JP2002304997A - Lithium ion polymer secondary battery and synthesizing method of binder used for adhesion layer thereof - Google Patents

Lithium ion polymer secondary battery and synthesizing method of binder used for adhesion layer thereof

Info

Publication number
JP2002304997A
JP2002304997A JP2001303053A JP2001303053A JP2002304997A JP 2002304997 A JP2002304997 A JP 2002304997A JP 2001303053 A JP2001303053 A JP 2001303053A JP 2001303053 A JP2001303053 A JP 2001303053A JP 2002304997 A JP2002304997 A JP 2002304997A
Authority
JP
Japan
Prior art keywords
binder
active material
negative electrode
adhesion
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001303053A
Other languages
Japanese (ja)
Other versions
JP3982221B2 (en
Inventor
Yusuke Watarai
祐介 渡會
Akio Mizuguchi
暁夫 水口
Akihiro Higami
晃裕 樋上
Shuhin Cho
守斌 張
Tadashi Kobayashi
正 小林
Sawako Takeuchi
さわ子 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001303053A priority Critical patent/JP3982221B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to CNA02811664XA priority patent/CN1529917A/en
Priority to EP08152891A priority patent/EP1947715B1/en
Priority to PCT/JP2002/003573 priority patent/WO2002084764A1/en
Priority to US10/474,354 priority patent/US7351498B2/en
Priority to TW091107248A priority patent/TW567630B/en
Priority to KR10-2003-7013176A priority patent/KR20030086354A/en
Priority to DE60237483T priority patent/DE60237483D1/en
Priority to EP02717097A priority patent/EP1381097A4/en
Publication of JP2002304997A publication Critical patent/JP2002304997A/en
Application granted granted Critical
Publication of JP3982221B2 publication Critical patent/JP3982221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Graft Or Block Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion polymer secondary battery excellent in adhesion and conductivity between a collector and an active material layer, capable of improving a cycle capacity keeping characteristic, having an adhesion layer stable against an organic solvent in an electrolyte and excellent in long-term storability, and capable of restraining corrosion of the collector by a strong acid such as hydrofluoric acid generated in the battery. SOLUTION: This lithium ion polymer secondary battery is provided with: a positive electrode with a positive electrode active material layer formed by including a first binder in the active material formed on the surface of the positive electrode collector; a negative electrode with a negative electrode active material layer formed by including a second binder identical to or different from the first one in an active material formed on the surface of the negative electrode collector; and an electrolyte. The battery has the first adhesion layer between the positive electrode collector and the positive electrode active material layer, and has the second adhesion layer between the negative electrode collector and the negative electrode active material layer. The first and second adhesion layers respectively include both a third binder and a conductive substance. The third binder is a high polymer compound prepared by modifying the first binder or the second binder by a modifying substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密着層を有するリ
チウムイオンポリマー二次電池及び該電池の密着層に用
いる結着剤の合成方法に関する。
The present invention relates to a lithium ion polymer secondary battery having an adhesion layer and a method for synthesizing a binder used for the adhesion layer of the battery.

【0002】[0002]

【従来の技術】近年のビデオカメラやノート型パソコン
等のポータブル機器の普及により薄型の電池に対する需
要が高まっている。この薄型の電池として正極と負極を
積層して形成されたリチウムイオンポリマー二次電池が
知られている。この正極は、シート状の正極集電体の表
面に活物質層を形成することにより作られ、負極は、シ
ート状の負極集電体の表面に活物質層を形成することに
より作られる。正極の活物質層と負極の活物質層の間に
は電解質層が介装される。この電池では、それぞれの活
物質における電位差を電流として取出すための正極端子
及び負極端子が正極集電体及び負極集電体に設けられ、
このように積層されたものをパッケージで密閉すること
によりリチウムイオンポリマー二次電池が形成されてい
る。このリチウムイオンポリマー二次電池ではパッケー
ジから引出された正極端子及び負極端子を電池の端子と
して使用することにより所望の電気が得られるようにな
っている。
2. Description of the Related Art With the spread of portable devices such as video cameras and notebook personal computers in recent years, demand for thin batteries has increased. As this thin battery, a lithium ion polymer secondary battery formed by laminating a positive electrode and a negative electrode is known. The positive electrode is formed by forming an active material layer on the surface of a sheet-shaped positive electrode current collector, and the negative electrode is formed by forming an active material layer on the surface of a sheet-shaped negative electrode current collector. An electrolyte layer is interposed between the positive electrode active material layer and the negative electrode active material layer. In this battery, a positive electrode terminal and a negative electrode terminal for extracting a potential difference in each active material as a current are provided on the positive electrode current collector and the negative electrode current collector,
The lithium ion polymer secondary battery is formed by hermetically sealing the stacked battery with a package. In this lithium ion polymer secondary battery, desired electricity can be obtained by using the positive electrode terminal and the negative electrode terminal drawn out of the package as terminals of the battery.

【0003】このような構造を有するリチウムイオンポ
リマー二次電池は電池電圧が高く、エネルギー密度も大
きいため、非常に注目されている。このリチウムイオン
ポリマー二次電池の放電容量を更に増大させるためには
シート状の正極又は負極の面積を拡大させる必要があ
る。この正極又は負極の面積を単純に拡大するだけでは
広い面積のために、その取扱いが困難になる不具合があ
る。この点を解消するために、拡大したシート状の正極
又は負極を所望の大きさに折畳んだり、捲回したりする
ことも考えられる。しかし、シート状の正極又は負極を
積層した状態で折畳みや捲回を行うと、折目部分におけ
る正極又は負極に撓みが生じ、その部分におけるシート
が電解質層から剥離して電極と電解質界面の有効表面積
が減少して放電容量が減少するとともに、電池内部に抵
抗を生じさせて放電容量のサイクル特性を悪化させる不
具合がある。また同様に、折目部分に撓みが生じること
により正極又は負極をそれぞれ形成している活物質層が
集電体より剥離する問題もあった。更に、この電池は充
電及び放電過程において、正極及び負極活物質中へのリ
チウムイオンの吸蔵、放出によって正極及び負極活物質
層の膨張、収縮が起こり、これにより発生する応力によ
り、活物質層が集電体より剥離する問題もあった。
[0003] A lithium ion polymer secondary battery having such a structure has attracted much attention because of its high battery voltage and high energy density. In order to further increase the discharge capacity of this lithium ion polymer secondary battery, it is necessary to increase the area of the sheet-like positive electrode or negative electrode. If the area of the positive electrode or the negative electrode is simply enlarged, the handling becomes difficult due to the large area. In order to solve this problem, it is conceivable to fold or wind the enlarged sheet-like positive electrode or negative electrode to a desired size. However, when folding or winding is performed in a state where the sheet-like positive electrode or negative electrode is laminated, the positive electrode or the negative electrode in the fold portion is bent, and the sheet in the portion is peeled off from the electrolyte layer and the effective interface between the electrode and the electrolyte is formed. There is a problem that the surface area is reduced and the discharge capacity is reduced, and resistance is generated inside the battery to deteriorate the cycle characteristics of the discharge capacity. Similarly, there is also a problem that the active material layers forming the positive electrode and the negative electrode are separated from the current collector due to the bending at the fold. Further, in this battery, during the charging and discharging processes, the positive electrode and the negative electrode active material layer expand and contract due to insertion and release of lithium ions into the positive electrode and the negative electrode active material. There was also a problem of peeling from the current collector.

【0004】そこで上記諸問題を解決する技術として下
記に示すように、活物質層の集電体からの剥離や密着性
の低下を防止する技術がそれぞれ提案されている。特
公平7−70328号公報には、結着剤と導電性フィラ
ーからなる導電性塗膜で被覆された集電体が提案されて
いる。この発明では、結着剤の材質としてフェノール樹
脂、メラミン樹脂、ユリア樹脂、ビニール系樹脂、アル
キッド系樹脂、合成ゴム等が挙げられている。特開平
9−35707号公報では、負極集電体上に炭素粉末と
ポリフッ化ビニリデン(PolyVinylidene Fluoride、以
下、PVdFという。)からなる結着剤が含有した負極
材層が形成され、負極集電体上に導電剤が混入されたア
クリル系共重合体からなる接着層を形成することが記載
されている。この発明では、負極集電体が銅箔により形
成された負極板に銅との接着性が高いアクリル共重合体
を用いることにより高い接着効果が得られる。特開平
10−149810号公報では、活物質層と集電体間に
ポリウレタン樹脂又はエポキシ樹脂を塗布した下塗層を
形成している。この発明では、ポリウレタン樹脂又はエ
ポキシ樹脂を塗布した下塗層を形成することにより電極
における活物質塗膜層と集電体との間の密着性を向上さ
せ、電池のサイクル容量維持特性を向上させることがで
きる。
Therefore, as a technique for solving the above-mentioned problems, techniques for preventing the active material layer from peeling off from the current collector and lowering the adhesion have been proposed as described below. Japanese Patent Publication No. 7-70328 proposes a current collector coated with a conductive coating film composed of a binder and a conductive filler. In the present invention, a phenol resin, a melamine resin, a urea resin, a vinyl-based resin, an alkyd-based resin, a synthetic rubber, and the like are cited as materials for the binder. In Japanese Patent Application Laid-Open No. 9-35707, a negative electrode material layer containing a binder made of carbon powder and polyvinylidene fluoride (hereinafter referred to as PVdF) is formed on a negative electrode current collector. It is described that an adhesive layer made of an acrylic copolymer mixed with a conductive agent is formed thereon. In this invention, a high adhesive effect can be obtained by using an acrylic copolymer having high adhesiveness to copper for the negative electrode plate in which the negative electrode current collector is formed of copper foil. In Japanese Patent Application Laid-Open No. 10-149810, an undercoat layer formed by applying a polyurethane resin or an epoxy resin is formed between an active material layer and a current collector. In the present invention, the adhesion between the active material coating layer and the current collector in the electrode is improved by forming an undercoat layer coated with a polyurethane resin or an epoxy resin, and the cycle capacity retention characteristics of the battery are improved. be able to.

【0005】特開平10−144298号公報では、
負極集電体と負極活物質層の間に黒鉛とバインダとから
なる接着層を設けている。この発明では、接着層に含ま
れる黒鉛が負極の集電効率を高めるように機能してい
る。特開平9−213370号公報では、電池活物質
層の電解質部及び電解質層のバインダとしてグラフト重
合されたPVdFを用いている。この発明では、グラフ
ト重合されたPVdFを電池活物質層の電解質部や電解
質層のバインダとして用いることにより、集電体との接
触効率が向上する。
In Japanese Patent Application Laid-Open No. Hei 10-144298,
An adhesive layer made of graphite and a binder is provided between the negative electrode current collector and the negative electrode active material layer. In the present invention, the graphite contained in the adhesive layer functions to increase the current collection efficiency of the negative electrode. In JP-A-9-213370, graft-polymerized PVdF is used as an electrolyte part of a battery active material layer and a binder of the electrolyte layer. In this invention, the contact efficiency with the current collector is improved by using the graft-polymerized PVdF as the electrolyte part of the battery active material layer and the binder of the electrolyte layer.

【0006】[0006]

【発明が解決しようとする課題】密着層に要求される特
性として、集電体材料に対する密着力、活物質層中に含
まれるバインダとの結着力、電解液中の有機溶媒に対し
て安定で長期保存性に優れること、熱的に安定で高温下
に晒されたときに剥がれ等が生じないこと、電気化学的
に安定で繰返しの充放電に耐えられること等が挙げられ
る。しかし、上記に示す技術では、結着剤として用い
られるブチルゴムやフェノール樹脂等は電解液に侵され
てしまうため、剥離してしまう問題があった。またに
示す技術でも、アクリル系共重合体は負極材層に含有す
るPVdFや負極集電体との結着力が強いため、負極集
電体と負極材層との間に導電材が混入されたアクリル系
共重合体を主成分とする結着層を形成することにより負
極集電体と負極材層との結着力を高めることができる
が、このアクリル系共重合体は電解液に侵されてしまう
ため、剥離してしまう問題があった。更にに示す技術
でも、下塗層としてポリウレタン樹脂を用いた場合で
は、剥離強度、80%容量サイクル数はそれぞれ下塗層
を形成しない電池に比べると向上しているが、実用上十
分であるとは言えなかった。また、エポキシ樹脂を用い
た場合、電解液に侵されてしまうため、剥離してしまう
おそれがあった。
The characteristics required for the adhesion layer include adhesion to the current collector material, binding to the binder contained in the active material layer, and stability to the organic solvent in the electrolyte. It has excellent long-term storage properties, is thermally stable and does not peel off when exposed to high temperatures, and is electrochemically stable and can withstand repeated charge and discharge. However, in the technique described above, there is a problem that butyl rubber, phenol resin, and the like used as a binder are peeled off because they are affected by the electrolytic solution. Also in the technique shown in the following, since the acrylic copolymer has a strong binding force with the PVdF or the negative electrode current collector contained in the negative electrode material layer, the conductive material was mixed between the negative electrode current collector and the negative electrode material layer. By forming a binder layer containing an acrylic copolymer as a main component, the binding force between the negative electrode current collector and the negative electrode material layer can be increased, but this acrylic copolymer is attacked by the electrolytic solution. Therefore, there was a problem of peeling. Further, in the technique described below, when the polyurethane resin is used as the undercoat layer, the peel strength and the 80% capacity cycle number are improved as compared with the battery without the undercoat layer. I couldn't say. In addition, when an epoxy resin is used, the epoxy resin is eroded by the electrolytic solution, and may be peeled off.

【0007】に示す技術では、接着層に活物質中に含
まれる結着剤と同様の物質を用いているため活物質との
密着力は良好であるが、集電体との密着性は活物質層を
直接集電体に形成するものと大差なく、十分であるとは
言えなかった。また、バインダに電解液が浸透してしま
うため、集電体との接着強度が弱い問題もあった。に
示す技術では、集電体に対する密着力の高いグラフト重
合したポリマーを活物質層のバインダに用いるため、密
着層を設けることなく活物質層を集電体上に直接形成す
ることができるが、このようなポリマーは難溶であるた
め使用する溶媒が限定されてしまう欠点があった。更
に、電池内部よりこの溶媒を完全に除去するのは困難で
あり、溶媒が電池内部に残留すると電池性能に悪影響を
及ぼすおそれもあった。
In the technique described in (1), since the same material as the binder contained in the active material is used for the adhesive layer, the adhesion to the active material is good, but the adhesion to the current collector is low. It was not much different from forming the material layer directly on the current collector, and it was not sufficient. In addition, since the electrolyte penetrates into the binder, there is also a problem that the bonding strength with the current collector is weak. In the technique shown in the above, since a graft-polymerized polymer having high adhesion to the current collector is used as a binder for the active material layer, the active material layer can be formed directly on the current collector without providing an adhesion layer. Since such a polymer is hardly soluble, there is a disadvantage that a solvent to be used is limited. Furthermore, it is difficult to completely remove the solvent from the inside of the battery, and there is a possibility that the performance of the battery will be adversely affected if the solvent remains inside the battery.

【0008】本発明の第1の目的は、集電体と活物質層
との密着性及び導電性に優れ、かつサイクル容量維持特
性を向上し得るリチウムイオンポリマー電池を提供する
ことにある。本発明の第2の目的は、密着層が電解液中
の有機溶媒に対して安定で長期保存性に優れるリチウム
イオンポリマー電池を提供することにある。本発明の第
3の目的は、電池内に発生するフッ酸等の強酸による集
電体の腐食を抑制し得るリチウムイオンポリマー電池を
提供することにある。本発明の第4の目的は、集電体と
活物質層との密着性及び導電性に優れたリチウムイオン
ポリマー二次電池の密着層に用いる結着剤の合成方法を
提供することにある。
[0008] A first object of the present invention is to provide a lithium ion polymer battery which is excellent in adhesion and conductivity between a current collector and an active material layer and which can improve cycle capacity retention characteristics. A second object of the present invention is to provide a lithium ion polymer battery in which the adhesion layer is stable with respect to the organic solvent in the electrolytic solution and has excellent long-term storage properties. A third object of the present invention is to provide a lithium ion polymer battery capable of suppressing corrosion of a current collector by a strong acid such as hydrofluoric acid generated in the battery. A fourth object of the present invention is to provide a method for synthesizing a binder used for an adhesion layer of a lithium ion polymer secondary battery having excellent adhesion between a current collector and an active material layer and excellent conductivity.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、正極集電体12の表面に第1結着剤
が活物質中に含まれてなる正極活物質層13が形成され
た正極11と、負極集電体16の表面に第1結着剤と同
一又は異なる第2結着剤が活物質中に含まれてなる負極
活物質層17が形成された負極14と、電解質18とを
備えたリチウムイオンポリマー二次電池の改良である。
その特徴ある構成は、正極集電体12と正極活物質層1
3との間に第1密着層19を有し、負極集電体16と負
極活物質層17との間に第2密着層21を有し、第1及
び第2密着層19,21が第3結着剤と導電性物質の双
方をそれぞれ含み、第3結着剤が、第1結着剤又は第2
結着剤を変性物質により変性させた高分子化合物であ
る。請求項1に係る発明では、第1及び第2密着層に含
まれる第3結着剤が、正極活物質層又は負極活物質層に
それぞれ含有する第1結着剤又は第2結着剤を変性物質
により変性させた高分子化合物であるため、正極活物質
層又は負極活物質層に対する密着力が高い。また、第1
結着剤又は第2結着剤を変性させた高分子化合物を第3
結着剤として用いることにより正極集電体又は負極集電
体との密着性も従来の結着剤を用いるより大幅に向上す
る。
The invention according to claim 1 is
As shown in FIG. 1, a positive electrode 11 in which a positive electrode active material layer 13 in which a first binder is included in an active material is formed on a surface of a positive electrode current collector 12, and a surface of a negative electrode current collector 16. Improvement of a lithium ion polymer secondary battery including an electrolyte 18 and a negative electrode 14 having a negative electrode active material layer 17 in which a second binder the same as or different from the first binder is contained in the active material. It is.
Its characteristic configuration is that the positive electrode current collector 12 and the positive electrode active material layer 1
3 and a second contact layer 21 between the negative electrode current collector 16 and the negative electrode active material layer 17. The first and second contact layers 19 and 21 are The third binder includes both the first binder and the second binder.
A polymer compound obtained by modifying a binder with a modifying substance. In the invention according to claim 1, the third binder contained in the first and second adhesion layers is the first binder or the second binder contained in the positive electrode active material layer or the negative electrode active material layer, respectively. Since it is a polymer compound modified with a modifying substance, it has high adhesion to a positive electrode active material layer or a negative electrode active material layer. Also, the first
A polymer compound obtained by modifying the binder or the second binder is added to the third compound.
When used as a binder, the adhesion to the positive electrode current collector or the negative electrode current collector is also greatly improved as compared with the use of a conventional binder.

【0010】請求項2に係る発明は、請求項1に係る発
明であって、第1又は第2結着剤のいずれか一方又は双
方がポリテトラフルオロエチレン、ポリクロロトリフル
オロエチレン、PVdF、フッ化ビニリデン−ヘキサフ
ルオロプロピレン共重合体又はポリフッ化ビニルから選
ばれたフッ素含有高分子化合物であるリチウムイオンポ
リマー二次電池である。請求項2に係る発明では、結着
剤はポリテトラフルオロエチレン、PVdFが電解液へ
の耐久性が高いため好ましい。
[0010] The invention according to claim 2 is the invention according to claim 1, wherein one or both of the first and second binders is made of polytetrafluoroethylene, polychlorotrifluoroethylene, PVdF, or fluorine. It is a lithium-ion polymer secondary battery which is a fluorine-containing polymer compound selected from vinylidene fluoride-hexafluoropropylene copolymer or polyvinyl fluoride. In the invention according to claim 2, as the binder, polytetrafluoroethylene and PVdF are preferable because of high durability to the electrolytic solution.

【0011】請求項3に係る発明は、請求項1に係る発
明であって、変性物質がエチレン、スチレン、ブタジエ
ン、塩化ビニル、酢酸ビニル、アクリル酸、アクリル酸
メチル、メチルビニルケトン、アクリルアミド、アクリ
ロニトリル、塩化ビニリデン、メタクリル酸、メタクリ
ル酸メチル又はイソプレンから選ばれた化合物であるリ
チウムイオンポリマー二次電池である。請求項3に係る
発明では、変性物質は、アクリル酸、アクリル酸メチ
ル、メタクリル酸及びメタクリル酸メチルを用いること
により集電体と良好な密着性を得ることができるため好
ましい。
The invention according to claim 3 is the invention according to claim 1, wherein the modifying substance is ethylene, styrene, butadiene, vinyl chloride, vinyl acetate, acrylic acid, methyl acrylate, methyl vinyl ketone, acrylamide, acrylonitrile. , A lithium ion polymer secondary battery which is a compound selected from vinylidene chloride, methacrylic acid, methyl methacrylate or isoprene. In the invention according to claim 3, it is preferable to use acrylic acid, methyl acrylate, methacrylic acid, and methyl methacrylate as the modifying substance because good adhesion to the current collector can be obtained.

【0012】請求項4に係る発明は、請求項1に係る発
明であって、第1及び第2密着層の厚さが0.5〜30
μmであるリチウムイオンポリマー二次電池である。請
求項4に係る発明では、第1及び第2密着層の厚さが
0.5〜30μmである。0.5μm未満であると、集
電体を腐食から保護する機能が低下し、放電容量のサイ
クル特性が悪くなる。また、第1及び第2密着層形成時
に導電性粉末を均一に分散させることが困難になるた
め、内部インピーダンスの上昇を招く。30μmを越え
ると、電池反応に寄与しない部分の体積及び重量が増加
するため、体積及び重量エネルギー密度が低下する。密
着層の厚さは1〜15μmが好ましい。
The invention according to claim 4 is the invention according to claim 1, wherein the thickness of the first and second adhesion layers is 0.5 to 30.
It is a lithium ion polymer secondary battery having a size of μm. In the invention according to claim 4, the thickness of the first and second adhesion layers is 0.5 to 30 μm. If the thickness is less than 0.5 μm, the function of protecting the current collector from corrosion decreases, and the cycle characteristics of the discharge capacity deteriorate. In addition, it becomes difficult to uniformly disperse the conductive powder at the time of forming the first and second adhesion layers, which causes an increase in internal impedance. If it exceeds 30 μm, the volume and the weight of the portion that does not contribute to the battery reaction increase, so that the volume and the weight energy density decrease. The thickness of the adhesion layer is preferably from 1 to 15 μm.

【0013】請求項5に係る発明は、請求項1又は4に
係る発明であって、第1及び第2密着層中に分散剤を更
に0.1〜20重量%含有するリチウムイオンポリマー
二次電池である。請求項5に係る発明では、分散剤を第
1及び第2密着層中に0.1〜20重量%含有させるこ
とにより導電性物質を第1及び第2密着層中に均一に分
散できる。分散剤としては酸性高分子系分散剤、塩基性
高分子系分散剤又は中性高分子系分散剤等が挙げられ
る。0.1重量%未満であると、導電性粉末の分散が分
散剤を添加しない場合と差がなく、添加した効果が得ら
れない。20重量%を越えても、導電性粉末の分散状況
は変わらず、電池反応に寄与するものでないため過剰に
添加する必要がない。分散剤の含有量は2〜15重量%
が好ましい。
The invention according to claim 5 is the invention according to claim 1 or 4, wherein the first and second adhesion layers further contain a dispersant in an amount of 0.1 to 20% by weight. Battery. In the invention according to claim 5, the conductive substance can be uniformly dispersed in the first and second adhesion layers by including the dispersant in the first and second adhesion layers in an amount of 0.1 to 20% by weight. Examples of the dispersant include acidic polymer-based dispersants, basic polymer-based dispersants, and neutral polymer-based dispersants. When the content is less than 0.1% by weight, the dispersion of the conductive powder is not different from the case where the dispersant is not added, and the effect of the addition is not obtained. If it exceeds 20% by weight, the dispersion state of the conductive powder does not change and does not contribute to the battery reaction, so that it is not necessary to add excessively. The content of the dispersant is 2 to 15% by weight.
Is preferred.

【0014】請求項6に係る発明は、請求項1に係る発
明であって、導電性物質が粒径0.5〜30μm、黒鉛
化度50%以上の炭素材を用い、第1及び第2密着層に
含まれる第3結着剤と導電性物質との重量比(第3結着
剤/導電性物質)が13/87〜50/50であるリチ
ウムイオンポリマー二次電池である。請求項6に係る発
明では、第3結着剤と導電性物質との重量比は13/8
7〜50/50である。重量比が13/87未満である
と、ポリマーの比率が少なく、十分な密着力を得ること
ができない。重量比が50/50を越えると、導電性物
質が少なく、集電体と活物質層間の電子移動が十分に行
えず、内部インピーダンスが上昇する。第3結着剤と導
電性物質との重量比は14/86〜33/67が好まし
い。
The invention according to claim 6 is the invention according to claim 1, wherein the conductive material is a carbon material having a particle size of 0.5 to 30 μm and a degree of graphitization of 50% or more, and the first and second conductive materials are used. A lithium ion polymer secondary battery in which the weight ratio of the third binder and the conductive substance (third binder / conductive substance) contained in the adhesion layer is 13/87 to 50/50. In the invention according to claim 6, the weight ratio of the third binder to the conductive substance is 13/8.
7 to 50/50. If the weight ratio is less than 13/87, the ratio of the polymer is too small to obtain a sufficient adhesion. When the weight ratio exceeds 50/50, the amount of the conductive substance is small, the electron transfer between the current collector and the active material layer cannot be sufficiently performed, and the internal impedance increases. The weight ratio of the third binder to the conductive substance is preferably from 14/86 to 33/67.

【0015】請求項7に係る発明は、請求項1ないし6
いずれか記載のリチウムイオンポリマー二次電池の密着
層に含まれる第3結着剤の合成方法であって、第3結着
剤が第1結着剤又は第2結着剤のいずれか一方又は双方
を変性物質により変性させることにより合成され、合成
された第3結着剤を100重量%とするとき、第3結着
剤に含まれる変性物質の割合が2〜50重量%であるこ
とを特徴とする結着剤の合成方法である。請求項7に係
る発明では、合成された第3結着剤を100重量%とす
るとき、第3結着剤に含まれる変性物質の割合を上記割
合とすることにより密着性及び導電性に優れた第3結着
剤が得られる。結着剤に含まれる変性物質の割合が下限
値未満であると、溶媒に溶解しにくくなり、上限値を越
えると、集電体への接着強度が減少する。結着剤に含ま
れる変性物質の割合は70〜90重量%が好ましい。
The invention according to claim 7 is the invention according to claims 1 to 6
A method for synthesizing a third binder contained in an adhesion layer of a lithium ion polymer secondary battery according to any one of the above, wherein the third binder is any one of a first binder and a second binder or It is synthesized by denaturing both with a denaturing substance. When the synthesized third binder is 100% by weight, the ratio of the denaturing substance contained in the third binder is 2 to 50% by weight. This is a method for synthesizing a characteristic binder. In the invention according to claim 7, when the synthesized third binder is 100% by weight, the ratio of the modifying substance contained in the third binder is set to the above ratio, so that the adhesion and the conductivity are excellent. A third binder is obtained. If the ratio of the modified substance contained in the binder is less than the lower limit, it is difficult to dissolve in the solvent, and if it exceeds the upper limit, the adhesive strength to the current collector decreases. The ratio of the modifying substance contained in the binder is preferably 70 to 90% by weight.

【0016】請求項8に係る発明は、請求項7に係る発
明であって、変性物質による変性は、第1又は第2結着
剤のいずれか一方又は双方に放射線を照射した後で、被
照射物に変性物質を混合してグラフト重合することによ
り行われる合成方法である。請求項9に係る発明は、請
求項7に係る発明であって、変性物質による変性は、第
1又は第2結着剤のいずれか一方又は双方に変性物質を
混合し、混合物に対して放射線を照射してグラフト重合
することにより行われる合成方法である。
The invention according to claim 8 is the invention according to claim 7, wherein the modification with the modifying substance is performed after irradiating one or both of the first and second binders with radiation. This is a synthesis method carried out by mixing a modified substance with an irradiated substance and performing graft polymerization. The invention according to claim 9 is the invention according to claim 7, wherein the modification with the modifying substance is performed by mixing the modifying substance with one or both of the first and second binders and applying radiation to the mixture. And a graft polymerization is carried out by irradiating the polymer.

【0017】請求項10に係る発明は、請求項8又は9
に係る発明であって、第1又は第2結着剤のいずれか一
方又は双方への放射線照射は、第1又は第2結着剤のい
ずれか一方又は双方への吸収線量が1〜120kGyに
なるようにγ線を照射することにより行われる合成方法
である。請求項10に係る発明では、吸収線量が1〜1
20kGyになるようにγ線を照射する。吸収線量が下
限値未満、上限値を越える数値であると、得られる結着
剤の接着強度が低くなる不具合を生じる。
The invention according to claim 10 is the invention according to claim 8 or 9
In the invention according to the above, the radiation irradiation to one or both of the first and second binders, the absorbed dose to one or both of the first and second binders is 1 to 120 kGy This is a synthesis method performed by irradiating γ rays. In the invention according to claim 10, the absorbed dose is 1 to 1
Irradiation of γ rays is performed so as to be 20 kGy. If the absorbed dose is less than the lower limit and exceeds the upper limit, a problem occurs in that the adhesive strength of the obtained binder is reduced.

【0018】[0018]

【発明の実施の形態】次に本発明の実施の形態について
説明する。本発明のリチウムイオンポリマー二次電池は
第1及び第2密着層が第3結着剤と導電性物質の双方を
それぞれ含み、第3結着剤が、第1結着剤又は第2結着
剤を変性物質により変性させた高分子化合物であること
を特徴とする。「変性」とは、性質が変わることを意味
し、本明細書では、高分子化合物を変性物質により変性
することにより、従来高分子化合物が持つ性質だけでな
く、変性物質が持つ性質も併せ持ったり、両者にない性
質を新たに持たせることを意味する。
Next, an embodiment of the present invention will be described. In the lithium ion polymer secondary battery of the present invention, the first and second adhesion layers each include both a third binder and a conductive material, and the third binder is the first binder or the second binder. It is a polymer compound obtained by modifying an agent with a modifying substance. "Modification" means that the property changes, and in this specification, by modifying a polymer compound with a modifying substance, not only the property of a conventional polymer compound but also the property of a modifying substance , Which means that both have new properties.

【0019】この変性させた高分子化合物は活物質層中
の第1結着剤又は第2結着剤を主基とするため、活物質
層との密着性が高い。一方、集電体との密着性が高い変
性物質により変性したことにより集電体との密着性も活
物質層と同様の結着剤を用いる場合より大幅に向上す
る。このため、活物質層の集電体からの剥がれが抑制さ
れ、サイクル特性が向上する。また、変性高分子化合物
は活物質層に用いる結着剤に比べて変性させたことによ
り化学的に安定となり、電解液に対して溶解されること
なく活物質層の集電体からの剥がれが抑制される。また
同様の理由から密着層中に分散される導電性物質が崩落
することなく保持されるため良好な電子伝導を維持し、
長期保存性やサイクル特性に優れる。また、化学的に安
定な層に集電体が被覆されるため、電池内部でフッ酸な
どが発生した場合でも密着層が保護層となり集電体の腐
食を抑制できる。更に、変性高分子化合物は活物質層に
用いる結着剤に比べて変性させたことにより熱的に安定
となり、電池が高温下におかれても電池内溶媒に溶解す
ることがなく電池の劣化を抑制できる。変性高分子化合
物は活物質層に用いる結着剤に比べて変性させたことに
より電気化学的に安定となり、正極が満充電時に高電位
下におかれても劣化することがなく、安定した密着力と
導電性を保つ。また電解液が変性高分子化合物中に浸透
するのが困難であるため、集電体への電解液の付着がほ
とんどなく、満充電時における正極集電体の溶出が抑制
できる。
Since the modified polymer compound is based on the first binder or the second binder in the active material layer, it has high adhesion to the active material layer. On the other hand, the modification with the modified substance having high adhesion to the current collector significantly improves the adhesion to the current collector as compared with the case where the same binder as the active material layer is used. For this reason, peeling of the active material layer from the current collector is suppressed, and cycle characteristics are improved. In addition, the modified polymer compound becomes chemically stable by being modified compared to the binder used for the active material layer, and the active material layer is not separated from the current collector without being dissolved in the electrolytic solution. Is suppressed. Also, for the same reason, the conductive material dispersed in the adhesion layer is maintained without collapsing, so that good electron conduction is maintained,
Excellent long-term storage and cycle characteristics. In addition, since the current collector is coated on the chemically stable layer, even when hydrofluoric acid or the like is generated inside the battery, the adhesion layer serves as a protective layer and the corrosion of the current collector can be suppressed. Furthermore, the modified polymer compound is thermally stable due to modification compared to the binder used for the active material layer, and does not dissolve in the solvent in the battery even when the battery is exposed to high temperatures. Can be suppressed. The modified polymer compound is electrochemically stable by being modified compared to the binder used for the active material layer, and does not deteriorate even if the positive electrode is placed under a high potential when fully charged, and has stable adhesion Keep power and conductivity. Further, since it is difficult for the electrolyte to penetrate into the modified polymer compound, the electrolyte is hardly attached to the current collector, and elution of the positive electrode current collector at the time of full charge can be suppressed.

【0020】次に、本発明のリチウムイオンポリマー二
次電池の製造手順を説明する。先ず、正極活物質層又は
負極活物質層にそれぞれ含有する結着剤を変性物質によ
り変性させ、この変性高分子化合物を第1及び第2密着
層の第3結着剤とする。第1及び第2密着層は化学的、
電気化学的、熱的に安定であることが要求されるため、
活物質に用いられる第1又は第2結着剤かつ変性高分子
化合物の基体となる高分子化合物は、分子内にフッ素を
含む高分子化合物であることが好ましい。このフッ素含
有高分子化合物としては、ポリテトラフルオロエチレ
ン、ポリクロロトリフルオロエチレン、PVdF、フッ
化ビニリデン−ヘキサフルオロプロピレン共重合体、ポ
リフッ化ビニル等が挙げられる。
Next, the procedure for manufacturing the lithium ion polymer secondary battery of the present invention will be described. First, the binder contained in each of the positive electrode active material layer and the negative electrode active material layer is modified with a modifying substance, and this modified polymer compound is used as a third binder for the first and second adhesion layers. The first and second adhesion layers are chemical,
Because it is required to be electrochemically and thermally stable,
The polymer compound serving as the base of the first or second binder and the modified polymer compound used for the active material is preferably a polymer compound containing fluorine in the molecule. Examples of the fluorine-containing polymer compound include polytetrafluoroethylene, polychlorotrifluoroethylene, PVdF, vinylidene fluoride-hexafluoropropylene copolymer, and polyvinyl fluoride.

【0021】このフッ素含有高分子化合物を変性させる
手法として、グラフト重合、架橋等が挙げられる。グラ
フト重合に用いられる変性物質としては、エチレン、ス
チレン、ブタジエン、塩化ビニル、酢酸ビニル、アクリ
ル酸、アクリル酸メチル、メチルビニルケトン、アクリ
ルアミド、アクリロニトリル、塩化ビニリデン、メタク
リル酸、メタクリル酸メチル等の化合物が挙げられる。
特にアクリル酸、アクリル酸メチル、メタクリル酸、メ
タクリル酸メチルを用いた場合に集電体と良好な密着性
を得ることができる。架橋に用いられる変性物質として
は、不飽和結合を2つ以上有する化合物、例えばブタジ
エン、イソプレン等が挙げられる。また、架橋は加硫す
ることよって行ってもよい。
Techniques for modifying the fluorine-containing polymer compound include graft polymerization and crosslinking. Compounds such as ethylene, styrene, butadiene, vinyl chloride, vinyl acetate, acrylic acid, methyl acrylate, methyl vinyl ketone, acrylamide, acrylonitrile, vinylidene chloride, methacrylic acid, methyl methacrylate, etc. No.
Particularly when acrylic acid, methyl acrylate, methacrylic acid, or methyl methacrylate is used, good adhesion to the current collector can be obtained. Examples of the modifying substance used for crosslinking include compounds having two or more unsaturated bonds, such as butadiene and isoprene. Crosslinking may be performed by vulcanization.

【0022】この実施の形態ではグラフト重合について
述べる。グラフト重合させる方法としては触媒法、連鎖
移動法、放射線法、光重合法及び機械的切断法等があ
る。例えば放射線法では、高分子化合物とグラフト化材
料となる化合物とを一緒にして、放射線を連続的又は間
欠的に放射することにより重合でき、グラフト化材料と
高分子化合物とを接触させる前に主基である高分子化合
物を予備放射することが好ましい。具体的には、高分子
化合物に放射線を照射した後で、前記被照射物にグラフ
ト化材料となる変性物質を混合することにより、高分子
化合物を主鎖とし変性物質を側鎖とした変性高分子化合
物を得ることができる。グラフト重合に用いる放射線
は、電子ビーム、X線又はγ線が挙げられる。高分子化
合物への吸収線量が1〜120kGyになるようにγ線
を照射する。主基である高分子化合物に放射線を照射す
ることにより片末端にラジカルが形成され、グラフト化
材料が重合しやすくなる。下記化学式(1)及び化学式
(2)にPVdFとアクリル酸の放射線法によるグラフ
ト重合を示す。
In this embodiment, graft polymerization will be described. Examples of the method of graft polymerization include a catalyst method, a chain transfer method, a radiation method, a photopolymerization method, and a mechanical cleavage method. For example, in the radiation method, a polymer compound and a compound to be a grafting material can be polymerized together by radiating radiation continuously or intermittently. It is preferable to pre-emit the polymer compound that is the group. Specifically, after irradiating the polymer compound with radiation, the object to be irradiated is mixed with a modifying substance to be a grafting material, so that the polymer compound is a main chain and the modifying substance is a side chain. A molecular compound can be obtained. Radiation used for the graft polymerization includes an electron beam, X-ray or γ-ray. Irradiation with γ-rays is performed so that the absorbed dose to the polymer compound becomes 1 to 120 kGy. By irradiating the high molecular compound which is the main group with a radiation, a radical is formed at one end, and the grafted material is easily polymerized. The following chemical formulas (1) and (2) show the graft polymerization of PVdF and acrylic acid by a radiation method.

【0023】[0023]

【化1】 Embedded image

【0024】[0024]

【化2】 Embedded image

【0025】化学式(1)に示すように、PVdFに放
射線としてγ線を照射することによりPVdFの片末端
にラジカルを形成する。化学式(2)に示すように、こ
の片末端にラジカルを有するPVdFにアクリル酸を接
触させて、PVdFのラジカルにアクリル酸の二重結合
部分がグラフト重合される。
As shown in the chemical formula (1), a radical is formed at one end of PVdF by irradiating PVdF with γ-rays as radiation. As shown in chemical formula (2), acrylic acid is brought into contact with the PVdF having a radical at one end, and the double bond of acrylic acid is graft-polymerized to the radical of PVdF.

【0026】また別の例として化学式(3)及び化学式
(4)にPVdFとメタクリル酸のグラフト重合を示
す。
As another example, chemical formulas (3) and (4) show the graft polymerization of PVdF and methacrylic acid.

【0027】[0027]

【化3】 Embedded image

【0028】[0028]

【化4】 Embedded image

【0029】化学式(3)に示すように、PVdFが放
射線としてγ線を照射することによりPVdFの片末端
にラジカルを形成し、化学式(4)で片末端にラジカル
を有するPVdFにメタクリル酸を接触させて、PVd
Fのラジカルにメタクリル酸の二重結合部分がグラフト
重合される。
As shown in the chemical formula (3), PVdF forms a radical at one end of the PVdF by irradiating γ-rays as radiation, and methacrylic acid is contacted with PVdF having a radical at one end in the chemical formula (4). Let me, PVd
The double bond of methacrylic acid is graft-polymerized to the radical of F.

【0030】グラフト重合は活性化した主基がグラフト
化材料と接触している時間の長さ、放射線による主基の
予備活性の程度、グラフト化材料が主基を透過できるま
での程度、主基及びグラフト化材料が接触しているとき
の温度等によりそれぞれ重合生成が異なる。グラフト化
材料が酸である場合、グラフト化材料である化合物を含
有する溶液をサンプリングして、アルカリにより滴定
し、残留する酸化合物濃度を測定することにより、グラ
フト化の程度を観測することができる。得られた組成物
中のグラフト化の割合は、最終重量の10〜30%が望
ましい。
Graft polymerization includes the length of time that the activated main group is in contact with the grafting material, the degree of preactivation of the main group by radiation, the degree to which the grafted material can penetrate the main group, Polymerization differs depending on the temperature at which the grafted material is in contact with the grafting material. When the grafting material is an acid, the degree of grafting can be observed by sampling a solution containing the compound that is the grafting material, titrating with an alkali, and measuring the concentration of the remaining acid compound. . The proportion of grafting in the obtained composition is desirably 10 to 30% of the final weight.

【0031】このようにして得られたグラフト重合され
た変性高分子化合物を密着層の第3結着剤とし、この第
3結着剤を溶媒に溶解してポリマー溶液を作製し、ポリ
マー溶液中に導電性物質を分散させて第1及び第2密着
層スラリーを調製する。導電性物質には粒径0.5〜3
0μm、黒鉛化度50%以上の炭素材が用いられる。第
3結着剤と導電性物質との重量比(第3結着剤/導電性
物質)が13/87〜50/50になるように混合して
密着層のスラリーを調製する。溶媒にはジメチルアセト
アミド(DiMethylAcetamide、以下、DMAとい
う。)、アセトン、ジメチルフォルムアミド、N-メチ
ルピロリドンが用いられる。
The thus obtained graft polymerized modified polymer compound is used as a third binder for the adhesion layer, and the third binder is dissolved in a solvent to prepare a polymer solution. The first and second adhesive layer slurries are prepared by dispersing a conductive substance in the first and second adhesive layers. Particle size 0.5 to 3 for conductive materials
A carbon material having 0 μm and a degree of graphitization of 50% or more is used. The slurry of the adhesion layer is prepared by mixing the third binder and the conductive substance so that the weight ratio (third binder / conductive substance) becomes 13/87 to 50/50. Dimethylacetamide (hereinafter referred to as DMA), acetone, dimethylformamide, and N-methylpyrrolidone are used as the solvent.

【0032】次いで、シート状の正極及び負極集電体を
それぞれ用意し、この正極及び負極集電体に調製した第
1及び第2密着層スラリーをドクターブレード法により
それぞれ塗工及び乾燥し、乾燥後の密着層厚さが0.5
〜30μmの第1及び第2密着層を有する正極又は負極
集電体を形成する。乾燥後の正極及び負極の密着層厚さ
は1〜15μmが好ましい。シート状の正極集電体とし
てはAl箔が、負極集電体としてはCu箔がそれぞれ挙
げられる。ここでドクターブレード法とは、セラミック
スをシート状に成型する方法の1つであり、キャリアフ
ィルムやエンドレスベルト等のキャリア上に載せて運ば
れるスリップの厚さをドクターブレードと呼ばれるナイ
フエッジとキャリアとの間隔を調整することによってシ
ートの厚さを精密に制御する方法である。
Next, sheet-shaped positive and negative electrode current collectors were prepared, respectively, and the first and second adhesive layer slurries prepared on the positive and negative electrode current collectors were respectively coated and dried by a doctor blade method, and dried. After adhesion layer thickness is 0.5
A positive or negative electrode current collector having first and second adhesion layers of about 30 μm is formed. The thickness of the adhesive layer between the positive electrode and the negative electrode after drying is preferably 1 to 15 μm. The sheet-like positive electrode current collector includes an Al foil, and the negative electrode current collector includes a Cu foil. Here, the doctor blade method is one of the methods of forming ceramics into a sheet, and the thickness of the slip carried on a carrier such as a carrier film or an endless belt is determined by a knife edge called a doctor blade and a carrier. This is a method of precisely controlling the thickness of the sheet by adjusting the distance between the sheets.

【0033】次に、正極活物質層、負極活物質層及び電
解質層に必要な成分をそれぞれ混合して正極活物質層塗
工用スラリー、負極活物質層塗工用スラリー及び電解質
層塗工用スラリーをそれぞれ調製する。得られた正極活
物質層塗工用スラリーを第1密着層を有する正極集電体
上にドクターブレード法により塗布して乾燥し、圧延す
ることにより正極を形成する。また負極も同様にして、
得られた負極活物質層塗工用スラリーを第2密着層を有
する負極集電体上にドクターブレード法により塗布して
乾燥し、圧延することにより負極を形成する。正極又は
負極活物質層は乾燥後の厚さが、20〜250μmとな
るように形成する。電解質層は得られた電解質層塗工用
スラリーを剥離紙上に電解質層の乾燥厚さが10〜15
0μmとなるようにドクターブレード法により塗工及び
乾燥し、剥離紙より剥がして形成する。また、電解質層
塗工用スラリーを正極表面や負極表面に塗工及び乾燥し
て電解質層を形成してもよい。それぞれ形成した正極と
電解質層と負極を順に積層し、積層物を熱圧着すること
により、図1に示すように、シート状の電極体が形成さ
れる。
Next, the components required for the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer are mixed, respectively, to form a slurry for coating the positive electrode active material layer, a slurry for coating the negative electrode active material layer, and a slurry for coating the electrolyte layer. Prepare each slurry. The obtained slurry for coating a positive electrode active material layer is applied to a positive electrode current collector having a first adhesion layer by a doctor blade method, dried, and rolled to form a positive electrode. Similarly, for the negative electrode,
The obtained slurry for coating a negative electrode active material layer is coated on a negative electrode current collector having a second adhesion layer by a doctor blade method, dried, and rolled to form a negative electrode. The positive electrode or negative electrode active material layer is formed so that the thickness after drying is 20 to 250 μm. The electrolyte layer is obtained by drying the obtained electrolyte layer coating slurry on a release paper so that the electrolyte layer has a dry thickness of 10 to 15%.
It is coated and dried by a doctor blade method so as to have a thickness of 0 μm, and is formed by peeling off from release paper. Alternatively, the electrolyte layer coating slurry may be applied to the surface of the positive electrode or the surface of the negative electrode and dried to form an electrolyte layer. The formed positive electrode, electrolyte layer, and negative electrode are sequentially laminated, and the laminate is thermocompression-bonded to form a sheet-like electrode body as shown in FIG.

【0034】最後に、この電極体にNiからなる正極リ
ード及び負極リードをそれぞれ正極集電体及び負極集電
体に溶接し、開口部を有する袋状に加工したラミネート
パッケージ材に収納し、減圧条件下で熱圧着により開口
部を封止して、シート状のリチウムイオンポリマー二次
電池が作製できる。
Finally, a positive electrode lead and a negative electrode lead made of Ni were welded to the positive electrode current collector and the negative electrode current collector, respectively, and housed in a bag-shaped laminated package material having an opening. The opening is sealed by thermocompression bonding under the conditions, whereby a sheet-shaped lithium ion polymer secondary battery can be manufactured.

【0035】[0035]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>先ず、第1及び第2結着剤としてPVdF
粉末50gを、変性物質として15重量%アクリル酸水
溶液260gをそれぞれ用意した。次いで、PVdF粉
末をポリエチレン製パックに入れて真空パックし、PV
dFへの吸収線量が50kGyとなるようにコバルト6
0をγ線源としてγ線を照射した。次に、γ線照射した
PVdF粉末をポリエチレン製パックより取出して窒素
雰囲気に移し、15重量%アクリル酸水溶液260g中
にPVdFを供給して80℃に保持し、アクリル酸水溶
液と反応させて上記化学式(2)に示すグラフト重合に
より生成したアクリル酸グラフト化PVdF(Acrylic
Acid grafting PolyVinylidene Fluoride、以下、AA-
g-PVdFという。)を合成した。反応溶液のサンプ
ルを採取し、PVdFにグラフト重合反応したアクリル
酸の減少量を滴定により逐次測定し、AA-g-PVdF
中のグラフト化されたアクリル酸基の含有割合が17重
量%になったら、反応を止めて得られた固体状生成物を
純水で洗浄して乾燥させ、これを第3結着剤とした。
Next, examples of the present invention will be described together with comparative examples. <Example 1> First, PVdF was used as the first and second binders.
50 g of powder and 260 g of a 15% by weight aqueous solution of acrylic acid were prepared as modifying substances. Next, the PVdF powder was put in a polyethylene pack and vacuum-packed,
Cobalt 6 so that the absorbed dose to dF is 50 kGy
Γ-rays were irradiated using 0 as a γ-ray source. Next, the gamma-irradiated PVdF powder is taken out of the polyethylene pack, transferred to a nitrogen atmosphere, supplied with PVdF in 260 g of a 15% by weight aqueous solution of acrylic acid, kept at 80 ° C., reacted with the aqueous solution of acrylic acid, and reacted with the above-mentioned chemical formula. Acrylic acid-grafted PVdF (Acrylic) produced by the graft polymerization shown in (2)
Acid grafting PolyVinylidene Fluoride, AA-
It is called g-PVdF. ) Was synthesized. A sample of the reaction solution was collected, and the amount of acrylic acid that had undergone graft polymerization reaction with PVdF was measured successively by titration, and AA-g-PVdF was measured.
When the content ratio of the grafted acrylic acid group in the inside became 17% by weight, the reaction was stopped, and the obtained solid product was washed with pure water and dried to obtain a third binder. .

【0036】<実施例2>変性物質を15重量%メタク
リル酸水溶液260gにした以外は実施例1と同様にし
て第3結着剤を得た。 <実施例3>変性物質を15重量%アクリル酸メチル水
溶液260gにした以外は実施例1と同様にして第3結
着剤を得た。 <実施例4>変性物質を15重量%メタクリル酸メチル
水溶液260gにした以外は実施例1と同様にして第3
結着剤を得た。
Example 2 A third binder was obtained in the same manner as in Example 1, except that the modifying substance was 260 g of a 15% by weight aqueous solution of methacrylic acid. <Example 3> A third binder was obtained in the same manner as in Example 1, except that the modifying substance was 260 g of a 15% by weight aqueous solution of methyl acrylate. <Example 4> A third material was prepared in the same manner as in Example 1 except that the modified substance was 260 g of a 15% by weight aqueous solution of methyl methacrylate.
A binder was obtained.

【0037】<比較例1>第3結着剤として市販されて
いるアクリル酸エステル-メタクリル酸エステル共重合
体を用意した。 <比較例2>第3結着剤として市販されているPVdF
のホモポリマーを用意した。 <比較例3>第3結着剤として市販されているPVdF
のコポリマーを用意した。 <比較例4>変性物質を1重量%クロトン酸を含む水溶
液2600gにした以外は実施例1と同様にして第3結
着剤を得た。
Comparative Example 1 A commercially available acrylate-methacrylate copolymer was prepared as a third binder. <Comparative Example 2> PVdF commercially available as the third binder
Was prepared. <Comparative Example 3> PVdF commercially available as a third binder
Was prepared. <Comparative Example 4> A third binder was obtained in the same manner as in Example 1 except that the modifying substance was changed to 2600 g of an aqueous solution containing 1% by weight of crotonic acid.

【0038】<比較評価1>実施例1〜4及び比較例1
〜4で得られた第3結着剤を用いて以下の評価試験を行
った。 ジメチルアセトアミドに対する溶解性試験 実施例1〜4及び比較例1〜4で得られた第3結着剤を
それぞれ4gづつ採取し、このサンプルにDMA56g
を添加して60℃まで加熱しながら撹拌し、ポリマー溶
液とした。この溶液をガラスビンに保存し、一日放置し
た後の溶液中の沈殿状況を確認した。
<Comparative Evaluation 1> Examples 1-4 and Comparative Example 1
The following evaluation tests were performed using the third binder obtained in Nos. 4 to 4. Solubility test for dimethylacetamide 4 g of the third binder obtained in each of Examples 1 to 4 and Comparative Examples 1 to 4 was collected, and 56 g of DMA was added to this sample.
Was added and stirred while heating to 60 ° C. to obtain a polymer solution. This solution was stored in a glass bottle, and the state of precipitation in the solution after standing for one day was confirmed.

【0039】 銅箔及びアルミ箔に対する接着性試験 先ず、実施例1〜4及び比較例1〜4で得られた第3結
着剤を用いて前述した評価試験のポリマー溶液と同様
のポリマー溶液をそれぞれ調製した。次いで、これらの
溶液をそれぞれ幅30mm、長さ200mm、厚さ14
μmの表面を脱脂したCu箔に均一に塗布し、その上
に、幅10mm、長さ100mm、厚さ20μmの表面
を脱脂したAl箔を貼り付けて接着性試験用ピール試料
を作製した。作製した試料を乾燥機により大気中で80
℃、5日間の乾燥を行った。次に、乾燥した試料を剥離
試験器によりCu箔及びAl箔に対する結着剤の評価を
行った。剥離試験方法は、測定する際に試料のCu箔側
を試験台に固定し、Cu箔に接着しているAl箔を垂直
上方に100mm/分の速度で引っ張り上げて、Al箔
がCu箔から引き剥がすのにかかる力を測定した。
Adhesion Test for Copper Foil and Aluminum Foil First, using the third binder obtained in Examples 1 to 4 and Comparative Examples 1 to 4, a polymer solution similar to the polymer solution in the evaluation test described above was prepared. Each was prepared. Then, these solutions were each 30 mm wide, 200 mm long and 14 mm thick.
A μm surface was uniformly coated on a degreased Cu foil, and an Al foil having a width of 10 mm, a length of 100 mm, and a thickness of 20 μm was degreased on the surface to form a peel sample for an adhesion test. The prepared sample was dried at 80
Drying was performed at 5 ° C. for 5 days. Next, the dried sample was evaluated for a binder for Cu foil and Al foil using a peel tester. In the peeling test method, the Cu foil side of the sample was fixed to a test table when measuring, and the Al foil bonded to the Cu foil was pulled vertically upward at a rate of 100 mm / min, so that the Al foil was removed from the Cu foil. The force applied to peel was measured.

【0040】 電池の密着層に用いられる場合の電池
のサイクル容量維持特性試験 先ず、実施例1〜4及び比較例1〜4で得られた第3結
着剤をそれぞれ2gづつ採取し、このサンプルにDMA
200gを添加して60℃まで加熱しながら撹拌し、ポ
リマー溶液とした。この溶液に比表面積150m2/g
の黒鉛粉末8g及びこの黒鉛粉末を分散させるための分
散剤1.2gをそれぞれ添加し、密着層スラリーを調製
した。次いで、正極集電体として厚さ20μm、幅25
0μmのAl箔を用意し、このAl箔に調製した密着層
スラリーをドクターブレード法により塗工及び乾燥し、
乾燥後の密着層厚さを10±1μmの範囲内に制御し
た。また負極集電体として厚さ14μm、幅250μm
のCu箔を用意し、このCu箔表面に調製した密着層ス
ラリーをドクターブレード法により塗工及び乾燥し、乾
燥後の密着層厚さを10±1μmの範囲内に制御した。
次に、下記表1に示される各成分をボールミルで2時間
混合することにより、正極活物質層塗工用スラリー、負
極活物質層塗工用スラリー及び電解質層塗工用スラリー
をそれぞれ調製した。
Test of Cycle Capacity Maintenance Characteristics of Battery When Used for Adhesion Layer of Battery First, 2 g of each of the third binders obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was collected, and this sample was prepared. DMA
200 g was added and stirred while heating to 60 ° C. to obtain a polymer solution. The solution has a specific surface area of 150 m 2 / g.
Of the graphite powder and 1.2 g of a dispersant for dispersing the graphite powder were prepared to prepare an adhesive layer slurry. Next, as a positive electrode current collector, a thickness of 20 μm and a width of 25
Prepare a 0 μm Al foil, apply and dry the adhesive layer slurry prepared on this Al foil by a doctor blade method,
The thickness of the adhesive layer after drying was controlled within the range of 10 ± 1 μm. The thickness of the negative electrode current collector is 14 μm and the width is 250 μm.
Was prepared, and the slurry for the adhesive layer prepared on the surface of the Cu foil was applied and dried by a doctor blade method, and the thickness of the adhesive layer after drying was controlled within the range of 10 ± 1 μm.
Next, the respective components shown in Table 1 below were mixed for 2 hours by a ball mill to prepare a slurry for coating a positive electrode active material layer, a slurry for coating a negative electrode active material layer, and a slurry for coating an electrolyte layer, respectively.

【0041】[0041]

【表1】 [Table 1]

【0042】得られた正極活物質塗工用スラリーを密着
層を有するAl箔表面に正極活物質層の乾燥厚さが80
μmとなるようにドクターブレード法により塗工及び乾
燥し、圧延することにより正極を形成した。同様に、負
極活物質塗工用スラリーを密着層を有するCu箔表面に
負極活物質層の乾燥厚さが80μmとなるようにドクタ
ーブレード法により塗工及び乾燥し、圧延することによ
り負極を形成した。更に電解質層塗工用スラリーを乾燥
厚さが50μmとなるように正極及び負極にそれぞれド
クターブレード法により塗工し、これらの電解質層を有
する正極及び負極を積層して熱圧着することにより、シ
ート状の電極体を作製した。作製した電極体にNiから
なる正極リード及び負極リードをそれぞれ正極集電体、
負極集電体に溶接し、開口部を有する袋状に加工したラ
ミネートパッケージ材に収納し、減圧条件下で開口部を
熱圧着して封止し、シート状電池を作製した。次に、得
られたシート状電池を最大充電電圧4V、充電電流0.
5Aの条件で2.5時間の充電を行う充電工程と、0.
5Aの定電流放電で放電電圧が最低放電電圧となる2.
75Vとなるまで放電を行う放電工程とを1サイクルと
して充放電サイクルを繰り返し、各サイクルの充放電容
量をそれぞれ測定して初期放電容量の80%迄低下する
サイクル数を測定した。
The obtained slurry for coating the positive electrode active material was coated on the surface of the Al foil having the adhesion layer with a dry thickness of 80 μm for the positive electrode active material layer.
The coating was dried by a doctor blade method so as to have a thickness of μm, dried, and then rolled to form a positive electrode. Similarly, the negative electrode active material coating slurry is coated and dried by a doctor blade method so that the dry thickness of the negative electrode active material layer becomes 80 μm on the surface of the Cu foil having the adhesion layer, and then rolled to form a negative electrode. did. Further, the slurry for coating the electrolyte layer is applied to each of the positive electrode and the negative electrode by a doctor blade method so that the dry thickness becomes 50 μm, and the positive electrode and the negative electrode having these electrolyte layers are laminated and thermocompression-bonded to form a sheet. An electrode body having a shape of was prepared. A positive electrode lead and a negative electrode lead made of Ni are respectively formed on the prepared electrode body as a positive electrode current collector,
It was welded to the negative electrode current collector, housed in a laminated package material processed into a bag shape having an opening, and sealed by thermocompression bonding of the opening under reduced pressure conditions to produce a sheet-shaped battery. Next, the obtained sheet-shaped battery was charged with a maximum charging voltage of 4 V and a charging current of 0.
A charging step of performing charging for 2.5 hours under the condition of 5A;
1. The discharge voltage becomes the minimum discharge voltage at a constant current discharge of 5A.
The charge / discharge cycle was repeated with the discharge step of discharging until reaching 75 V as one cycle, and the charge / discharge capacity of each cycle was measured to determine the number of cycles that decreased to 80% of the initial discharge capacity.

【0043】 電池の密着層に用いられる場合の密着
層の集電体に対する密着性試験 先ず、実施例1〜4及び比較例1〜4で得られた第3結
着剤を用いて前述した評価試験のシート状電池と同様
のシート状電池をそれぞれ作製した。次いで、この電池
を70℃環境下で、上記評価試験と同様の条件での充
放電サイクルを100サイクル行った。その後、100
サイクルの充放電を終えたシート状電池の収納パッケー
ジを除去し、電池の正極と負極を引き剥がしてそれぞれ
を分離し、分離した正極の密着層及び負極の密着層をピ
ンセットでつまんで引っ張ったときに、密着層が集電体
から剥離するか否かを確認した。
Test of Adhesion of Adhesion Layer to Current Collector When Used as Adhesion Layer of Battery First, the above-described evaluation was performed using the third binder obtained in Examples 1 to 4 and Comparative Examples 1 to 4. Sheet-shaped batteries similar to the sheet-shaped batteries of the test were produced. Next, the battery was subjected to 100 charge / discharge cycles under the same conditions as in the above-described evaluation test in a 70 ° C. environment. Then 100
When the storage package of the sheet-shaped battery after the charge and discharge of the cycle is removed, the positive electrode and the negative electrode of the battery are peeled off and separated from each other, and the separated positive electrode adhesion layer and negative electrode adhesion layer are pinched and pulled with tweezers Next, it was confirmed whether or not the adhesion layer was separated from the current collector.

【0044】上記評価試験〜における評価結果を表
2にそれぞれ示す。なお、表2中の評価試験欄におけ
る記号は、次の意味である。 ◎:均一な無沈殿溶液。
Table 2 shows the evaluation results in the above evaluation tests. The symbols in the evaluation test column in Table 2 have the following meanings. A: Uniform precipitation-free solution.

【0045】また、表2中の評価試験欄における記号
は、次の意味である。 ◎:密着層が集電体への密着が極めて良好であり、剥離
しない。 ○:密着層が集電体から部分的に剥離する。 △:密着層が集電体から広い面積にわたって剥離する。 ×:密着層が集電体から完全に剥離する。
The symbols in the evaluation test column in Table 2 have the following meanings. A: The adhesion layer has extremely good adhesion to the current collector, and does not peel off. :: The adhesion layer is partially peeled off from the current collector. Δ: The adhesion layer is separated from the current collector over a wide area. X: The adhesion layer is completely peeled off from the current collector.

【0046】[0046]

【表2】 [Table 2]

【0047】表2から明らかなように、評価試験のD
MAに対する溶解特性は実施例1〜4及び比較例1〜4
で得られた第3結着剤はそれぞれDMAに完全に溶解す
ることができ、更にこの溶液を一日放置しても沈殿は発
生せず、塗工用スラリーとして適していることが判っ
た。評価試験のCu箔及びAl箔に対する接着性試験
では、比較例2〜4で得られた第3結着剤を用いた試験
では、2N/cm以下となり、密着層材料として接着効
果が不十分であることが判る。これに対して、実施例1
〜4で得られた第3結着剤を用いてCu箔に接着したA
l箔は、Cu箔からの剥離強度が全て10N/cm以上
となり、電池の活物質と集電体を接着するのに十分な強
度を示した。
As is apparent from Table 2, the evaluation test D
Examples 1 to 4 and Comparative Examples 1 to 4 dissolve characteristics in MA.
Each of the third binders obtained in the above can be completely dissolved in DMA, and furthermore, even if this solution is allowed to stand for one day, no precipitation occurs, indicating that it is suitable as a slurry for coating. In the adhesion test for the Cu foil and the Al foil in the evaluation test, the test using the third binder obtained in Comparative Examples 2 to 4 resulted in 2 N / cm or less, and the adhesion effect was insufficient as the adhesion layer material. It turns out there is. In contrast, Example 1
A bonded to a Cu foil using the third binder obtained in
All of the 1 foils had a peel strength from the Cu foil of 10 N / cm or more, and exhibited sufficient strength to bond the active material of the battery and the current collector.

【0048】評価試験のサイクル容量維持特性試験で
は、比較例1〜4の第3結着剤を用いた電池の80%容
量サイクル数に比べて実施例1〜4の第3結着剤を用い
た電池の80%容量サイクル数はそれぞれ高いサイクル
数を示している。これは、実施例1〜4の第3結着剤が
接着特性が優れており、電解液への耐久性が高いため、
サイクル容量維持特性が向上されたと考えられる。評価
試験の密着層の集電体に対する密着性試験では、実施
例1〜4の第3結着剤を用いた密着層は、比較例1〜4
の第3結着剤を用いた密着層に比べて集電体から剥離し
にくく、集電体との接着が優れていることを示した。フ
ッ素を含まない共重合体を第3結着剤とした比較例1は
Cu箔及びAl箔に対する密着特性が高いものの、耐電
解液特性が不十分であり、充放電サイクルを繰り返した
後では密着層が電池の集電体から剥離する現象が発生し
た。
In the cycle capacity retention characteristic test of the evaluation test, the third binder of Examples 1 to 4 was used in comparison with the 80% capacity cycle number of the battery using the third binder of Comparative Examples 1 to 4. The 80% capacity cycle numbers of the batteries that were used indicate high cycle numbers. This is because the third binders of Examples 1 to 4 have excellent adhesive properties and high durability to the electrolytic solution.
It is considered that the cycle capacity maintenance characteristics were improved. In the adhesion test of the adhesion layer to the current collector in the evaluation test, the adhesion layers using the third binder of Examples 1 to 4 were compared with Comparative Examples 1 to 4.
It was harder to peel off from the current collector than the adhesion layer using the third binder, indicating that the adhesion to the current collector was excellent. Comparative Example 1, in which a copolymer containing no fluorine was used as the third binder, had high adhesion properties to Cu foils and Al foils, but had insufficient electrolyte resistance properties, and showed adhesion after repeated charge / discharge cycles. A phenomenon occurred in which the layer was separated from the current collector of the battery.

【0049】以上の評価試験より、変性物質、特にアク
リル酸、アクリル酸メチル、メタクリル酸、メタクリル
酸メチルがPVdFにグラフト化した変性高分子化合物
が第1及び第2密着層の第3結着剤に適していることが
判った。
From the above evaluation tests, the modified substances, in particular, acrylic acid, methyl acrylate, methacrylic acid, and the modified polymer compound obtained by grafting methyl methacrylate onto PVdF were used as the third binder in the first and second adhesion layers. It turned out to be suitable for.

【0050】<実施例5〜11及び比較例5,6>先
ず、第1及び第2結着剤としてPVdF粉末50gを、
変性物質として15重量%アクリル酸水溶液260gを
それぞれ用意した。次いで、PVdF粉末をポリエチレ
ン製パックに入れて真空パックし、PVdFへの吸収線
量が50kGyとなるようにコバルト60をγ線源とし
てγ線を照射した。次に、γ線照射したPVdF粉末を
ポリエチレン製パックより取出して窒素雰囲気に移し、
15重量%アクリル酸水溶液260g中にPVdFを供
給して80℃に保持し、アクリル酸水溶液と反応させて
AA-g-PVdFを合成した。反応溶液のサンプルを採
取し、PVdFにグラフト重合反応したアクリル酸の減
少量を滴定により逐次測定し、AA-g-PVdF中のグ
ラフト化されたアクリル酸基の含有割合が2重量%(実
施例5)、7重量%(実施例6)、10重量%(実施例
7)、13重量%(実施例8)、17重量%(実施例
9)、25重量%(実施例10)、40重量%(実施例
11)、1重量%(比較例5)及び55重量%(比較例
6)になったら、反応を止めて得られた固体状生成物を
純水で洗浄して乾燥させ、これらをそれぞれ実施例5〜
11及び比較例5,6の第3結着剤とした。
<Examples 5 to 11 and Comparative Examples 5 and 6> First, 50 g of PVdF powder was used as the first and second binders.
260 g of a 15% by weight aqueous solution of acrylic acid was prepared as a modifying substance. Next, the PVdF powder was put in a polyethylene pack, vacuum-packed, and irradiated with γ-rays using cobalt 60 as a γ-ray source so that the absorbed dose to PVdF became 50 kGy. Next, the PVdF powder irradiated with γ-rays is taken out from the polyethylene pack and transferred to a nitrogen atmosphere.
AA-g-PVdF was synthesized by supplying PVdF to 260 g of a 15% by weight aqueous solution of acrylic acid and maintaining the temperature at 80 ° C. to react with the aqueous solution of acrylic acid. A sample of the reaction solution was collected, and the amount of acrylic acid that had undergone graft polymerization reaction with PVdF was measured successively by titration. The content of the grafted acrylic acid group in AA-g-PVdF was 2% by weight (Example 1). 5), 7% by weight (Example 6), 10% by weight (Example 7), 13% by weight (Example 8), 17% by weight (Example 9), 25% by weight (Example 10), 40% by weight % (Example 11), 1% by weight (Comparative Example 5) and 55% by weight (Comparative Example 6), the reaction was stopped, and the resulting solid product was washed with pure water and dried. Example 5
11 and the third binders of Comparative Examples 5 and 6.

【0051】<比較評価2>実施例5〜11及び比較例
5,6で得られた第3結着剤を用いて比較評価1の評価
試験〜評価試験と同様の試験をそれぞれ行い、9種
類のAA-g-PVdFにおけるアクリル酸基の含有割合
による接着特性や電池の電気特性の影響について調査し
た。評価試験及び評価試験の結果を表3に、評価試
験の結果を図2に、評価試験の結果を図3にそれぞ
れ示す。なお、表3中の評価試験欄における記号は、
次の意味である。 ◎:均一な無沈殿溶液。 ○:DMAへ溶解するが、溶液に沈殿が少量発生する。 ×:DMAへ溶解できない。
<Comparative Evaluation 2> Using the third binders obtained in Examples 5 to 11 and Comparative Examples 5 and 6, the same tests as Evaluation Test 1 to Evaluation Test 1 in Comparative Evaluation 1 were performed. Of AA-g-PVdF, the influence of the content of acrylic acid groups on the adhesive properties and the electrical properties of the battery was investigated. Table 3 shows the results of the evaluation test and the evaluation test, FIG. 2 shows the results of the evaluation test, and FIG. 3 shows the results of the evaluation test. The symbols in the evaluation test column in Table 3 are as follows:
It has the following meaning. A: Uniform precipitation-free solution. :: Dissolved in DMA, but a small amount of precipitate was generated in the solution. ×: Insoluble in DMA.

【0052】また、表3中の評価試験欄における記号
は、次の意味である。 ◎:密着層が集電体への密着が極めて良好であり、剥離
しない。 ○:密着層が集電体から部分的に剥離する。 ×:密着層が集電体から完全に剥離する。
The symbols in the evaluation test column in Table 3 have the following meanings. A: The adhesion layer has extremely good adhesion to the current collector, and does not peel off. :: The adhesion layer is partially peeled off from the current collector. X: The adhesion layer is completely peeled off from the current collector.

【0053】[0053]

【表3】 [Table 3]

【0054】表3より明らかなように、評価試験のD
MAに対する溶解特性では、アクリル酸基の含有割合が
25重量%以下である実施例5〜9の第3結着剤は、D
MAに完全に溶解し、放置しても沈殿が発生しなかっ
た。アクリル酸基の含有割合が25重量%の実施例10
の第3結着剤は、DMAへの溶解が困難になり、溶解し
た溶液を一日放置すると少量の沈殿が現れた。この少量
の沈殿は溶液を更にホモジナイザで長時間撹拌すること
により再び溶解する程度であり、銅箔やアルミ箔に接着
するには問題ないレベルである。これに対してアクリル
酸基の含有割合が55重量%の比較例6ではDMAに殆
ど溶解できず、銅箔やアルミ箔に接着するのには適して
いないことが判る。なお、アクリル酸基の含有割合が1
重量%の比較例5はDMAに問題なく溶解した。評価試
験のCu箔及びAl箔に対する接着性試験では、図2
に示すように、AA-g-PVdFで接着したCu箔及び
Al箔の接着強度は、AA-g-PVdF中に含まれるア
クリル酸基の含有割合と相関する。比較例6の結果では
含有割合が55重量%以上になると、接着効果が下がる
ことが判る。これは評価試験の結果からも明らかなよ
うに、AA-g-PVdFがDMAへの溶解が不十分であ
ったためと考えられる。また、アクリル酸基の含有割合
が1重量%の比較例5でも、接着強度が減少した。実施
例5〜11の結果から十分な接着特性を得るためには、
AA-g-PVdF中のアクリル酸基の含有割合は2〜5
0重量%が必要であり、10〜30重量%が好ましいこ
とが判る。
As is clear from Table 3, the evaluation test D
In the dissolution property to MA, the third binders of Examples 5 to 9 in which the content ratio of the acrylate group is 25% by weight or less
It was completely dissolved in MA, and no precipitation occurred even when left to stand. Example 10 in which the content of acrylic acid groups was 25% by weight
It became difficult to dissolve the third binder in DMA, and a small amount of precipitate appeared when the dissolved solution was allowed to stand for one day. This small amount of precipitation is such that the solution is redissolved by stirring the solution for a long time with a homogenizer for a long time, which is a level that does not cause any problem in bonding to copper foil or aluminum foil. In contrast, Comparative Example 6, in which the content of acrylic acid groups was 55% by weight, was hardly soluble in DMA, indicating that it was not suitable for bonding to copper foil or aluminum foil. In addition, the content ratio of the acrylic acid group is 1
% By weight of Comparative Example 5 dissolved in DMA without problems. FIG. 2 shows the adhesion test for the Cu foil and the Al foil in the evaluation test.
As shown in the above, the adhesive strength of the Cu foil and the Al foil bonded with AA-g-PVdF correlates with the content ratio of the acrylic acid group contained in AA-g-PVdF. The results of Comparative Example 6 show that when the content ratio is 55% by weight or more, the adhesive effect is reduced. This is probably because AA-g-PVdF was insufficiently dissolved in DMA, as is clear from the results of the evaluation test. Also in Comparative Example 5 in which the content ratio of the acrylic acid group was 1% by weight, the adhesive strength was reduced. In order to obtain sufficient adhesive properties from the results of Examples 5 to 11,
The content ratio of acrylic acid group in AA-g-PVdF is 2 to 5
It is understood that 0% by weight is necessary, and 10 to 30% by weight is preferable.

【0055】評価試験のサイクル容量維持特性試験で
は、図3に示したように、評価試験の接着強度の試験
結果と同様な傾向を示していた。評価試験の密着層の
集電体に対する密着性試験では、表3より明らかなよう
に、充放電サイクルを行った後の電池密着層を解析した
結果、密着層の密着特性が評価試験及び評価試験と
同様に、AA-g-PVdF中のアクリル酸基の含有割合
が2〜50重量%であるとき、電池の結着剤として適し
ており、10〜30重量%が好ましいことが判る。
In the cycle capacity retention characteristic test of the evaluation test, as shown in FIG. 3, the same tendency as the test result of the adhesive strength of the evaluation test was shown. In the adhesion test of the adhesion layer to the current collector in the evaluation test, as is clear from Table 3, as a result of analyzing the battery adhesion layer after the charge / discharge cycle, the adhesion characteristics of the adhesion layer were evaluated and evaluated. Similarly to the above, when the content ratio of the acrylate group in AA-g-PVdF is 2 to 50% by weight, it is suitable as a binder for a battery, and it is understood that 10 to 30% by weight is preferable.

【0056】<実施例12〜16及び比較例7,8>先
ず、第1及び第2結着剤としてPVdF粉末50gを、
変性物質として15重量%アクリル酸水溶液260gを
それぞれ用意した。次いで、PVdF粉末をポリエチレ
ン製パックに入れて真空パックし、PVdFへの吸収線
量がそれぞれ90kGy(実施例12)、70kGy
(実施例13)、50kGy(実施例14)、20kG
y(実施例15)、10kGy(実施例16)、130
kGy(比較例7)及び0.5kGy(比較例8)とな
るようにコバルト60をγ線源としてγ線を照射した。
次に、γ線照射したPVdF粉末をポリエチレン製パッ
クより取出して窒素雰囲気に移し、15重量%アクリル
酸水溶液260g中にPVdFを供給して80℃に保持
し、アクリル酸水溶液と反応させてAA-g-PVdFを
合成した。反応溶液のサンプルを採取し、PVdFにグ
ラフト重合反応したアクリル酸の減少量を滴定により逐
次測定し、AA-g-PVdF中のアクリル酸基の含有割
合が17重量%になったら、反応を止めて得られた固体
状生成物を純水で洗浄して乾燥させ、これらをそれぞれ
実施例12〜16及び比較例7,8の第3結着剤とし
た。
<Examples 12 to 16 and Comparative Examples 7 and 8> First, 50 g of PVdF powder was used as the first and second binders.
260 g of a 15% by weight aqueous solution of acrylic acid was prepared as a modifying substance. Next, the PVdF powder was placed in a polyethylene pack and vacuum-packed, and the absorbed dose to PVdF was 90 kGy (Example 12) and 70 kGy, respectively.
(Example 13), 50 kGy (Example 14), 20 kG
y (Example 15), 10 kGy (Example 16), 130
Irradiation with γ-rays was performed using cobalt 60 as a γ-ray source so as to obtain kGy (Comparative Example 7) and 0.5 kGy (Comparative Example 8).
Next, the gamma-irradiated PVdF powder is taken out from the polyethylene pack, transferred to a nitrogen atmosphere, supplied with PVdF in 260 g of a 15% by weight aqueous solution of acrylic acid, kept at 80 ° C., reacted with the aqueous solution of acrylic acid, and reacted with AA- g-PVdF was synthesized. A sample of the reaction solution was collected, and the amount of acrylic acid that had been graft-polymerized to PVdF was measured sequentially by titration. When the content of acrylic acid groups in AA-g-PVdF reached 17% by weight, the reaction was stopped. The solid products thus obtained were washed with pure water and dried, and these were used as third binders of Examples 12 to 16 and Comparative Examples 7 and 8, respectively.

【0057】<比較評価3>実施例12〜16及び比較
例7,8で得られた第3結着剤を用いて比較評価1の評
価試験〜評価試験と同様の試験をそれぞれ行った。
評価試験及び評価試験の結果を表4に、評価試験
の結果を図4に、評価試験の結果を図5にそれぞれ示
す。なお、表4中の評価試験及び評価試験欄におけ
る記号は、比較評価2で用いた記号と同様の意味を有す
る記号である。
<Comparative Evaluation 3> Using the third binders obtained in Examples 12 to 16 and Comparative Examples 7 and 8, the same tests as Evaluation Test 1 to Comparative Test 1 were performed.
Table 4 shows the results of the evaluation test and the evaluation test, FIG. 4 shows the results of the evaluation test, and FIG. 5 shows the results of the evaluation test. The symbols in the evaluation test and the evaluation test column in Table 4 have the same meanings as the symbols used in Comparative Evaluation 2.

【0058】[0058]

【表4】 [Table 4]

【0059】表4より明らかなように、評価試験のD
MAに対する溶解特性では、吸収線量が70kGy未満
の実施例13〜16では合成したAA-g-PVdFは室
温でもDMAに溶解することができた。吸収線量が90
kGyの実施例12では、合成したAA-g-PVdFは
高温(85℃)状態に維持したDMAに溶解した。これ
に対して、吸収線量が130kGyの比較例7では、撹
拌を加えてもDMAへの溶解はほぼ不可能となることが
判った。評価試験のCu箔及びAl箔に対する接着性
試験では、図4に示すように、AA-g-PVdFで接着
したCu箔及びAl箔の接着強度は、AA-g-PVdF
中に含まれるアクリル酸基の含有割合と相関する。比較
例7及び8の結果では吸収線量が1kGy以下、120
kGy以上になると、AA-g-PVdFの接着強度が低
く、結着剤として適さないことが判る。この理由とし
て、吸収線量が1kGy以下の場合、グラフトされるア
クリル酸基が少なく、120kGy以上の場合は、AA
-g-PVdFの溶解状況が悪いことが原因であると考え
られる。
As is clear from Table 4, D in the evaluation test was
With respect to the solubility characteristics for MA, in Examples 13 to 16 in which the absorbed dose was less than 70 kGy, the synthesized AA-g-PVdF could be dissolved in DMA even at room temperature. Absorbed dose is 90
In Example 12 of kGy, the synthesized AA-g-PVdF was dissolved in DMA maintained at a high temperature (85 ° C.). In contrast, in Comparative Example 7 in which the absorbed dose was 130 kGy, it was found that dissolution in DMA was almost impossible even with stirring. In the adhesion test for the Cu foil and the Al foil in the evaluation test, as shown in FIG. 4, the adhesive strength of the Cu foil and the Al foil bonded with AA-g-PVdF was AA-g-PVdF.
It correlates with the content of acrylic acid groups contained therein. In the results of Comparative Examples 7 and 8, the absorbed dose was 1 kGy or less,
When it is more than kGy, it can be seen that the adhesive strength of AA-g-PVdF is low and is not suitable as a binder. The reason for this is that when the absorbed dose is 1 kGy or less, the number of acrylic acid groups to be grafted is small.
This is probably due to the poor dissolution of -g-PVdF.

【0060】評価試験のサイクル容量維持特性試験で
は、図5に示したように、評価試験の接着強度の試験
結果と同様な傾向を示していた。この結果から、400
サイクル以上で80%容量を維持できる電池を作製する
ために、吸収線量が1kGy〜120kGyの範囲内で
あることが好ましいことが判った。評価試験の密着層
の集電体に対する密着性試験では、表4より明らかなよ
うに、充放電サイクルを行った後の電池密着層を解析し
た結果、吸収線量が1kGy〜120kGyのPVdF
を用いて合成したAA-g-PVdFは電池の密着層結着
剤として適していることが判る。安定した密着特性を得
るために、γ線吸収線量が20〜100kGyのPVd
Fを原料として用いることが好ましい。
In the cycle capacity maintenance characteristic test of the evaluation test, as shown in FIG. 5, the same tendency as the test result of the adhesive strength of the evaluation test was shown. From this result, 400
It has been found that the absorption dose is preferably in the range of 1 kGy to 120 kGy in order to produce a battery capable of maintaining 80% capacity over cycles. In the adhesion test of the adhesion layer to the current collector in the evaluation test, as is clear from Table 4, as a result of analyzing the adhesion layer of the battery after performing the charge / discharge cycle, the absorbed dose was 1 kGy to 120 kGy.
It can be seen that AA-g-PVdF synthesized using the above is suitable as a binder for an adhesion layer of a battery. In order to obtain stable adhesion characteristics, PVd having a γ-ray absorbed dose of 20 to 100 kGy
It is preferable to use F as a raw material.

【0061】<実施例17>先ず、第3結着剤として1
7重量%のアクリル酸をPVdFにグラフト重合したA
A-g-PVdFを2g用意した。このAA-g-PVdF
2gに溶媒としてDMA98gを添加し、ホモジナイザ
により溶解してポリマー溶液とした。導電性物質として
比表面積150m2/gの黒鉛粉末8gを用意し、この
黒鉛粉末をDMA80gに分散させて分散液を調製し
た。この分散液を上記ポリマー溶液に加えて密着層スラ
リーを調製した。正極集電体として厚さ20μm、幅2
50mmのAl箔を用意し、このAl箔に調製した密着
層スラリーをドクターブレード法により塗工及び乾燥
し、乾燥後の密着層厚さが5μmの密着層を有するAl
箔を得た。一方、負極集電体として厚さ10μm、幅2
50mmのCu箔を用意し、このCu箔にドクターブレ
ード法により塗工及び乾燥し、乾燥後の密着層厚さが5
μmの密着層を有するCu箔を得た。次に、上記表1に
示される各成分をボールミルで2時間混合することによ
りそれぞれ正極活物質層塗工用スラリー、負極活物質層
塗工用スラリー及び電解質層塗工用スラリーを調製し
た。
Example 17 First, 1st was used as the third binder.
A obtained by graft-polymerizing 7% by weight of acrylic acid to PVdF
2 g of Ag-PVdF was prepared. This AA-g-PVdF
To 2 g, 98 g of DMA was added as a solvent, and dissolved with a homogenizer to obtain a polymer solution. 8 g of graphite powder having a specific surface area of 150 m 2 / g was prepared as a conductive substance, and this graphite powder was dispersed in 80 g of DMA to prepare a dispersion. This dispersion was added to the above polymer solution to prepare an adhesive layer slurry. 20 μm thick and 2 width as positive electrode current collector
A 50 mm Al foil is prepared, and the adhesive layer slurry prepared on the Al foil is applied and dried by a doctor blade method, and the Al layer having an adhesive layer thickness of 5 μm after drying has an adhesive layer.
A foil was obtained. On the other hand, the negative electrode current collector has a thickness of 10 μm and a width of 2 μm.
A Cu foil of 50 mm is prepared, and the Cu foil is coated and dried by a doctor blade method.
A Cu foil having a μm adhesion layer was obtained. Next, the components shown in Table 1 were mixed for 2 hours by a ball mill to prepare a slurry for coating the positive electrode active material layer, a slurry for coating the negative electrode active material layer, and a slurry for coating the electrolyte layer.

【0062】得られた正極活物質層塗工用スラリーを密
着層を有するAl箔上に正極活物質層の乾燥厚さが80
μmとなるようにドクターブレード法により塗工及び乾
燥し、圧延することにより正極を形成した。得られた負
極活物質層塗工用スラリーを密着層を有するCu箔上に
負極活物質層の乾燥厚さが80μmとなるようにドクタ
ーブレード法により塗工及び乾燥し、圧延することによ
り負極を形成した。得られた電解質層塗工用スラリーを
厚さ25μm、幅250mmの剥離紙上に電解質層の乾
燥厚さが50μmとなるようにドクターブレード法によ
り塗工及び乾燥し、剥離紙より剥がして電解質層シート
を形成した。それぞれ形成した正極と電解質シートと負
極を順に積層し、積層物を熱圧着することによりシート
状の電極体を作製した。次に、この電極体にNiからな
る正極リード及び負極リードをそれぞれ正極集電体及び
負極集電体に溶接し、開口部を有する袋状に加工したラ
ミネートパッケージ材に収納し、減圧条件下で熱圧着に
より開口部を封止し、シート状の電池を作製した。
The obtained slurry for coating the positive electrode active material layer was coated on an Al foil having an adhesion layer so that the dry thickness of the positive electrode active material layer was 80%.
The coating was dried by a doctor blade method so as to have a thickness of μm, dried, and rolled to form a positive electrode. The obtained negative electrode active material layer coating slurry is coated and dried by a doctor blade method on a Cu foil having an adhesion layer so that the dry thickness of the negative electrode active material layer becomes 80 μm, and the negative electrode is rolled. Formed. The obtained slurry for coating an electrolyte layer is coated and dried by a doctor blade method on a release paper having a thickness of 25 μm and a width of 250 mm so that the dry thickness of the electrolyte layer becomes 50 μm, and the electrolyte layer sheet is peeled off from the release paper. Was formed. The formed positive electrode, electrolyte sheet and negative electrode were sequentially laminated, and the laminate was thermocompression-bonded to produce a sheet-like electrode body. Next, a positive electrode lead and a negative electrode lead made of Ni were welded to the positive electrode current collector and the negative electrode current collector, respectively, and housed in a bag-shaped laminated package material having an opening, and this electrode body was placed under reduced pressure conditions. The opening was sealed by thermocompression bonding to produce a sheet-shaped battery.

【0063】<実施例18>密着層に用いる変性高分子
を17重量%のメタクリル酸をポリフッ化ビニリデンに
グラフト重合した上記化学式(2)に示す変性高分子
(Methacrylic Acid grafting PolyVinylidene Fluorid
e、MA-g-PVdF)とした以外は実施例17と同様
に電池を作製した。 <実施例19>密着層スラリーの調製において、導電性
物質を溶媒に分散させるときに、分散剤を1.2g加え
て酸性高分子系分散剤含有量を固形物重量中で10.7
重量%とした以外は実施例17と同様に電池を作製し
た。 <実施例20>密着層スラリーの調製において、導電性
物質を溶媒に分散させるときに、分散剤を1.2g加え
て酸性高分子系分散剤含有量を固形物重量中で10.7
重量%とした以外は実施例18と同様に電池を作製し
た。
Example 18 A modified polymer represented by the above formula (2) was prepared by graft-polymerizing 17% by weight of methacrylic acid to polyvinylidene fluoride, using the modified polymer used for the adhesion layer (Methacrylic Acid grafting PolyVinylidene Fluorid).
e, MA-g-PVdF), and a battery was fabricated in the same manner as in Example 17. <Example 19> In preparing the adhesive layer slurry, when the conductive material was dispersed in a solvent, 1.2 g of a dispersant was added to adjust the content of the acidic polymer-based dispersant to 10.7% by weight of the solid.
A battery was fabricated in the same manner as in Example 17, except that the content was changed to% by weight. <Example 20> In the preparation of the adhesive layer slurry, when the conductive substance was dispersed in a solvent, 1.2 g of a dispersant was added to adjust the content of the acidic polymer-based dispersant to 10.7% by weight of the solid substance.
A battery was fabricated in the same manner as in Example 18, except that the content was changed to% by weight.

【0064】<実施例21>正極集電体及び負極集電体
上に設けた密着層の乾燥厚さをそれぞれ0.5μmとし
た以外は実施例17と同様に電池を作製した。 <実施例22>正極集電体及び負極集電体上に設けた密
着層の乾燥厚さをそれぞれ1μmとした以外は実施例1
7と同様に電池を作製した。 <実施例23>正極集電体及び負極集電体上に設けた密
着層の乾燥厚さをそれぞれ10μmとした以外は実施例
17と同様に電池を作製した。 <実施例24>正極集電体及び負極集電体上に設けた密
着層の乾燥厚さをそれぞれ15μmとした以外は実施例
17と同様に電池を作製した。
Example 21 A battery was manufactured in the same manner as in Example 17, except that the dry thickness of each of the adhesion layers provided on the positive electrode current collector and the negative electrode current collector was 0.5 μm. <Example 22> Example 1 except that the dry thicknesses of the adhesion layers provided on the positive electrode current collector and the negative electrode current collector were each set to 1 µm.
A battery was prepared in the same manner as in No. 7. Example 23 A battery was fabricated in the same manner as in Example 17, except that the dry thickness of each of the adhesion layers provided on the positive electrode current collector and the negative electrode current collector was 10 μm. Example 24 A battery was produced in the same manner as in Example 17, except that the dry thickness of each of the adhesion layers provided on the positive electrode current collector and the negative electrode current collector was 15 μm.

【0065】<実施例25>密着層塗工用スラリーの導
電性物質である黒鉛粉末を2gとしてバインダと導電性
物質との重量比を50/50とした以外は実施例17と
同様に電池を作製した。 <実施例26>密着層塗工用スラリーの導電性物質であ
る黒鉛粉末を4gとしてバインダと導電性物質との重量
比を33/67とした以外は実施例17と同様に電池を
作製した。 <実施例27>密着層塗工用スラリーの導電性物質であ
る黒鉛粉末を12gとしてバインダと導電性物質との重
量比を14/86とした以外は実施例17と同様に電池
を作製した。 <実施例28>密着層塗工用スラリーの導電性物質であ
る黒鉛粉末を14gとしてバインダと導電性物質との重
量比を13/87とした以外は実施例17と同様に電池
を作製した。
Example 25 A battery was prepared in the same manner as in Example 17 except that 2 g of graphite powder, which was a conductive material of the slurry for coating the adhesion layer, was used, and the weight ratio between the binder and the conductive material was 50/50. Produced. <Example 26> A battery was fabricated in the same manner as in Example 17, except that 4 g of graphite powder, which was the conductive material of the slurry for coating the adhesion layer, was used, and the weight ratio of the binder to the conductive material was 33/67. <Example 27> A battery was fabricated in the same manner as in Example 17, except that the weight ratio between the binder and the conductive substance was 14/86, with 12 g of graphite powder as the conductive substance in the slurry for coating the adhesion layer. <Example 28> A battery was fabricated in the same manner as in Example 17, except that the weight ratio of the binder to the conductive substance was 13/87 with the use of 14 g of graphite powder as the conductive substance of the slurry for coating the adhesion layer.

【0066】<比較例9>密着層を正極集電体及び負極
集電体上に設けない以外は実施例17と同様にして電池
を作製した。 <比較例10>密着層塗工用スラリーのバインダをAA
-g-PVdFからブチルゴムに、溶媒をDMAからトル
エンにした以外は実施例17と同様に電池を作製した。 <比較例11>密着層塗工用スラリーのバインダをAA
-g-PVdFからアクリル酸エステル−メタクリル酸エ
ステル共重合体に、溶媒をDMAから水にした以外は実
施例17と同様に電池を作製した。 <比較例12>密着層塗工用スラリーのバインダをAA
-g-PVdFからポリウレタン樹脂に、溶媒をDMAか
らメチルエチルケトン108gとメチルイソブチルケト
ン72gの混合溶媒にした以外は実施例17と同様に電
池を作製した。 <比較例13>密着層塗工用スラリーのバインダをAA
-g-PVdFからエポキシ樹脂に、溶媒をDMAからメ
チルエチルケトン108gとメチルイソブチルケトン7
2gの混合溶媒にした以外は実施例17と同様に電池を
作製した。
Comparative Example 9 A battery was manufactured in the same manner as in Example 17 except that the adhesion layer was not provided on the positive electrode current collector and the negative electrode current collector. <Comparative Example 10> The binder of the adhesive layer coating slurry was AA.
A battery was prepared in the same manner as in Example 17, except that -g-PVdF was changed to butyl rubber, and the solvent was changed from DMA to toluene. <Comparative Example 11> The binder of the adhesive layer coating slurry was AA.
A battery was produced in the same manner as in Example 17, except that -g-PVdF was changed to an acrylate-methacrylate copolymer and the solvent was changed to water from DMA. <Comparative Example 12> The binder of the slurry for coating the adhesion layer was AA.
A battery was prepared in the same manner as in Example 17, except that -g-PVdF was used as the polyurethane resin, and the solvent was used as the mixed solvent containing 108 g of methyl ethyl ketone and 72 g of methyl isobutyl ketone from DMA. <Comparative Example 13> The binder of the slurry for coating the adhesion layer was AA.
-g-PVdF to epoxy resin, and solvent from DMA to 108 g of methyl ethyl ketone and methyl isobutyl ketone 7
A battery was fabricated in the same manner as in Example 17, except that 2 g of the mixed solvent was used.

【0067】<比較例14>密着層スラリーの調製にお
いて、導電性物質を溶媒に分散させるときに、分散剤を
3.5g加えて分散剤含有量を26重量%とした以外は
実施例17と同様に電池を作製した。 <比較例15>正極集電体及び負極集電体上に設けた密
着層の乾燥厚さをそれぞれ40μmとした以外は実施例
17と同様に電池を作製した。 <比較例16>密着層塗工用スラリーの導電性物質であ
る黒鉛粉末を20gとしてバインダと導電性物質との重
量比を9/91とした以外は実施例17と同様に電池を
作製した。
<Comparative Example 14> In the preparation of the adhesive layer slurry, the procedure of Example 17 was repeated except that when dispersing the conductive substance in the solvent, 3.5 g of the dispersant was added to make the dispersant content 26% by weight. A battery was similarly manufactured. <Comparative Example 15> A battery was fabricated in the same manner as in Example 17, except that the dry thickness of each of the adhesion layers provided on the positive electrode current collector and the negative electrode current collector was 40 µm. <Comparative Example 16> A battery was fabricated in the same manner as in Example 17, except that 20 g of graphite powder, which was a conductive substance of the slurry for coating the adhesion layer, was used, and the weight ratio of the binder to the conductive substance was 9/91.

【0068】<比較評価>実施例17〜28及び比較例
9〜16で得られた電池について以下の評価試験を行っ
た。 密着層の電解液に対する耐性試験 実施例17〜28及び比較例9〜16で得られた密着層
を有する負極集電体を炭酸プロピレン20重量部、炭酸
エチレン40重量部及び炭酸ジエチル40重量部からな
る電解液に1週間浸漬して、密着層を有する負極集電体
の重量増加量を測定し、密着層の第3結着剤である変性
高分子の電解液による膨潤の有無を確かめた。また、負
極集電体Cu箔を指で擦り、密着層が剥離するか否かを
確認した。 密着層のフッ化水素(HF)に対する集電体保護性
能試験 実施例17〜28及び比較例9〜16において得られた
密着層を有する負極集電体の表面に濃度5ppmのフッ
化水素酸水溶液2mlを滴下し、24時間放置した後の
集電体の状態を確認した。
<Comparative Evaluation> The batteries obtained in Examples 17 to 28 and Comparative Examples 9 to 16 were subjected to the following evaluation tests. Resistance Test of Adhesion Layer to Electrolyte Solution A negative electrode current collector having an adhesion layer obtained in Examples 17 to 28 and Comparative Examples 9 to 16 was prepared from 20 parts by weight of propylene carbonate, 40 parts by weight of ethylene carbonate, and 40 parts by weight of diethyl carbonate. The negative electrode current collector having the adhesion layer was immersed in the same electrolyte solution for one week, and the amount of weight increase of the negative electrode current collector having the adhesion layer was measured to determine whether the modified polymer as the third binder of the adhesion layer swelled with the electrolyte solution. In addition, the negative electrode current collector Cu foil was rubbed with a finger to check whether or not the adhesion layer was peeled off. Current collector protection performance test of adhesive layer against hydrogen fluoride (HF) A 5 ppm aqueous solution of hydrofluoric acid on the surface of the negative electrode current collector having the adhesive layer obtained in Examples 17 to 28 and Comparative Examples 9 to 16 2 ml was dropped, and the state of the current collector after standing for 24 hours was confirmed.

【0069】 密着層の活物質層に対する密着性試験 実施例17〜28及び比較例9〜16において得られた
正極集電体及び負極集電体の表面にそれぞれ粘着テープ
を貼付け、ゴムローラで押しつけた。この粘着テープを
貼付けた正極集電体及び負極集電体をそれぞれ10mm
幅に切取り、10mm幅の集電体を垂直上方に引っ張り
あげて活物質層を引き剥がすのにかかる力を測定した。
また、その剥がれ方を目視により確認した。 サイクル容量維持特性試験 実施例17〜28及び比較例9〜16において得られた
シート状の電池を充放電サイクル試験にかけ、最大充電
電圧4.2V、充電0.5Aの条件で2.5時間の充電
と、0.5Aの定電流で放電電圧が2.75V(最低放
電電圧)となるまで放電を行う充放電サイクルを繰返
し、各サイクルの放電容量を測定して初期放電容量の8
0%まで低下するサイクル数を測定した。
Adhesion Test of Adhesion Layer to Active Material Layer Adhesive tapes were adhered to the surfaces of the positive electrode current collector and the negative electrode current collector obtained in Examples 17 to 28 and Comparative Examples 9 to 16, and pressed with a rubber roller. . Each of the positive electrode current collector and the negative electrode current collector to which the pressure-sensitive adhesive tape is attached is 10 mm.
A 10 mm wide current collector was pulled vertically upward and the force applied to peel off the active material layer was measured.
Further, the manner of peeling was visually confirmed. Cycle capacity maintenance characteristic test The sheet-shaped batteries obtained in Examples 17 to 28 and Comparative Examples 9 to 16 were subjected to a charge / discharge cycle test, and were subjected to a maximum charge voltage of 4.2 V and a charge of 0.5 A for 2.5 hours. The charge and discharge cycles of discharging and discharging at a constant current of 0.5 A until the discharge voltage becomes 2.75 V (minimum discharge voltage) are repeated, and the discharge capacity of each cycle is measured to obtain an initial discharge capacity of 8
The number of cycles down to 0% was measured.

【0070】上記評価試験〜評価試験における結果
を表5に示す。なお表5中の評価試験欄における記号
は、次の意味である。 ◎:極めて良好であり、剥離しない。 ○:良好であり、剥離しない。 △:一部剥離する、 ×:完全に剥離する。
Table 5 shows the results of the above evaluation tests. The symbols in the evaluation test column in Table 5 have the following meanings. A: Very good, no peeling. :: good, no peeling Δ: Partially peeled, ×: Completely peeled.

【0071】また、表5中の評価試験欄における記号
は、次の意味である。 ◎:極めて良好であり、腐食しない。 ○:良好であり、腐食しない。 △:一部腐食する。 ×:腐食する。
The symbols in the evaluation test column in Table 5 have the following meanings. :: Very good, no corrosion. :: good, no corrosion. Δ: Partially corroded. ×: Corroded.

【0072】[0072]

【表5】 [Table 5]

【0073】 密着層の電解液に対する耐性試験比較
例10〜13では密着層を有する負極集電体の増加量が
大きく、電解液によって密着層を形成しているバインダ
により膨潤していることが判る。これに対して実施例1
7〜28では、電解液に1週間浸漬したにもかかわらず
密着層を有する負極集電体の増加量は僅かであり、電解
液に対する耐性が示されている。 密着層のフッ化水
素(HF)に対する集電体保護性能試験比較例9及び1
1の集電体はHFにより腐食されていた。また、比較例
10,12及び13では一部分が腐食されていた。これ
に対して実施例17〜28の集電体はHFによる腐食さ
れておらず、密着層による保護機能が働いていることが
判る。
Resistance Test for Electrolytic Solution of Adhesion Layer In Comparative Examples 10 to 13, the amount of increase in the amount of the negative electrode current collector having the adhesion layer is large, and it can be seen that the electrolyte solution swells due to the binder forming the adhesion layer. . On the other hand, Embodiment 1
In Nos. 7 to 28, the amount of increase in the negative electrode current collector having the adhesion layer was slight even after immersion in the electrolytic solution for one week, indicating resistance to the electrolytic solution. Current collector protection performance test against hydrogen fluoride (HF) of adhesion layer Comparative examples 9 and 1
One current collector was corroded by HF. In Comparative Examples 10, 12, and 13, a part was corroded. On the other hand, it can be seen that the current collectors of Examples 17 to 28 were not corroded by HF, and the protection function by the adhesion layer was working.

【0074】 密着層の活物質層に対する密着性試験
比較例9〜13の密着力に比べ、実施例17〜28では
活物質層を引き剥がすのにかかる力が大きい。また、剥
がれ方は比較例9〜13は面内にむらがあり、剥がれた
部分と剥がれない部分がそれぞれできていた。これに対
して実施例17〜28は面内が均一で全面で剥がれてい
た。 サイクル容量維持特性試験比較例9〜13の8
0%容量サイクル数に比べると実施例17〜28ではそ
れぞれ高いサイクル数を示しており、充放電によるサイ
クル維持特性が優れることが判る。
Adhesion Test of Adhesion Layer to Active Material Layer In Examples 17 to 28, the force applied to peel the active material layer was larger than that in Comparative Examples 9 to 13. Moreover, the peeling method was such that Comparative Examples 9 to 13 had in-plane unevenness, and a peeled portion and a non-peeled portion were formed. In contrast, in Examples 17 to 28, the surface was uniform and the entire surface was peeled off. Cycle capacity retention characteristic test Comparative Examples 9 to 13-8
In each of Examples 17 to 28, the number of cycles was higher than that of the 0% capacity cycle, indicating that the cycle maintenance characteristics by charge / discharge were excellent.

【0075】[0075]

【発明の効果】以上述べたように、本発明によれば、正
極集電体と正極活物質層との間に第1密着層を有し、及
び負極集電体と負極活物質層との間に第2密着層を有
し、第1及び第2密着層が第3結着剤と導電性物質の双
方をそれぞれ含み、この第3結着剤が第1結着剤又は第
2結着剤を変性物質により変性させた高分子化合物であ
るため、第1結着剤又は第2結着剤を基にした変性高分
子は、正極活物質層又は負極活物質層に対する密着力が
高く、変性したことにより集電体との密着性も従来の結
着剤を用いるより大幅に向上する。その結果、活物質層
の集電体からの剥がれを抑制でき、集電体と活物質層と
の導電性が大幅に向上するため、サイクル容量維持特性
も向上させることができる。また、電解液が変性高分子
化合物中に浸漬しにくいため、密着層が電解液中の有機
溶媒に対して安定で長期保存性に優れる。電池内にフッ
酸等の強酸が発生する場合でも変性高分子化合物が保護
層となるため、集電体の腐食を抑制できる。
As described above, according to the present invention, the first adhesive layer is provided between the positive electrode current collector and the positive electrode active material layer, and the first adhesive layer is formed between the negative electrode current collector and the negative electrode active material layer. A second adhesive layer between the first and second adhesive layers, the first and second adhesive layers each containing both a third binder and a conductive material, wherein the third binder is the first binder or the second binder; Since the agent is a polymer compound modified with a modifying substance, the modified polymer based on the first binder or the second binder has a high adhesion to the positive electrode active material layer or the negative electrode active material layer, Due to the modification, the adhesion to the current collector is greatly improved as compared with the case where a conventional binder is used. As a result, peeling of the active material layer from the current collector can be suppressed, and the conductivity between the current collector and the active material layer is significantly improved, so that the cycle capacity retention characteristics can be improved. In addition, since the electrolyte is not easily immersed in the modified polymer compound, the adhesion layer is stable with respect to the organic solvent in the electrolyte and has excellent long-term storage properties. Even when a strong acid such as hydrofluoric acid is generated in the battery, the modified polymer compound serves as a protective layer, so that corrosion of the current collector can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリチウムイオンポリマー二次電池の電
極体を示す部分断面構成図。
FIG. 1 is a partial cross-sectional configuration diagram showing an electrode body of a lithium ion polymer secondary battery of the present invention.

【図2】実施例5〜11及び比較例5,6で得られた第
3結着剤の評価試験の結果を示す図。
FIG. 2 is a diagram showing the results of evaluation tests of third binders obtained in Examples 5 to 11 and Comparative Examples 5 and 6.

【図3】実施例5〜11及び比較例5,6で得られた第
3結着剤の評価試験の結果を示す図。
FIG. 3 is a view showing the results of evaluation tests of third binders obtained in Examples 5 to 11 and Comparative Examples 5 and 6.

【図4】実施例12〜16及び比較例7,8で得られた
第3結着剤の評価試験の結果を示す図。
FIG. 4 is a view showing the results of evaluation tests of third binders obtained in Examples 12 to 16 and Comparative Examples 7 and 8.

【図5】実施例12〜16及び比較例7,8で得られた
第3結着剤の評価試験の結果を示す図。
FIG. 5 is a view showing the results of evaluation tests of third binders obtained in Examples 12 to 16 and Comparative Examples 7 and 8.

【符号の説明】[Explanation of symbols]

11 正極 12 正極集電体 13 正極活物質層 14 負極 16 負極集電体 17 負極活物質層 18 ポリマー電解質層 19 第1密着層 21 第2密着層 Reference Signs List 11 positive electrode 12 positive electrode current collector 13 positive electrode active material layer 14 negative electrode 16 negative electrode current collector 17 negative electrode active material layer 18 polymer electrolyte layer 19 first adhesion layer 21 second adhesion layer

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09J 127/20 C09J 127/20 127/22 127/22 151/00 151/00 201/00 201/00 H01M 4/02 H01M 4/02 C D 4/66 4/66 A 10/40 10/40 B (72)発明者 水口 暁夫 茨城県那珂郡那珂町向山1002番地14 三菱 マテリアル株式会社総合研究所那珂研究セ ンター内 (72)発明者 樋上 晃裕 茨城県那珂郡那珂町向山1002番地14 三菱 マテリアル株式会社総合研究所那珂研究セ ンター内 (72)発明者 張 守斌 茨城県那珂郡那珂町向山1002番地14 三菱 マテリアル株式会社総合研究所那珂研究セ ンター内 (72)発明者 小林 正 埼玉県さいたま市北袋町1丁目297番地 三菱マテリアル株式会社総合研究所大宮研 究センター内 (72)発明者 竹内 さわ子 埼玉県さいたま市北袋町1丁目297番地 三菱マテリアル株式会社総合研究所大宮研 究センター内 Fターム(参考) 4J026 AA26 BA02 BA05 BA10 BA20 BA25 BA27 BA31 BA32 BA46 BA47 BB01 BB02 DB03 DB32 DB36 GA08 4J040 DC091 DC101 DL151 GA01 GA03 GA07 GA19 GA22 JB10 KA03 KA32 KA42 LA06 LA09 NA19 5H017 AA03 AS02 BB00 BB06 BB08 BB12 BB14 DD06 EE06 EE07 EE09 HH01 HH03 HH05 5H029 AJ05 AJ13 AK03 AL07 AM03 AM05 AM07 BJ12 CJ00 DJ07 DJ17 EJ04 EJ11 EJ12 HJ00 HJ01 HJ04 HJ05 HJ12 5H050 AA07 AA18 BA17 CA07 CB08 DA10 DA11 EA09 EA24 GA00 GA10 HA00 HA01 HA04 HA05 HA12 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C09J 127/20 C09J 127/20 127/22 127/22 151/00 151/00 201/00 201/00 H01M 4/02 H01M 4/02 CD 4/66 4/66 A 10/40 10/40 B (72) Inventor Akio Mizuguchi 1002, Mukaiyama, Naka-machi, Naka-gun, Ibaraki Pref. 72) Inventor Akihiro Higami 1002-14 Mukoyama, Naka-machi, Naka-gun, Ibaraki Pref.Mitsubishi Materials Research Laboratory Naka Research Center In the Research Institute Naka Research Center (72) Inventor Tadashi Kobayashi 1-297 Kitabukurocho, Saitama City, Saitama Prefecture Mitsubishi Materials Research Institute Investigation Center Omiya Research Center (72) Inventor Sawako Takeuchi Kitabukurocho, Saitama City, Saitama Prefecture 1-chome 297 Mitsubishi Materials Corporation Research Laboratory Omiya Lab F-term inside the research center (reference) 4J026 AA26 BA02 BA05 BA10 BA20 BA25 BA27 BA31 BA32 BA46 BA47 BB01 BB02 DB03 DB32 DB36 GA08 4J040 DC091 DC101 DL151 GA01 GA03 GA07 GA19 GA22 JB10 KA03 KA32 KA42 LA06 LA09 NA19 5H017 BB02 BB02 DD06 EE06 EE07 EE09 HH01 HH03 HH05 5H029 AJ05 AJ13 AK03 AL07 AM03 AM05 AM07 BJ12 CJ00 DJ07 DJ17 EJ04 EJ11 EJ12 HJ00 HJ01 HJ04 HJ05 HJ12 5H050 AA07 AA18 BA17 CA07 CB08 DA10 HA11 GA00

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体(12)の表面に第1結着剤が活
物質中に含まれてなる正極活物質層(13)が形成された正
極(11)と、 負極集電体(16)の表面に前記第1結着剤と同一又は異な
る第2結着剤が活物質中に含まれてなる負極活物質層(1
7)が形成された負極(14)と、 電解質(18)とを備えたリチウムイオンポリマー二次電池
において、 前記正極集電体(12)と前記正極活物質層(13)との間に第
1密着層(19)を有し、前記負極集電体(16)と前記負極活
物質層(17)との間に第2密着層(21)を有し、 前記第1及び第2密着層(19,21)が第3結着剤と導電性
物質の双方をそれぞれ含み、 前記第3結着剤が、前記第1結着剤又は前記第2結着剤
を変性物質により変性させた高分子化合物であることを
特徴とするリチウムイオンポリマー二次電池。
1. A positive electrode (11) in which a positive electrode active material layer (13) in which a first binder is contained in an active material is formed on a surface of a positive electrode current collector (12); On the surface of (16), a negative electrode active material layer (1) in which a second binder the same as or different from the first binder is contained in the active material.
In a lithium ion polymer secondary battery including a negative electrode (14) on which a (7) is formed, and an electrolyte (18), a lithium ion secondary battery is provided between the positive electrode current collector (12) and the positive electrode active material layer (13). A first adhesion layer (19), a second adhesion layer (21) between the negative electrode current collector (16) and the negative electrode active material layer (17), and the first and second adhesion layers (19, 21) each include both a third binder and a conductive substance, and the third binder is a high-density substance obtained by modifying the first binder or the second binder with a modifying substance. A lithium ion polymer secondary battery, which is a molecular compound.
【請求項2】 第1又は第2結着剤のいずれか一方又は
双方がポリテトラフルオロエチレン、ポリクロロトリフ
ルオロエチレン、ポリフッ化ビニリデン、フッ化ビニリ
デン−ヘキサフルオロプロピレン共重合体又はポリフッ
化ビニルから選ばれたフッ素含有高分子化合物である請
求項1記載のリチウムイオンポリマー二次電池。
2. One or both of the first and second binders are made of polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer or polyvinyl fluoride. The lithium ion polymer secondary battery according to claim 1, which is a selected fluorine-containing polymer compound.
【請求項3】 変性物質がエチレン、スチレン、ブタジ
エン、塩化ビニル、酢酸ビニル、アクリル酸、アクリル
酸メチル、メチルビニルケトン、アクリルアミド、アク
リロニトリル、塩化ビニリデン、メタクリル酸、メタク
リル酸メチル又はイソプレンから選ばれた化合物である
請求項1記載のリチウムイオンポリマー二次電池。
3. The modifying substance is selected from ethylene, styrene, butadiene, vinyl chloride, vinyl acetate, acrylic acid, methyl acrylate, methyl vinyl ketone, acrylamide, acrylonitrile, vinylidene chloride, methacrylic acid, methyl methacrylate or isoprene. The lithium ion polymer secondary battery according to claim 1, which is a compound.
【請求項4】 第1及び第2密着層の厚さがそれぞれ
0.5〜30μmである請求項1記載のリチウムイオン
ポリマー二次電池。
4. The lithium ion polymer secondary battery according to claim 1, wherein each of the first and second adhesion layers has a thickness of 0.5 to 30 μm.
【請求項5】 第1及び第2密着層中に分散剤を更に
0.1〜20重量%含有する請求項1又は4記載のリチ
ウムイオンポリマー二次電池。
5. The lithium ion polymer secondary battery according to claim 1, wherein the first and second adhesion layers further contain a dispersant in an amount of 0.1 to 20% by weight.
【請求項6】 導電性物質が粒径0.5〜30μm、黒
鉛化度50%以上の炭素材を用い、第1及び第2密着層
に含まれる第3結着剤と前記導電性物質との重量比(第
3結着剤/導電性物質)が13/87〜50/50であ
る請求項1記載のリチウムイオンポリマー二次電池。
6. A conductive material comprising a carbon material having a particle diameter of 0.5 to 30 μm and a degree of graphitization of 50% or more, wherein a third binder contained in the first and second adhesion layers and the conductive material are used. 2. The lithium ion polymer secondary battery according to claim 1, wherein the weight ratio (third binder / conductive substance) is 13/87 to 50/50.
【請求項7】 請求項1ないし6いずれか記載のリチウ
ムイオンポリマー二次電池の密着層に含まれる第3結着
剤の合成方法であって、 前記第3結着剤が第1結着剤又は第2結着剤のいずれか
一方又は双方を変性物質により変性させることにより合
成され、 前記合成された第3結着剤を100重量%とするとき、
前記第3結着剤に含まれる変性物質の割合が2〜50重
量%であることを特徴とする結着剤の合成方法。
7. The method for synthesizing a third binder contained in an adhesion layer of a lithium ion polymer secondary battery according to claim 1, wherein the third binder is a first binder. Or, it is synthesized by modifying one or both of the second binder with a modifying substance, and when the synthesized third binder is 100% by weight,
A method for synthesizing a binder, wherein the ratio of the modifying substance contained in the third binder is 2 to 50% by weight.
【請求項8】 変性物質による変性は、第1又は第2結
着剤のいずれか一方又は双方に放射線を照射した後で、
前記被照射物に変性物質を混合してグラフト重合するこ
とにより行われる請求項7記載の合成方法。
8. The modification by a modifying substance may be performed after irradiating one or both of the first and second binders with radiation.
The synthesis method according to claim 7, wherein the synthesis is performed by mixing a modified substance with the irradiation target and performing graft polymerization.
【請求項9】 変性物質による変性は、第1又は第2結
着剤のいずれか一方又は双方に変性物質を混合し、前記
混合物に対して放射線を照射してグラフト重合すること
により行われる請求項7記載の合成方法。
9. Modification with a modifying substance is carried out by mixing a modifying substance with one or both of the first and second binders and irradiating the mixture with radiation for graft polymerization. Item 7. The synthesis method according to Item 7.
【請求項10】 第1又は第2結着剤のいずれか一方又
は双方への放射線照射は、前記第1又は第2結着剤のい
ずれか一方又は双方への吸収線量が1〜120kGyに
なるようにγ線を照射することにより行われる請求項8
又は9記載の合成方法。
10. Irradiation to one or both of the first and second binders results in an absorbed dose of 1 to 120 kGy to one or both of the first and second binders. 9. The method according to claim 8, wherein the irradiation is performed by irradiating γ rays.
Or the synthesis method according to 9.
JP2001303053A 2001-02-01 2001-09-28 Lithium ion polymer secondary battery and method for synthesizing binder used for adhesion layer of battery Expired - Fee Related JP3982221B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001303053A JP3982221B2 (en) 2001-02-01 2001-09-28 Lithium ion polymer secondary battery and method for synthesizing binder used for adhesion layer of battery
EP08152891A EP1947715B1 (en) 2001-04-10 2002-04-10 Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
PCT/JP2002/003573 WO2002084764A1 (en) 2001-04-10 2002-04-10 Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
US10/474,354 US7351498B2 (en) 2001-04-10 2002-04-10 Lithium ion polymer secondary battery its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
CNA02811664XA CN1529917A (en) 2001-04-10 2002-04-10 Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
TW091107248A TW567630B (en) 2001-02-01 2002-04-10 Lithium ion polymer secondary battery, electrode thereof and polymer synthesizing method of binder used for adhesion layer thereof
KR10-2003-7013176A KR20030086354A (en) 2001-04-10 2002-04-10 Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
DE60237483T DE60237483D1 (en) 2001-04-10 2002-04-10 Secondary lithium-ion polymer battery, its electrodes and methods for synthesizing a polymer compound in a binder serving as an adhesive layer therefor
EP02717097A EP1381097A4 (en) 2001-04-10 2002-04-10 Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-25688 2001-02-01
JP2001025688 2001-02-01
JP2001303053A JP3982221B2 (en) 2001-02-01 2001-09-28 Lithium ion polymer secondary battery and method for synthesizing binder used for adhesion layer of battery

Publications (2)

Publication Number Publication Date
JP2002304997A true JP2002304997A (en) 2002-10-18
JP3982221B2 JP3982221B2 (en) 2007-09-26

Family

ID=26608787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303053A Expired - Fee Related JP3982221B2 (en) 2001-02-01 2001-09-28 Lithium ion polymer secondary battery and method for synthesizing binder used for adhesion layer of battery

Country Status (1)

Country Link
JP (1) JP3982221B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353377A (en) * 2004-06-09 2005-12-22 Nissan Motor Co Ltd Polymer battery, manufacturing method therefor, battery pack and vehicle installing these
JP2006310008A (en) * 2005-04-27 2006-11-09 Nec Tokin Corp Lithium ion secondary cell and manufacturing method therefor
JP2007510028A (en) * 2003-10-30 2007-04-19 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ Radical-bonded PTFE polymer powder and method for producing the same
JP2011501383A (en) * 2007-10-26 2011-01-06 サイオン パワー コーポレイション Battery electrode primer
WO2012093689A1 (en) 2011-01-06 2012-07-12 三菱レイヨン株式会社 Modifier for polyvinylidene fluoride, binder resin composition for batteries, secondary cell electrode, and battery
EP2544268A1 (en) * 2011-07-06 2013-01-09 Samsung SDI Co., Ltd. Electrode for a secondary battery
WO2013018887A1 (en) * 2011-08-03 2013-02-07 日本ゼオン株式会社 Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
US8530087B2 (en) 2010-01-29 2013-09-10 Hitachi, Ltd. Secondary lithium battery
WO2013151046A1 (en) 2012-04-04 2013-10-10 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
WO2014010681A1 (en) 2012-07-13 2014-01-16 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component
KR20140147742A (en) * 2013-06-19 2014-12-30 주식회사 엘지화학 Binder resin composition, porous seperator comprising thereof, electrochemical element using thereof
JP2017515281A (en) * 2014-05-07 2017-06-08 ソルヴェイ(ソシエテ アノニム) Composite electrode
JP2018006139A (en) * 2016-06-30 2018-01-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery electrode active material layer, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery
CN110268563A (en) * 2017-02-24 2019-09-20 日本瑞翁株式会社 Non-aqueous secondary battery adhesive composition, non-aqueous secondary battery functional layer paste compound, non-aqueous secondary battery functional layer and non-aqueous secondary battery
WO2019230592A1 (en) * 2018-05-31 2019-12-05 富士フイルム株式会社 Current collector having easily adhering layer, electrode, all-solid-state secondary battery, electronic device, electric vehicle, and methods for manufacturing current collector having easily adhering layer, electrode and all-solid-state secondary battery
CN110797536A (en) * 2019-10-24 2020-02-14 桑顿新能源科技(长沙)有限公司 Lithium ion battery anode slurry and preparation method thereof and lithium ion battery
JP2021157919A (en) * 2020-03-26 2021-10-07 住友大阪セメント株式会社 Lithium ion polymer battery and manufacturing method thereof
CN116355147A (en) * 2023-06-01 2023-06-30 宁德时代新能源科技股份有限公司 Graft polymer, preparation method, binder, positive electrode sheet, secondary battery and electricity utilization device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104790809A (en) * 2015-03-13 2015-07-22 四川省川源塑胶有限公司 Aluminum plastic composite profile/PVC profile and machining method thereof
KR102008807B1 (en) 2018-09-10 2019-08-12 쇼와 덴코 가부시키가이샤 Current collector for electrical storage devices, its manufacturing method, and coating liquid used for the manufacture
JP7411331B2 (en) 2019-01-11 2024-01-11 日立造船株式会社 All-solid-state batteries and methods of manufacturing all-solid-state batteries

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510028A (en) * 2003-10-30 2007-04-19 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ Radical-bonded PTFE polymer powder and method for producing the same
JP4843496B2 (en) * 2003-10-30 2011-12-21 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ Radical-bonded PTFE polymer powder and method for producing the same
JP2005353377A (en) * 2004-06-09 2005-12-22 Nissan Motor Co Ltd Polymer battery, manufacturing method therefor, battery pack and vehicle installing these
JP2006310008A (en) * 2005-04-27 2006-11-09 Nec Tokin Corp Lithium ion secondary cell and manufacturing method therefor
US8871387B2 (en) 2007-10-26 2014-10-28 Sion Power Corporation Primer for battery electrode
JP2011501383A (en) * 2007-10-26 2011-01-06 サイオン パワー コーポレイション Battery electrode primer
US8968928B2 (en) 2007-10-26 2015-03-03 Sion Power Corporation Primer for battery electrode
US8530087B2 (en) 2010-01-29 2013-09-10 Hitachi, Ltd. Secondary lithium battery
WO2012093689A1 (en) 2011-01-06 2012-07-12 三菱レイヨン株式会社 Modifier for polyvinylidene fluoride, binder resin composition for batteries, secondary cell electrode, and battery
EP2544268A1 (en) * 2011-07-06 2013-01-09 Samsung SDI Co., Ltd. Electrode for a secondary battery
US10367205B2 (en) 2011-07-06 2019-07-30 Samsung Sdi Co., Ltd. Secondary battery
US10014528B2 (en) 2011-08-03 2018-07-03 Zeon Corporation Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
WO2013018887A1 (en) * 2011-08-03 2013-02-07 日本ゼオン株式会社 Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
WO2013151046A1 (en) 2012-04-04 2013-10-10 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
WO2014010681A1 (en) 2012-07-13 2014-01-16 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component
EP2874213A4 (en) * 2012-07-13 2015-08-05 Furukawa Electric Co Ltd Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component
KR20140147742A (en) * 2013-06-19 2014-12-30 주식회사 엘지화학 Binder resin composition, porous seperator comprising thereof, electrochemical element using thereof
KR101700409B1 (en) * 2013-06-19 2017-01-26 주식회사 엘지화학 Binder resin composition, porous seperator comprising thereof, electrochemical element using thereof
JP2017515281A (en) * 2014-05-07 2017-06-08 ソルヴェイ(ソシエテ アノニム) Composite electrode
JP2018006139A (en) * 2016-06-30 2018-01-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery electrode active material layer, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery
CN110268563A (en) * 2017-02-24 2019-09-20 日本瑞翁株式会社 Non-aqueous secondary battery adhesive composition, non-aqueous secondary battery functional layer paste compound, non-aqueous secondary battery functional layer and non-aqueous secondary battery
CN112189273B (en) * 2018-05-31 2024-03-08 富士胶片株式会社 Current collector with easily-adhesive layer, electrode, all-solid-state secondary battery, electronic device, electric automobile, and method for manufacturing the three
WO2019230592A1 (en) * 2018-05-31 2019-12-05 富士フイルム株式会社 Current collector having easily adhering layer, electrode, all-solid-state secondary battery, electronic device, electric vehicle, and methods for manufacturing current collector having easily adhering layer, electrode and all-solid-state secondary battery
CN112189273A (en) * 2018-05-31 2021-01-05 富士胶片株式会社 Collector with easy-to-bond layer, electrode, all-solid-state secondary battery, electronic device, electric vehicle, and method for manufacturing collector with easy-to-bond layer, electrode, and all-solid-state secondary battery
JPWO2019230592A1 (en) * 2018-05-31 2021-04-22 富士フイルム株式会社 Method for manufacturing current collector with easy-adhesion layer, electrode, all-solid-state secondary battery, electronic device and electric vehicle, and current collector with easy-adhesion layer, electrode and all-solid-state secondary battery
JP2022084956A (en) * 2018-05-31 2022-06-07 富士フイルム株式会社 Electrode, all-solid-state secondary battery, electronic device, and electric vehicle using current collector with easy-adhesion layer, and manufacturing method of electrode and all-solid-state secondary battery
JP7132327B2 (en) 2018-05-31 2022-09-06 富士フイルム株式会社 Electrode using current collector with easy adhesion layer, all-solid secondary battery, electronic device and electric vehicle, and method for manufacturing electrode and all-solid secondary battery
US11955643B2 (en) 2018-05-31 2024-04-09 Fujifilm Corporation Current collector with adhesive layer, electrode, all-solid state secondary battery, electronic apparatus, electric vehicle, and methods of manufacturing current collector with adhesive layer, electrode, and all-solid state secondary battery
JP7351960B2 (en) 2018-05-31 2023-09-27 富士フイルム株式会社 Electrodes, all-solid-state secondary batteries, electronic devices and electric vehicles using current collectors with easily adhesive layers, and methods for manufacturing electrodes and all-solid-state secondary batteries
CN110797536A (en) * 2019-10-24 2020-02-14 桑顿新能源科技(长沙)有限公司 Lithium ion battery anode slurry and preparation method thereof and lithium ion battery
JP2021157919A (en) * 2020-03-26 2021-10-07 住友大阪セメント株式会社 Lithium ion polymer battery and manufacturing method thereof
CN116355147B (en) * 2023-06-01 2023-11-21 宁德时代新能源科技股份有限公司 Graft polymer, preparation method, binder, positive electrode sheet, secondary battery and electricity utilization device
CN116355147A (en) * 2023-06-01 2023-06-30 宁德时代新能源科技股份有限公司 Graft polymer, preparation method, binder, positive electrode sheet, secondary battery and electricity utilization device

Also Published As

Publication number Publication date
JP3982221B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JP2002304997A (en) Lithium ion polymer secondary battery and synthesizing method of binder used for adhesion layer thereof
EP1947715B1 (en) Lithium ion polymer secondary battery, its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
EP2212949B1 (en) Primer for battery electrode
JP2004095264A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same
JP5476980B2 (en) Nonaqueous secondary battery electrode binder composition
EP3734695A1 (en) Composition for nonaqueous secondary battery functional layers, battery member for nonaqueous secondary batteries, method for producing laminate for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2016152262A1 (en) All-solid secondary battery
AU2011274316B2 (en) Improved adhesion of active electrode materials to metal electrode substrates
JPH09289023A (en) Electrode binder solution, electrode mixture, electrode structure, and battery
JP2002117899A (en) Lithium polymer battery and its manufacturing process
WO2013154165A1 (en) Secondary battery electrode binder resin, secondary battery electrode composition, secondary battery electrode, and secondary battery
EP3933959A1 (en) Slurry composition for nonaqueous secondary battery functional layers, separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP3500245B2 (en) Gel-like solid electrolyte secondary battery
JP2003257433A (en) Nonaqueous electrolyte secondary battery and binding agent
JP3726899B2 (en) Lithium ion polymer secondary battery
JP2004200011A (en) Cathode for lithium-ion secondary battery and lithium-ion secondary battery manufactured using the cathode
JP2006335971A (en) Acrylic resin, binder composition using the same and secondary battery using the same
JP2003263987A (en) Binder for lithium ion polymer secondary cell
JP4325002B2 (en) Lithium battery
EP3734697A1 (en) Composition for nonaqueous secondary battery functional layers, battery member for nonaqueous secondary batteries, method for producing laminate for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2003173781A (en) Paint for adhesive layer as well as electrode for secondary battery and secondary battery using them
JP2004200010A (en) Cathode material for nonaqueous electrolyte secondary battery, electrode structure manufactured using cathode material, and nonaqueous electrolyte secondary battery
TW567630B (en) Lithium ion polymer secondary battery, electrode thereof and polymer synthesizing method of binder used for adhesion layer thereof
CN107698713B (en) Metal surface primer of electric energy storage equipment and conductive coating composition thereof
JP4601323B2 (en) Electrode element for large-sized lithium ion secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees