used for this purpose is used to compensate for the irreversible capacity of the negative electrode even if the discharge capacity is slightly inferior as long as the charge capacity is about the same as lithium cobalt oxide. Do not give.
【0008】[0008]
【発明の実施の形態】図1にコバルト酸リチウムとコバ
ルトの25%をニッケルで置換したLiCo 0.75Ni
0.25O2の1回目の充放電曲線を示す。充電は4.3V
まで行い、その後1Vまで放電させた。両者の充電容量
はともに168mAh/gで一致しているが放電容量、
および放電曲線は異なる。放電時のコバルト酸リチウム
の電圧は単調に減少するのに対し、LiCo0.75Ni
0.25O2の放電曲線には3.9V付近に偏極点が認めら
れ、これ以降放電に伴う電圧低下が大きくなる。3Vま
での放電容量はコバルト酸リチウムが151mAh/g
であるのに対し、LiCo0. 75Ni0.25O2の放電容量
は134mAh/gと10%程小さくなる。DETAILED DESCRIPTION OF THE INVENTION FIG.
LiCo with 25% nickel replaced by nickel 0.75Ni
0.25OTwo1 shows a first charge / discharge curve. Charging is 4.3V
And then discharged to 1V. Both charging capacities
Are equal at 168 mAh / g, but the discharge capacity,
And the discharge curves are different. Lithium cobaltate during discharge
Voltage decreases monotonically while LiCo0.75Ni
0.25OTwoA polarization point was observed around 3.9 V in the discharge curve of FIG.
Thereafter, the voltage drop accompanying the discharge increases. Up to 3V
Capacity of lithium cobalt oxide is 151 mAh / g
Whereas LiCo0. 75Ni0.25OTwoDischarge capacity
Is 134 mAh / g, which is about 10% smaller.
【0009】負極にグラファイト系炭素材料を用いると
不可逆容量は60mAh/g以上であり、正負極の活物
質重量比を2〜3(正極重量/負極重量)とすると正極
の容量のうち20〜30mAh/gが負極における保護
膜生成のために消費されることになる。高温サイクル特
性に優れたマンガン系スピネル化合物の充放電容量は1
10mAh/g程度であり、負極での保護膜生成の過程
で18〜27%の正極の容量が失われることになる。実
施例1に見られるようにポリアニリンの正極合剤中の割
合は5%程度であり、容量を150mAh/gとしても
ポリアニリンの充電によって補われる電気量は酸化物系
正極材料に換算して150×0.05=7.5mAh/
gとなり、まだ12.5〜22.5mAh/gに相当す
る容量が正極から失われることになる。正極容量規制の
リチウムイオン電池の場合、電池の容量は負極の保護膜
生成の容量を差し引き活物質重量を乗じた値が電池の容
量となる。When a graphite-based carbon material is used for the negative electrode, the irreversible capacity is 60 mAh / g or more. When the active material weight ratio of the positive and negative electrodes is 2-3 (positive electrode weight / negative electrode weight), 20 to 30 mAh of the positive electrode capacity is used. / G will be consumed to form a protective film on the negative electrode. The charge / discharge capacity of a manganese spinel compound with excellent high-temperature cycle characteristics is 1
It is about 10 mAh / g, and 18 to 27% of the capacity of the positive electrode is lost in the process of forming the protective film on the negative electrode. As can be seen in Example 1, the proportion of polyaniline in the positive electrode mixture is about 5%, and even when the capacity is 150 mAh / g, the amount of electricity supplemented by the charging of polyaniline is 150 × in terms of the oxide-based positive electrode material. 0.05 = 7.5 mAh /
g, and the capacity corresponding to 12.5 to 22.5 mAh / g is still lost from the positive electrode. In the case of a lithium ion battery with a regulated positive electrode capacity, the capacity of the battery is obtained by subtracting the capacity of forming the protective film of the negative electrode and multiplying by the weight of the active material.
【0010】実施例2で示すように正負極活物質の重量
比を2.5とし、負極グラファイトは不可逆容量70m
Ah/g,可逆容量340mAh/gである。正極活物
質は容量110mAh/gのリチウムリッチスピネルと
充電容量168mAh/g、放電容量134mAh/g
のLiCo0.75Ni0.25O2混合物である。両者の混合
比が10:1の場合、正極活物質1g当たりのリチウム
イオン電池としての容量は87.3mAh/gとなる。
実施例2で得られた実測放電容量は91.6mAh/g
であり、容量が計算値よりも数mAh/g高いのはポリ
アニリンの寄与によるものである。実施例3に示すよう
にLiCo0.75Ni0.25O2の代わりにLiCoO2を用
いても放電容量に大差はない。As shown in Example 2, the weight ratio of the positive and negative electrode active materials was 2.5, and the negative electrode graphite had an irreversible capacity of 70 m.
Ah / g, reversible capacity 340 mAh / g. The positive electrode active material is a lithium-rich spinel having a capacity of 110 mAh / g, a charge capacity of 168 mAh / g, and a discharge capacity of 134 mAh / g.
Is a mixture of LiCo 0.75 Ni 0.25 O 2 . When the mixing ratio of the two is 10: 1, the capacity as a lithium ion battery per 1 g of the positive electrode active material is 87.3 mAh / g.
The measured discharge capacity obtained in Example 2 was 91.6 mAh / g.
The capacity is several mAh / g higher than the calculated value due to the contribution of polyaniline. As shown in Example 3, even if LiCoO 2 is used instead of LiCo 0.75 Ni 0.25 O 2 , there is no significant difference in discharge capacity.
【0011】正極活物質混合比を5:1まで増加させる
と正極活物質1g当たりのリチウムイオン電池としての
計算容量は91.6mAh/gとなる。正負極活物質重
量比を3にすると容量の増加はさらに顕著となる。正極
混合比10:1での計算容量も91.8mAh/gとな
り、5:1になると96.3mAh/gとなる。これら
の結果はLiCoO2を用いても同じである。実施例4
に正負極活物質重量比を3としたリチウムイオン電池で
の放電容量は93.3mAh/gとなり、ほぼ期待通り
の電池特性を示す。When the mixing ratio of the positive electrode active material is increased to 5: 1, the calculated capacity of the lithium ion battery per gram of the positive electrode active material is 91.6 mAh / g. When the weight ratio of the positive and negative electrode active materials is set to 3, the increase in capacity becomes even more remarkable. The calculated capacity at a positive electrode mixing ratio of 10: 1 is also 91.8 mAh / g, and at 5: 1 the calculated capacity is 96.3 mAh / g. These results are the same even when LiCoO 2 is used. Example 4
The discharge capacity of a lithium ion battery having a positive / negative electrode active material weight ratio of 3 was 93.3 mAh / g, which shows almost expected battery characteristics.
【0012】上記のように正極に混合する活物質は放電
容量の大きいコバルト酸リチウムである必要はなく、充
電量がコバルト酸リチウムとほぼ等しいニッケル置換コ
バルト酸リチウム(LiCo1-yNiyO2:0.1≦y
≦0.5)で十分である。これらの材料はコバルト比率
が小さいため、性能的には同等であるがコバルト含量の
少ない低価格材料となる。また3V級正極材料のポリア
ニリンを結着剤として兼用するためポリアニリンの充電
容量に対応する容量の増大が認められ、ポリアニリン自
体も容量増大に寄与する。As described above, the active material to be mixed with the positive electrode does not need to be lithium cobalt oxide having a large discharge capacity, but a nickel-substituted lithium cobalt oxide (LiCo 1-y Ni y O 2 ) whose charge amount is almost equal to lithium cobalt oxide. : 0.1 ≦ y
≦ 0.5) is sufficient. Since these materials have a small cobalt ratio, they are low-cost materials having the same performance but low cobalt content. Further, since polyaniline, which is a 3V class positive electrode material, is also used as a binder, an increase in capacity corresponding to the charge capacity of polyaniline is recognized, and polyaniline itself also contributes to an increase in capacity.
【0013】正極材料に使用するマンガン系スピネル化
合物としては、高温サイクル特性の優れた異種金属置換
スピネル(Li1+xMn2-zMzO4:Al,Fe,Crあ
るいはCo)が望ましく、リチウムリッチスピネル化合
物の代わりにこれらの化合物を用いた実施例5−8の場
合もリチウムイオン電池放電容量に増大が見られ、この
方法は異種金属置換スピネル化合物にも適応できること
は明白である。The manganese-based spinel compound used for the positive electrode material is preferably a dissimilar metal-substituted spinel (Li 1 + x Mn 2-z M z O 4 : Al, Fe, Cr or Co) having excellent high-temperature cycle characteristics. In the case of Examples 5-8 using these compounds instead of the lithium-rich spinel compounds, an increase in the discharge capacity of the lithium-ion battery was observed, and it is clear that this method can be applied to the heterometal-substituted spinel compounds.
【0014】実施例2に示す正極は柔軟性が乏しく、電
極を折り曲げると電極にひび割れが生じ集電体のAl箔
と正極合剤の間に剥離が生じる恐れがある。平板積層型
の電池の場合はまげ応力がかからないため難点とはなら
ず、逆に形状保持能力が高く電池製造時の作業が容易と
なる。しかし、円筒型電池では大きなまげ応力が作用
し、電極の巻き取りにさいして正極合剤の集電体からの
剥離が危惧される。実施例9に示すポリフッ化ビニリデ
ン(PVDF)を4wt%含む正極では電極の柔軟性が
向上し、直径5mmの丸棒に巻き取っても正極合剤に亀
裂は生じず集電体からの剥離も認められなかった。The positive electrode shown in Example 2 has poor flexibility, and if the electrode is bent, the electrode may crack and peel off may occur between the Al foil of the current collector and the positive electrode mixture. In the case of a flat plate type battery, since no bending stress is applied, there is no difficulty, and conversely, the shape retention ability is high and the operation at the time of battery production becomes easy. However, in the case of a cylindrical battery, a large shading stress acts, and there is a fear that the positive electrode mixture may peel off from the current collector when the electrode is wound. In the positive electrode containing 4 wt% of polyvinylidene fluoride (PVDF) shown in Example 9, the flexibility of the electrode is improved, and the positive electrode mixture is not cracked and peeled off from the current collector even when wound on a round bar having a diameter of 5 mm. I was not able to admit.
【0015】マンガン系スピネル化合物の場合、過充電
になると正極電位は速やかに4.6V以上に達し、電解
液の分解が生じる。この際発生するガスによる内圧増加
は事故につながる恐れもある。正極合剤中に共存するL
iCo1-yNiyO2は4.3V(vs.Li)まで充電
してもまだ脱離可能なLiが約40%残存しており、過
充電が起こってもリチウムの脱ドープを伴うLiCo
1-yNiyO2の酸化反応が起こり、過充電が起こっても
電池内圧の増加につながる溶媒の分解へは直結しない。
即ち、正極におけるLiCo1-yNiyO2の共存は過充
電に対する安全性の向上ももたらすことになる。In the case of a manganese-based spinel compound, when overcharge occurs, the potential of the positive electrode quickly reaches 4.6 V or more, and decomposition of the electrolytic solution occurs. At this time, an increase in the internal pressure due to the generated gas may lead to an accident. L coexisting in the positive electrode mixture
About 40% of Li which can be desorbed still remains even when charged to 4.3 V (vs. Li) in iCo 1-y Ni y O 2 , and LiCo accompanied by dedope of lithium even when overcharge occurs
The oxidation reaction of 1-y Ni y O 2 occurs, and even if overcharge occurs, it does not directly lead to the decomposition of the solvent, which leads to an increase in the internal pressure of the battery.
That is, the coexistence of LiCo 1-y Ni y O 2 in the positive electrode also improves the safety against overcharging.
【0016】[0016]
【実施例】<実施例1>マンガン系スピネル化合物と混
合するNi置換コバルト酸リチウムは以下の手順で合成
した。所定量のLiOH−H2O,Co3O4およびNi
(OH)2を粉砕混合し、空気中500℃で5時間焼成
する。最終的に空気中850℃で20時間焼成し、Ni
置換コバルト酸リチウムLiCo1-yNiyO2(0≦x
≦0.5)を得た。XRD測定により不純物は確認でき
ず、すべてのピークは表面体晶系で指数づけできる単一
相の化合物であった。EXAMPLES Example 1 Ni-substituted lithium cobalt oxide mixed with a manganese-based spinel compound was synthesized by the following procedure. A predetermined amount of LiOH-H 2 O, Co 3 O 4 and Ni
(OH) 2 is pulverized and mixed, and calcined in air at 500 ° C. for 5 hours. Finally fired in air at 850 ° C for 20 hours, Ni
Substituted lithium cobaltate LiCo 1-y Ni y O 2 (0 ≦ x
≤ 0.5). No impurities could be confirmed by XRD measurement, and all peaks were single-phase compounds that could be indexed by surface cubic system.
【0017】これらの化合物の充放電容量は、対極に金
属リチウムを用いる電池テストにより評価した。正極は
活物質20mgと導電性バインダー10mgを混練し、
ステンレスメッシュに圧着して作成した。電解液には1
M LiPF6−EC(エチレンカーボネート)−DM
C(ジメチルカーボネート)(EC:DMCは体積比で
1:2)を使用した。充放電は0.2mAの定電流で行
い、充電終止電圧は4.3Vとした。その後、1Vまで
放電させた。The charge / discharge capacity of these compounds was evaluated by a battery test using lithium metal as a counter electrode. The positive electrode kneads 20 mg of the active material and 10 mg of the conductive binder,
It was made by crimping on a stainless steel mesh. 1 for electrolyte
M LiPF 6 -EC (ethylene carbonate) -DM
C (dimethyl carbonate) (EC: DMC in a volume ratio of 1: 2) was used. The charging and discharging were performed at a constant current of 0.2 mA, and the charging end voltage was 4.3 V. Thereafter, the battery was discharged to 1V.
【0018】代表的な試料の充放電曲線を図1に示す。
yの値が0.5以下の範囲内では充電容量はNi置換量
によらず、164−168mAh/gの値を示し、ほぼ
一定であった。放電曲線はyの値が0.2を越えると放
電電位が低下する傾向が認められる。3Vまでの放電容
量は最も容量の小さいLiCo0.75Ni0.25O2でも1
34mAh/gを示し、マンガン系スピネル化合物より
も高い放電容量を与える。FIG. 1 shows a charge / discharge curve of a representative sample.
When the value of y was in the range of 0.5 or less, the charge capacity showed a value of 164-168 mAh / g, regardless of the Ni substitution amount, and was almost constant. In the discharge curve, when y exceeds 0.2, the discharge potential tends to decrease. The discharge capacity up to 3 V is 1 even for LiCo 0.75 Ni 0.25 O 2 with the smallest capacity.
34 mAh / g, giving a higher discharge capacity than the manganese-based spinel compound.
【0019】<実施例2>Li1.1Mn2O4 5g,L
iCo0.75Ni0.25O2 500mg,炭素系導電剤5
00mg、およびポリアニリン250mgを混合し、N
−メチルピロリドンを加え混練して正極ペーストをつく
った。このペーストをドクターブレードによりAl箔上
に塗布し、乾燥させた。Example 2 5 g of Li 1.1 Mn 2 O 4 , L
iCo 0.75 Ni 0.25 O 2 500mg, carbon-based conductive agent 5
00 mg, and 250 mg of polyaniline.
-Methylpyrrolidone was added and kneaded to prepare a positive electrode paste. This paste was applied on an Al foil by a doctor blade and dried.
【0020】また、グラファイト3g、ポリフッ化ビニ
リデン300mg、およびN−メチルピロリドンを混練
し、負極ペーストをつくった。正極同様にドクターブレ
ードにより負極ペーストをCu箔上に塗布し、乾燥し
た。Further, 3 g of graphite, 300 mg of polyvinylidene fluoride and N-methylpyrrolidone were kneaded to prepare a negative electrode paste. The negative electrode paste was applied on a Cu foil by a doctor blade similarly to the positive electrode, and dried.
【0021】正極を直径14mm(活物質重量19.2
mg)に切り取り、負極を直径15mm(負極活物質
7.7mg)に切り取り、100℃で真空乾燥した。こ
れらの電極を用いてコイン型リチウムイオン電池を作成
した。この電池の正負極活物質重量比は2.5である。The positive electrode was 14 mm in diameter (active material weight: 19.2).
mg), the negative electrode was cut into a diameter of 15 mm (7.7 mg of the negative electrode active material), and dried at 100 ° C. under vacuum. Using these electrodes, a coin-type lithium ion battery was prepared. The positive / negative electrode active material weight ratio of this battery is 2.5.
【0022】電解液には1M LiPF6−EC−DM
C(EC:DMCは体積比で1:2)を使用した。充電
は定電流(0.8mA)一定電圧(4.3V)て行い、
放電は3Vまでとした。充電容量は2.30mAhであ
り、3Vまでの放電容量は1.76mAhであった。正
極活物質(酸化物のみ)1gあたりの放電容量は91.
6mAh/gとなった。The electrolyte is 1M LiPF 6 -EC-DM
C (EC: DMC was 1: 2 by volume ratio) was used. Charging is performed with a constant current (0.8 mA) and a constant voltage (4.3 V).
The discharge was up to 3V. The charge capacity was 2.30 mAh, and the discharge capacity up to 3 V was 1.76 mAh. The discharge capacity per 1 g of the positive electrode active material (oxide only) was 91.
It became 6 mAh / g.
【0023】<実施例3>Li1.1Mn2O4 5g,L
iCoO2 500mg,炭素系導電剤500mg、お
よびポリアニリン250mgを混合し、N−メチルピロ
リドンを加え混練して正極ペーストをつくった。このペ
ーストをドクターブレードによりAl箔上に塗布し、乾
燥させた。負極は実施例2で作成したものを使用した。Example 3 5 g of Li 1.1 Mn 2 O 4 , L
500 mg of iCoO 2, 500 mg of a carbon-based conductive agent, and 250 mg of polyaniline were mixed, and N-methylpyrrolidone was added and kneaded to prepare a positive electrode paste. This paste was applied on an Al foil by a doctor blade and dried. The negative electrode used in Example 2 was used.
【0024】正極を直径14mm(活物質重量19.3
mg)に切り取り、負極を直径15mm(負極活物質
7.7mg)に切り取り、100℃で真空乾燥した。こ
れらの電極を用いてコイン型リチウムイオン電池を作成
した。この電池の正負極活物質重量比は2.5である。The positive electrode was 14 mm in diameter (active material weight: 19.3).
mg), the negative electrode was cut into a diameter of 15 mm (7.7 mg of the negative electrode active material), and dried at 100 ° C. under vacuum. Using these electrodes, a coin-type lithium ion battery was prepared. The positive / negative electrode active material weight ratio of this battery is 2.5.
【0025】電解液およびに充放電条件は実施例2と同
じである。充電容量は2.31mAhであり、3Vまで
の放電容量は1.74mAhとなった。正極活物質(酸
化物のみ)1gあたりの放電容量は90.1mAh/g
となった。The electrolyte and the charging and discharging conditions are the same as in the second embodiment. The charge capacity was 2.31 mAh, and the discharge capacity up to 3 V was 1.74 mAh. The discharge capacity per 1 g of the positive electrode active material (only oxide) is 90.1 mAh / g.
It became.
【0026】<実施例4>実施例2で作成した正極を直
径14mm(活物質重量19.5mg)に、負極も直径
14mm(負極活物質6.5mg)に切り出し、100
℃で真空乾燥した。これらの電極を用いてコイン型リチ
ウムイオン電池を作成した。この電池の正負極活物質重
量比は3である。電解液およびに充放電条件は実施例2
と同じである。充電容量は2.32mAhであり、3V
までの放電容量は1.86mAhとなった。正極活物質
(酸化物のみ)1gあたりの放電容量は95.4mAh
/gとなった。Example 4 The positive electrode prepared in Example 2 was cut to a diameter of 14 mm (active material weight: 19.5 mg), and the negative electrode was cut to a diameter of 14 mm (negative electrode active material: 6.5 mg).
Vacuum dried at ℃. Using these electrodes, a coin-type lithium ion battery was prepared. The positive / negative electrode active material weight ratio of this battery was 3. The electrolyte and the charge / discharge conditions were the same as in Example 2.
Is the same as The charge capacity is 2.32 mAh and 3V
Discharge capacity up to 1.86 mAh. The discharge capacity per 1 g of the positive electrode active material (oxide only) is 95.4 mAh.
/ G.
【0027】<実施例5>LiMn1.9Co0.1O2 5
g,LiCo0.75Ni0.25O2 500mg,炭素系導
電剤500mg、およびポリアニリン250mgを混合
し、N−メチルピロリドンを加え混練して正極ペースト
をつくった。このペーストをドクターブレードによりA
l箔上に塗布し、乾燥させた。ここで使用したLiMn
1.9Co0.1O 2の充放電容量は115mAh/gであ
る。Example 5 LiMn1.9Co0.1OTwo 5
g, LiCo0.75Ni0.25OTwo 500mg, carbon-based
Mix 500mg of electric agent and 250mg of polyaniline
And add N-methylpyrrolidone and knead the mixture to form a positive electrode paste.
Was made. This paste is A
1 on a foil and dried. LiMn used here
1.9Co0.1O TwoHas a charge / discharge capacity of 115 mAh / g.
You.
【0028】正極を直径14mm(活物質重量19.1
mg)に切り取り、実施例2で作成した負極を直径15
mm(負極活物質7.6mg)に切り取り、100℃で
真空乾燥した。これらの電極を用いてコイン型リチウム
イオン電池を作成した。この電池の正負極活物質重量比
はほぼ2.5である。電解液およびに充放電条件は実施
例2と同じである。充電容量は2.30mAhであり、
3Vまでの放電容量は1.84mAhとなった。実施例
2の場合と同様正極活物質(酸化物のみ)1gあたりの
放電容量は96.3mAh/gとなった。The positive electrode was 14 mm in diameter (active material weight: 19.1).
mg), and the negative electrode prepared in Example 2 was cut to a diameter of 15
mm (negative electrode active material: 7.6 mg), and vacuum dried at 100 ° C. Using these electrodes, a coin-type lithium ion battery was prepared. The positive / negative electrode active material weight ratio of this battery is approximately 2.5. The electrolyte and the charge / discharge conditions were the same as in Example 2. The charging capacity is 2.30 mAh,
The discharge capacity up to 3 V was 1.84 mAh. As in the case of Example 2, the discharge capacity per 1 g of the positive electrode active material (only oxide) was 96.3 mAh / g.
【0029】<実施例6>LiMn1.9Al0.1O2 5
g,LiCo0.75Ni0.25O2 500mg,炭素系導
電剤500mg、およびポリアニリン250mgを混合
し、N−メチルピロリドンを加え混練して正極ペースト
をつくった。このペーストをドクターブレードによりA
l箔上に塗布し、乾燥させた。ここで使用したLiMn
1.9Al0.1O 2の充放電容量は125mAh/gであ
る。Example 6 LiMn1.9Al0.1OTwo 5
g, LiCo0.75Ni0.25OTwo 500mg, carbon-based
Mix 500mg of electric agent and 250mg of polyaniline
And add N-methylpyrrolidone and knead the mixture to form a positive electrode paste.
Was made. This paste is A
1 on a foil and dried. LiMn used here
1.9Al0.1O TwoHas a charge / discharge capacity of 125 mAh / g.
You.
【0030】正極を直径14mm(活物質重量19.1
mg)に切り取り、実施例2で作成した負極を直径15
mm(負極活物質7.6mg)に切り取り、100℃で
真空乾燥した。これらの電極を用いてコイン型リチウム
イオン電池を作成した。この電池の正負極活物質重量比
はほぼ2.5である。電解液およびに充放電条件は実施
例2と同じである。充電容量は2.54mAhであり、
3Vまでの放電容量は2.01mAhとなった。正極活
物質(酸化物のみ)1gあたりの放電容量は105.2
mAh/gとなった。The positive electrode was 14 mm in diameter (active material weight: 19.1).
mg), and the negative electrode prepared in Example 2 was cut to a diameter of 15
mm (negative electrode active material: 7.6 mg), and vacuum dried at 100 ° C. Using these electrodes, a coin-type lithium ion battery was prepared. The positive / negative electrode active material weight ratio of this battery is approximately 2.5. The electrolyte and the charge / discharge conditions were the same as in Example 2. The charging capacity is 2.54 mAh,
The discharge capacity up to 3 V was 2.01 mAh. The discharge capacity per 1 g of the positive electrode active material (oxide only) was 105.2.
mAh / g.
【0031】<実施例7>Li1.08Mn1.9Cr0.1O2
5g,LiCo0.75Ni0.25O2 500mg,炭素
系導電剤500mg、およびポリアニリン250mgを
混合し、N−メチルピロリドンを加え混練して正極ペー
ストをつくった。このペーストをドクターブレードによ
りAl箔上に塗布し、乾燥させた。ここで使用したLi
1.08Mn1.9Cr0.1O2の充放電容量は108mAh/
gである。Example 7 Li 1.08 Mn 1.9 Cr 0.1 O 2
5 g, LiCo 0.75 Ni 0.25 O 2 500 mg, carbon-based conductive agent 500 mg, and polyaniline 250 mg were mixed, N-methylpyrrolidone was added and kneaded to prepare a positive electrode paste. This paste was applied on an Al foil by a doctor blade and dried. Li used here
The charge / discharge capacity of 1.08 Mn 1.9 Cr 0.1 O 2 is 108 mAh /
g.
【0032】正極を直径14mm(活物質重量19.2
mg)に切り取り、実施例2で作成した負極を直径15
mm(負極活物質7.7mg)に切り取り、100℃で
真空乾燥した。これらの電極を用いてコイン型リチウム
イオン電池を作成した。この電池の正負極活物質重量比
は2.5である。電解液およびに充放電条件は実施例2
と同じである。充電容量は2.26mAhであり、3V
までの放電容量は1.72mAhとなった。正極活物質
(酸化物のみ)1gあたりの放電容量は89.6mAh
/gとなった。The positive electrode was 14 mm in diameter (active material weight: 19.2).
mg), and the negative electrode prepared in Example 2 was cut to a diameter of 15
mm (7.7 mg of the negative electrode active material), and vacuum dried at 100 ° C. Using these electrodes, a coin-type lithium ion battery was prepared. The positive / negative electrode active material weight ratio of this battery is 2.5. The electrolyte and the charge / discharge conditions were the same as in Example 2.
Is the same as The charging capacity is 2.26 mAh and 3V
Discharge capacity up to 1.72 mAh. The discharge capacity per 1 g of the positive electrode active material (oxide only) is 89.6 mAh.
/ G.
【0033】<実施例8>LiMn1.9Fe0.1O2 5
g,LiCo0.75Ni0.25O2 500mg,炭素系導
電剤500mg、およびポリアニリン250mgを混合
し、N−メチルピロリドンを加え混練して正極ペースト
をつくった。このペーストをドクターブレードによりA
l箔上に塗布し、乾燥させた。ここで使用したLiMn
1.9Fe0.1O 2の充放電容量は122mAh/gであ
る。Example 8 LiMn1.9Fe0.1OTwo 5
g, LiCo0.75Ni0.25OTwo 500mg, carbon-based
Mix 500mg of electric agent and 250mg of polyaniline
And add N-methylpyrrolidone and knead the mixture to form a positive electrode paste.
Was made. This paste is A
1 on a foil and dried. LiMn used here
1.9Fe0.1O TwoHas a charge / discharge capacity of 122 mAh / g.
You.
【0034】正極を直径14mm(活物質重量19.2
mg)に切り取り、実施例2で作成した負極を直径15
mm(負極活物質7.7mg)に切り取り、100℃で
真空乾燥した。これらの電極を用いてコイン型リチウム
イオン電池を作成した。この電池の正負極活物質重量比
は2.5である。充電容量は2.51mAhであり、3
Vまでの放電容量は1.97mAhとなった。正極活物
質(酸化物のみ)1gあたりの放電容量は102.6m
Ah/gとなった。The positive electrode was 14 mm in diameter (active material weight: 19.2).
mg), and the negative electrode prepared in Example 2 was cut to a diameter of 15
mm (7.7 mg of the negative electrode active material), and vacuum dried at 100 ° C. Using these electrodes, a coin-type lithium ion battery was prepared. The positive / negative electrode active material weight ratio of this battery is 2.5. The charge capacity is 2.51 mAh, 3
The discharge capacity up to V was 1.97 mAh. The discharge capacity per 1 g of the positive electrode active material (only oxide) is 102.6 m.
Ah / g.
【0035】<実施例9>Li1.1Mn2O4 5g,L
iCo0.75Ni0.25O2 500mg,炭素系導電剤5
00mg、ポリアニリン250mg、PVDF200m
gを混合し、N−メチルピロリドンを加え混練して正極
ペーストをつくった。このペーストをドクターブレード
によりAl箔上に塗布し、乾燥させた。この電極は柔軟
性が高く、実施例2の電極とは異なり、直径5mmの丸
棒に巻き取っても正極合剤に亀裂は生じず集電体からの
剥離も認められなかった。Example 9 Li 1.1 Mn 2 O 4 5 g, L
iCo 0.75 Ni 0.25 O 2 500mg, carbon-based conductive agent 5
00 mg, polyaniline 250 mg, PVDF 200 m
g was mixed, and N-methylpyrrolidone was added and kneaded to prepare a positive electrode paste. This paste was applied on an Al foil by a doctor blade and dried. This electrode had high flexibility, and unlike the electrode of Example 2, even when wound on a round bar having a diameter of 5 mm, no crack was generated in the positive electrode mixture and no peeling from the current collector was observed.
【0036】正極を直径14mm(活物質重量18.6
mg)に切り取り、実施例2で作成した負極を直径15
mm(負極活物質7.6mg)に切り取り、100℃で
真空乾燥した。充電容量は2.22mAhであり、3V
までの放電容量は1.67mAhとなった。電池特性に
変化はなく、PVDFを添加すると電極の柔軟性がま
し、円筒型電池の正極としても使用できることが確認で
きた。The positive electrode was 14 mm in diameter (the active material weight was 18.6).
mg), and the negative electrode prepared in Example 2 was cut to a diameter of 15
mm (negative electrode active material: 7.6 mg), and vacuum dried at 100 ° C. The charge capacity is 2.22 mAh and 3V
Discharge capacity up to 1.67 mAh. There was no change in the battery characteristics, and it was confirmed that the addition of PVDF increased the flexibility of the electrode and could be used as a positive electrode of a cylindrical battery.
【0037】[0037]
【発明の効果】上述したように、本発明によれば、マン
ガン系スピネル化合物−Ni置換コバルト酸リチウム−
ポリアニリン複合正極は高容量のリチウムイオン電池を
提供することができる。As described above, according to the present invention, a manganese-based spinel compound—Ni-substituted lithium cobaltate—
Polyaniline composite cathodes can provide high capacity lithium ion batteries.
【図1】 LiCo0.75Ni0.25O2とLiCoO2の充
放電曲線である。FIG. 1 is a charge / discharge curve of LiCo 0.75 Ni 0.25 O 2 and LiCoO 2 .
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/62 H01M 4/62 Z 10/40 10/40 Z (72)発明者 谷口 俊司 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 足立 和之 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 Fターム(参考) 5H029 AJ03 AK03 AK16 AK18 AL02 AL07 AL08 AM03 AM05 AM07 DJ08 DJ16 DJ17 EJ12 HJ02 5H050 AA08 BA17 CA09 CA22 CA29 CB02 CB08 CB09 DA02 DA09 EA24 FA17 FA19 GA10 HA02──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/62 H01M 4/62 Z 10/40 10/40 Z (72) Inventor Shunji Taniguchi Fukuoka, Fukuoka 2-82, Watanabe-dori, Chuo-ku Kyushu Electric Power Co., Inc. (72) Inventor Kazuyuki Adachi 2-182, Watanabe-dori, Chuo-ku, Fukuoka City, Fukuoka F-term (reference) 5H029 AJ03 AK03 AK16 AK18 AL02 AL07 AL08 AM03 AM05 AM07 DJ08 DJ16 DJ17 EJ12 HJ02 5H050 AA08 BA17 CA09 CA22 CA29 CB02 CB08 CB09 DA02 DA09 EA24 FA17 FA19 GA10 HA02
Claims (4)
n2O4(0.01≦x≦0.2)、LiCo1-yNiyO
2(0.1≦x≦0.5)および炭素系導電材料からな
るリチウム二次電池用正極。1. Polyaniline, spinel structure Li 1 + x M
n 2 O 4 (0.01 ≦ x ≦ 0.2), LiCo 1-y Ni y O
2 A positive electrode for a lithium secondary battery comprising (0.1 ≦ x ≦ 0.5) and a carbon-based conductive material.
(M)置換のスピネル化合物Li1+xMn2-zMzO4(0
≦x≦0.2,MはAl,Co,Cr,Fe,0.01
≦z≦0.2)とした請求項1記載のリチウム二次電池
用正極。Wherein Li 1 + x Mn 2 O spinel compounds of different metals (M) substituted for 4 Li 1 + x Mn 2- z M z O 4 (0
≦ x ≦ 0.2, M is Al, Co, Cr, Fe, 0.01
≤ z ≤ 0.2). The positive electrode for a lithium secondary battery according to claim 1, wherein
剤を含む請求項1または2記載のリチウム二次電池用正
極。3. The positive electrode for a lithium secondary battery according to claim 1, wherein the positive electrode material contains a binder such as PVDF.
の正極とカーボン、グラファイトまたは錫酸化物からな
る負極を有するリチウムイオン電池。4. A lithium ion battery having the positive electrode according to claim 1 and a negative electrode made of carbon, graphite or tin oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000134626A JP4821023B2 (en) | 2000-05-08 | 2000-05-08 | Positive electrode for lithium secondary battery and lithium ion battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000134626A JP4821023B2 (en) | 2000-05-08 | 2000-05-08 | Positive electrode for lithium secondary battery and lithium ion battery using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001319647A true JP2001319647A (en) | 2001-11-16 |
JP2001319647A5 JP2001319647A5 (en) | 2005-11-17 |
JP4821023B2 JP4821023B2 (en) | 2011-11-24 |
Family
ID=18642873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000134626A Expired - Fee Related JP4821023B2 (en) | 2000-05-08 | 2000-05-08 | Positive electrode for lithium secondary battery and lithium ion battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4821023B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004303475A (en) * | 2003-03-28 | 2004-10-28 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
WO2006071972A3 (en) * | 2004-12-28 | 2007-10-18 | Boston Power Inc | Lithium-ion secondary battery |
KR100858415B1 (en) | 2004-12-02 | 2008-09-11 | 주식회사 엘지화학 | Positive Current Collector Coated With Metal Stable On Positive Voltage And Lithium Secondary Battery |
US7656125B2 (en) | 2005-07-14 | 2010-02-02 | Boston-Power, Inc. | Method and device for controlling a storage voltage of a battery pack |
US7811707B2 (en) | 2004-12-28 | 2010-10-12 | Boston-Power, Inc. | Lithium-ion secondary battery |
US8138726B2 (en) | 2006-06-28 | 2012-03-20 | Boston-Power, Inc. | Electronics with multiple charge rate |
US8483886B2 (en) | 2009-09-01 | 2013-07-09 | Boston-Power, Inc. | Large scale battery systems and method of assembly |
JP2014035836A (en) * | 2012-08-07 | 2014-02-24 | Nitto Denko Corp | Nonaqueous electrolyte secondary battery and method for manufacturing the same |
US8679670B2 (en) | 2007-06-22 | 2014-03-25 | Boston-Power, Inc. | CID retention device for Li-ion cell |
US8828605B2 (en) | 2004-12-28 | 2014-09-09 | Boston-Power, Inc. | Lithium-ion secondary battery |
KR101516500B1 (en) | 2012-12-21 | 2015-05-04 | 다이요 유덴 가부시키가이샤 | Electrochemical device |
WO2017195332A1 (en) * | 2016-05-12 | 2017-11-16 | エリーパワー株式会社 | Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
US10193152B2 (en) | 2015-09-09 | 2019-01-29 | Samsung Electronics Co., Ltd. | Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0845498A (en) * | 1994-05-26 | 1996-02-16 | Sony Corp | Nonaqueous electrolytic liquid secondary battery |
JPH0973893A (en) * | 1995-06-29 | 1997-03-18 | Ricoh Co Ltd | Large-capacity electrode, and secondary battery using the same |
JPH09293512A (en) * | 1996-02-23 | 1997-11-11 | Fuji Photo Film Co Ltd | Lithium ion secondary battery and positive pole active material precursor |
JPH10134798A (en) * | 1996-10-31 | 1998-05-22 | Ricoh Co Ltd | Polymer secondary electrode |
JPH10188985A (en) * | 1996-12-27 | 1998-07-21 | Ricoh Co Ltd | Nonaqueous electrolyte secondary battery |
JPH11329415A (en) * | 1998-05-19 | 1999-11-30 | Kyushu Electric Power Co Inc | Manufacture of lithium battery and positive electrode of lithium battery |
JP2000077072A (en) * | 1998-08-27 | 2000-03-14 | Nec Corp | Nonaqueous electrolyte secondary battery |
JP2000077097A (en) * | 1998-08-27 | 2000-03-14 | Nec Corp | Nonaqueous electrolyte secondary battery |
-
2000
- 2000-05-08 JP JP2000134626A patent/JP4821023B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0845498A (en) * | 1994-05-26 | 1996-02-16 | Sony Corp | Nonaqueous electrolytic liquid secondary battery |
JPH0973893A (en) * | 1995-06-29 | 1997-03-18 | Ricoh Co Ltd | Large-capacity electrode, and secondary battery using the same |
JPH09293512A (en) * | 1996-02-23 | 1997-11-11 | Fuji Photo Film Co Ltd | Lithium ion secondary battery and positive pole active material precursor |
JPH10134798A (en) * | 1996-10-31 | 1998-05-22 | Ricoh Co Ltd | Polymer secondary electrode |
JPH10188985A (en) * | 1996-12-27 | 1998-07-21 | Ricoh Co Ltd | Nonaqueous electrolyte secondary battery |
JPH11329415A (en) * | 1998-05-19 | 1999-11-30 | Kyushu Electric Power Co Inc | Manufacture of lithium battery and positive electrode of lithium battery |
JP2000077072A (en) * | 1998-08-27 | 2000-03-14 | Nec Corp | Nonaqueous electrolyte secondary battery |
JP2000077097A (en) * | 1998-08-27 | 2000-03-14 | Nec Corp | Nonaqueous electrolyte secondary battery |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004303475A (en) * | 2003-03-28 | 2004-10-28 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
KR100858415B1 (en) | 2004-12-02 | 2008-09-11 | 주식회사 엘지화학 | Positive Current Collector Coated With Metal Stable On Positive Voltage And Lithium Secondary Battery |
US8828605B2 (en) | 2004-12-28 | 2014-09-09 | Boston-Power, Inc. | Lithium-ion secondary battery |
WO2006071972A3 (en) * | 2004-12-28 | 2007-10-18 | Boston Power Inc | Lithium-ion secondary battery |
EP2178137A1 (en) | 2004-12-28 | 2010-04-21 | Boston-Power, Inc. | Lithium-Ion secondary battery |
US7811707B2 (en) | 2004-12-28 | 2010-10-12 | Boston-Power, Inc. | Lithium-ion secondary battery |
US7811708B2 (en) | 2004-12-28 | 2010-10-12 | Boston-Power, Inc. | Lithium-ion secondary battery |
US8084998B2 (en) | 2005-07-14 | 2011-12-27 | Boston-Power, Inc. | Method and device for controlling a storage voltage of a battery pack |
US7656125B2 (en) | 2005-07-14 | 2010-02-02 | Boston-Power, Inc. | Method and device for controlling a storage voltage of a battery pack |
US8138726B2 (en) | 2006-06-28 | 2012-03-20 | Boston-Power, Inc. | Electronics with multiple charge rate |
US8679670B2 (en) | 2007-06-22 | 2014-03-25 | Boston-Power, Inc. | CID retention device for Li-ion cell |
US8483886B2 (en) | 2009-09-01 | 2013-07-09 | Boston-Power, Inc. | Large scale battery systems and method of assembly |
JP2014035836A (en) * | 2012-08-07 | 2014-02-24 | Nitto Denko Corp | Nonaqueous electrolyte secondary battery and method for manufacturing the same |
KR101516500B1 (en) | 2012-12-21 | 2015-05-04 | 다이요 유덴 가부시키가이샤 | Electrochemical device |
US10193152B2 (en) | 2015-09-09 | 2019-01-29 | Samsung Electronics Co., Ltd. | Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles |
WO2017195332A1 (en) * | 2016-05-12 | 2017-11-16 | エリーパワー株式会社 | Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
JPWO2017195332A1 (en) * | 2016-05-12 | 2019-03-07 | エリーパワー株式会社 | Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4821023B2 (en) | 2011-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3625680B2 (en) | Lithium secondary battery | |
US7981544B2 (en) | Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof | |
JP5078334B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5232631B2 (en) | Non-aqueous electrolyte battery | |
JP4798964B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2000353526A (en) | Positive electrode active material composition for lithium secondary battery and manufacture of positive electrode using it | |
JP2006236886A (en) | Nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery | |
JP4879226B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
JP7143855B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, evaluation method for lithium metal composite oxide powder | |
JP2971403B2 (en) | Non-aqueous solvent secondary battery | |
JP4821023B2 (en) | Positive electrode for lithium secondary battery and lithium ion battery using the same | |
JP5030559B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2012081518A2 (en) | Nonaqueous electrolyte secondary battery | |
JP3579280B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode | |
JP2003242978A (en) | Non-aqueous secondary battery | |
JP3625679B2 (en) | Lithium secondary battery | |
JP7412883B2 (en) | Positive electrode active material for lithium ion secondary battery and method for manufacturing the same | |
JP2002270181A (en) | Non-aqueous electrolyte battery | |
JP2018195419A (en) | Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery | |
KR100307165B1 (en) | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same | |
JP2002170566A (en) | Lithium secondary cell | |
JP2001297750A (en) | Power-generating element for lithium secondary battery and lithium secondary battery using same | |
JP2004284845A (en) | Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery | |
JP2000277111A (en) | Lithium secondary battery | |
JP2000348729A (en) | Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050929 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051028 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20051028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051028 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051021 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100611 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110722 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110818 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110818 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140916 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |