JP2006310008A - Lithium ion secondary cell and manufacturing method therefor - Google Patents

Lithium ion secondary cell and manufacturing method therefor Download PDF

Info

Publication number
JP2006310008A
JP2006310008A JP2005129239A JP2005129239A JP2006310008A JP 2006310008 A JP2006310008 A JP 2006310008A JP 2005129239 A JP2005129239 A JP 2005129239A JP 2005129239 A JP2005129239 A JP 2005129239A JP 2006310008 A JP2006310008 A JP 2006310008A
Authority
JP
Japan
Prior art keywords
electrode
lithium ion
ion secondary
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005129239A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mizuno
弘行 水野
Tomoyuki Ichikawa
智之 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Tochigi Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Tochigi Ltd, NEC Tokin Corp filed Critical NEC Tokin Tochigi Ltd
Priority to JP2005129239A priority Critical patent/JP2006310008A/en
Publication of JP2006310008A publication Critical patent/JP2006310008A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary cell with improved reliability in which adherence property of active material particles for an electrode to a current collector is excellent and swelling of the electrode in an electrolyte is suppressed, and to provide a manufacturing method therefor. <P>SOLUTION: The lithium ion secondary cell has the electrode which is configured with the active material particles 1, the current collector 3, and a fluorine polymer 2 for binding the active material particles 1 to the current collector 3. The fluorine polymer of 2.5 parts by weight or more to 5.5 parts by weight or less based on the active material particles of 100 parts by weight are blended. The electrode is irradiated by gamma rays of 200 kGy and thereby the fluorine polymer 2 cross-links. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として、携帯端末、あるいは、情報機器、家電機器などの電源としての使用に好適なリチウムイオン二次電池およびその製造方法に関する。   The present invention mainly relates to a lithium ion secondary battery suitable for use as a power source for a portable terminal, an information device, a home appliance, or the like, and a method for manufacturing the same.

近年の電子機器、特に携帯電話、ノート型パーソナルコンピュータ、ビデオカメラなどの携帯用情報機器の発達や普及に伴い、小型、軽量で、かつエネルギー密度が高い二次電池の需要は大きく延びている。このような二次電池として、特にリチウムイオン二次電池が注目されている。   With the recent development and spread of portable information devices such as mobile phones, notebook personal computers, and video cameras, demand for secondary batteries that are small, light, and high in energy density has greatly increased. As such a secondary battery, a lithium ion secondary battery is particularly attracting attention.

従来のリチウムイオン二次電池は、電極を、活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料とで構成し、正極および負極を、シート状に重ねて、ケース内に投入し、電解液を注入し、封止した構造である。図2は、従来のリチウムイオン二次電池の製造方法の説明図である。図2(a)は、電極の初期状態の説明図面であり、図2(b)は、電解液浸積後(20℃×24時間後)の電極の状態の説明図である。図2(a)に示すように、集電体31上に活物質粒子11とフッソ系高分子21が形成され、全体の厚みl1が、図2(b)のごとく電解液浸積後(20℃×24時間後)では、フッソ系高分子が膨潤し、フッソ系高分子21aとなり、全体の厚みL2となる。ここで、全体の厚みl2は、図2(a)に示す全体の厚みl1より大となっている。 In a conventional lithium ion secondary battery, an electrode is composed of active material particles, and a fluorine-based polymer material that acts as a binder between the active material particles and the current collector. It is a structure in which it is placed in a case and poured into a case, and an electrolytic solution is injected and sealed. FIG. 2 is an explanatory diagram of a conventional method for producing a lithium ion secondary battery. FIG. 2A is an explanatory diagram of the initial state of the electrode, and FIG. 2B is an explanatory diagram of the state of the electrode after immersion in the electrolyte (after 20 ° C. × 24 hours). As shown in FIG. 2 (a), the active material particles 11 and the fluorine-based polymer 21 are formed on the current collector 31, and the entire thickness l 1 is as shown in FIG. At 20 ° C. × 24 hours), the fluorine-based polymer swells to become the fluorine-based polymer 21a, and the total thickness L2. Here, the total thickness l 2 is larger than the total thickness l 1 shown in FIG.

特許文献1には、電極の構成において、活物質粒子と集電体との結着剤としてスルホン化したポリフッ化ビニリデン樹脂を用いて、活物質粒子と集電との密着性を改善する内容について記載されている。   Patent Document 1 describes the content of improving the adhesion between the active material particles and the current collector by using a sulfonated polyvinylidene fluoride resin as a binder between the active material particles and the current collector in the configuration of the electrode. Are listed.

特開平10−298386号公報JP-A-10-298386

従来のリチウムイオン二次電池においては、活物質粒子と集電体との接着力が、比較的弱いという問題点があった。このため、使用中に、活物質粒子の脱落が起こり、放電容量が低下する問題点があった。また、電解液に電極を浸積させると、フッソ系高分子材料が、膨張するという問題点があり、ケースの変形の要因であった。   The conventional lithium ion secondary battery has a problem that the adhesive force between the active material particles and the current collector is relatively weak. For this reason, the active material particles fall off during use, and there is a problem in that the discharge capacity decreases. Further, when the electrode is immersed in the electrolytic solution, there is a problem that the fluorine-based polymer material expands, which causes deformation of the case.

従って、本発明の課題は、電極での活物質粒子の集電体への結着性が優れた、電解液中での膨潤を抑えた、信頼性を向上したリチウムイオン二次電池およびその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a lithium ion secondary battery having excellent binding properties of the active material particles to the current collector at the electrode, suppressing swelling in the electrolytic solution, and improving the reliability thereof Is to provide a method.

本発明のリチウムイオン二次電池は、集電体と活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料とで構成される電極を有するリチウムイオン二次電池において、前記活物質粒子100重量部に対して、フッソ系高分子材料は、2.5重量部以上から5.5重量部以下の範囲にて配合されており、前記電極が、γ線を照射条件、200kGy以下にて照射されて、前記フッソ系高分子材料が架橋構造となったリチウムイオン二次電池である。   The lithium ion secondary battery of the present invention is a lithium ion having an electrode composed of a current collector, active material particles, and a fluorine-based polymer material that acts as a binder between the active material particles and the current collector. In the secondary battery, the fluoropolymer material is blended in the range of 2.5 parts by weight to 5.5 parts by weight with respect to 100 parts by weight of the active material particles, and the electrode has γ A lithium ion secondary battery in which a line is irradiated under irradiation conditions of 200 kGy or less and the fluorine-based polymer material has a crosslinked structure.

また、本発明は、集電体と活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料とで構成される電極を有するリチウムイオン二次電池において、前記活物質粒子100重量部に対して、フッソ系高分子材料は2.5重量部以上から3.5重量部以下の範囲にて配合されており、前記電極が、電子線を照射条件、200kGy以下にて照射し、前記フッソ系高分子材料を架橋構造となったリチウムイオン二次電池である。   The present invention also provides a lithium ion secondary battery having an electrode composed of a current collector, active material particles, and a fluorine-based polymer material that acts as a binder between the active material particles and the current collector. The fluoropolymer material is blended in the range of 2.5 parts by weight to 3.5 parts by weight with respect to 100 parts by weight of the active material particles, and the electrode is irradiated with an electron beam. The lithium ion secondary battery is irradiated with 200 kGy or less and has a cross-linked structure of the fluorine-based polymer material.

また、本発明は、前記電極が正極あるいは負極のいずれかであるリチウムイオン二次電池である。また、本発明は、前記フッソ系高分子材料は、その材質をポリフッ化ビニリデンとするリチウムイオン二次電池である。   Moreover, this invention is a lithium ion secondary battery whose said electrode is either a positive electrode or a negative electrode. Further, the present invention is a lithium ion secondary battery in which the fluorine-based polymer material is made of polyvinylidene fluoride.

また、本発明は、前記活物質粒子の材質は、正極の場合はLiMn24、あるいはLiNiO2、あるいはLiCoO2のいずれかであるリチウムイオン二次電池である。また、本発明は、前記活物質粒子の材質は負極の場合、カーボンとするリチウムイオン二次電池である。 Further, the present invention is the lithium ion secondary battery in which the material of the active material particles is LiMn 2 O 4 , LiNiO 2 , or LiCoO 2 in the case of the positive electrode. Further, the present invention is a lithium ion secondary battery in which the active material particles are made of carbon when the material is a negative electrode.

また、本発明は、活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料とを、集電体に塗布して電極を形成するリチウムイオン二次電池の製造方法において、前記電極に、γ線を、照射条件、200kGy以下にて、前記集電体の長手方向と垂直な方向に照射し、前記フッソ系高分子材料を架橋構造とするリチウムイオン二次電池の製造方法である。   The present invention also provides a lithium ion secondary that forms an electrode by applying active material particles and a fluorine-based polymer material acting as a binder between the active material particles and the current collector to the current collector. In the battery manufacturing method, the electrode is irradiated with γ-rays in an irradiation condition of 200 kGy or less in a direction perpendicular to the longitudinal direction of the current collector, and lithium ion having a cross-linked structure as the fluoropolymer material. It is a manufacturing method of a secondary battery.

また、本発明は、活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料とを、集電体に塗布して電極を形成するリチウムイオン二次電池の製造方法において、前記電極に、電子線を、照射条件、200kGy以下にて、前記集電体の長手方向と垂直な方向に照射し、前記フッソ系高分子材料を架橋構造とするリチウムイオン二次電池の製造方法である。   The present invention also provides a lithium ion secondary that forms an electrode by applying active material particles and a fluorine-based polymer material acting as a binder between the active material particles and the current collector to the current collector. In the battery manufacturing method, the electrode is irradiated with an electron beam in an irradiation condition of 200 kGy or less in a direction perpendicular to the longitudinal direction of the current collector, and lithium ion having a cross-linked structure as the fluoropolymer material. It is a manufacturing method of a secondary battery.

また、本発明は、前記電極を、正極あるいは負極のいずれかとするリチウムイオン二次電池の製造方法である。また、本発明は、前記フッソ系高分子材料を、その材質をポリフッ化ビニリデンとするリチウムイオン二次電池の製造方法である。   Moreover, this invention is a manufacturing method of the lithium ion secondary battery which uses the said electrode as either a positive electrode or a negative electrode. The present invention is also a method for producing a lithium ion secondary battery in which the fluoropolymer material is polyvinylidene fluoride.

また、本発明は、前記活物質粒子の材質を、電極が正極の場合、LiMn24、あるいはLiNiO2、あるいはLiCoO2のいずれかとするリチウムイオン二次電池の製造方法である。また、本発明は、前記活物質粒子の材質を、電極が負極の場合、カーボンとするリチウムイオン二次電池の製造方法である。 The present invention is also a method of manufacturing a lithium ion secondary battery in which the material of the active material particles is LiMn 2 O 4 , LiNiO 2 , or LiCoO 2 when the electrode is a positive electrode. The present invention is also a method for producing a lithium ion secondary battery in which the material of the active material particles is carbon when the electrode is a negative electrode.

以上、本発明によれば、電極での活物質粒子の集電体への結着性が優れ、電解液中の膨潤を抑えた信頼性を向上したリチウムイオン二次電池およびその製造方法を提供できる。   As described above, according to the present invention, there is provided a lithium ion secondary battery that has excellent binding properties of active material particles to a current collector in an electrode and that has improved reliability while suppressing swelling in an electrolytic solution, and a method for manufacturing the same. it can.

本発明の実施の形態によるリチウムイオン二次電池およびその製造方法について、以下説明する。   A lithium ion secondary battery and a manufacturing method thereof according to an embodiment of the present invention will be described below.

本発明のリチウムイオン二次電池は、活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料との混合物を、集電体に塗布して構成される電極を有するリチウムイオン二次電池であって、ここで、前記フッソ系高分子材料を、前記活物質粒子100重量部に対して、2.5重量部以上から5.5重量部以下の範囲にて配合し、前記電極は、γ線を照射条件、200kGy以下にて照射し、その結果、前記フッソ系高分子材料が架橋構造となったことを特徴としている。ここで、前記フッソ系高分子材料の配合が、活物質粒子に対して2.5重量部未満であると、活物質粒子の集電体への密着が不足し、また5.5重量部以上であると、活物質粒子の割合が少なくなるので、電池の容量が低下してしまう。   The lithium ion secondary battery of the present invention is configured by applying a mixture of active material particles and a fluoropolymer material acting as a binder between the active material particles and the current collector to the current collector. Lithium ion secondary battery having an electrode, wherein the fluorine-based polymer material is in a range of 2.5 parts by weight to 5.5 parts by weight with respect to 100 parts by weight of the active material particles. The electrode is irradiated with γ rays under irradiation conditions of 200 kGy or less, and as a result, the fluoropolymer material has a cross-linked structure. Here, when the blend of the fluoropolymer material is less than 2.5 parts by weight with respect to the active material particles, the active material particles are insufficiently adhered to the current collector, and more than 5.5 parts by weight. If so, the ratio of the active material particles decreases, and the capacity of the battery decreases.

また、前記フッソ系高分子材料は、その材質をポリフッ化ビニリデンとすが、これに限られるものではない。また、前記活物質粒子の材質は、電極が正極の場合には、LiMn24とするが、これに限られるものではない。更に、前記活物質粒子の材質は、電極が負極の場合には、カーボンとするが、これに限られるものではない。 The fluorine-based polymer material is made of polyvinylidene fluoride, but is not limited thereto. The material of the active material particles is LiMn 2 O 4 when the electrode is a positive electrode, but is not limited thereto. Further, the material of the active material particles is carbon when the electrode is a negative electrode, but is not limited thereto.

さらに、本発明のリチウムイオン二次電池では、 前記電極に照射するものを、前記γ線の代わりに電子線も使用可能であり、前記電子線の照射条件、200kGy以下として、その結果、前記フッソ系高分子材料を架橋構造とする。   Furthermore, in the lithium ion secondary battery of the present invention, an electron beam can be used instead of the γ-ray for irradiating the electrode, and the irradiation condition of the electron beam is set to 200 kGy or less. The polymer material has a crosslinked structure.

ここで、γ線、あるいは電子線の、電極に対する照射の方法の一つは、以下のごとくである。すなわち、電極をリチウム二次電池の缶の中へ収納する前にて、一部を、平面上に広げ、その電極の厚みに向かって、γ線、あるいは電子線を照射する。これによって、電極でのフッソ系高分子材料のポリフッ化ビニリデンが、架橋構造となる。このポリフッ化ビニリデンが、架橋構造となることにより、処理後の電極の厚みは、初期にて、従来の電極の厚みより、薄くなり、また、電解液浸漬後(20℃×24時間)にても、電極の厚みにの変化は、ほとんど見られない。   Here, one method of irradiating the electrode with γ rays or electron beams is as follows. That is, before storing the electrode in the can of the lithium secondary battery, a part is spread on a flat surface, and γ rays or electron beams are irradiated toward the thickness of the electrode. Thereby, the polyvinylidene fluoride of the fluorine-based polymer material at the electrode becomes a crosslinked structure. Since this polyvinylidene fluoride has a crosslinked structure, the thickness of the electrode after the treatment is initially smaller than the thickness of the conventional electrode, and after immersion in the electrolyte (20 ° C. × 24 hours) However, almost no change in the thickness of the electrode is observed.

(実施の形態1)
図1は、本発明によるリチウムイオン二次電池の製造方法の説明図である。図1(a)は、γ線の照射を受けた後の電極の初期状態の説明図であり、図1(b)は、電解液浸積後(20℃×24時間後)の電極の状態の説明図である。
(Embodiment 1)
FIG. 1 is an explanatory view of a method for producing a lithium ion secondary battery according to the present invention. FIG. 1A is an explanatory diagram of an initial state of an electrode after being irradiated with γ rays, and FIG. 1B is a state of the electrode after electrolytic solution immersion (after 20 ° C. × 24 hours). It is explanatory drawing of.

図1(a)に示すように、集電体3上に、活物質粒子1と架橋されたフッソ系高分子2が形成され、全体の厚みt1が、図1(b)のごとく電解液浸積後(20℃×24時間後)では、フッソ系高分子2aとなり、全体の厚みt2となる。ここで、全体の厚みt2は、図1(a)に示す全体の厚みt1と、ほとんど変化していない。 As shown in FIG. 1A, a fluoropolymer 2 crosslinked with the active material particles 1 is formed on the current collector 3, and the total thickness t 1 is an electrolyte solution as shown in FIG. After soaking (after 20 ° C. × 24 hours), the fluoropolymer 2a is obtained and the entire thickness t 2 is obtained. Here, the overall thickness t 2 is hardly changed from the overall thickness t 1 shown in FIG.

図3は、本発明のリチウムイオン二次電池の製造方法における、二次電池の電極の製造過程にて、電極にγ線を照射する方法の説明図である。電極10は、正極、負極とちらでも良い。電極10が、その長手方向に広げられ、図中の点線の範囲の区間にて、γ線が、電極面内にて、長手方向と垂直をなす方向から、電極10の厚みの領域に、照射される。 γ線の照射時には、電極の移動は一次停止し、γ線の照射が終了した後は、電極が図に示した方向に移動する。なお、図3と同様の構成で、電子線の照射も行われる。   FIG. 3 is an explanatory diagram of a method of irradiating an electrode with γ rays in the process of manufacturing the electrode of the secondary battery in the method of manufacturing the lithium ion secondary battery of the present invention. The electrode 10 may be a positive electrode or a negative electrode. The electrode 10 is spread in the longitudinal direction, and γ rays irradiate the region of the thickness of the electrode 10 from the direction perpendicular to the longitudinal direction in the electrode plane in the range of the dotted line in the figure. Is done. At the time of γ-ray irradiation, the movement of the electrode is temporarily stopped, and after the irradiation of γ-ray is completed, the electrode moves in the direction shown in the figure. Note that irradiation with an electron beam is also performed with the same configuration as in FIG.

表1に、リチウムイオン二次電池にて、バインダであるポリフッ化ビニリデンが3重量部と、5重量部の場合について、本発明の場合と従来の場合との比較を示す。   Table 1 shows a comparison between the case of the present invention and the conventional case in the case of 3 parts by weight and 5 parts by weight of polyvinylidene fluoride as a binder in a lithium ion secondary battery.

Figure 2006310008
Figure 2006310008

表1より、本発明のリチウムイオン二次電池において、ポリフッ化ビニリデン3重量部と5重量部をγ線照射処理することにより、丸棒しごき剥離試験にて、2φにて剥離しない結果が得られた。   From Table 1, in the lithium ion secondary battery of the present invention, a result of 3 parts by weight and 5 parts by weight of polyvinylidene fluoride being subjected to γ-ray irradiation treatment, a result of no peeling at 2φ in a round bar ironing peel test was obtained. It was.

表2に、本発明のリチウムイオン二次電池と従来のリチウムイオン二次電池において、初期と300サイクル後での電池缶の厚みの変化の結果を示す。   Table 2 shows the results of changes in the thickness of the battery can after the initial period and after 300 cycles in the lithium ion secondary battery of the present invention and the conventional lithium ion secondary battery.

Figure 2006310008
Figure 2006310008

表2より、本発明のリチウムイオン二次電池では、300サイクル後でも電池缶の厚みは、従来例と比較して変化が小さいことがわかる。   Table 2 shows that in the lithium ion secondary battery of the present invention, the change in the thickness of the battery can is small even after 300 cycles as compared with the conventional example.

図4は、本発明の製造方法によるリチウムイオン二次電池と、従来の製造方法によるリチウムイオン二次電池の各種特性の比較図である。図4(a)は、電池の容量と充放電サイクル数との関係を示し、図4(b)は、電池の缶の厚みと充放電サイクル数との関係を示す。   FIG. 4 is a comparison diagram of various characteristics of a lithium ion secondary battery produced by the production method of the present invention and a lithium ion secondary battery produced by a conventional production method. FIG. 4A shows the relationship between the battery capacity and the number of charge / discharge cycles, and FIG. 4B shows the relationship between the thickness of the battery can and the number of charge / discharge cycles.

本発明によるリチウムイオン二次電池の製造方法の説明図。図1(a)は、電極の初期状態の説明図、図1(b)は、電解液浸積後(20℃×24時間後)の電極の状態の説明図。Explanatory drawing of the manufacturing method of the lithium ion secondary battery by this invention. FIG. 1A is an explanatory diagram of an initial state of an electrode, and FIG. 1B is an explanatory diagram of an electrode state after electrolytic solution immersion (after 20 ° C. × 24 hours). 従来のリチウムイオン二次電池の製造方法の説明図。図2(a)は、電極の初期状態の説明図、図2(b)は、電解液浸積後(20℃×24時間後)の電極の状態の説明図。Explanatory drawing of the manufacturing method of the conventional lithium ion secondary battery. FIG. 2A is an explanatory diagram of the initial state of the electrode, and FIG. 2B is an explanatory diagram of the state of the electrode after immersion of the electrolyte (after 20 ° C. × 24 hours). 本発明による電極にγ線を照射する方法の説明図。Explanatory drawing of the method of irradiating the gamma ray to the electrode by this invention. 本発明によるリチウムイオン二次電池と、従来のリチウムイオン二次電池のサイクル特性の比較図。The comparison figure of the cycling characteristics of the lithium ion secondary battery by this invention, and the conventional lithium ion secondary battery.

符号の説明Explanation of symbols

1,11 活物質粒子
2,2a,21,21a フッソ系高分子
3,31 集電体
1,11 Active material particles 2,2a, 21,21a Fluoropolymer 3,31 Current collector

Claims (12)

活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料との混合物を集電体に塗布して構成される電極を有するリチウムイオン二次電池において、前記活物質粒子100重量部に対して、フッソ系高分子材料は、2.5重量部以上から5.5重量部以下の範囲にて配合されており、前記電極が、γ線を照射条件、200kGy以下にて照射されて、前記フッソ系高分子材料が架橋構造となったことを特徴とするリチウムイオン二次電池。   In a lithium ion secondary battery having an electrode configured by applying a mixture of active material particles and a fluoropolymer material acting as a binder between the active material particles and the current collector to the current collector, The fluoropolymer material is blended in a range of 2.5 parts by weight to 5.5 parts by weight with respect to 100 parts by weight of the active material particles, and the electrode is irradiated with γ rays. A lithium ion secondary battery that is irradiated with 200 kGy or less to form a crosslinked structure in the fluorine-based polymer material. 集電体と、活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料とで構成される電極を有するリチウムイオン二次電池において、前記活物質粒子100重量部に対して、フッソ系高分子材料は、2.5重量部以上から5.5重量部以下の範囲にて配合されており、前記電極が、電子線を照射条件、200kGy以下にて照射し、前記フッソ系高分子材料を架橋構造となったことを特徴とするリチウムイオン二次電池。   In a lithium ion secondary battery having an electrode composed of a current collector, active material particles, and a fluorine-based polymer material that acts as a binder between the active material particles and the current collector, the active material particles The fluoropolymer material is blended in a range of 2.5 parts by weight to 5.5 parts by weight with respect to 100 parts by weight, and the electrode is irradiated with an electron beam at 200 kGy or less. A lithium ion secondary battery that is irradiated to form a crosslinked structure of the fluorine-based polymer material. 前記電極は、正極、あるいは負極のいずれかであることを特徴とする請求項1または2のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the electrode is a positive electrode or a negative electrode. 前記フッソ系高分子材料は、その材質をポリフッ化ビニリデンとすることを特徴とする請求項1または2のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the fluorine-based polymer material is polyvinylidene fluoride. 前記活物質粒子の材質は、電極が正極において、LiMn24、あるいはLiNiO2、あるいはLiCoO2のいずれかであることを特徴とする請求項1ないし4のいずれかに記載のリチウムイオン二次電池。 5. The lithium ion secondary according to claim 1, wherein the material of the active material particles is LiMn 2 O 4 , LiNiO 2 , or LiCoO 2 when the electrode is a positive electrode. battery. 前記活物質粒子は、電極が負極においてカーボンであることを特徴とする請求項1ないし4のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 4, wherein the active material particles are carbon in the negative electrode. 活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料とを、集電体に塗布して電極を形成するリチウムイオン二次電池の製造方法において、前記電極に、γ線を、照射条件、200kGy以下にて、前記集電体の長手方向と垂直な方向に照射し、前記フッソ系高分子材料を架橋構造とする事を特徴とするリチウムイオン二次電池の製造方法。   In a method for manufacturing a lithium ion secondary battery, in which an active material particle and a fluorine-based polymer material that acts as a binder between the active material particle and the current collector are applied to the current collector to form an electrode, The electrode is irradiated with γ-rays under irradiation conditions of 200 kGy or less in a direction perpendicular to the longitudinal direction of the current collector, and the fluorine-based polymer material has a cross-linked structure. A method for manufacturing a secondary battery. 活物質粒子と、前記活物質粒子と集電体との結着剤として作用するフッソ系高分子材料とで構成される電極を、集電体に塗布して電極を形成するリチウムイオン二次電池の製造方法において、前記電極に、電子線を、照射条件、200kGy以下にて、前記集電体の長手方向と垂直な方向に照射し、前記フッソ系高分子材料を架橋構造とすることを特徴とするリチウムイオン二次電池の製造方法。   Lithium ion secondary battery in which an electrode composed of active material particles and a fluorine-based polymer material acting as a binder between the active material particles and the current collector is applied to the current collector to form an electrode In this manufacturing method, the electrode is irradiated with an electron beam in an irradiation condition of 200 kGy or less in a direction perpendicular to the longitudinal direction of the current collector, so that the fluoropolymer material has a crosslinked structure. A method for producing a lithium ion secondary battery. 前記電極を、正極あるいは負極のいずれかであることを特徴とする請求項7または8のいずれかに記載のリチウムイオン二次電池の製造方法。   The method for producing a lithium ion secondary battery according to claim 7, wherein the electrode is either a positive electrode or a negative electrode. 前記フッソ系高分子材料を、その材質をポリフッ化ビニリデンとすることを特徴とする請求項7ないし9のいずれかに記載のリチウムイオン二次電池の製造方法。   10. The method for producing a lithium ion secondary battery according to claim 7, wherein the fluorine-based polymer material is polyvinylidene fluoride. 前記活物質粒子の材質を、電極が正極の場合、LiMn24、あるいはLiNiO2、あるいはLiCoO2のいずれかとすることを特徴とする請求項7ないし9のいずれかに記載のリチウムイオン二次電池の製造方法。 10. The lithium ion secondary according to claim 7, wherein the material of the active material particles is LiMn 2 O 4 , LiNiO 2 , or LiCoO 2 when the electrode is a positive electrode. A battery manufacturing method. 前記活物質粒子の材質を、電極が負極の場合、カーボンとすることを特徴とする請求項7ないし9のいずれかに記載のリチウムイオン二次電池の製造方法。   10. The method of manufacturing a lithium ion secondary battery according to claim 7, wherein the material of the active material particles is carbon when the electrode is a negative electrode.
JP2005129239A 2005-04-27 2005-04-27 Lithium ion secondary cell and manufacturing method therefor Pending JP2006310008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005129239A JP2006310008A (en) 2005-04-27 2005-04-27 Lithium ion secondary cell and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129239A JP2006310008A (en) 2005-04-27 2005-04-27 Lithium ion secondary cell and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2006310008A true JP2006310008A (en) 2006-11-09

Family

ID=37476679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129239A Pending JP2006310008A (en) 2005-04-27 2005-04-27 Lithium ion secondary cell and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2006310008A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201363A (en) * 1993-12-29 1995-08-04 Tdk Corp Lithium secondary battery
JPH07296816A (en) * 1994-04-28 1995-11-10 Sony Corp Nonaqueous electrolyte secondary battery
JPH09274909A (en) * 1996-04-03 1997-10-21 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and its manufacture
JPH10112321A (en) * 1996-10-07 1998-04-28 Sony Corp Nonaqueous electrolyte secondary battery and its manufacture
JPH10255792A (en) * 1996-02-22 1998-09-25 Sony Corp Manufacture for carbonaceous negative electrode material for nonaqueous electrolyte secondary battery
JPH10298386A (en) * 1997-04-28 1998-11-10 Kureha Chem Ind Co Ltd Binder for battery binder solution, electrode mixture, electrode structure and battery
JP2000040506A (en) * 1998-05-20 2000-02-08 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and its manufacture
JP2002304997A (en) * 2001-02-01 2002-10-18 Mitsubishi Materials Corp Lithium ion polymer secondary battery and synthesizing method of binder used for adhesion layer thereof
JP2004139800A (en) * 2002-10-16 2004-05-13 Dainippon Printing Co Ltd Nonaqueous electrolyte battery and its electrode plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201363A (en) * 1993-12-29 1995-08-04 Tdk Corp Lithium secondary battery
JPH07296816A (en) * 1994-04-28 1995-11-10 Sony Corp Nonaqueous electrolyte secondary battery
JPH10255792A (en) * 1996-02-22 1998-09-25 Sony Corp Manufacture for carbonaceous negative electrode material for nonaqueous electrolyte secondary battery
JPH09274909A (en) * 1996-04-03 1997-10-21 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and its manufacture
JPH10112321A (en) * 1996-10-07 1998-04-28 Sony Corp Nonaqueous electrolyte secondary battery and its manufacture
JPH10298386A (en) * 1997-04-28 1998-11-10 Kureha Chem Ind Co Ltd Binder for battery binder solution, electrode mixture, electrode structure and battery
JP2000040506A (en) * 1998-05-20 2000-02-08 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and its manufacture
JP2002304997A (en) * 2001-02-01 2002-10-18 Mitsubishi Materials Corp Lithium ion polymer secondary battery and synthesizing method of binder used for adhesion layer thereof
JP2004139800A (en) * 2002-10-16 2004-05-13 Dainippon Printing Co Ltd Nonaqueous electrolyte battery and its electrode plate

Similar Documents

Publication Publication Date Title
US9799921B2 (en) Method of manufacturing negative electrode for solid-state battery, method of manufacturing solid-state battery, and negative electrode slurry
US20190288279A1 (en) Lithium ion battery and negative electrode material thereof
CN110600808B (en) Method for improving lithium dendrite on solid electrolyte interface by using carbon fluoride
JP2003346810A (en) Lithium secondary battery with suppressed decomposition of electrolytic solution and production method thereof
CN1393954A (en) Lithium polymer cell
WO2009063907A1 (en) Positive electrode mixture for nonaqueous battery and positive electrode structure
KR101618428B1 (en) Electrode structure for a lithium-sulfur secondary cell and method of manufacturing the same
JP2007305453A (en) Lithium ion polymer battery
KR20170120735A (en) Method for menufacturing a cathode of lithium primary battery
JP3500245B2 (en) Gel-like solid electrolyte secondary battery
JP2005129446A (en) Electrochemical energy storage device
JP2006228544A (en) Lithium ion secondary battery
ATE339015T1 (en) SECONDARY CELL WITH POLYMER COATED ANODE
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2004127799A (en) Positive electrode plate for battery, its manufacturing method, and secondary battery
JP2006310008A (en) Lithium ion secondary cell and manufacturing method therefor
US20180294482A1 (en) Mixed binders
JP4725163B2 (en) Nonaqueous electrolyte secondary battery
JP2007273279A (en) Nonaqueous electrolyte battery
JP2009043736A (en) Structuring battery
CN110137479A (en) A kind of lithium ion battery anode active material method of modifying
JP2009037937A (en) Nonaqueous electrolyte battery
JP4474717B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP3700736B2 (en) Manufacturing method of thin lithium battery
JP4054925B2 (en) Lithium battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120104