JP2012015297A - Electrode for electrochemical element, and manufacturing method thereof - Google Patents

Electrode for electrochemical element, and manufacturing method thereof Download PDF

Info

Publication number
JP2012015297A
JP2012015297A JP2010149929A JP2010149929A JP2012015297A JP 2012015297 A JP2012015297 A JP 2012015297A JP 2010149929 A JP2010149929 A JP 2010149929A JP 2010149929 A JP2010149929 A JP 2010149929A JP 2012015297 A JP2012015297 A JP 2012015297A
Authority
JP
Japan
Prior art keywords
active material
electrode
particle group
binder
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010149929A
Other languages
Japanese (ja)
Other versions
JP5647447B2 (en
Inventor
Atsushi Nishino
西野  敦
Masahiko Yamaguchi
将彦 山口
Teruo Uchibori
輝男 内堀
Isato Sunago
勇人 砂子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynic Corp
Original Assignee
Dynic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynic Corp filed Critical Dynic Corp
Priority to JP2010149929A priority Critical patent/JP5647447B2/en
Priority to CN201110151073.7A priority patent/CN102332359B/en
Priority to KR1020110056296A priority patent/KR20120002433A/en
Publication of JP2012015297A publication Critical patent/JP2012015297A/en
Application granted granted Critical
Publication of JP5647447B2 publication Critical patent/JP5647447B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for an electrochemical element that has low resistance and has excellent withstand voltage characteristics.SOLUTION: The electrode for an electrochemical element comprises a current collector, a conductive layer formed on a surface of the current collector and including conductive carbon particles and a first binder, and an active material layer formed on a surface of the conductive layer and including active material particles and a second binder. The conductive carbon particles include a small-particle group and a large-particle group. The volume particle size distribution of the small-particle group has a peak in 3-7 μm range, the volume particle size distribution of the large-particle group has a peak in 10-20 μm range, and the weight ratio of the small-particle group to the large-particle group (small-particle group/large-particle group) is 95/5-50/50. An interface between the conductive layer and the active material layer has a roughness with a maximum height Rmax of 10 μm or more.

Description

本発明は、低抵抗かつ大電流特性に優れた電気化学素子用電極に関し、例えば、電気二重層キャパシタ(EDLC)、擬似キャパシタ(P−EDLC)などのキャパシタや、リチウムイオン電池、ニッケル水素蓄電池などの電池に用いる電極に関する。   The present invention relates to an electrode for an electrochemical element having low resistance and excellent large current characteristics. For example, a capacitor such as an electric double layer capacitor (EDLC) or a pseudo capacitor (P-EDLC), a lithium ion battery, a nickel hydrogen storage battery, and the like It is related with the electrode used for the battery.

近年、省エネルギー、環境保全および石油代替エネルギー利用の観点から、自動車を中心に、二次電池や電気二重層キャパシタ(EDLC)などの電気化学素子を用いる技術開発が進んでおり、ハイブリッド自動車(HEV)およびPEV(電気自動車)の開発が加速している。また、SSD(Solid state drive)型ハードディスクなどでも、高性能の二次電池やEDLCの利用が進んでいる。   In recent years, technology development using electrochemical elements such as secondary batteries and electric double layer capacitors (EDLC) has been progressing mainly in automobiles from the viewpoints of energy saving, environmental conservation and use of alternative energy to petroleum, and hybrid cars (HEV) And the development of PEV (electric vehicle) is accelerating. Further, high-performance secondary batteries and EDLC are also being used in SSD (Solid state drive) type hard disks.

電気化学素子用電極は、一般に、集電体とその表面に形成された活物質層とを有する。しかし、集電体の表面に活物質層を直に形成すると、電極抵抗が大きくなったり、集電体が酸化され、もしくは水素脆化したりする場合がある。そこで、集電体の表面に、第1層として導電性炭素粒子を含む導電層を形成し、その表面に、第2層として活物質層を形成することが提案されている(特許文献1、2)。   The electrode for electrochemical devices generally has a current collector and an active material layer formed on the surface thereof. However, when the active material layer is formed directly on the surface of the current collector, the electrode resistance may increase, the current collector may be oxidized, or hydrogen embrittlement may occur. Therefore, it has been proposed to form a conductive layer containing conductive carbon particles as the first layer on the surface of the current collector and to form an active material layer as the second layer on the surface (Patent Document 1, 2).

特開2009−38387号公報JP 2009-38387 A 特表2005−508081号公報JP 2005-508081 A

電気化学素子の高性能化に伴い、大電流特性に優れた電気化学素子用電極の開発に対する要請が高まってきている。しかし、集電体の表面に導電層を形成するだけでは、近年要望されている大電流特性を満足できるほどの低抵抗な電極を得ることは困難である。また、電気化学素子に印加される電圧は次第に大きくなってきており、電極に対して高い耐電圧特性が要求されている。   As the performance of electrochemical devices has increased, there has been an increasing demand for the development of electrodes for electrochemical devices having excellent large current characteristics. However, simply forming a conductive layer on the surface of the current collector makes it difficult to obtain an electrode with a low resistance enough to satisfy the recently demanded large current characteristics. In addition, the voltage applied to the electrochemical element is gradually increasing, and high withstand voltage characteristics are required for the electrodes.

本発明は、上記状況に鑑み、十分な大電流特性を満足できる、低抵抗かつ耐電圧特性に優れた電気化学素子用電極を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide an electrode for an electrochemical element that can satisfy a sufficiently large current characteristic and is excellent in low resistance and withstand voltage characteristics.

すなわち、本発明の一局面は、集電体と、集電体の表面に形成され、かつ導電性炭素粒子と第1バインダとを含む導電層と、導電層の表面に形成され、かつ活物質粒子と第2バインダとを含む活物質層と、を具備し、導電性炭素粒子が、小粒子群と大粒子群とを含み、小粒子群の体積粒度分布のピークが3〜7μmの範囲にあり、大粒子群の体積粒度分布のピークが10〜20μmの範囲にあり、小粒子群と大粒子群との重量割合(小粒子群/大粒子群)が、95/5〜50/50であり、導電層と活物質層との間の界面は、最大高さRmaxが10μm以上である粗さを有する、電気化学素子用電極に関する。   That is, one aspect of the present invention is an active material formed on a surface of a current collector, a conductive layer formed on the surface of the current collector and including conductive carbon particles and a first binder, and an active material. An active material layer including particles and a second binder, wherein the conductive carbon particles include a small particle group and a large particle group, and the peak of the volume particle size distribution of the small particle group is in the range of 3 to 7 μm. The volume particle size distribution peak of the large particle group is in the range of 10 to 20 μm, and the weight ratio of the small particle group to the large particle group (small particle group / large particle group) is 95/5 to 50/50. In addition, the interface between the conductive layer and the active material layer relates to an electrode for an electrochemical element having a roughness with a maximum height Rmax of 10 μm or more.

本発明は、また、低抵抗な電気化学素子用電極を製造する有効な方法を提供する。
すなわち、本発明の他の一局面は、(i)集電体の表面に、上記の導電性炭素粒子と、第1バインダと、第1液状成分と、を含む第1スラリーを塗布し、導電塗膜を形成する工程、(ii)前記導電塗膜を輻射熱により加熱し、導電塗膜から第1液状成分を揮発させる工程、(iii)工程(ii)の後、導電塗膜の表面に、活物質粒子と、第2バインダと、第2液状成分と、を含む第2スラリーを塗布し、活物質塗膜を形成する工程、(iv)導電塗膜と活物質塗膜との積層体を、輻射熱および温風の少なくとも一方により乾燥させる工程、を有する電気化学素子用電極の製造方法に関する。
The present invention also provides an effective method for producing a low-resistance electrode for electrochemical devices.
That is, according to another aspect of the present invention, (i) a first slurry containing the conductive carbon particles, the first binder, and the first liquid component is applied to the surface of the current collector, and the conductive material is electrically conductive. A step of forming a coating film, (ii) a step of heating the conductive coating film by radiant heat and volatilizing the first liquid component from the conductive coating layer, (iii) after step (ii), on the surface of the conductive coating film, Applying a second slurry containing active material particles, a second binder, and a second liquid component to form an active material coating; (iv) a laminate of a conductive coating and an active material coating; And a step of drying with at least one of radiant heat and hot air.

本発明に係る電気化学素子用電極は、導電層と活物質層との界面における抵抗が極めて低いため、低抵抗かつ大電流特性に優れている。また、導電層と活物質層との界面における剥離が起りにくく、耐電圧特性にも優れている。本発明に係る製造方法によれば、低抵抗かつ大電流特性と耐電圧特性に優れた電気化学素子用電極を効率よく製造することができる。   Since the electrode for an electrochemical element according to the present invention has an extremely low resistance at the interface between the conductive layer and the active material layer, it is excellent in low resistance and large current characteristics. Further, peeling at the interface between the conductive layer and the active material layer hardly occurs, and the withstand voltage characteristics are also excellent. According to the manufacturing method according to the present invention, an electrode for an electrochemical element that is excellent in low resistance, large current characteristics and withstand voltage characteristics can be efficiently manufactured.

従来の電極構造の一例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the conventional electrode structure. 従来の電極構造の他の一例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows another example of the conventional electrode structure. 本発明に係る電極構造の一例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the electrode structure which concerns on this invention. 比較例に係る電極の一例の断面SEM写真例である。It is a cross-sectional SEM photograph example of an example of the electrode which concerns on a comparative example. 比較例に係る電極の他の一例の断面SEM写真例である。It is a cross-sectional SEM photograph example of another example of the electrode which concerns on a comparative example. 本発明の実施例に係る電極の一例の断面SEM写真例である。It is a cross-sectional SEM photograph example of an example of the electrode which concerns on the Example of this invention. 図2cの粗さ曲線に対する山頂線および谷底線を示す図である。FIG. 2b shows a peak line and a valley line for the roughness curve of FIG. 2c. 図3の山頂線と谷底線との間隔(Rmax-n)を示す図である。It is a figure which shows the space | interval (Rmax-n) of the peak line of FIG. 3, and a valley bottom line.

本発明に係る電気化学素子用電極は、集電体と、集電体の表面に形成され、かつ導電性炭素粒子と第1バインダとを含む導電層と、導電層の表面に形成され、かつ活物質粒子と第2バインダとを含む活物質層とを具備する。   The electrode for an electrochemical element according to the present invention is formed on the surface of the current collector, the conductive layer formed on the surface of the current collector and including the conductive carbon particles and the first binder, and An active material layer including active material particles and a second binder.

近年要望されている大電流特性を満足できるほどに低抵抗であり、かつ耐電圧特性に優れた電極を得るためには、導電層と活物質層との間に、相互拡散層を形成することが重要である。相互拡散層は、導電層に含まれる導電性炭素粒子および第1バインダが活物質層側に拡散し、活物質層に含まれる活物質粒子および第2バインダが導電層側に拡散することにより形成される。   In order to obtain an electrode that has low resistance enough to satisfy the demanded large current characteristics and has excellent withstand voltage characteristics in recent years, an interdiffusion layer must be formed between the conductive layer and the active material layer. is important. The interdiffusion layer is formed by diffusing the conductive carbon particles and the first binder contained in the conductive layer toward the active material layer, and diffusing the active material particles and the second binder contained in the active material layer toward the conductive layer. Is done.

このような相互拡散層の存在は、導電層と活物質層との間の界面の粗さの最大高さRmaxを測定することにより確認できる。相互拡散層が形成されている場合、最大高さRmaxは10μm以上となる。最大高さRmaxが10μm以上(例えば13μm以上、14μm以上もしくは15μm以上)である場合、すなわち、相互拡散層が形成されている場合、導電層と活物質層との間の界面抵抗が極めて小さくなるとともに、導電層と活物質層との密着性が大きくなり、所望の低抵抗と耐電圧特性を有する電極を得ることが可能となる。ただし、最大高さRmaxが25μmを超えると、電極特性が不安定になる場合があるため、25μm以下であることが好ましい。   The existence of such an interdiffusion layer can be confirmed by measuring the maximum height Rmax of the roughness of the interface between the conductive layer and the active material layer. When the interdiffusion layer is formed, the maximum height Rmax is 10 μm or more. When the maximum height Rmax is 10 μm or more (for example, 13 μm or more, 14 μm or more, or 15 μm or more), that is, when an interdiffusion layer is formed, the interface resistance between the conductive layer and the active material layer is extremely small. In addition, the adhesion between the conductive layer and the active material layer is increased, and an electrode having desired low resistance and withstand voltage characteristics can be obtained. However, if the maximum height Rmax exceeds 25 μm, the electrode characteristics may become unstable. Therefore, it is preferably 25 μm or less.

導電層と活物質層との間の界面の粗さの最大高さRmaxは、電極の集電体の面方向に垂直な断面において測定することができる。当該断面には、導電性炭素粒子と活物質粒子との境界が観測される。この境界を移動する点の軌跡(以下、粗さ曲線)が、導電層と活物質層との間の界面に相当する。当該粗さ曲線の最大高さRmaxは、後述の所定の方法で求める。   The maximum height Rmax of the roughness of the interface between the conductive layer and the active material layer can be measured in a cross section perpendicular to the surface direction of the current collector of the electrode. In the cross section, the boundary between the conductive carbon particles and the active material particles is observed. The locus of the point moving along the boundary (hereinafter, roughness curve) corresponds to the interface between the conductive layer and the active material layer. The maximum height Rmax of the roughness curve is obtained by a predetermined method described later.

なお、電気化学素子とは、主にキャパシタや電池を意味し、例えば、電気二重層キャパシタ(EDLC)、擬似キャパシタ(P−EDLC)、リチウムイオン電池、ニッケル水素蓄電池などが含まれる。キャパシタや電池の構造は、特に限定されず、コイン型、捲回型、積層型などが含まれる。   The electrochemical element mainly means a capacitor or a battery, and includes, for example, an electric double layer capacitor (EDLC), a pseudo capacitor (P-EDLC), a lithium ion battery, a nickel metal hydride storage battery, and the like. The structure of the capacitor or battery is not particularly limited, and includes a coin type, a wound type, a laminated type, and the like.

次に、従来および本発明に係る電気化学素子用電極の構造について、電極の概略縦断面図を用いて説明する。
図1aおよび図1bは従来の電極構造を、図1cは本発明の電極構造を示している。ここでは、集電体1の片面に活物質層2を具備する場合について説明する。ただし、本発明に係る電極は、図1cの形態に限らず、集電体1の片面に活物質層2および導電層3を具備する場合と、集電体1の両面に活物質層2および導電層3を具備する場合が含まれる。
Next, the structure of the electrode for an electrochemical device according to the prior art and the present invention will be described with reference to schematic longitudinal sectional views of the electrode.
1a and 1b show a conventional electrode structure, and FIG. 1c shows an electrode structure of the present invention. Here, a case where the active material layer 2 is provided on one surface of the current collector 1 will be described. However, the electrode according to the present invention is not limited to the form of FIG. 1 c, and the case where the active material layer 2 and the conductive layer 3 are provided on one side of the current collector 1 and the active material layer 2 and the both sides of the current collector 1 are provided. The case where the conductive layer 3 is provided is included.

図1aでは、集電体1の一方の主面に、活物質層2が直に形成されている。図1aに示す構造は、電池やEDLCにおいて最も多く採用されており、携帯機器やパソコンの多くは、この構造を有する電気化学素子を具備している。しかし、この構造では、集電性能に限界があり、近年の大電流特性に対する要求を満たすことが困難になりつつある。   In FIG. 1 a, the active material layer 2 is formed directly on one main surface of the current collector 1. The structure shown in FIG. 1a is most often used in batteries and EDLCs, and many portable devices and personal computers have electrochemical elements having this structure. However, with this structure, the current collection performance is limited, and it is becoming difficult to meet the recent demand for large current characteristics.

図1bでは、集電体1の一方の主面に、導電層3が形成されており、導電層3の表面に活物質層2が形成されている。ただし、活物質層2と導電層3との間には相互拡散層が形成されていないため、導電層と活物質層との間の界面抵抗が大きく、導電層と活物質層との密着性も低くなる。よって、所望の低抵抗や耐電圧特性は得られず、例えば50〜100サイクルの充放電後には層間で剥離を生じやすい。   In FIG. 1 b, the conductive layer 3 is formed on one main surface of the current collector 1, and the active material layer 2 is formed on the surface of the conductive layer 3. However, since no interdiffusion layer is formed between the active material layer 2 and the conductive layer 3, the interface resistance between the conductive layer and the active material layer is large, and the adhesion between the conductive layer and the active material layer is large. Also lower. Therefore, desired low resistance and withstand voltage characteristics cannot be obtained, and for example, peeling between layers tends to occur after 50 to 100 cycles of charge and discharge.

図1cでは、集電体1の一方の主面に、導電層3が形成されており、導電層3の表面に活物質層2が形成されており、活物質層2と導電層3との間には相互拡散層4が形成されている。相互拡散層4を拡大すると、導電性炭素粒子と活物質粒子との境界が観測され、当該境界から、導電層と活物質層との間の界面に相当する粗さ曲線を得ることができる。粗さ曲線の最大粗さRmaxが10μm以上である場合、電極抵抗を、相互拡散層4を有さない場合の1/3〜1/10に低減することが可能となる。また、電気化学素子の充放電サイクル特性も大きく向上する。   In FIG. 1 c, the conductive layer 3 is formed on one main surface of the current collector 1, the active material layer 2 is formed on the surface of the conductive layer 3, and the active material layer 2 and the conductive layer 3 An interdiffusion layer 4 is formed between them. When the interdiffusion layer 4 is enlarged, a boundary between the conductive carbon particles and the active material particles is observed, and a roughness curve corresponding to the interface between the conductive layer and the active material layer can be obtained from the boundary. When the maximum roughness Rmax of the roughness curve is 10 μm or more, the electrode resistance can be reduced to 1/3 to 1/10 of the case where the interdiffusion layer 4 is not provided. In addition, the charge / discharge cycle characteristics of the electrochemical device are greatly improved.

次に、本発明に係る電気化学素子用電極について、より詳細に説明する。
電極は、集電体と、集電体の表面に形成された導電層と、導電層の表面に形成された活物質層とを具備する。集電体は、通常シート状であり、導電層および活物質層は、集電体の一方の主面だけに形成されていてもよく、両方の主面に形成されていてもよい。
Next, the electrode for an electrochemical element according to the present invention will be described in more detail.
The electrode includes a current collector, a conductive layer formed on the surface of the current collector, and an active material layer formed on the surface of the conductive layer. The current collector is usually in the form of a sheet, and the conductive layer and the active material layer may be formed only on one main surface of the current collector, or may be formed on both main surfaces.

集電体には、金属箔が好ましく用いられる。金属箔の厚さは、例えば8〜60μm、好ましくは20〜40μmである。金属箔の構成元素としては、例えばAl、Ni、Cuなどが挙げられる。キャパシタ用電極やリチウムイオン電池の正極には、アルミニウム箔が好ましく用いられる。また、リチウムイオン電池の負極には、銅箔が好ましく用いられる。金属箔は、エッチング処理が施されていないプレーン箔でもよく、エッチング箔でもよい。プレーン箔は、高い耐電圧特性を期待できる。エッチング箔は、導電層との密着性に優れている。集電体は、三次元に加工された構造を有してもよく、例えばパンチング箔やラス金網状の集電体を用いてもよい。   A metal foil is preferably used for the current collector. The thickness of the metal foil is, for example, 8 to 60 μm, preferably 20 to 40 μm. Examples of constituent elements of the metal foil include Al, Ni, and Cu. Aluminum foil is preferably used for the capacitor electrode and the positive electrode of the lithium ion battery. Also, copper foil is preferably used for the negative electrode of the lithium ion battery. The metal foil may be a plain foil that has not been subjected to an etching treatment, or may be an etching foil. The plain foil can be expected to have high withstand voltage characteristics. The etching foil is excellent in adhesiveness with the conductive layer. The current collector may have a three-dimensionally processed structure. For example, a punching foil or a lath wire mesh current collector may be used.

導電層は、導電性炭素粒子と第1バインダとを含んでいる。
導電性炭素粒子には、黒鉛材料を用いることが好ましい。黒鉛材料とは、黒鉛領域を有する炭素材料の総称であり、天然黒鉛(燐状黒鉛、土状黒鉛など)、天然黒鉛の熱処理物および人造黒鉛のいずれも使用可能である。
The conductive layer includes conductive carbon particles and a first binder.
It is preferable to use a graphite material for the conductive carbon particles. Graphite material is a general term for carbon materials having a graphite region, and any of natural graphite (phosphorus-like graphite, earth-like graphite, etc.), heat-treated natural graphite, and artificial graphite can be used.

導電性炭素粒子の平均粒径(体積粒度分布におけるメディアン径D50)は、5〜20μmであることが好ましい。平均粒径が大きすぎると、粒子間隙が大きくなり、抵抗値が大きくなる場合があり、小さすぎると、導電層と活物質層との界面に凹凸を形成し難くなる場合がある。 The average particle diameter of the conductive carbon particles (median diameter D 50 in the volume particle size distribution) is preferably 5 to 20 μm. If the average particle size is too large, the particle gap may increase and the resistance value may increase, and if it is too small, it may be difficult to form irregularities at the interface between the conductive layer and the active material layer.

本発明では、導電層と活物質層との間の界面の粗さの最大高さRmaxを10μm以上とするために、導電性炭素粒子には、小粒子群と大粒子群とを含む混合粒子を用いる。導電性炭素粒子に、大きい粒子と小さい粒子とを混在させることにより、導電層と活物質層との間に、緻密かつ密着性に優れた最大高さRmaxが10μm以上の相互拡散層を形成しやすくなる。その結果、導電層と活物質層との間の密着性が大きくなり、電極の抵抗が小さくなる。   In the present invention, in order to set the maximum height Rmax of the roughness of the interface between the conductive layer and the active material layer to 10 μm or more, the conductive carbon particles include mixed particles including a small particle group and a large particle group. Is used. By mixing the conductive carbon particles with large particles and small particles, an interdiffusion layer having a maximum height Rmax of 10 μm or more, which is dense and excellent in adhesion, is formed between the conductive layer and the active material layer. It becomes easy. As a result, the adhesion between the conductive layer and the active material layer increases, and the resistance of the electrode decreases.

より具体的には、導電性炭素粒子の体積粒度分布は、小粒径側および大粒径側にそれぞれピークを有する。このような粒度分布を有する導電性炭素粒子は、小粒子群と大粒子群とを含む混合粒子と見なすことができる。ここで、小粒子群の体積粒度分布のピークが3〜7μmの範囲にあり、かつ大粒子群の体積粒度分布のピークが10〜20μmの範囲にあることも重要である。導電性炭素粒子がこのような粒度分布を有することにより、緻密な相互拡散層が形成されると考えられる。   More specifically, the volume particle size distribution of the conductive carbon particles has peaks on the small particle size side and the large particle size side, respectively. The conductive carbon particles having such a particle size distribution can be regarded as mixed particles including a small particle group and a large particle group. Here, it is also important that the volume particle size distribution peak of the small particle group is in the range of 3 to 7 μm, and the volume particle size distribution peak of the large particle group is in the range of 10 to 20 μm. It is considered that when the conductive carbon particles have such a particle size distribution, a dense interdiffusion layer is formed.

小粒子群の平均粒径(体積粒度分布におけるメディアン径D50)は3〜7μmであり、大粒子群の平均粒径は10〜20μmであることが好ましい。大粒子群は、主に導電層内における導電性の向上に寄与し、小粒子群は、主に相互拡散層の密着性に寄与すると考えられる。
なお、体積粒度分布は、レーザ回折式粒度分布測定装置(日機装(株)製のMicrotrac MT3300EX II)により測定することができる。
The average particle diameter of the small particle group (median diameter D 50 in the volume particle size distribution) is preferably 3 to 7 μm, and the average particle diameter of the large particle group is preferably 10 to 20 μm. It is considered that the large particle group mainly contributes to the improvement of conductivity in the conductive layer, and the small particle group mainly contributes to the adhesion of the mutual diffusion layer.
The volume particle size distribution can be measured with a laser diffraction particle size distribution measuring device (Microtrac MT3300EX II manufactured by Nikkiso Co., Ltd.).

小粒子群と大粒子群との重量割合(小粒子群/大粒子群)を95/5〜50/50、好ましくは90/10〜70/30とすることも重要である。小粒子群が、導電層に含まれる導電性炭素粒子の50〜95重量%を占めることにより、導電層と活物質層との間の界面における相互拡散層の構造が緻密になると考えられる。   It is also important that the weight ratio between the small particle group and the large particle group (small particle group / large particle group) is 95/5 to 50/50, preferably 90/10 to 70/30. It is considered that the structure of the interdiffusion layer at the interface between the conductive layer and the active material layer becomes dense when the small particle group occupies 50 to 95% by weight of the conductive carbon particles contained in the conductive layer.

小粒子群と大粒子群との重量割合は、得られた体積粒度分布を波形分離し、小粒子群と大粒子群との体積割合を求め、体積割合を重量割合に換算することにより求めることができる。ただし、小粒子群と大粒子群がいずれも黒鉛材料である場合には、体積割合を重量割合と見なすことができる。   The weight ratio between the small particle group and the large particle group is obtained by waveform-separating the obtained volume particle size distribution, determining the volume ratio between the small particle group and the large particle group, and converting the volume ratio into a weight ratio. Can do. However, when both the small particle group and the large particle group are graphite materials, the volume ratio can be regarded as the weight ratio.

小粒子群の平均粒径D1と大粒子群の平均粒径D2との比(D1/D2)は、1.5以上5以下が好ましく、2以上3.5以下が特に好ましい。このような粒径比にすることで、相互拡散層の緻密性が向上するとともに、導電層自体の強度も大きく向上する。   The ratio (D1 / D2) between the average particle diameter D1 of the small particle group and the average particle diameter D2 of the large particle group is preferably 1.5 or more and 5 or less, and particularly preferably 2 or more and 3.5 or less. By setting such a particle size ratio, the denseness of the interdiffusion layer is improved and the strength of the conductive layer itself is greatly improved.

導電性炭素粒子は、黒鉛の他に、カーボンブラックを含んでもよい。カーボンブラックとしては、アセチレンブラック、ケッチェンブラックなどを用いることができる。カーボンブラックを含む導電層は、体積抵抗や面抵抗が低減しやすい点で有利である。カーボンブラックの量は、導電層に含まれる導電性炭素粒子100重量部に対し、20〜110重量部が好ましい。   The conductive carbon particles may contain carbon black in addition to graphite. As the carbon black, acetylene black, ketjen black and the like can be used. The conductive layer containing carbon black is advantageous in that volume resistance and sheet resistance are easily reduced. The amount of carbon black is preferably 20 to 110 parts by weight with respect to 100 parts by weight of conductive carbon particles contained in the conductive layer.

電極に2.5V以上の耐電圧特性が要求される場合、導電層において、第1バインダには、炭素間二重結合を有さず、かつ160℃以上の融点を有する樹脂や、熱硬化型樹脂が好ましく用いられる。このような樹脂は、耐電圧特性と耐熱性に優れている。例えばアクリレート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂およびセルロース樹脂よりなる群から選択される少なくとも1種が安定で好ましい。また、少量で高い結着力が得られる点で、アクリレート樹脂、ポリアミドイミド樹脂およびセルロース樹脂が特に好ましい。なかでもアクリレート樹脂は、耐酸化還元性に優れる点で最も好ましい。   When the electrode is required to have a withstand voltage characteristic of 2.5 V or more, in the conductive layer, the first binder does not have a carbon-carbon double bond and has a melting point of 160 ° C. or higher, or a thermosetting type. Resins are preferably used. Such a resin is excellent in withstand voltage characteristics and heat resistance. For example, at least one selected from the group consisting of acrylate resins, polyimide resins, polyamideimide resins, fluororesins and cellulose resins is stable and preferable. Moreover, an acrylate resin, a polyamide-imide resin, and a cellulose resin are particularly preferable in that a high binding force can be obtained with a small amount. Of these, acrylate resins are most preferred because they are excellent in redox resistance.

近年、EDLCなどの電気化学素子の分野では、HCF2CH2-O-CF2CF2Hのような耐電圧特性に優れた電解液溶媒の開発が進められており、これに伴い、電極にも高い耐電圧特性(キャパシタでは2.5Vを超える高電圧、リチウムイオン電池では4.2〜4.5V程度)が要請されている。上記の樹脂は、このような要請を満たす観点からも優れている。 In recent years, in the field of electrochemical devices such as EDLC, the development of an electrolyte solvent with excellent withstand voltage characteristics such as HCF 2 CH 2 -O-CF 2 CF 2 H has been promoted. However, there is a demand for high withstand voltage characteristics (high voltage exceeding 2.5 V for capacitors and about 4.2 to 4.5 V for lithium ion batteries). The above resin is also excellent from the viewpoint of satisfying such a requirement.

アクリレート樹脂とは、アクリル酸もしくはそのアルキルエステルまたはメタクリル酸もしくはそのアルキルエステルの単位を含む樹脂の総称である。アクリレート樹脂の主鎖またはアルキルエステル基に含まれる水素原子の一部をフッ素と置換することにより得られるフッ素化アクリレート樹脂によれば、電極の耐酸化還元性を更に高めることができ、優れた充放電サイクル特性を得ることができる。例えばフッ素化アクリレート樹脂を水に分散させたエマルジョンが商業的に入手可能である。   The acrylate resin is a general term for resins containing units of acrylic acid or its alkyl ester or methacrylic acid or its alkyl ester. According to the fluorinated acrylate resin obtained by substituting a part of the hydrogen atoms contained in the main chain or alkyl ester group of the acrylate resin with fluorine, the oxidation-reduction resistance of the electrode can be further improved, and excellent chargeability can be achieved. Discharge cycle characteristics can be obtained. For example, an emulsion in which a fluorinated acrylate resin is dispersed in water is commercially available.

フッ素樹脂としては、例えばポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)を用いることができる。フッ素樹脂は、耐酸性および耐アルカリ性に優れている。   As the fluororesin, for example, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) can be used. The fluororesin is excellent in acid resistance and alkali resistance.

セルロース樹脂は、特に限定されないが、導電層の前駆体であるスラリーの安定性、スラリーの塗膜(導電塗膜)の成膜性、レベリング性、接着性などの観点から、エチルセルロースが好ましい。   The cellulose resin is not particularly limited, but ethyl cellulose is preferable from the viewpoint of the stability of the slurry that is the precursor of the conductive layer, the film formability of the slurry coating film (conductive coating film), the leveling property, the adhesiveness, and the like.

熱硬化型樹脂としては、Tgが260℃以上のものが好ましく、例えば両末端にアリル基を有する付加型熱硬化性イミド(ポリイミド樹脂)や、ポリアミドイミド樹脂が好ましい。熱硬化型樹脂を使用する場合は、必要に応じ、硬化処理として最終に200〜300℃で30分程度の熱処理を行うことが好ましい。   As the thermosetting resin, those having a Tg of 260 ° C. or higher are preferable, and for example, an addition type thermosetting imide (polyimide resin) having an allyl group at both ends and a polyamideimide resin are preferable. When using a thermosetting resin, it is preferable to finally perform a heat treatment at 200 to 300 ° C. for about 30 minutes as a curing treatment, if necessary.

一方、電極に2.1V以上、2.7V以下の耐電圧特性が要求される場合、第1バインダには、オレフィン系樹脂、合成ゴムおよびフッ素樹脂よりなる群から選択される少なくとも1種が好ましく用いられる。合成ゴムとしては、例えばスチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EPDM)などが挙げられる。オレフィン系樹脂としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、変性PE、変性PPなどのポリオレフィンが挙げられる。合成ゴムは、接着力に優れ、電極に適度な柔軟性を付与できる点では優れている。また、オレフィン系樹脂は、低価格である点では優れている。ただし、合成ゴムに含まれる炭素間二重結合は、2.5Vを超える高電圧が印加されるEDLCや4.5V程度の高電圧が印加されるリチウムイオン電池中では、酸素と反応する可能性があり、耐久特性が若干劣化する場合がある。また、(変性)ポリオレフィンを含む電極は、130℃以上に加熱すると劣化する場合がある。   On the other hand, when the electrode is required to have a withstand voltage characteristic of 2.1 V or more and 2.7 V or less, the first binder is preferably at least one selected from the group consisting of an olefin resin, a synthetic rubber, and a fluororesin. Used. Examples of the synthetic rubber include styrene butadiene rubber (SBR), nitrile rubber (NBR), and ethylene / propylene rubber (EPM, EPDM). Examples of the olefin-based resin include polyolefins such as polyethylene (PE), polypropylene (PP), modified PE, and modified PP. Synthetic rubber is excellent in that it has excellent adhesive strength and can impart appropriate flexibility to the electrode. Olefin resins are excellent in that they are inexpensive. However, the carbon-carbon double bond contained in the synthetic rubber may react with oxygen in EDLC to which a high voltage exceeding 2.5 V is applied or in a lithium ion battery to which a high voltage of about 4.5 V is applied. In some cases, the durability characteristics are slightly deteriorated. In addition, an electrode containing (modified) polyolefin may deteriorate when heated to 130 ° C. or higher.

導電層の前駆体であるスラリーに適度な粘性を付与する観点から、第1バインダに、カルボキシメチルセルロース(CMC)を含ませてもよい。例えば、フッ素化されたアクリレート樹脂を水に分散させたエマルジョンと、CMCとを併用する場合、CMCが水に溶解し、スラリーに適度な粘性を付与するため、均一なスラリーの調製が容易となる。   From the viewpoint of imparting an appropriate viscosity to the slurry that is a precursor of the conductive layer, carboxymethyl cellulose (CMC) may be included in the first binder. For example, when an emulsion in which a fluorinated acrylate resin is dispersed in water and CMC are used in combination, CMC dissolves in water and imparts an appropriate viscosity to the slurry, making it easy to prepare a uniform slurry. .

上記の第1バインダを用いることにより、例えば2.1V以上もしくは2.5Vを超える耐電圧特性を有し、かつ160℃程度の高温で乾燥が可能である高耐熱性のEDLC用電極が得られる。また、4.2Vを超える電圧が印加されるリチウムイオン電池用電極が得られる。   By using the first binder, for example, a highly heat-resistant EDLC electrode that has a withstand voltage characteristic of 2.1 V or more or exceeds 2.5 V and can be dried at a high temperature of about 160 ° C. can be obtained. . Moreover, the electrode for lithium ion batteries to which the voltage exceeding 4.2V is applied is obtained.

導電層において、第1バインダの量は、導電性炭素粒子100重量部あたり、1〜20重量部が好適であり、3〜10重量部もしくは3〜6重量部が更に好適である。また、CMCと他のバインダとを併用する場合には、第1バインダ全体に占めるCMCの重量割合は、0.5〜30重量%が好適である。   In the conductive layer, the amount of the first binder is preferably 1 to 20 parts by weight and more preferably 3 to 10 parts by weight or 3 to 6 parts by weight per 100 parts by weight of the conductive carbon particles. Moreover, when using together CMC and another binder, 0.5-30 weight% is suitable for the weight ratio of CMC to the whole 1st binder.

本発明の一態様において、導電層は、トリアジン環を有する化合物(例えばトリアジン、2,4,6−トリメルカプト−s−トリアジンモノナトリウム塩、2,4,6−トリメルカプト−s−トリアジントリナトリウム塩など)を含む。トリアジン環を有する化合物は、第1バインダを補助し、導電性炭素粒子間の結着力を向上させたり、集電体と導電層との結着力を向上させたりする。トリアジン環は、耐酸化性に優れており、電気化学素子内におけるガス発生を抑制する。トリアジン環を有する化合物の量は、導電性炭素粒子100重量部に対し、1〜12重量部が好適であり、1〜3重量部が更に好適である。   In one embodiment of the present invention, the conductive layer contains a compound having a triazine ring (eg, triazine, 2,4,6-trimercapto-s-triazine monosodium salt, 2,4,6-trimercapto-s-triazine trisodium). Salt). The compound having a triazine ring assists the first binder, improves the binding force between the conductive carbon particles, and improves the binding force between the current collector and the conductive layer. The triazine ring has excellent oxidation resistance and suppresses gas generation in the electrochemical element. The amount of the compound having a triazine ring is preferably 1 to 12 parts by weight and more preferably 1 to 3 parts by weight with respect to 100 parts by weight of the conductive carbon particles.

導電層の厚さは、電極の種類により異なるが、電気二重層キャパシタの場合、例えば5〜20μmであり、リチウムイオン二次電池の場合、例えば10〜40μmである。導電層の厚さが厚く、例えば10〜20μmの場合には、高い導電性を確保する観点から、上記のように、小粒子群と大粒子群とを混合して用いることが特に重要となる。   Although the thickness of a conductive layer changes with kinds of electrode, in the case of an electric double layer capacitor, it is 5-20 micrometers, for example, and in the case of a lithium ion secondary battery, it is 10-40 micrometers. When the thickness of the conductive layer is large, for example, 10 to 20 μm, it is particularly important to use a mixture of a small particle group and a large particle group as described above from the viewpoint of ensuring high conductivity. .

導電層の表面には、活物質層が形成されている。
活物質層は、活物質粒子と第2バインダとを含んでいる。ただし、活物質層の構成材料は、これらに限定されない。例えば任意成分として、カーボンブラックなどの導電助剤を含んでもよい。
An active material layer is formed on the surface of the conductive layer.
The active material layer includes active material particles and a second binder. However, the constituent material of the active material layer is not limited to these. For example, a conductive aid such as carbon black may be included as an optional component.

電気二重層キャパシタ用電極の場合、活物質粒子として、活性炭が用いられる。この場合、正極(陽極)および負極(陰極)は、いずれも同じく活性炭を活物質として含んでいる。一方、擬似キャパシタの場合、活物質粒子には、様々な材料が用いられる。例えば、正極には活性炭が用いられ、負極には黒鉛が用いられる。   In the case of an electrode for an electric double layer capacitor, activated carbon is used as the active material particles. In this case, the positive electrode (anode) and the negative electrode (cathode) both contain activated carbon as an active material. On the other hand, in the case of a pseudo capacitor, various materials are used for the active material particles. For example, activated carbon is used for the positive electrode and graphite is used for the negative electrode.

リチウムイオン電池用電極の場合も、活物質粒子には、様々な材料が用いられる。正極には、遷移金属化合物などが用いられる。遷移金属化合物としては、Co、NiおよびMnよりなる群から選択される少なくとも1種を含むリチウム含有遷移金属酸化物やオリピン酸(LiFePO4)型化合物が好ましく用いられる。負極には、黒鉛、珪素、珪素化合物などが用いられる。珪素化合物としては、炭化珪素または酸化珪素が好ましく用いられる。 Also in the case of an electrode for a lithium ion battery, various materials are used for the active material particles. A transition metal compound or the like is used for the positive electrode. As the transition metal compound, a lithium-containing transition metal oxide containing at least one selected from the group consisting of Co, Ni and Mn and an olipic acid (LiFePO 4 ) type compound are preferably used. For the negative electrode, graphite, silicon, silicon compound, or the like is used. As the silicon compound, silicon carbide or silicon oxide is preferably used.

ニッケル水素蓄電池用電極の場合、活物質粒子には、正極には水酸化ニッケルが、負極には水素吸蔵合金が用いられる。
本発明は、これらのいずれの電極にも適用できるが、電気二重層キャパシタおよび擬似キャパシタ用電極への適用が最も効果的である。
In the case of a nickel-metal hydride battery electrode, the active material particles are nickel hydroxide for the positive electrode and a hydrogen storage alloy for the negative electrode.
The present invention can be applied to any of these electrodes, but is most effective when applied to electrodes for electric double layer capacitors and pseudocapacitors.

活物質層において、第2バインダには、第1バインダとして示した材料を用いることが好ましい。第2バインダは、第1バインダと異なる材料でもよいが、導電層と活物質層との密着性を高める観点から、同じ材料を用いることが好ましい。例えば、第1バインダとしてフッ素化されたアクリレート樹脂(FA)を用いる場合、第2バインダにもフッ素化されたアクリレート樹脂(FA)を用いることが好ましい。CMCの使用についても同様である。   In the active material layer, it is preferable to use the material shown as the first binder for the second binder. The second binder may be made of a material different from that of the first binder, but it is preferable to use the same material from the viewpoint of improving the adhesion between the conductive layer and the active material layer. For example, when a fluorinated acrylate resin (FA) is used as the first binder, it is preferable to use a fluorinated acrylate resin (FA) as the second binder. The same applies to the use of CMC.

活物質層において、第2バインダの量は、電極の種類により異なるが、例えば電気二重層キャパシタや擬似キャパシタの場合、活物質粒子(活性炭または黒鉛)100重量部に対し、3〜10重量部、更には4〜6重量部が好適である。第2バインダ量が多くなると、導電層と活物質層との密着性は向上するが、直流抵抗や交流抵抗(ESR)が大きくなる傾向がある。第2バインダ量が少な過ぎると、活物質粒子同士の密着性が低下する傾向がある。CMCと他のバインダとを併用する場合には、第2バインダ全体に占めるCMCの重量割合は、0.5〜50重量%が好適である。   In the active material layer, the amount of the second binder varies depending on the type of electrode. For example, in the case of an electric double layer capacitor or a pseudo capacitor, 3 to 10 parts by weight with respect to 100 parts by weight of the active material particles (activated carbon or graphite), Furthermore, 4-6 weight part is suitable. When the amount of the second binder is increased, the adhesion between the conductive layer and the active material layer is improved, but the direct current resistance and the alternating current resistance (ESR) tend to increase. When there is too little 2nd binder amount, there exists a tendency for the adhesiveness of active material particles to fall. When CMC and another binder are used in combination, the weight ratio of CMC to the entire second binder is preferably 0.5 to 50% by weight.

本発明の一態様において、活物質層は、上記と同様のトリアジン環を有する化合物を含む。トリアジン環を有する化合物は、第2バインダを補助し、活物質粒子間の結着力を向上させたり、導電層と活物質層との結着力を向上させたりする。トリアジン環を有する化合物の量は、活物質粒子100重量部あたり、1〜3重量部が好適である。   In one embodiment of the present invention, the active material layer includes a compound having a triazine ring similar to that described above. The compound having a triazine ring assists the second binder, improves the binding force between the active material particles, and improves the binding force between the conductive layer and the active material layer. The amount of the compound having a triazine ring is preferably 1 to 3 parts by weight per 100 parts by weight of the active material particles.

活物質層の厚さは、電極の種類により異なるが、電気二重層キャパシタの場合、例えば50〜200μmである。また、コイン型電気化学素子の場合、活物質層の厚さは、400〜700μmである。   The thickness of the active material layer varies depending on the type of electrode, but is, for example, 50 to 200 μm in the case of an electric double layer capacitor. In the case of a coin-type electrochemical device, the thickness of the active material layer is 400 to 700 μm.

次に、本発明に係る電気化学素子用電極の製造方法について説明する。
工程(i)
導電性炭素粒子と、第1バインダと、第1液状成分とを含む第1スラリーを調製する。第1スラリーの粘度は、20℃において、200〜4000mPa・s(200〜4000cP)、更には400〜2200mPa・s(400〜2200cP)であることが、作業性および量産性に優れている点で好ましい。粘度の測定装置には、芝浦システム(株)のB型粘度計(DIGITAL VISMETRON VDH-W)と5号ロータを用い、回転数100rpmで測定する。第1スラリーの調製方法は特に限定されないが、例えば、導電性炭素粒子と、第1バインダを含む溶液、分散液またはエマルジョンと、第1液状成分とを様々な混合装置を用いて混合すればよい。
Next, the manufacturing method of the electrode for electrochemical devices which concerns on this invention is demonstrated.
Process (i)
A first slurry containing conductive carbon particles, a first binder, and a first liquid component is prepared. The viscosity of the first slurry is 200 to 4000 mPa · s (200 to 4000 cP), more preferably 400 to 2200 mPa · s (400 to 2200 cP) at 20 ° C., in terms of excellent workability and mass productivity. preferable. As a viscosity measuring device, a B-type viscometer (DIGITAL VISMETRON VDH-W) and No. 5 rotor of Shibaura System Co., Ltd. are used, and measurement is performed at a rotational speed of 100 rpm. The method for preparing the first slurry is not particularly limited. For example, the conductive carbon particles, the solution, dispersion or emulsion containing the first binder, and the first liquid component may be mixed using various mixing devices. .

第1液状成分には、第1バインダの種類に応じて、適宜選択すればよい。例えば、アクリレート樹脂であるフッ素化されたアクリレート樹脂を水に分散させたエマルジョンと、CMCとを併用する場合、第1液状成分は水である。アクリレート樹脂のエマルジョンの代わりに、ポリテトラフルオロエチレンやSBRのような合成ゴムのエマルジョンもしくは分散液を用いる場合にも、第1液状成分として水を用いることができる。エチルセルロースのようなセルロース樹脂を水に溶解させた水溶液を用いる場合にも、第1液状成分は水である。一方、ポリフッ化ビニリデンを用いる場合には、N−メチル−2−ピロリドン(NMP)のような有機成分を用いることが好ましい。より具体的には、第1バインダを含む溶液、エマルジョンまたは分散液と、導電性炭素粒子とを混合し、必要に応じて、所定の液状成分を添加して混合すれば、第1スラリーが得られる。第1スラリーには、トリアジン環を有する化合物を添加してもよい。   What is necessary is just to select suitably for a 1st liquid component according to the kind of 1st binder. For example, when an emulsion in which a fluorinated acrylate resin that is an acrylate resin is dispersed in water and CMC are used in combination, the first liquid component is water. In the case of using an emulsion or dispersion of a synthetic rubber such as polytetrafluoroethylene or SBR instead of the acrylate resin emulsion, water can be used as the first liquid component. Even when an aqueous solution in which a cellulose resin such as ethyl cellulose is dissolved in water is used, the first liquid component is water. On the other hand, when using polyvinylidene fluoride, it is preferable to use an organic component such as N-methyl-2-pyrrolidone (NMP). More specifically, the first slurry can be obtained by mixing a solution, emulsion or dispersion containing the first binder and conductive carbon particles, and adding and mixing a predetermined liquid component as necessary. It is done. A compound having a triazine ring may be added to the first slurry.

次に、第1スラリーを、集電体の表面に塗布し、導電塗膜を形成する。
集電体の一方の主面に導電塗膜を形成する場合、塗工装置として、スロットダイコータ(Slot die coater)、ロールコータ(Roll coater)、カムコータ(Cam coater)などの種々のコータを用いることができる。一方、集電体の両方の主面に同時に導電塗膜を形成する場合には、例えばディップコータ(Dip coater)を用いることが好ましい。 ディップコータは低価格であり、電極の生産効率も高い。
Next, the first slurry is applied to the surface of the current collector to form a conductive coating film.
When forming a conductive coating on one main surface of the current collector, use various coaters such as a slot die coater, a roll coater, and a cam coater as the coating device. Can do. On the other hand, in the case where a conductive coating film is simultaneously formed on both main surfaces of the current collector, for example, it is preferable to use a dip coater. Dip coaters are inexpensive and have high electrode production efficiency.

工程(ii)
次に、導電塗膜を輻射熱(radiant heat)により加熱し、導電塗膜から第1液状成分を揮発させる。その際、導電塗膜を完全に乾燥させるのではなく、導電塗膜がある程度の量の第1液状成分を含む状態で乾燥を停止することが好ましい。輻射熱を用いる場合、導電塗膜の内部から優先的に液状成分が減少するため、導電塗膜の表面付近に液状成分が残存しやすい。このような状態で、導電層の表面に活物質層を形成することで、導電層と活物質層との間で相互拡散が起りやすくなる。
Step (ii)
Next, the conductive coating film is heated by radiant heat to volatilize the first liquid component from the conductive coating film. In that case, it is preferable not to completely dry the conductive coating, but to stop the drying in a state where the conductive coating contains a certain amount of the first liquid component. When radiant heat is used, the liquid component is preferentially reduced from the inside of the conductive coating film, so that the liquid component tends to remain near the surface of the conductive coating film. In such a state, by forming an active material layer on the surface of the conductive layer, mutual diffusion easily occurs between the conductive layer and the active material layer.

乾燥は、導電塗膜が指触乾燥(tacky dry)状態となったときに停止することが好ましい。指触乾燥状態とは、指で触っても導電塗膜の表面が崩壊しない程度の乾燥状態を意味する。このような状態においては、導電塗膜の集電体側よりも表面側に第1液状成分が多く分布していると考えられる。   Drying is preferably stopped when the conductive coating is in a tacky dry state. The finger touch dry state means a dry state to the extent that the surface of the conductive coating does not collapse even when touched with a finger. In such a state, it is considered that the first liquid component is distributed more on the surface side than on the current collector side of the conductive coating film.

一方、従来の熱風や温風(対流熱)による乾燥では、導電塗膜の表面付近から優先的に液状成分が減少する。よって、導電層と活物質層との間で相互拡散が起りにくい。この工程で輻射熱を利用する場合、温風を利用する場合に比べ、電極抵抗を1/2〜1/10に低減することが可能である。   On the other hand, in conventional drying with hot air or warm air (convection heat), liquid components are preferentially reduced from the vicinity of the surface of the conductive coating film. Therefore, mutual diffusion hardly occurs between the conductive layer and the active material layer. When radiant heat is used in this step, the electrode resistance can be reduced to ½ to 1/10 compared to when warm air is used.

輻射熱としては、赤外線(0.7〜1000μm)、特に遠赤外線(例えば波長4〜1000μm)の熱エネルギーを利用することが好ましい。例えば、遠赤外線を放射する熱源としては、電気式、熱媒式、ガス式などの熱源を用いることができる。乾燥中の導電塗膜の温度は130〜180℃に制御することが好ましく、乾燥雰囲気は、窒素、空気などの雰囲気である。なお、塗膜の温度もしくは輻射温度は、グローブ温度計で測定することができる。   As the radiant heat, it is preferable to use thermal energy of infrared rays (0.7 to 1000 μm), particularly far infrared rays (for example, wavelength 4 to 1000 μm). For example, as a heat source that radiates far infrared rays, an electric type, a heat medium type, a gas type, or the like can be used. The temperature of the conductive coating film during drying is preferably controlled at 130 to 180 ° C., and the drying atmosphere is an atmosphere such as nitrogen or air. The temperature or radiation temperature of the coating film can be measured with a globe thermometer.

ただし、第1液状成分がNMPのような有機成分である場合、引火の可能性があるため、遠赤外線のような輻射熱だけでなく、150℃程度の温風(フレッシュエアあるいは窒素など)を乾燥雰囲気に送風することが好ましい。一方、第1液状成分が水である場合には、輻射熱を利用して容易に導電塗膜を乾燥させることができる。   However, if the first liquid component is an organic component such as NMP, there is a possibility of ignition, so not only radiant heat such as far-infrared rays but also hot air of about 150 ° C. (fresh air or nitrogen) is dried. It is preferable to blow to the atmosphere. On the other hand, when the first liquid component is water, the conductive coating film can be easily dried using radiant heat.

工程(iii)
活物質粒子と、第2バインダと、第2液状成分とを含む第2スラリーを調製する。第2スラリーの粘度についても、20℃において、800〜4000mPa・s(800〜4000cP)、更には1500〜2200mPa・s(1500〜2200cP)であることが、作業性および量産性に優れている点で好ましい。粘度の測定は、第1スラリーと同様に行うことができる。第2スラリーの調製方法も特に限定されず、例えば、活物質粒子と、第2バインダを含む溶液、分散液またはエマルジョンと、第2液状成分とを様々な混合装置を用いて混合すればよい。第2液状成分についても、第2バインダの種類に応じて、適宜選択すればよい。第2スラリーにトリアジン環を有する化合物を添加してもよい。
Step (iii)
A second slurry containing active material particles, a second binder, and a second liquid component is prepared. Regarding the viscosity of the second slurry, at 20 ° C., it is 800 to 4000 mPa · s (800 to 4000 cP), more preferably 1500 to 2200 mPa · s (1500 to 2200 cP), which is excellent in workability and mass productivity. Is preferable. Viscosity can be measured in the same manner as the first slurry. The method for preparing the second slurry is not particularly limited, and for example, the active material particles, the solution, dispersion or emulsion containing the second binder, and the second liquid component may be mixed using various mixing devices. The second liquid component may be selected as appropriate according to the type of the second binder. A compound having a triazine ring may be added to the second slurry.

次に、第2スラリーを、導電塗膜の表面に塗布し、活物質塗膜を形成する。その際、上記のように指触乾燥状態の導電塗膜の表面に第2スラリーを塗布することが好ましい。集電体の一方の主面だけに導電塗膜が形成されている場合には、塗工装置として、例えばスロットダイコータ、ロールコータ、カムコータなどを用いる。また、集電体の両方の主面に導電塗膜が形成されている場合には、例えばディップコータを用いて、両方の導電塗膜の表面に同時に第2スラリーを塗布することが好ましい。   Next, the second slurry is applied to the surface of the conductive coating film to form an active material coating film. In that case, it is preferable to apply | coat a 2nd slurry to the surface of the electrically conductive coating film of a touch dry state as mentioned above. When a conductive coating film is formed only on one main surface of the current collector, for example, a slot die coater, a roll coater, a cam coater or the like is used as a coating apparatus. Moreover, when the conductive coating film is formed in both the main surfaces of an electrical power collector, it is preferable to apply | coat a 2nd slurry simultaneously on the surface of both conductive coating films, for example using a dip coater.

工程(iv)
上記工程(i)〜(iii)により得られた導電塗膜と活物質塗膜との積層体を、輻射熱および温風の少なくとも一方により乾燥させる。このときも、できるだけ輻射熱により乾燥させることが、乾燥効率の点で好ましい。上述のように温風の対流による乾燥では、塗膜表面から乾燥が進行するのに対し、輻射熱を利用すると、塗膜内部から温度上昇するため、乾燥効率が上昇する。塗膜表面から乾燥が進行すると、塗膜内部の水分が抜けにくくなる。また、水分が抜ける際に、塗膜に亀裂を生じやすい。また、塗膜表面から乾燥が進行すると、表面ヒゲル層が形成されるため、抵抗が大きくなる。
Step (iv)
The laminate of the conductive coating film and the active material coating film obtained in the above steps (i) to (iii) is dried by at least one of radiant heat and hot air. Also at this time, it is preferable in terms of drying efficiency to dry by radiant heat as much as possible. As described above, in drying by warm air convection, drying proceeds from the surface of the coating film. On the other hand, when radiant heat is used, the temperature rises from the inside of the coating film, thereby increasing the drying efficiency. When drying proceeds from the surface of the coating film, moisture inside the coating film becomes difficult to escape. In addition, when the moisture is removed, the coating film is likely to crack. Further, when drying proceeds from the surface of the coating film, a surface higel layer is formed, and thus the resistance increases.

この工程における乾燥では、積層体から残存している第1液状成分と第2液状成分をほぼ完全に揮発させて電極を完成させることが好ましい。電極に液状成分が残存すると、電気化学素子にその液状成分が持ち込まれ、電気化学素子の性能が劣化する場合がある。乾燥中の積層体の温度は130〜180℃に制御することが好ましく、乾燥雰囲気は、特に限定されないが、空気雰囲気が好ましい。   In the drying in this step, it is preferable that the first liquid component and the second liquid component remaining from the laminate are volatilized almost completely to complete the electrode. When the liquid component remains in the electrode, the liquid component is brought into the electrochemical device, and the performance of the electrochemical device may be deteriorated. The temperature of the laminate during drying is preferably controlled to 130 to 180 ° C., and the drying atmosphere is not particularly limited, but an air atmosphere is preferable.

第1および第2スラリーの安定性を高めるために、これらのスラリーに安定剤を添加してもよい。例えばスラリーがアセチレンブラックやケッチンブラックを含む場合、スラリーの寿命が低下しやすいため、安定剤の添加が有効である。また、導電層を形成するための第1スラリーは、粒径の大きい黒鉛(大粒子群)を含むため、ゲル化しやすく、集電体の表面への塗布が困難になる場合がある。このような場合にも安定剤の添加が有効である。   In order to increase the stability of the first and second slurries, stabilizers may be added to these slurries. For example, when the slurry contains acetylene black or ketine black, the addition of a stabilizer is effective because the life of the slurry is likely to decrease. Moreover, since the 1st slurry for forming a conductive layer contains graphite (large particle group) with a large particle size, it is easy to gelatinize and the application | coating to the surface of a collector may become difficult. In such a case, addition of a stabilizer is effective.

スラリーの安定剤としては、イソプレンスルフォン酸基を有するポリマーが好ましい。スルフォン酸基はナトリウム塩を形成していてもよく、例えば-CH(SO3Na)-CH(CH3)-CH-CH2-のような構造でもよい。スルフォン酸基の結合位置は特に限定されない。イソプレンスルフォン酸基は、疎水基と親水基を持ち合わせているため、スラリーの構成成分を分散させる界面活性剤としての効果が高く、バインダ成分などとの相溶性にも優れている。例えばイソプレンスルフォン酸基と疎水基(例えばスチレン基)とが1つの分子鎖内でブロック状に配列した構造を有するポリマーが、分散安定性が高い点で好ましい。 As the stabilizer for the slurry, a polymer having an isoprene sulfonic acid group is preferable. The sulfonic acid group may form a sodium salt, and may have a structure such as —CH (SO 3 Na) —CH (CH 3 ) —CH—CH 2 —. The bonding position of the sulfonic acid group is not particularly limited. Since the isoprene sulfonic acid group has both a hydrophobic group and a hydrophilic group, it is highly effective as a surfactant for dispersing the constituent components of the slurry and is excellent in compatibility with a binder component and the like. For example, a polymer having a structure in which isoprene sulfonic acid groups and hydrophobic groups (for example, styrene groups) are arranged in a block form in one molecular chain is preferable in terms of high dispersion stability.

第1および第2スラリーへの安定剤の添加量は、スラリー中の固形分の総量に対して、3〜7重量%が好ましい。3重量%未満では、効果が小さく、7重量%を超えると、電極製造コストが高くなる。イソプレンスルフォン酸基を有する安定剤は、相互拡散層の形成を容易にするとともに電極の低抵抗化にも寄与すると考えられる。   The addition amount of the stabilizer to the first and second slurries is preferably 3 to 7% by weight with respect to the total amount of solids in the slurry. If it is less than 3% by weight, the effect is small, and if it exceeds 7% by weight, the electrode production cost becomes high. It is considered that the stabilizer having an isoprene sulfonic acid group facilitates formation of an interdiffusion layer and contributes to lowering the resistance of the electrode.

次に、本発明に係る電極の製造方法における一連の工程を例示する。
[第1形態]
まず、集電体の一方の主面に導電塗膜Aを形成し、遠赤外線で加熱して導電塗膜Aを指触乾燥状態まで乾燥させる。次に、導電塗膜Aの表面に活物質塗膜Aを形成し、遠赤外線で全体を加熱して完全乾燥させる。その後、集電体を反転させ、集電体の他方の主面に導電塗膜Bを形成し、遠赤外線で加熱して導電塗膜Bを指触乾燥状態まで乾燥させる。次に、導電塗膜Bの表面に活物質塗膜Bを形成し、遠赤外線で全体を加熱して完全乾燥させる。この方法では、所定の工程を、集電体の片面ごとに繰り返して行う。
Next, a series of steps in the method for producing an electrode according to the present invention will be exemplified.
[First form]
First, the conductive coating film A is formed on one main surface of the current collector and heated with far infrared rays to dry the conductive coating film A to a dry-to-touch state. Next, the active material coating film A is formed on the surface of the conductive coating film A, and the whole is heated and completely dried with far infrared rays. Thereafter, the current collector is inverted, a conductive coating film B is formed on the other main surface of the current collector, and the conductive coating film B is dried to the touch dry state by heating with far infrared rays. Next, the active material coating film B is formed on the surface of the conductive coating film B, and the whole is heated and completely dried with far infrared rays. In this method, the predetermined process is repeated for each side of the current collector.

[第2形態]
まず、ディップコータを用いて同時に、または、スロットダイコータ、ロールコータ、カムコータ等を用いて順次に、集電体の両方の主面にそれぞれ導電塗膜AおよびBを形成し、遠赤外線で加熱して導電塗膜AおよびBを指触乾燥状態まで乾燥させる。次に、同時または順次に、導電塗膜AおよびBの表面に活物質塗膜AおよびBを形成し、遠赤外線で全体を加熱して完全乾燥させる。この方法は、導電塗膜AおよびBの乾燥を同時に、また、活物質塗膜AおよびBの乾燥を同時に行える点で有利である。
[Second form]
First, conductive coatings A and B are formed on both main surfaces of the current collector at the same time using a dip coater or sequentially using a slot die coater, roll coater, cam coater, etc., and heated with far infrared rays. Then, the conductive coating films A and B are dried to the dry touch state. Next, simultaneously or sequentially, the active material coatings A and B are formed on the surfaces of the conductive coatings A and B, and the whole is heated and completely dried with far infrared rays. This method is advantageous in that the conductive coating films A and B can be dried simultaneously and the active material coating films A and B can be dried simultaneously.

なお、遠赤外線による乾燥の代わりに、温風の対流による乾燥を行うと、乾燥に長時間を要するとともに、導電層と活物質層との間に所望の相互拡散層を形成することができなくなる。   In addition, when drying by hot air convection is performed instead of drying by far infrared rays, drying takes a long time, and a desired interdiffusion layer cannot be formed between the conductive layer and the active material layer. .

次に、本発明に係る電極を含む電気化学素子の一例として電気二重層キャパシタについて説明する。
電気二重層キャパシタは、上記の活物質として活性炭を含む電極と、電極間に介在する多孔質セパレータとを含む電極群を具備する。電極群は、積層型でもよく、捲回型でもよい。積層型の場合、両面に活物質層を有する電極を、電極間にセパレータを介在させて複数重ねるとともに、積層体の最も外側には、片面に活物質層を有する一対の電極を、集電体を外側にして配置する。一方、捲回型の場合は、帯状の一対の電極を準備し、これらの間にセパレータを介在させて、電極の長手方向に沿って捲回する。そして、得られた電極群を所定のケースに収容し、電極群に非水電解液を含浸させる。これにより電極およびセパレータが具備する細孔内に非水電解液が含浸される。
Next, an electric double layer capacitor will be described as an example of an electrochemical element including an electrode according to the present invention.
The electric double layer capacitor includes an electrode group including an electrode containing activated carbon as the active material and a porous separator interposed between the electrodes. The electrode group may be a laminated type or a wound type. In the case of a laminated type, a plurality of electrodes having active material layers on both sides are stacked with separators interposed between the electrodes, and a pair of electrodes having an active material layer on one side is disposed on the outermost side of the laminated body. Place with the outside. On the other hand, in the case of a wound type, a pair of strip-shaped electrodes are prepared, and a separator is interposed between them, and the winding is performed along the longitudinal direction of the electrodes. Then, the obtained electrode group is accommodated in a predetermined case, and the electrode group is impregnated with a nonaqueous electrolytic solution. As a result, the nonaqueous electrolyte is impregnated in the pores of the electrode and the separator.

非水電解液は、支持塩を溶解した非水溶媒からなる。支持塩には、例えばホウフッ化4級アンモニウム塩(例えばホウフッ化テトラエチルアンモニウム、ホウフッ化トリエチルメチルアンモニウム)などが用いられる。また、非水溶媒には、フッ素原子を有していてもよい環状カーボネート、フッ素原子を有していてもよい鎖状カーボネート(例えばプロピレンカーボネート)、フッ素原子を有していてもよい鎖状エーテル、フッ素原子を有していてもよい環状エーテル、フッ素原子を有していてもよいラクトン、フッ素原子を有していてもよいスルホラン誘導体、フッ素原子を有さない非フッ素系のエステル系溶媒、ニトリル系溶媒、フラン類、オキソラン類などが挙げられる。これらのなかでも、耐電圧特性に優れたキャパシタを得るためには、フッ化アルキルエーテルを含む非水溶媒を用いることが好ましい。フッ化アルキルエーテルとは、ジアルキルエーテルの水素原子の少なくとも一部をフッ素原子で置換した化合物の総称である。具体例としては、HCF2CH2-O-CF2CF2H、CF3CF2CH2-O-CF2CF2Hなどが挙げられる。 The nonaqueous electrolytic solution is composed of a nonaqueous solvent in which a supporting salt is dissolved. As the supporting salt, for example, a quaternary ammonium borofluoride salt (for example, tetraethylammonium borofluoride, triethylmethylammonium borofluoride) or the like is used. The non-aqueous solvent includes a cyclic carbonate which may have a fluorine atom, a chain carbonate which may have a fluorine atom (for example, propylene carbonate), and a chain ether which may have a fluorine atom. , A cyclic ether optionally having a fluorine atom, a lactone optionally having a fluorine atom, a sulfolane derivative optionally having a fluorine atom, a non-fluorine ester solvent not having a fluorine atom, Nitrile solvents, furans, oxolanes and the like can be mentioned. Among these, it is preferable to use a non-aqueous solvent containing a fluorinated alkyl ether in order to obtain a capacitor having excellent withstand voltage characteristics. The fluorinated alkyl ether is a general term for compounds in which at least a part of hydrogen atoms of a dialkyl ether is substituted with a fluorine atom. Specific examples include HCF 2 CH 2 —O—CF 2 CF 2 H, CF 3 CF 2 CH 2 —O—CF 2 CF 2 H, and the like.

非水溶媒全体に占めるフッ化アルキルエーテルの割合は、キャパシタが適用される機器にもよるが、5重量%以上とすることが好ましく、10〜30重量%とすることが更に好ましい。5重量%未満では、耐電圧特性を向上させる効果が小さく、30重量%を超えると、コストが高くなる傾向がある。また、内部抵抗が大きくなったり、ガス発生が顕在化したりする場合がある。   Although the ratio of the fluorinated alkyl ether in the entire non-aqueous solvent depends on the device to which the capacitor is applied, it is preferably 5% by weight or more, and more preferably 10-30% by weight. If it is less than 5% by weight, the effect of improving the withstand voltage characteristics is small, and if it exceeds 30% by weight, the cost tends to increase. In addition, internal resistance may increase or gas generation may become apparent.

上記の電極と非水電解液を用いることにより、例えば2.1V以上もしくは2.5Vを超える定格電圧、更には3V以上の定格電圧を有する耐電圧特性に優れた電気二重層キャパシタを得ることが可能である。ただし、印加電圧が3.5Vを超えると、第1もしくは第2バインダが種類によっては分解し、ガス発生の原因となるため、定格電圧は3.5V以下とすることが好ましい。一方、高い耐電圧特性を有するバインダを用いることにより、4.7V程度の耐電圧特性を達成することも可能である。   By using the above electrode and non-aqueous electrolyte, for example, an electric double layer capacitor having a rated voltage of 2.1 V or more or exceeding 2.5 V, and further having a rated voltage of 3 V or more and excellent in withstand voltage characteristics can be obtained. Is possible. However, if the applied voltage exceeds 3.5 V, the first or second binder may be decomposed depending on the type and cause gas generation. Therefore, the rated voltage is preferably 3.5 V or less. On the other hand, by using a binder having high withstand voltage characteristics, it is possible to achieve withstand voltage characteristics of about 4.7V.

次に、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Next, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.

《実施例1》
様々な導電層および活物質層の組成を有するEDLC用電極を作製し、評価した。
(a)第1スラリー
表1に示す導電層の組成に沿って、材料をミキサーで混合し、20℃における粘度が1000mPa・sの第1スラリーを調製した。
Example 1
EDLC electrodes having various conductive layer and active material layer compositions were prepared and evaluated.
(A) First Slurry According to the composition of the conductive layer shown in Table 1, the materials were mixed with a mixer to prepare a first slurry having a viscosity at 20 ° C. of 1000 mPa · s.

材料の詳細を以下に示す。
黒鉛(小粒子群):体積粒度分布が6μmにピークを有し(平均粒径6μm)、90体積%以上が粒径3〜7μmの粒子
黒鉛(大粒子群):体積粒度分布が18μmにピークを有し(平均粒径18μm)、90体積%以上が粒径10〜20μmの粒子
スラリー安定剤:イソプレンスルフォン酸基を有する水溶性ポリマー
Details of the materials are shown below.
Graphite (small particle group): Volume particle size distribution has a peak at 6 μm (average particle size 6 μm), 90% by volume or more is a particle particle size of 3-7 μm Graphite (large particle group): Volume particle size distribution has a peak at 18 μm (Average particle size 18 μm), 90% by volume or more particles having a particle size of 10 to 20 μm Slurry stabilizer: water-soluble polymer having isoprene sulfonic acid groups

第1バインダ
FA:フッ素化アクリレートエマルジョン
SBR:スチレンブタジエンラテックス
CMC:カルボキシメチルセルロース
PI:溶剤型ポリイミド
PTFE:ポリテトラフルオロエチレン
PVDF:ポリフッ化ビニリデン
PAI:ポリアミドイミド
EC:エチルセルロース
First binder FA: Fluorinated acrylate emulsion SBR: Styrene butadiene latex CMC: Carboxymethylcellulose PI: Solvent-type polyimide PTFE: Polytetrafluoroethylene PVDF: Polyvinylidene fluoride PAI: Polyamideimide EC: Ethylcellulose

(b)第2スラリー
表2に示す活物質層の組成に沿って、材料をミキサーで混合し、20℃における粘度が1500mPa・sの第2スラリーを調製した。
(B) Second Slurry According to the composition of the active material layer shown in Table 2, the materials were mixed with a mixer to prepare a second slurry having a viscosity at 20 ° C. of 1500 mPa · s.

材料の詳細を以下に示す。
第2バインダ
TA:トリアジン
その他の第2バインダの詳細は第1バインダと同様である。
活物質:活性炭、平均粒径8μm
AB:アセチレンブラック、一次粒子径0.03μm
KB:ケッチンブラック、一次粒子径0.03μm
Details of the materials are shown below.
Second binder TA: triazine The details of the other second binder are the same as those of the first binder.
Active material: activated carbon, average particle size 8 μm
AB: Acetylene black, primary particle size 0.03 μm
KB: Kettin black, primary particle size 0.03 μm

厚さ20μmのアルミニウム箔の一方の主面に、第1スラリーを塗布し、厚さ35μmの導電塗膜を形成し、第1乾燥を行った。その後、導電塗膜の表面に、第2スラリーを塗布し、厚さ130μmの活物質塗膜を形成し、第2乾燥を行った。引き続き、アルミニウム箔の他方の主面に、第1スラリーを塗布し、厚さ35μmの導電塗膜を形成し、第1乾燥を行った。その後、導電塗膜の表面に、第2スラリーを塗布し、厚さ130μmの活物質塗膜を形成し、第2乾燥を行った。第1乾燥および第2乾燥は、いずれも同じ方式で、下記のように、輻射または対流乾燥を行った。   The first slurry was applied to one main surface of an aluminum foil having a thickness of 20 μm to form a conductive coating film having a thickness of 35 μm, and first drying was performed. Then, the 2nd slurry was apply | coated to the surface of a conductive coating film, the active material coating film of thickness 130 micrometers was formed, and 2nd drying was performed. Then, the 1st slurry was apply | coated to the other main surface of aluminum foil, the 35-micrometer-thick conductive coating film was formed, and 1st drying was performed. Then, the 2nd slurry was apply | coated to the surface of a conductive coating film, the active material coating film of thickness 130 micrometers was formed, and 2nd drying was performed. The first drying and the second drying were performed in the same manner, and radiation or convection drying was performed as described below.

輻射:遠赤外線により、塗膜を130℃で1分間加熱
対流:130℃の温風により、塗膜を5分間加熱
なお、遠赤外線の波長は4〜1000μmとし、遠赤外線を放射する熱源には電気式ヒータを用いた。
バインダに熱硬化型樹脂を使用した場合(試料番号11、15)は、乾燥の最終段階で硬化処理として200℃で30分の熱処理を行った。
Radiation: The coating film is heated at 130 ° C. for 1 minute by far infrared radiation. Convection: The coating film is heated for 5 minutes by warm air at 130 ° C. The wavelength of the far infrared radiation is 4 to 1000 μm. An electric heater was used.
When a thermosetting resin was used for the binder (sample numbers 11 and 15), a heat treatment was performed at 200 ° C. for 30 minutes as a curing process in the final stage of drying.

[評価]
(i)相互拡散層の有無
電極の集電体の面方向に垂直な断面のSEM写真を撮影し、相互拡散層の有無を確認した。具体的には、導電層と活物質層との間の界面の粗さの最大高さRmaxを求めた。
最大高さRmaxが13μm以上である場合は「○」、
最大高さRmaxが10μm以上、13μm未満である場合は「△」、
最大高さRmaxが10μm未満である場合は「×」、と表3に表記した。
[Evaluation]
(I) Presence / absence of interdiffusion layer An SEM photograph of a cross section perpendicular to the surface direction of the current collector of the electrode was taken to confirm the presence / absence of the interdiffusion layer. Specifically, the maximum height Rmax of the roughness of the interface between the conductive layer and the active material layer was determined.
“○” when the maximum height Rmax is 13 μm or more,
When the maximum height Rmax is 10 μm or more and less than 13 μm, “△”,
When the maximum height Rmax is less than 10 μm, “x” is shown in Table 3.

(ii)密着性
活物質層の表面にテープを貼り、その一端にばね秤を取り付け、1秒間に2mmの速度で引っ張った。剥がれた時の最大強度の読みを密着強度とした。同様の測定を3回行い(n=3)、平均を取った。
230gf/cm以上の場合は「○」、
180gf/cm以上230gf/cm未満の場合は「△」、
180gf/cm未満の場合は「×」、と表3に表記した。
(Ii) Adhesiveness A tape was affixed to the surface of the active material layer, a spring balance was attached to one end thereof, and the active material layer was pulled at a speed of 2 mm per second. The maximum strength reading at the time of peeling was defined as the adhesion strength. The same measurement was performed three times (n = 3), and an average was taken.
“230” for 230 gf / cm or more,
“△” for 180 gf / cm or more and less than 230 gf / cm,
In the case of less than 180 gf / cm, “x” is shown in Table 3.

(iii)表面亀裂
第2乾燥終了後の電極の概観を観測した。
亀裂が観測された場合は「有」、
亀裂が全く観測されなかった場合は「無」、と表3に表記した。
(Iii) Surface crack The appearance of the electrode after the second drying was observed.
"Yes" if a crack is observed,
When no cracks were observed, “No” was shown in Table 3.

(iv)電解液の含浸性
プロピレンカーボネート(PC)にTEABF4(ホウフッ化テトラエチルアンモニウム)を1mol/Lの濃度で溶解し、非水電解液を調製した。得られた電解液1μmLを電極に滴下し、含浸されたことが目視で確認されるまでの時間を測定した。
5秒以内に電解液が完全に含浸された場合は「○」、
5秒超、15秒以内に電解液が完全に含浸された場合は「△」、と表3に表記した。
(Iv) Impregnation of electrolyte solution TEABF 4 (tetraethylammonium borofluoride) was dissolved in propylene carbonate (PC) at a concentration of 1 mol / L to prepare a nonaqueous electrolyte solution. 1 μmL of the obtained electrolytic solution was dropped on the electrode, and the time until it was visually confirmed that the liquid was impregnated was measured.
If the electrolyte is completely impregnated within 5 seconds,
When the electrolyte was completely impregnated within 15 seconds for more than 5 seconds, “△” is shown in Table 3.

(v)3VでのESR
各電極を用いて、18mmφ50L型50F捲回型EDLCを作製し、Agilent社製のLCRメーター「E4284A」を用いて、周波数1KHz、電流1mAの条件で、ESRを測定した。結果を表3に示す。
(V) ESR at 3V
18 mmφ50L type 50F wound type EDLC was prepared using each electrode, and ESR was measured under the conditions of a frequency of 1 kHz and a current of 1 mA using an Agilent LCR meter “E4284A”. The results are shown in Table 3.

(vi)耐電圧特性
上記で用いたEDLCに対して、70℃で、3Vの電圧を連続印加して、300時間経過後に、EDLCの膨れ、漏液などの異常の有無を調べた。
ガス発生による膨れや漏液を生じなかった場合は「○」、
若干の膨れが観測された場合は「△」、
明らかに膨れまたは漏液が観測された場合は「×」、と表3に表記した。
(Vi) Withstand voltage characteristics A voltage of 3 V was continuously applied to the EDLC used above at 70 ° C., and after 300 hours, the presence or absence of abnormalities such as EDLC swelling and leakage was examined.
If there is no blistering or leakage due to gas generation,
If a slight swelling is observed, “△”,
When blisters or liquid leakage was clearly observed, “x” was shown in Table 3.

図2a、図2bおよび図2cは、それぞれ比較例に係る試料番号8、比較例に係る試料番号12および実施例に係る試料番号5の電極の断面SEM写真の例である。図2bでは、導電層と活物質層との間に相互拡散層が形成されていないのに対し、図2cでは相互拡散層が形成されている様子が伺える。   2a, 2b, and 2c are examples of cross-sectional SEM photographs of the electrode of sample number 8 according to the comparative example, sample number 12 according to the comparative example, and sample number 5 according to the example, respectively. In FIG. 2b, it can be seen that the interdiffusion layer is not formed between the conductive layer and the active material layer, whereas the interdiffusion layer is formed in FIG. 2c.

次に、図2cに示した試料を例にとって、最大高さRmaxの求め方について詳述する。
[最大高さRmaxの測定]
まず、電極の集電体の面方向に垂直な断面のSEM写真を撮影する。倍率は1000倍とし、デジタルカメラで画像を撮影する。その際、縮尺基準線(10μm)を同画像に表示させる(図2c)。当該断面には、導電性炭素粒子と活物質粒子との境界が観測される。この画像をパソコンに取り込み、画像処理などにより、導電性炭素粒子と活物質粒子との境界に粗さ曲線(曲線(a))を描く。
Next, taking the sample shown in FIG. 2c as an example, how to obtain the maximum height Rmax will be described in detail.
[Measurement of maximum height Rmax]
First, an SEM photograph of a cross section perpendicular to the surface direction of the current collector of the electrode is taken. The magnification is 1000 times and an image is taken with a digital camera. At that time, a scale reference line (10 μm) is displayed in the same image (FIG. 2c). In the cross section, the boundary between the conductive carbon particles and the active material particles is observed. This image is taken into a personal computer, and a roughness curve (curve (a)) is drawn at the boundary between the conductive carbon particles and the active material particles by image processing or the like.

次に、縮尺基準線(10μm)の画像上の長さ(例えばxcm)を測定し、80μm相当長さL(L=8xcm)の標準線(b)を2本画像上に描く。これら2本の標準線を集電体の面方向と平行に配置し、曲線(a)の山頂部と谷底部に接するように移動させる(図3参照)。得られた線をそれぞれ山頂線および谷底線と称する。山頂線から谷底線に垂線を引き、山頂線と谷底線との間隔の長さTを求める(図4参照)。長さTを、縮尺基準線を用いて実際の長さに換算し、最大高さRmax-nとする。   Next, the length (for example, xcm) of the scale reference line (10 μm) on the image is measured, and a standard line (b) having a length L (L = 8 × cm) equivalent to 80 μm is drawn on the two images. These two standard lines are arranged in parallel to the surface direction of the current collector, and are moved so as to be in contact with the top and bottom of the curve (a) (see FIG. 3). The obtained lines are called the summit line and the valley bottom line, respectively. A perpendicular line is drawn from the summit line to the bottom line, and the length T of the distance between the summit line and the bottom line is obtained (see FIG. 4). The length T is converted into an actual length using a scale reference line, and is set as the maximum height Rmax-n.

上記の操作を1枚のSEM写真について、右側基準と左側基準の2箇所で行い(N=2)、Rmax-1とRmax-2の平均値をRmax-12とする。右側基準の場合、長さLの標準線の右端をSEM写真の右端に一致させて上記操作を行い、左側基準の場合は、長さLの標準線の左端をSEM写真の左端に一致させて上記操作を行う。同様の操作を3枚のSEM写真について繰り返し、3つのRmax-12の平均値を求め(N=6)、Rmaxとする。   The above operation is carried out for one SEM photograph at two locations, the right reference and the left reference (N = 2), and the average value of Rmax-1 and Rmax-2 is Rmax-12. In the case of the right reference, the right end of the standard line of length L is matched with the right end of the SEM photograph, and the above operation is performed. In the case of the left reference, the left end of the standard line of length L is matched with the left end of the SEM photograph. Perform the above operation. The same operation is repeated for three SEM photographs, and an average value of three Rmax-12 is obtained (N = 6), and is set as Rmax.

試料番号1、2、5および6について得られた最大高さRmaxのデータを表4に示す。また、輻射方式の代わりに対流方式で乾燥を行った点以外、試料番号1、6と同様に作製した電極(試料番号1−2、6−2)の最大高さRmaxのデータ、更に小粒子群/大粒子群の重量比を5/95とした点以外、試料番号1、2、5および6と同様に作製した電極(試料番号19)の最大高さRmaxのデータも同時に示す。   Table 4 shows the data of the maximum height Rmax obtained for sample numbers 1, 2, 5 and 6. Moreover, the data of the maximum height Rmax of the electrodes (sample numbers 1-2 and 6-2) produced in the same manner as the sample numbers 1 and 6 except that the convection method is used instead of the radiation method, and further small particles Data on the maximum height Rmax of the electrode (sample number 19) produced in the same manner as in sample numbers 1, 2, 5 and 6 is also shown except that the weight ratio of the group / large particle group is 5/95.

[考察]
輻射熱により塗膜を乾燥させた場合、いずれの評価結果も良好であるが、温風で乾燥させた場合には、相互拡散層が形成されず、いずれの評価結果も不十分であった。
[Discussion]
When the coating film was dried by radiant heat, all the evaluation results were good, but when it was dried with warm air, the interdiffusion layer was not formed, and any evaluation result was insufficient.

導電層の黒鉛粒子の小粒子群のみ、または大粒子群のみとした場合に比べ、これらを所定割合で併用した場合には、相互拡散層の形成が進み、3V耐電圧特性も向上した。これには導電層と活物質層との密着性が向上したことが影響していると考えられる。   Compared with the case where only the small particle group or only the large particle group of the graphite particles of the conductive layer is used, when these are used in combination at a predetermined ratio, the formation of the interdiffusion layer proceeds and the 3V withstand voltage characteristics are also improved. This is considered to be due to the improved adhesion between the conductive layer and the active material layer.

導電層を形成しなかった比較例の電極(No.8)では、抵抗が大きくなり、耐電圧特性も大きく劣化した。このことから、導電層が電極の抵抗の低下と耐電圧特性の向上に大きく貢献していることが認められる。   In the electrode (No. 8) of the comparative example in which the conductive layer was not formed, the resistance was increased and the withstand voltage characteristics were greatly deteriorated. From this, it is recognized that the conductive layer greatly contributes to the reduction of the electrode resistance and the improvement of the withstand voltage characteristics.

バインダとしてアクリレート樹脂またはセルロース樹脂を用いた場合に特に良好な特性が得られた。特にセルロース樹脂を用いた場合、スラリー安定性に優れ、成膜性が良好であった。SBRを用いると、3V耐電圧特性が若干低下したが、フッ素化アクリレート、PTFEまたはPVDFを用いた場合に比べて、交流抵抗(ESR)が小さくなった。PTFE、PVDFなどのフッ素樹脂を用いた場合、電解液の含浸性が若干低下し、十分な密着性を確保するためのバインダ量が比較的多くなる傾向が見られた。   Particularly good characteristics were obtained when an acrylate resin or a cellulose resin was used as the binder. In particular, when a cellulose resin was used, the slurry stability was excellent and the film formability was good. When SBR was used, the 3V withstand voltage characteristic was slightly lowered, but the AC resistance (ESR) was smaller than when fluorinated acrylate, PTFE or PVDF was used. When fluororesins such as PTFE and PVDF were used, the impregnation property of the electrolyte solution was slightly lowered, and the amount of binder for ensuring sufficient adhesion was relatively increased.

バインダとしてアクリレート樹脂、ポリイミド、ポリアミドイミドまたはセルロース樹脂を用いた場合に特に良好な特性が得られた。セルロース樹脂は、特に集電体と塗膜との密着性を向上させるのに有効であった。   Particularly good characteristics were obtained when an acrylate resin, polyimide, polyamideimide or cellulose resin was used as the binder. The cellulose resin was particularly effective in improving the adhesion between the current collector and the coating film.

バインダの補助剤としてトリアジンを添加すると、接着性の更なる向上が見られ、特に耐電圧特性に顕著な向上が見られた。   When triazine was added as an auxiliary agent for the binder, the adhesiveness was further improved, and in particular, the voltage resistance characteristics were significantly improved.

なお、上記実施例では、EDLCについて説明したが、本発明を擬似キャパシタや二次電池の電極についてもEDLC用電極と同様の方法で製造できるため、これらに適用しても同様の効果が期待できる。   In the above embodiment, EDLC has been described. However, since the present invention can also be manufactured for pseudocapacitors and secondary battery electrodes by the same method as that for EDLC electrodes, the same effect can be expected when applied to these. .

本発明に係る電気化学素子用電極は、低抵抗であり、大電流特性および耐電圧特性に優れているため、様々な用途に適用できる。なかでも自動車やクレーン等の建設機械のような大型産業機械に適用される大型電気化学素子において有効である。
本発明によれば、2.5V以上の高い耐電圧特性を有する電極が得られるが、本発明は2.1V以上の維持電圧(CCV:Closed Circuit voltage)が要求される電気化学素子にも当然に適用できる。このような電気化学素子として、例えば100A以上の大電流での充放電が可能な大型の電気二重層キャパシタが挙げられる。
Since the electrode for an electrochemical element according to the present invention has a low resistance and is excellent in a large current characteristic and a withstand voltage characteristic, it can be applied to various applications. Especially, it is effective in a large-sized electrochemical device applied to a large-scale industrial machine such as a construction machine such as an automobile or a crane.
According to the present invention, an electrode having a high withstand voltage characteristic of 2.5 V or higher can be obtained. However, the present invention is naturally applied to an electrochemical element that requires a maintained voltage (CCV) of 2.1 V or higher. Applicable to. An example of such an electrochemical element is a large electric double layer capacitor that can be charged and discharged with a large current of 100 A or more.

1 集電体
2 活物質層
3 導電層
4 相互拡散層
DESCRIPTION OF SYMBOLS 1 Current collector 2 Active material layer 3 Conductive layer 4 Interdiffusion layer

Claims (12)

集電体と、
前記集電体の表面に形成され、かつ導電性炭素粒子と第1バインダとを含む導電層と、
前記導電層の表面に形成され、かつ活物質粒子と第2バインダとを含む活物質層と、を具備し、
前記導電性炭素粒子が、小粒子群と大粒子群とを含み、
前記小粒子群の体積粒度分布のピークが3〜7μmの範囲にあり、
前記大粒子群の体積粒度分布のピークが10〜20μmの範囲にあり、
前記小粒子群と前記大粒子群との重量割合(小粒子群/大粒子群)が、95/5〜50/50であり、
前記導電層と前記活物質層との間の界面は、最大高さRmaxが10μm以上である粗さを有する、電気化学素子用電極。
A current collector,
A conductive layer formed on a surface of the current collector and including conductive carbon particles and a first binder;
An active material layer formed on the surface of the conductive layer and including active material particles and a second binder,
The conductive carbon particles include a small particle group and a large particle group,
The volume particle size distribution peak of the small particle group is in the range of 3 to 7 μm,
The volume particle size distribution peak of the large particle group is in the range of 10 to 20 μm,
The weight ratio between the small particle group and the large particle group (small particle group / large particle group) is 95/5 to 50/50,
The electrode for an electrochemical element, wherein an interface between the conductive layer and the active material layer has a roughness with a maximum height Rmax of 10 μm or more.
前記第1バインダおよび第2バインダが、それぞれ、炭素間二重結合を有さず、かつ160℃以上の融点を有する熱可塑性樹脂、またはTgが260℃以上の熱硬化型樹脂硬化物を含む、請求項1記載の電気化学素子用電極。   Each of the first binder and the second binder includes a thermoplastic resin that does not have a carbon-carbon double bond and has a melting point of 160 ° C. or higher, or a thermosetting resin cured product having a Tg of 260 ° C. or higher. The electrode for an electrochemical element according to claim 1. 前記第1バインダおよび第2バインダが、それぞれ、オレフィン系樹脂、合成ゴムおよびフッ素樹脂よりなる群から選択される少なくとも1種を含む、請求項1記載の電気化学素子用電極。   2. The electrode for an electrochemical element according to claim 1, wherein each of the first binder and the second binder includes at least one selected from the group consisting of an olefin resin, a synthetic rubber, and a fluororesin. 前記第1バインダの量が、前記導電性炭素粒子100重量部に対し、3〜6重量部であり、前記第2バインダの量が、前記活物質粒子100重量部に対し、3〜6重量部である、請求項1〜3のいずれか1項に記載の電気化学素子用電極。   The amount of the first binder is 3 to 6 parts by weight with respect to 100 parts by weight of the conductive carbon particles, and the amount of the second binder is 3 to 6 parts by weight with respect to 100 parts by weight of the active material particles. The electrode for an electrochemical element according to any one of claims 1 to 3, wherein 前記導電層および前記活物質層の少なくとも一方が、トリアジン環を有する化合物を、0.5〜3重量%含む、請求項1〜4のいずれか1項に記載の電気化学素子用電極。   5. The electrode for an electrochemical element according to claim 1, wherein at least one of the conductive layer and the active material layer contains 0.5 to 3 wt% of a compound having a triazine ring. 前記導電性炭素粒子が、黒鉛材料である、請求項1〜5のいずれか1項に記載の電気化学素子用電極。   The electrode for an electrochemical element according to any one of claims 1 to 5, wherein the conductive carbon particles are a graphite material. 前記活物質粒子が、活性炭、黒鉛、珪素、珪素化合物、遷移金属化合物または水素吸蔵合金である、請求項1〜6のいずれか1項に記載の電気化学素子用電極。   The electrode for an electrochemical element according to any one of claims 1 to 6, wherein the active material particles are activated carbon, graphite, silicon, a silicon compound, a transition metal compound, or a hydrogen storage alloy. (i)集電体の表面に、導電性炭素粒子と、第1バインダと、第1液状成分と、を含む第1スラリーを塗布し、導電塗膜を形成する工程、
(ii)前記導電塗膜を輻射熱により加熱し、前記導電塗膜から前記第1液状成分を揮発させる工程、
(iii)前記工程(ii)の後、前記導電塗膜の表面に、活物質粒子と、第2バインダと、第2液状成分と、を含む第2スラリーを塗布し、活物質塗膜を形成する工程、
(iv)前記導電塗膜と前記活物質塗膜との積層体を、輻射熱および温風の少なくとも一方により乾燥させる工程、を有し、
前記導電性炭素粒子が、小粒子群と大粒子群とを含み、
前記小粒子群の体積粒度分布のピークが3〜7μmの範囲にあり、
前記大粒子群の体積粒度分布のピークが10〜20μmの範囲にあり、
前記小粒子群と前記大粒子群との重量割合(小粒子群/大粒子群)が、95/5〜50/50である、電気化学素子用電極の製造方法。
(I) applying a first slurry containing conductive carbon particles, a first binder, and a first liquid component to the surface of the current collector to form a conductive coating film;
(Ii) heating the conductive coating film by radiant heat to volatilize the first liquid component from the conductive coating film;
(Iii) After the step (ii), a second slurry containing active material particles, a second binder, and a second liquid component is applied to the surface of the conductive coating film to form an active material coating film. The process of
(Iv) drying the laminate of the conductive coating film and the active material coating film by at least one of radiant heat and hot air,
The conductive carbon particles include a small particle group and a large particle group,
The volume particle size distribution peak of the small particle group is in the range of 3 to 7 μm,
The volume particle size distribution peak of the large particle group is in the range of 10 to 20 μm,
The manufacturing method of the electrode for electrochemical elements whose weight ratio (small particle group / large particle group) of the said small particle group and the said large particle group is 95 / 5-50 / 50.
前記工程(ii)において、前記導電塗膜の乾燥状態を、指触乾燥状態とし、
前記工程(iii)において、前記指触乾燥状態の前記導電塗膜の表面に、前記第2スラリーを塗布する、請求項8記載の電気化学素子用電極の製造方法。
In the step (ii), the dry state of the conductive coating film is a dry touch state,
The method for producing an electrode for an electrochemical element according to claim 8, wherein in the step (iii), the second slurry is applied to the surface of the conductive coating film in the dry-to-touch state.
炭素間二重結合を有さず、かつ160℃以上の融点を有する熱可塑性樹脂、またはTgが260℃以上の熱硬化型樹脂を前記第1バインダまたは前記第2バインダとして含む溶液、分散液またはエマルジョンと、前記導電性炭素粒子または前記活物質粒子とを混合して、前記第1スラリーまたは前記第2スラリーを調製する、請求項8または9記載の電気化学素子用電極の製造方法。   A solution, dispersion or liquid containing a thermoplastic resin having no carbon-carbon double bond and a melting point of 160 ° C. or higher, or a thermosetting resin having a Tg of 260 ° C. or higher as the first binder or the second binder The method for producing an electrode for an electrochemical element according to claim 8 or 9, wherein the emulsion is mixed with the conductive carbon particles or the active material particles to prepare the first slurry or the second slurry. オレフィン系樹脂、ゴム性状高分子およびフッ素樹脂よりなる群から選択される少なくとも1種を含む溶液、分散液またはエマルジョンと、前記導電性炭素粒子または前記活物質粒子とを混合して、前記第1スラリーまたは前記第2スラリーを調製する、請求項8または9記載の電気化学素子用電極の製造方法。   A solution, dispersion or emulsion containing at least one selected from the group consisting of an olefin resin, a rubbery polymer and a fluororesin is mixed with the conductive carbon particles or the active material particles, and the first The method for producing an electrode for an electrochemical element according to claim 8 or 9, wherein the slurry or the second slurry is prepared. 前記第1スラリーおよび前記第2スラリーに、イソプレンスルフォン酸基を有する安定剤を添加する、請求項8〜11のいずれか1項に記載の電気化学素子用電極の製造方法。   The method for producing an electrode for an electrochemical element according to any one of claims 8 to 11, wherein a stabilizer having an isoprene sulfonic acid group is added to the first slurry and the second slurry.
JP2010149929A 2010-06-30 2010-06-30 Electrode for electrochemical device and method for producing the same Expired - Fee Related JP5647447B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010149929A JP5647447B2 (en) 2010-06-30 2010-06-30 Electrode for electrochemical device and method for producing the same
CN201110151073.7A CN102332359B (en) 2010-06-30 2011-06-07 Electrode for electrochemical device and manufacture method thereof
KR1020110056296A KR20120002433A (en) 2010-06-30 2011-06-10 Electrode for electrochemical device and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149929A JP5647447B2 (en) 2010-06-30 2010-06-30 Electrode for electrochemical device and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012015297A true JP2012015297A (en) 2012-01-19
JP5647447B2 JP5647447B2 (en) 2014-12-24

Family

ID=45484091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149929A Expired - Fee Related JP5647447B2 (en) 2010-06-30 2010-06-30 Electrode for electrochemical device and method for producing the same

Country Status (3)

Country Link
JP (1) JP5647447B2 (en)
KR (1) KR20120002433A (en)
CN (1) CN102332359B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035900A (en) * 2012-08-09 2014-02-24 Toyo Ink Sc Holdings Co Ltd Primer composition, nickel hydrogen secondary battery positive electrode, and method for manufacturing the same
JP2014063627A (en) * 2012-09-21 2014-04-10 Toyota Motor Corp Method of manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery manufactured thereby
WO2014129313A1 (en) * 2013-02-21 2014-08-28 東洋インキScホールディングス株式会社 Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device
JP2015026595A (en) * 2013-04-19 2015-02-05 東洋インキScホールディングス株式会社 Conductive composition, current collector with underlying layer for power storage device, electrode for power storage device, and power storage device
JP2016081704A (en) * 2014-10-16 2016-05-16 東洋インキScホールディングス株式会社 Conductive composition, electrode for power storage device, and power storage device
JP2017216090A (en) * 2016-05-30 2017-12-07 ダイニック株式会社 Coating material for underlying layer and electrode for electrochemical device
EP3386020A1 (en) * 2017-04-04 2018-10-10 Panasonic Intellectual Property Management Co., Ltd. Stacked all-solid-state battery and method of manufacturing the same
JP2019036745A (en) * 2018-10-15 2019-03-07 ダイニック株式会社 Ground layer coating
WO2020262174A1 (en) * 2019-06-28 2020-12-30 日本ゼオン株式会社 Composite particle for electrochemical element and production method therefor, binder composition for electrochemical element functional layer and production method therefor, conductive material paste for electrode mixture layer and production method therefor, slurry for electrode mixture layer, electrode for electrochemical element, and electrochemical element
CN113745451A (en) * 2021-08-30 2021-12-03 湖北亿纬动力有限公司 Negative plate, preparation method of negative plate and lithium ion battery
US11495802B2 (en) 2018-10-18 2022-11-08 Unist (Ulsan National Institute Of Science And Technology) Three-dimensional structure electrode and electrochemical element including same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765381B1 (en) * 2015-01-28 2017-08-07 주식회사 엘지화학 Dual coating method for electrode
CN104659332B (en) * 2015-02-27 2017-01-11 山东润昇电源科技有限公司 High-magnification lithium iron phosphate battery positive electrode and manufacturing method thereof
CN105609330B (en) * 2016-03-02 2018-09-25 苏州鑫屹博电子科技有限公司 Electrochemical capacitor made of compound carbon powder containing glue and preparation method thereof and the carbon dust
KR101647759B1 (en) * 2016-03-15 2016-08-12 주식회사 비츠로셀 Electrical double layer capacitor having high withstand voltage property
CN106784846A (en) * 2017-01-13 2017-05-31 湖南高远电池有限公司 A kind of high multiplying power lithium ion battery positive pole and its preparation method and application
US10038193B1 (en) 2017-07-28 2018-07-31 EnPower, Inc. Electrode having an interphase structure
KR102609884B1 (en) * 2017-11-09 2023-12-05 주식회사 엘지에너지솔루션 Multi-layer Electrode for Secondary Battery Comprising Binder with High Crystallinity
WO2019093826A1 (en) * 2017-11-09 2019-05-16 주식회사 엘지화학 Multilayer electrode for secondary battery, comprising binder having high crystallinity
US11569550B2 (en) 2019-04-05 2023-01-31 EnPower, Inc. Electrode with integrated ceramic separator
CN114830383A (en) * 2020-01-17 2022-07-29 富士胶片株式会社 Nonaqueous electrolyte secondary battery, collector, and method for manufacturing nonaqueous electrolyte secondary battery
US11594784B2 (en) 2021-07-28 2023-02-28 EnPower, Inc. Integrated fibrous separator

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345755A (en) * 1986-08-13 1988-02-26 Toshiba Battery Co Ltd Layer built dry cell
JPH0684699A (en) * 1992-08-31 1994-03-25 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JPH0982314A (en) * 1995-09-11 1997-03-28 Elf Atochem Japan Kk Battery electrode and manufacture thereof
JPH09221356A (en) * 1996-02-09 1997-08-26 Ngk Spark Plug Co Ltd Production of beta-alumina sintered compact
JPH10144298A (en) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH11228902A (en) * 1998-02-17 1999-08-24 Elf Atochem Japan Kk Method to adhere vinylidene fluoride resin to metalic base material, electrode structure and its preparation
JP2000226206A (en) * 1999-02-04 2000-08-15 Kansai Coke & Chem Co Ltd Graphite particle composition and production of coated body using the same
JP2001351583A (en) * 2000-06-08 2001-12-21 Fdk Corp Alkaline battery
JP2002175950A (en) * 2000-09-26 2002-06-21 Asahi Glass Co Ltd Manufacturing method of electrode body for electric double-layer capacitor
JP2004186209A (en) * 2002-11-29 2004-07-02 Honda Motor Co Ltd Method of manufacturing electrode for electric double layer capacitor
JP2005136401A (en) * 2003-10-10 2005-05-26 Japan Gore Tex Inc Electrode for electric double layer capacitor and its manufacturing method, and electric double layer capacitor as well as conductive adhesive
JP2006140142A (en) * 2004-10-15 2006-06-01 Showa Denko Kk Conductive paste, its manufacturing method and usage
JP2006324330A (en) * 2005-05-17 2006-11-30 Honda Motor Co Ltd Electrode for electric double layer capacitor
JP2009246136A (en) * 2008-03-31 2009-10-22 Jm Energy Corp Organic electrolyte capacitor
JP2010049903A (en) * 2008-08-21 2010-03-04 Toyo Ink Mfg Co Ltd Composition for battery
JP2010108703A (en) * 2008-10-29 2010-05-13 Asahi Kasei Corp Electrode for storage element, nonaqueous lithium type storage element, and method of manufacturing electrode for storage element
JP2010108971A (en) * 2008-10-28 2010-05-13 Nippon Zeon Co Ltd Electrode for electrochemical element, and electrochemical element
JP2010109354A (en) * 2008-09-30 2010-05-13 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical element
JP2010109080A (en) * 2008-10-29 2010-05-13 Asahi Kasei Corp Method for manufacturing electrode for storage element, electrode for storage element, and nonaqueous lithium type electricity storage element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838165B2 (en) * 2004-07-02 2010-11-23 Kabushiki Kaisha Toshiba Carbon fiber synthesizing catalyst and method of making thereof

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345755A (en) * 1986-08-13 1988-02-26 Toshiba Battery Co Ltd Layer built dry cell
JPH0684699A (en) * 1992-08-31 1994-03-25 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JPH0982314A (en) * 1995-09-11 1997-03-28 Elf Atochem Japan Kk Battery electrode and manufacture thereof
JPH09221356A (en) * 1996-02-09 1997-08-26 Ngk Spark Plug Co Ltd Production of beta-alumina sintered compact
JPH10144298A (en) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH11228902A (en) * 1998-02-17 1999-08-24 Elf Atochem Japan Kk Method to adhere vinylidene fluoride resin to metalic base material, electrode structure and its preparation
JP2000226206A (en) * 1999-02-04 2000-08-15 Kansai Coke & Chem Co Ltd Graphite particle composition and production of coated body using the same
JP2001351583A (en) * 2000-06-08 2001-12-21 Fdk Corp Alkaline battery
JP2002175950A (en) * 2000-09-26 2002-06-21 Asahi Glass Co Ltd Manufacturing method of electrode body for electric double-layer capacitor
JP2004186209A (en) * 2002-11-29 2004-07-02 Honda Motor Co Ltd Method of manufacturing electrode for electric double layer capacitor
JP2005136401A (en) * 2003-10-10 2005-05-26 Japan Gore Tex Inc Electrode for electric double layer capacitor and its manufacturing method, and electric double layer capacitor as well as conductive adhesive
JP2006140142A (en) * 2004-10-15 2006-06-01 Showa Denko Kk Conductive paste, its manufacturing method and usage
JP2006324330A (en) * 2005-05-17 2006-11-30 Honda Motor Co Ltd Electrode for electric double layer capacitor
JP2009246136A (en) * 2008-03-31 2009-10-22 Jm Energy Corp Organic electrolyte capacitor
JP2010049903A (en) * 2008-08-21 2010-03-04 Toyo Ink Mfg Co Ltd Composition for battery
JP2010109354A (en) * 2008-09-30 2010-05-13 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical element
JP2010108971A (en) * 2008-10-28 2010-05-13 Nippon Zeon Co Ltd Electrode for electrochemical element, and electrochemical element
JP2010108703A (en) * 2008-10-29 2010-05-13 Asahi Kasei Corp Electrode for storage element, nonaqueous lithium type storage element, and method of manufacturing electrode for storage element
JP2010109080A (en) * 2008-10-29 2010-05-13 Asahi Kasei Corp Method for manufacturing electrode for storage element, electrode for storage element, and nonaqueous lithium type electricity storage element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035900A (en) * 2012-08-09 2014-02-24 Toyo Ink Sc Holdings Co Ltd Primer composition, nickel hydrogen secondary battery positive electrode, and method for manufacturing the same
JP2014063627A (en) * 2012-09-21 2014-04-10 Toyota Motor Corp Method of manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery manufactured thereby
KR102155177B1 (en) 2013-02-21 2020-09-11 토요잉크Sc홀딩스주식회사 Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device
WO2014129313A1 (en) * 2013-02-21 2014-08-28 東洋インキScホールディングス株式会社 Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device
JP2014199804A (en) * 2013-02-21 2014-10-23 東洋インキScホールディングス株式会社 Conductive composition, collector with ground layer for power storage device, electrode for power storage device, and power storage device
KR20150121030A (en) * 2013-02-21 2015-10-28 토요잉크Sc홀딩스주식회사 Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device
JP2015026595A (en) * 2013-04-19 2015-02-05 東洋インキScホールディングス株式会社 Conductive composition, current collector with underlying layer for power storage device, electrode for power storage device, and power storage device
JP2016081704A (en) * 2014-10-16 2016-05-16 東洋インキScホールディングス株式会社 Conductive composition, electrode for power storage device, and power storage device
JP2017216090A (en) * 2016-05-30 2017-12-07 ダイニック株式会社 Coating material for underlying layer and electrode for electrochemical device
EP3386020A1 (en) * 2017-04-04 2018-10-10 Panasonic Intellectual Property Management Co., Ltd. Stacked all-solid-state battery and method of manufacturing the same
JP2019036745A (en) * 2018-10-15 2019-03-07 ダイニック株式会社 Ground layer coating
US11495802B2 (en) 2018-10-18 2022-11-08 Unist (Ulsan National Institute Of Science And Technology) Three-dimensional structure electrode and electrochemical element including same
WO2020262174A1 (en) * 2019-06-28 2020-12-30 日本ゼオン株式会社 Composite particle for electrochemical element and production method therefor, binder composition for electrochemical element functional layer and production method therefor, conductive material paste for electrode mixture layer and production method therefor, slurry for electrode mixture layer, electrode for electrochemical element, and electrochemical element
CN114008821A (en) * 2019-06-28 2022-02-01 日本瑞翁株式会社 Composite particle for electrochemical element and method for producing same, binder composition for electrochemical element functional layer and method for producing same, conductive material paste for electrode composite layer and method for producing same, slurry for electrode composite layer, electrode for electrochemical element, and electrochemical element
CN113745451A (en) * 2021-08-30 2021-12-03 湖北亿纬动力有限公司 Negative plate, preparation method of negative plate and lithium ion battery

Also Published As

Publication number Publication date
JP5647447B2 (en) 2014-12-24
KR20120002433A (en) 2012-01-05
CN102332359A (en) 2012-01-25
CN102332359B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5647447B2 (en) Electrode for electrochemical device and method for producing the same
Song et al. Interpenetrated gel polymer binder for high‐performance silicon anodes in lithium‐ion batteries
CN105470576B (en) A kind of high pressure lithium battery electric core and preparation method thereof, lithium ion battery
WO2014010681A1 (en) Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component
JP6185984B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
JP7269571B2 (en) Method for manufacturing all-solid-state battery
JP5675694B2 (en) Method for manufacturing electrolyte layer / electrode laminate and method for manufacturing sulfide-based solid battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
WO2013018687A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP5993726B2 (en) Lithium ion secondary battery
Saito et al. Electrochemical charge/discharge properties of Li pre-doped Si nanoparticles for use in hybrid capacitor systems
TW201843870A (en) Collector for electricity storage devices, method for producing same, and coating liquid used in production of same
JP2010109080A (en) Method for manufacturing electrode for storage element, electrode for storage element, and nonaqueous lithium type electricity storage element
JP5562688B2 (en) Lithium ion capacitor manufacturing method and positive electrode manufacturing method
WO2012127564A1 (en) Electrode precursor and electrode using same
JP2014007037A (en) Method for manufacturing nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery manufactured by the method
JP6529700B1 (en) Current collector for power storage device, method for producing the same, and coating liquid used for the production
JP6229078B2 (en) Method for producing electrode for lithium secondary battery
JP2007323872A (en) Cathode for polymer electrolyte secondary battery and battery using the same
JP5788730B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP5828633B2 (en) Lithium ion capacitor
WO2020137435A1 (en) Conductive material paste for all-solid secondary battery electrode
US20240105952A1 (en) Anode for secondary battery and secondary battery comprising the same
JP2018098050A (en) Secondary battery and manufacturing method thereof
JP2023545832A (en) Advanced lithium-ion energy storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141107

R150 Certificate of patent or registration of utility model

Ref document number: 5647447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees