WO2014010681A1 - Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component - Google Patents

Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component Download PDF

Info

Publication number
WO2014010681A1
WO2014010681A1 PCT/JP2013/069008 JP2013069008W WO2014010681A1 WO 2014010681 A1 WO2014010681 A1 WO 2014010681A1 JP 2013069008 W JP2013069008 W JP 2013069008W WO 2014010681 A1 WO2014010681 A1 WO 2014010681A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
current collector
resin layer
electrode structure
Prior art date
Application number
PCT/JP2013/069008
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 治
泰正 盛島
貴和 伊藤
英和 原
恭宏 飯田
片岡 次雄
光哉 井上
郷史 山部
幸翁 本川
聡平 斉藤
起郭 八重樫
Original Assignee
古河電気工業株式会社
日本製箔株式会社
古河スカイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 日本製箔株式会社, 古河スカイ株式会社 filed Critical 古河電気工業株式会社
Priority to CN201380036476.4A priority Critical patent/CN104428929B/en
Priority to KR1020157004063A priority patent/KR20150032335A/en
Priority to EP13816526.1A priority patent/EP2874213B1/en
Priority to JP2014524872A priority patent/JPWO2014010681A1/en
Priority to US14/414,422 priority patent/US20150294802A1/en
Publication of WO2014010681A1 publication Critical patent/WO2014010681A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a current collector, an electrode structure, a nonaqueous electrolyte battery, or a power storage component.
  • lithium battery Due to the high energy density, the use of lithium batteries in electronic devices such as mobile phones and laptop computers is expanding.
  • lithium cobaltate, lithium manganate, lithium iron phosphate and the like are used as the positive electrode active material, and graphite is used as the negative electrode active material.
  • a lithium battery is generally composed of an electrode made of these active materials, a separator that is a porous sheet, and an electrolyte solution in which a lithium salt is dissolved.
  • Such a lithium secondary battery has a high battery capacity and output, good charge / discharge characteristics, and a relatively long service life.
  • Lithium batteries have the advantage of high energy density, but have a problem with safety because they use non-aqueous electrolyte.
  • the non-aqueous electrolyte since the non-aqueous electrolyte is included, the components of the non-aqueous electrolyte are decomposed as the heat is generated, so that the internal pressure increases and the battery may swell.
  • problems such as heat generation may occur.
  • problems such as heat generation may occur due to the occurrence of an internal short circuit.
  • the method in which the PTC element is attached to the positive electrode cap portion has a problem that an increase in the short circuit current cannot be suppressed when an internal short circuit occurs and the temperature rises.
  • the separator incorporated in the lithium battery has a function of suppressing an increase in the short-circuit current by closing the pores of the separator by melting the resin at the time of abnormal heat generation and decreasing the ionic conductivity. .
  • the separator at a location away from the heat generating portion does not always melt, and there is a possibility that a short circuit may occur due to the separator contracting due to heat.
  • the means for preventing heat generation due to internal short circuit still leaves room for improvement.
  • Patent Document 1 a CC foil (carbon coat) having a PTC function in which a resin layer to which conductive particles are added using a fluororesin or an olefin resin as a binder is formed on a conductive substrate. Foil) has been proposed.
  • Patent Document 2 discloses a PTC layer in which carbon black is added to a polymer (for example, polyethylene).
  • Patent Document 3 discloses a resin layer composed of a CC layer (carbon coat layer) having a surface roughness Ra (arithmetic mean roughness) of 0.5 to 1.0 ⁇ m.
  • the expression of the PTC function is due to the thermal expansion of the binder resin.
  • the capacity of the battery or the power storage component is increased, there is no room for thermal expansion of the PTC layer or the resin layer because the amount of the active material is increased and the density of the active material layer is also increased.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a current collector having a PTC layer having room for thermal expansion at the time of temperature rise while ensuring sufficient conductivity at a normal temperature.
  • surface of the electroconductive base material is provided.
  • the resin layer includes an organic resin and conductive particles.
  • the amount of the resin layer deposited on the conductive substrate is 0.5 to 20 g / m 2 .
  • Rz (ten-point average roughness) of the surface of the resin layer is 0.4 to 10 ⁇ m.
  • the Sm (average interval of irregularities) on the surface of the resin layer is 5 to 200 ⁇ m.
  • the average resistance of the resin layer measured by the two-terminal method is 0.5 to 50 ⁇ .
  • an electrode structure comprising the above-described current collector and an active material layer or an electrode material layer provided on the resin layer of the current collector.
  • this electrode structure includes the above-described current collector, sufficient conductivity can be ensured during normal operation, and a sufficient safety function can be achieved during an internal short circuit.
  • a nonaqueous electrolyte battery or a power storage component comprising the above current collector and an active material layer or an electrode material layer provided on the resin layer of the current collector. Is done.
  • this non-aqueous electrolyte battery or power storage component includes the above-described current collector, sufficient conductivity can be ensured during normal operation, and a sufficient safety function can be achieved during an internal short circuit.
  • FIG. 1 is a cross-sectional view showing the structure of the electrode structure according to the embodiment.
  • the electrode structure 110 of this embodiment includes a current collector 100.
  • the current collector 100 includes a conductive substrate 102 and a resin layer 103 provided on at least one surface of the conductive substrate 102.
  • the electrode structure 110 of the present embodiment further includes an active material layer (or electrode material layer) 105 provided on the resin layer 103 of the current collector 100.
  • the resin layer 103 has a roughened surface 109 as will be described later.
  • FIG. 2 is a cross-sectional view for explaining problems of an electrode structure having a conventional PTC layer.
  • the electrode structure 210 having the conventional PTC layer 203 if the conductive paths 211 are too small, there is a problem that the resistance at the normal temperature is too high and the output characteristics of the battery or the power storage component are deteriorated.
  • the conductive path 211 is easily cut when the binder resin 207 of the PTC layer 203 is thermally expanded (when the film thickness of the PTC layer 203 is increased). In addition, it provides a sufficient safety function when an internal short circuit occurs. However, there is a problem that the resistance of the PTC layer 203 at room temperature is too high and sufficient conduction cannot be obtained between the conductive base material 202 and the active material layer 205.
  • FIG. 3 is a cross-sectional view for explaining problems of an electrode structure having a conventional PTC layer.
  • the electrode structure 310 including the conventional PTC layer 303 when the conductive paths 311 are formed densely and the conductivity is increased more than necessary, there are few conductive paths 311 that are cut even when the binder resin 307 expands and melts. There is.
  • the PTC function is manifested by thermal expansion of the binder resin.
  • the capacity of the battery or the power storage component is increased, there is a problem that there is no room for thermal expansion of the PTC layer because the amount of the active material is increased and the density of the active material layer is increased.
  • FIG. 4 is a cross-sectional view for explaining a difference between the electrode structure according to the embodiment and a conventional electrode structure including a PTC layer.
  • the electrode structure 110 according to the present embodiment includes the conductive substrate 102 and the resin layer 103 provided on at least one surface of the conductive substrate 102.
  • the resin layer 103 has a roughened surface 109 as will be described later.
  • the electrode structure 110 of the present embodiment further includes an active material layer (or electrode material layer) 105 provided on the resin layer 103.
  • the active material layer 105 includes an active material 121, a conductive material 123, and a binder 125.
  • the resin layer 103 includes an organic resin 107 and conductive particles 111.
  • the amount of the resin layer 103 attached to the conductive substrate 102 is 0.5 to 20 g / m 2 .
  • the Rz (ten-point average roughness) of the roughened surface 109 of the resin layer 103 is 0.4 to 10 ⁇ m.
  • the Sm (average interval of unevenness) of the roughened surface 109 of the resin layer 103 is 5 to 200 ⁇ m.
  • the average resistance of the resin layer 103 measured by the two-terminal method is 0.5 to 50 ⁇ .
  • FIG. 5 is a cross-sectional view illustrating a mechanism in which the resistance of the PTC layer of the electrode structure according to the embodiment rapidly increases.
  • this electrode structure 110 when used, when the temperature in the nonaqueous electrolyte battery or the power storage component reaches the vicinity of the melting point of the organic resin 107, the organic resin 107 expands in volume and is dispersed in the resin layer 103. The conductivity is lowered because the contact between the particles 111 is peeled off.
  • the electrode structure 110 of this embodiment has the resin layer 103 which has the special roughening surface 109, it is in securing moderate space on the resin layer 103 surface as a room of thermal expansion of the resin layer 103. Has succeeded. Therefore, even if the volume change at the time of melting of the organic resin 107 is large, it can be thermally expanded without any problem, and good PTC characteristics can be obtained. That is, when the internal temperature of the nonaqueous electrolyte battery or the power storage component reaches the vicinity of the melting point of the organic resin 107 due to heat generated when the nonaqueous electrolyte battery or the power storage component is overcharged, the resistance of the resin layer 103 rapidly rises and becomes conductive.
  • the electric current between the conductive substrate 102 and the active material layer 105 is interrupted. Therefore, if this electrode structure 110 is used, a sufficient safety function can be exhibited at the time of an internal short circuit of the nonaqueous electrolyte battery or the power storage component.
  • the electrode structure 110 that simultaneously exhibits a good balance between the two effects of ensuring sufficient electrical conductivity at normal temperatures and having room for thermal expansion when the temperature rises. These two effects are difficult to achieve at the same time in the conventional electrode structures 210 and 310 described with reference to FIGS.
  • the electrode structure 110 of the present embodiment since the electrode structure 110 of the present embodiment has the resin layer 103 having the special roughened surface 109, it has succeeded in satisfying these two conflicting effects at the same time.
  • various metal foils for nonaqueous electrolyte batteries or power storage components can be used.
  • various metal foils for the positive electrode and the negative electrode can be used.
  • aluminum, copper, stainless steel, nickel and the like can be used.
  • aluminum and copper are preferable from the balance between high conductivity and cost.
  • aluminum means aluminum and an aluminum alloy
  • copper means pure copper and a copper alloy.
  • the aluminum foil can be used on the secondary battery positive electrode side, the secondary battery negative electrode side or the electric double layer capacitor electrode, and the copper foil can be used on the secondary battery negative electrode side.
  • A1085 material which is a pure aluminum type, and A3003 material can be used.
  • A1085 material which is a pure aluminum type can be used.
  • copper foil is the same also as copper foil, although it does not specifically limit, Rolled copper foil and electrolytic copper foil are used preferably.
  • the thickness of the conductive substrate 102 is not particularly limited, but is preferably 5 ⁇ m or more and 50 ⁇ m or less. If the thickness is less than 5 ⁇ m, the strength of the foil may be insufficient and it may be difficult to form the conductive substrate 102 or the like. On the other hand, if it exceeds 50 ⁇ m, the other constituent elements, particularly the active material layer 105 or the electrode material layer, must be thinned. In particular, when the power storage component such as a nonaqueous electrolyte battery or a power storage component is used, the active material layer In some cases, the thickness of 105 must be reduced, and a necessary and sufficient capacity cannot be obtained.
  • the resin layer 103 of the present embodiment is a PTC (Positive temperature coefficient) layer including an organic resin 107 and conductive particles 111 laminated on the surface of the conductive substrate 102.
  • PTC Positive temperature coefficient
  • the adhesion amount of the resin layer 103 of the present embodiment on the conductive substrate 102 is 0.5 to 20 g / m 2 . If it is less than 0.5 g / m ⁇ 2 >, an uncoated part will generate
  • the adhesion amount of the resin layer 103 may be, for example, 0.5, 1, 2, 5 , 10, 15, 20 g / m 2 , and is within a range between any two of the numerical values exemplified here. May be.
  • the Rz (ten-point average roughness) of the roughened surface 109 of the resin layer 103 of the present embodiment is 0.4 to 10 ⁇ m. If Rz is less than 0.4 ⁇ m, there is insufficient room for thermal expansion. When Rz exceeds 10 ⁇ m, the contact with the active material layer 105 is poor, and the contact battery performance or the contact storage performance is insufficient.
  • Rz of the resin layer 103 may be 0.4, 0.7, 1, 2, 5, 10 ⁇ m, for example, or may be within a range between any two of the numerical values exemplified here.
  • Sm (average interval of irregularities) of the roughened surface 109 of the resin layer 103 of the present embodiment is preferably 5 to 200 ⁇ m. If Sm is less than 5 ⁇ m, there is insufficient room for thermal expansion. If Sm exceeds 200 ⁇ m, the surface shape is too flat and there is insufficient room for thermal expansion.
  • the Sm of the resin layer 103 may be, for example, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 ⁇ m, and is exemplified here. It may be within a range between any two of the numerical values.
  • the average resistance measured by the two-terminal method of the resin layer 103 of this embodiment is 0.5 to 50 ⁇ . If the average resistance is within this range, it is possible to avoid the problem that the conductive path is cut off due to the expansion of the organic resin 107 due to the temperature rise in the temperature range lower than the temperature to be shut down, and the conductive path can be connected at the last minute. .
  • the initial resistance of the resin layer 103 is a resistance value measured by Mitsubishi Analitech's resistivity meter Loresta EP (two-terminal method) (measured from above the resin layer 103 formed on the conductive base material 102) of 0.5 to 50 ⁇ . If it is. If it is less than 0.5 ⁇ , the resistance rise at the time of temperature rise is insufficient. When it exceeds 50 ⁇ , the performance as a battery or a storage battery is insufficient.
  • the resin used as the organic resin 107 of the resin layer 103 is not particularly limited, but is selected from the group consisting of a fluorine resin, an olefin resin, an epoxy resin, an acrylic resin, a polyester resin, and a urethane resin. More than seeds can be used. Among these, it is particularly preferable to use a fluorine resin or an olefin resin.
  • the fluorine-based resin used as the organic resin 107 of the resin layer 103 is a resin containing a fluorine resin as a resin component, and may be composed of only a fluorine resin. It may contain a resin.
  • the fluororesin is a resin containing fluorine, such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • Fluororesins such as coalescence (FEP), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-ethylene copolymer (ETFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF);
  • FEP coalescence
  • PCTFE polychlorotrifluoroethylene
  • ETFE tetrafluoroethylene-ethylene copolymer
  • ECTFE chlorotrifluoroethylene-ethylene copolymer
  • PVF polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • the fluororesin can be used in an amount of 100% by mass when the entire resin component is 100% by mass, but can also be used in combination with other resin components. It is preferable to contain 40 mass% or more normally with respect to all the resin components, Preferably it contains 50 mass% or more. This is because if the blending amount of the fluororesin is too small, control of the conductive particles described later will not be successful, and it will be difficult to reliably combine a shutdown function and excellent high rate characteristics.
  • the ratio of the fluororesin is, for example, 40, 50, 60, 70, 80, 90, 100% by mass, and may be within the range of any two numerical values exemplified here.
  • the weight average molecular weight of the fluororesin is, for example, 30,000 to 1,000,000, specifically, for example, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000, 150,000. , 200,000, 300,000, 400,000, 500,000, 700,000, 800,000, 900,000, 1 million, and may be in the range between any two of the numerical values exemplified here.
  • a weight average molecular weight means what was measured by GPC (gel permeation chromatograph).
  • the fluororesin preferably has a carboxyl group or a carboxylic ester group (hereinafter simply referred to as “ester group”). This is because the adhesion between the conductive substrate 102 and the resin layer 103 can be improved. Further, when the fluororesin has an ester group, the adhesion between the fluororesin and conductive particles (eg, carbon particles) is improved.
  • the fluororesin has a carboxyl group (—COOH) or an ester group (—COOR, R is, for example, a hydrocarbon having 1 to 5 carbon atoms) is not particularly limited.
  • the fluororesin is a carboxyl group or an ester. It may be a copolymer of a monomer having a group and a monomer containing fluorine, and the fluororesin may be a mixture of a fluororesin and a resin having a carboxyl group or an ester group. The resin may be modified with a compound having a carboxyl group or an ester group.
  • the method for modifying the fluororesin is not particularly limited, but in one example, as disclosed in JP-A-2002-304997, radiation is emitted to the fluororesin to desorb fluorine atoms to generate radicals. And the method of graft-polymerizing the compound which has a carboxyl group or an ester group on a fluororesin by mixing a fluororesin and the compound which has a carboxyl group or an ester group in that state is mentioned.
  • the value of the ratio of the number of carboxyl groups or ester groups to the number of fluorine atoms in the fluorine-based resin is not particularly limited, but is, for example, 0.1 to 5, and preferably 0.5 to 2.
  • this ratio is specifically, for example, 0.1, 0.2, 0.5, 1, 1.5, 2, 3, 4, 5, and between any two of the numerical values exemplified here. It may be within the range.
  • the monomer (or compound) having a carboxyl group or an ester group include acrylic acid, methacrylic acid, and esters thereof (eg, methyl methacrylate).
  • the olefin resin used as the organic resin 107 of the resin layer 103 is a resin containing an olefin resin as a resin component, and may be composed of only an olefin resin. It may contain a resin.
  • the olefin resin include polyethylene, polypropylene, polybutene, polystyrene and the like. These can be used singly or in combination of two or more, but polyethylene and polypropylene are particularly preferable in that they can surely have both a shutdown function and excellent high rate characteristics.
  • this olefinic resin can be used in an amount of 100% by mass, but can also be used in combination with other resin components. It is preferable to contain 40 mass% or more normally with respect to all the resin components, Preferably it contains 50 mass% or more. This is because if the blending amount of the olefin resin is too small, control of conductive particles described later will not be successful, and it will be difficult to reliably combine a shutdown function and excellent high rate characteristics.
  • the ratio of the olefin resin is, for example, 40, 50, 60, 70, 80, 90, 100% by mass, and may be within the range of any two numerical values exemplified here.
  • the weight average molecular weight of the olefin resin is, for example, 10,000 to 1,000,000, specifically, for example, 10,000, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000. 150,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,000, 800,000, 900,000, 1 million, and within the range between any two of the numerical values exemplified here Also good.
  • a weight average molecular weight means what was measured by GPC (gel permeation chromatograph).
  • This olefin resin is preferably modified with carboxylic acid or the like to have a carboxyl group or a carboxylic ester group (hereinafter simply referred to as “ester group”). This is because the adhesion between the conductive substrate 102 and the resin layer 103 can be improved. Moreover, when an olefin resin has an ester group, the adhesiveness of an olefin resin and electroconductive particle (example: carbon particle) improves.
  • the carboxylic acid for modifying the olefinic resin may be any of monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid.
  • acetic acid, acetic anhydride, maleic acid, maleic anhydride, trimellitic acid, trimellitic anhydride, Fumaric acid, adipic acid, glutaric acid, succinic acid, malonic acid, oxalic acid and the like can be used. This is because the more carboxyl group, the better the adhesion to the conductive substrate, but the dispersibility of the conductive particles may be lowered and the resistance may be increased.
  • this olefin resin into a copolymer with acrylic acid ester and methacrylic acid ester.
  • the acrylic ester and methacrylic ester preferably further have a glycidyl group.
  • the olefin resin is preferably a mixture of a polypropylene resin and a polyethylene resin.
  • the mixing ratio of the polypropylene resin and the polyethylene resin is defined by a peak appearing in DSC (differential scanning calorimetry). This is because simply adding a predetermined amount of polypropylene-based resin and polyethylene-based resin may change the crystal state and the like, and a desired result may not be obtained.
  • DSC differential scanning calorimetry
  • a coating film made of a mixed system of a polypropylene resin and a polyethylene resin and a conductive material is thermally analyzed by DSC and melted from the melting peak area of each resin (the area surrounded by the thermal melting peak and straight line of each resin).
  • the amount of heat is determined, and the ratio of addition is defined by the ratio of the heat of fusion of each resin to the heat of fusion of both.
  • the addition ratio of the polypropylene resin is (the heat of fusion of the polypropylene resin) / (the heat of fusion of the polypropylene resin + the heat of fusion of the polyethylene resin) ⁇ 100 (%), and this ratio is 95% to 30%. % Is preferred.
  • Conductive Particles As the conductive particles 111 used in the resin layer 103 of the present embodiment, known conductive fine particles such as carbon powder and metal powder can be used, among which furnace black, acetylene black, and ketjen. Carbon black such as black is preferred. In particular, it is preferable that the electrical resistance of the powder is 100% green compact and 1 ⁇ 10 ⁇ 1 ⁇ or less, and the above can be used in combination as necessary.
  • the particle size is not particularly limited, but the primary particle size is preferably about 10 to 100 nm.
  • the blending amount of the conductive particles 111 is not particularly limited, but is preferably blended so that the volume% value occupied by the conductive particles 111 is 5 to 50% when the entire resin layer 103 is 100%. . If the blending amount of the conductive particles 111 is too small, the number of contact points between the conductive particles 111 is small, and the electrical resistance at normal temperature is increased. When there are too many compounding quantities of the electroconductive particle 111, the contact between the electroconductive particles 111 will be maintained also at the time of temperature rising, and it will become difficult to exhibit a shutdown function. This value is, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50%, and may be within a range between any two of the numerical values exemplified here.
  • the surface shape (surface roughness) of the roughened surface 109 of the resin layer 103 of this embodiment is obtained by dispersing the conductive particles 111 by a predetermined dispersion method, and further by predetermined baking conditions. It is obtained by coating with.
  • the dispersion state of the conductive particles 111 of the present embodiment is realized by the following dispersion method, for example.
  • the dispersion of the conductive material has been carried out mainly with the aim of finely and evenly dispersing, but in this embodiment, a suitably agglomerated dispersion state is preferable, and the method will be described below.
  • Dispersers, planetary mixers, ball mills, and the like can be used as the dispersers.
  • a disperser is used will be described.
  • the dispersion state of the conductive particles 111 of the present embodiment can be achieved, for example, by pre-dispersing the conductive particles 111 in a solution of a fluorine-based resin or an olefin-based resin, and further performing this dispersion.
  • a conductive material is added to the resin liquid so that the concentration of the conductive material in the solid content (resin solid content + conductive material) is 10 to 70% by volume, and 2 to 60 at a rotational speed of 300 to 5000 rpm.
  • the amount of conductive particles in the pre-dispersion is less than 10% by volume, the particle size after the main dispersion may become too small, and if it exceeds 70% by volume, the particle size after the main dispersion may become too large. If the rotation speed of the preliminary dispersion is lower than 300 rpm, the particle diameter after the main dispersion may become too large, and if it exceeds 5000 rpm, the particle diameter after the main dispersion may become too small. If the pre-dispersion stirring time is shorter than 2 minutes, the particle size after the main dispersion may become too large, and if longer than 60 minutes, the particle size after the main dispersion may become too small.
  • the resin solution is added to the pre-dispersion paste so that the conductive material addition amount in the resin layer is 5 to 50% by volume (the solid content in the resin liquid (resin solid content + conductive material)). So that the concentration of the conductive material is 5 to 50% by volume).
  • stirring is performed at a rotational speed of 500 to 8000 rpm for 10 to 120 minutes. If the rotational speed of this dispersion is lower than 500 rpm, the particle size may be too large, and if it is higher than 8000 rpm, the particle size may be too small. If the stirring time of this dispersion is shorter than 10 minutes, the particle size may be too large, and if longer than 120 minutes, the particle size may be too small.
  • the method for manufacturing the current collector 100 of the present embodiment is not particularly limited as long as the resin layer 103 is formed on the conductive base material 102 by a known method. It is also effective to perform a pretreatment so that the adhesiveness of the conductive substrate 102 is improved.
  • rolling oil or wear powder may remain, and adhesion with the resin layer may deteriorate.
  • rolling oil or wear powder By removing degreasing by degreasing or the like, adhesion with the resin layer 103 can be improved.
  • the adhesion with the resin layer 103 can be improved by a dry activation treatment such as a corona discharge treatment.
  • the electrode structure 110 of the present embodiment includes an active material layer 105 including an active material, which is laminated on the resin layer 103. Since the electrode structure 110 includes the active material layer 105 containing the active material particles 121 on the current collector 100, good discharge rate characteristics can be obtained.
  • the electrode structure 110 of this embodiment can be obtained by forming an active material layer or an electrode material layer on at least one surface of the current collector 100 of this embodiment.
  • the electrode structure for an electrical storage component in which the electrode material layer is formed will be described later.
  • an electrode structure for a nonaqueous electrolyte battery for example, a lithium ion secondary battery (for example, a lithium ion secondary battery) using the electrode structure 110 and a separator, a nonaqueous electrolyte solution, or the like ( Battery components).
  • a member other than the current collector 100 can be a known non-aqueous battery member.
  • the active material layer 105 formed as the electrode structure 110 in the present embodiment may be conventionally proposed for a non-aqueous electrolyte battery.
  • the current collector 100 of the present embodiment using aluminum as the positive electrode, LiCoO 2 , LiMnO 2 , LiNiO 2 or the like as the active material 121, carbon black such as acetylene black as the conductive particles 123, etc.
  • the positive electrode structure of this embodiment can be obtained by applying and drying a paste dispersed in PVDF or water-dispersed PTFE as the binder 125.
  • the negative electrode structure 110 for example, graphite, graphite, mesocarbon microbeads or the like are used as the active material 121 for the current collector 110 of the present embodiment using copper as the conductive substrate 102, and these are increased.
  • the negative electrode structure of the present embodiment can be obtained by coating and drying a paste mixed with SBR as a binder after being dispersed in CMC as a sticking agent as a material for forming the active material layer 105.
  • ⁇ Formation of resin layer on conductive substrate> Based on Table 1, coating amounts using various resins were prepared.
  • As the olefin resin an aqueous emulsion having a solid content of 5 to 40% by weight was used.
  • the mixture of polypropylene and polyethylene in Example 18 was mixed so that the addition ratio of polypropylene was 50% based on the DSC chart of the coating film.
  • the PVDF resin used was an N-methyl-2-pyrrolidone solution having a solid content of 10 to 15% by weight.
  • As the epoxy resin a bisphenol A type resin and a urea resin dissolved in methyl ethyl ketone at a solid content of 20% by weight were used.
  • As the polyester resin a polyester resin produced by an esterification reaction of isophthalic acid and ethylene glycol and dissolved in xylene at a solid content of 20% by weight was used.
  • the urethane resin a urethane resin obtained by reacting isophorone diisocyanate and polyethylene glycol and butylated melamine dissolved in xylene at a solid content of 20% by weight was used.
  • an aqueous emulsion having a solid content of 20% by weight of a copolymer of butyl acrylate, acrylonitrile, and acrylamide was used as the acrylic resin. All molecular weights were measured by GPC (gel permeation chromatography) in the state of a resin solution.
  • the paste obtained by pre-dispersion and main dispersion based on Table 2 was applied to an aluminum foil and baked at a baking temperature (base material arrival temperature) of 100 ° C. and a baking time (in-furnace time) of 120 seconds.
  • a CC layer carbon coat layer
  • ⁇ Evaluation method> (1) Amount of coating The coated foil was cut into 100 mm squares, and the mass was measured. After removing the coating film, the mass was measured again, and the adhesion amount was calculated from the difference. Table 3 shows the measurement results.
  • (2) Roughness measurement Measured with a rough clock (SE-30D manufactured by Kosaka Laboratory) (reference length 2.5 mm, cut-off ⁇ c 0.8 mm, drive speed 0.1 mm / s). Based on JIS B0601, Rz (ten-point average roughness) and Sm (average interval of unevenness) were measured. Table 3 shows the measurement results (average of n 5).
  • the capacity maintenance ratio measurement (high rate characteristic) was 0.80 or more, and the result of the overcharge test was good with no change in the battery.
  • the capacity maintenance rate measurement (high rate characteristic) is less than 0.80 or the overcharge test result is smoke (a state where the shutdown function is insufficient and smoke is emitted from the battery), which is not suitable for practical use. Therefore, in Examples 1 to 18, since the CC layer (carbon coat layer) having a special roughened surface is provided, the CC layer (carbon coat layer) is used as a room for thermal expansion of the CC layer (carbon coat layer). It has succeeded in securing an appropriate space on the surface. Therefore, even if the volume change at the time of melting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a collector having a PTC layer having leeway for thermal expansion during an increase in temperature while ensuring sufficient electroconductivity at regular temperatures. According to the present invention, there is provided a collector comprising an electroconductive substrate and a resin layer provided to at least one surface of the electroconductive substrate. The resin layer includes an organic resin and electroconductive particles. The amount of resin layer adhering on the electroconductive substrate is 0.5 to 20 g/m2. The Rz (ten-point average roughness) of the surface of the resin layer is 0.4 to 10 μm. The Sm (average interval between concavities and convexities) of the surface of the resin layer is 5 to 200 μm. The average of the resistance of the resin layer, measured by the two-terminal method, is 0.5 to 50 Ω.

Description

集電体、電極構造体、非水電解質電池または蓄電部品Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
 本発明は、集電体、電極構造体、非水電解質電池または蓄電部品に関する。 The present invention relates to a current collector, an electrode structure, a nonaqueous electrolyte battery, or a power storage component.
 エネルギー密度の高さから、携帯電話やノートパソコンなどの電子機器へのリチウム電池の利用が拡大している。リチウム電池は、正極活物質にコバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウムなど、負極活物質に、グラファイトなどが用いられている。リチウム電池は、それら活物質からなる電極と多孔質シートであるセパレータ、リチウム塩を溶解した電解液から構成されるのが一般的である。このようなリチウム2次電池は、電池容量及び出力が高く、充放電特性が良好で、耐用寿命も比較的長い。 Due to the high energy density, the use of lithium batteries in electronic devices such as mobile phones and laptop computers is expanding. In the lithium battery, lithium cobaltate, lithium manganate, lithium iron phosphate and the like are used as the positive electrode active material, and graphite is used as the negative electrode active material. A lithium battery is generally composed of an electrode made of these active materials, a separator that is a porous sheet, and an electrolyte solution in which a lithium salt is dissolved. Such a lithium secondary battery has a high battery capacity and output, good charge / discharge characteristics, and a relatively long service life.
 リチウム電池は、エネルギー密度が高いという利点の反面、非水電解液を使用することなどから、安全性に関して問題がある。例えば、非水電解液を含んでいるため、発熱にともなって非水電解液の成分が分解して内圧が上昇し、電池が膨れるなどの不具合を生じるおそれがある。また、リチウム2次電池が過充電されると、発熱などの不具合が起こるおそれがある。そして、内部短絡の発生によっても、発熱などの不具合が起こるおそれがある。 リ チ ウ ム Lithium batteries have the advantage of high energy density, but have a problem with safety because they use non-aqueous electrolyte. For example, since the non-aqueous electrolyte is included, the components of the non-aqueous electrolyte are decomposed as the heat is generated, so that the internal pressure increases and the battery may swell. Moreover, when the lithium secondary battery is overcharged, there is a possibility that problems such as heat generation may occur. Further, there is a possibility that problems such as heat generation may occur due to the occurrence of an internal short circuit.
 電池の安全性を向上させる手段としては、安全弁による内圧上昇の防止、温度上昇にともない抵抗値が増加するPTC(Positive temperature coefficient)素子を組み込むことによる発熱時の電流遮断などが挙げられる。例えば、円筒形電池に正極キャップ部分にPTC素子を装着する方法が知られている。 As means for improving the safety of the battery, there are prevention of an increase in internal pressure by a safety valve, current interruption at the time of heat generation by incorporating a PTC (Positive temperature coefficient) element whose resistance value increases as the temperature rises. For example, a method of attaching a PTC element to a positive electrode cap portion in a cylindrical battery is known.
 しかし、正極キャップ部分にPTC素子を装着する方法では、内部短絡が発生し、温度が上昇した時、短絡電流の増加を抑制できないといった問題点がある。 However, the method in which the PTC element is attached to the positive electrode cap portion has a problem that an increase in the short circuit current cannot be suppressed when an internal short circuit occurs and the temperature rises.
 リチウム電池に組み込まれているセパレータは、異常発熱時樹脂が溶融することで、セパレータの孔部が塞がれ、イオン伝導性が低下することで短絡電流の増加を抑制する機能を有している。しかし、発熱部分から離れた場所のセパレータは、溶融するとは限らず、また、セパレータが熱によって収縮することで、逆に短絡が発生する可能性がある。このように、内部短絡による発熱を防ぐ手段は未だ改善の余地を残している。 The separator incorporated in the lithium battery has a function of suppressing an increase in the short-circuit current by closing the pores of the separator by melting the resin at the time of abnormal heat generation and decreasing the ionic conductivity. . However, the separator at a location away from the heat generating portion does not always melt, and there is a possibility that a short circuit may occur due to the separator contracting due to heat. Thus, the means for preventing heat generation due to internal short circuit still leaves room for improvement.
 内部短絡の問題点を解決するために、特許文献1において、フッ素樹脂、オレフィン系樹脂をバインダとして導電性粒子を添加した樹脂層を導電性基材に形成したPTC機能を有するCC箔(カーボンコート箔)が提案されている。また、特許文献2には、高分子ポリマー(例としてポリエチレン)にカーボンブラックを添加したPTC層が開示されている。また、特許文献3には、表面粗度がRa(算術平均粗さ)0.5~1.0μmのCC層(カーボンコート層)からなる樹脂層が開示されている。 In order to solve the problem of internal short circuit, in Patent Document 1, a CC foil (carbon coat) having a PTC function in which a resin layer to which conductive particles are added using a fluororesin or an olefin resin as a binder is formed on a conductive substrate. Foil) has been proposed. Patent Document 2 discloses a PTC layer in which carbon black is added to a polymer (for example, polyethylene). Patent Document 3 discloses a resin layer composed of a CC layer (carbon coat layer) having a surface roughness Ra (arithmetic mean roughness) of 0.5 to 1.0 μm.
特開2001-357854号公報JP 2001-357854 A 特開平10-241665号公報Japanese Patent Laid-Open No. 10-241665 特開2010-212167号公報JP 2010-212167 A
 しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。 However, the prior art described in the above literature has room for improvement in the following points.
 第一に、特許文献1~3に記載のPTC層あるいは樹脂層では、導電パスを密に形成して導電性を必要以上に高くした場合、バインダが膨張、溶融しても切れる導電パスが少ない。一方で、導電パスを少なくしすぎると常温での抵抗が高すぎて電池または蓄電部品の出力特性が低下する問題がある。 First, in the PTC layer or the resin layer described in Patent Documents 1 to 3, when the conductive paths are densely formed to increase the conductivity more than necessary, there are few conductive paths that are cut even if the binder expands and melts. . On the other hand, if there are too few conductive paths, there is a problem that the resistance at room temperature is too high and the output characteristics of the battery or power storage component deteriorate.
 第二に、特許文献1~3に記載のPTC層あるいは樹脂層では、PTC機能の発現はバインダ樹脂の熱膨張による。一方で電池または蓄電部品は容量を大きくするため、活物質量を増やし活物質層の密度も高くなる傾向から、PTC層あるいは樹脂層の熱膨張の余地がなくなっている。 Second, in the PTC layer or the resin layer described in Patent Documents 1 to 3, the expression of the PTC function is due to the thermal expansion of the binder resin. On the other hand, since the capacity of the battery or the power storage component is increased, there is no room for thermal expansion of the PTC layer or the resin layer because the amount of the active material is increased and the density of the active material layer is also increased.
 本発明は上記事情に鑑みてなされたものであり、通常温度では十分な導電性を確保しつつ、温度上昇時に熱膨張の余地を有するPTC層を有する集電体を提供することである。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a current collector having a PTC layer having room for thermal expansion at the time of temperature rise while ensuring sufficient conductivity at a normal temperature.
 本発明によれば、導電性基材と、その導電性基材の少なくとも片面に設けられている樹脂層と、を備える集電体が提供される。なお、その樹脂層は、有機樹脂と導電性粒子とを含んでいる。また、その樹脂層のその導電性基材上の付着量は、0.5~20g/mである。また、その樹脂層の表面のRz(十点平均粗さ)は、0.4~10μmである。また、その樹脂層の表面のSm(凹凸の平均間隔)は、5~200μmである。また、その樹脂層の二端子法で測定した抵抗の平均は、0.5~50Ωである。 According to this invention, a collector provided with an electroconductive base material and the resin layer provided in the at least single side | surface of the electroconductive base material is provided. Note that the resin layer includes an organic resin and conductive particles. The amount of the resin layer deposited on the conductive substrate is 0.5 to 20 g / m 2 . Further, Rz (ten-point average roughness) of the surface of the resin layer is 0.4 to 10 μm. In addition, the Sm (average interval of irregularities) on the surface of the resin layer is 5 to 200 μm. The average resistance of the resin layer measured by the two-terminal method is 0.5 to 50Ω.
 この構成によれば、通常温度では十分な導電性を確保しつつ、温度上昇時に熱膨張の余地を有するPTC層を有する集電体が得られる。 According to this configuration, it is possible to obtain a current collector having a PTC layer having room for thermal expansion when the temperature rises while ensuring sufficient conductivity at a normal temperature.
 また、本発明によれば、上記の集電体と、その集電体のその樹脂層上に設けられている活物質層または電極材層と、を備える、電極構造体が提供される。 Also, according to the present invention, there is provided an electrode structure comprising the above-described current collector and an active material layer or an electrode material layer provided on the resin layer of the current collector.
 この電極構造体は、上記の集電体を備えるため、通常時には十分な導電性を確保することができ、内部短絡時には十分な安全機能を発揮する。 Since this electrode structure includes the above-described current collector, sufficient conductivity can be ensured during normal operation, and a sufficient safety function can be achieved during an internal short circuit.
 また、本発明によれば、上記の集電体と、その集電体のその樹脂層上に設けられている活物質層または電極材層と、を備える、非水電解質電池または蓄電部品が提供される。 In addition, according to the present invention, there is provided a nonaqueous electrolyte battery or a power storage component comprising the above current collector and an active material layer or an electrode material layer provided on the resin layer of the current collector. Is done.
 この非水電解質電池または蓄電部品は、上記の集電体を備えるため、通常時には十分な導電性を確保することができ、内部短絡時には十分な安全機能を発揮する。 Since this non-aqueous electrolyte battery or power storage component includes the above-described current collector, sufficient conductivity can be ensured during normal operation, and a sufficient safety function can be achieved during an internal short circuit.
 本発明によれば、通常温度では十分な導電性を確保しつつ、温度上昇時に熱膨張の余地を有するPTC層を有する集電体が得られる。 According to the present invention, it is possible to obtain a current collector having a PTC layer having room for thermal expansion when the temperature rises while ensuring sufficient conductivity at a normal temperature.
実施形態に係る電極構造体の構造を示した断面図である。It is sectional drawing which showed the structure of the electrode structure which concerns on embodiment. 従来のPTC層を備える電極構造体の問題点を説明するための断面図である。It is sectional drawing for demonstrating the problem of the electrode structure provided with the conventional PTC layer. 従来のPTC層を備える電極構造体の問題点を説明するための断面図である。It is sectional drawing for demonstrating the problem of the electrode structure provided with the conventional PTC layer. 実施形態に係る電極構造体が従来のPTC層を備える電極構造体と異なる点を説明するための断面図である。It is sectional drawing for demonstrating a point from which the electrode structure which concerns on embodiment differs from the electrode structure provided with the conventional PTC layer. 実施形態に係る電極構造体のPTC層の抵抗が急上昇する仕組みを示した断面図である。It is sectional drawing which showed the mechanism in which the resistance of the PTC layer of the electrode structure which concerns on embodiment rises rapidly. DSC(示差走査熱量分析)において現れるピークによってポリプロピレン系樹脂とポリエチレン系樹脂の混合比を規定する方法について説明するためのグラフである。It is a graph for demonstrating the method of prescribing | mixing the mixing ratio of polypropylene resin and polyethylene resin by the peak which appears in DSC (differential scanning calorimetry).
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、本明細書において「A~B」とは、「A以上B以下」を意味するものとする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. In the present specification, “A to B” means “A or more and B or less”.
 <電極の全体構成>
 図1は、実施形態に係る電極構造体の構造を示した断面図である。本実施形態の電極構造体110は、集電体100を備えている。この集電体100は、導電性基材102と、その導電性基材102の少なくとも片面に設けられている樹脂層103と、を備える。また、本実施形態の電極構造体110は、この集電体100の樹脂層103上に設けられている活物質層(または電極材層)105をさらに備える。なお、この樹脂層103は、後述するように粗面化表面109を有している。
<Overall configuration of electrode>
FIG. 1 is a cross-sectional view showing the structure of the electrode structure according to the embodiment. The electrode structure 110 of this embodiment includes a current collector 100. The current collector 100 includes a conductive substrate 102 and a resin layer 103 provided on at least one surface of the conductive substrate 102. The electrode structure 110 of the present embodiment further includes an active material layer (or electrode material layer) 105 provided on the resin layer 103 of the current collector 100. The resin layer 103 has a roughened surface 109 as will be described later.
 <従来のPTC層の問題点>
 図2は、従来のPTC層を備える電極構造体の問題点を説明するための断面図である。従来のPTC層203を備える電極構造体210では、導電パス211を少なくしすぎると常温での抵抗が高すぎて電池または蓄電部品の出力特性が低下する問題がある。
<Problems of conventional PTC layer>
FIG. 2 is a cross-sectional view for explaining problems of an electrode structure having a conventional PTC layer. In the electrode structure 210 having the conventional PTC layer 203, if the conductive paths 211 are too small, there is a problem that the resistance at the normal temperature is too high and the output characteristics of the battery or the power storage component are deteriorated.
 すなわち、図2に示すように、導電パス211を少なくしすぎると、PTC層203のバインダ樹脂207が熱膨張したとき(PTC層203の膜厚が厚くなったとき)導電パス211が切れやすいために、内部短絡時には十分な安全機能を発揮する。しかし、常温でのPTC層203の抵抗が高すぎて導電性基材202および活物質層205の間に十分な導通が得られない問題がある。 That is, as shown in FIG. 2, if the conductive path 211 is too small, the conductive path 211 is easily cut when the binder resin 207 of the PTC layer 203 is thermally expanded (when the film thickness of the PTC layer 203 is increased). In addition, it provides a sufficient safety function when an internal short circuit occurs. However, there is a problem that the resistance of the PTC layer 203 at room temperature is too high and sufficient conduction cannot be obtained between the conductive base material 202 and the active material layer 205.
 図3は、従来のPTC層を備える電極構造体の問題点を説明するための断面図である。従来のPTC層303を備える電極構造体310では、導電パス311を密に形成して導電性を必要以上に高くした場合、バインダ樹脂307が膨張、溶融しても切れる導電パス311が少ないという問題がある。 FIG. 3 is a cross-sectional view for explaining problems of an electrode structure having a conventional PTC layer. In the electrode structure 310 including the conventional PTC layer 303, when the conductive paths 311 are formed densely and the conductivity is increased more than necessary, there are few conductive paths 311 that are cut even when the binder resin 307 expands and melts. There is.
 すなわち、図3に示すように、導電パス311を多くしすぎると、常温でのPTC層303の抵抗が低いため導電性基材302および活物質層305の間に十分な導通が得られる。しかし、PTC層303のバインダ樹脂307が熱膨張したとき(PTC層303の膜厚が厚くなったとき)導電パス211が切れにくいために、内部短絡時には十分な安全機能を発揮できない問題がある。 That is, as shown in FIG. 3, when the number of conductive paths 311 is increased too much, sufficient resistance is obtained between the conductive substrate 302 and the active material layer 305 because the resistance of the PTC layer 303 is low at room temperature. However, when the binder resin 307 of the PTC layer 303 is thermally expanded (when the film thickness of the PTC layer 303 is increased), the conductive path 211 is difficult to be cut, so that there is a problem that a sufficient safety function cannot be exhibited during an internal short circuit.
 また、従来のPTC層を備える電極構造体では、PTC機能の発現はバインダ樹脂の熱膨張による。一方で電池または蓄電部品は容量を大きくするため、活物質量を増やし活物質層の密度も高くなる傾向から、PTC層の熱膨張の余地がなくなっている問題もある。 Also, in an electrode structure having a conventional PTC layer, the PTC function is manifested by thermal expansion of the binder resin. On the other hand, since the capacity of the battery or the power storage component is increased, there is a problem that there is no room for thermal expansion of the PTC layer because the amount of the active material is increased and the density of the active material layer is increased.
 <樹脂層の粗面化表面>
 図4は、実施形態に係る電極構造体が従来のPTC層を備える電極構造体と異なる点を説明するための断面図である。すでに説明したように、本実施形態の電極構造体110は、導電性基材102と、その導電性基材102の少なくとも片面に設けられている樹脂層103と、を備える。なお、この樹脂層103は、後述するように粗面化表面109を有している。また、本実施形態の電極構造体110は、この樹脂層103上に設けられている活物質層(または電極材層)105をさらに備える。また、この活物質層105は、活物質121と、導電材123と、バインダ125を含む。
<Roughened surface of resin layer>
FIG. 4 is a cross-sectional view for explaining a difference between the electrode structure according to the embodiment and a conventional electrode structure including a PTC layer. As already described, the electrode structure 110 according to the present embodiment includes the conductive substrate 102 and the resin layer 103 provided on at least one surface of the conductive substrate 102. The resin layer 103 has a roughened surface 109 as will be described later. The electrode structure 110 of the present embodiment further includes an active material layer (or electrode material layer) 105 provided on the resin layer 103. The active material layer 105 includes an active material 121, a conductive material 123, and a binder 125.
 そして、この樹脂層103は、有機樹脂107と導電性粒子111とを含む。また、この樹脂層103の導電性基材102上の付着量は、0.5~20g/mである。また、この樹脂層103の粗面化表面109のRz(十点平均粗さ)は、0.4~10μmである。また、この樹脂層103の粗面化表面109のSm(凹凸の平均間隔)は、5~200μmである。また、この樹脂層103の二端子法で測定した抵抗の平均は、0.5~50Ωである。 The resin layer 103 includes an organic resin 107 and conductive particles 111. The amount of the resin layer 103 attached to the conductive substrate 102 is 0.5 to 20 g / m 2 . The Rz (ten-point average roughness) of the roughened surface 109 of the resin layer 103 is 0.4 to 10 μm. In addition, the Sm (average interval of unevenness) of the roughened surface 109 of the resin layer 103 is 5 to 200 μm. The average resistance of the resin layer 103 measured by the two-terminal method is 0.5 to 50Ω.
 図5は、実施形態に係る電極構造体のPTC層の抵抗が急上昇する仕組みを示した断面図である。この電極構造体110を用いれば、非水電解質電池または蓄電部品内の温度が、有機樹脂107の融点近傍に到達すると有機樹脂107が体積膨張して、樹脂層103中に分散している導電性粒子111同士の接触を引き剥がすために導電性が低下する。 FIG. 5 is a cross-sectional view illustrating a mechanism in which the resistance of the PTC layer of the electrode structure according to the embodiment rapidly increases. When this electrode structure 110 is used, when the temperature in the nonaqueous electrolyte battery or the power storage component reaches the vicinity of the melting point of the organic resin 107, the organic resin 107 expands in volume and is dispersed in the resin layer 103. The conductivity is lowered because the contact between the particles 111 is peeled off.
 そして、本実施形態の電極構造体110は、特殊な粗面化表面109を有する樹脂層103を有するため、樹脂層103の熱膨張の余地として樹脂層103表面に適度な空間を確保することに成功している。そのため、有機樹脂107の融解時の体積変化が大きくても問題なく熱膨張でき、良好なPTC特性を得ることができる。すなわち、非水電解質電池または蓄電部品を過充電した時の発熱により、非水電解質電池または蓄電部品の内部温度が有機樹脂107の融点近傍に達した時、樹脂層103の抵抗が急上昇し、導電性基材102と活物質層105の間の電流が遮断される。そのため、この電極構造体110を用いれば、非水電解質電池または蓄電部品の内部短絡時に十分な安全機能を発揮することができる。 And since the electrode structure 110 of this embodiment has the resin layer 103 which has the special roughening surface 109, it is in securing moderate space on the resin layer 103 surface as a room of thermal expansion of the resin layer 103. Has succeeded. Therefore, even if the volume change at the time of melting of the organic resin 107 is large, it can be thermally expanded without any problem, and good PTC characteristics can be obtained. That is, when the internal temperature of the nonaqueous electrolyte battery or the power storage component reaches the vicinity of the melting point of the organic resin 107 due to heat generated when the nonaqueous electrolyte battery or the power storage component is overcharged, the resistance of the resin layer 103 rapidly rises and becomes conductive. The electric current between the conductive substrate 102 and the active material layer 105 is interrupted. Therefore, if this electrode structure 110 is used, a sufficient safety function can be exhibited at the time of an internal short circuit of the nonaqueous electrolyte battery or the power storage component.
 すなわち、この構成によれば、通常温度では十分な導電性を確保しつつ、温度上昇時に熱膨張の余地を有するという2つの効果を同時にバランスよく奏する電極構造体110が得られる。この2つの効果は、図2および図3で説明した従来の電極構造体210、310では同時に達成することは困難であった。これに対して、本実施形態の電極構造体110は、特殊な粗面化表面109を有する樹脂層103を有するため、これらの通常は相反する2つの効果を同時に満たすことに成功している。 That is, according to this configuration, it is possible to obtain the electrode structure 110 that simultaneously exhibits a good balance between the two effects of ensuring sufficient electrical conductivity at normal temperatures and having room for thermal expansion when the temperature rises. These two effects are difficult to achieve at the same time in the conventional electrode structures 210 and 310 described with reference to FIGS. On the other hand, since the electrode structure 110 of the present embodiment has the resin layer 103 having the special roughened surface 109, it has succeeded in satisfying these two conflicting effects at the same time.
 以下、各構成要素について詳細に説明する。 Hereinafter, each component will be described in detail.
 <導電性基材>
 本実施形態の導電性基材102としては、非水電解質電池または蓄電部品用の各種金属箔が使用可能である。具体的には、正極用、負極用の種々の金属箔を使用することができ、例えば、アルミニウム、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、銅が好ましい。なお、本明細書において、アルミニウムは、アルミニウム及びアルミニウム合金を意味し、銅は純銅および銅合金を意味する。本実施形態において、アルミニウム箔は二次電池正極側、二次電池負極側または電気二重層キャパシタ電極、銅箔は二次電池負極側に用いることができる。アルミニウム箔としては、特に限定されないが、純アルミ系であるA1085材や、A3003材など種々のものが使用できる。また、銅箔としても同様であり、特に限定されないが、圧延銅箔や電解銅箔が好んで用いられる。
<Conductive substrate>
As the conductive substrate 102 of the present embodiment, various metal foils for nonaqueous electrolyte batteries or power storage components can be used. Specifically, various metal foils for the positive electrode and the negative electrode can be used. For example, aluminum, copper, stainless steel, nickel and the like can be used. Among these, aluminum and copper are preferable from the balance between high conductivity and cost. In this specification, aluminum means aluminum and an aluminum alloy, and copper means pure copper and a copper alloy. In the present embodiment, the aluminum foil can be used on the secondary battery positive electrode side, the secondary battery negative electrode side or the electric double layer capacitor electrode, and the copper foil can be used on the secondary battery negative electrode side. Although it does not specifically limit as aluminum foil, Various things, such as A1085 material which is a pure aluminum type, and A3003 material, can be used. Moreover, it is the same also as copper foil, Although it does not specifically limit, Rolled copper foil and electrolytic copper foil are used preferably.
 導電性基材102の厚さとしては、特に制限されるものではないが、5μm以上、50μm以下であることが好ましい。厚さが5μmより薄いと箔の強度が不足して導電性基材102等の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層105あるいは電極材層を薄くせざるを得ず、特に非水電解質電池または蓄電部品等の蓄電部品とした場合、活物質層105の厚さを薄くせざるを得ず必要十分な容量が得られなくなる場合がある。 The thickness of the conductive substrate 102 is not particularly limited, but is preferably 5 μm or more and 50 μm or less. If the thickness is less than 5 μm, the strength of the foil may be insufficient and it may be difficult to form the conductive substrate 102 or the like. On the other hand, if it exceeds 50 μm, the other constituent elements, particularly the active material layer 105 or the electrode material layer, must be thinned. In particular, when the power storage component such as a nonaqueous electrolyte battery or a power storage component is used, the active material layer In some cases, the thickness of 105 must be reduced, and a necessary and sufficient capacity cannot be obtained.
 <樹脂層>
 本実施形態の樹脂層103は、導電性基材102の表面上に積層されてなる有機樹脂107と導電性粒子111とを含むPTC(Positive temperature coefficient)層である。
<Resin layer>
The resin layer 103 of the present embodiment is a PTC (Positive temperature coefficient) layer including an organic resin 107 and conductive particles 111 laminated on the surface of the conductive substrate 102.
 (1)粗面化表面の構成
 本実施形態の樹脂層103の導電性基材102上の付着量は、0.5~20g/mである。0.5g/m未満では未塗工部が発生し、電池性能または蓄電性能が不足する。20g/mを超えると、抵抗が大きすぎて電池性能または蓄電性能が不足する。樹脂層103の付着量は、例えば、0.5、1、2、5、10、15、20g/mであってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。
(1) Structure of roughened surface The adhesion amount of the resin layer 103 of the present embodiment on the conductive substrate 102 is 0.5 to 20 g / m 2 . If it is less than 0.5 g / m < 2 >, an uncoated part will generate | occur | produce and battery performance or electrical storage performance will run short. When it exceeds 20 g / m 2 , the resistance is too large and the battery performance or the power storage performance is insufficient. The adhesion amount of the resin layer 103 may be, for example, 0.5, 1, 2, 5 , 10, 15, 20 g / m 2 , and is within a range between any two of the numerical values exemplified here. May be.
 本実施形態の樹脂層103の粗面化表面109のRz(十点平均粗さ)は、0.4~10μmである。Rzが0.4μm未満では熱膨張のための余地が不十分である。Rzが10μmを超えると活物質層105との接触が悪く、接触電池性能または接触蓄電性能が不十分である。樹脂層103のRzは、例えば、0.4、0.7、1、2、5、10μmであってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The Rz (ten-point average roughness) of the roughened surface 109 of the resin layer 103 of the present embodiment is 0.4 to 10 μm. If Rz is less than 0.4 μm, there is insufficient room for thermal expansion. When Rz exceeds 10 μm, the contact with the active material layer 105 is poor, and the contact battery performance or the contact storage performance is insufficient. Rz of the resin layer 103 may be 0.4, 0.7, 1, 2, 5, 10 μm, for example, or may be within a range between any two of the numerical values exemplified here.
 本実施形態の樹脂層103の粗面化表面109のSm(凹凸の平均間隔)は、5~200μmであることが好ましい。Smが5μm未満では熱膨張のための余地が不十分である。Smが200μmを超えると表面形状が平坦に近すぎて熱膨張のための余地が不十分である。樹脂層103のSmは、例えば、5、10、20、30、40、50、60、70、80、90、100、120、140、160、180、200μmであってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。 Sm (average interval of irregularities) of the roughened surface 109 of the resin layer 103 of the present embodiment is preferably 5 to 200 μm. If Sm is less than 5 μm, there is insufficient room for thermal expansion. If Sm exceeds 200 μm, the surface shape is too flat and there is insufficient room for thermal expansion. The Sm of the resin layer 103 may be, for example, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 μm, and is exemplified here. It may be within a range between any two of the numerical values.
 本実施形態の樹脂層103の二端子法で測定した抵抗の平均は、0.5~50Ωである。抵抗の平均がこの範囲内であれば、シャットダウンすべき温度よりも低い温度範囲における温度上昇による有機樹脂107の膨張によって導電パスが切れてしまう問題を回避し、ぎりぎりで導電パスがつながるようにできる。詳しくは、樹脂層103の初期抵抗が三菱アナリテック製抵抗率計ロレスタEP(二端子法)による抵抗値(導電性基材102に形成した樹脂層103の上から測定)が0.5~50Ωであればよい。0.5Ω未満では昇温時の抵抗上昇が不十分である。50Ωを超えると電池または蓄電池としての性能が不十分である。 The average resistance measured by the two-terminal method of the resin layer 103 of this embodiment is 0.5 to 50Ω. If the average resistance is within this range, it is possible to avoid the problem that the conductive path is cut off due to the expansion of the organic resin 107 due to the temperature rise in the temperature range lower than the temperature to be shut down, and the conductive path can be connected at the last minute. . Specifically, the initial resistance of the resin layer 103 is a resistance value measured by Mitsubishi Analitech's resistivity meter Loresta EP (two-terminal method) (measured from above the resin layer 103 formed on the conductive base material 102) of 0.5 to 50Ω. If it is. If it is less than 0.5Ω, the resistance rise at the time of temperature rise is insufficient. When it exceeds 50Ω, the performance as a battery or a storage battery is insufficient.
 この樹脂層103の有機樹脂107として用いられる樹脂としては、特に限定されないが、フッ素系樹脂、オレフィン系樹脂、エポキシ系樹脂、アクリル系樹脂、ポリエステル系樹脂、ウレタン系樹脂からなる群から選ばれる1種以上を用いることができる。これらの中でも、特にフッ素系樹脂またはオレフィン系樹脂を用いることが好ましい。 The resin used as the organic resin 107 of the resin layer 103 is not particularly limited, but is selected from the group consisting of a fluorine resin, an olefin resin, an epoxy resin, an acrylic resin, a polyester resin, and a urethane resin. More than seeds can be used. Among these, it is particularly preferable to use a fluorine resin or an olefin resin.
 (2)フッ素系樹脂
 この樹脂層103の有機樹脂107として用いられるフッ素系樹脂は、樹脂成分としてフッ素樹脂を含む樹脂であり、フッ素樹脂のみからなるものであってもよく、フッ素樹脂と別の樹脂とを含有するものであってもよい。フッ素樹脂は、フッ素を含む樹脂であり、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、クロロトリフルオロエチレン-エチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂及びその誘導体、PCTFE、テトラフルオロエチレンなどのフルオロオレフインにシクロヘキシルビニルエーテルやカルボン酸ビニルエステルを共重合したフッ素共重合体等が例示される。また、これらは1種単独でも2種以上を組み合わせても用いることができるが、特にポリフッ化ビニリデン(PVDF)がシャットダウン機能と優れたハイレート特性を確実に兼ね備えることができる点で好ましい。
(2) Fluorine-based resin The fluorine-based resin used as the organic resin 107 of the resin layer 103 is a resin containing a fluorine resin as a resin component, and may be composed of only a fluorine resin. It may contain a resin. The fluororesin is a resin containing fluorine, such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer. Fluororesins such as coalescence (FEP), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-ethylene copolymer (ETFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), and polyvinyl fluoride (PVF); Examples thereof include fluorine copolymers obtained by copolymerizing cyclohexyl vinyl ether or carboxylic acid vinyl ester with fluoroolefins such as PCTFE and tetrafluoroethylene. These can be used singly or in combination of two or more, but polyvinylidene fluoride (PVDF) is particularly preferable in that it can reliably combine a shutdown function and excellent high rate characteristics.
 このフッ素系樹脂は、樹脂成分全体を100質量%とした場合、フッ素樹脂を100質量%使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくともフッ素樹脂を全樹脂成分に対して通常40質量%以上、好ましくは50質量%以上含むことが好ましい。フッ素樹脂の配合量が少なすぎると後述する導電性粒子の制御がうまくいかず、シャットダウン機能と優れたハイレート特性を確実に兼ね備えることが困難になるからである。フッ素樹脂の割合は、具体的には例えば、40、50、60、70、80、90、100質量%であり、ここで例示した何れか2つの数値の範囲内であってもよい。 The fluororesin can be used in an amount of 100% by mass when the entire resin component is 100% by mass, but can also be used in combination with other resin components. It is preferable to contain 40 mass% or more normally with respect to all the resin components, Preferably it contains 50 mass% or more. This is because if the blending amount of the fluororesin is too small, control of the conductive particles described later will not be successful, and it will be difficult to reliably combine a shutdown function and excellent high rate characteristics. Specifically, the ratio of the fluororesin is, for example, 40, 50, 60, 70, 80, 90, 100% by mass, and may be within the range of any two numerical values exemplified here.
 このフッ素系樹脂の重量平均分子量は、例えば3万~100万であり、具体的には例えば3万、4万、5万、6万、7万、8万、9万、10万、15万、20万、30万、40万、50万、60万、70万、80万、90万、100万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量は、GPC(ゲル浸透クロマトグラフ)によって測定したものを意味する。 The weight average molecular weight of the fluororesin is, for example, 30,000 to 1,000,000, specifically, for example, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000, 150,000. , 200,000, 300,000, 400,000, 500,000, 700,000, 800,000, 900,000, 1 million, and may be in the range between any two of the numerical values exemplified here. A weight average molecular weight means what was measured by GPC (gel permeation chromatograph).
 このフッ素系樹脂は、カルボキシル基又はカルボン酸エステル基(以下、単に「エステル基」と称する。)を有することが好ましい。これによって、導電性基材102と樹脂層103との密着性を向上させることができるからである。また、フッ素系樹脂がエステル基を有する場合、フッ素系樹脂と導電性粒子(例:炭素粒子)の密着性が向上する。 The fluororesin preferably has a carboxyl group or a carboxylic ester group (hereinafter simply referred to as “ester group”). This is because the adhesion between the conductive substrate 102 and the resin layer 103 can be improved. Further, when the fluororesin has an ester group, the adhesion between the fluororesin and conductive particles (eg, carbon particles) is improved.
 このフッ素系樹脂がカルボキシル基(-COOH)又はエステル基(-COOR、Rは、例えば炭素数1~5の炭化水素。)を有する態様は特に限定されず、例えば、フッ素樹脂がカルボキシル基又はエステル基を有する単量体とフッ素を含む単量体との共重合体であってもよく、フッ素系樹脂が、フッ素樹脂と、カルボキシル基又はエステル基を有する樹脂の混合物であってもよく、フッ素樹脂がカルボキシル基又はエステル基を有する化合物によって変性されていてもよい。フッ素樹脂を変性させる方法は、特に限定されないが、一例では、特開2002-304997号に示されているように、フッ素樹脂に対して放射線を照射してフッ素原子を脱離させてラジカルを生成し、その状態でフッ素樹脂と、カルボキシル基又はエステル基を有する化合物とを混合することによって、カルボキシル基又はエステル基を有する化合物をフッ素樹脂にグラフト重合させる方法が挙げられる。フッ素系樹脂中での、フッ素原子数に対するカルボキシル基又はエステル基の数の比の値は、特に限定されないが、例えば、0.1~5であり、好ましくは、0.5~2である。この比の値は、具体的には例えば0.1、0.2、0.5、1、1.5、2、3、4、5であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。カルボキシル基又はエステル基を有する単量体(又は化合物)としては、アクリル酸、メタクリル酸、又はこれらのエステル(例:メタクリル酸メチル)等が挙げられる。 The embodiment in which the fluororesin has a carboxyl group (—COOH) or an ester group (—COOR, R is, for example, a hydrocarbon having 1 to 5 carbon atoms) is not particularly limited. For example, the fluororesin is a carboxyl group or an ester. It may be a copolymer of a monomer having a group and a monomer containing fluorine, and the fluororesin may be a mixture of a fluororesin and a resin having a carboxyl group or an ester group. The resin may be modified with a compound having a carboxyl group or an ester group. The method for modifying the fluororesin is not particularly limited, but in one example, as disclosed in JP-A-2002-304997, radiation is emitted to the fluororesin to desorb fluorine atoms to generate radicals. And the method of graft-polymerizing the compound which has a carboxyl group or an ester group on a fluororesin by mixing a fluororesin and the compound which has a carboxyl group or an ester group in that state is mentioned. The value of the ratio of the number of carboxyl groups or ester groups to the number of fluorine atoms in the fluorine-based resin is not particularly limited, but is, for example, 0.1 to 5, and preferably 0.5 to 2. The value of this ratio is specifically, for example, 0.1, 0.2, 0.5, 1, 1.5, 2, 3, 4, 5, and between any two of the numerical values exemplified here. It may be within the range. Examples of the monomer (or compound) having a carboxyl group or an ester group include acrylic acid, methacrylic acid, and esters thereof (eg, methyl methacrylate).
 (3)オレフィン系樹脂
 この樹脂層103の有機樹脂107として用いられるオレフィン系樹脂は、樹脂成分としてオレフィン樹脂を含む樹脂であり、オレフィン樹脂のみからなるものであってもよく、オレフィン樹脂と別の樹脂とを含有するものであってもよい。オレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリスチレン等が例示される。また、これらは1種単独でも2種以上を組み合わせても用いることができるが、特にポリエチレン、ポリプロピレンがシャットダウン機能と優れたハイレート特性を確実に兼ね備えることができる点で好ましい。
(3) Olefin resin The olefin resin used as the organic resin 107 of the resin layer 103 is a resin containing an olefin resin as a resin component, and may be composed of only an olefin resin. It may contain a resin. Examples of the olefin resin include polyethylene, polypropylene, polybutene, polystyrene and the like. These can be used singly or in combination of two or more, but polyethylene and polypropylene are particularly preferable in that they can surely have both a shutdown function and excellent high rate characteristics.
 このオレフィン系樹脂は、樹脂成分全体を100質量%とした場合、オレフィン樹脂を100質量%使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくともオレフィン樹脂を全樹脂成分に対して通常40質量%以上、好ましくは50質量%以上含むことが好ましい。オレフィン樹脂の配合量が少なすぎると後述する導電性粒子の制御がうまくいかず、シャットダウン機能と優れたハイレート特性を確実に兼ね備えることが困難になるからである。オレフィン樹脂の割合は、具体的には例えば、40、50、60、70、80、90、100質量%であり、ここで例示した何れか2つの数値の範囲内であってもよい。 When the total resin component is 100% by mass, this olefinic resin can be used in an amount of 100% by mass, but can also be used in combination with other resin components. It is preferable to contain 40 mass% or more normally with respect to all the resin components, Preferably it contains 50 mass% or more. This is because if the blending amount of the olefin resin is too small, control of conductive particles described later will not be successful, and it will be difficult to reliably combine a shutdown function and excellent high rate characteristics. Specifically, the ratio of the olefin resin is, for example, 40, 50, 60, 70, 80, 90, 100% by mass, and may be within the range of any two numerical values exemplified here.
 このオレフィン系樹脂の重量平均分子量は、例えば1万~100万であり、具体的には例えば1万、3万、4万、5万、6万、7万、8万、9万、10万、15万、20万、30万、40万、50万、60万、70万、80万、90万、100万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量は、GPC(ゲル浸透クロマトグラフ)によって測定したものを意味する。 The weight average molecular weight of the olefin resin is, for example, 10,000 to 1,000,000, specifically, for example, 10,000, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000. 150,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,000, 800,000, 900,000, 1 million, and within the range between any two of the numerical values exemplified here Also good. A weight average molecular weight means what was measured by GPC (gel permeation chromatograph).
 このオレフィン系樹脂は、カルボン酸などで変性させて、カルボキシル基又はカルボン酸エステル基(以下、単に「エステル基」と称する。)を有することが好ましい。これによって、導電性基材102と樹脂層103との密着性を向上させることができるからである。また、オレフィン系樹脂がエステル基を有する場合、オレフィン系樹脂と導電性粒子(例:炭素粒子)の密着性が向上する。オレフィン系樹脂を変性させるカルボン酸は、モノカルボン酸、ジカルボン酸、トリカルボン酸のいずれであってもよく、例えば、酢酸、無水酢酸、マレイン酸、無水マレイン酸、トリメリット酸、無水トリメリット酸、フマル酸、アジピン酸、グルタル酸、コハク酸、マロン酸、シュウ酸などを用いることができる。カルボキシル基が多い方が導電性基材との密着性に優れるが、導電性粒子の分散性が低下し、抵抗が増大する場合があるからである。 This olefin resin is preferably modified with carboxylic acid or the like to have a carboxyl group or a carboxylic ester group (hereinafter simply referred to as “ester group”). This is because the adhesion between the conductive substrate 102 and the resin layer 103 can be improved. Moreover, when an olefin resin has an ester group, the adhesiveness of an olefin resin and electroconductive particle (example: carbon particle) improves. The carboxylic acid for modifying the olefinic resin may be any of monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid. For example, acetic acid, acetic anhydride, maleic acid, maleic anhydride, trimellitic acid, trimellitic anhydride, Fumaric acid, adipic acid, glutaric acid, succinic acid, malonic acid, oxalic acid and the like can be used. This is because the more carboxyl group, the better the adhesion to the conductive substrate, but the dispersibility of the conductive particles may be lowered and the resistance may be increased.
 なお、このオレフィン系樹脂は、アクリル酸エステル、メタクリル酸エステルとの共重合体にすることが好ましい。アクリル酸エステル、メタクリル酸エステルはさらにグリシジル基を有することが好ましい。アクリル酸エステル、メタクリル酸エステルを含有することにより、導電性基材との密着性向上し、容量維持率向上。グリシジル基を有することによりさらに密着性が向上し、容量維持率が向上する。 In addition, it is preferable to make this olefin resin into a copolymer with acrylic acid ester and methacrylic acid ester. The acrylic ester and methacrylic ester preferably further have a glycidyl group. By containing acrylic acid ester and methacrylic acid ester, the adhesion to the conductive substrate is improved and the capacity retention rate is improved. By having the glycidyl group, the adhesion is further improved, and the capacity retention rate is improved.
 また、このオレフィン系樹脂は、ポリプロピレン系樹脂とポリエチレン系樹脂の混合物であることが好ましい。ポリプロピレン系樹脂とポリエチレン系樹脂の混合比は、図6に示すように、DSC(示差走査熱量分析)において現れるピークによって規定される。これは単にポリプロピレン系樹脂とポリエチレン系樹脂を所定量添加しても結晶状態等が異なり、所望の結果が得られない場合があるからである。ポリプロピレン系樹脂とポリエチレン系樹脂を用いた塗膜のDSC測定を実施すると、昇温側に熱融解に起因するピークが現れる。ポリプロピレン系樹脂とポリエチレン系樹脂の混合系および導電材にて作製した塗膜をDSCにて熱分析し、各樹脂の融解ピークの面積(各樹脂の熱融解ピークと直線によって囲まれる面積)から融解熱量を求め、両者の融解熱量に対する各樹脂の融解熱量の比率にて添加割合が規定される。具体的には、ポリプロピレン系樹脂の添加割合は(ポリプロピレン系樹脂の融解熱量)/(ポリプロピレン系樹脂の融解熱量+ポリエチレン系樹脂の融解熱量)×100(%)となり、この割合が95%~30%が好ましい。 The olefin resin is preferably a mixture of a polypropylene resin and a polyethylene resin. As shown in FIG. 6, the mixing ratio of the polypropylene resin and the polyethylene resin is defined by a peak appearing in DSC (differential scanning calorimetry). This is because simply adding a predetermined amount of polypropylene-based resin and polyethylene-based resin may change the crystal state and the like, and a desired result may not be obtained. When DSC measurement of a coating film using a polypropylene resin and a polyethylene resin is performed, a peak due to thermal melting appears on the temperature rising side. A coating film made of a mixed system of a polypropylene resin and a polyethylene resin and a conductive material is thermally analyzed by DSC and melted from the melting peak area of each resin (the area surrounded by the thermal melting peak and straight line of each resin). The amount of heat is determined, and the ratio of addition is defined by the ratio of the heat of fusion of each resin to the heat of fusion of both. Specifically, the addition ratio of the polypropylene resin is (the heat of fusion of the polypropylene resin) / (the heat of fusion of the polypropylene resin + the heat of fusion of the polyethylene resin) × 100 (%), and this ratio is 95% to 30%. % Is preferred.
 (4)導電性粒子
 本実施形態の樹脂層103に用いる導電性粒子111は、公知の炭素粉末、金属粉末などの導電性微粒子が使用可能であるが、その中でもファーネスブラック,アセチレンブラック,ケッチェンブラック等のカーボンブラックが好ましい。特に粉体での電気抵抗が、100%の圧粉体で1×10-1Ω以下のものが好ましく、必要に応じて上記のものを組み合わせて使用できる。その粒子サイズに特に制限はないが、一次粒子径としては概ね10~100nmが好ましい。
(4) Conductive Particles As the conductive particles 111 used in the resin layer 103 of the present embodiment, known conductive fine particles such as carbon powder and metal powder can be used, among which furnace black, acetylene black, and ketjen. Carbon black such as black is preferred. In particular, it is preferable that the electrical resistance of the powder is 100% green compact and 1 × 10 −1 Ω or less, and the above can be used in combination as necessary. The particle size is not particularly limited, but the primary particle size is preferably about 10 to 100 nm.
 導電性粒子111の配合量は、特に限定されないが、樹脂層103の全体を100%とした場合に導電性粒子111が占める体積%の値が5~50%となるように配合することが好ましい。導電性粒子111の配合量が少なすぎると、導電性粒子111同士の連絡点数が少なく、常温時の電気抵抗が高くなってしまう。導電性粒子111の配合量が多すぎると、昇温時にも導電性粒子111同士の接触が保たれ、シャットダウン機能が発揮されにくくなる。この値は、例えば5、10、15、20、25、30、35、40、45、50%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The blending amount of the conductive particles 111 is not particularly limited, but is preferably blended so that the volume% value occupied by the conductive particles 111 is 5 to 50% when the entire resin layer 103 is 100%. . If the blending amount of the conductive particles 111 is too small, the number of contact points between the conductive particles 111 is small, and the electrical resistance at normal temperature is increased. When there are too many compounding quantities of the electroconductive particle 111, the contact between the electroconductive particles 111 will be maintained also at the time of temperature rising, and it will become difficult to exhibit a shutdown function. This value is, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50%, and may be within a range between any two of the numerical values exemplified here.
 (5)粗面化表面の作製方法
 本実施形態の樹脂層103の粗面化表面109の表面形状(表面粗度)は所定の分散方法によって導電性粒子111を分散し、さらに所定の焼付条件にて塗工することにより得られる。
(5) Method for Producing Roughened Surface The surface shape (surface roughness) of the roughened surface 109 of the resin layer 103 of this embodiment is obtained by dispersing the conductive particles 111 by a predetermined dispersion method, and further by predetermined baking conditions. It is obtained by coating with.
 本実施形態の導電性粒子111の分散状態は例えば以下のような分散方法によって実現される。従来、導電材の分散は細かく均一に分散することを主眼として実施されてきたが、本実施形態では適度に凝集した分散状態が好ましく、以下にその方法を説明する。分散機としてはディスパ、プラネタリミキサ、ボールミル等使用可能であるが、以下、ディスパを用いた場合について説明する。 The dispersion state of the conductive particles 111 of the present embodiment is realized by the following dispersion method, for example. Conventionally, the dispersion of the conductive material has been carried out mainly with the aim of finely and evenly dispersing, but in this embodiment, a suitably agglomerated dispersion state is preferable, and the method will be described below. Dispersers, planetary mixers, ball mills, and the like can be used as the dispersers. Hereinafter, the case where a disperser is used will be described.
 本実施形態の導電性粒子111の分散状態は、例えば、フッ素系樹脂またはオレフィン系樹脂の溶液中に導電性粒子111を予備分散し、さらに本分散することによって、可能となる。予備分散では、樹脂液にその固形分(樹脂固形分+導電材)に占める導電材の濃度が10~70体積%となるように導電材を添加し、回転数300~5000rpmにて2~60分撹拌して予備分散塗料を製造する。なお、本明細書では体積部(ml)=質量部(g)/真比重にて算出し、それをもとに体積%を算出する。予備分散における導電性粒子量が10体積%より少ないと本分散後の粒子径が小さくなりすぎる場合があり、70体積%より多いと本分散後の粒子径が大きくなりすぎる場合がある。予備分散の回転数が300rpmより低いと本分散後の粒子径が大きくなりすぎる場合があり、5000rpmより高いと本分散後の粒子径が小さくなりすぎる場合がある。予備分散の撹拌時間が2分より短いと本分散後の粒子径が大きくなりすぎる場合があり、60分より長いと本分散後の粒子径が小さくなりすぎる場合がある。 The dispersion state of the conductive particles 111 of the present embodiment can be achieved, for example, by pre-dispersing the conductive particles 111 in a solution of a fluorine-based resin or an olefin-based resin, and further performing this dispersion. In the preliminary dispersion, a conductive material is added to the resin liquid so that the concentration of the conductive material in the solid content (resin solid content + conductive material) is 10 to 70% by volume, and 2 to 60 at a rotational speed of 300 to 5000 rpm. A pre-dispersed paint is produced by stirring for a minute. In this specification, it is calculated by volume part (ml) = mass part (g) / true specific gravity, and volume% is calculated based on the calculation. If the amount of conductive particles in the pre-dispersion is less than 10% by volume, the particle size after the main dispersion may become too small, and if it exceeds 70% by volume, the particle size after the main dispersion may become too large. If the rotation speed of the preliminary dispersion is lower than 300 rpm, the particle diameter after the main dispersion may become too large, and if it exceeds 5000 rpm, the particle diameter after the main dispersion may become too small. If the pre-dispersion stirring time is shorter than 2 minutes, the particle size after the main dispersion may become too large, and if longer than 60 minutes, the particle size after the main dispersion may become too small.
 その後、本分散において、予備分散ペーストに樹脂溶液を添加し、樹脂層中の導電材添加量が5~50体積%になるようにする(樹脂液にその固形分(樹脂固形分+導電材)に占める導電材の濃度が5~50体積%となるようにする)。本分散では回転数500~8000rpmにて10~120分撹拌する。本分散の回転数が500rpmより低いと粒子径が大きくなりすぎる場合があり、8000rpmより高いと粒子径が小さくなりすぎる場合がある。本分散の撹拌時間が10分より短いと粒子径が大きくなりすぎる場合があり、120分より長いと粒子径が小さくなりすぎる場合がある。 Thereafter, in this dispersion, the resin solution is added to the pre-dispersion paste so that the conductive material addition amount in the resin layer is 5 to 50% by volume (the solid content in the resin liquid (resin solid content + conductive material)). So that the concentration of the conductive material is 5 to 50% by volume). In this dispersion, stirring is performed at a rotational speed of 500 to 8000 rpm for 10 to 120 minutes. If the rotational speed of this dispersion is lower than 500 rpm, the particle size may be too large, and if it is higher than 8000 rpm, the particle size may be too small. If the stirring time of this dispersion is shorter than 10 minutes, the particle size may be too large, and if longer than 120 minutes, the particle size may be too small.
 本実施形態の集電体100の製造方法は、導電性基材102に公知の方法で樹脂層103を形成すればよく、特に制限されるものではないが、樹脂層103を形成する前に導電性基材102に対しては密着性が向上するように前処理を実施することも効果的である。特に圧延にて製造した金属箔を用いる場合、圧延油や磨耗粉が残留している場合があり、樹脂層との密着性が悪くなる場合があるが、この場合には、圧延油や磨耗粉を脱脂などによって除去することにより、樹脂層103との密着性を向上させることができる。また、コロナ放電処理のような乾式活性化処理によっても樹脂層103との密着性を向上させることができる。 The method for manufacturing the current collector 100 of the present embodiment is not particularly limited as long as the resin layer 103 is formed on the conductive base material 102 by a known method. It is also effective to perform a pretreatment so that the adhesiveness of the conductive substrate 102 is improved. In particular, when using a metal foil produced by rolling, rolling oil or wear powder may remain, and adhesion with the resin layer may deteriorate. In this case, rolling oil or wear powder By removing degreasing by degreasing or the like, adhesion with the resin layer 103 can be improved. Also, the adhesion with the resin layer 103 can be improved by a dry activation treatment such as a corona discharge treatment.
 導電性材料111を含有する上記のペーストの塗布方法に特に制限は無いが、キャスト法、バーコーター法、ディップ法、グラビアコート法など公知の方法を用いることができる。乾燥方法についても特に制限は無く、熱風循環炉での加熱処理による乾燥などを使用することができる。 There is no particular limitation on the method of applying the above paste containing the conductive material 111, but a known method such as a casting method, a bar coater method, a dip method, or a gravure coating method can be used. There is no restriction | limiting in particular also about the drying method, Drying by the heat processing in a hot-air circulation furnace, etc. can be used.
 <活物質層>
 本実施形態の電極構造体110は、樹脂層103の上に積層されている、活物質を含む活物質層105を備える。この電極構造体110は、上記の集電体100上に活物質粒子121を含有する活物質層105を備えているため、良好な放電レート特性が得られる。
<Active material layer>
The electrode structure 110 of the present embodiment includes an active material layer 105 including an active material, which is laminated on the resin layer 103. Since the electrode structure 110 includes the active material layer 105 containing the active material particles 121 on the current collector 100, good discharge rate characteristics can be obtained.
 本実施形態の集電体100の少なくとも片面に活物質層又は電極材層を形成することによって、本実施形態の電極構造体110を得ることができる。電極材層を形成した蓄電部品用の電極構造体については後述する。まず、活物質層105を形成した電極構造体110の場合、この電極構造体110とセパレータ、非水電解質溶液等を用いて非水電解質電池用、例えばリチウムイオン二次電池用の電極構造体(電池用部品を含む)を製造することができる。本実施形態の非水電解質電池用の電極構造体110および非水電解質電池において集電体100以外の部材は、公知の非水電池用部材を用いることが可能である。 The electrode structure 110 of this embodiment can be obtained by forming an active material layer or an electrode material layer on at least one surface of the current collector 100 of this embodiment. The electrode structure for an electrical storage component in which the electrode material layer is formed will be described later. First, in the case of the electrode structure 110 in which the active material layer 105 is formed, an electrode structure for a nonaqueous electrolyte battery, for example, a lithium ion secondary battery (for example, a lithium ion secondary battery) using the electrode structure 110 and a separator, a nonaqueous electrolyte solution, or the like ( Battery components). In the electrode structure 110 for a non-aqueous electrolyte battery and the non-aqueous electrolyte battery of the present embodiment, a member other than the current collector 100 can be a known non-aqueous battery member.
 ここで、本実施形態において電極構造体110として形成される活物質層105は、従来、非水電解質電池用として提案されているものでよい。例えば、正極としてはアルミニウムを用いた本実施形態の集電体100に、活物質121としてLiCoO、LiMnO、LiNiO等を用い、導電性粒子123としてアセチレンブラック等のカーボンブラックを用い、これらをバインダ125であるPVDFや水分散型PTFEに分散したペーストを塗工・乾燥させることにより、本実施形態の正極構造体を得ることができる。 Here, the active material layer 105 formed as the electrode structure 110 in the present embodiment may be conventionally proposed for a non-aqueous electrolyte battery. For example, the current collector 100 of the present embodiment using aluminum as the positive electrode, LiCoO 2 , LiMnO 2 , LiNiO 2 or the like as the active material 121, carbon black such as acetylene black as the conductive particles 123, etc. The positive electrode structure of this embodiment can be obtained by applying and drying a paste dispersed in PVDF or water-dispersed PTFE as the binder 125.
 負極の電極構造体110とする場合に、導電性基材102として銅を用いた本実施形態の集電体110に活物質121として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMCに分散後、バインダであるSBRと混合したペーストを活物質層105形成用材料として塗工・乾燥させることにより、本実施形態の負極構造体を得ることができる。 When the negative electrode structure 110 is used, for example, graphite, graphite, mesocarbon microbeads or the like are used as the active material 121 for the current collector 110 of the present embodiment using copper as the conductive substrate 102, and these are increased. The negative electrode structure of the present embodiment can be obtained by coating and drying a paste mixed with SBR as a binder after being dispersed in CMC as a sticking agent as a material for forming the active material layer 105.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto.
 <導電性基材への樹脂層の形成>
 表1に基づいて各種樹脂を用いた塗量を調合した。オレフィン系樹脂はそれぞれの固形分5~40重量%の水系エマルションを用いた。実施例18のポリプロピレンとポリエチレンの混合物は塗膜のDSCチャートを元にした、ポリプロピレンの添加割合が50%になるように混合した。
<Formation of resin layer on conductive substrate>
Based on Table 1, coating amounts using various resins were prepared. As the olefin resin, an aqueous emulsion having a solid content of 5 to 40% by weight was used. The mixture of polypropylene and polyethylene in Example 18 was mixed so that the addition ratio of polypropylene was 50% based on the DSC chart of the coating film.
 PVDF系樹脂はいずれも固形分10~15重量%のN-メチル-2-ピロリドン溶液を用いた。エポキシ樹脂としてはビスフェノールA型樹脂とユリア樹脂をメチルエチルケトンに固形分20重量%にて溶解したものを用いた。ポリエステル樹脂としては、イソフタル酸とエチレングリコールのエステル化反応によって製造したポリエステル樹脂を固形分20重量%にてキシレンに溶解したものを用いた。ウレタン系樹脂はイソホロンジイソシアネートとポリエチレングリコールを反応させたウレタン樹脂とブチル化メラミンを固形分20重量%にてキシレンに溶解したものを用いた。アクリル樹脂はアクリル酸ブチルとアクリロニトリルとアクリルアミドの共重合体の固形分20重量%の水系エマルションを用いた。分子量はいずれも樹脂液の状態でGPC(ゲル浸透クロマトグラフ)にて測定した。表2に基いて予備分散、本分散をして得られたペーストをアルミ箔に塗布し、焼付温度(基材到達温度)100℃、焼付時間(在炉時間)120秒にて焼き付けて、アルミ箔にCC層(カーボンコート層)を形成した。 The PVDF resin used was an N-methyl-2-pyrrolidone solution having a solid content of 10 to 15% by weight. As the epoxy resin, a bisphenol A type resin and a urea resin dissolved in methyl ethyl ketone at a solid content of 20% by weight were used. As the polyester resin, a polyester resin produced by an esterification reaction of isophthalic acid and ethylene glycol and dissolved in xylene at a solid content of 20% by weight was used. As the urethane resin, a urethane resin obtained by reacting isophorone diisocyanate and polyethylene glycol and butylated melamine dissolved in xylene at a solid content of 20% by weight was used. As the acrylic resin, an aqueous emulsion having a solid content of 20% by weight of a copolymer of butyl acrylate, acrylonitrile, and acrylamide was used. All molecular weights were measured by GPC (gel permeation chromatography) in the state of a resin solution. The paste obtained by pre-dispersion and main dispersion based on Table 2 was applied to an aluminum foil and baked at a baking temperature (base material arrival temperature) of 100 ° C. and a baking time (in-furnace time) of 120 seconds. A CC layer (carbon coat layer) was formed on the foil.
 なお、以下の表1~3で各略称の意味は以下のとおりである。
AB:アセチレンブラック
PP:ポリプロピレン
PE:ポリエチレン
PEO:ポリエチレンオキサイド
PVDF:ポリフッ化ビニリデン
In Tables 1 to 3 below, the meaning of each abbreviation is as follows.
AB: Acetylene black PP: Polypropylene PE: Polyethylene PEO: Polyethylene oxide PVDF: Polyvinylidene fluoride
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <評価方法>
 (1)付着量
 塗工箔を100mm角に切断し、質量を測定した。塗膜を除去後、再度質量を測定し、その差から付着量を算出した。測定結果を表3に示す。
 (2)粗度測定
 粗時計(小坂研究所製SE-30D)にて測定した(基準長さ2.5mm、カットオフλc0.8mm、ドライブスピード0.1mm/s)。JIS B0601に準拠して、Rz(十点平均粗さ)、Sm(凹凸の平均間隔)を測定した。(n=5の平均)測定結果を表3に示す。
<Evaluation method>
(1) Amount of coating The coated foil was cut into 100 mm squares, and the mass was measured. After removing the coating film, the mass was measured again, and the adhesion amount was calculated from the difference. Table 3 shows the measurement results.
(2) Roughness measurement Measured with a rough clock (SE-30D manufactured by Kosaka Laboratory) (reference length 2.5 mm, cut-off λc 0.8 mm, drive speed 0.1 mm / s). Based on JIS B0601, Rz (ten-point average roughness) and Sm (average interval of unevenness) were measured. Table 3 shows the measurement results (average of n = 5).
 (3)抵抗
 初期抵抗を三菱化学アナリテック製ロレスタEP(二端子法)による抵抗値として、アルミ箔に形成したCC層(カーボンコート層)の上から測定した。(n=10の平均)測定結果を表3に示す。
(3) Resistance The initial resistance was measured from the top of the CC layer (carbon coat layer) formed on the aluminum foil as a resistance value by Loresta EP (two-terminal method) manufactured by Mitsubishi Chemical Analytech. Table 3 shows the measurement results (average of n = 10).
 (4)容量維持率
 (4-1)電池の作製
 (4-1-1)正極の作製
 上記の方法にて作製した樹脂層を有する集電体に活物質ペースト(LiMn/AB/PVDF=89.5/5/5.5、溶媒NMP(N-メチル-2-ピロリドン))を塗布し、乾燥した。さらにプレスをかけて、厚さ60μmの活物質層を形成した。
(4) Capacity maintenance rate (4-1) Battery production (4-1-1) Production of positive electrode An active material paste (LiMn 2 O 4 / AB / PVDF = 89.5 / 5 / 5.5, solvent NMP (N-methyl-2-pyrrolidone)) was applied and dried. Further, pressing was performed to form an active material layer having a thickness of 60 μm.
 (4-1-2)負極の作製
 厚さ10μmの銅箔に活物質ペースト(MCMB(メソカーボンマイクロビーズ)/AB/PVDF=93/2/5、溶剤NMP)を塗布し、乾燥した。さらにプレスをかけて、厚さ40μmの活物質層を形成した。
(4-1-2) Production of Negative Electrode An active material paste (MCMB (mesocarbon microbeads) / AB / PVDF = 93/2/5, solvent NMP) was applied to a 10 μm thick copper foil and dried. Further, pressing was performed to form an active material layer having a thickness of 40 μm.
 (4-1-3)円筒型リチウムイオン電池の作製
 この正極、負極、電解液(1M LiPF、EC(エチレンカーボネート)/MEC(メチルエチルカーボネート)=3/7)、セパレータ(厚さ25μm、微孔ポリエチレンフィルム)を捲回して、各極にリードを溶接して各極端子に接続し、ケースに挿入して円筒型リチウムイオン電池(φ18mm×軸方向長さ65mm)を得た。
(4-1-3) Production of Cylindrical Lithium Ion Battery This positive electrode, negative electrode, electrolyte (1M LiPF 6 , EC (ethylene carbonate) / MEC (methyl ethyl carbonate) = 3/7), separator (thickness 25 μm, A microporous polyethylene film) was wound, a lead was welded to each electrode, connected to each electrode terminal, and inserted into a case to obtain a cylindrical lithium ion battery (φ18 mm × axial length 65 mm).
 (4-2)容量維持率測定(ハイレート特性)
 この円筒型リチウムイオン電池を用い、0.25mA/cmにて4.2Vまで定電流定電圧充電後、0.25mA/cmと5mA/cmにて定電流放電を行い、それぞれの放電容量から放電維持率=(5mA/cmの放電容量)/(0.25mA/cmの放電容量)を算出した。容量維持率が0.8以上あれば、ハイレートでの使用も可能である。測定結果を表3に示す。
(4-2) Capacity maintenance rate measurement (high rate characteristics)
Using this cylindrical lithium ion battery, after constant current and constant voltage charging to 4.2V at 0.25 mA / cm 2, a constant current discharge at 0.25 mA / cm 2 and 5 mA / cm 2, each of the discharge From the capacity, discharge retention ratio = (discharge capacity of 5 mA / cm 2 ) / (discharge capacity of 0.25 mA / cm 2 ) was calculated. If the capacity maintenance rate is 0.8 or more, it can be used at a high rate. Table 3 shows the measurement results.
 (4-3)過充電試験
 上記の円筒型リチウムイオン電池を用い、4.2Vまで充電電圧1.5mA/cmで定電流定電圧充電後、満充電状態の円筒型リチウムイオン電池にさらに250%充電になるまで5Aで充電し、円筒型リチウムイオン電池の挙動を調査した。測定結果を表3に示す。
(4-3) Overcharge test Using the above-described cylindrical lithium ion battery, after charging with constant current and constant voltage at a charging voltage of 1.5 mA / cm 2 up to 4.2 V, the battery was further charged with a fully charged cylindrical lithium ion battery. The battery was charged with 5A until it reached% charge, and the behavior of the cylindrical lithium ion battery was investigated. Table 3 shows the measurement results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <結果の考察>
 実施例1~18では、容量維持率測定(ハイレート特性)は0.80以上および過充電試験の結果は電池に変化なく良好であり、いずれも実用に耐えるのに対し、比較例1~6では、容量維持率測定(ハイレート特性)が0.80未満または過充電試験結果が発煙(シャットダウン機能が不十分で電池から発煙した状態)となっており、いずれも実用に適さない。このことから、実施例1~18では、特殊な粗面化表面を有するCC層(カーボンコート層)を有するため、CC層(カーボンコート層)の熱膨張の余地としてCC層(カーボンコート層)表面に適度な空間を確保することに成功している。そのため、各種有機樹脂の融解時の体積変化が大きくても問題なく熱膨張でき、良好なPTC特性を得ることができることがわかる。
<Consideration of results>
In Examples 1 to 18, the capacity maintenance ratio measurement (high rate characteristic) was 0.80 or more, and the result of the overcharge test was good with no change in the battery. The capacity maintenance rate measurement (high rate characteristic) is less than 0.80 or the overcharge test result is smoke (a state where the shutdown function is insufficient and smoke is emitted from the battery), which is not suitable for practical use. Therefore, in Examples 1 to 18, since the CC layer (carbon coat layer) having a special roughened surface is provided, the CC layer (carbon coat layer) is used as a room for thermal expansion of the CC layer (carbon coat layer). It has succeeded in securing an appropriate space on the surface. Therefore, even if the volume change at the time of melting | dissolving of various organic resin is large, it can be understood that it can expand | swell without a problem and can obtain a favorable PTC characteristic.
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 In the above, this invention was demonstrated based on the Example. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.
100 集電体
102 導電性基材
103 樹脂層
105 活物質層
107 有機樹脂
109 粗面化表面
110 電極構造体
111 導電性粒子
121 活物質
123 導電材
125 バインダ
202 導電性基材
203 PTC層
205 活物質層
207 バインダ樹脂
210 電極構造体
211 導電パス
302 導電性基材
303 PTC層
305 活物質層
307 バインダ樹脂
310 電極構造体
311 導電パス
DESCRIPTION OF SYMBOLS 100 Current collector 102 Conductive base material 103 Resin layer 105 Active material layer 107 Organic resin 109 Roughening surface 110 Electrode structure 111 Conductive particle 121 Active material 123 Conductive material 125 Binder 202 Conductive base material 203 PTC layer 205 Active Material layer 207 Binder resin 210 Electrode structure 211 Conductive path 302 Conductive base material 303 PTC layer 305 Active material layer 307 Binder resin 310 Electrode structure 311 Conductive path

Claims (8)

  1.  導電性基材と、
     前記導電性基材の少なくとも片面に設けられている樹脂層と、
     を備える集電体であって、
      前記樹脂層が、有機樹脂と導電性粒子とを含み、
      前記樹脂層の前記導電性基材上の付着量が0.5~20g/mであり、
      前記樹脂層の表面のRz(十点平均粗さ)が0.4~10μmであり、
      前記樹脂層の表面のSm(凹凸の平均間隔)が5~200μmであり、
      前記樹脂層の二端子法で測定した抵抗の平均が0.5~50Ωである、
     集電体。
    A conductive substrate;
    A resin layer provided on at least one side of the conductive substrate;
    A current collector comprising:
    The resin layer includes an organic resin and conductive particles,
    The amount of adhesion of the resin layer on the conductive substrate is 0.5 to 20 g / m 2 ;
    Rz (ten-point average roughness) of the surface of the resin layer is 0.4 to 10 μm,
    Sm (average interval of irregularities) on the surface of the resin layer is 5 to 200 μm,
    The average resistance measured by the two-terminal method of the resin layer is 0.5 to 50Ω,
    Current collector.
  2.  前記有機樹脂が、フッ素系樹脂、オレフィン系樹脂、エポキシ系樹脂、アクリル系樹脂、ポリエステル系樹脂、ウレタン系樹脂からなる群から選ばれる1種以上である、
     請求項1に記載の集電体。
    The organic resin is at least one selected from the group consisting of a fluorine resin, an olefin resin, an epoxy resin, an acrylic resin, a polyester resin, and a urethane resin.
    The current collector according to claim 1.
  3.  前記フッ素系樹脂が、カルボキシル基またはカルボン酸エステルを有する、
     請求項2に記載の集電体。
    The fluororesin has a carboxyl group or a carboxylic acid ester;
    The current collector according to claim 2.
  4.  前記オレフィン系樹脂が、カルボキシル基またはカルボン酸エステルを有する、
     請求項2に記載の集電体。
    The olefin resin has a carboxyl group or a carboxylic ester.
    The current collector according to claim 2.
  5.  前記オレフィン系樹脂が、アクリル酸エステルまたはメタクリル酸エステルを少なくとも1種含む、
     請求項2に記載の集電体。
    The olefin resin contains at least one acrylic ester or methacrylic ester,
    The current collector according to claim 2.
  6.  前記オレフィン系樹脂が、ポリプロピレン系樹脂およびポリエチレン系樹脂を含む、
     請求項2に記載の集電体。
    The olefin resin includes a polypropylene resin and a polyethylene resin,
    The current collector according to claim 2.
  7.  請求項1~6のいずれかに記載の集電体と、
     前記集電体の前記樹脂層上に設けられている活物質層または電極材層と、
     を備える、電極構造体。
    A current collector according to any one of claims 1 to 6;
    An active material layer or an electrode material layer provided on the resin layer of the current collector;
    An electrode structure comprising:
  8.  請求項1~7のいずれかに記載の集電体と、
     前記集電体の前記樹脂層上に設けられている活物質層または電極材層と、
     を備える、非水電解質電池または蓄電部品。
    A current collector according to any one of claims 1 to 7;
    An active material layer or an electrode material layer provided on the resin layer of the current collector;
    A non-aqueous electrolyte battery or a power storage component.
PCT/JP2013/069008 2012-07-13 2013-07-11 Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component WO2014010681A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380036476.4A CN104428929B (en) 2012-07-13 2013-07-11 Collector, electrode assembly, nonaqueous electrolyte battery or electric power storage parts
KR1020157004063A KR20150032335A (en) 2012-07-13 2013-07-11 Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component
EP13816526.1A EP2874213B1 (en) 2012-07-13 2013-07-11 Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component
JP2014524872A JPWO2014010681A1 (en) 2012-07-13 2013-07-11 Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
US14/414,422 US20150294802A1 (en) 2012-07-13 2013-07-11 Current collector, electrode structure and non-aqueous electrolyte battery or electrical storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-157672 2012-07-13
JP2012157672 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010681A1 true WO2014010681A1 (en) 2014-01-16

Family

ID=49916122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069008 WO2014010681A1 (en) 2012-07-13 2013-07-11 Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component

Country Status (7)

Country Link
US (1) US20150294802A1 (en)
EP (1) EP2874213B1 (en)
JP (1) JPWO2014010681A1 (en)
KR (1) KR20150032335A (en)
CN (1) CN104428929B (en)
TW (1) TW201414069A (en)
WO (1) WO2014010681A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077384A1 (en) * 2012-11-19 2014-05-22 古河電気工業株式会社 Collector, electrode, secondary cell, and capacitor
CN104409681A (en) * 2014-11-19 2015-03-11 上海航天电源技术有限责任公司 Preparation method of lithium ion battery pole piece containing PTC coating
KR101730219B1 (en) * 2014-04-04 2017-05-11 주식회사 엘지화학 Current collector for lithium secondary battery and electorde comprising the same
JP2017084507A (en) * 2015-10-23 2017-05-18 日産自動車株式会社 Electrode and method of manufacturing the same
JP2017224562A (en) * 2016-06-17 2017-12-21 東洋インキScホールディングス株式会社 Conductive composition, backing layer-attached current collector for power storage device, electrode for power storage device and power storage device
JP2017224469A (en) * 2016-06-15 2017-12-21 東洋インキScホールディングス株式会社 Conductive composition for forming backing layer of electrode for nonaqueous electrolyte secondary battery, and use thereof
JP2017224407A (en) * 2016-06-13 2017-12-21 東洋インキScホールディングス株式会社 Conductive composition, backing layer-attached current collector for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN110783521A (en) * 2018-07-27 2020-02-11 丰田自动车株式会社 Electrode for solid-state battery and solid-state battery
JP2021086782A (en) * 2019-11-29 2021-06-03 グンゼ株式会社 Resin current collector
JPWO2022208682A1 (en) * 2021-03-30 2022-10-06
JP2022168728A (en) * 2021-04-26 2022-11-08 プライムプラネットエナジー&ソリューションズ株式会社 Electrode collector and secondary battery
US11532823B2 (en) * 2016-06-14 2022-12-20 Solvay Sa Flexible battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102050250B1 (en) * 2015-09-09 2019-12-17 주식회사 엘지화학 Electrode for Secondary Battery with Improved Production Processability
JP6666223B2 (en) 2016-09-21 2020-03-13 株式会社東芝 Negative electrode, non-aqueous electrolyte battery, battery pack, and vehicle
WO2018083917A1 (en) * 2016-11-04 2018-05-11 日産自動車株式会社 Electrode for cell, and cell
CN113053562B (en) * 2017-01-27 2023-03-31 昭和电工材料株式会社 Insulating coated conductive particle, anisotropic conductive film and method for producing same, connection structure and method for producing same
JP7074284B2 (en) * 2017-02-10 2022-05-24 三井化学株式会社 Positive electrode and non-aqueous electrolyte secondary battery
JP6747577B2 (en) * 2017-03-14 2020-08-26 株式会社村田製作所 Lithium ion secondary battery
JP6724861B2 (en) * 2017-05-26 2020-07-15 トヨタ自動車株式会社 Electrode current collector and all-solid-state battery
JP7149520B2 (en) * 2017-10-31 2022-10-07 パナソニックIpマネジメント株式会社 Batteries and battery stacks
CN109755463B (en) * 2017-11-08 2020-12-29 宁德时代新能源科技股份有限公司 Electrode pole piece, electrochemical device and safety coating
US11469412B2 (en) * 2018-05-02 2022-10-11 Lg Energy Solution, Ltd. Anode for lithium metal battery, manufacturing method of the same, lithium metal battery including the same
KR102080653B1 (en) 2018-05-23 2020-02-24 삼성전기주식회사 Coil component
GB202106834D0 (en) * 2021-05-13 2021-06-30 Dupont Teijin Films Us Lp Metallised films
US20230112382A1 (en) * 2021-09-30 2023-04-13 Medtronic, Inc. Resistive current collector coating
EP4379839A1 (en) * 2022-06-09 2024-06-05 Contemporary Amperex Technology Co., Limited Positive electrode plate, secondary battery, battery module, battery pack and electric apparatus
CN115832188B (en) * 2022-07-22 2024-09-06 宁德时代新能源科技股份有限公司 Pole piece, battery monomer, battery, electricity utilization device and pole piece manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209803A (en) * 1986-03-10 1987-09-16 日本メクトロン株式会社 Circuit device
JPH10199574A (en) * 1996-12-28 1998-07-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JPH10241665A (en) 1996-12-26 1998-09-11 Mitsubishi Electric Corp Electrode and battery using the same
JP2001357854A (en) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery
JP2002304997A (en) 2001-02-01 2002-10-18 Mitsubishi Materials Corp Lithium ion polymer secondary battery and synthesizing method of binder used for adhesion layer thereof
JP2005174653A (en) * 2003-12-09 2005-06-30 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method thereof
JP2005317468A (en) * 2004-04-30 2005-11-10 Nissan Motor Co Ltd Bipolar electrode, method of manufacturing bipolar electrode, bipolar battery, battery pack and vehicle with these mounted thereon
JP2006032395A (en) * 2004-07-12 2006-02-02 Shin Etsu Polymer Co Ltd Ptc element and its manufacturing method
JP2009176599A (en) * 2008-01-25 2009-08-06 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2010212167A (en) 2009-03-12 2010-09-24 Toyota Motor Corp Current collecting foil, battery, vehicle, battery using equipment, and method of manufacturing current collecting foil
JP2011048932A (en) * 2009-08-25 2011-03-10 Nissan Motor Co Ltd Bipolar secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3973003B2 (en) * 1998-04-13 2007-09-05 Tdk株式会社 Sheet-type electrochemical element
US6159635A (en) * 1998-09-29 2000-12-12 Electrofuel Inc. Composite electrode including current collector
WO2002084764A1 (en) * 2001-04-10 2002-10-24 Mitsubishi Materials Corporation Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
JP5219339B2 (en) * 2006-02-28 2013-06-26 三洋電機株式会社 Lithium secondary battery
CN102648546A (en) * 2009-09-25 2012-08-22 大金工业株式会社 Positive electrode current collector laminate for lithium secondary battery
EP2835851A4 (en) * 2012-04-04 2016-03-09 Uacj Corp Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209803A (en) * 1986-03-10 1987-09-16 日本メクトロン株式会社 Circuit device
JPH10241665A (en) 1996-12-26 1998-09-11 Mitsubishi Electric Corp Electrode and battery using the same
JPH10199574A (en) * 1996-12-28 1998-07-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2001357854A (en) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery
JP2002304997A (en) 2001-02-01 2002-10-18 Mitsubishi Materials Corp Lithium ion polymer secondary battery and synthesizing method of binder used for adhesion layer thereof
JP2005174653A (en) * 2003-12-09 2005-06-30 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method thereof
JP2005317468A (en) * 2004-04-30 2005-11-10 Nissan Motor Co Ltd Bipolar electrode, method of manufacturing bipolar electrode, bipolar battery, battery pack and vehicle with these mounted thereon
JP2006032395A (en) * 2004-07-12 2006-02-02 Shin Etsu Polymer Co Ltd Ptc element and its manufacturing method
JP2009176599A (en) * 2008-01-25 2009-08-06 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2010212167A (en) 2009-03-12 2010-09-24 Toyota Motor Corp Current collecting foil, battery, vehicle, battery using equipment, and method of manufacturing current collecting foil
JP2011048932A (en) * 2009-08-25 2011-03-10 Nissan Motor Co Ltd Bipolar secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874213A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077384A1 (en) * 2012-11-19 2014-05-22 古河電気工業株式会社 Collector, electrode, secondary cell, and capacitor
KR101730219B1 (en) * 2014-04-04 2017-05-11 주식회사 엘지화학 Current collector for lithium secondary battery and electorde comprising the same
CN104409681A (en) * 2014-11-19 2015-03-11 上海航天电源技术有限责任公司 Preparation method of lithium ion battery pole piece containing PTC coating
JP2017084507A (en) * 2015-10-23 2017-05-18 日産自動車株式会社 Electrode and method of manufacturing the same
JP2017224407A (en) * 2016-06-13 2017-12-21 東洋インキScホールディングス株式会社 Conductive composition, backing layer-attached current collector for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11532823B2 (en) * 2016-06-14 2022-12-20 Solvay Sa Flexible battery
JP2017224469A (en) * 2016-06-15 2017-12-21 東洋インキScホールディングス株式会社 Conductive composition for forming backing layer of electrode for nonaqueous electrolyte secondary battery, and use thereof
JP2017224562A (en) * 2016-06-17 2017-12-21 東洋インキScホールディングス株式会社 Conductive composition, backing layer-attached current collector for power storage device, electrode for power storage device and power storage device
CN110783521A (en) * 2018-07-27 2020-02-11 丰田自动车株式会社 Electrode for solid-state battery and solid-state battery
JP2021086782A (en) * 2019-11-29 2021-06-03 グンゼ株式会社 Resin current collector
JP2021165393A (en) * 2019-11-29 2021-10-14 グンゼ株式会社 Resin current collector
WO2021106300A1 (en) * 2019-11-29 2021-06-03 グンゼ株式会社 Resin collector
JP7405796B2 (en) 2019-11-29 2023-12-26 グンゼ株式会社 resin current collector
JPWO2022208682A1 (en) * 2021-03-30 2022-10-06
WO2022208682A1 (en) * 2021-03-30 2022-10-06 Tdk株式会社 Power storage device electrode and lithium ion secondary battery
JP7392828B2 (en) 2021-03-30 2023-12-06 Tdk株式会社 Electrodes for power storage devices and lithium ion secondary batteries
JP2022168728A (en) * 2021-04-26 2022-11-08 プライムプラネットエナジー&ソリューションズ株式会社 Electrode collector and secondary battery
JP7304380B2 (en) 2021-04-26 2023-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Electrode current collector and secondary battery

Also Published As

Publication number Publication date
EP2874213A1 (en) 2015-05-20
JPWO2014010681A1 (en) 2016-06-23
CN104428929B (en) 2017-10-24
TW201414069A (en) 2014-04-01
EP2874213B1 (en) 2017-02-22
CN104428929A (en) 2015-03-18
EP2874213A4 (en) 2015-08-05
KR20150032335A (en) 2015-03-25
US20150294802A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
WO2014010681A1 (en) Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component
JP6220784B2 (en) Current collector, electrode, secondary battery and capacitor
US20150280241A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electrical storage device
WO2014077384A1 (en) Collector, electrode, secondary cell, and capacitor
WO2013151046A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
TWI578603B (en) A current collector, an electrode structure, and a power storage unit
WO2014157405A1 (en) Collector, electrode structure, battery and capacitor
JP2015204221A (en) Current collector, electrode structure, and electricity storage component
JP2006182925A (en) Core/shell type fine particle and lithium secondary battery including the fine particle
WO2018164094A1 (en) Collector for electricity storage devices, method for producing same, and coating liquid used in production of same
JP5985161B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
CN114447341A (en) Collector for electricity storage device, method for producing same, and coating liquid used for production thereof
JP5780871B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP6130018B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP2020198275A (en) Current collector for all-solid battery, and all-solid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524872

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414422

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013816526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013816526

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157004063

Country of ref document: KR

Kind code of ref document: A