JP2014035900A - Primer composition, nickel hydrogen secondary battery positive electrode, and method for manufacturing the same - Google Patents

Primer composition, nickel hydrogen secondary battery positive electrode, and method for manufacturing the same Download PDF

Info

Publication number
JP2014035900A
JP2014035900A JP2012176799A JP2012176799A JP2014035900A JP 2014035900 A JP2014035900 A JP 2014035900A JP 2012176799 A JP2012176799 A JP 2012176799A JP 2012176799 A JP2012176799 A JP 2012176799A JP 2014035900 A JP2014035900 A JP 2014035900A
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
secondary battery
weight
primer composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012176799A
Other languages
Japanese (ja)
Other versions
JP6105224B2 (en
Inventor
Yoshiteru Oshima
由照 大島
Kazuya Kimura
和也 木村
Kazuya Nishimura
和也 西村
Tomoaki Takasaki
智昭 高▲崎▼
Takashi Ikeda
尚 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Toppan Cosmo Inc
Toyochem Co Ltd
Artience Co Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Toyo Ink SC Holdings Co Ltd
Toppan Cosmo Inc
Toyochem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Toyo Ink SC Holdings Co Ltd, Toppan Cosmo Inc, Toyochem Co Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2012176799A priority Critical patent/JP6105224B2/en
Publication of JP2014035900A publication Critical patent/JP2014035900A/en
Application granted granted Critical
Publication of JP6105224B2 publication Critical patent/JP6105224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a primer composition for a positive electrode used in a nickel hydrogen secondary battery that is good in output characteristics and cycle life, and also suppressed in influence on cycle characteristics.SOLUTION: A primer composition according to one embodiment of the present invention is used for a nickel hydrogen secondary battery positive electrode including a two-dimensional structure collector, and contains leaf-shaped graphite particles (A) having an average particle size of 1-50 μm, carbon blacks (B) having an average particle size of 0.01-0.3 μm, and an aqueous resin (C).

Description

本発明は、プライマー組成物、ニッケル水素二次電池正極及びその製造方法に関する。   The present invention relates to a primer composition, a nickel-hydrogen secondary battery positive electrode, and a method for producing the same.

近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。一方、バスやトラック等に搭載する大型二次電池においても、従来の鉛蓄電池に代えて、軽量で高出力性能を有する大型二次電池の実現が望まれている。   In recent years, small portable electronic devices such as digital cameras and mobile phones have been widely used. These electronic devices have always been required to minimize the volume and reduce the weight, and the batteries to be mounted are also required to be small, light, and have a large capacity. On the other hand, in a large-sized secondary battery mounted on a bus, a truck, or the like, it is desired to realize a large-sized secondary battery that is lightweight and has high output performance instead of a conventional lead-acid battery.

そのような要求に応えるため、ニッケル水素二次電池などのアルカリ二次電池やリチウムイオン電池などの非水系二次電池の開発が活発に行われている。そして、電池の高性能化を実現するため、電極の改良が検討されている。   In order to meet such demands, development of non-aqueous secondary batteries such as alkaline secondary batteries such as nickel metal hydride secondary batteries and lithium ion batteries has been actively conducted. And improvement of an electrode is examined in order to implement | achieve performance enhancement of a battery.

ところで、変電所、自動車、電車等に用いられるニッケル水素二次電池には、従来の乾電池や携帯機器等に用いられるものに比べて、高出力、高電圧及び高容量が要求される。そのため、大型のものを使用する必要がある。車両にニッケル水素二次電池を搭載した場合、ブレーキ時に生じる回生電力を搭載されたニッケル水素二次電池に蓄えておき、車両の動力源として使用することができる。そのため、車両の運行エネルギー効率を高めることができる。ここで、回生電力をニッケル水素二次電池に充電する際には、大電流で急速充電する必要がある。他方、ニッケル水素二次電池を利用して車両を駆動する際には、大電流で急速放電する必要がある。   Incidentally, nickel hydride secondary batteries used in substations, automobiles, trains, and the like are required to have higher output, higher voltage, and higher capacity than those used in conventional dry batteries and portable devices. Therefore, it is necessary to use a large one. When a nickel metal hydride secondary battery is mounted on a vehicle, regenerative power generated during braking can be stored in the mounted nickel metal hydride secondary battery and used as a power source for the vehicle. Therefore, the operation energy efficiency of the vehicle can be increased. Here, when charging the regenerative power to the nickel metal hydride secondary battery, it is necessary to rapidly charge with a large current. On the other hand, when driving a vehicle using a nickel metal hydride secondary battery, it is necessary to rapidly discharge with a large current.

一般に、ニッケル水素電池をはじめとするアルカリ蓄電池の正極では、集電体として発泡状ニッケルなどの多孔質基材が用いられる。これに、水酸化コバルトやオキシ水酸化コバルトなどを表面に被覆した水酸化ニッケル粉末、もしくは水酸化コバルトや酸化コバルトなどのコバルト化合物を添加した水酸化ニッケル粉末が充填される。水酸化コバルトや酸化コバルトなどは、充電時にオキシ水酸化コバルトに変化して高い電気伝導性を示し、水酸化ニッケル粒子の間に緻密な導電性ネットワークを形成する。これによって、高い利用率が得られる。一方、電極材料に発泡状ニッケルやコバルト化合物を使用するため、コストダウンが難しかった。なお利用率とは、電池の理論容量に対する現実の放電容量の割合である。   Generally, in a positive electrode of an alkaline storage battery such as a nickel metal hydride battery, a porous base material such as foamed nickel is used as a current collector. This is filled with nickel hydroxide powder having a surface coated with cobalt hydroxide or cobalt oxyhydroxide, or nickel hydroxide powder added with a cobalt compound such as cobalt hydroxide or cobalt oxide. Cobalt hydroxide, cobalt oxide, and the like change to cobalt oxyhydroxide during charging, exhibit high electrical conductivity, and form a dense conductive network between the nickel hydroxide particles. Thereby, a high utilization factor is obtained. On the other hand, since the foamed nickel or cobalt compound is used as the electrode material, it is difficult to reduce the cost. The utilization rate is the ratio of the actual discharge capacity to the theoretical capacity of the battery.

発泡状ニッケル以外の材料を基材として用いる電極も開示されている。例えば、特許文献1には、α型水酸化コバルトで表面被覆された水酸化ニッケル、導電助材及び結着材を含む混合物が、二次元構造集電体に担持されているアルカリ二次電池用ニッケル正極が開示されている。   An electrode using a material other than foamed nickel as a base material is also disclosed. For example, Patent Document 1 discloses an alkaline secondary battery in which a mixture containing nickel hydroxide surface-coated with α-type cobalt hydroxide, a conductive additive, and a binder is supported on a two-dimensional structure current collector. A nickel positive electrode is disclosed.

特許文献2には、発泡多孔体基板である多孔質の発泡ニッケルに合材インキを充填する代わりに、二次元構造集電体である平滑なニッケル基板に活物質、バインダー、導電助材を含む合材インキを塗布する手法が開示されている。   Patent Document 2 includes an active material, a binder, and a conductive auxiliary agent in a smooth nickel substrate that is a two-dimensional structure current collector, instead of filling a mixture of foamed porous nickel that is a porous porous substrate. A technique for applying a composite ink is disclosed.

特開2000−77068号公報JP 2000-77068 A 特開2010−108821号公報JP 2010-108821 A

二次元構造集電体を基材とする場合、発泡状ニッケルのように三次元的に広がったニッケルの網が水酸化ニッケルを包み、機械的密着力により固定することができない。つまり、バインダーによる化学的密着力のみが、活物質と基材との接触を保持しているため、活物質保持力が弱かった。これは、充放電サイクルによって、バインダーを構成する有機ポリマーが徐々に酸化劣化し、密着力低下によって基材と合材が剥離するためである。結果として、剥離した活物質と基材の間で電子伝導しにくくなり、利用率が低下するという問題があった。
また、水酸化コバルトの使用が必須であったため、コストダウンが難しいという問題があった。
When a two-dimensional structure current collector is used as a base material, a nickel network that expands three-dimensionally like foamed nickel wraps nickel hydroxide and cannot be fixed by mechanical adhesion. That is, since only the chemical adhesion by the binder holds the contact between the active material and the substrate, the active material holding power is weak. This is because the organic polymer constituting the binder gradually oxidizes and deteriorates due to the charge / discharge cycle, and the base material and the composite material peel off due to a decrease in adhesion. As a result, there is a problem that electron conduction becomes difficult between the peeled active material and the base material, and the utilization rate is lowered.
Moreover, since the use of cobalt hydroxide was essential, there was a problem that cost reduction was difficult.

本発明は、出力特性及びサイクル寿命が良好であり、また、サイクル特性への影響が抑制されたニッケル水素二次電池用正極用のプライマー組成物を提供することを目的とする。   An object of the present invention is to provide a primer composition for a positive electrode for a nickel-metal hydride secondary battery that has good output characteristics and cycle life, and that has no influence on the cycle characteristics.

本発明の一態様に係るプライマー組成物は、二次元構造集電体を備え、前記二次元構造集電体に担持された活物質の主成分が水酸化コバルトでないニッケル水素二次電池正極用のものであって、平均粒子径1〜50μmの葉状黒鉛粒子(A)と、平均粒子径0.01〜0.3μmのカーボンブラック(B)と、水系樹脂(C)と、を含有することを特徴とするものである。   A primer composition according to an aspect of the present invention includes a two-dimensional structure current collector, and is used for a nickel metal hydride secondary battery positive electrode in which a main component of an active material supported on the two-dimensional structure current collector is not cobalt hydroxide. And containing foliar graphite particles (A) having an average particle diameter of 1 to 50 μm, carbon black (B) having an average particle diameter of 0.01 to 0.3 μm, and an aqueous resin (C). It is a feature.

本発明によれば、出力特性及びサイクル寿命が良好であり、また、サイクル特性への影響が抑制されたニッケル水素二次電池用正極用のプライマー組成物を提供することができる。   According to the present invention, it is possible to provide a primer composition for a positive electrode for a nickel-metal hydride secondary battery, which has good output characteristics and cycle life, and has suppressed influence on cycle characteristics.

本発明の正極用プライマー組成物を使用した電極と、プライマー組成物を使用せず基材と合材層のみからなる電極をそれぞれ使用したニッケル水素電池の充放電サイクル特性の試験結果の1例を示す。One example of test results of charge / discharge cycle characteristics of a nickel-metal hydride battery using an electrode using the positive electrode primer composition of the present invention and an electrode composed of only a base material and a composite layer without using the primer composition. Show.

本発明に係るニッケル水素二次電池正極用のプライマー組成物は、二次元構造集電体に塗工されることにより、下地層を構成することができる。そして、下地層に塗工された合材インキは、合材層を構成することができる。このようにして得られたニッケル水素二次電池正極を使用してニッケル水素二次電池を製造することが好ましい。なお本発明で、二次元構造集電体を箔状集電体ともいう。   The primer composition for a nickel metal hydride secondary battery positive electrode according to the present invention can form a base layer by being applied to a two-dimensional structure current collector. And the composite ink coated on the underlayer can constitute a composite layer. It is preferable to manufacture a nickel metal hydride secondary battery using the nickel metal hydride secondary battery positive electrode thus obtained. In the present invention, the two-dimensional structure current collector is also referred to as a foil-shaped current collector.

本発明の正極用プライマー組成物は、平均粒子径1〜50μmの葉状黒鉛粒子(A)と、平均粒子径0.01〜0.3μmのカーボンブラック(B)と、水系樹脂(C)とを含有することが好ましい。   The primer composition for positive electrode of the present invention comprises foliar graphite particles (A) having an average particle diameter of 1 to 50 μm, carbon black (B) having an average particle diameter of 0.01 to 0.3 μm, and an aqueous resin (C). It is preferable to contain.

一般に黒鉛粒子は、葉状、球状、土状等があるが、本発明において黒鉛粒子は、下地層の導電性の観点から平滑な粒子表面を有する葉状が好ましい。   In general, the graphite particles have a leaf shape, a spherical shape, a soil shape, and the like. In the present invention, the graphite particles preferably have a leaf shape having a smooth particle surface from the viewpoint of the conductivity of the underlayer.

葉状黒鉛粒子(A)は、平均粒子径1〜50μmが好ましく、平均粒子径3〜40μmがより好ましい。なお、本発明で平均粒子径とは、粒子、水及び分散体を混合した混合物を、動的光散乱方式の粒度分布計(日機装(株)製「マイクロトラックUPA」)を使用して、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)を意味する。   The foliar graphite particles (A) preferably have an average particle size of 1 to 50 μm, more preferably an average particle size of 3 to 40 μm. In the present invention, the average particle diameter means a mixture of particles, water, and a dispersion using a dynamic light scattering particle size distribution meter (“Microtrac UPA” manufactured by Nikkiso Co., Ltd.). In the particle size distribution, it means the particle diameter (D50) that is 50% when the volume ratio of the particles is accumulated from the fine particle diameter.

葉状黒鉛粒子(A)は、例えば、塊状の天然黒鉛を粉砕することや、天然黒鉛の層間化合物のへき開面に沿って、層間剥離を行なうことにより得ることができる。粉砕による場合、例えば、ボールミルなどを用いての乾式粉砕法により、葉状黒鉛を得ることができる。   The foliar graphite particles (A) can be obtained, for example, by pulverizing massive natural graphite or by performing delamination along the cleavage plane of the intercalation compound of natural graphite. In the case of pulverization, for example, foliar graphite can be obtained by a dry pulverization method using a ball mill or the like.

葉状黒鉛粒子(A)は、前記の層間化合物のへき開面を利用する方法でも得られることができる。具体的には、例えば、天然黒鉛を硫酸と硝酸との混酸で処理して得られる黒鉛と硫酸との層間化合物を、又は天然黒鉛を硫酸中で電気的に酸化して得られる黒鉛と硫酸との層間化合物等を加熱膨張させて得られる膨張黒鉛を、結晶構造のへき開面を剥離させる方法などで得られる。前記膨張黒鉛は、へき開面の層間が広がっているため、へき開面に沿って容易に層間剥離をし、平滑な粒子表面、すなわち葉状黒鉛粒子が得られる。   The foliar graphite particles (A) can also be obtained by a method utilizing the cleavage plane of the intercalation compound. Specifically, for example, an intercalation compound of graphite and sulfuric acid obtained by treating natural graphite with a mixed acid of sulfuric acid and nitric acid, or graphite and sulfuric acid obtained by electrically oxidizing natural graphite in sulfuric acid. The expanded graphite obtained by heating and expanding the intercalation compound or the like can be obtained by a method of peeling the cleavage plane of the crystal structure. In the expanded graphite, since the interlayer of the cleavage plane is spread, delamination is easily performed along the cleavage plane, and a smooth particle surface, that is, foliar graphite particles can be obtained.

葉状黒鉛粒子(A)は、中越黒鉛(株)製のCX−3000、FBF、BF、CBR、SSC−3000、SSC−600、SSC−3、SSC、CX−600、CPF−8、CPF−3、CPB−6S、CPB−3、96E、96L、96L−3、90L−3、CPC、S−87、K−3、CF−80、CF−48、CF−32、CP−150、CP−100、CP、HF−80、HF−48、HF−32、SC−120、SC−80、SC−60、SC−32、富士黒鉛工業(株)製の、UF−2、CBF−1、CBF−3、CPF−3、96L、COP,FAC−1、FAC−2、FGB、CSP−2、CF−2、SECカーボン(株)製のSNO−20、SNO−10、SNO−5、SNE−20、SNE−10、SNE−5、日本黒鉛工業(株)製のCSSP、CSPE、CSP、CP、CB−150、CB−100、ACP、ACB−150、SP−10、SP−20、J−SP、SP−270、HOP、CMX、UP−5、UP−10、UP−20、伊藤黒鉛工業(株)のZ−5F、CNP−7、CNP−15、CNP−35、Z−100、Z+80、Z−25、Z−50、X−10、X−20、が挙げられる。   The foliar graphite particles (A) are manufactured by Chuetsu Graphite Co., Ltd. CX-3000, FBF, BF, CBR, SSC-3000, SSC-600, SSC-3, SSC, CX-600, CPF-8, CPF-3. CPB-6S, CPB-3, 96E, 96L, 96L-3, 90L-3, CPC, S-87, K-3, CF-80, CF-48, CF-32, CP-150, CP-100 CP, HF-80, HF-48, HF-32, SC-120, SC-80, SC-60, SC-32, manufactured by Fuji Graphite Industry Co., Ltd., UF-2, CBF-1, CBF- 3, CPF-3, 96L, COP, FAC-1, FAC-2, FGB, CSP-2, CF-2, SNO-20, SNO-10, SNO-5, SNE-20 manufactured by SEC Carbon Co., Ltd. , SNE-10, SNE-5, Japan CSSP, CSPE, CSP, CP, CB-150, CB-100, ACP, ACB-150, SP-10, SP-20, J-SP, SP-270, HOP, CMX, UP -5, UP-10, UP-20, Z-5F, CNP-7, CNP-15, CNP-35, Z-100, Z + 80, Z-25, Z-50, X- 10, X-20.

カーボンブラック(B)は、葉状黒鉛粒子(A)の粒子群が形成する隙間に入り込むことで下地層の導電性を向上させる役割を果たす。導電性の向上に対するカーボンブラック(B)の寄与は、カーボンブラック(B)の全てが当該隙間に入り込むのではなく、その一部が入り込めば導電性が向上すると推測している。   Carbon black (B) plays the role which improves the electroconductivity of a base layer by entering into the clearance gap which the particle group of a foliar graphite particle (A) forms. The contribution of carbon black (B) to the improvement in conductivity is presumed that not all of carbon black (B) enters the gap, but the conductivity improves if a part of the carbon black (B) enters.

カーボンブラック(B)は、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、特にアセチレンガスを原料とするアセチレンブラックなどが好ましい。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。カーボンブラック(B)は、単独で、もしくは2種類以上併せて使用することができる。   Carbon black (B) is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reaction furnace, especially ketjen black using ethylene heavy oil as a raw material. Preference is given to channel black that has been rapidly cooled and deposited on the bottom of the steel, thermal black obtained by periodically repeating combustion and thermal decomposition using a gas as a raw material, and particularly acetylene black using an acetylene gas as a raw material. Ordinarily oxidized carbon black, hollow carbon and the like can also be used. Carbon black (B) can be used alone or in combination of two or more.

カーボンブラック(B)の平均一次粒子径は、0.01〜0.3μmが好ましい。ここで、平均一次粒子径は、透過型電子顕微鏡(TEM)を用いて、1万倍〜10万倍に適宜拡大した画像から、10〜50個の粒子の数値を平均することで得られる。さらにカーボンブラック(B)は、その比表面積の値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m/g以上1500m/g以下が好ましく、50m/g以上1500m/g以下がより好ましく、100m/g以上1500m/g以下が更に好ましい。比表面積が20m/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m/gを超えるカーボンブラックは、市場では入手が困難である。 The average primary particle size of carbon black (B) is preferably 0.01 to 0.3 μm. Here, the average primary particle diameter is obtained by averaging the numerical values of 10 to 50 particles from an image appropriately enlarged 10,000 to 100,000 times using a transmission electron microscope (TEM). Furthermore, the larger the specific surface area of the carbon black (B), the more contact points between the carbon black particles, which is advantageous in reducing the internal resistance of the electrode. Specifically, the specific surface area (BET) determined from the adsorption amount of nitrogen is preferably 20 m 2 / g or more and 1500 m 2 / g or less, more preferably 50 m 2 / g or more and 1500 m 2 / g or less, and 100 m 2 / g. More preferably, it is 1500 m 2 / g or less. If carbon black having a specific surface area of less than 20 m 2 / g is used, it may be difficult to obtain sufficient conductivity, and carbon black exceeding 1500 m 2 / g is difficult to obtain in the market.

市販のカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン(株)製、ファーネスブラック)、プリンテックスL等(デグサ(株)製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA、Conductex 975 ULTRA等、PUER BLACK100、115、205等(コロンビヤン(株)製、ファーネスブラック)、#2350、#2400B、#2600B、#3050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学(株)製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC−72R、BlackPearls2000等(キャボット(株)製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP−Li(TIMCAL(株)製)、ケッチェンブラックEC−300J、EC−600JD(アクゾ(株)製)、デンカブラック、デンカブラックHS−100、FX−35(電気化学工業(株)製、アセチレンブラック)等が挙げられるが、これらに限定されるものではなく、2種以上を組み合わせて用いても良い。   Examples of commercially available carbon blacks include Toka Black # 4300, # 4400, # 4500, # 5500 (Tokai Carbon Co., Ltd., Furnace Black), Printex L, etc. (Degussa Co., Ltd., Furnace Black), Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc., PUER BLACK100, 115, 205, etc. # 3030B, # 3230B, # 3350B, # 3400B, # 5400B etc. (Mitsubishi Chemical Corporation, furnace black), MONARCH1400, 1300, 900 , VulcanXC-72R, BlackPearls2000, etc. (Cabot Corporation, Furnace Black), Ensaco 250G, Ensaco 260G, Ensaco 350G, SuperP-Li (manufactured by TIMCAL), Ketjen Black EC-300J, EC-600JD (Akzo Corporation) Manufactured), Denka Black, Denka Black HS-100, FX-35 (manufactured by Denki Kagaku Kogyo Co., Ltd., acetylene black) and the like, but are not limited to these, and are used in combination of two or more. Also good.

水系樹脂(C)は、葉状黒鉛粒子(A)やカーボンブラック(B)を結着させ、さらに下地層を形成した際、下地層と集電体間、及び合材層と下地層間を密着させるために使用する。   When the water-based resin (C) binds the foliar graphite particles (A) and the carbon black (B) and further forms a base layer, the base layer and the current collector, and the composite material layer and the base layer are in close contact with each other. Use for.

水系樹脂(C)としては、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシメチルセルロース等のセルロース樹脂、スチレン−ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等、ポリフッ化ビニリデン、ポリフッ化ビニル、及びテトラフルオロエチレン等のフッ素原子を含む高分子化合物が挙げられる。また、これらの樹脂の変性物、混合物、又は共重合体でも良い。これら水系樹脂は、1種又は複数を組み合わせて使用することも出来る。
また、水系樹脂の形態としては、水溶性型、エマルション型、ハイドロゾル型等が挙げられ、適宜選択することができる。
Examples of the water-based resin (C) include acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, silicon resin, fluorine resin, carboxymethyl cellulose, and the like. Examples thereof include cellulose resins, synthetic rubbers such as styrene-butadiene rubber and fluorine rubber, conductive resins such as polyaniline and polyacetylene, and polymer compounds containing fluorine atoms such as polyvinylidene fluoride, polyvinyl fluoride, and tetrafluoroethylene. Further, a modified product, a mixture, or a copolymer of these resins may be used. These water-based resins can be used alone or in combination.
Examples of the water-based resin include a water-soluble type, an emulsion type, and a hydrosol type, and can be appropriately selected.

葉状黒鉛粒子(A)、及びカーボンブラック(B)を使用する割合は、葉状黒鉛粒子(A)、カーボンブラック(B)の合計100重量%中、黒鉛粒子(A)の割合が60〜99重量%が好ましく、65〜95重量%がより好ましい。また、カーボンブラック(B)の割合は、1〜40重量%が好ましく、5〜35重量%がより好ましい。黒鉛粒子(A)及びカーボンブラック(B)が下地層中に適切に存在することで、集電体及び合材層との密着がより向上し、導電性もより向上できる。   The ratio of using the foliar graphite particles (A) and the carbon black (B) is such that the ratio of the graphite particles (A) is 60 to 99 wt% in the total 100 wt% of the foliar graphite particles (A) and the carbon black (B). % Is preferable, and 65 to 95% by weight is more preferable. Moreover, 1 to 40 weight% is preferable and, as for the ratio of carbon black (B), 5-35 weight% is more preferable. When the graphite particles (A) and the carbon black (B) are appropriately present in the underlayer, the adhesion between the current collector and the composite layer can be further improved, and the conductivity can be further improved.

下地層は、葉状黒鉛粒子(A)、カーボンブラック(B)及び水系樹脂(C)を含むプライマー組成物を製造した後、そのプライマー組成物を集電体に塗工・乾燥することにより形成されるのが好ましい。
プライマー組成物の製造を説明する。まず葉状黒鉛粒子(A)は、予め溶媒と分散剤を配合して分散を行い分散体として製造したのち使用することが好ましい。カーボンブラック(B)も葉状黒鉛粒子(A)と同様には分散体として製造してから使用することが好ましい。そして、葉状黒鉛粒子(A)分散体、カーボンブラック(B)分散体及び水系樹脂(C)を混合することによってプライマー組成物を得ることができる。分散剤は、セルロース系樹脂、アクリル系樹脂、スチレン/アクリル系樹脂、ポリエステル樹脂、ウレタン樹脂、界面活性剤等が好ましい。
The underlayer is formed by manufacturing a primer composition containing foliar graphite particles (A), carbon black (B), and an aqueous resin (C), and then applying and drying the primer composition on a current collector. It is preferable.
The production of the primer composition will be described. First, the foliar graphite particles (A) are preferably used after being preliminarily mixed with a solvent and a dispersant to produce a dispersion. Carbon black (B) is also preferably used after being produced as a dispersion in the same manner as foliar graphite particles (A). And a primer composition can be obtained by mixing a foliar graphite particle (A) dispersion, a carbon black (B) dispersion, and an aqueous resin (C). The dispersant is preferably a cellulose resin, an acrylic resin, a styrene / acrylic resin, a polyester resin, a urethane resin, a surfactant, or the like.

前記分散及び混合は、顔料分散等に通常用いられている分散機、混合機が使用できる。例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック(株)製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル(株)製)、ボールミル、サンドミル(シンマルエンタープライゼス(株)製「ダイノミル」等)、アトライター、パールミル(アイリッヒ(株)製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス(株)製「ジーナスPY」、スギノマシン(株)製「スターバースト」、ナノマイザー(株)製「ナノマイザー」等)、エム・テクニック(株)製「クレアSS−5」、若しくは奈良機械(株)製「MICROS」等のメディアレス分散機;又は、その他ロールミル等が挙げられるが、これらに限定されるものではない。また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。   For the dispersion and mixing, a disperser or a mixer usually used for pigment dispersion or the like can be used. For example, mixers such as dispersers, homomixers, or planetary mixers; homogenizers such as “CLEARMIX” manufactured by M Technique Co., Ltd. or “FILMIX” manufactured by PRIMIX; paint conditioner (manufactured by Red Devil Co., Ltd.) , Ball mills, sand mills (Shinmaru Enterprises Co., Ltd. “Dino Mill” etc.), attritors, pearl mills (Eirich Co. Ltd. “DCP Mill” etc.), or media type dispersers such as Coball Mills; wet jet mills (Genus "Genus PY" manufactured by Co., Ltd., "Starburst" manufactured by Sugino Machine Co., Ltd., "Nanomizer" manufactured by Nanomizer Co., Ltd.), "Claire SS-5" manufactured by M Technique Co., Ltd., or Nara Machinery Co., Ltd. ) Medialess dispersers such as "MICROS" manufactured by; or Other roll mill of, but not limited thereto. Moreover, as the disperser, it is preferable to use a disperser that has been subjected to a metal contamination prevention treatment from the disperser.

例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、又は、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。   For example, when using a media-type disperser, a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating. Is preferably used. And as a medium, it is preferable to use ceramic beads, such as glass beads, zirconia beads, or alumina beads. Moreover, also when using a roll mill, it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.

プライマー組成物は、必要に応じてさらに成膜助剤、消泡剤、レベリング剤、分散剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。   The primer composition can further contain a film forming aid, an antifoaming agent, a leveling agent, a dispersant, an antiseptic, a pH adjuster, a viscosity adjuster, and the like as required.

プライマー組成物の粘度は、その塗工方法により適宜調整すればよく、10mPa・s以上30,000mPa・s以下とするのが好ましい。   What is necessary is just to adjust the viscosity of a primer composition suitably with the coating method, and it is preferable to set it as 10 mPa * s or more and 30,000 mPa * s or less.

下地層の塗工としては、例えばダイコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン塗工法又は静電塗装法等を挙げる事ができる。また、乾燥には、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などの装置が使用できるが、特にこれらに限定されるものではない。例えば、放置乾燥でもよい。   Examples of the coating of the underlayer include a die coating method, a roll coating method, a doctor coating method, a knife coating method, a spray coating method, a gravure coating method, a screen coating method, and an electrostatic coating method. In addition, for drying, devices such as a blower dryer, a hot air dryer, an infrared heater, and a far infrared heater can be used, but are not particularly limited thereto. For example, it may be left to dry.

下地層の厚みは、0.1〜20μmが好ましく、0.5〜10μmがより好ましく、1〜8μmがより好ましい。下地層の目付け量は0.0001〜0.01g/cmが好ましく、0.0005〜0.005g/cmがより好ましい。 The thickness of the underlayer is preferably from 0.1 to 20 μm, more preferably from 0.5 to 10 μm, and more preferably from 1 to 8 μm. Basis weight of the base layer is preferably 0.0001~0.01g / cm 2, 0.0005~0.005g / cm 2 is more preferable.

箔状集電体は、金属を薄く打ち延ばした基材からなり、表面及び端面が平滑であり、多孔質体構造による凹凸や孔加工を有していない。そのため、多孔質体構造で凹凸を有する発泡ニッケルや孔加工を有するパンチングプレートと形状は大きく異なる。
箔状集電体の材質としては、アルカリ電解液耐性の観点から、ニッケルが好ましい。また、コストの観点から、鉄材質の表面を電解液による腐食防止のためにニッケルメッキしたものが好ましい。
箔状集電体には、プライマー組成物を塗工するために表面が平滑な平板状の箔が用いられる。集電体の厚みは、10〜70μmが好ましく、15〜60μmがより好ましい。箔状集電体の総厚が10μm以上になると、集電体自身の強度がより向上し、塗工及びプレス加工時に電極の破損が生じにくくなる。また、箔状集電体の総厚が70μm以下であれば、集電体自身の強度を適切にしやすく、塗工時の集電体の巻き取りがより容易になる。
The foil-like current collector is made of a base material obtained by thinly striking a metal, has a smooth surface and end face, and does not have irregularities or hole processing due to a porous body structure. Therefore, the shape is greatly different from the punched plate having the porous body structure with the uneven nickel foam and the hole processing.
The material for the foil-like current collector is preferably nickel from the viewpoint of resistance to alkaline electrolyte. From the viewpoint of cost, it is preferable that the surface of the iron material is nickel-plated to prevent corrosion due to the electrolytic solution.
A flat foil with a smooth surface is used for the foil current collector in order to apply the primer composition. 10-70 micrometers is preferable and, as for the thickness of an electrical power collector, 15-60 micrometers is more preferable. When the total thickness of the foil-shaped current collector is 10 μm or more, the strength of the current collector itself is further improved, and the electrode is less likely to be damaged during coating and pressing. In addition, when the total thickness of the foil-like current collector is 70 μm or less, it is easy to make the current collector itself appropriate in strength, and it becomes easier to wind the current collector during coating.

ニッケルメッキの厚みは、0.1〜5μmであることが好ましく、0.5〜4μmがさらに好ましい。ニッケルメッキの厚みが、0.1μm以上になると、電解液による腐食が生じにくくなる。また、ニッケルメッキの厚みが5μm以下になると、コスト的に有利になる。   The thickness of the nickel plating is preferably 0.1 to 5 μm, and more preferably 0.5 to 4 μm. When the thickness of the nickel plating is 0.1 μm or more, corrosion due to the electrolytic solution hardly occurs. Further, when the thickness of the nickel plating is 5 μm or less, it is advantageous in terms of cost.

集電体に形成された下地層に合材インキを塗工することにより、合材層を形成することができる。この合材インキは、活物質、導電材料及びポリマーエマルション(D)を含有することが好ましい。   A composite material layer can be formed by applying the composite material ink to the base layer formed on the current collector. The composite ink preferably contains an active material, a conductive material, and a polymer emulsion (D).

活物質としては、ニッケル水素二次電池用の正極活物質として公知のものを使用できる。例えば、水酸化ニッケル、オキシ水酸化ニッケル等のニッケル化合物が挙げられる。水酸化ニッケルの種類としては、水酸化ニッケルの表面を、水酸化コバルト及びオキシ水酸化コバルトの少なくとも一方で被覆したコバルトコート水酸化ニッケルがより好ましい。また、水酸化ニッケルに水酸化コバルト、酸化コバルトなどを添加して混合したものも使用できる。
本発明では、コバルトコートなしでも所望の導電性が得られるため、コストダウンしやすい。しかし、コバルトコート水酸化ニッケルの使用により導電性をより高めて使用することを妨げるものではない。
As an active material, a well-known thing can be used as a positive electrode active material for nickel-hydrogen secondary batteries. Examples thereof include nickel compounds such as nickel hydroxide and nickel oxyhydroxide. As the kind of nickel hydroxide, cobalt coated nickel hydroxide in which the surface of nickel hydroxide is coated with at least one of cobalt hydroxide and cobalt oxyhydroxide is more preferable. Moreover, what mixed and mixed nickel hydroxide, cobalt hydroxide, cobalt oxide, etc. can also be used.
In the present invention, the desired conductivity can be obtained without a cobalt coat, so that the cost is easily reduced. However, the use of cobalt-coated nickel hydroxide does not hinder the use with higher conductivity.

活物質の粒子径は、0.5〜100μmが好ましく、1〜50μmがより好ましく、3〜40μmがさらに好ましい。   The particle diameter of the active material is preferably 0.5 to 100 μm, more preferably 1 to 50 μm, and further preferably 3 to 40 μm.

活物質が合材インキの不揮発分の合計に占める割合は、80〜98重量%が好ましく、85〜95重量%がより好ましい。   The proportion of the active material in the total nonvolatile content of the composite ink is preferably 80 to 98% by weight, more preferably 85 to 95% by weight.

ポリマーエマルション(D)は、合材層を形成する際に活物質同士、及び活物質を下地層と結着させるために使用される。   The polymer emulsion (D) is used for binding the active materials to each other and the active material with the base layer when forming the composite material layer.

アクリルエマルションは、例えば、水和性の官能基を含有する第1のモノマー(d−1)1〜5重量%と、芳香環を含有する第2のモノマー(d−2)20〜60重量%と、水和性官能基及び芳香環を含有しない第3のモノマー(d−3)35〜79重量%と、を含み、当該モノマー混合物を乳化重合により合成したガラス転移温度−40〜20℃のエマルションであることが好ましい。このエマルションを合材層が含有することで、正極の導電性がより向上し、充放電サイクル特性もより向上する。   The acrylic emulsion is, for example, 1 to 5% by weight of a first monomer (d-1) containing a hydratable functional group and 20 to 60% by weight of a second monomer (d-2) containing an aromatic ring. And 35% to 79% by weight of a third monomer (d-3) not containing a hydratable functional group and an aromatic ring, and having a glass transition temperature of −40 to 20 ° C. synthesized by emulsion polymerization. An emulsion is preferred. By containing this emulsion in the composite material layer, the conductivity of the positive electrode is further improved, and the charge / discharge cycle characteristics are further improved.

水和性の官能基を含有するモノマー(d−1)は、親水性の官能基を含有するモノマーである。例えば、アクリル酸ヒドロキシエチル(ホモポリマーのガラス転移温度Tg=−15℃、以下同様)、アクリル酸ヒドロキシプロピル(Tg=−7℃)、アクリル酸ヒドロキシブチル(Tg=−80℃)、メタクリル酸ヒドロキシエチル(Tg=55℃)、メタクリル酸ヒドロキシプロピル(Tg=26℃)、メタクリル酸ヒドロキシブチル等(Tg=−40℃)のヒドロキシ基含有モノマー、アクリルアミド(Tg=153℃)、メタクリルアミド(Tg=77℃)、ダイアセトンアクリルアミド(Tg=77℃)、N‐イソプロピルアクリルアミド(Tg=134℃)、N‐メチルアクリルアミド(Tg=130℃)、N‐メチルメタクリルアミド(Tg=65℃)、N,N‐ジメチルアクリルアミド(Tg=119℃)、N‐エチルアクリルアミド(Tg=100℃)、N,N‐ジエチルアクリルアミド(Tg=81℃)、N‐ブチルアクリルアミド(Tg=46℃)、ヒドロキシエチルアクリルアミド(Tg=98℃)、アクリロイルモルホリン(Tg=145℃)等のアミド基含有モノマー、メタクリル酸グリシジル(Tg=41℃)、アクリル酸グリシジル(Tg=10℃)等のグリシジル基含有モノマー、等が挙げられる。これらの中で、アミド基含有モノマーが特に好ましい。   The monomer (d-1) containing a hydratable functional group is a monomer containing a hydrophilic functional group. For example, hydroxyethyl acrylate (homopolymer glass transition temperature Tg = −15 ° C., hereinafter the same), hydroxypropyl acrylate (Tg = −7 ° C.), hydroxybutyl acrylate (Tg = −80 ° C.), hydroxy methacrylate Hydroxy group-containing monomers such as ethyl (Tg = 55 ° C.), hydroxypropyl methacrylate (Tg = 26 ° C.), hydroxybutyl methacrylate (Tg = −40 ° C.), acrylamide (Tg = 153 ° C.), methacrylamide (Tg = 77 ° C), diacetone acrylamide (Tg = 77 ° C), N-isopropylacrylamide (Tg = 134 ° C), N-methylacrylamide (Tg = 130 ° C), N-methylmethacrylamide (Tg = 65 ° C), N, N-dimethylacrylamide (Tg = 119 ° C.), N-ethyl alcohol Rilamide (Tg = 100 ° C.), N, N-diethylacrylamide (Tg = 81 ° C.), N-butylacrylamide (Tg = 46 ° C.), hydroxyethylacrylamide (Tg = 98 ° C.), acryloylmorpholine (Tg = 145 ° C.) Amide group-containing monomers such as glycidyl methacrylate (Tg = 41 ° C.), glycidyl group-containing monomers such as glycidyl acrylate (Tg = 10 ° C.), and the like. Of these, amide group-containing monomers are particularly preferred.

水和性の官能基を含有するモノマー(d−1)の使用量は、1〜5重量%が好ましく、2〜4重量%がさらに好ましい。1重量%以上になると、水分子との水和の効果により、化学的安定性がより向上する。また、5重量%以下になると、乳化重合時の安定性がより高まる。即ち、エマルションの流動性が増し、エマルションが凝集しにくい傾向にある。   The amount of the monomer (d-1) containing a hydratable functional group is preferably 1 to 5% by weight, and more preferably 2 to 4% by weight. If it is 1% by weight or more, chemical stability is further improved due to the effect of hydration with water molecules. Moreover, when it becomes 5 weight% or less, the stability at the time of emulsion polymerization will increase more. That is, the fluidity of the emulsion increases and the emulsion tends to hardly aggregate.

芳香環含有モノマー(d−2)について説明する。芳香環含有モノマー(d−2)を用いることにより、アルカリ溶液中で加水分解され易い例えばアクリル酸アルキルエステルの使用量を削減できるため、耐アルカリ性をより向上できる。さらに、エマルションのガラス転移点を適切な範囲にコントロールすることにより、集電材への密着性をより向上できる。   The aromatic ring-containing monomer (d-2) will be described. By using the aromatic ring-containing monomer (d-2), it is possible to reduce the amount of, for example, an alkyl acrylate ester that is easily hydrolyzed in an alkaline solution, so that the alkali resistance can be further improved. Furthermore, the adhesion to the current collector can be further improved by controlling the glass transition point of the emulsion within an appropriate range.

芳香環含有モノマー(d−2)の使用量は、全モノマー中20〜60重量%が好ましく、25〜55重量%がより好ましい。20重量%以上になると、ポリマーの耐アルカリ性がより向上する。また、60重量%以下であれば、集電材への密着性がより向上する。   The amount of the aromatic ring-containing monomer (d-2) used is preferably 20 to 60% by weight, more preferably 25 to 55% by weight, based on all monomers. When it is 20% by weight or more, the alkali resistance of the polymer is further improved. Moreover, if it is 60 weight% or less, the adhesiveness to a current collection material will improve more.

芳香環含有モノマー(d−2)としては、スチレン(ホモポリマーのガラス転移温度Tg=100℃、以下同様)、α−メチルスチレン(Tg=168℃)及びベンジルメタクリレート(Tg=54℃)等が挙げられる。   Examples of the aromatic ring-containing monomer (d-2) include styrene (glass transition temperature of homopolymer Tg = 100 ° C., the same applies hereinafter), α-methylstyrene (Tg = 168 ° C.), benzyl methacrylate (Tg = 54 ° C.), and the like. Can be mentioned.

その他のモノマー(d−3)について説明する。
本実施の形態におけるその他のモノマー(d−3)とは、水和性の官能基を含有するモノマー(d−1)及び芳香環含有モノマー(d−2)以外のラジカル重合性のモノマーである。
The other monomer (d-3) will be described.
The other monomer (d-3) in the present embodiment is a radical polymerizable monomer other than the monomer (d-1) containing a hydratable functional group and the aromatic ring-containing monomer (d-2). .

その他のモノマーとしては、例えば、メタクリル酸メチル(Tg=100℃)、メタクリル酸エチル(Tg=65℃)、メタクリル酸ブチル(Tg=20℃)、メタクリル酸イソブチル(Tg=67℃)、メタクリル酸ターシャリーブチル(Tg=107℃)、メタクリル酸2−エチルヘキシル(Tg=−10℃)、メタクリル酸シクロヘキシル(Tg=66℃)等のメタクリル酸エステル類;
アクリル酸メチル(ホモポリマーのガラス転移温度Tg=−8℃、以下同様)、アクリル酸エチル(Tg=−20℃)、アクリル酸ブチル(Tg=−45℃)、アクリル酸−2−エチルヘキシル等(Tg=−55℃)のアクリル酸エステル類;
等を挙げることができる。
Other monomers include, for example, methyl methacrylate (Tg = 100 ° C.), ethyl methacrylate (Tg = 65 ° C.), butyl methacrylate (Tg = 20 ° C.), isobutyl methacrylate (Tg = 67 ° C.), methacrylic acid Methacrylic acid esters such as tertiary butyl (Tg = 107 ° C.), 2-ethylhexyl methacrylate (Tg = −10 ° C.), cyclohexyl methacrylate (Tg = 66 ° C.);
Methyl acrylate (homopolymer glass transition temperature Tg = −8 ° C., hereinafter the same), ethyl acrylate (Tg = −20 ° C.), butyl acrylate (Tg = −45 ° C.), 2-ethylhexyl acrylate, etc. Acrylic acid esters of Tg = −55 ° C .;
Etc.

その他のモノマー(d−3)は、ポリマーの理論ガラス転移温度Tgが、−40〜20℃となるように、適宜選択することが好ましい。また、ポリマーの理論ガラス転移温度Tgの範囲は−35〜15℃がさらに好ましい。   The other monomer (d-3) is preferably selected as appropriate so that the theoretical glass transition temperature Tg of the polymer is -40 to 20 ° C. The range of the theoretical glass transition temperature Tg of the polymer is more preferably −35 to 15 ° C.

本実施の形態におけるエマルションのポリマーの理論ガラス転移温度Tgは下記の式[I]により導かれる。
1/Tg
=[(W1/Tg1)+(W2/Tg2)+・・・+(Wn/Tgn)]/100
・・・[I]
ただし、
W1:単量体1の重量%、
Tg1:モノマー1のみから形成され得るホモポリマーのガラス転移温度(K)、
W2:モノマー2の重量%、
Tg2:モノマー2のみから形成され得るホモポリマーのガラス転移温度(K)、
Wn:モノマーnの重量%、
Tgn:モノマーnのみから形成され得るホモポリマーのガラス転移温度(K)、
(ここで、W1+W2+・・・・+Wn=100)
The theoretical glass transition temperature Tg of the polymer of the emulsion in the present embodiment is derived from the following formula [I].
1 / Tg
= [(W1 / Tg1) + (W2 / Tg2) + ... + (Wn / Tgn)] / 100
... [I]
However,
W1:% by weight of monomer 1,
Tg1: glass transition temperature (K) of a homopolymer that can be formed only from monomer 1;
W2:% by weight of monomer 2,
Tg2: glass transition temperature (K) of a homopolymer that can be formed from monomer 2 only,
Wn:% by weight of monomer n,
Tgn: glass transition temperature (K) of a homopolymer that can be formed only from monomer n,
(W1 + W2 + ... + Wn = 100)

なお、ラジカル重合性不飽和モノマーを水性媒体中で重合する際に乳化剤として、ラジカル重合性不飽和基を有するものを使用する場合には、ラジカル重合性不飽和モノマーの構成の特定及び共重合体のTgの計算に際して、ラジカル重合性不飽和基を有する乳化剤はモノマーには含めないものとする。   In addition, when using what has a radically polymerizable unsaturated group as an emulsifier when superposing | polymerizing a radically polymerizable unsaturated monomer in an aqueous medium, identification of the structure of a radically polymerizable unsaturated monomer and a copolymer In the calculation of Tg, an emulsifier having a radically polymerizable unsaturated group is not included in the monomer.

本実施の形態でポリマーエマルション(D)は、乳化重合で共重合することが重要である。共重合の際、重合安定性の観点から乳化剤を用いることが好ましい。
乳化剤は、用いるモノマーの合計100重量部に対して、0.1重量部以上5重量部以下が好ましく、1重量部以上3重量部以下より好ましい。乳化剤量が0.1重量部以上になると、重合安定性がより向上する。また、乳化剤量が5重量部以下になると、二次電池電極の耐アルカリ性がより向上する。
In the present embodiment, it is important that the polymer emulsion (D) is copolymerized by emulsion polymerization. During copolymerization, it is preferable to use an emulsifier from the viewpoint of polymerization stability.
The emulsifier is preferably 0.1 part by weight or more and 5 parts by weight or less, and more preferably 1 part by weight or more and 3 parts by weight or less with respect to 100 parts by weight of the total amount of monomers used. When the amount of the emulsifier is 0.1 parts by weight or more, the polymerization stability is further improved. Moreover, when the amount of the emulsifier is 5 parts by weight or less, the alkali resistance of the secondary battery electrode is further improved.

本実施の形態では、乳化剤として、アニオン性乳化剤やノニオン性乳化剤を単独若しくは併用できる。また、乳化剤は、ラジカル重合性の官能基を有する反応性乳化剤であってもよいし、ラジカル重合性の官能基を有さない非反応性乳化剤であってもよい。あるいは、両者を併用することもできる。   In the present embodiment, an anionic emulsifier or a nonionic emulsifier can be used alone or in combination as an emulsifier. The emulsifier may be a reactive emulsifier having a radical polymerizable functional group or a non-reactive emulsifier having no radical polymerizable functional group. Or both can be used together.

本実施の形態において用いられる乳化剤のうち、反応性乳化剤は、分子内にラジカル重合可能な不飽和2重結合を1個以上有するアニオン性又はノニオン性の乳化剤である。例えば、スルホコハク酸エステル系(市販品としては、例えば、花王(株)製ラテムルS−120P、S−180A、三洋化成(株)製エレミノールJS−2等)、アルキルフェノールエーテル系(市販品としては、第一工業製薬(株)製アクアロンKH−10、RN−20等)が挙げられる。   Of the emulsifiers used in the present embodiment, the reactive emulsifier is an anionic or nonionic emulsifier having one or more unsaturated double bonds capable of radical polymerization in the molecule. For example, sulfosuccinic acid ester type (for example, Latemul S-120P, S-180A, Sanyo Kasei Co., Ltd. Eleminol JS-2, etc. manufactured by Kao Corporation), alkylphenol ether type (commercially available products, Dai-Ichi Kogyo Seiyaku Co., Ltd. Aqualon KH-10, RN-20, etc.).

本実施の形態において用いられる乳化剤のうち、非反応性乳化剤としては、
ポリオキシエチレンアルキルフェニルエーテル硫酸塩、ポリオキシエチレン多環フェニルエーテル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩等のアニオン系非反応性乳化剤と、
ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンジスチレン化フェニルエーテル等のポリオキシ多環フェニルエーテル類;ポリオキシエチレンソルビタン脂肪酸エステル等のノニオン系非反応性乳化剤と、が挙げられる。
Among the emulsifiers used in the present embodiment, as a non-reactive emulsifier,
Anionic non-reactive emulsifiers such as polyoxyethylene alkyl phenyl ether sulfate, polyoxyethylene polycyclic phenyl ether sulfate, polyoxyethylene alkyl ether sulfate,
Polyoxyethylene alkylphenyl ethers such as polyoxyethylene nonylphenyl ether and polyoxyethylene octylphenyl ether; polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether and polyoxyethylene oleyl ether; And polyoxypolycyclic phenyl ethers such as oxyethylene distyrenated phenyl ether; and nonionic non-reactive emulsifiers such as polyoxyethylene sorbitan fatty acid ester.

具体的には、アニオン系非反応性乳化剤としては、ハイテノールNF−08〔エチレンオキサイド単位の繰り返し数(以下、「EOユニット数」という):8〕、NF−17(EOユニット数:17)〔以上、第一工業製薬(株)製〕、エレミノールCLS−20(EOユニット数:10)、エレミノールES−12(EOユニット数:6)、ES−30(EOユニット数:15)、ES−70(EOユニット数:35)〔以上、三洋化成工業(株)製〕等が挙げられる。   Specifically, as anionic non-reactive emulsifiers, hightenol NF-08 [repetition number of ethylene oxide units (hereinafter referred to as “number of EO units”): 8], NF-17 (number of EO units: 17) [Above, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.], Eleminol CLS-20 (EO unit number: 10), Eleminol ES-12 (EO unit number: 6), ES-30 (EO unit number: 15), ES- 70 (number of EO units: 35) [Sanyo Chemical Industries, Ltd.] and the like.

ノニオン系非反応性乳化剤としては、エマルゲン1108(EOユニット数:8)、1118S−70(EOユニット数:18)、1135S−70(EOユニット数:35)、1150S−70(EOユニット数:50)〔以上、花王(株)製〕等が挙げられる。
上記の非反応性乳化剤は単独で用いてもよく、複数種併用することも可能である。
なお、乳化剤のうち、反応性乳化剤としては、従来公知のものを使用できる。
Nonionic non-reactive emulsifiers include Emulgen 1108 (EO unit number: 8), 1118S-70 (EO unit number: 18), 1135S-70 (EO unit number: 35), 1150S-70 (EO unit number: 50). ) [Above, manufactured by Kao Corporation].
Said non-reactive emulsifier may be used independently and can also be used together multiple types.
In addition, a conventionally well-known thing can be used as a reactive emulsifier among emulsifiers.

本実施の形態において用いることができるラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類が挙げられる。   Examples of the radical polymerization initiator that can be used in the present embodiment include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate.

重合開始剤の使用量は、乳化重合に使用するモノマーの合計100重量部に対し0.1〜1重量部であることが好ましく、0.2〜0.8重量部であることがより好ましい。0.1重量部以上になると、重合安定性がより向上する。また、1重量部以下になると、耐水性がより向上する。   The amount of the polymerization initiator used is preferably 0.1 to 1 part by weight and more preferably 0.2 to 0.8 part by weight based on 100 parts by weight of the total amount of monomers used for emulsion polymerization. When the amount is 0.1 parts by weight or more, the polymerization stability is further improved. Moreover, when it becomes 1 weight part or less, water resistance will improve more.

また、過酸化物系開始剤と還元剤の組み合わせたレドックス開始剤を用いることも好ましい。レドックス開始剤としては、過酸化物系開始剤と還元剤の組み合わせが好ましい。過酸化物系開始剤としては、パーブチルH(ターシャリーブチルハイドロパーオキサイド)、パーブチルO(ターシャリーブチルペルオキシ−2−エチルヘキサノエート)、キュメンハイドロパーオキサイド、p−メンタンハイドロパーオキサイドが挙げられる。還元剤としては、エルビットN(イソアスコルビン酸ナトリウム)、L−アスコルビン酸(ビタミンC)、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム(SMBS)、次亜硫酸ナトリウム(ハイドロサルファイト)が挙げられる。   It is also preferable to use a redox initiator in which a peroxide-based initiator and a reducing agent are combined. As the redox initiator, a combination of a peroxide-based initiator and a reducing agent is preferable. Examples of the peroxide initiator include perbutyl H (tertiary butyl hydroperoxide), perbutyl O (tertiary butyl peroxy-2-ethylhexanoate), cumene hydroperoxide, and p-menthane hydroperoxide. . Examples of the reducing agent include Erbit N (sodium ascorbate), L-ascorbic acid (vitamin C), sodium sulfite, sodium hydrogen sulfite, sodium pyrosulfite (SMBS), and sodium hyposulfite (hydrosulfite).

合材インキには、さらに導電材料を含むことが好ましい。例えば、ニッケル粉末、銅粉末、酸化コバルト、水酸化コバルト、カーボン等を挙げることができる。カーボンとしては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、炭素繊維、フラーレン類を挙げることができる。好ましくは、アセチレンブラック、ファーネスブラックである。導電性材料の粒子径は大きいため、あらかじめ、水、分散樹脂を用いて0.1〜50μmに分散して使用するのが好ましい。分散樹脂としては、アクリル系水溶性樹脂、スチレン/アクリル系水溶性樹脂、水溶性ポリエステル樹脂、水性ウレタン樹脂等が好ましい。   It is preferable that the composite ink further contains a conductive material. Examples thereof include nickel powder, copper powder, cobalt oxide, cobalt hydroxide, and carbon. Examples of carbon include acetylene black, ketjen black, furnace black, carbon fiber, and fullerenes. Acetylene black and furnace black are preferred. Since the particle diameter of the conductive material is large, it is preferable to use the conductive material by dispersing it in the range of 0.1 to 50 μm in advance using water or a dispersion resin. As the dispersion resin, an acrylic water-soluble resin, a styrene / acrylic water-soluble resin, a water-soluble polyester resin, an aqueous urethane resin, and the like are preferable.

合材インキは、活物質100重量部に対してポリマーエマルション(D)を0.05〜20重量部配合することが好ましく、0.1〜10重量部がより好ましい。0.05重量部未満では、活物質と下地層との結着力が低下し、その結果、活物質と基材の接触が保たれず、正極の利用率が低下する恐れがある。また、20重量部を超えると、合材インキに占める活物質の割合が低下し、電極のエネルギー密度が低下し易い。さらに、電気を通しにくいポリマーの割合が増大することによって、電極の電気抵抗が増大する恐れもある。   The compound ink is preferably blended in an amount of 0.05 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the active material. If the amount is less than 0.05 parts by weight, the binding force between the active material and the undercoat layer is reduced, and as a result, the contact between the active material and the substrate is not maintained, and the utilization factor of the positive electrode may be reduced. Moreover, when it exceeds 20 weight part, the ratio of the active material which occupies for material ink will fall, and the energy density of an electrode will fall easily. Furthermore, the electrical resistance of the electrode may be increased by increasing the proportion of the polymer that is difficult to conduct electricity.

合材インキには、さらに成膜助剤、消泡剤、レベリング剤、分散剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。   A film forming aid, an antifoaming agent, a leveling agent, a dispersant, a preservative, a pH adjusting agent, a viscosity adjusting agent, and the like can be further added to the composite ink as necessary.

合材インキの粘度は、塗工方法により適宜選択できるが、100mPa・s以上、30,000mPa・s以下とするのが好ましい。   The viscosity of the composite ink can be appropriately selected depending on the coating method, but is preferably 100 mPa · s or more and 30,000 mPa · s or less.

合材層は、前記下地層の上に合材インキを塗工・乾燥することで形成できる。合材層の厚みは、1〜500μmが好ましく、10〜300μmがより好ましい。合材層の目付け量は0.001〜0.1g/cmが好ましく、0.005〜0.05g/cmがより好ましい。 The composite material layer can be formed by applying and drying a composite ink on the base layer. 1-500 micrometers is preferable and, as for the thickness of a compound-material layer, 10-300 micrometers is more preferable. Basis weight of the mixture layer is preferably 0.001~0.1g / cm 2, 0.005~0.05g / cm 2 is more preferable.

ニッケル水素二次電池正極は、下地層の上に合材層を形成後、電極を平版プレスやカレンダーロール等によりプレス処理されても良い。これにより、下地層と合材層との密着性がより向上する。   In the nickel metal hydride secondary battery positive electrode, the electrode layer may be pressed by a lithographic press, a calender roll, or the like after a composite layer is formed on the base layer. Thereby, the adhesiveness of a base layer and a compound material layer improves more.

(分散機・混合機)
合材インキを製造するときの活物質及びポリマーエマルション(D)の混合には、前記プライマー組成物の製造と同様の分散機、混合機を使用できる。
(Disperser / Mixer)
For mixing the active material and the polymer emulsion (D) when producing the composite ink, the same disperser and mixer as in the production of the primer composition can be used.

ニッケル水素二次電池は、本発明のニッケル水素二次電池正極と負極と電解液と、必要に応じて設けられるセパレータを備えることが好ましい。電池の形状は、ペーパー型、円筒型、コイン型、ボタン型、又は積層型等使用する目的に応じた種々の形状とすることができる。   The nickel metal hydride secondary battery preferably includes a nickel metal hydride secondary battery positive electrode, a negative electrode, an electrolytic solution of the present invention, and a separator provided as necessary. The shape of the battery can be various shapes according to the purpose of use, such as a paper type, a cylindrical type, a coin type, a button type, or a laminated type.

電解液としては、水酸化カリウム水溶液や、水酸化カリウム水溶液に水酸化ナトリウム又は水酸化リチウムを添加したもの等が挙げられる。   Examples of the electrolytic solution include an aqueous potassium hydroxide solution and an aqueous potassium hydroxide solution obtained by adding sodium hydroxide or lithium hydroxide.

セパレータとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びそれらに親水性処理を施したものが挙げられるが、特にこれらに限定されるものではない。
本発明のニッケル水素二次電池正極を備えたニッケル水素二次電池は、変電所、バス、トラック、電車等の用途に好ましく使用できる。
Examples of the separator include, but are not limited to, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyamide nonwoven fabric, and those subjected to hydrophilic treatment.
The nickel metal hydride secondary battery provided with the nickel metal hydride secondary battery positive electrode of the present invention can be preferably used for applications such as substations, buses, trucks, and trains.

以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。尚、実施例及び比較例における「部」は「重量部」を表す。   EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the following examples do not limit the scope of rights of the present invention. In the examples and comparative examples, “parts” represents “parts by weight”.

(黒鉛粒子分散体(1))
黒鉛粒子(A)として葉状黒鉛CPB−3(中越黒鉛(株)製、粒子径18μm)を10部、分散剤として水溶性アクリル樹脂のジョンクリル96J(BASF(株)製、不揮発分34%)を5.9部、水84.1部をミキサーに入れて混合し、ホモミキサーを用いて1時間分散を行い、黒鉛粒子分散体(1)を得た。
(Graphite particle dispersion (1))
10 parts of graphite flake CPB-3 (manufactured by Chuetsu Graphite Co., Ltd., particle diameter 18 μm) as graphite particles (A), and water-soluble acrylic resin Jonkrill 96J (manufactured by BASF Corp., nonvolatile content 34%) as a dispersant 5.9 parts and 84.1 parts of water were mixed in a mixer and dispersed for 1 hour using a homomixer to obtain a graphite particle dispersion (1).

(カーボンブラック分散体)
カーボンブラック(B)としてアセチレンブラック(デンカブラックHS−100)10部、分散剤として水溶性アクリル樹脂のジョンクリル96Jを5.9部、水84.1部をミキサーに入れて混合し、更にサンドミルに入れて5時間分散を行い、カーボンブラック(a)分散体を得た。なお、マイクロトラックUPAを用いて粒子径を測定したところ、粒子径(D50)は0.3μmであった。
(Carbon black dispersion)
10 parts of acetylene black (Denka Black HS-100) as carbon black (B), 5.9 parts of water-soluble acrylic resin Jonkrill 96J and 84.1 parts of water as a dispersant are mixed in a mixer, and further mixed with a sand mill. And dispersion for 5 hours to obtain a carbon black (a) dispersion. In addition, when the particle diameter was measured using Microtrac UPA, the particle diameter (D50) was 0.3 μm.

<プライマー組成物製造例1>
黒鉛粒子を10重量%含む黒鉛粒子分散体(1)90部と、カーボンブラックを10重量%含むカーボンブラック(a)分散体10部とに対して、バインダーとして水溶性セルロース樹脂のカルボキシメチルセルロース1.5部、水50部を混合して、プライマー組成物を得た。
<Primer composition production example 1>
1. carboxymethylcellulose, a water-soluble cellulose resin, as a binder with respect to 90 parts of a graphite particle dispersion (1) containing 10% by weight of graphite particles and 10 parts of a carbon black (a) dispersion containing 10% by weight of carbon black. 5 parts and 50 parts of water were mixed to obtain a primer composition.

<プライマー組成物製造例2〜10>
表1に示すように原料の種類や使用量を変えた以外は製造例1と同様にして、プライマー組成物を得た。
<Primer Composition Production Examples 2 to 10>
As shown in Table 1, a primer composition was obtained in the same manner as in Production Example 1 except that the type and amount of raw materials were changed.

Figure 2014035900
Figure 2014035900

以下、表1の略称の内容を記載する。
・CPB−3:葉状黒鉛(中越黒鉛(株)製、粒子径18μm)
・FBF:葉状黒鉛(中越黒鉛(株)製、粒子径8μm)
・CNP−15:葉状黒鉛(伊藤黒鉛(株)製、平均粒子径15μm)
・Z−100:葉状黒鉛(伊藤黒鉛(株)製、平均粒子径60μm)
・SG−BH8:球状黒鉛(伊藤黒鉛(株)製、平均粒子径8μm)
・カーボンブラック(a):アセチレンブラック、デンカブラックHS−100(電気化学工業(株)製)
・カーボンブラック(f):ファーネスブラック、Super−PLi(TIMCAL(株)製)
・CMC:カルボキシメチルセルロース(ダイセルファインケム(株)製)
・W−168:アクリル系エマルション樹脂(トーヨーケム(株)製)
The contents of the abbreviations in Table 1 are described below.
CPB-3: foliated graphite (manufactured by Chuetsu Graphite Co., Ltd., particle size 18 μm)
-FBF: foliated graphite (manufactured by Chuetsu Graphite Co., Ltd., particle size 8 μm)
CNP-15: foliated graphite (manufactured by Ito Graphite Co., Ltd., average particle size 15 μm)
Z-100: foliated graphite (manufactured by Ito Graphite Co., Ltd., average particle size 60 μm)
SG-BH8: Spherical graphite (manufactured by Ito Graphite Co., Ltd., average particle size 8 μm)
Carbon black (a): acetylene black, Denka black HS-100 (manufactured by Denki Kagaku Kogyo Co., Ltd.)
Carbon black (f): Furnace black, Super-PLi (manufactured by TIMCAL)
・ CMC: Carboxymethylcellulose (manufactured by Daicel Finechem Co., Ltd.)
W-168: acrylic emulsion resin (manufactured by Toyochem Co., Ltd.)

<ポリマーエマルション合成例1>
水和性官能基含有モノマー(d−1)としてアクリル酸2ヒドロキシエチル3.0部、芳香環を含有する第2のモノマー(d−2)としてスチレン50部、モノマー(d−3)としてアクリル酸2−エチルへキシル47部、乳化剤としてエレミノールCLS−20(三洋化成工業(株)製の反応性乳化剤)1.4部、イオン交換水53.1部の混合物を板羽根で乳化し、モノマープレエマルションを作成し、滴下槽に入れた。
<Polymer emulsion synthesis example 1>
3.0 parts of 2-hydroxyethyl acrylate as the hydratable functional group-containing monomer (d-1), 50 parts of styrene as the second monomer (d-2) containing an aromatic ring, and acrylic as the monomer (d-3) A mixture of 47 parts of 2-ethylhexyl acid, 1.4 parts of Eleminol CLS-20 (Reactive emulsifier manufactured by Sanyo Chemical Industries Co., Ltd.) and 53.1 parts of ion-exchanged water as an emulsifier is emulsified with a blade, and monomer A pre-emulsion was created and placed in a dropping tank.

還流冷却器、攪拌機、温度計、窒素導入管、原料投入口を具備する容積2Lの4つ口フラスコを反応容器とし、該反応容器にイオン交換水89.4部を入れ、窒素を導入しつつ攪拌しながら、液温を60℃に温めた。次いで、反応容器中に、乳化剤としてCLS−20を0.1部添加し、滴下槽から上記モノマープレエマルションを5時間かけて連続的に滴下し、過硫酸アンモニウムを0.6部用いて、70℃で5時間かけて乳化重合した。   A reaction vessel is a 2 L four-necked flask equipped with a reflux condenser, a stirrer, a thermometer, a nitrogen inlet tube, and a raw material inlet, and 89.4 parts of ion-exchanged water is introduced into the reaction vessel while introducing nitrogen. The liquid temperature was warmed to 60 ° C. while stirring. Next, 0.1 part of CLS-20 as an emulsifier was added to the reaction vessel, and the monomer pre-emulsion was continuously dropped from a dropping tank over 5 hours, and 0.6 part of ammonium persulfate was used at 70 ° C. For 5 hours.

滴下終了後、3時間、70℃に保ち、熟成を行った。その後冷却を開始し、50℃まで冷却し、180メッシュのポリエステル製の濾布で濾過し、バインダー樹脂組成物を含むポリマーエマルションを得た。濾布に残った凝集物はなく、重合安定性は良好であった。
濾過後のエマルションの一部を測り取り、150℃で20分間乾燥し、不揮発分濃度を求めたところ40.0重量%であった。また、前記エマルションは、pH2.0、粘度10mPa・sであった。
マイクロトラックUPA(Leeds&Northrup社製)を用い、動的光散乱法によりpH2.0におけるD50粒子径を測定したところ、190nmであった。
モノマーから求められるポリマーの理論ガラス転移温度Tgは6℃である。
After completion of dropping, the mixture was kept at 70 ° C. for 3 hours for aging. Thereafter, cooling was started, the temperature was lowered to 50 ° C., and the mixture was filtered through a 180 mesh polyester filter cloth to obtain a polymer emulsion containing a binder resin composition. There was no aggregate remaining on the filter cloth, and the polymerization stability was good.
A part of the emulsion after filtration was weighed, dried at 150 ° C. for 20 minutes, and the nonvolatile content concentration was determined to be 40.0% by weight. The emulsion had a pH of 2.0 and a viscosity of 10 mPa · s.
Using a Microtrac UPA (Leeds & Northrup), the D50 particle size at pH 2.0 was measured by a dynamic light scattering method, which was 190 nm.
The theoretical glass transition temperature Tg of the polymer determined from the monomer is 6 ° C.

<ポリマーエマルション合成例2〜8>
表2に示すように原料の種類や使用量を変えた以外は合成例1と同様にして、ポリマーエマルションを得た。
<Polymer emulsion synthesis examples 2 to 8>
As shown in Table 2, a polymer emulsion was obtained in the same manner as in Synthesis Example 1 except that the type and amount of the raw material were changed.

Figure 2014035900
Figure 2014035900

以下、表2の略称の内容を記載する。
・2HEMA:アクリル酸2ヒドロキシエチル
・GMA:メタクリル酸グリシジル
・DEAA:N,N‐ジエチルアクリルアミド
・St:スチレン
・BzMA:メタクリル酸ベンジル
・2EHA:アクリル酸2−エチルへキシル
・MMA:メタクリル酸メチル
Hereinafter, the contents of the abbreviations in Table 2 are described.
2HEMA: 2-hydroxyethyl acrylate GMA: glycidyl methacrylate DEAA: N, N-diethylacrylamide St: styrene BzMA: benzyl methacrylate 2EHA: 2-ethylhexyl acrylate MMA: methyl methacrylate

<合材インキ>
正極活物質として水酸化ニッケルCZ(コバルトコート品、田中化学研究所(株)製)45部、導電材料としてカーボンブラック(a)分散体を50部、バインダーとして合成例1で得られたポリマーエマルション12.5部、イオン交換水10部を混合して、正極用合材インキを作製した。その際の粘度は4000mPa・sであった。
<Composite ink>
45 parts of nickel hydroxide CZ (cobalt coated product, manufactured by Tanaka Chemical Research Co., Ltd.) as a positive electrode active material, 50 parts of carbon black (a) dispersion as a conductive material, and polymer emulsion obtained in Synthesis Example 1 as a binder 12.5 parts and 10 parts of ion-exchanged water were mixed to prepare a positive electrode mixture ink. The viscosity at that time was 4000 mPa · s.

[実施例1]
製造例1で得たプライマー組成物を集電体となる厚さ30μmのニッケルメッキ鋼鈑上にドクターブレードを用いて塗工した後、減圧雰囲気下で加熱乾燥して厚み5μmの下地層を得た。下地層の目付け量は0.0015g/cmであった。さらに、ニッケル水素二次電池正極用合材インキを下地層上に塗工した後、加熱乾燥した。さらに、ロールプレス機によってプレス処理を行い、厚み85μmの正極を得た。合材層の目付け量は0.015g/cmであった。
[Example 1]
The primer composition obtained in Production Example 1 was applied onto a 30 μm thick nickel-plated steel plate as a current collector using a doctor blade, and then heated and dried in a reduced pressure atmosphere to obtain a 5 μm thick underlayer. It was. The basis weight of the underlayer was 0.0015 g / cm 2 . Furthermore, the nickel hydride secondary battery positive electrode mixture ink was applied onto the underlayer and then dried by heating. Furthermore, the press process was performed with the roll press machine, and the positive electrode with a thickness of 85 micrometers was obtained. The basis weight of the composite material layer was 0.015 g / cm 2 .

<ニッケル水素二次電池用負極の作製>
負極活物質として水素吸蔵合金100部、カーボンブラック(a)分散体50部、合成例1で得られたバインダー樹脂組成物12.5部をディスパーで混錬し、負極用合材インキを作製した。その際の粘度は6000mPa・sであった。合材インキを集電体であるニッケルメッキ鋼鈑上にドクターブレードを用いて塗工した後、100℃で乾燥、ロールプレスで厚さを調整した後、所定の大きさに切断して負極を作製した。
<Preparation of negative electrode for nickel metal hydride secondary battery>
As a negative electrode active material, 100 parts of a hydrogen storage alloy, 50 parts of carbon black (a) dispersion, and 12.5 parts of the binder resin composition obtained in Synthesis Example 1 were kneaded with a disper to produce a composite ink for a negative electrode. . The viscosity at that time was 6000 mPa · s. After coating the ink mixture on a nickel-plated steel plate, which is a current collector, using a doctor blade, drying at 100 ° C, adjusting the thickness with a roll press, and cutting the negative electrode to a predetermined size Produced.

(電池組み立て)
先に作製した正極を直径15.9mmに、負極を直径16.1mmに打ち抜き、セパレータとして親水化処理ポリプロピレンを23mmに打ち抜き、セパレータを介して互いに合材層を対向させ、電解液(水酸化カリウム4.8規定+水酸化ナトリウム1.2規定)を満たして二極密閉式金属セルを組み立てた。セル組み立て後、所定の電池特性評価を行った。
(Battery assembly)
The positive electrode prepared earlier was punched to a diameter of 15.9 mm, the negative electrode was punched to a diameter of 16.1 mm, a hydrophilized polypropylene as a separator was punched to 23 mm, the mixture layers were opposed to each other through the separator, and an electrolyte solution (potassium hydroxide) 4.8 normal + 1.2 standard sodium hydroxide) was satisfied, and a two-pole sealed metal cell was assembled. After the cell assembly, a predetermined battery characteristic evaluation was performed.

(充放電サイクル特性試験)
上記のように作製した試験電池について、充放電サイクル試験を行ない、サイクル経過による充放電特性の推移を測定した。この充放電サイクル試験では、最初に活性化充放電を行なった後に3C−3C充放電サイクルを行なった。活性化充放電及び3C−3C充放電における試験条件はそれぞれ以下のとおりである。
(Charge / discharge cycle characteristics test)
About the test battery produced as mentioned above, the charging / discharging cycle test was done and the transition of the charging / discharging characteristic by cycling progress was measured. In this charge / discharge cycle test, the activation charge / discharge was performed first, and then the 3C-3C charge / discharge cycle was performed. The test conditions in activation charge / discharge and 3C-3C charge / discharge are as follows.

(活性化充放電)
充電:定電流0.2C(定格容量の100%まで充電)5サイクル
放電:定電流0.2C(放電終止電圧0.8V)5サイクル
充電:定電流0.5C(定格充電容量の100%まで充電)5サイクル
放電:定電流0.5C(放電終止電圧0.8V)5サイクル
充電:定電流1.0C(定格充電容量の100%まで充電)30サイクル
放電:定電流1.0C(放電終止電圧0.8V)30サイクル
(充放電)
充電:定電流3.0C(定格充電容量の100%まで充電)
放電:定電流3.0C(放電終止電圧1.0V)
(Activated charge / discharge)
Charging: Constant current 0.2C (charging to 100% of rated capacity) 5-cycle discharging: Constant current 0.2C (discharging final voltage 0.8V) 5-cycle charging: Constant current 0.5C (up to 100% of rated charging capacity) Charge) 5-cycle discharge: constant current 0.5 C (discharge end voltage 0.8 V) 5-cycle charge: constant current 1.0 C (charge to 100% of rated charge capacity) 30-cycle discharge: constant current 1.0 C (discharge end) Voltage 0.8V) 30 cycles (charge / discharge)
Charging: Constant current 3.0C (charge to 100% of rated charge capacity)
Discharge: constant current 3.0C (discharge end voltage 1.0V)

充放電サイクル特性試験は、2000サイクル充放電した後の利用率で評価を行なった。図1に、一例として、実施例1と比較例1とについて、充放電サイクル特性試験の結果を示す。利用率は、以下の式で表される。
利用率(%)=放電容量(mAh)/理論電池容量(mAh)×100
80〜100%:極めて良好(◎)
60〜80% :良好(○)
50〜60% :比較的良好(△)
〜50% :不良(×)
The charge / discharge cycle characteristic test was evaluated based on the utilization rate after 2000 cycles of charge / discharge. FIG. 1 shows the results of a charge / discharge cycle characteristic test for Example 1 and Comparative Example 1 as an example. The utilization rate is expressed by the following formula.
Utilization rate (%) = discharge capacity (mAh) / theoretical battery capacity (mAh) × 100
80 to 100%: very good (◎)
60 to 80%: Good (◯)
50-60%: relatively good (△)
-50%: Defect (x)

(急速充放電特性試験)
急速充放電特性試験は最初に活性化充放電を行なった後に10C−10C充放電サイクルを行なった。活性化充放電及び10C−10C高速充放電における試験条件はそれぞれ以下のとおりである。
(Rapid charge / discharge characteristics test)
In the rapid charge / discharge characteristic test, activation charge / discharge was first performed, and then a 10C-10C charge / discharge cycle was performed. The test conditions in activation charge / discharge and 10C-10C high-speed charge / discharge are as follows.

(活性化充放電)
充電:定電流0.2C(定格充電容量の100%まで充電)5サイクル
放電:定電流0.2C(放電終止電圧0.8V)5サイクル
充電:定電流0.5C(定格充電容量の100%まで充電)5サイクル
放電:定電流0.5C(放電終止電圧0.8V)5サイクル
充電:定電流1.0C(定格充電容量の100%まで充電)30サイクル
放電:定電流1.0C(放電終止電圧0.8V)30サイクル
充電:定電流3.0C(定格充電容量の100%まで充電)50サイクル
放電:定電流3.0C(放電終止電圧0.8V)50サイクル
(充放電)
充電:定電流10.0C(定格充電容量の100%まで充電)
充電:定電流10.0C(放電終止電圧1.0V)
(Activated charge / discharge)
Charging: Constant current 0.2C (charging up to 100% of the rated charging capacity) 5-cycle discharging: Constant current 0.2C (discharging end voltage 0.8V) 5-cycle charging: Constant current 0.5C (100% of the rated charging capacity) 5 cycle discharge: constant current 0.5C (discharge end voltage 0.8V) 5 cycle charge: constant current 1.0C (charge to 100% of rated charge capacity) 30 cycle discharge: constant current 1.0C (discharge) 30-cycle charge: constant current 3.0C (charge to 100% of rated charge capacity) 50-cycle discharge: constant current 3.0C (discharge final voltage 0.8V) 50 cycles (charge / discharge)
Charging: Constant current 10.0C (charging to 100% of rated charging capacity)
Charging: Constant current 10.0C (end-of-discharge voltage 1.0V)

高速充放電特性試験は、500サイクル充放電した後の利用率で評価を行なった。
80〜100%:極めて良好(◎)
60〜80% :良好(○)
50〜60% :比較的良好(△)
〜50% :不良(×)
The high-speed charge / discharge characteristic test was evaluated based on the utilization rate after 500 cycles of charge / discharge.
80 to 100%: very good (◎)
60 to 80%: Good (◯)
50-60%: relatively good (△)
-50%: Defect (x)

[実施例2〜13]、[比較例1〜5]
表3に示すようにプライマー組成物製造例及び、正極用のポリマーエマルション合成例の組み合せを変えた以外は実施例1と同様にして、ニッケル水素二次電池正極を得て、実施例1と同様に評価した。
[Examples 2 to 13], [Comparative Examples 1 to 5]
As shown in Table 3, a nickel-hydrogen secondary battery positive electrode was obtained in the same manner as in Example 1 except that the combination of the primer composition production example and the polymer emulsion synthesis example for the positive electrode was changed. Evaluated.

[実施例14]
正極活物質として水酸化ニッケルZD(非コバルトコート品、田中化学研究所(株)製)45部、導電材料としてカーボンブラック(a)分散体を50部、バインダーとして合成例1で得られたポリマーエマルション12.5部、イオン交換水10部を混合して、正極用合材インキを作製した。その際の粘度は4000mPa・sであった。その後、実施例1と同様にして、ニッケル水素二次電池正極を得て、実施例1と同様に評価した。
[Example 14]
45 parts of nickel hydroxide ZD (non-cobalt coated product, manufactured by Tanaka Chemical Research Co., Ltd.) as positive electrode active material, 50 parts of carbon black (a) dispersion as conductive material, polymer obtained in Synthesis Example 1 as binder 12.5 parts of emulsion and 10 parts of ion-exchanged water were mixed to prepare a positive electrode mixture ink. The viscosity at that time was 4000 mPa · s. Thereafter, in the same manner as in Example 1, a nickel metal hydride secondary battery positive electrode was obtained and evaluated in the same manner as in Example 1.

Figure 2014035900
Figure 2014035900

表3及び図1に示すように、本発明のニッケル水素二次電池正極を用いた場合、形成される下地層の表面が平滑なため合材層との接触抵抗が低下し、良好な電池充放電保存特性が得られると考えられる。   As shown in Table 3 and FIG. 1, when the nickel-metal hydride secondary battery positive electrode of the present invention is used, the surface of the base layer formed is smooth, so that the contact resistance with the composite layer decreases, and the battery charge is excellent. It is considered that the discharge storage characteristics can be obtained.

特に、実施例1〜3では、ポリマーエマルションの電解液耐性が良好なため、形成される電極の電解液耐性が向上し、充放電サイクル特性及び高速充放電特性が非常に優れていると考えられる。   In particular, in Examples 1 to 3, since the electrolytic solution resistance of the polymer emulsion is good, the electrolytic solution resistance of the formed electrode is improved, and the charge / discharge cycle characteristics and the high-speed charge / discharge characteristics are considered to be very excellent. .

さらに、実施例14では、非コバルトコート品の水酸化ニッケルZDを用いても、下地層の接触抵抗の低減効果により、充放電サイクル特性及び高速充放電特性が良好であると考えられる。   Furthermore, in Example 14, even when nickel hydroxide ZD, which is a non-cobalt-coated product, is used, it is considered that charge / discharge cycle characteristics and high-speed charge / discharge characteristics are good due to the effect of reducing the contact resistance of the underlayer.

一方、比較例1では、プライマー組成物を用いないでニッケル水素二次電池正極を形成しているため、正極の導電性が低く、充分な充放電サイクル特性及び高速充放電が得られないと考えられる。   On the other hand, in Comparative Example 1, since the nickel hydride secondary battery positive electrode was formed without using the primer composition, the positive electrode had low conductivity, and sufficient charge / discharge cycle characteristics and high-speed charge / discharge were not obtained. It is done.

また、比較例2では、用いる葉状黒鉛粒子の粒子径が大きいため、黒鉛粒子の分散が充分に行なえず、得られる下地層の表面の平滑性が維持できず、密着性が低下し、その結果充分な電池充放電特性及び高速充放電が得られないと考えられる。   Moreover, in Comparative Example 2, since the particle size of the foliar graphite particles used is large, the graphite particles cannot be sufficiently dispersed, the surface smoothness of the resulting underlayer cannot be maintained, and the adhesion is deteriorated. It is considered that sufficient battery charge / discharge characteristics and high-speed charge / discharge cannot be obtained.

また、比較例3に示すように、葉状黒鉛以外の黒鉛粒子を用いた場合、形成される下地層の表面の平滑性が維持できず、密着性が低下し、その結果十分な電池充放電特性及び高速充放電特性が得られないと考えられる。   In addition, as shown in Comparative Example 3, when graphite particles other than foliar graphite are used, the smoothness of the surface of the underlying layer to be formed cannot be maintained, and the adhesion is deteriorated, resulting in sufficient battery charge / discharge characteristics. In addition, it is considered that high-speed charge / discharge characteristics cannot be obtained.

また、比較例4では、黒鉛粒子を用いないでプライマー組成物を作製しているため、得られる下地層の表面が荒れているため合材層との電気抵抗が増大すると考えられる。   Moreover, in Comparative Example 4, since the primer composition was prepared without using graphite particles, the surface of the obtained underlayer was rough, so that the electrical resistance with the composite layer is considered to increase.

さらに、比較例5では、カーボンブラックを用いないでプライマー組成物を作製しているため、得られる下地層の黒鉛粒子同士に空隙が発生し、密着性も低く、導電ネットワークが十分でない。その結果、電池充放電特性及び高速充放電が低下すると考えられる。   Furthermore, in Comparative Example 5, since the primer composition was prepared without using carbon black, voids were generated between the graphite particles of the obtained underlayer, the adhesion was low, and the conductive network was not sufficient. As a result, it is considered that battery charge / discharge characteristics and high-speed charge / discharge are reduced.

Claims (10)

二次元構造集電体を備えたニッケル水素二次電池正極用のプライマー組成物であって、
平均粒子径1〜50μmの葉状黒鉛粒子(A)と、
平均粒子径0.01〜0.3μmのカーボンブラック(B)と、
水系樹脂(C)と、を含有することを特徴とするプライマー組成物。
A primer composition for a nickel metal hydride secondary battery positive electrode provided with a two-dimensional structure current collector,
Foliated graphite particles (A) having an average particle diameter of 1 to 50 μm,
Carbon black (B) having an average particle diameter of 0.01 to 0.3 μm;
A primer composition comprising an aqueous resin (C).
葉状黒鉛粒子(A)、カーボンブラック(B)の合計100重量%中、葉状黒鉛粒子(A)の割合が60〜99重量%、カーボンブラック(B)の割合が1〜40重量%であることを特徴とする請求項1記載のプライマー組成物。   Among the total 100% by weight of foliar graphite particles (A) and carbon black (B), the proportion of foliar graphite particles (A) is 60 to 99% by weight and the proportion of carbon black (B) is 1 to 40% by weight. The primer composition according to claim 1. 請求項1又は2記載のプライマー組成物から構成される下地層と、
ニッケルメッキ鋼鈑からなり、前記下地層が形成された二次元構造集電体と、
前記下地層上に形成された合材層と、を備えたニッケル水素二次電池正極。
An underlayer composed of the primer composition according to claim 1 or 2,
A two-dimensional structure current collector made of a nickel-plated steel plate and having the underlayer formed thereon;
A nickel-metal hydride secondary battery positive electrode comprising: a composite material layer formed on the underlayer.
前記下地層の厚みが0.1〜20μmであることを特徴とする請求項3記載のニッケル水素二次電池正極。   The nickel-hydrogen secondary battery positive electrode according to claim 3, wherein a thickness of the underlayer is 0.1 to 20 μm. 前記合材層が、
乳化重合して得られるポリマーエマルション(D)と、
活物質と、
導電材料と、を含むことを特徴とする請求項3又は4記載のニッケル水素二次電池正極。
The composite layer is
A polymer emulsion (D) obtained by emulsion polymerization;
Active material,
The nickel metal hydride secondary battery positive electrode according to claim 3, comprising a conductive material.
前記活物質が水酸化ニッケルであることを特徴とする請求項5記載のニッケル水素二次電池正極。   The nickel-hydrogen secondary battery positive electrode according to claim 5, wherein the active material is nickel hydroxide. 前記水酸化ニッケルの表面が、オキシ水酸化コバルト及び水酸化コバルトの少なくとも一方により被覆されたことを特徴とする請求項6記載のニッケル水素二次電池正極。   The nickel-hydride secondary battery positive electrode according to claim 6, wherein the surface of the nickel hydroxide is coated with at least one of cobalt oxyhydroxide and cobalt hydroxide. 前記ポリマーエマルション(D)が、ガラス転移温度−40〜20℃のアクリル系ポリマーエマルションであることを特徴とする請求項5記載のニッケル水素二次電池正極。   The nickel-hydrogen secondary battery positive electrode according to claim 5, wherein the polymer emulsion (D) is an acrylic polymer emulsion having a glass transition temperature of -40 to 20 ° C. 前記ポリマーエマルション(D)が、
水和性官能基を含有する第1のモノマー(d−1)1〜5重量%と、
芳香環を含有する第2のモノマー(d−2)20〜60重量%と、
水和性官能基及び芳香環を含有しない第3のモノマー(d−3)35〜79重量%と、を含むモノマー群を、乳化重合して得られることを特徴とする請求項5又は8記載のニッケル水素二次電池正極。
The polymer emulsion (D)
1 to 5% by weight of a first monomer (d-1) containing a hydratable functional group;
20 to 60% by weight of the second monomer (d-2) containing an aromatic ring;
9. The monomer group containing 35% to 79% by weight of a third monomer (d-3) that does not contain a hydratable functional group and an aromatic ring, and is obtained by emulsion polymerization. Nickel metal hydride secondary battery positive electrode.
プライマー組成物を二次元構造集電体上に塗工することにより下地層を形成する工程と、
乳化重合して得られるポリマーエマルション(D)と、活物質と、導電材料とを含む合材インキを前記下地層上に塗工することにより合材層を形成する工程と、を備え、
前記プライマー組成物に、
平均粒子径1〜50μmの葉状黒鉛粒子(A)と、
平均粒子径0.01〜0.3μmのカーボンブラック(B)と、
水系樹脂(C)と、を含有させ、
前記下地層の目付け量を0.0001〜0.01g/cmとし、
前記合材層の目付け量を0.001〜0.1g/cmとすることを特徴とするニッケル水素電池用正極の製造方法。
Forming a primer layer by coating the primer composition on the two-dimensional structure current collector;
A step of forming a composite material layer by coating a polymer emulsion (D) obtained by emulsion polymerization, an active material, and a composite ink containing a conductive material on the base layer,
In the primer composition,
Foliated graphite particles (A) having an average particle diameter of 1 to 50 μm,
Carbon black (B) having an average particle diameter of 0.01 to 0.3 μm;
An aqueous resin (C),
The basis weight of the base layer is 0.0001 to 0.01 g / cm 2 ,
A method for producing a positive electrode for a nickel metal hydride battery, characterized in that the basis weight of the composite layer is 0.001 to 0.1 g / cm 2 .
JP2012176799A 2012-08-09 2012-08-09 Primer composition, nickel metal hydride secondary battery positive electrode and method for producing the same Active JP6105224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176799A JP6105224B2 (en) 2012-08-09 2012-08-09 Primer composition, nickel metal hydride secondary battery positive electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176799A JP6105224B2 (en) 2012-08-09 2012-08-09 Primer composition, nickel metal hydride secondary battery positive electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014035900A true JP2014035900A (en) 2014-02-24
JP6105224B2 JP6105224B2 (en) 2017-03-29

Family

ID=50284784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176799A Active JP6105224B2 (en) 2012-08-09 2012-08-09 Primer composition, nickel metal hydride secondary battery positive electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP6105224B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147226A1 (en) * 2017-02-08 2018-08-16 凸版印刷株式会社 Positive electrode for alkali secondary battery and alkali secondary battery
WO2019131771A1 (en) * 2017-12-26 2019-07-04 株式会社大阪ソーダ Binder for electrodes, electrode and electricity storage device
JP2019160518A (en) * 2018-03-12 2019-09-19 凸版印刷株式会社 Alkaline secondary battery positive electrode and alkaline secondary battery
JP2020533771A (en) * 2017-09-15 2020-11-19 エルジー・ケム・リミテッド Silicon electrode binder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158327A (en) * 2010-01-29 2011-08-18 Beckman Coulter Inc Analyzer, and analyzing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257416A (en) * 2002-03-04 2003-09-12 Mitsubishi Cable Ind Ltd Positive electrode for lithium ion secondary battery and lithium ion secondary battery using this positive electrode
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode
JP2010049872A (en) * 2008-08-20 2010-03-04 Toyo Ink Mfg Co Ltd Composition for battery
JP2010108821A (en) * 2008-10-31 2010-05-13 Kawasaki Heavy Ind Ltd Electrode for alkaline storage battery, and alkaline storage battery with the same
WO2011002014A1 (en) * 2009-06-30 2011-01-06 日本ゼオン株式会社 Positive electrode for secondary batterys, and secondary battery
JP2012015297A (en) * 2010-06-30 2012-01-19 Dynic Corp Electrode for electrochemical element, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257416A (en) * 2002-03-04 2003-09-12 Mitsubishi Cable Ind Ltd Positive electrode for lithium ion secondary battery and lithium ion secondary battery using this positive electrode
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode
JP2010049872A (en) * 2008-08-20 2010-03-04 Toyo Ink Mfg Co Ltd Composition for battery
JP2010108821A (en) * 2008-10-31 2010-05-13 Kawasaki Heavy Ind Ltd Electrode for alkaline storage battery, and alkaline storage battery with the same
WO2011002014A1 (en) * 2009-06-30 2011-01-06 日本ゼオン株式会社 Positive electrode for secondary batterys, and secondary battery
JP2012015297A (en) * 2010-06-30 2012-01-19 Dynic Corp Electrode for electrochemical element, and manufacturing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147226A1 (en) * 2017-02-08 2018-08-16 凸版印刷株式会社 Positive electrode for alkali secondary battery and alkali secondary battery
US11581528B2 (en) 2017-02-08 2023-02-14 Toppan Printing Co., Ltd. Positive electrode for alkaline secondary battery and alkaline secondary battery
JP7080188B2 (en) 2017-02-08 2022-06-03 凸版印刷株式会社 Positive electrode for alkaline secondary battery and alkaline secondary battery
CN110268559A (en) * 2017-02-08 2019-09-20 凸版印刷株式会社 Alkaline secondary cell anode and alkaline secondary cell
JPWO2018147226A1 (en) * 2017-02-08 2019-11-21 凸版印刷株式会社 Positive electrode for alkaline secondary battery and alkaline secondary battery
JP2020533771A (en) * 2017-09-15 2020-11-19 エルジー・ケム・リミテッド Silicon electrode binder
JP7062160B2 (en) 2017-09-15 2022-05-06 エルジー エナジー ソリューション リミテッド Silicon electrode binder
US11611080B2 (en) 2017-09-15 2023-03-21 Lg Energy Solution, Ltd. Silicon electrode binder
CN111566858A (en) * 2017-12-26 2020-08-21 株式会社大阪曹達 Binder for electrode, and electricity storage device
JPWO2019131771A1 (en) * 2017-12-26 2020-12-24 株式会社大阪ソーダ Binders for electrodes, electrodes, and power storage devices
WO2019131771A1 (en) * 2017-12-26 2019-07-04 株式会社大阪ソーダ Binder for electrodes, electrode and electricity storage device
CN111566858B (en) * 2017-12-26 2023-11-21 株式会社大阪曹達 Binder for electrode, and electricity storage device
JP7497979B2 (en) 2017-12-26 2024-06-11 株式会社大阪ソーダ Electrode binder, electrode, and power storage device
JP7040966B2 (en) 2018-03-12 2022-03-23 凸版印刷株式会社 Positive electrode for alkaline secondary battery and alkaline secondary battery
JP2019160518A (en) * 2018-03-12 2019-09-19 凸版印刷株式会社 Alkaline secondary battery positive electrode and alkaline secondary battery

Also Published As

Publication number Publication date
JP6105224B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
EP2988351B1 (en) Conductive composition, conductive composition for forming base layer, collector with base layer for use in power storage device, electrode for use in power storage device, and power storage device
JP6109525B2 (en) Emulsion binder for forming nickel-metal hydride secondary battery electrode and composite ink for forming nickel-hydrogen secondary battery electrode
JP6539978B2 (en) CONDUCTIVE COMPOSITION, ELECTRODE FOR STORAGE DEVICE, AND STORAGE DEVICE
JP5954322B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP5891974B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
EP2811550B1 (en) Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
JP2014194927A (en) Mixture slurry and production method thereof, and electrode and battery using the mixture slurry
JP6105224B2 (en) Primer composition, nickel metal hydride secondary battery positive electrode and method for producing the same
JP5900111B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP6275307B1 (en) Aqueous electrode coating liquid and use thereof
WO2014129313A1 (en) Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device
US20150353780A1 (en) Method for manufacturing electroconductive adhesive composition for electrochemical device eletrode
JP2014135275A (en) Composition for forming electricity storage device electrode, electricity storage device electrode, and electricity storage device
JP6044300B2 (en) Non-aqueous secondary battery electrode forming conductive primer composition, non-aqueous secondary battery electrode using the same, and non-aqueous secondary battery
JP7080188B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JP7040966B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
CN115084528A (en) Preparation method and application of carbon-coated metal foil
JP6014472B2 (en) Nickel-metal hydride secondary battery foil-shaped current collector positive electrode composite ink
US11670758B2 (en) Negative-electrode composition for alkaline secondary batteries, and alkaline secondary battery negative electrode
JP2022167301A (en) Positive electrode for lithium ion secondary battery
JP7021918B2 (en) Negative electrode for alkaline secondary battery
JP2019117725A (en) Conductive composition, power collector with ground layer for electricity storage device, electrode for electricity storage device, and electricity storage device
JP6211752B2 (en) Binder resin composition for nickel metal hydride secondary battery electrode and composite ink containing the same
JP2022174846A (en) Lithium-ion secondary battery positive electrode paste

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170302

R150 Certificate of patent or registration of utility model

Ref document number: 6105224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350