JP2006182925A - Core/shell type fine particle and lithium secondary battery including the fine particle - Google Patents

Core/shell type fine particle and lithium secondary battery including the fine particle Download PDF

Info

Publication number
JP2006182925A
JP2006182925A JP2004378708A JP2004378708A JP2006182925A JP 2006182925 A JP2006182925 A JP 2006182925A JP 2004378708 A JP2004378708 A JP 2004378708A JP 2004378708 A JP2004378708 A JP 2004378708A JP 2006182925 A JP2006182925 A JP 2006182925A
Authority
JP
Japan
Prior art keywords
core
fine particles
shell type
type fine
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004378708A
Other languages
Japanese (ja)
Inventor
Hideaki Katayama
秀昭 片山
Toshihiro Abe
敏浩 阿部
Hiroshi Sugiyama
拓 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004378708A priority Critical patent/JP2006182925A/en
Publication of JP2006182925A publication Critical patent/JP2006182925A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Graft Or Block Polymers (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide core/shell type fine particles capable of composing a lithium secondary battery having a gel-like electrolyte, excellent in battery performances (especially charge/discharge cycle characteristic) and safety, also good in productivity, and the lithium secondary battery comprising the fine particles. <P>SOLUTION: This core/shell type fine particle is composed of a shell part containing a polymer compound dissolvable or gelatinizable in an organic solvent and a core part being a fine particle stable to the organic solvent at a room temperature, where the polymer compound in the shell part is chemically bound with the core part, and the particle diameter in a dry state is ≤15 μm. The lithium secondary battery has the core/shell type fine particles in its insulating layer for insulating the space between a positive electrode and a negative electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池の使用に好適なコアシェル型微粒子と、該微粒子を有するリチウム二次電池に関するものである。   The present invention relates to a core-shell type fine particle suitable for use in a lithium secondary battery and a lithium secondary battery having the fine particle.

近年、携帯電話、ノート型パーソナルコンピューター、PDA(個人向け携帯情報端末)などの携帯端末機器の需要が急激に拡大している。そして、それらの小型軽量化および高機能化に伴って、電源として用いられるリチウム二次電池の更なる高エネルギー密度化が要求されており、年々高容量化が進んでいる。また、それらと共に電池の安全性、信頼性を確保する必要が高まっている。   In recent years, the demand for mobile terminal devices such as mobile phones, notebook personal computers, and personal digital assistants (PDAs) has been rapidly expanding. With the reduction in size and weight and the increase in functionality, there is a demand for further increase in energy density of lithium secondary batteries used as a power source, and the capacity is increasing year by year. In addition, there is an increasing need to ensure the safety and reliability of batteries.

こうした状況の下、電池の安全性を向上するための手段として、従来の液系の電解質に代わり、高分子をホストとし、そのマトリックス中に電解液を保持させた所謂ゲル状電解質を用いた電池が提案され(例えば、特許文献1〜4)、実用化されている。   Under such circumstances, as a means for improving the safety of the battery, a battery using a so-called gel electrolyte in which a polymer is used as a host and the electrolyte is held in the matrix, instead of the conventional liquid electrolyte. (For example, Patent Documents 1 to 4) have been put to practical use.

しかしながら、ゲル状電解質を用いた電池においては、漏液などの問題はないものの、過充電や短絡といった内部温度が非常に高温になるような異常時においては、ゲル状電解質の粘度が下がり、短絡がより誘発されやすくなる。このような点においてゲル状電解質を用いた電池の安全性は十分であるとはいえず、従来の液系電解質を有する電池と同様に、高温時に構成材料の熱溶融によって穴が塞がることで内部抵抗を増大させ得る機能(所謂シャットダウン機能)を有するポリオレフィン系のセパレータを使用することによって安全性を確保しているのが現状である。   However, in batteries using gel electrolyte, there are no problems such as leakage, but in abnormal situations where the internal temperature becomes extremely high, such as overcharge or short circuit, the viscosity of the gel electrolyte decreases and short circuit occurs. Is more likely to be triggered. In this respect, the safety of a battery using a gel electrolyte is not sufficient, and as with a battery having a conventional liquid electrolyte, the holes are closed by heat melting of the constituent materials at high temperatures. At present, safety is ensured by using a polyolefin-based separator having a function capable of increasing resistance (so-called shutdown function).

また、これらゲル状電解質を有する電池を作製する方法としては、(1)液系電解質(非水電解液、以下、単に「電解液」という)を有する電池と同様の積層電極体あるいは巻回電極体を作製して外装材(電池ケース)内に挿入し、ゲル状電解質を構成するポリマーの原料となる物質(モノマー、マクロマーまたは非架橋ポリマーとゲル化剤など)および反応開始剤を含む電解液を外装材内に注入した後、該原料物質を重合または架橋させることによって電解液をゲル化する方法;(2)ゲル状電解質を構成するポリマーを含む溶液を電極表面に塗布し、溶媒を除去して乾燥した後、その電極を用いて積層電極体あるいは巻回電極体を作製して外装材内に挿入し、ここに電解液を注入して電池内で電解液をゲル化する方法;(3)電極表面にゲル状電解質を構成するポリマーの原料となる物質と反応開始剤を塗布し、熱や光などによって架橋反応させて該ポリマーを形成し、その後、この電極を用いて積層電極体や巻回電極体を作製して外装材内に挿入し、ここに電解液を注入して電池内で電解液をゲル化する方法;などが提唱されている。   In addition, as a method for producing a battery having such a gel electrolyte, (1) a laminated electrode body or a wound electrode similar to a battery having a liquid electrolyte (non-aqueous electrolyte, hereinafter simply referred to as “electrolyte”) Electrolyte containing a substance (monomer, macromer or non-crosslinked polymer and gelling agent, etc.) and a reaction initiator as a raw material of a polymer constituting a gel electrolyte by preparing a body and inserting it into an exterior material (battery case) A method of gelling an electrolyte solution by polymerizing or cross-linking the raw material after being injected into the exterior material; (2) Applying a solution containing a polymer constituting the gel electrolyte to the electrode surface and removing the solvent Then, after the electrode is dried, a laminated electrode body or a wound electrode body is produced and inserted into the outer packaging material, and the electrolyte is injected into the electrolyte to gel the electrolyte in the battery; 3) On the electrode surface A material that is a raw material of the polymer that constitutes the electrolyte and a reaction initiator are applied, and the polymer is formed by a crosslinking reaction with heat or light, and then a laminated electrode body or a wound electrode body is formed using this electrode. And a method of injecting the electrolyte into the exterior material and gelling the electrolyte in the battery is proposed.

しかしながら、(1)の方法では、注入する電解液が反応開始剤を含むため、該電解液を放置している状態でゲル化反応が進行してしまうことから、その保存性に問題があり、また、電池内で残留した反応開始剤が電池特性に影響する可能性もある。更に、注入する電解液の粘度が低い場合には、電極の空隙内にもゲルが形成され、界面抵抗の上昇を招く可能性があり、他方、粘度が高い場合には注液性が悪くなり生産性を向上することができない。   However, in the method (1), since the electrolyte to be injected contains a reaction initiator, the gelation reaction proceeds in a state where the electrolyte is left standing, so that there is a problem in its storage stability. In addition, the reaction initiator remaining in the battery may affect the battery characteristics. Furthermore, when the viscosity of the electrolyte to be injected is low, a gel may be formed in the gap of the electrode, leading to an increase in interfacial resistance. On the other hand, when the viscosity is high, the liquid injection property is deteriorated. Productivity cannot be improved.

また、(2)の方法では、ポリマー溶液を電極に塗布する際に電極の隙間にポリマーが侵入して界面抵抗の上昇を招き、電池特性の低下を引き起こす可能性がある。このような界面抵抗の上昇を防ぐために、予めブロック液を電極内に含浸させておき、ポリマーを塗布する方法も提案されている(特許文献5)。しかしながら、このような方法を用いた場合には、ポリマーを塗布した塗膜の下にあるブロック液を除去する必要があり、通常の電極やポリマー塗膜の乾燥よりも乾燥時間が長くなるなど作製に手間がかかり、生産性がよくない。また、乾燥が不十分で電極に溶媒や水分が残っていた場合には、電池特性に悪影響が出るといった問題が発生する。   In the method (2), when a polymer solution is applied to the electrodes, the polymer may enter the gaps between the electrodes, leading to an increase in interface resistance, which may cause a decrease in battery characteristics. In order to prevent such an increase in interfacial resistance, a method of applying a polymer by impregnating a block solution in advance in an electrode has also been proposed (Patent Document 5). However, when such a method is used, it is necessary to remove the block liquid under the coating film coated with the polymer, and the drying time is longer than the drying of the normal electrode and polymer coating film. Takes time and productivity is not good. Further, when the drying is insufficient and the solvent or moisture remains on the electrode, there arises a problem that the battery characteristics are adversely affected.

更に、(3)の方法では、電極表面にゲル状電解質を作製する場合や作製後において、吸水を避ける環境での作業が必要になるため、取り扱いが厄介であり、やはり生産性が悪いといった問題点がある。   Furthermore, in the method (3), when the gel electrolyte is produced on the electrode surface or after the production, it is necessary to work in an environment in which water absorption is avoided, so that the handling is troublesome and the productivity is also poor. There is a point.

特許第2987474号公報Japanese Patent No. 29987474 特開2002−25621号公報JP 2002-25621 A 米国特許第5453335号公報US Pat. No. 5,453,335 特開2002−367677号公報JP 2002-367777 A 特開2002−343438号公報JP 2002-343438 A

本発明は、上記事情に鑑みてなされたものであり、ゲル状電解質を有するリチウム二次電池であって、電池特性(特に充放電サイクル特性)および安全性に優れており、生産性も良好なリチウム二次電池を構成し得るコアシェル型微粒子と、該微粒子を有するリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a lithium secondary battery having a gel electrolyte, which has excellent battery characteristics (particularly charge / discharge cycle characteristics) and safety, and good productivity. An object of the present invention is to provide core-shell type fine particles capable of constituting a lithium secondary battery and a lithium secondary battery having the fine particles.

上記目的を達成し得た本発明のコアシェル型微粒子は、有機溶媒に溶解し得るか、または有機溶媒中でゲル状になり得る高分子化合物を含有するシェル部と、該有機溶媒に対して室温で安定な微粒子であるコア部とで構成されており、上記シェル部に係る高分子化合物の高分子鎖が、上記コア部と化学的に結合しており、乾燥状態での粒径が、15μm以下であることを特徴とするものである。なお、本発明でいう「ゲル状」には、通常の「ゲル」の他にも、電池業界において、所謂「ゲル状電解質」と称される電解質と同様の状態(厳密な意味でのゲルでなくても、液の流動性が殆どないか、または液が流動しなくなった状態)が含まれる。更に、上記コア部における「有機溶媒に対して室温で安定」とは、有用溶媒中においても形状が保持されていることを意味している。   The core-shell type fine particles of the present invention that can achieve the above-mentioned object are a shell part containing a polymer compound that can be dissolved in an organic solvent or become a gel in the organic solvent, and a room temperature relative to the organic solvent. And a core part that is a stable fine particle, the polymer chain of the polymer compound related to the shell part is chemically bonded to the core part, and the particle size in a dry state is 15 μm. It is characterized by the following. The “gel” in the present invention includes, in addition to the usual “gel”, a state similar to an electrolyte called a “gel electrolyte” in the battery industry (a gel in a strict sense). Even if it is not, there is almost no fluidity of the liquid or a state in which the liquid no longer flows. Furthermore, “stable at room temperature with respect to an organic solvent” in the core part means that the shape is maintained even in a useful solvent.

また、本発明のリチウム二次電池は、(A)本発明のコアシェル型微粒子を含有するイオン透過性絶縁層が、負極表面に形成されており、且つ該イオン透過性絶縁層が正極と負極との間に配置されていること;または(B)多孔質基材と本発明のコアシェル型微粒子とが複合化されてなるセパレータを有し、該セパレータが、正極と負極との間に配置されていること;を特徴とするものである。   In the lithium secondary battery of the present invention, (A) the ion permeable insulating layer containing the core-shell type fine particles of the present invention is formed on the surface of the negative electrode, and the ion permeable insulating layer comprises a positive electrode, a negative electrode, Or (B) having a separator formed by combining the porous base material and the core-shell type fine particles of the present invention, and the separator is disposed between the positive electrode and the negative electrode. It is characterized by being;

また、本発明のリチウム二次電池では、本発明のコアシェル型微粒子が、正極および/または負極内に存在する構成とすることもできる。   In the lithium secondary battery of the present invention, the core-shell type fine particles of the present invention may be present in the positive electrode and / or the negative electrode.

すなわち、本発明のコアシェル型微粒子は、正極と負極の間に介在し、電池反応に関与するイオンを透過させつつ、正負極間を絶縁するための層(イオン透過性絶縁層、セパレータ)の構成成分として電池内に導入されることで、シェル部が電解液を保持して、所謂ゲル状電解質を構成する。よって、極めて容易に電池にゲル状電解質を導入することができるため、電池の生産性を向上させることが可能となる。   That is, the core-shell type fine particles of the present invention are interposed between the positive electrode and the negative electrode, and constitute a layer (ion-permeable insulating layer, separator) for insulating between the positive and negative electrodes while allowing the ions involved in the battery reaction to pass therethrough. By being introduced into the battery as a component, the shell portion holds the electrolytic solution and constitutes a so-called gel electrolyte. Therefore, since the gel electrolyte can be introduced into the battery very easily, the productivity of the battery can be improved.

また、シェル部の原材料である高分子化合物が、喩え電解液に溶解し得るものであっても、コア部との化学的結合が存在するために、電解液中に溶解してしまうことないので、電極の空隙内にゲルが侵入する虞がなく、加えて、ゲル化のために架橋剤などを添加する必要がないため、電池特性が損なわれることはない。更に、コア部には、電池の要求特性に応じて、種々の特性を有するものが使用できる。例えば、高耐熱性の微粒子を用いた場合には、過充電などによって異常高温となった場合にも、コア部が高い絶縁性を発揮することで、正負極間の絶縁層の溶融(所謂メルトダウン)による正負極間での大規模な短絡の発生が防止でき、電池の安全性を確保することができる。他方、コア部に、高温下で軟化し得る微粒子を用いた場合には、シャットダウン機能を持たせることができ、これによっても安全性を確保することができる。加えて、電池の電極(例えば負極)において、充放電の際の膨張が大きい場合でも、シェル部が電解液を取り込んでゲル状となって弾力性を有するため、該シェル部によって電極の膨張による応力を緩和することができ、膨張収縮による電極(活物質含有層)の崩壊を防ぐことができる。そのため、コアシェル型微粒子を導入したリチウム二次電池では、より高容量で安定した充放電特性(充放電サイクル特性)を確保することができる。そして、電極の膨張によっても、実質的に変形しないコア部の存在によって短絡の虞はない。   In addition, even if the polymer compound that is the raw material of the shell part can be dissolved in the electrolyte solution, it does not dissolve in the electrolyte solution because of the chemical bond with the core part. In addition, there is no possibility that the gel penetrates into the gaps of the electrodes, and in addition, there is no need to add a crosslinking agent or the like for the gelation, so that the battery characteristics are not impaired. Furthermore, what has various characteristics can be used for a core part according to the required characteristic of a battery. For example, when high heat-resistant fine particles are used, even when the temperature becomes abnormally high due to overcharge or the like, the core portion exhibits high insulation, so that the insulating layer between the positive and negative electrodes is melted (so-called melt). The occurrence of a large-scale short circuit between the positive and negative electrodes due to down) can be prevented, and the safety of the battery can be ensured. On the other hand, when fine particles that can be softened at a high temperature are used for the core portion, a shutdown function can be provided, thereby ensuring safety. In addition, even when the battery electrode (for example, the negative electrode) has a large expansion during charging and discharging, the shell portion takes in the electrolyte and becomes a gel to have elasticity. Stress can be relieved and collapse of the electrode (active material-containing layer) due to expansion and contraction can be prevented. Therefore, in the lithium secondary battery into which the core-shell type fine particles are introduced, it is possible to ensure stable charge / discharge characteristics (charge / discharge cycle characteristics) with higher capacity. And even if the electrode expands, there is no risk of short circuit due to the presence of the core portion that does not substantially deform.

本発明によれば、電池特性(特に充放電サイクル特性)と安全性に優れ、生産性も良好なリチウム二次電池を提供できる。   According to the present invention, a lithium secondary battery having excellent battery characteristics (particularly charge / discharge cycle characteristics) and safety and good productivity can be provided.

<コアシェル型微粒子>
本発明のコアシェル型微粒子は、有機溶媒に溶解し得るか、または有機溶媒中でゲル状になり得る高分子化合物を含有するシェル部と、該有機溶媒に対して室温で安定な微粒子であるコア部とで構成されてなるものである。
<Core shell type fine particles>
The core-shell type fine particles of the present invention include a shell portion containing a polymer compound that can be dissolved in an organic solvent or can be gelled in an organic solvent, and a core that is stable at room temperature with respect to the organic solvent. It consists of a part.

シェル部に係る高分子化合物は、有機溶媒で溶解し得るか、または有機溶媒中でゲル状となり得るものである。なお、本発明のコアシェル型微粒子は、上記の通り、リチウム二次電池(非水電解質電池)で使用されることを想定しているため、シェル部に係る高分子化合物が溶解またはゲル化できる有機溶媒としては、例えば、従来公知の非水電解質電池の非水電解質(電解液)に用いられている溶媒が挙げられる(これらの溶媒の具体例は、本発明のリチウム二次電池の説明において示す)。   The polymer compound according to the shell part can be dissolved in an organic solvent or can be gelled in the organic solvent. In addition, since the core-shell type fine particles of the present invention are assumed to be used in a lithium secondary battery (non-aqueous electrolyte battery) as described above, the organic compound that can dissolve or gel the polymer compound related to the shell portion. Examples of the solvent include those used in conventionally known non-aqueous electrolytes (electrolytic solutions) of non-aqueous electrolyte batteries (specific examples of these solvents are shown in the description of the lithium secondary battery of the present invention). ).

シェル部に係る高分子化合物としては、例えば、従来公知のゲル状電解質で用いられている高分子化合物を適用することができる。すなわち、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などのフッ素樹脂;ポリアクリロニトリル;ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド−プロピレンオキシド共重合体などのポリアルキレンオキシド;主鎖あるいは側鎖にエチレンオキシド鎖を含む架橋ポリマー;などの従来公知のゲル状電解質を形成可能なホストポリマーが挙げられる。また、本発明では、上記の通り、シェル部に係る高分子化合物の高分子鎖とコア部とが化学的に結合していることから、電解液との親和性は良好であるが、電解液に対して溶解性があるために従来はゲル状電解質のホストポリマーとして用いることができなかった樹脂、例えば、ポリメチルアクリレート、ポリエチルアクリレート、ポリメチルメタクリレート、ポリエチルメタクリレートなどの(メタ)アクリレート樹脂(アクリレート樹脂およびメタアクリレート樹脂)も用いることが可能である。   As the polymer compound related to the shell portion, for example, a polymer compound used in a conventionally known gel electrolyte can be applied. That is, fluororesin such as polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer; polyacrylonitrile; polyalkylene oxide such as polyethylene oxide, polypropylene oxide, ethylene oxide-propylene oxide copolymer; main chain or side Examples thereof include host polymers capable of forming a conventionally known gel electrolyte such as a crosslinked polymer containing an ethylene oxide chain in the chain. In the present invention, as described above, since the polymer chain of the polymer compound related to the shell portion and the core portion are chemically bonded, the affinity for the electrolyte solution is good. Resins that could not be used as a host polymer for gel electrolytes because of their solubility in water, such as (meth) acrylate resins such as polymethyl acrylate, polyethyl acrylate, polymethyl methacrylate, and polyethyl methacrylate (Acrylate resins and methacrylate resins) can also be used.

更に、シェル部に係る高分子化合物として、架橋性の側鎖(架橋形成能を有する側鎖)を導入した下記一般式(1)で示される構造の樹脂を用いることもできる。   Furthermore, as the polymer compound related to the shell portion, a resin having a structure represented by the following general formula (1) into which a crosslinkable side chain (a side chain having crosslinkability) is introduced can also be used.

Figure 2006182925
Figure 2006182925

(ここで、RおよびRは、それぞれ水素原子または炭素数1〜3のアルキル基、Rは炭素数1〜3のアルキル基、ヒドロキシアルキル基、またはアルキレンオキシド基、Rは少なくとも1つの水素原子がオキセタン基または脂環式エポキシ基で置換された炭素数1〜6のアルキル基を示し、mおよびnはそれぞれ100〜1000の整数を表す。) Wherein R 1 and R 3 are each a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 2 is an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group, or an alkylene oxide group, and R 4 is at least 1 (Indicating an alkyl group having 1 to 6 carbon atoms in which two hydrogen atoms are substituted with an oxetane group or an alicyclic epoxy group, m and n each represents an integer of 100 to 1000.)

上記一般式(1)で示される樹脂は、側鎖にオキセタン基や脂環式エポキシ基を有するため、例えば、電池内で加熱すると、電解液中のリチウム塩(例えば、LiPFやLiBFなど)を開始剤として反応し、架橋構造を生成することから、良好なゲル状電解質を形成できる。 Since the resin represented by the general formula (1) has an oxetane group or an alicyclic epoxy group in a side chain, for example, when heated in a battery, a lithium salt (for example, LiPF 6 or LiBF 4 or the like in an electrolytic solution) ) As an initiator to form a crosslinked structure, and thus a good gel electrolyte can be formed.

上記一般式(1)で示される樹脂は、例えば、下記一般式(2)および/または下記一般式(3)で示されるユニットと、下記一般式(4)で示されるユニットを有する共重合体であることが好ましい。   The resin represented by the general formula (1) is, for example, a copolymer having a unit represented by the following general formula (2) and / or the following general formula (3) and a unit represented by the following general formula (4). It is preferable that

Figure 2006182925
Figure 2006182925

Figure 2006182925
Figure 2006182925

Figure 2006182925
Figure 2006182925

(ここで、R、RおよびRは、水素原子またはメチル基、RおよびRは炭素数1〜6のアルキル基を示す。) (Here, R 5 , R 7 and R 8 represent a hydrogen atom or a methyl group, and R 6 and R 9 represent an alkyl group having 1 to 6 carbon atoms.)

また、上記一般式(1)で示される樹脂が、上記一般式(2)および/または上記一般式(3)で示されるユニットと、上記一般式(4)で示されるユニットを有する共重合体である場合、共重合体全ユニット中、上記一般式(4)で示されるユニットの比率が、50モル%以上、より好ましくは75モル%以上であって、98モル%以下、より好ましくは90モル%以下であることが望ましい。言い換えれば、上記共重合体全ユニット中、上記一般式(2)で示されるユニットと上記一般式(3)で示されるユニットの合計の比率が、2モル%以上、より好ましくは10モル%以上であって、50モル%以下、より好ましくは25モル%以下であることが推奨される。上記一般式(4)で示されるユニットの比率が小さすぎると、シェル部における架橋密度が大きくなりすぎて、電池内において、シェル部の電解液保持能力が低下することがある。また、上記一般式(4)で示されるユニットの比率が大きすぎると、架橋形成能を有する側鎖の数が減少して、シェル部の架橋形成性が低下することがある。   Further, a copolymer in which the resin represented by the general formula (1) has a unit represented by the general formula (2) and / or the general formula (3) and a unit represented by the general formula (4). In this case, the ratio of the unit represented by the general formula (4) in the entire copolymer unit is 50 mol% or more, more preferably 75 mol% or more, and 98 mol% or less, more preferably 90 mol%. It is desirable that it is not more than mol%. In other words, the total ratio of the unit represented by the general formula (2) and the unit represented by the general formula (3) is 2 mol% or more, more preferably 10 mol% or more in all units of the copolymer. It is recommended that it be 50 mol% or less, more preferably 25 mol% or less. When the ratio of the unit represented by the general formula (4) is too small, the crosslink density in the shell portion becomes too high, and the electrolyte solution holding capacity of the shell portion may be reduced in the battery. On the other hand, when the ratio of the unit represented by the general formula (4) is too large, the number of side chains having a crosslinking ability may be reduced, and the crosslinking ability of the shell part may be lowered.

なお、上記一般式(2)で示されるユニットと上記一般式(3)で示されるユニットとは、いずれか一方を用いてもよく、両者を同時に使用してもよいが、後者の場合には、上記一般式(2)で示されるユニットと、上記一般式(3)で示されるユニットとの比率には特に制限は無く、共重合体全ユニット中におけるこれらのユニットの合計の比率が、上記の好適値を満足するようにすればよい。   Note that either one of the unit represented by the general formula (2) and the unit represented by the general formula (3) may be used, or both may be used simultaneously. The ratio of the unit represented by the general formula (2) and the unit represented by the general formula (3) is not particularly limited, and the total ratio of these units in all units of the copolymer is It is sufficient to satisfy the preferable value of.

なお、上記一般式(2)および/または上記一般式(3)で示されるユニットと、上記一般式(4)で示されるユニットを有する共重合体は、下記一般式(5)および/または下記一般式(6)で示されるモノマーと、下記一般式(7)で示されるモノマーとを共重合することで得ることができる。なお、上記の各モノマーは、比較的近い反応性を有しているため、上記共重合体は、通常、ランダム共重合体またはブロック共重合体として得られる。   The copolymer having the unit represented by the general formula (2) and / or the general formula (3) and the unit represented by the general formula (4) is represented by the following general formula (5) and / or It can be obtained by copolymerizing a monomer represented by the general formula (6) and a monomer represented by the following general formula (7). In addition, since each said monomer has comparatively close reactivity, the said copolymer is normally obtained as a random copolymer or a block copolymer.

Figure 2006182925
Figure 2006182925

Figure 2006182925
Figure 2006182925

Figure 2006182925
Figure 2006182925

[ここで、R、R、R、RおよびRは、それぞれ、上記一般式(2)、(3)および(4)と同じである。] [Wherein R 5 , R 6 , R 7 , R 8 and R 9 are the same as those in the general formulas (2), (3) and (4), respectively. ]

上記の共重合体を合成するに当たっては、例えば、分散媒(水など)に、上記の各モノマーと、重合開始剤(過硫酸カリウムなど)を加え、窒素雰囲気中で30〜80℃の条件で撹拌しながら分散重合する方法が採用できる。また、この分散重合の際に、上記各モノマーと共に、コア部を構成する後記の微粒子を分散媒に添加しておくことで、上記共重合体の合成と同時にコアシェル型微粒子も製造できる。   In synthesizing the above copolymer, for example, each of the above monomers and a polymerization initiator (such as potassium persulfate) are added to a dispersion medium (such as water), and the conditions are 30 to 80 ° C. in a nitrogen atmosphere. A method of dispersion polymerization with stirring can be employed. Further, at the time of this dispersion polymerization, core-shell type fine particles can be produced simultaneously with the synthesis of the above copolymer by adding the fine particles described later constituting the core part to the dispersion medium together with the respective monomers.

なお、上記一般式(5)で示されるモノマーは、アクリル酸クロリドやメタクリル酸クロリドなどの酸クロリドと、3−エチル−3−ヒドロキシメチルオキセタンとを反応させることにより製造することができる。また、上記一般式(6)や一般式(7)のモノマーは、市販品として入手することができる。   The monomer represented by the general formula (5) can be produced by reacting an acid chloride such as acrylic acid chloride or methacrylic acid chloride with 3-ethyl-3-hydroxymethyloxetane. Moreover, the monomer of the said General formula (6) and General formula (7) can be obtained as a commercial item.

上記コアシェル型微粒子のコア部は、有機溶媒(例えば、リチウム二次電池の電解液溶媒)に対して室温で安定な微粒子であれば特に限定されない。   The core part of the core-shell type fine particle is not particularly limited as long as it is a fine particle that is stable at room temperature with respect to an organic solvent (for example, an electrolyte solvent for a lithium secondary battery).

例えば、コア部によるシャットダウン機能付与を期待する必要がない場合には、高耐熱性の微粒子を用いることができる。コア部が高耐熱性の微粒子であるコアシェル型微粒子を有する電池では、過充電などによって異常高温となった場合にも、コア部は実質的に変形しないために高い絶縁性が発揮され、これにより正負極間のイオン透過性絶縁層(セパレータ)の溶融(メルトダウン)による正負極間での大規模な短絡の発生が防止できることから、安全性に優れたものとなる。高耐熱性の微粒子の具体例としては、例えば、架橋高分子[架橋ポリスチレン、架橋(メタ)アクリレート樹脂(架橋ポリメチルアクリレート、架橋ポリエチルアクリレート、架橋ポリメチルメタクリレート、架橋ポリエチルメタクリレートなど)、ポリジビニルベンゼン、ポリイミド、エポキシ樹脂、ポリウレタンなど]や、耐熱性樹脂(ポリテトラフルオロエチレンおよびその誘導体、ポリサルフォン、ポリエーテルサルフォン、熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルケトンなど)などで構成される有機樹脂微粒子(高耐熱性有機樹脂微粒子);SiO、TiO、Al、タルク、CaCO、BaTiOなどの無機酸化物微粒子などの無機微粒子;などが挙げられる。高耐熱性の微粒子は、これらを1種単独で使用してもよく、2種以上を併用してもよい。更に、上記の高耐熱性の微粒子を構成する材料を2種以上含有する微粒子であっても構わない。 For example, when it is not necessary to expect the shutdown function from being provided by the core part, fine particles having high heat resistance can be used. In a battery having core-shell type fine particles whose core part is a high heat-resistant fine particle, even if the core part becomes abnormally high temperature due to overcharge or the like, the core part is not substantially deformed, so high insulation is exhibited. Since the occurrence of a large-scale short circuit between the positive and negative electrodes due to melting (meltdown) of the ion-permeable insulating layer (separator) between the positive and negative electrodes can be prevented, the safety is excellent. Specific examples of the high heat-resistant fine particles include, for example, a crosslinked polymer [crosslinked polystyrene, crosslinked (meth) acrylate resin (crosslinked polymethyl acrylate, crosslinked polyethyl acrylate, crosslinked polymethyl methacrylate, crosslinked polyethyl methacrylate, etc.), poly Divinylbenzene, polyimide, epoxy resin, polyurethane, etc.] and heat-resistant resins (polytetrafluoroethylene and its derivatives, polysulfone, polyethersulfone, thermoplastic polyimide, polyamideimide, polyetherketone, etc.) Resin fine particles (high heat resistant organic resin fine particles); inorganic fine particles such as inorganic oxide fine particles such as SiO 2 , TiO 2 , Al 2 O 3 , talc, CaCO 3 , and BaTiO 3 ; High heat-resistant fine particles may be used alone or in combination of two or more. Further, it may be fine particles containing two or more materials constituting the above high heat-resistant fine particles.

また、例えば、コア部によってシャットダウン機能を確保する場合には、熱可塑性樹脂であって、有機溶媒(例えば、電解液溶媒)を含有した状態で測定される融点または軟化点が80℃以上、より好ましくは100℃以上であって、130℃以下、より好ましくは125℃以下のものを構成成分として有する微粒子を使用することが好ましい。このような融点または軟化点を有する熱可塑性樹脂で構成される微粒子をコア部とするコアシェル型微粒子を有する電池では、電池内温度が、例えば80〜130℃で且つ熱可塑性樹脂の上記融点または軟化点以上の温度となった際に、該コア部が溶融または軟化して、正負極間に介在するイオン透過性絶縁層(セパレータ)の空孔を閉塞して内部抵抗を増大させるといったシャットダウン機能が発揮されるため、安全性に優れたものとなる。なお、熱可塑性樹脂の上記融点は、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味しており、上記軟化点は、JIS K 2207に規定の測定法に準じて測定される軟化点を意味している。   For example, when the shutdown function is ensured by the core portion, the melting point or softening point of the thermoplastic resin measured in a state containing an organic solvent (for example, an electrolyte solution solvent) is 80 ° C. or higher. It is preferable to use fine particles having a constituent component of preferably 100 ° C. or higher and 130 ° C. or lower, more preferably 125 ° C. or lower. In a battery having core-shell type fine particles having a core part of fine particles composed of a thermoplastic resin having such a melting point or softening point, the internal temperature of the battery is, for example, 80 to 130 ° C., and the above melting point or softening of the thermoplastic resin. When the temperature exceeds a point, the core part melts or softens, and the shut-down function of increasing the internal resistance by closing the pores of the ion-permeable insulating layer (separator) interposed between the positive and negative electrodes Because it is demonstrated, it is excellent in safety. In addition, the said melting | fusing point of a thermoplastic resin means the melting temperature measured using a differential scanning calorimeter (DSC) according to the prescription | regulation of JISK7121, The said softening point is prescribed | regulated to JISK2207. It means the softening point measured according to the measurement method.

上記の軟化点を有する熱可塑性樹脂の具体例としては、ポリエチレン(PE)、ポリプロピレン(PP)、塩素化ポリプロピレン、ポリシクロオレフィンなどのポリオレフィン;エチレン−酢酸ビニル共重合体(EVA)、エチレン−エチルアクリレート共重合体、エチレン−メチルメタクリレート共重合体などの共重合ポリオレフィン;などが挙げられる。なお、上記共重合ポリオレフィンは、所謂ホットメルト樹脂であり、例えば、エチレン由来のユニット比率が65モル%以上であるものが好ましい。コア部を構成するに当たっては、これらの熱可塑性樹脂の1種のみを用いてもよく、2種以上を併用してもよい。また、異なる種類の上記熱可塑性樹脂で構成される2種以上の微粒子を併用してコアシェル型微粒子としても構わない。更に、2種以上の上記熱可塑性樹脂を用い、一方をコア、他方をシェルとした2層構造の微粒子とし、これをコア部に用いて3層構造のコアシェル型微粒子とすることもできる。なお、上記の熱可塑性樹脂の中でも、塩素化ポリプロピレン、またはエチレン由来のユニット比率が65モル%以上のEVAが好適である。   Specific examples of the thermoplastic resin having the above softening point include polyolefins such as polyethylene (PE), polypropylene (PP), chlorinated polypropylene, and polycycloolefin; ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl Examples thereof include copolymer polyolefins such as acrylate copolymers and ethylene-methyl methacrylate copolymers. The copolymerized polyolefin is a so-called hot melt resin, and preferably has a unit ratio derived from ethylene of 65 mol% or more. In constituting the core part, only one kind of these thermoplastic resins may be used, or two or more kinds may be used in combination. Further, two or more kinds of fine particles composed of different types of thermoplastic resins may be used in combination to form core-shell fine particles. Further, two or more types of the above-mentioned thermoplastic resins can be used to form fine particles having a two-layer structure in which one is a core and the other is a shell, and this can be used as a core part to form a core-shell fine particle having a three-layer structure. Among the above thermoplastic resins, chlorinated polypropylene or EVA having a unit ratio derived from ethylene of 65 mol% or more is preferable.

上記コアシェル型微粒子において、シェル部に係る高分子化合物の高分子鎖と、コア部とは、化学的に結合している。上記高分子化合物の高分子鎖とコア部とを化学的に結合させる方法としては、特に制限はなく、例えば、コアシェル型微粒子の製造時において、シェル部とコア部とを結合剤(公知のシランカップリング剤など)を介して結合する方法や、シェル部の構成成分(高分子化合物)やコア部の構成成分に、互いに化学的結合を形成できる官能基を導入しておく方法、コア部の存在下でシェル部を構成する高分子化合物を合成しつつ、該高分子化合物とコア部を結合させる方法などが挙げられる。   In the core-shell type fine particles, the polymer chain of the polymer compound related to the shell part and the core part are chemically bonded. The method for chemically bonding the polymer chain of the polymer compound and the core part is not particularly limited. For example, in the production of core-shell type fine particles, the shell part and the core part are combined with a binder (known silane). A coupling agent, etc.), a method in which a functional group capable of forming a chemical bond with each other is introduced into the shell component (polymer compound) or the core component, Examples thereof include a method in which a polymer compound constituting the shell part is synthesized in the presence of the polymer compound and the core part are bonded to each other.

具体例を挙げると、例えば、コア部に上記の無機微粒子を用いる場合では、シランカップリング剤を用いて予め該微粒子表面を処理しておき、このコア部にシェル部を付する際に、コア部に存在するシランカップリング剤由来の官能基をシェル部に係る高分子化合物と反応させて、該高分子化合物の高分子鎖とコア部とを化学的に結合することができる。   For example, when the above-mentioned inorganic fine particles are used for the core portion, the surface of the fine particles is treated in advance using a silane coupling agent, and the core portion is attached with the shell portion. By reacting the functional group derived from the silane coupling agent present in the part with the polymer compound related to the shell part, the polymer chain of the polymer compound and the core part can be chemically bonded.

また、コア部に上記の高耐熱性有機樹脂微粒子や、上記熱可塑性樹脂で構成される微粒子を用いる場合では、例えば、予め酸基(カルボキシル基、カルボン酸無水物基など)を導入しておいた樹脂を含有するコア部に、予め水酸基やアミノ基などを導入しておいた高分子化合物でシェル部を形成する際または形成後に、酸基と水酸基やアミノ基とを反応させて結合を形成することができる。なお、コア部に係る樹脂に導入する官能基を水酸基やアミノ基などとし、シェル部に係る高分子化合物に導入する官能基を酸基(カルボキシル基、カルボン酸無水物基など)としても構わない。   In addition, when using the above high heat-resistant organic resin fine particles or fine particles composed of the above thermoplastic resin for the core portion, for example, an acid group (carboxyl group, carboxylic anhydride group, etc.) is introduced in advance. When a shell part is formed with a polymer compound in which a hydroxyl group or an amino group has been introduced in advance into the core part containing the resin, the acid group and the hydroxyl group or amino group are reacted to form a bond. can do. The functional group introduced into the resin related to the core part may be a hydroxyl group or an amino group, and the functional group introduced into the polymer compound related to the shell part may be an acid group (carboxyl group, carboxylic anhydride group, etc.). .

更に、コア部に上記の高耐熱性有機樹脂微粒子や、上記熱可塑性樹脂で構成される微粒子を用いる場合で、該コア部の存在下でシェル部に係る高分子化合物を合成することで、該高分子化合物を形成するためのモノマーの一部をコア部に係る樹脂にも結合させて、シェル部に係る高分子化合物の高分子鎖とコア部との化学的結合を形成させることもできる。   Furthermore, in the case of using the above high heat-resistant organic resin fine particles or fine particles composed of the above thermoplastic resin for the core portion, by synthesizing the polymer compound related to the shell portion in the presence of the core portion, A part of the monomer for forming the polymer compound can also be bonded to the resin related to the core part to form a chemical bond between the polymer chain of the polymer compound related to the shell part and the core part.

なお、上記コアシェル型微粒子の粒径は、乾燥状態(具体的は、60℃で15時間以上真空乾燥した後の状態)で、15μm以下であり、10μm以下であることが好ましい。後述するように、コアシェル型微粒子は、リチウム二次電池内において、正負極間に介在させるイオン透過性絶縁層に含有させたり、多孔質基材と複合化させたセパレータとして使用する。よって、コアシェル型微粒子の粒径が大きすぎると、イオン透過性絶縁層やセパレータが厚くなるため、電池の内部抵抗を増大させたり、エネルギー密度の低下を引き起こしてしまう。また、粒径が大きすぎると、特にコア部に上記の無機微粒子を用いた場合には、例えば、イオン透過性絶縁層形成用の組成物(スラリーなど)や、多孔質基材と複合化させるための組成物(スラリーなど)において、コアシェル型微粒子の沈降が生じやすくなる。なお、コアシェル型微粒子の粒径が小さすぎると、微粒子同士の凝固が生じやすくなり、取り扱いが困難となることから、その粒径は0.1μm以上であることが好ましい。なお、本発明でいうコアシェル型微粒子の粒径は、乾燥状態で、走査型電子顕微鏡にて観察し、画像解析により求められた数平均粒子径であり、後記のコア部の粒径は、水などの媒体に分散させた状態で、レーザー散乱装置により測定した数平均粒子径である。   The particle diameter of the core-shell type fine particles is 15 μm or less and preferably 10 μm or less in a dry state (specifically, after being vacuum-dried at 60 ° C. for 15 hours or more). As will be described later, the core-shell type fine particles are contained in an ion-permeable insulating layer interposed between positive and negative electrodes in a lithium secondary battery, or used as a separator combined with a porous substrate. Therefore, if the particle diameter of the core-shell type fine particles is too large, the ion-permeable insulating layer and the separator become thick, so that the internal resistance of the battery is increased and the energy density is reduced. If the particle size is too large, especially when the above-mentioned inorganic fine particles are used in the core, for example, it is combined with a composition for forming an ion-permeable insulating layer (slurry etc.) or a porous substrate. In such a composition (slurry or the like), sedimentation of core-shell type fine particles is likely to occur. In addition, if the particle diameter of the core-shell type fine particles is too small, the fine particles tend to be solidified and difficult to handle. Therefore, the particle size is preferably 0.1 μm or more. The particle diameter of the core-shell type fine particles referred to in the present invention is a number average particle diameter obtained by image analysis by observing with a scanning electron microscope in a dry state. It is the number average particle diameter measured with a laser scattering device in a state dispersed in a medium such as

また、コアシェル型微粒子のコア部の粒径は、例えば、コアシェル型微粒子の粒径の1/4以上2/3以下であることが好ましい。コア部の粒径が大きすぎると、シェル部の体積が小さくなりすぎて電解液の保持機能や、ゲル状としたときの弾力性が乏しくなり、電池性能の低下を引き起こす虞がある。また、コア部の粒径が小さすぎると、コア部の体積が小さくなりすぎて、例えば、電池内が異常に高温となった場合や、電極の膨張が大きい場合に、正負極間の絶縁性を保持する能力が低下して、短絡防止効果が小さくなることがある。なお、シェル部の厚みは、コア部の粒径を上記好適値とした上で、コアシェル型微粒子の粒径が上記所定値となるように調整すればよい。   Further, the particle size of the core part of the core-shell type fine particles is preferably, for example, not less than 1/4 and not more than 2/3 of the particle size of the core-shell type fine particles. If the particle size of the core part is too large, the volume of the shell part becomes too small, and the electrolyte holding function and the elasticity when made into a gel form are poor, which may cause a decrease in battery performance. Also, if the particle size of the core part is too small, the volume of the core part becomes too small, for example, when the inside of the battery becomes abnormally hot or when the expansion of the electrode is large, the insulation between the positive and negative electrodes May decrease the ability to hold and reduce the short-circuit prevention effect. The thickness of the shell part may be adjusted so that the particle diameter of the core-shell type fine particles becomes the above-mentioned predetermined value after setting the particle diameter of the core part to the above-mentioned preferable value.

<リチウム二次電池>
本発明のリチウム二次電池は、上記(A)または(B)の態様を有することを特徴としている。本発明のリチウム二次電池の(A)の態様では、正負極間に介在し、これらを絶縁するためのイオン透過性絶縁層が、本発明のコアシェル型微粒子を含有しており、且つ、該絶縁層が負極表面に形成されている。
<Lithium secondary battery>
The lithium secondary battery of the present invention is characterized by having the above-described aspect (A) or (B). In the aspect (A) of the lithium secondary battery of the present invention, the ion-permeable insulating layer interposed between the positive and negative electrodes for insulating them contains the core-shell type fine particles of the present invention, and An insulating layer is formed on the negative electrode surface.

上記のイオン透過性絶縁層は、例えば、上記コアシェル型微粒子のシェル部が電解液を含有する状態(すなわち、ゲル状態)で形成してもよいし、該シェル部が電解液を含有しない状態で形成してもよい。   The ion-permeable insulating layer may be formed, for example, in a state where the shell portion of the core-shell type fine particles contains an electrolytic solution (that is, a gel state), or in a state where the shell portion does not contain an electrolytic solution. It may be formed.

上記イオン透過性絶縁層は、上記コアシェル型微粒子を含有するイオン透過性絶縁層形成用組成物(スラリーなど)を用い、これを負極表面(負極の活物質含有層表面)に塗布し、乾燥させるなどして形成できる。なお、コアシェル型微粒子のシェル部が電解液を含有しない状態でイオン透過性絶縁層を形成する場合には、コアシェル型微粒子を、水または適当な分散媒に分散させた組成物(スラリーなど)を作製し、これをブレードコーター、ロールコーター、ダイコーター、スプレーコーターなどの従来公知の塗布装置を用いて負極表面に塗布し、乾燥する方法を採用することが望ましい。   The ion permeable insulating layer uses an ion permeable insulating layer forming composition (slurry or the like) containing the core-shell type fine particles, which is applied to the negative electrode surface (the active material containing layer surface of the negative electrode) and dried. Etc. can be formed. When the ion-permeable insulating layer is formed in a state where the shell part of the core-shell type fine particles does not contain an electrolyte solution, a composition (slurry or the like) in which the core-shell type fine particles are dispersed in water or a suitable dispersion medium is used. It is desirable to adopt a method of preparing and applying this to the negative electrode surface using a conventionally known coating apparatus such as a blade coater, roll coater, die coater, spray coater, and the like, and then drying.

また、シェル部が電解液を含有する状態でイオン透過性絶縁層を形成する場合には、電解液にコアシェル型微粒子を分散させてイオン透過性絶縁層形成用組成物を作製し、これを負極表面に塗布してイオン透過性絶縁層を形成し、この電極をそのまま用いて電池とする。この場合には、分散媒(電解液)が水分を含んでいると、電池とした場合の性能劣化の原因となるので、例えば、水分率が50ppm以下といった低含水率の溶媒(電解液)を用い、ドライ雰囲気でイオン透過性絶縁層を形成することが望ましい。また、コアシェル型微粒子のシェル部をゲル状とした状態で組成物を塗布し、一旦乾燥した後に電解液を追加して再びゲル状態に戻すという方法を用いてもよい。しかしながら、電解液を含まない状態でイオン透過性絶縁層を形成する方が、その後の電池組み立て工程での電極の取り扱いが容易となることから、望ましい。   When the ion-permeable insulating layer is formed in a state where the shell portion contains the electrolytic solution, core-shell type fine particles are dispersed in the electrolytic solution to prepare an ion-permeable insulating layer forming composition, which is used as the negative electrode. An ion-permeable insulating layer is formed by coating on the surface, and this electrode is used as it is to make a battery. In this case, if the dispersion medium (electrolyte) contains moisture, it may cause performance deterioration in the case of a battery. For example, a low moisture content solvent (electrolyte) having a moisture content of 50 ppm or less is used. It is desirable to use and form an ion-permeable insulating layer in a dry atmosphere. Alternatively, a method may be used in which the composition is applied in a state where the shell portion of the core-shell type fine particles is in a gel state, and once dried, an electrolytic solution is added to return to the gel state again. However, it is desirable to form the ion-permeable insulating layer in a state that does not contain the electrolyte solution, because it becomes easier to handle the electrode in the subsequent battery assembly process.

なお、特にコアシェル型微粒子の粒径が小さい場合には、該微粒子同士が凝集しやすいが、この凝集を防ぐ目的で、イオン透過性絶縁層形成用組成物に分散剤を添加することが望ましい。分散剤としては、従来公知のもの[例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール、カルボキシメチルセルロース(CMC)など]を用いることができる。分散剤を使用する場合には、例えば、コアシェル型微粒子100質量部に対して、0.1〜10質量部とすることが好ましい。   In particular, when the particle diameter of the core-shell type fine particles is small, the fine particles are likely to aggregate. For the purpose of preventing the aggregation, it is desirable to add a dispersant to the composition for forming an ion-permeable insulating layer. As the dispersant, conventionally known ones [for example, polyvinyl pyrrolidone (PVP), polyvinyl alcohol, carboxymethyl cellulose (CMC) and the like] can be used. When using a dispersing agent, it is preferable to set it as 0.1-10 mass parts with respect to 100 mass parts of core-shell type fine particles, for example.

また、コアシェル型微粒子同士の密着性が不足するような場合には、電池特性を損なわない範囲で適宜結着剤を添加して、該微粒子同士の密着性を高めることもできる。使用し得る結着剤としては、例えば、EVA、エチレン−エチルアクリレート共重合体、エチレン−メチルメタクリレート共重合体、エチレン−ビニルアルコール共重合体、PVDF、ビニリデン−ヘキサフルオロプロピレン共重合体、ニトリル−ブタジエン共重合体、スチレン−ブタジエン−スチレンブロック共重合体(SBR)など、非水系電池の各部材で結着剤として一般的に用いられている樹脂が好適である。イオン透過性絶縁層形成用の組成物が有機溶媒系の場合には、上記例示の結着剤樹脂を該有機溶媒に溶解させた状態で使用することが好ましい。また、イオン透過性絶縁層形成用の組成物が水系の場合には、上記例示の結着剤樹脂をエマルジョンやラテックスといった水分散体の形態で用いることが推奨される。結着剤を使用する場合には、例えば、コアシェル型微粒子100質量部に対して、1〜10質量部とすることが好ましい。   When the adhesion between the core-shell type fine particles is insufficient, a binder may be added as appropriate within a range that does not impair the battery characteristics, and the adhesion between the fine particles can be enhanced. Examples of binders that can be used include EVA, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-vinyl alcohol copolymer, PVDF, vinylidene-hexafluoropropylene copolymer, nitrile- A resin generally used as a binder for each member of a non-aqueous battery, such as a butadiene copolymer and a styrene-butadiene-styrene block copolymer (SBR), is preferable. When the composition for forming an ion-permeable insulating layer is an organic solvent system, it is preferable to use the binder resin exemplified above in a state dissolved in the organic solvent. Further, when the ion-permeable insulating layer forming composition is aqueous, it is recommended to use the binder resin exemplified above in the form of an aqueous dispersion such as an emulsion or latex. When the binder is used, for example, the amount is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the core-shell type fine particles.

イオン透過性絶縁層の厚みは、例えば、1μm以上、より好ましくは5μm以上であって、50μm以下、より好ましくは30μm以下とすることが望ましい。イオン透過性絶縁層が薄すぎると、電極表面の凹凸の影響を受けやすく、短絡が生じやすくなることがある。また、イオン透過性絶縁層が厚すぎると、イオンの導伝パスが長くなって電池の内部抵抗が増大することがあり、更に電池内に占めるイオン透過性絶縁層の割合が大きくなりすぎて、電池のエネルギー密度が低下することがある。   The thickness of the ion-permeable insulating layer is, for example, 1 μm or more, more preferably 5 μm or more, and is preferably 50 μm or less, more preferably 30 μm or less. If the ion-permeable insulating layer is too thin, it is likely to be affected by unevenness on the electrode surface, and a short circuit may occur. In addition, if the ion-permeable insulating layer is too thick, the ion conduction path becomes long and the internal resistance of the battery may increase, and the proportion of the ion-permeable insulating layer in the battery becomes too large. The energy density of the battery may decrease.

本発明のリチウム二次電池の(B)の態様では、正負極間に介在するセパレータが、多孔質基材と本発明のコアシェル型微粒子を複合化してなるセパレータを、正負極間に有している。   In the aspect (B) of the lithium secondary battery of the present invention, the separator interposed between the positive and negative electrodes has a separator formed by combining the porous base material and the core-shell type fine particles of the present invention between the positive and negative electrodes. Yes.

多孔質基材とコアシェル型微粒子を複合化して本発明に係るセパレータを作製するには、上記(A)の態様に係るイオン透過性絶縁層を形成するための上記組成物(分散剤や結着剤を含有するものも含む)と同じ組成物(スラリーなど)に、イオン透過性を有する多孔質基材を塗布または含浸させた後、該組成物に係る水または有機溶剤を除去する方法が採用できる。上記組成物を多孔質基材に塗布する場合には、イオン透過性絶縁層形成法で説明した組成物塗布方法と同じ方法が採用できる。なお、上記組成物に電解液を用いた場合には、電解液溶媒の除去工程は不要である。   In order to produce a separator according to the present invention by combining a porous base material and core-shell type fine particles, the composition (dispersant or binder) for forming the ion-permeable insulating layer according to the embodiment (A) is used. Adopting a method of removing water or organic solvent related to the composition after applying or impregnating a porous substrate having ion permeability to the same composition (including slurry containing an agent) it can. When the composition is applied to the porous substrate, the same method as the composition applying method described in the ion-permeable insulating layer forming method can be employed. In addition, when an electrolytic solution is used for the above composition, the step of removing the electrolytic solution solvent is unnecessary.

多孔質基材としては、不織布が好ましく、特にポリオレフィン(ポリエチレン、ポリプロピレンなど)、またはポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)製の不織布が好適である。不織布の厚みは、例えば、10〜50μmであることが好ましく、その空隙率は、例えば、10〜50%であることが望ましい。   As the porous substrate, a nonwoven fabric is preferable, and a nonwoven fabric made of polyolefin (polyethylene, polypropylene, etc.) or polyester (polyethylene terephthalate, polybutylene terephthalate, etc.) is particularly preferable. The thickness of the nonwoven fabric is preferably 10 to 50 μm, for example, and the porosity is preferably 10 to 50%, for example.

また、作製後のセパレータにおいては、このような多孔質基材の両表面(上下面)だけでなく、多孔質基材の空隙内にコアシェル型微粒子が存在する構造とすることが推奨される。例えば、上記の組成物を含浸させる方法によって、多孔質基材の空隙内にコアシェル型微粒子が存在する構造とすることができる。   Further, it is recommended that the separator after fabrication has a structure in which core-shell type fine particles are present not only in both surfaces (upper and lower surfaces) of such a porous substrate, but also in the voids of the porous substrate. For example, by the method of impregnating with the above composition, a structure in which core-shell type fine particles are present in the voids of the porous substrate can be obtained.

このようにして得られるセパレータ(固形分)においては、コアシェル型微粒子の割合は、体積分率で30%以上70%以下であることが望ましい。コアシェル型微粒子の割合が少なすぎると、電解液の保持性が低くなって電池特性向上効果が小さくなることがある。また、コアシェル型微粒子の割合が多すぎると、セパレータとしての強度不足を招く虞がある。   In the separator (solid content) thus obtained, the ratio of the core-shell type fine particles is preferably 30% to 70% in terms of volume fraction. When the ratio of the core-shell type fine particles is too small, the retention of the electrolytic solution is lowered, and the effect of improving battery characteristics may be reduced. Moreover, when there are too many ratios of a core-shell type fine particle, there exists a possibility of causing the intensity | strength shortage as a separator.

本発明のリチウム二次電池に係る正極に用い得る正極活物質としては、例えば、LiCoO、LiNiO、LiNiOのNiの一部をCoで置換したLiNiCo(1−x)などのカルコゲナイト系酸化物、LiMnといったスピネル酸化物、LiNi(1−x)/2Mn(1−x)/2Coといった層状MnNi系化合物、LiMPO(M:Co、Ni、Mn、Fe)などのオリビン系酸化物など、通常のリチウムイオン二次電池に用いられているリチウムイオンを吸蔵放出可能な無機酸化物が挙げられる。 Examples of the positive electrode active material that can be used for the positive electrode according to the lithium secondary battery of the present invention include LiNi x Co (1-x) O 2 in which a part of Ni in LiCoO 2 , LiNiO 2 , and LiNiO 2 is replaced with Co. Chalcogenite-based oxides, spinel oxides such as LiMn 2 O 4, layered MnNi-based compounds such as LiNi (1-x) / 2 Mn (1-x) / 2 Co x O 2 , LiMPO 4 (M: Co, Ni, Examples thereof include inorganic oxides capable of occluding and releasing lithium ions used in ordinary lithium ion secondary batteries, such as olivine-based oxides such as Mn and Fe).

これらの活物質と必要に応じて導電性を付与するための導電助剤、結着性を付与するためのバインダを混合し、分散媒[N−メチル−2−ピロリドン(NMP)、水、トルエンなど]を用いてスラリー状の正極合剤含有組成物とし、この組成物を集電体表面に塗布、乾燥し、更にプレスすることで集電体表面に活物質含有層を形成し、正極とすることができる。導電助剤としては、通常用いられるもの、例えば、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、非晶質炭素などの炭素材料を、1種単独で用いてもよいし、または2種以上を併用してもよい。また、バインダも通常用いられているもの、例えば、PVDF、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂材料;SBRなどのゴム系材料;などを、1種単独で用いてもよく、2種以上を併用してもよい。正極の活物質含有層においては、例えば、活物質量が50〜99質量%、導電助剤量が0.5〜40質量%、バインダ量が0.5〜20質量%であることが望ましい。正極の活物質含有層の厚みは、例えば、10〜100μmであることが望ましい。   These active materials are mixed with a conductive auxiliary agent for imparting conductivity and a binder for imparting binding properties, if necessary, and a dispersion medium [N-methyl-2-pyrrolidone (NMP), water, toluene Etc.] to form a slurry-like positive electrode mixture-containing composition, and this composition is applied to the surface of the current collector, dried, and further pressed to form an active material-containing layer on the surface of the current collector. can do. As the conductive auxiliary agent, a carbon material such as acetylene black (AB), ketjen black (KB), graphite, amorphous carbon and the like, which are usually used, may be used alone, or 2 More than one species may be used in combination. In addition, binders that are usually used, for example, fluorine resin materials such as PVDF and polytetrafluoroethylene (PTFE); rubber-based materials such as SBR; May be used in combination. In the active material-containing layer of the positive electrode, for example, it is desirable that the amount of active material is 50 to 99% by mass, the amount of conductive additive is 0.5 to 40% by mass, and the amount of binder is 0.5 to 20% by mass. The thickness of the active material-containing layer of the positive electrode is preferably 10 to 100 μm, for example.

また、本発明のコアシェル型微粒子が、正極(活物質含有層)中に存在する構成としてもよい。正極がコアシェル型微粒子を含有することで、活物質の膨張収縮をより効果的に吸収することが可能となる。活物質含有層におけるコアシェル型微粒子の含有量は、電極内の導電性を損なわない範囲であれば特に制限は無いが、例えば、2質量%以上10質量%以下であることが望ましい。   The core-shell type fine particles of the present invention may be present in the positive electrode (active material-containing layer). When the positive electrode contains the core-shell type fine particles, the expansion and contraction of the active material can be more effectively absorbed. The content of the core-shell type fine particles in the active material-containing layer is not particularly limited as long as it does not impair the conductivity in the electrode. For example, it is preferably 2% by mass or more and 10% by mass or less.

正極の集電体としては、例えば、アルミニウム製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10μm以上30μm以下のアルミニウム箔が好適に用いられる。厚みが小さすぎると、箔の強度が低すぎて取り扱いが困難になり、厚みが大きすぎると、電池中に占める箔の割合が大きくなりすぎてエネルギー密度が低下する。   As the positive electrode current collector, for example, an aluminum foil, a punching metal, a net, an expanded metal, or the like can be used. However, an aluminum foil having a thickness of 10 μm to 30 μm is preferably used. If the thickness is too small, the strength of the foil is too low and handling becomes difficult. If the thickness is too large, the proportion of the foil in the battery becomes too large and the energy density decreases.

本発明のリチウム二次電池に係る負極活物質としては、リチウムイオンを吸蔵放出可能な材料、リチウム金属またはリチウム合金、若しくはリチウムと合金化し得る金属のうち、少なくとも1種の材料を用いることができる。リチウム合金としては、例えば、リチウム−アルミニウム合金などが挙げられる。リチウムと合金化し得る金属としては、例えば、Sn、Siなどが例示できる。その他、リチウムを吸蔵放出可能な材料としては、非晶質炭素、人造黒鉛、天然黒鉛、フラーレン、カーボンナノチューブなどの炭素系材料;LiTi12、LiTiなどのチタン酸リチウムなどが挙げられる。 As the negative electrode active material according to the lithium secondary battery of the present invention, at least one material can be used among materials capable of occluding and releasing lithium ions, lithium metal or lithium alloy, or metal that can be alloyed with lithium. . Examples of the lithium alloy include a lithium-aluminum alloy. Examples of the metal that can be alloyed with lithium include Sn and Si. Other materials that can occlude and release lithium include carbon-based materials such as amorphous carbon, artificial graphite, natural graphite, fullerene, and carbon nanotubes; titanic acids such as Li 4 Ti 5 O 12 and Li 2 Ti 3 O 7. Examples include lithium.

例えば、リチウム金属やリチウム合金、リチウムと合金化し得る金属の場合には、それらで構成される薄膜(箔など)を活物質含有層として集電体に圧着したり、スパッタリング、蒸着、鍍金などの方法で集電体表面にそれらを含有する層(活物質含有層)を形成するなどして、負極を得ることができる。その他の負極活物質の場合には、例えば、必要に応じて導電助剤やバインダと共に分散媒(NMP、水、トルエンなど)に分散させてスラリー状の負極合剤含有組成物とし、この組成物を集電体表面に塗布、乾燥し、更にプレスすることで集電体表面に活物質含有層を形成した負極が得られる。導電助剤としては、例えば、AB、KB、非晶質炭素などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。また、バインダとしては、例えば、PVDF、PTFE、SBR、CMC、ヒドロキシプロピルセルロースなどが例示でき、これらを1種単独で用いてもよく、2種以上を併用しても構わない。導電助剤やバインダも用いて負極の活物質含有層を構成する場合、該活物質含有層においては、例えば、活物質量が50〜99質量%、導電助剤量が0〜40質量%、バインダ量が0.5〜20質量%であることが望ましい。負極の活物質含有層の厚みは、例えば、30〜150μmであることが好ましい。   For example, in the case of lithium metal, a lithium alloy, or a metal that can be alloyed with lithium, a thin film (foil, etc.) composed of the metal is pressure-bonded to the current collector as an active material-containing layer, or sputtering, vapor deposition, plating, etc. A negative electrode can be obtained by forming a layer (active material containing layer) containing them on the current collector surface by a method. In the case of other negative electrode active materials, for example, it is dispersed in a dispersion medium (NMP, water, toluene, etc.) together with a conductive additive or a binder as necessary to obtain a slurry-like negative electrode mixture-containing composition. Is applied to the surface of the current collector, dried, and further pressed to obtain a negative electrode having an active material-containing layer formed on the surface of the current collector. As a conductive support agent, AB, KB, amorphous carbon etc. are mentioned, for example, These may be used individually by 1 type and may use 2 or more types together. Moreover, as a binder, PVDF, PTFE, SBR, CMC, hydroxypropyl cellulose etc. can be illustrated, for example, These may be used individually by 1 type and may use 2 or more types together. In the case where the active material-containing layer of the negative electrode is configured using a conductive additive and a binder, for example, the active material-containing layer has an active material amount of 50 to 99% by mass, a conductive auxiliary agent amount of 0 to 40% by mass, The binder amount is desirably 0.5 to 20% by mass. The thickness of the active material-containing layer of the negative electrode is preferably 30 to 150 μm, for example.

また、本発明のコアシェル型微粒子が、負極(活物質含有層)中に存在する構成としてもよい。負極がコアシェル型微粒子を含有することで、活物質の膨張収縮をより効果的に吸収することが可能となる。活物質含有層におけるコアシェル型微粒子の含有量は、電極内の導電性を損なわない範囲であれば特に制限は無いが、例えば、2質量%以上10質量%以下であることが望ましい。   The core-shell type fine particles of the present invention may be present in the negative electrode (active material-containing layer). When the negative electrode contains the core-shell type fine particles, the expansion and contraction of the active material can be more effectively absorbed. The content of the core-shell type fine particles in the active material-containing layer is not particularly limited as long as it does not impair the conductivity in the electrode. For example, it is preferably 2% by mass or more and 10% by mass or less.

負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。負極集電体の厚みは、6〜30μmであることが望ましい。集電体が薄すぎると、その強度が弱くなりすぎて取り扱いが困難となり、厚すぎると、電池内において集電体が占める体積割合が大きくなって、電池のエネルギー密度が低下してしまう。   As the current collector for the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used. The thickness of the negative electrode current collector is desirably 6 to 30 μm. If the current collector is too thin, its strength becomes too weak and difficult to handle, and if it is too thick, the volume ratio occupied by the current collector in the battery increases, and the energy density of the battery decreases.

なお、上記負極活物質の中でも、特にSnなどのリチウムと合金化し得る金属は、それ自身が電子伝導性を有するため導電助剤を付与する必要が無く、無電解または電解めっきや、スパッタリング法などによる薄膜電極の作製が可能であることから好適である。ただし、リチウムと合金化し得る金属(特にSn)は充放電によって微粒子化しやすく、これが問題となる場合があるため、かかる問題を回避する観点から、リチウムと合金化し得る金属を負極活物質とする場合には、該金属元素を含有する金属間化合物として使用することが望ましい。このような金属間化合物としては、リチウムと合金化し得る金属元素(上記のSnなど)と、リチウムと合金化しない金属元素とで構成されるものが好ましい。リチウムと合金化し得る金属元素としてはSnが好ましく、リチウムと合金化しない金属元素としては、例えば、Cu、Niなどが挙げられるが、Cuが特に好ましい。よって、金属間化合物としては、SnとCnとの化合物(例えば、CuSn)が好適である。 Among the above negative electrode active materials, metals that can be alloyed with lithium, such as Sn, in particular, have electronic conductivity, and therefore do not need to be provided with a conductive auxiliary agent. Electroless or electroplating, sputtering, etc. It is preferable because a thin film electrode can be produced by the above method. However, metals that can be alloyed with lithium (especially Sn) are likely to become fine particles due to charge and discharge, which may cause a problem. From the viewpoint of avoiding such a problem, a metal that can be alloyed with lithium is used as a negative electrode active material. Is preferably used as an intermetallic compound containing the metal element. Such an intermetallic compound is preferably composed of a metal element that can be alloyed with lithium (such as Sn described above) and a metal element that is not alloyed with lithium. Sn is preferable as a metal element that can be alloyed with lithium, and examples of metal elements that are not alloyed with lithium include Cu and Ni, and Cu is particularly preferable. Therefore, as the intermetallic compound, a compound of Sn and Cn (for example, Cu 6 Sn 5 ) is preferable.

上記のような金属間化合物を活物質とする負極は、例えば、リチウムと合金化しない金属元素で構成される集電体(例えば、CuやCu合金で構成される集電体)の表面に、リチウムと合金化し得る金属元素(Snなど)の薄層を形成し、その後熱処理する方法が採用できる。この熱処理の際に、集電体表面のリチウムと合金化しない金属元素と、リチウムと合金化し得る金属元素の層中の該金属元素とによって金属間化合物が生成し、集電体表面に金属間化合物を含有する層(すなわち、活物質含有層)が形成される。   The negative electrode using the intermetallic compound as an active material as described above is, for example, on the surface of a current collector composed of a metal element that is not alloyed with lithium (for example, a current collector composed of Cu or a Cu alloy) A method of forming a thin layer of a metal element (such as Sn) that can be alloyed with lithium and then heat-treating it can be employed. During this heat treatment, an intermetallic compound is formed by the metal element that is not alloyed with lithium on the surface of the current collector and the metal element in the layer of the metal element that can be alloyed with lithium, and an intermetallic compound is formed on the current collector surface. A layer containing a compound (that is, an active material-containing layer) is formed.

また、図1(a)に示すように、集電体1の表面に、リチウムと合金化し得る金属元素を含有する薄層2と、リチウムと合金化しない金属元素を含有する薄層3とを交互に形成し、熱処理を施して金属間化合物含有層4(活物質含有層)を形成[図1(b)]する方法を採用することがより好ましい。このような場合には、熱処理時において、まず薄層2内のリチウムと合金化し得る金属元素と、薄層2の上下に隣接する薄層3内のリチウムと合金化しない金属元素とが、界面で優先的に相互拡散するため、例えば、集電体1にCuなどを用いた場合でも、集電体1表面のCuが、その表面に形成されている薄層2との界面で拡散するよりも、薄層2と薄層3との界面での金属元素の相互拡散が先に生じて金属間化合物が形成される。よって、薄層2と薄層3との厚みを、目的とする金属間化合物の組成に合わせて調整しておくことで、所望の組成の金属間化合物を含有する活物質含有層を容易に形成することができる。   Further, as shown in FIG. 1A, a thin layer 2 containing a metal element that can be alloyed with lithium and a thin layer 3 containing a metal element that is not alloyed with lithium are formed on the surface of the current collector 1. It is more preferable to adopt a method in which the layers are alternately formed and heat-treated to form the intermetallic compound-containing layer 4 (active material-containing layer) [FIG. 1 (b)]. In such a case, at the time of heat treatment, first, a metal element that can be alloyed with lithium in the thin layer 2 and a metal element that is not alloyed with lithium in the thin layer 3 adjacent to the top and bottom of the thin layer 2 are interfaced. For example, even when Cu or the like is used for the current collector 1, Cu on the surface of the current collector 1 diffuses at the interface with the thin layer 2 formed on the surface. However, interdiffusion of metal elements at the interface between the thin layer 2 and the thin layer 3 occurs first, and an intermetallic compound is formed. Therefore, by adjusting the thicknesses of the thin layer 2 and the thin layer 3 in accordance with the composition of the target intermetallic compound, an active material-containing layer containing an intermetallic compound having a desired composition can be easily formed. can do.

更に、図2(a)に示すように、Cuなどのリチウムと合金化しない金属元素を含有する集電体1の表面に保護層5を設けておくことで、熱処理(金属間化合物形成)の際に集電体の構成金属元素の他層への拡散を抑制しつつ、金属間化合物含有層4を形成することができる[図2(b)]。保護層5を構成する材料としては、少なくとも薄層2に係るリチウムと合金化し得る金属元素(例えばSn)よりも高融点で、且つリチウムと合金化しない金属元素であることが好ましく、具体的にはNiなどが挙げられる。また、集電体1自体に、保護層5で使用し得る金属元素を用いてもよい。   Furthermore, as shown in FIG. 2 (a), by providing a protective layer 5 on the surface of the current collector 1 containing a metal element that does not alloy with lithium such as Cu, heat treatment (intermetallic compound formation) is achieved. At this time, the intermetallic compound-containing layer 4 can be formed while suppressing the diffusion of the constituent metal elements of the current collector into the other layer [FIG. 2 (b)]. The material constituting the protective layer 5 is preferably a metal element having a melting point higher than that of a metal element (for example, Sn) that can be alloyed with lithium according to the thin layer 2 and that is not alloyed with lithium. Is Ni or the like. Further, a metal element that can be used in the protective layer 5 may be used for the current collector 1 itself.

更に、例えば、集電体にCuを使用する場合、該集電体からのCu粒子の拡散を抑制する目的で、更にCu以外のリチウムと合金化しない金属元素(Ni、Zr、Feなど)を含有させたCu合金としてもよい。   Further, for example, when Cu is used for the current collector, a metal element (Ni, Zr, Fe, etc.) that does not alloy with lithium other than Cu is further added for the purpose of suppressing the diffusion of Cu particles from the current collector. It is good also as Cu alloy contained.

なお、図1や図2に示す方法で金属間化合物含有層4を形成する場合であって、リチウムと合金化し得る金属元素としてSnを、リチウムと合金化しない金属元素としてCuを用いる場合では、集電体を除く薄層2および薄層3における全Cuと全Snの原子比率は、等量程度であることが好ましく、更には、その比率が、原子比率で、Cu:Sn=6:5に近いことがより好ましく、Cu:Sn=6:5であることが特に好ましい。上記の通り、CuとSnで構成される金属間化合物としては、CuSnが好適であるが、薄層2および薄層3における全Cuと全Snとの原子比率が、上記好適値から外れてSn過剰である場合には、金属間化合物形成のための熱処理時に拡散する成分が相対的に増加し、その結果、金属間化合物含有層4内に金属間化合物化できないSnが残留して、例えば、集電体1にCuを用いた場合に集電体1表面のCuと金属間化合物化することで、集電体1のCuを消費してしまうため、集電体の強度が低下することがある。他方、薄層2および薄層3における全Cuと全Snとの原子比率が、上記好適値から外れてCu過剰である場合には、リチウムイオンの吸蔵放出を繰り返し行うことができないCuSnが形成されやすくなるため、電池の実効容量においてデメリットが生じることがある。 In the case where the intermetallic compound-containing layer 4 is formed by the method shown in FIGS. 1 and 2, Sn is used as a metal element that can be alloyed with lithium, and Cu is used as a metal element that is not alloyed with lithium. The atomic ratio of total Cu and total Sn in the thin layer 2 and the thin layer 3 excluding the current collector is preferably about the same, and further, the ratio is the atomic ratio, Cu: Sn = 6: 5 Is more preferable, and Cu: Sn = 6: 5 is particularly preferable. As described above, Cu 6 Sn 5 is suitable as the intermetallic compound composed of Cu and Sn, but the atomic ratio of all Cu and all Sn in the thin layer 2 and the thin layer 3 is from the above preferred value. In the case where the Sn is excessive and Sn is excessive, the components diffused during the heat treatment for forming the intermetallic compound are relatively increased. As a result, Sn that cannot be converted into an intermetallic compound remains in the intermetallic compound-containing layer 4. For example, when Cu is used for the current collector 1, Cu on the surface of the current collector 1 is converted into an intermetallic compound, so that Cu of the current collector 1 is consumed. There are things to do. On the other hand, when the atomic ratio of all Cu and all Sn in the thin layer 2 and the thin layer 3 deviates from the above preferred value and Cu is excessive, Cu 3 Sn that cannot repeatedly occlude and release lithium ions is obtained. Since it is easily formed, there may be a demerit in the effective capacity of the battery.

なお、図1や図2に示す方法で金属間化合物含有層4を形成する場合であって、リチウムと合金化し得る金属元素としてSnを、リチウムと合金化しない金属元素としてCuを用いる場合、集電体表面に形成するSn薄層2およびCu薄層3の厚みは、それぞれ3μm以下であることが好ましい。各薄層が厚すぎると、金属間化合物形成のための熱処理時におけるCuとSnの相互拡散に要する時間が極端に長くなることがある。なお、Sn薄層2およびCu薄層3の厚みの下限としては、それぞれ1μm程度とすることが望ましく、これ以上薄くすると、高容量の負極を製造する場合に、薄層の積層回数が増えて製造工程が煩雑になってしまう。   In the case where the intermetallic compound-containing layer 4 is formed by the method shown in FIGS. 1 and 2, Sn is used as a metal element that can be alloyed with lithium, and Cu is used as a metal element that is not alloyed with lithium. The thicknesses of the Sn thin layer 2 and the Cu thin layer 3 formed on the surface of the electric body are each preferably 3 μm or less. If each thin layer is too thick, the time required for interdiffusion of Cu and Sn during heat treatment for forming an intermetallic compound may become extremely long. The lower limit of the thickness of each of the Sn thin layer 2 and the Cu thin layer 3 is preferably about 1 μm. If the thickness is further reduced, the number of thin layers stacked increases when a high-capacity negative electrode is manufactured. The manufacturing process becomes complicated.

上記のリチウムと合金化し得る金属元素の薄層(薄層2)、リチウムと合金化しない金属元素の薄層(薄層3)、および保護層の形成方法としては、例えば、物理的気相成長法(PVD)、化学的気相成長法(CVD)、液相成長法などが好ましく採用できる。PVD法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、分子線エピタキシー(MBE)法、レーザーアブレーション法などが挙げられる。CVD法としては、熱CVD法、MOCVD(有機金属気相成長)法、RF(Radio Frequency)プラズマCVD法、ECR(電子サイクロトロン共鳴)プラズマCVD法、光CVD法、レーザーCVD法、原子層エピタキシー(ALE)法などが例示できる。また、液相成長法としては、めっき法(電解めっき、無電解めっき)、陽極酸化法、塗布法、ゾル−ゲル法などが挙げられる。   As a method for forming the above-described thin layer of metal element that can be alloyed with lithium (thin layer 2), thin layer of metal element that is not alloyed with lithium (thin layer 3), and protective layer, for example, physical vapor deposition A method (PVD), a chemical vapor deposition method (CVD), a liquid phase growth method, or the like can be preferably employed. Examples of the PVD method include a vacuum deposition method, a sputtering method, an ion plating method, a molecular beam epitaxy (MBE) method, and a laser ablation method. As the CVD method, thermal CVD method, MOCVD (metal organic chemical vapor deposition) method, RF (Radio Frequency) plasma CVD method, ECR (electron cyclotron resonance) plasma CVD method, photo CVD method, laser CVD method, atomic layer epitaxy ( ALE) method. Examples of the liquid phase growth method include a plating method (electrolytic plating and electroless plating), an anodic oxidation method, a coating method, and a sol-gel method.

また、リチウムと合金化し得る金属元素としてSnを、リチウムと合金化しない金属元素としてCuを用いる場合における金属間化合物形成のための熱処理は、真空雰囲気または還元性雰囲気下において、Snの融点である231.9℃を超えない領域で行われる。これはSnの融点以上になると、薄層中のSnが、Cuと金属間化合物を形成する前に溶出してしまうためであり、実処理条件としては、例えば150℃以上200℃以下で行うことが好ましい。熱処理時間は積層薄層中のSnとCuが相互拡散するために十分に長く設定する必要があり、例えば、5時間以上で、24時間以内、より好ましくは10時間以内で行われる。このようにして得られる金属間化合物含有層を有する負極の場合、該金属間化合物含有層の厚みは、例えば、1〜30μmであることが好ましい。   The heat treatment for forming an intermetallic compound when Sn is used as the metal element that can be alloyed with lithium and Cu is used as the metal element that is not alloyed with lithium is the melting point of Sn in a vacuum atmosphere or a reducing atmosphere. It is performed in a region not exceeding 231.9 ° C. This is because, when the melting point of Sn is exceeded, Sn in the thin layer elutes before forming an intermetallic compound with Cu, and the actual processing conditions are, for example, 150 ° C. or more and 200 ° C. or less. Is preferred. The heat treatment time needs to be set long enough for Sn and Cu in the laminated thin layer to interdiffuse. For example, the heat treatment time is 5 hours or longer, within 24 hours, more preferably within 10 hours. In the case of the negative electrode having the intermetallic compound-containing layer thus obtained, the thickness of the intermetallic compound-containing layer is preferably, for example, 1 to 30 μm.

なお、活物質として、リチウムと合金化し得る金属元素を含有する材料(上記の金属間化合物など)を用いた負極では、充放電の際の膨張収縮が大きく、活物質含有層が崩壊しやすいという欠点を有しているが、本発明のリチウム電池では、上記コアシェル型微粒子のシェル部がゲル状となっており、この弾力によって、充電時における負極の活物質含有層の膨張による応力を緩和することができる。そのため、負極における活物質含有層の崩壊を抑制することができるため、より高容量で且つ安定した充放電特性(充放電サイクル特性)を有するリチウム二次電池を構成することができる。   A negative electrode using a material containing a metal element that can be alloyed with lithium (such as the above-mentioned intermetallic compound) as an active material has a large expansion / contraction during charge / discharge, and the active material-containing layer is likely to collapse. Although having a drawback, in the lithium battery of the present invention, the shell portion of the core-shell type fine particles is in a gel form, and this elasticity relieves stress due to expansion of the active material-containing layer of the negative electrode during charging. be able to. Therefore, since the collapse of the active material-containing layer in the negative electrode can be suppressed, a lithium secondary battery having higher capacity and stable charge / discharge characteristics (charge / discharge cycle characteristics) can be configured.

本発明のリチウム二次電池の組み立てに際しては、上記正極と上記負極とを、負極表面に形成されたイオン透過性絶縁層を介して積層するか、上記正極と上記負極とを、上記セパレータを介して積層して積層電極体としたり、更に巻回して巻回電極体とする。このような電極体を、鉄、ステンレス鋼、アルミニウムなどを素材とする角筒形や円筒形などの形状の外装缶に挿入し、電解液を注入した後封止することで、リチウム二次電池とすることができる。また、金属を蒸着したラミネートフィルムを外装材として使用したソフトパッケージに、上記の電極体を挿入し、電解液を注入した後封止することで、ラミネート電池とすることもできる。   When assembling the lithium secondary battery of the present invention, the positive electrode and the negative electrode are laminated via an ion-permeable insulating layer formed on the negative electrode surface, or the positive electrode and the negative electrode are interposed via the separator. And laminated to form a laminated electrode body, or further wound to obtain a wound electrode body. Such an electrode body is inserted into a rectangular or cylindrical outer can made of iron, stainless steel, aluminum or the like, injected with an electrolytic solution, and sealed, thereby providing a lithium secondary battery. It can be. In addition, a laminated battery can be obtained by inserting the above electrode body into a soft package using a laminated film on which a metal is deposited as an exterior material, injecting an electrolytic solution, and then sealing.

電解液としては、従来公知のリチウム二次電池に用いられているリチウム塩を有機溶媒に溶解したものが用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に制限は無い。例えば、LiPF、LiBF、LiAsF、LiClOなどの無機化合物;LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO、LiPF6−n(C(nは1〜6の整数)、LiSOCF、LiSO、LiSOなどの有機化合物;などを用いることができる。 As the electrolytic solution, a solution obtained by dissolving a lithium salt used in a conventionally known lithium secondary battery in an organic solvent is used. The lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and does not cause a side reaction such as decomposition in a voltage range used as a battery. For example, inorganic compounds such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 ; LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 O 4 ) F 9), LiC (SO 2 CF 2) 3, LiC (SO 2 C 2 F 5) 2, LiPF 6-n (C 2 F 5) n (n is an integer from 1 to 6), LiSO 3 CF 3, Organic compounds such as LiSO 3 C 2 F 5 and LiSO 3 O 4 F 8 can be used.

電解液に用いる有機溶媒としては、上記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート;γ−ブチロラクトンといった環状エステル;ジメトキシエタン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルといったニトリル類;などが挙げられ、これらを1種単独で用いてもよいし、2種以上を併用しても構わない。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキサン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を適宜加えることもできる。なお、上述の通り、本発明のコアシェル型微粒子に係るシェル部に係る高分子化合物は、上記例示の有機溶媒に溶解し得るか、または上記例示の有機溶媒中でゲル状となり得るものである。   The organic solvent used in the electrolytic solution is not particularly limited as long as it dissolves the above lithium salt and does not cause side reactions such as decomposition in the voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; cyclic esters such as γ-butyrolactone; dimethoxyethane, diglyme, triglyme, tetraglyme, etc. A cyclic ether such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile and methoxypropionitrile; and these may be used alone or in combination. You may use together a seed or more. In order to obtain a battery with better characteristics, it is desirable to use a combination that can obtain high conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate. In addition, vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexane, biphenyl, fluorobenzene, t- for the purpose of improving safety, charge / discharge cycleability, and high-temperature storage properties of these electrolytes. Additives such as butylbenzene can also be added as appropriate. As described above, the polymer compound related to the shell portion of the core-shell type fine particles of the present invention can be dissolved in the organic solvent exemplified above or can be gelled in the organic solvent exemplified above.

電解液中のリチウム塩濃度としては、例えば、0.8〜1.5mol/lとすることが好ましい。   The lithium salt concentration in the electrolytic solution is preferably 0.8 to 1.5 mol / l, for example.

なお、このようにして得られる本発明のリチウム二次電池が、コアシェル型微粒子として、シェル部に係る高分子化合物に、上記一般式(1)で示される樹脂を用いている場合には、リチウム二次電池とした後に熱処理を施すことで、該樹脂の側鎖に存在していたオキセタン基および/または脂環式エポキシ基に由来する架橋構造を有するコアシェル型微粒子とでき、より良好なゲル状電解質を生成できるようになる。架橋構造形成のための熱処理条件としては、例えば、温度を50〜80℃、時間を30分〜5時間とすることが好ましい。また、熱処理の方法としては、例えば、恒温槽中に静置する方法が採用できる。   When the lithium secondary battery of the present invention thus obtained uses the resin represented by the above general formula (1) as the core-shell type fine particles and the polymer represented by the general formula (1), By applying a heat treatment after forming a secondary battery, core-shell type fine particles having a cross-linked structure derived from oxetane groups and / or alicyclic epoxy groups present in the side chain of the resin can be obtained, and a better gel state An electrolyte can be generated. As heat treatment conditions for forming a crosslinked structure, for example, the temperature is preferably 50 to 80 ° C. and the time is preferably 30 minutes to 5 hours. Moreover, as a method of heat processing, the method of leaving still in a thermostat can be employ | adopted, for example.

本発明のリチウム二次電池は、電池特性(特に充放電サイクル特性)と安全性に優れていることから、例えば、携帯電話、ノート型パーソナルコンピューター、PDAなどの携帯端末機器などの各種機器の電源として好適に用い得る。   Since the lithium secondary battery of the present invention is excellent in battery characteristics (particularly charge / discharge cycle characteristics) and safety, for example, power supplies for various devices such as mobile terminal devices such as mobile phones, notebook personal computers, and PDAs. Can be suitably used.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
<コアシェル型微粒子の作製>
コア部を構成するための架橋ポリメチルメタクリレート(PMMA)[日本触媒社製「エポスターMA1002」(商品名)]:100gを水:1000gに分散させ、ここに、安定剤としてPVP:10g、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム(SDS):2g、シェル部形成用のモノマーとしてn−ブチルアクリレート(nBMA):100g、重合開始剤として過硫酸カリウム(KPK):10gを加え、窒素雰囲気中で、65℃で300rpmの速度で撹拌しながら、分散重合を5時間行って、コアシェル型微粒子の水分散体を得た。得られたコアシェル型微粒子の一部を60℃で15時間真空乾燥した後に測定した平均粒径は5μmであった。
Example 1
<Preparation of core-shell type fine particles>
Cross-linked polymethylmethacrylate (PMMA) [Nippon Shokubai Co., Ltd. “Eposter MA1002” (trade name)]: 100 g is dispersed in water: 1000 g, and PVP: 10 g as a stabilizer, surfactant. Sodium dodecylbenzenesulfonate (SDS): 2 g as an agent, n-butyl acrylate (nBMA): 100 g as a monomer for forming a shell part, potassium persulfate (KPK): 10 g as a polymerization initiator, and in a nitrogen atmosphere, While stirring at 65 ° C. at a speed of 300 rpm, dispersion polymerization was performed for 5 hours to obtain an aqueous dispersion of core-shell type fine particles. A part of the obtained core-shell type fine particles was vacuum-dried at 60 ° C. for 15 hours, and the average particle size measured was 5 μm.

<リチウム二次電池の作製>
正極の作製:
正極活物質であるLiCoO:80質量部、導電助剤であるアセチレンブラック:10質量部、および結着剤であるPVDF:10質量部を、NMPを分散媒として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、集電体となる厚さ15μm、幅800mmのアルミニウム箔の両面に、塗布長が表面280mm、裏面210mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極合剤層(活物質含有層)の厚みを調整し、幅が43mmになるようにスリットして正極を得た。この正極の集電体の露出部に、タブ付けを行った。
<Production of lithium secondary battery>
Production of positive electrode:
LiCoO 2 as a positive electrode active material: 80 parts by mass, acetylene black as a conductive auxiliary agent: 10 parts by mass, and PVDF as a binder: 10 parts by mass are mixed so that NMP is a uniform dispersion medium. A positive electrode mixture-containing paste was prepared. This paste was intermittently applied to both sides of an aluminum foil having a thickness of 15 μm and a width of 800 mm as a current collector so that the coating length was 280 mm on the front surface and 210 mm on the back surface, dried, and then subjected to a calendar treatment to obtain a total thickness. The thickness of the positive electrode material mixture layer (active material-containing layer) was adjusted so as to be 150 μm, and slitted so that the width was 43 mm to obtain a positive electrode. The exposed portion of the positive electrode current collector was tabbed.

負極の作製:
10μm厚みの電解銅箔(古河サーキットフォイル製)を、表面の酸化被膜、油脂および汚れを除去するために、40℃に加熱した10%濃度の硫酸中に4分間浸漬後、水酸化ナトリウム:5g/リットル、オルトケイ酸ナトリウム:20g/リットル、炭酸ナトリウム(無水):10g/リットル、n−ドデシルトリメチルアンモニウムクロリド:1g/リットル組成の脱脂液を60℃に加熱した浴中で、5〜10A/dmの電流密度、1分間の条件で、陰極電解脱脂を行った。この銅箔を蒸留水で水洗した後に、再び10%濃度の硫酸中に浸漬して銅箔表面のアルカリ中和および界面活性剤を完全に除去し、電解めっき用の銅箔集電体を得た。この銅箔の両面に、表面290mm、裏面230mmの長さ部分にのみめっき処理できるようにマスキング処理を行った後、硫酸第一錫:40g/リットル、硫酸:60g/リットル、クレゾールスルホン酸:40g/リットル、ゼラチン:2g/リットル、β−ナフトール:1g/リットル組成のSnめっき浴にて、1A/dmの電流密度で30分間電解めっきを行い、厚みが1μmのSnめっき薄層を得た。この薄膜を洗浄後、硫酸銅:100g/リットル、硫酸:100g/リットル組成のCuめっき浴にて1A/dmの電流密度で5分間電解めっきを行い、厚みが1μmのCuめっき薄層を得た。このSnめっき工程およびCuめっき工程を4回繰り返した後、最後に再び厚みが1μmのSnめっきを施して得られた9μm厚のSn/Cu(5/4)多層薄層を水洗後、真空電気炉で、200℃で5時間熱処理して金属間化合物を形成させた後、室温まで徐冷し、マスキング層を剥離し、幅が45mmになるように切断して負極を得た。この負極の銅箔の露出部にタブ付けを行った。
Production of negative electrode:
An electrolytic copper foil (made by Furukawa Circuit Foil) with a thickness of 10 μm was immersed for 4 minutes in 10% sulfuric acid heated to 40 ° C. to remove the oxide film, oils and dirt on the surface, and sodium hydroxide: 5 g / Liter, sodium orthosilicate: 20 g / liter, sodium carbonate (anhydrous): 10 g / liter, n-dodecyltrimethylammonium chloride: 1 g / liter in a degreasing solution heated to 60 ° C. in a bath of 5 to 10 A / dm Cathodic electrolytic degreasing was performed at a current density of 2 and for 1 minute. This copper foil is washed with distilled water and then immersed again in 10% strength sulfuric acid to completely remove the alkali neutralization and surfactant on the surface of the copper foil to obtain a copper foil current collector for electrolytic plating. It was. After performing a masking process on both sides of the copper foil so that only the length part of the front surface of 290 mm and the back surface of 230 mm can be plated, stannous sulfate: 40 g / liter, sulfuric acid: 60 g / liter, cresolsulfonic acid: 40 g / Liter, gelatin: 2 g / liter, β-naphthol: 1 g / liter of Sn plating bath was subjected to electrolytic plating at a current density of 1 A / dm 2 for 30 minutes to obtain a Sn plating thin layer having a thickness of 1 μm. . After washing this thin film, electrolytic plating was carried out for 5 minutes at a current density of 1 A / dm 2 in a Cu plating bath having a composition of copper sulfate: 100 g / liter and sulfuric acid: 100 g / liter to obtain a Cu plating thin layer having a thickness of 1 μm. It was. After repeating this Sn plating step and Cu plating step four times, finally a 9 μm thick Sn / Cu (5/4) multilayer thin layer obtained by applying Sn plating with a thickness of 1 μm again was washed with water, and then vacuum electric After heat treatment at 200 ° C. for 5 hours in an oven to form an intermetallic compound, it was gradually cooled to room temperature, the masking layer was peeled off, and cut to a width of 45 mm to obtain a negative electrode. A tab was attached to the exposed portion of the copper foil of the negative electrode.

イオン透過性絶縁層の作製:
上記のコアシェル型微粒子の水分散体に、結着剤としてCMCを5質量%添加して得られたスラリーを、上記負極の金属間化合物含有層表面にダイコーターを用いて塗布し、乾燥して、負極と一体化したイオン透過性絶縁層を得た。
Preparation of ion-permeable insulating layer:
The slurry obtained by adding 5% by mass of CMC as a binder to the aqueous dispersion of the core-shell fine particles is applied to the surface of the intermetallic compound-containing layer of the negative electrode using a die coater and dried. An ion-permeable insulating layer integrated with the negative electrode was obtained.

電池組み立て:
上記のイオン透過性絶縁層と一体化した負極と上記正極とを重ね合わせて渦巻状に巻回して巻回電極体を得た。この倦怠電極体を押しつぶして扁平状にし、ラミネートフィルム外装材(昭和アルミ社製)に挿入し、電解液(エチレンカーボネートとエチルメチルカーボネートを1:2の体積比で混合した溶媒に、LiPFを1.2mol/lの濃度で溶解させた溶液)を注入し、真空封止を行ってラミネート電池(リチウム二次電池)を作製した。
Battery assembly:
The negative electrode integrated with the ion-permeable insulating layer and the positive electrode were overlapped and wound in a spiral shape to obtain a wound electrode body. This fatigued electrode body is crushed into a flat shape, inserted into a laminate film exterior material (manufactured by Showa Aluminum Co., Ltd.), and LiPF 6 is added to a solvent in which an electrolytic solution (ethylene carbonate and ethylmethyl carbonate is mixed at a volume ratio of 1: 2). A solution dissolved at a concentration of 1.2 mol / l) was injected and vacuum sealed to produce a laminated battery (lithium secondary battery).

実施例2
コア部を構成するための微粒子を、架橋PMMAに代えて、SiO粒子(電気化学工業社製「FB−3SDC」)の表面をシランカップリング剤(ダウコーニング・東レシリコーン社製「SZ6300」)で処理した微粒子とした他は、実施例1と同様にしてコアシェル型微粒子の水分散体を作製した。得られたコアシェル型微粒子の一部について、実施例1と同様にして測定した平均粒径は8μmであった。更にこのコアシェル型微粒子の水分散体を用いて、実施例1と同様にしてラミネート電池を作製した。なお、SiO粒子の表面処理は、SiO粒子とシランカップリング剤とを、質量比で1:1の割合で混合し、ボールミルで2時間撹拌することにより行った。
Example 2
The fine particles for constituting the core portion are replaced with crosslinked PMMA, and the surface of SiO 2 particles (“FB-3SDC” manufactured by Denki Kagaku Kogyo Co., Ltd.) is used as the silane coupling agent (“SZ6300” manufactured by Dow Corning Toray Silicone Co., Ltd.). An aqueous dispersion of core-shell type fine particles was prepared in the same manner as in Example 1 except that the fine particles treated with the above were used. The average particle diameter of a part of the obtained core-shell type fine particles measured in the same manner as in Example 1 was 8 μm. Further, a laminate battery was produced in the same manner as in Example 1 by using the aqueous dispersion of core-shell fine particles. The surface treatment of the SiO 2 particles, and SiO 2 particles and a silane coupling agent, 1 weight ratio were mixed at a ratio of 1, was performed by stirring for 2 hours in a ball mill.

実施例3
コア部を構成するための微粒子を、架橋PMMAに代えて、Al粒子(アドマテックス社製「AO−902H」)の表面をシランカップリング剤(ダウコーニング・東レシリコーン社製「SZ6300」)で処理した微粒子とした他は、実施例1と同様にしてコアシェル型微粒子の水分散体を作製した。得られたコアシェル型微粒子の一部について、実施例1と同様にして測定した平均粒径は2μmであった。更にこのコアシェル型微粒子の水分散体を用いて、実施例1と同様にしてラミネート電池を作製した。なお、Al粒子の表面処理は、Al粒子とシランカップリング剤とを、質量比で1:1の割合で混合し、ボールミルで2時間撹拌することにより行った。
Example 3
Instead of the cross-linked PMMA, the surface of the Al 2 O 3 particles (“AO-902H” manufactured by Admatechs) is used as the silane coupling agent (“SZ6300” manufactured by Dow Corning Toray Silicone Co., Ltd.). An aqueous dispersion of core-shell type fine particles was prepared in the same manner as in Example 1 except that the fine particles treated in (1) were used. The average particle diameter measured in the same manner as in Example 1 for a part of the obtained core-shell type fine particles was 2 μm. Further, a laminate battery was produced in the same manner as in Example 1 by using the aqueous dispersion of core-shell fine particles. The surface treatment of the Al 2 O 3 particles and Al 2 O 3 particles and a silane coupling agent, 1 weight ratio were mixed at a ratio of 1, was performed by stirring for 2 hours in a ball mill.

実施例4
コア部を構成するための架橋ポリメチルメタクリレート(PMMA)[日本触媒社製「エポスターMA1002」(商品名)]:100gを水:1000gに分散させ、ここに、安定剤としてPVP:10g、界面活性剤としてSDS:2g、シェル部形成用のモノマーとしてメチルメタクリレート(MMA):70g、上記一般式(5)で示され、Rがメチル基で、Rの炭素数が2のモノマー:30g、重合開始剤としてKPK:10gを加えた。なお、全モノマー中のMMAの比率は、80モル%である。この分散液を、窒素雰囲気中で、65℃で300rpmの速度で撹拌しながら、分散重合を5時間行って、コアシェル型微粒子の水分散体を得た。得られたコアシェル型微粒子の一部を60℃で15時間真空乾燥した後に測定した平均粒径は15μmであった。このコアシェル型微粒子の水分散体を用いた他は、実施例1と同様にしてラミネート電池を作製した後、該電池を60℃で30分間熱処理して、コアシェル型微粒子のシェル部に架橋構造を形成させた。
Example 4
Cross-linked polymethylmethacrylate (PMMA) [Nippon Shokubai Co., Ltd. “Eposter MA1002” (trade name)]: 100 g is dispersed in water: 1000 g, and PVP: 10 g as a stabilizer, surfactant. SDS: 2 g as an agent, methyl methacrylate (MMA): 70 g as a monomer for forming a shell part, represented by the above general formula (5), R 5 is a methyl group, and R 6 is a monomer having 2 carbon atoms: 30 g, As a polymerization initiator, 10 g of KPK was added. In addition, the ratio of MMA in all monomers is 80 mol%. The dispersion was subjected to dispersion polymerization for 5 hours while stirring at 65 rpm at a speed of 300 rpm in a nitrogen atmosphere to obtain an aqueous dispersion of core-shell type fine particles. A part of the obtained core-shell type fine particles was vacuum-dried at 60 ° C. for 15 hours, and the average particle diameter measured was 15 μm. A laminated battery was prepared in the same manner as in Example 1 except that this core-shell type fine particle aqueous dispersion was used, and then the battery was heat-treated at 60 ° C. for 30 minutes to form a crosslinked structure in the shell part of the core-shell type fine particles. Formed.

実施例5
コア部を構成するための架橋ポリメチルメタクリレート(PMMA)[日本触媒社製「エポスターMA1002」(商品名)]:100gを水:1000gに分散させ、ここに、安定剤としてPVP:10g、界面活性剤としてSDS:2g、シェル部形成用のモノマーとしてメチルメタクリレート(MMA):70g、上記一般式(6)で示され、R7が水素原子のモノマー:30g、重合開始剤としてKPK:10gを加えた。なお、全モノマー中のMMAの比率は、80モル%である。この分散液を、窒素雰囲気中で、65℃で300rpmの速度で撹拌しながら、分散重合を5時間行って、コアシェル型微粒子の水分散体を得た。得られたコアシェル型微粒子の一部を60℃で15時間真空乾燥した後に測定した平均粒径は12μmであった。このコアシェル型微粒子の水分散体を用いた他は、実施例1と同様にしてラミネート電池を作製した後、該電池を60℃で30分間熱処理して、コアシェル型微粒子のシェル部に架橋構造を形成させた。
Example 5
Cross-linked polymethylmethacrylate (PMMA) [Nippon Shokubai Co., Ltd. “Eposter MA1002” (trade name)]: 100 g is dispersed in water: 1000 g, and PVP: 10 g as a stabilizer, surfactant. SDS: 2 g as an agent, methyl methacrylate (MMA): 70 g as a monomer for forming a shell part, represented by the above general formula (6), R 7 is a hydrogen atom monomer: 30 g, and KPK: 10 g is added as a polymerization initiator It was. In addition, the ratio of MMA in all monomers is 80 mol%. The dispersion was subjected to dispersion polymerization for 5 hours while stirring at 65 rpm at a speed of 300 rpm in a nitrogen atmosphere to obtain an aqueous dispersion of core-shell type fine particles. A part of the obtained core-shell type fine particles was vacuum-dried at 60 ° C. for 15 hours, and the average particle size measured was 12 μm. A laminated battery was prepared in the same manner as in Example 1 except that this core-shell type fine particle aqueous dispersion was used, and then the battery was heat-treated at 60 ° C. for 30 minutes to form a crosslinked structure in the shell part of the core-shell type fine particles. Formed.

実施例6
コア部を構成するための微粒子として、架橋PMMAに代えて、EVAのエマルジョン[住化ケムテックス社製「住化フレックス S850HQ」(商品名)]を用いた他は、実施例1と同様にしてコアシェル型微粒子の水分散体を作製した。得られたコアシェル型微粒子の一部について、実施例1と同様にして測定した平均粒径は5μmであった。更にこのコアシェル型微粒子の水分散体を用いて、実施例1と同様にしてラミネート電池を作製した。
Example 6
The core shell is the same as in Example 1 except that instead of the cross-linked PMMA, EVA emulsion [Sumika Flex S850HQ (trade name)] manufactured by Sumika Chemtex Co., Ltd. is used as the fine particles for constituting the core portion. An aqueous dispersion of fine particles was prepared. The average particle size of a part of the obtained core-shell type fine particles measured in the same manner as in Example 1 was 5 μm. Further, a laminate battery was produced in the same manner as in Example 1 by using the aqueous dispersion of core-shell fine particles.

実施例7
負極活物質である黒鉛:90質量部と、結着剤であるPVDF:10質量部とを、NMPを分散媒として均一になるように混合して、負極合剤含有ペーストを調製した。これを集電体となる厚みが10μmで幅が800mmの銅箔の両面に、塗布長が表面290mm、裏面230mmとなるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が142μmとなるように負極合剤層(活物質含有層)の厚みを調整し、幅が45mmとなるようにスリットして負極を作製した。この負極の集電体の露出部にタブ付けを行った。このようにして得られた負極を用いた他は、実施例1と同様にしてラミネート電池を作製した。
Example 7
A negative electrode active material-containing paste was prepared by mixing 90 parts by mass of graphite as a negative electrode active material and 10 parts by mass of PVDF as a binder so as to be uniform using NMP as a dispersion medium. This was intermittently applied to both sides of a copper foil having a thickness of 10 μm and a width of 800 mm as a current collector so that the coating length was 290 mm on the front surface and 230 mm on the back surface, dried, and then calendered to obtain a total thickness. The thickness of the negative electrode mixture layer (active material-containing layer) was adjusted so as to be 142 μm, and slitting was performed so that the width was 45 mm, thereby producing a negative electrode. A tab was attached to the exposed portion of the negative electrode current collector. A laminated battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.

実施例8
実施例1と同様にして作製したコアシェル型微粒子の水分散体を入れた浴中に、厚みが30μmのPP製不織布(ニッポン高度紙社製「PF0830」)を浸漬し、引き上げ塗布により水分散体を該不織布に塗布して、該不織布の空隙内に該水分散体を含浸させ、乾燥してセパレータを得た。実施例1と同様にして得られた正極および負極を、このセパレータを介して巻回して巻回電極体を得た。この巻回電極体を用いた他は、実施例1と同様にしてラミネート電池を作製した。
Example 8
A non-woven fabric made of PP having a thickness of 30 μm (“PF0830” manufactured by Nippon Kogyo Paper Co., Ltd.) is immersed in a bath containing an aqueous dispersion of core-shell fine particles produced in the same manner as in Example 1, and the aqueous dispersion is obtained by pulling up and applying. Was applied to the nonwoven fabric, the water dispersion was impregnated in the voids of the nonwoven fabric, and dried to obtain a separator. A positive electrode and a negative electrode obtained in the same manner as in Example 1 were wound through this separator to obtain a wound electrode body. A laminated battery was produced in the same manner as in Example 1 except that this wound electrode body was used.

実施例9
正極の作製:
正極活物質であるLiCoO:80質量部、導電助剤であるアセチレンブラック:10質量部、実施例1で作製したコアシェル型微粒子:8質量部、および結着剤であるPVDF:2質量部を、NMPを分散媒として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、集電体となる厚さ15μm、幅800mmのアルミニウム箔の両面に、塗布長が表面280mm、裏面210mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極合剤層(活物質含有層)の厚みを調整し、幅が43mmになるようにスリットして正極を得た。この正極の集電体の露出部に、タブ付けを行った。
Example 9
Production of positive electrode:
LiCoO 2 as a positive electrode active material: 80 parts by mass, acetylene black as a conductive auxiliary agent: 10 parts by mass, core-shell type fine particles prepared in Example 1: 8 parts by mass, and PVDF as a binder: 2 parts by mass NMP was mixed as a dispersion medium so as to be uniform to prepare a positive electrode mixture-containing paste. This paste was intermittently applied to both sides of an aluminum foil having a thickness of 15 μm and a width of 800 mm as a current collector so that the coating length was 280 mm on the front surface and 210 mm on the back surface, dried, and then subjected to a calendar treatment to obtain a total thickness. The thickness of the positive electrode material mixture layer (active material-containing layer) was adjusted so as to be 150 μm, and slitted so that the width was 43 mm to obtain a positive electrode. The exposed portion of the positive electrode current collector was tabbed.

負極の作製:
負極活物質である黒鉛:90質量部、実施例1で作製したコアシェル型微粒子:8質量部、および結着剤であるPVDF:2質量部とを、NMPを分散媒として均一になるように混合して、負極合剤含有ペーストを調製した。これを集電体となる厚みが10μmで幅が800mmの銅箔の両面に、塗布長が表面290mm、裏面230mmとなるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が142μmとなるように負極合剤層(活物質含有層)の厚みを調整し、幅が45mmとなるようにスリットして負極を作製した。この負極の集電体の露出部にタブ付けを行った。
Production of negative electrode:
Graphite as negative electrode active material: 90 parts by mass, core-shell type fine particles prepared in Example 1: 8 parts by mass, and PVDF as a binder: 2 parts by mass are mixed using NMP as a dispersion medium. Thus, a negative electrode mixture-containing paste was prepared. This was intermittently applied to both sides of a copper foil having a thickness of 10 μm and a width of 800 mm as a current collector so that the coating length was 290 mm on the front surface and 230 mm on the back surface, dried, and then calendered to obtain a total thickness. The thickness of the negative electrode mixture layer (active material-containing layer) was adjusted so as to be 142 μm, and slitting was performed so that the width was 45 mm, thereby producing a negative electrode. A tab was attached to the exposed portion of the negative electrode current collector.

イオン透過性絶縁層の作製:
実施例1で作製したコアシェル型微粒子の水分散体に、結着剤としてCMCを5質量%添加して得られたスラリーを、上記負極の活物質含有層表面にダイコーターを用いて塗布し、乾燥して、負極と一体化したイオン透過性絶縁層を得た。
Preparation of ion-permeable insulating layer:
A slurry obtained by adding 5% by mass of CMC as a binder to the aqueous dispersion of core-shell fine particles produced in Example 1 was applied to the surface of the active material-containing layer of the negative electrode using a die coater. By drying, an ion-permeable insulating layer integrated with the negative electrode was obtained.

上記の正極および負極を用いた以外は、実施例1と同様にしてラミネート電池を作製した。   A laminated battery was produced in the same manner as in Example 1 except that the above positive electrode and negative electrode were used.

比較例1
セパレータとして、厚みが20μmのPE製微多孔膜(旭化成社製「N9420」)を、コアシェル型微粒子と複合化することなく用いた他は、実施例8と同様にしてラミネート電池を作製した。
Comparative Example 1
A laminate battery was fabricated in the same manner as in Example 8, except that a PE microporous membrane (“N9420” manufactured by Asahi Kasei Co., Ltd.) having a thickness of 20 μm was used as the separator without being combined with the core-shell type fine particles.

比較例2
架橋PMMAを用いなかった他は、実施例1のコアシェル型微粒子の作製方法と同様にしてnBMA微粒子の水分散体を作製した。この水分散体をコアシェル型微粒子の水分散体の代わりに用いた他は、実施例1と同様にしてラミネート電池を作製した。
Comparative Example 2
An aqueous dispersion of nBMA fine particles was produced in the same manner as in the method for producing core-shell fine particles of Example 1, except that crosslinked PMMA was not used. A laminated battery was produced in the same manner as in Example 1 except that this water dispersion was used in place of the core-shell type fine particle water dispersion.

比較例3
負極の作製:
負極活物質である黒鉛:90質量部と、結着剤であるPVDF:10質量部とを、NMPを分散媒として均一になるように混合して、負極合剤含有ペーストを調製した。これを集電体となる厚みが10μmで幅が800mmの銅箔の両面に、塗布長が表面290mm、裏面230mmとなるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が142μmとなるように負極合剤層(活物質含有層)の厚みを調整し、幅が45mmとなるようにスリットして負極を作製した。この負極の集電体の露出部にタブ付けを行った。このようにして得られた負極を用いた他は、比較例1と同様にしてラミネート電池を作製した。
Comparative Example 3
Production of negative electrode:
A negative electrode active material-containing paste was prepared by mixing 90 parts by mass of graphite as a negative electrode active material and 10 parts by mass of PVDF as a binder so as to be uniform using NMP as a dispersion medium. This was intermittently applied to both sides of a copper foil having a thickness of 10 μm and a width of 800 mm as a current collector so that the coating length was 290 mm on the front surface and 230 mm on the back surface, dried, and then calendered to obtain a total thickness. The thickness of the negative electrode mixture layer (active material-containing layer) was adjusted so as to be 142 μm, and slitting was performed so that the width was 45 mm, thereby producing a negative electrode. A tab was attached to the exposed portion of the negative electrode current collector. A laminated battery was produced in the same manner as in Comparative Example 1 except that the negative electrode thus obtained was used.

実施例1〜9および比較例1〜3の各電池について、以下の電気化学的評価と安全性評価を行った。結果を表1に示す。   The batteries of Examples 1 to 9 and Comparative Examples 1 to 3 were subjected to the following electrochemical evaluation and safety evaluation. The results are shown in Table 1.

[電気化学的評価]
各電池を、0.2Cの定電流で4.2Vになるまで、引き続き4.2Vの定電圧で充電を行った。定電流充電開始から、定電圧充電終了までの総時間は7時間とした。充電後の各電池について、4.2Vから3.0Vになるまで、0.2Cで放電させて初期化を行った。
[Electrochemical evaluation]
Each battery was subsequently charged at a constant voltage of 4.2 V until it reached 4.2 V at a constant current of 0.2C. The total time from the start of constant current charging to the end of constant voltage charging was 7 hours. Each battery after charge was initialized by discharging at 0.2 C until the voltage changed from 4.2 V to 3.0 V.

上記初期化後の各電池について、0.5Cの定電流で4.2Vになるまで、引き続き4.2Vの定電圧で充電を行った。定電流充電開始から、定電圧充電終了までの総時間は3時間とした。そして、充電後の各電池について、4.2Vから3.0Vになるまで、0.5Cで放電させた。この充放電の操作を1サイクルとして100サイクルの充放電を実施した。そして、1サイクル目の放電容量と、100サイクル目の放電容量を測定し、1サイクル目の放電容量に対する100サイクル目の放電容量比(%)を容量維持率として評価した。すなわち、容量維持率が高いほど、電池の充放電サイクル特性が優れていることを意味している。   About each battery after the said initialization, it charged with the constant voltage of 4.2V until it became 4.2V with the constant current of 0.5C. The total time from the start of constant current charging to the end of constant voltage charging was 3 hours. And each battery after charge was discharged at 0.5 C from 4.2 V to 3.0 V. This charging / discharging operation was defined as one cycle, and 100 cycles of charging / discharging were performed. And the discharge capacity of the 1st cycle and the discharge capacity of the 100th cycle were measured, and the discharge capacity ratio (%) of the 100th cycle to the discharge capacity of the 1st cycle was evaluated as a capacity maintenance rate. That is, the higher the capacity retention rate, the better the charge / discharge cycle characteristics of the battery.

[安全性評価]
上記の条件での初期化後の各電池について、0.5Cの定電流で4.2Vになるまで、引き続き4.2Vの定電圧で充電を行った。定電流充電開始から、定電圧充電終了までの総時間は3時間とした。この充電状態の各電池について、150℃の環境下で30分保持する高温保持試験を行い、短絡の有無で安全性を評価した。
[Safety evaluation]
Each battery after initialization under the above conditions was continuously charged at a constant voltage of 4.2 V until it reached 4.2 V at a constant current of 0.5 C. The total time from the start of constant current charging to the end of constant voltage charging was 3 hours. Each battery in this charged state was subjected to a high temperature holding test for 30 minutes in an environment of 150 ° C., and safety was evaluated based on the presence or absence of a short circuit.

Figure 2006182925
Figure 2006182925

表1に示すように、実施例1〜9の電池では、容量維持率が高く、高温保持試験時においても短絡が見られず、電池特性(充放電サイクル特性)と安全性が優れている。また、コアシェル型微粒子を容易に電池内に導入できるため、ゲル状電解質の形成も容易で、生産性が良好である。正負極にもコアシェル型微粒子を含有させた実施例9の電池では、充放電サイクル特性が特に優れている。これに対し、比較例1の電池では、容量維持率が低く、充放電サイクル特性が劣っており、また、高温保持試験時に短絡が生じ、安全性にも劣っている。また、比較例3の電池でも、高温保持試験時に短絡が生じ、安全性が劣っている。なお、比較例2の電池では、安全性が非常に低く、電池の初期化の段階で短絡が発生し充電ができなかったため、以降の実験を中止した。   As shown in Table 1, in the batteries of Examples 1 to 9, the capacity retention rate is high, no short circuit is observed even during the high temperature holding test, and the battery characteristics (charge / discharge cycle characteristics) and safety are excellent. Further, since the core-shell type fine particles can be easily introduced into the battery, the gel electrolyte can be easily formed and the productivity is good. In the battery of Example 9 in which core-shell type fine particles are also contained in the positive and negative electrodes, the charge / discharge cycle characteristics are particularly excellent. On the other hand, the battery of Comparative Example 1 has a low capacity retention rate and inferior charge / discharge cycle characteristics, and also has a short circuit during a high temperature holding test and is inferior in safety. In addition, the battery of Comparative Example 3 also has a short circuit during the high temperature holding test, and is inferior in safety. In the battery of Comparative Example 2, the safety was very low, and a short circuit occurred at the initial stage of the battery and charging could not be performed. Therefore, the subsequent experiment was stopped.

金属間化合物を活物質として含有する負極において、金属間化合物の生成過程を説明するための概念図である。It is a conceptual diagram for demonstrating the production | generation process of an intermetallic compound in the negative electrode containing an intermetallic compound as an active material. 金属間化合物を活物質として含有する負極において、金属間化合物の生成過程を説明するための概念図である。It is a conceptual diagram for demonstrating the production | generation process of an intermetallic compound in the negative electrode containing an intermetallic compound as an active material.

符号の説明Explanation of symbols

1 集電体
2 リチウムと合金化し得る金属元素を含有する薄層
3 リチウムと合金化しない金属元素を含有する薄層
4 金属間化合物含有層
5 保護層
DESCRIPTION OF SYMBOLS 1 Current collector 2 Thin layer containing metal element which can be alloyed with lithium 3 Thin layer containing metal element which cannot be alloyed with lithium 4 Intermetallic compound content layer 5 Protective layer

Claims (15)

有機溶媒に溶解し得るか、または有機溶媒中でゲル状になり得る高分子化合物を含有するシェル部と、該有機溶媒に対して室温で安定な微粒子であるコア部とで構成されており、
上記シェル部に係る高分子化合物の高分子鎖が、上記コア部と化学的に結合しており、
乾燥状態での粒径が、15μm以下であることを特徴とするコアシェル型微粒子。
It is composed of a shell part containing a polymer compound that can be dissolved in an organic solvent or can be gelled in an organic solvent, and a core part that is fine particles stable at room temperature with respect to the organic solvent,
The polymer chain of the polymer compound related to the shell part is chemically bonded to the core part,
Core-shell type fine particles having a dry particle size of 15 μm or less.
上記有機溶媒は、鎖状カーボネート類、鎖状カーボネート類、鎖状エーテル類、環状エーテル類、環状エステル類またはニトリル類である請求項1に記載のコアシェル型微粒子。   The core-shell type fine particles according to claim 1, wherein the organic solvent is a chain carbonate, a chain carbonate, a chain ether, a cyclic ether, a cyclic ester or a nitrile. 上記コア部が、架橋高分子微粒子または無機酸化物微粒子である請求項1または2に記載のコアシェル型微粒子。   The core-shell type fine particle according to claim 1 or 2, wherein the core part is a crosslinked polymer fine particle or an inorganic oxide fine particle. 上記コア部は構成成分として熱可塑性樹脂を含有しており、
該熱可塑性樹脂は、上記有機溶媒を含有した状態で測定される融点または軟化点が、80〜130℃である請求項1または2に記載のコアシェル型微粒子。
The core part contains a thermoplastic resin as a constituent component,
The core-shell type fine particles according to claim 1 or 2, wherein the thermoplastic resin has a melting point or softening point measured in a state containing the organic solvent of 80 to 130 ° C.
上記熱可塑性樹脂が、ポリオレフィンまたは共重合ポリオレフィンである請求項4に記載のコアシェル型微粒子。   The core-shell type fine particles according to claim 4, wherein the thermoplastic resin is a polyolefin or a copolymerized polyolefin. 上記シェル部に係る高分子化合物が、(メタ)アクリレート樹脂である請求項1〜5のいずれかに記載のコアシェル型微粒子。   The core-shell type fine particles according to any one of claims 1 to 5, wherein the polymer compound according to the shell part is a (meth) acrylate resin. 上記シェル部に係る高分子化合物が、下記一般式(1)で示されるものである請求項1〜5のいずれかに記載のコアシェル型微粒子。
Figure 2006182925
(ここで、RおよびRは、それぞれ水素原子または炭素数1〜3のアルキル基、Rは炭素数1〜3のアルキル基、ヒドロキシアルキル基、またはアルキレンオキシド基、Rは少なくとも1つの水素原子がオキセタン基または脂環式エポキシ基で置換された炭素数1〜6のアルキル基を示し、mおよびnはそれぞれ100〜1000の整数を表す。)
The core-shell type fine particles according to any one of claims 1 to 5, wherein the polymer compound according to the shell part is represented by the following general formula (1).
Figure 2006182925
Wherein R 1 and R 3 are each a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 2 is an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group, or an alkylene oxide group, and R 4 is at least 1 (Indicating an alkyl group having 1 to 6 carbon atoms in which two hydrogen atoms are substituted with an oxetane group or an alicyclic epoxy group, m and n each represents an integer of 100 to 1000.)
上記一般式(1)で示される高分子化合物が、下記一般式(2)および/または下記一般式(3)で示されるユニットと、下記一般式(4)で示されるユニットを有する共重合体であり、且つ該共重合体全ユニット中、下記一般式(4)で示されるユニットの比率が50〜98モル%である請求項7に記載のコアシェル型微粒子。
Figure 2006182925
Figure 2006182925
Figure 2006182925
(ここで、R、RおよびRは水素原子またはメチル基、RおよびRは炭素数1〜6のアルキル基を示す。)
A copolymer in which the polymer compound represented by the general formula (1) has a unit represented by the following general formula (2) and / or the following general formula (3) and a unit represented by the following general formula (4) The core-shell type fine particles according to claim 7, wherein the ratio of units represented by the following general formula (4) is 50 to 98 mol% in all units of the copolymer.
Figure 2006182925
Figure 2006182925
Figure 2006182925
(Here, R 5 , R 7 and R 8 represent a hydrogen atom or a methyl group, and R 6 and R 9 represent an alkyl group having 1 to 6 carbon atoms.)
請求項1〜8のいずれかに記載のコアシェル型微粒子を含有するイオン透過性絶縁層が、負極表面に形成されており、且つ該イオン透過性絶縁層が正極と負極との間に配置されていることを特徴とするリチウム二次電池。   The ion permeable insulating layer containing the core-shell type fine particles according to claim 1 is formed on the surface of the negative electrode, and the ion permeable insulating layer is disposed between the positive electrode and the negative electrode. A lithium secondary battery characterized by comprising: 多孔質基材と請求項1〜8のいずれかに記載のコアシェル型微粒子とが複合化されてなるセパレータを有し、該セパレータが、正極と負極との間に配置されていることを特徴とするリチウム二次電池。   It has a separator by which a porous substrate and the core-shell type fine particles according to any one of claims 1 to 8 are combined, and the separator is disposed between a positive electrode and a negative electrode. Rechargeable lithium battery. 上記多孔質基材が、ポリオレフィンまたはポリエステル製の不織布である請求項10に記載のリチウム二次電池。   The lithium secondary battery according to claim 10, wherein the porous substrate is a nonwoven fabric made of polyolefin or polyester. 請求項1〜8のいずれかに記載のコアシェル型微粒子が、正極および/または負極内にも存在している請求項9〜11のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 9 to 11, wherein the core-shell type fine particles according to any one of claims 1 to 8 are also present in the positive electrode and / or the negative electrode. 上記コアシェル型微粒子が、請求項7または8に記載のコアシェル型微粒子におけるシェル部において、オキセタン基および/または脂環式エポキシ基に由来する架橋構造を有するものである請求項9〜12のいずれかに記載のリチウム二次電池。   The core-shell type fine particle has a cross-linked structure derived from an oxetane group and / or an alicyclic epoxy group in the shell part of the core-shell type fine particle according to claim 7 or 8. The lithium secondary battery as described in. 負極が、リチウムと合金化しない金属元素を含有する集電体表面に、リチウムと合金化しない金属元素とリチウムと合金化し得る金属元素との金属間化合物を含有する層を有するものである請求項9〜13のいずれかに記載のリチウム二次電池。   The negative electrode has a layer containing an intermetallic compound of a metal element not alloyed with lithium and a metal element capable of alloying with lithium on the surface of a current collector containing a metal element not alloyed with lithium. The lithium secondary battery according to any one of 9 to 13. リチウムと合金化しない金属元素がCuであり、リチウムと合金化し得る金属元素がSnである請求項14に記載のリチウム二次電池。
The lithium secondary battery according to claim 14, wherein the metal element that is not alloyed with lithium is Cu, and the metal element that can be alloyed with lithium is Sn.
JP2004378708A 2004-12-28 2004-12-28 Core/shell type fine particle and lithium secondary battery including the fine particle Withdrawn JP2006182925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378708A JP2006182925A (en) 2004-12-28 2004-12-28 Core/shell type fine particle and lithium secondary battery including the fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378708A JP2006182925A (en) 2004-12-28 2004-12-28 Core/shell type fine particle and lithium secondary battery including the fine particle

Publications (1)

Publication Number Publication Date
JP2006182925A true JP2006182925A (en) 2006-07-13

Family

ID=36736276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378708A Withdrawn JP2006182925A (en) 2004-12-28 2004-12-28 Core/shell type fine particle and lithium secondary battery including the fine particle

Country Status (1)

Country Link
JP (1) JP2006182925A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258160A (en) * 2006-02-21 2007-10-04 Nissan Motor Co Ltd Lithium ion secondary battery and battery pack using it
CN100452491C (en) * 2006-08-10 2009-01-14 武汉大学 Granular electrode composite material with positive temp coefficient and preparing process thereof
JP2010027218A (en) * 2008-07-15 2010-02-04 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2010027329A (en) * 2008-07-17 2010-02-04 Hitachi Maxell Ltd Film for separator formation and electrochemical element
JP2010113819A (en) * 2008-11-04 2010-05-20 Konica Minolta Holdings Inc Secondary battery, method of manufacturing the same, and laminate type secondary battery
JP2010225544A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012081543A1 (en) * 2010-12-14 2012-06-21 協立化学産業株式会社 Battery electrode or separator surface protective agent, battery electrode or separator protected by same, and battery having battery electrode or separator
JP2013080667A (en) * 2011-10-05 2013-05-02 Toyota Motor Corp Maintenance apparatus of electrode plate with insulation layer and manufacturing method of battery
WO2013146515A1 (en) 2012-03-28 2013-10-03 日本ゼオン株式会社 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
WO2015133424A1 (en) * 2014-03-03 2015-09-11 日本ゼオン株式会社 Secondary cell binder composition
CN105273444A (en) * 2014-07-23 2016-01-27 乐凯胶片股份有限公司 Slurry composition and lithium ion battery diaphragm containing same
EP2605312A4 (en) * 2010-08-09 2017-04-12 Zeon Corporation Porous membrane for secondary battery, production method therefor, and use thereof
KR101735509B1 (en) * 2012-11-30 2017-05-15 주식회사 엘지화학 A separator and an electrochemical device containing the same
JP2017135055A (en) * 2016-01-29 2017-08-03 株式会社日立ハイテクファインシステムズ Powder for separator, slurry for separator, lithium ion battery, and method of manufacturing lithium ion battery
JP2017525100A (en) * 2014-06-30 2017-08-31 成都中科来方能源科技股▲分▼有限公司 Aqueous composition used to improve separator for lithium ion battery and improved separator and battery
WO2017220793A1 (en) * 2016-06-23 2017-12-28 Arkema France Preform, its method of preparation and its use
WO2017220791A1 (en) * 2016-06-23 2017-12-28 Arkema France Composition comprising a fibrous material, a multistage polymer and a (meth) acrylic polymer, its method of preparation and its use
CN108370061A (en) * 2015-12-11 2018-08-03 富士胶片株式会社 Solid electrolyte composition, binder particles, solid state secondary battery piece, solid state secondary battery electrode slice and solid state secondary battery and their manufacturing method
WO2018228099A1 (en) * 2017-06-13 2018-12-20 深圳市星源材质科技股份有限公司 Multi-core/single-shell structure gel polymer-coated diaphragm, and manufacturing method and use thereof
JP2020061226A (en) * 2018-10-05 2020-04-16 株式会社リコー Electrode, electrode device, and non-aqueous electrolyte solution electric storage device
JPWO2020245911A1 (en) * 2019-06-04 2020-12-10
CN112868133A (en) * 2018-10-31 2021-05-28 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, separator for nonaqueous secondary battery, and nonaqueous secondary battery

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258160A (en) * 2006-02-21 2007-10-04 Nissan Motor Co Ltd Lithium ion secondary battery and battery pack using it
CN100452491C (en) * 2006-08-10 2009-01-14 武汉大学 Granular electrode composite material with positive temp coefficient and preparing process thereof
JP2010027218A (en) * 2008-07-15 2010-02-04 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2010027329A (en) * 2008-07-17 2010-02-04 Hitachi Maxell Ltd Film for separator formation and electrochemical element
JP2010113819A (en) * 2008-11-04 2010-05-20 Konica Minolta Holdings Inc Secondary battery, method of manufacturing the same, and laminate type secondary battery
JP2010225544A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2605312A4 (en) * 2010-08-09 2017-04-12 Zeon Corporation Porous membrane for secondary battery, production method therefor, and use thereof
US9564638B2 (en) 2010-12-14 2017-02-07 Kyoritsu Chemical & Co., Ltd. Battery electrode or separator surface protective agent composition, battery electrode or separator protected by the composition, and battery having the battery electrode or separator
WO2012081543A1 (en) * 2010-12-14 2012-06-21 協立化学産業株式会社 Battery electrode or separator surface protective agent, battery electrode or separator protected by same, and battery having battery electrode or separator
JP2013080667A (en) * 2011-10-05 2013-05-02 Toyota Motor Corp Maintenance apparatus of electrode plate with insulation layer and manufacturing method of battery
KR101996361B1 (en) 2012-03-28 2019-07-04 제온 코포레이션 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
JPWO2013146515A1 (en) * 2012-03-28 2015-12-14 日本ゼオン株式会社 Porous membrane for secondary battery and method for producing the same, electrode for secondary battery, separator for secondary battery, and secondary battery
JP5652572B2 (en) * 2012-03-28 2015-01-14 日本ゼオン株式会社 Porous membrane for secondary battery and method for producing the same, electrode for secondary battery, separator for secondary battery, and secondary battery
KR20140144182A (en) 2012-03-28 2014-12-18 제온 코포레이션 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
US9620760B2 (en) 2012-03-28 2017-04-11 Zeon Corporation Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
CN104170121A (en) * 2012-03-28 2014-11-26 日本瑞翁株式会社 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
WO2013146515A1 (en) 2012-03-28 2013-10-03 日本ゼオン株式会社 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
KR101735509B1 (en) * 2012-11-30 2017-05-15 주식회사 엘지화학 A separator and an electrochemical device containing the same
WO2015133424A1 (en) * 2014-03-03 2015-09-11 日本ゼオン株式会社 Secondary cell binder composition
JPWO2015133424A1 (en) * 2014-03-03 2017-04-06 日本ゼオン株式会社 Secondary battery binder composition
JP2017525100A (en) * 2014-06-30 2017-08-31 成都中科来方能源科技股▲分▼有限公司 Aqueous composition used to improve separator for lithium ion battery and improved separator and battery
CN105273444A (en) * 2014-07-23 2016-01-27 乐凯胶片股份有限公司 Slurry composition and lithium ion battery diaphragm containing same
CN105273444B (en) * 2014-07-23 2017-11-14 乐凯胶片股份有限公司 A kind of paste compound and the lithium ion battery separator comprising the paste compound
CN108370061A (en) * 2015-12-11 2018-08-03 富士胶片株式会社 Solid electrolyte composition, binder particles, solid state secondary battery piece, solid state secondary battery electrode slice and solid state secondary battery and their manufacturing method
JP2017135055A (en) * 2016-01-29 2017-08-03 株式会社日立ハイテクファインシステムズ Powder for separator, slurry for separator, lithium ion battery, and method of manufacturing lithium ion battery
FR3053044A1 (en) * 2016-06-23 2017-12-29 Arkema France COMPOSITION COMPRISING A FIBROUS MATERIAL, A STAGE POLYMER AND A (METH) ACRYLIC POLYMER, PROCESS FOR PREPARING THE SAME, USE THEREOF, AND COMPOSITE COMPRISING THE SAME
CN109563291B (en) * 2016-06-23 2022-03-22 阿肯马法国公司 Composition comprising a fibrous material, a multistage polymer and a (meth) acrylic polymer, method for the preparation thereof and use thereof
WO2017220791A1 (en) * 2016-06-23 2017-12-28 Arkema France Composition comprising a fibrous material, a multistage polymer and a (meth) acrylic polymer, its method of preparation and its use
FR3053045A1 (en) * 2016-06-23 2017-12-29 Arkema France
CN109563291A (en) * 2016-06-23 2019-04-02 阿肯马法国公司 Composition, Its Preparation Method And Use comprising fibrous material, more grades of polymers and (methyl) acrylic acid series polymeric compounds
WO2017220793A1 (en) * 2016-06-23 2017-12-28 Arkema France Preform, its method of preparation and its use
US11118023B2 (en) 2016-06-23 2021-09-14 Arkema France Preform, its method of preparation and its use
US10815344B2 (en) 2016-06-23 2020-10-27 Arkema France Composition comprising a fibrous material, a multistage polymer and a (meth) acrylic polymer, its method of preparation and its use
JP2019521469A (en) * 2017-06-13 2019-07-25 シェンチェン シニア テクノロジー マテリアル カンパニー リミテッド Multicore-monoshell gel polymer coated separator and method for producing and using the same
WO2018228099A1 (en) * 2017-06-13 2018-12-20 深圳市星源材质科技股份有限公司 Multi-core/single-shell structure gel polymer-coated diaphragm, and manufacturing method and use thereof
JP2020061226A (en) * 2018-10-05 2020-04-16 株式会社リコー Electrode, electrode device, and non-aqueous electrolyte solution electric storage device
JP7222212B2 (en) 2018-10-05 2023-02-15 株式会社リコー Electrodes, electrode elements, non-aqueous electrolyte storage elements
CN112868133A (en) * 2018-10-31 2021-05-28 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, separator for nonaqueous secondary battery, and nonaqueous secondary battery
CN112868133B (en) * 2018-10-31 2023-03-21 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, separator, and nonaqueous secondary battery
JPWO2020245911A1 (en) * 2019-06-04 2020-12-10
WO2020245911A1 (en) * 2019-06-04 2020-12-10 本田技研工業株式会社 Electrolytic solution absorbing particles, self-supporting sheet, lithium-ion secondary battery electrode, separator, and lithium-ion secondary battery
JP7284260B2 (en) 2019-06-04 2023-05-30 本田技研工業株式会社 Electrolyte-absorbing particles, self-supporting sheets, electrodes for lithium-ion secondary batteries, separators, and lithium-ion secondary batteries

Similar Documents

Publication Publication Date Title
JP2006182925A (en) Core/shell type fine particle and lithium secondary battery including the fine particle
JP4541324B2 (en) Nonaqueous electrolyte secondary battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP5313761B2 (en) Lithium ion battery
JP4920423B2 (en) Lithium ion secondary battery
US8460749B2 (en) Binder for electrode of non-aqueous electrolyte secondary battery, electrode, and non-aqueous electrolyte secondary battery
JP4887653B2 (en) Nonaqueous electrolyte secondary battery electrode binder, binder composition, electrode composition, and electrode
JP5235109B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
JP2022501784A (en) Separator and electrochemical device
JP5427046B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
US8852804B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP2007299612A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2005067080A1 (en) Lithium ion secondary cell
JP2009099495A (en) Lithium secondary battery
JP2009032492A (en) Negative electrode and battery
KR20200108466A (en) Anode including microcapsules and lithium-ion secondary battery having the same
JP2002313345A (en) Nonaqueous electrolyte secondary battery
JP2005056800A (en) Separator for electronic parts and electronic parts
JP2007005158A (en) Lithium ion secondary battery
JP2013110049A (en) Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery
JP2005209496A (en) Nonaqueous electrolyte secondary battery
JP2005108521A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode
JP2015195167A (en) Negative electrode for nonaqueous secondary batteries, nonaqueous secondary battery, nonaqueous secondary battery system, and method for manufacturing nonaqueous secondary battery
JP2006313736A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060621