JP4054925B2 - Lithium battery - Google Patents

Lithium battery Download PDF

Info

Publication number
JP4054925B2
JP4054925B2 JP27357498A JP27357498A JP4054925B2 JP 4054925 B2 JP4054925 B2 JP 4054925B2 JP 27357498 A JP27357498 A JP 27357498A JP 27357498 A JP27357498 A JP 27357498A JP 4054925 B2 JP4054925 B2 JP 4054925B2
Authority
JP
Japan
Prior art keywords
separator
electrolyte
lithium
lithium salt
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27357498A
Other languages
Japanese (ja)
Other versions
JP2000106212A (en
Inventor
裕江 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP27357498A priority Critical patent/JP4054925B2/en
Publication of JP2000106212A publication Critical patent/JP2000106212A/en
Application granted granted Critical
Publication of JP4054925B2 publication Critical patent/JP4054925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明はリチウム電池に関するもので、さらに詳しくは、リチウム電池のセパレータに用いるゲル電解質の改良に関するものである。
【0002】
【従来の技術】
近年、携帯電話、PHS、小型パーソナルコンピュータなどの携帯機器類は、エレクトロニクス技術の進展に伴って小型化、軽量化が著しく、これらの機器類に用いられる電源としての電池においても小型化、軽量化が求められるようになってきている。
【0003】
このような用途に期待できる電池の1つとしてリチウム電池があるが、既に実用化されているリチウム一次電池に加えて、リチウム二次電池の実用化、高容量化、長寿命化のための研究が進められている。
【0004】
上記した種々のリチウム電池は、いずれも円筒形あるいは角形が中心である。一方、リチウム一次電池においては固体電解質を用い、プリント技術を応用した製法により、薄形形状のものも実用化されている。このような技術を応用し、リチウム二次電池やリチウムイオン二次電池においても、固体またはゲル状電解質を用いた薄形形状の電池の実用化のために、従来より各種の研究開発がなされている。
【0005】
円筒形あるいは角形リチウム二次電池の場合、正極、負極、およびセパレータからなる極群を円筒形あるいは角形の電槽に挿入した後、液体状の電解液を注液するという工程を経て作製される。これに対し、固体電解質リチウム二次電池においては、正極と負極を固体あるいはゲル状の電解質を介して対向させた後、パッキングする方法で作製される。しかし、このような固体電解質電池は、円筒形あるいは角形電池に比較して、ハイレート充放電性能やサイクル寿命が短いという欠点があった。
【0006】
この原因として、以下のような要因が挙げられる。すなわち、円筒形あるいは角形電池の場合、液体状の電解液を注液するため、電極およびセパレータ中のリチウムイオン伝導度が、一般に電池作動に必要なレベルと言われる1×10-3S/cmオーダーの確保が容易である。これに対し、固体電解質電池の場合、電解質が固体のため、リチウムイオン伝導度が液系に比較して低くならざるを得ず、有機溶媒を加えてゲル状にし、イオン伝導度を向上させたゲル電解質であっても、一般に1×10-3S/cmオーダーの確保は困難であった。そのため、充放電性能が劣るという欠点があった。
【0007】
さらに、円筒形あるいは角形電池の場合、電極/セパレータ間の界面が固液界面であるため、界面抵抗は比較的低い。これに対し、固体電解質電池の場合、電極/セパレータ間の界面が固体同士の接触となるため、円筒形あるいは角形電池に比較して界面抵抗が高くならざるを得なかった。そのため、電極/セパレータ間のリチウムイオンの移動が阻害され、ハイレート充放電性能やサイクル寿命が短いという欠点があった。
【0008】
そこで従来より、リチウムイオン伝導度を向上させたゲル電解質として、ポリエチレンオキサイドをポリマー骨格に用い、これにリチウム塩および有機溶媒からなる電解液を加えたゲル電解質が最も広く検討されてきた。固体でありながらリチウムイオン伝導性を有するポリエチレンオキサイドをポリマー骨格に用い、リチウム塩や有機溶媒との混合比を規定することにより、現在までに液系電解質に匹敵する1×10-3S/cmオーダーのリチウムイオン伝導度を実現しており、このゲル電解質を用いたリチウム電池は、ほぼ実用化レベルに至っている。
【0009】
【発明が解決しようとする課題】
しかし、上記したようなポリエチレンオキサイドを用いたリチウム電池は、ローレート放電時には充分な電池性能を示すが、ハイレート放電時には、今なおリチウムイオン伝導度の向上および電極/電解質間の界面抵抗の低減が不足しており、電池性能を充分なレベルに保持することが困難であるという問題点があった。
【0010】
本発明は上記問題点に鑑みてなされたものであり、特殊な製造工程などを必要としなくてもセパレータ中のゲル電解質のイオン伝導度を1×10-3S/cmオーダーに保持し、電極とゲル電解質間のリチウムイオンのスムーズな移動を実現することにより、ハイレート放電時にも電池性能を充分なレベルに保持し、長寿命で安定した電池性能を得ることができるリチウム電池を提供することを目的としたものである。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明は、電極活物質と結着剤と電解質とを少なくとも含む正極および負極を、ポリマーとリチウム塩と有機溶媒からなるゲル電解質を含むセパレータを介して対向させたリチウム電池において、前記セパレータ中のゲル電解質組成と、前記正極および負極の内少なくとも一方の電解質組成とが異なるものであって、前記セパレータ中に含まれるリチウム塩濃度が、前記正極および負極の内少なくとも一方に含まれるリチウム塩濃度より高いことを特徴とするものである。
【0013】
特に、前記セパレータ中に含まれるリチウム塩濃度が、セパレータ中の電解質を構成する有機溶媒1リットルに対して0.7〜2.5モルであり、かつ、前記正極および負極の内少なくとも一方に含まれるリチウム塩濃度が、電極中の電解質を構成する有機溶媒1リットルに対して0.5〜1.5モルであることが望ましい。
【0014】
また、本発明は、前記セパレータ中に含まれるゲル電解質が、リチウム塩と、有機溶媒と、リチウム塩を有機溶媒に溶解してなる電解液に対して親和性が高い構造を主に有するポリマーとからなることを特徴としたものである。
【0015】
さらに、前記セパレータ中に含まれるゲル電解質が、リチウム塩と、有機溶媒と、重合性官能基を分子鎖中に2個以上有するモノマーとの混合物を、硬化させることにより得られるものであることが望ましい。
【0016】
【作用】
本発明により、以下のような作用が期待できる。まず第1に、セパレータ中のゲル電解質組成と、正極および負極の内少なくとも一方の電解質組成とが異なるものであって、セパレータ中に含まれるリチウム塩濃度を、正極および負極の内少なくとも一方に含まれるリチウム塩濃度より高くすることにより、充放電中の電極とゲル電解質間のリチウムイオンの移動の駆動力として、電荷移動だけでなく濃度拡散による移動が加わるため、電極とゲル電解質間のリチウムイオンのスムーズな移動を実現することができる。
【0018】
特に、セパレータ中に含まれるリチウム塩濃度が、セパレータ中の電解質を構成する有機溶媒1リットルに対して0.7〜2.5モルであり、かつ、前記正極および負極の内少なくとも一方に含まれるリチウム塩濃度が、電極中の電解質を構成する有機溶媒1リットルに対して0.5〜1.5モルであるように規定することによ、上記と同様の効果を得ることができる。
【0019】
また、セパレータ中に含まれるゲル電解質が、リチウム塩と、有機溶媒と、リチウム塩を有機溶媒に溶解してなる電解液に対して親和性が高い構造を主に有するポリマーとからなるものとすることにより、ポリマー骨格が電解液と容易にゲル化し、かつ、電池反応の進行に充分な電解液を保持することができる。その結果、安定した電池性能が得られるだけでなく、漏液などの危険性もない。また、セパレータ中に含まれるゲル電解質が、リチウム塩と、有機溶媒と、重合性官能基を分子鎖中に2個以上有するモノマーとの混合物を、硬化させることにより得られるものとすることにより、モノマーが架橋硬化されることによりゲルが形成されるため、3次元網目構造を持つゲル電解質となる。その結果、リチウムイオン伝導性や保液性を損なうことなく、機械的強度に優れたゲル電解質を得ることができる。
【0020】
したがって、本発明は、以上の作用が相乗的に得られるため、信頼性に優れ、かつ、初期容量やハイレート充放電性能、サイクル寿命などに優れたリチウム電池を容易に提供することができるものである。
【0021】
【実施例】
以下、本発明の詳細について、実施例に基づき説明する。
【0022】
図1に本発明のリチウム電池の断面図を示す。図1において、1は正極活物質であるコバルト酸リチウムを主成分とした正極合剤であり、アルミ箔からなる正極集電体3上に塗布されている。また、2は負極活物質であるカーボンを主成分とした負極合剤であり、銅箔からなる負極集電体4上に塗布されている。また、前記正極合剤1と負極合剤2は、ゲル電解質からなるセパレータ5を介して積層されている。さらに、このようにして積層した極群をアルミラミネートフィルム6で覆い、四方を熱溶着により封止し、リチウム電池としたものである。
【0023】
次に、上記構成のリチウム電池の製造方法を説明する。はじめに、正極合剤1は以下のようにして得た。まず、正極活物質であるコバルト酸リチウムと、導電剤であるアセチレンブラックを混合し、さらに結着剤としてポリフッ化ビニリデンのN−メチル−2−ピロリドン溶液を混合したものを正極集電体3であるアルミ箔上に塗布した後、乾燥し、合剤厚みが0.1mmとなるようにプレスすることにより、正極活物質シートを得た。次に、γ−ブチロラクトン1リットルに1モルのLiBF4 を溶解した電解液に化1で示される構造を持つアクリレートモノマーを混合した電解質溶液を作製した。
【0024】
【化1】

Figure 0004054925
【0025】
これに前記正極活物質シートを浸漬し、電解質溶液を含浸した。続いて、電解質溶液から正極活物質シートを取り出し、電子線照射によりモノマーを重合させてポリマーを形成させた。以上の工程により正極合剤1を得た。また、負極合剤2は負極活物質であるカーボンを用い、負極集電体4に銅箔を用いる以外は前記正極合剤1と同様の方法により得た。
【0026】
一方、セパレータ5は以下のようにして得た。まず、有機溶媒としてのγ−ブチロラクトン1リットルに2モルのリチウム塩であるLiBF4 を溶解した電解液に、化2で示される構造を持つ3官能アクリレートモノマーを混合し、正極合剤1上に塗布した後、電子線照射によりモノマーを重合させてポリマーを形成させ、ゲル状の電解質とした。以上の工程によりセパレータ5を得た。
【0027】
【化2】
Figure 0004054925
【0028】
以上のような原料および製法により作製した容量10mAhのリチウム電池を、本発明電池A1とした。
【0029】
また、正極合剤1および負極合剤2に用いる電解液とセパレータ5に用いる電解液に表1に示すものを用い、その他の条件は本発明電池A1と同一の原料および製法により、容量10mAhのリチウム電池を作製し、本発明電池A2〜A5、比較電池B1、B2とした。
【0030】
【表1】
Figure 0004054925
【0031】
なお、電解質濃度は、それぞれγ−ブチロラクトン1リットル中のLiBF4 の濃度を示す。
【0032】
まず、本発明電池A1〜A5、比較電池B1、B2に用いた、セパレータのゲル電解質のリチウムイオン伝導度の温度依存性を図2に示す。なお、図2におけるX軸は、絶対温度の逆数を1000倍したものである。また、X軸の第2軸には各測定点の摂氏温度を表示している。
【0033】
図2から、本発明電池A1〜A5、比較電池B1、B2に用いた、セパレータのゲル電解質のリチウムイオン伝導度は、少なくとも20℃付近では全て1×10-3S/cmオーダーを保持しており、また、低温下でもそれほど大きな温度依存性は示さないことが分かった。従って、これらの電解質を用いた本発明電池A1〜A5、比較電池B1、B2のいずれも、少なくとも常温低レート充放電時の初期容量は、設計容量近くの性能が得られると予想される。
【0034】
次に、これらの本発明電池A1〜A5および比較電池B1、B2について、各種電流値で放電を行い、その結果得られた放電電流と放電容量の関係を図3に示す。なお、試験条件は、20℃の温度下で1mA(0.1CmA相当)の電流で終止電圧4.2Vまで充電した後、各種電流で終止電圧2.7Vまで放電したものであり、放電容量は1mAの電流で放電したときに得られた容量を100としたときのパーセントで示している。なお、本発明電池A1〜A5および比較電池B1、B2のいずれも、放電電流1mAでの放電容量は、設計容量のほぼ95〜100%が得られた。
【0035】
図3から、放電電流5mAでは比較電池B2は放電電流1mAでの放電容量の30%程度の放電容量しか得られず、比較電池B1も放電電流1mAでの放電容量の50%程度の放電容量しか得られないのに対し、本発明電池A1〜A5では放電電流5mAでも設計容量の85〜90%の放電容量が得られることが分かった。
【0036】
この原因として、以下の要因が考えられる。まず、比較電池B1、B2では、セパレータ中のゲル電解質組成と、正極および負極中のゲル電解質組成とが同一であるため、充放電中の電極とゲル電解質間のリチウムイオンの移動の駆動力は、電荷移動とごくわずかな濃度拡散だけである。このため、特にハイレート放電時には、電極とゲル電解質の界面でリチウムイオンの移動が律速となり、正極側のリチウムイオン不足の影響が大きく現れ、放電容量が十分得られない。一方、本発明電池A1〜A5では、セパレータ中に含まれるリチウムイオン濃度が、電極中のリチウムイオン濃度より高いため、充放電中の電極とゲル電解質間のリチウムイオンの移動の駆動力として、電荷移動だけでなく濃度拡散による移動が加わる。従って、電極とゲル電解質間のリチウムイオンのスムーズな移動を実現することができ、ハイレート放電時にも正極側のリチウムイオンが十分供給されるため、放電容量が十分得られると考えられる。
【0037】
さらに、これらの本発明電池の内A1、A2および比較電池の内B1について、充放電サイクル試験を行い、その結果得られたサイクル数と放電容量の関係を図4に示す。なお、試験条件は、20℃の温度下で1mAの電流で終止電圧4.2Vまで充電した後、1mAの電流で終止電圧2.7Vまで放電したものであり、放電容量は正極の設計容量を100としたときのパーセントで示している。
【0038】
図4から、本発明電池A1、A2および比較電池B1のいずれも、充放電初期は設計容量のほぼ95〜100%が得られており、いずれの電解質の組み合わせを用いても充放電初期においては良好に作動することが分かる。しかし、比較電池B1はサイクルを経過すると徐々に容量が低下し、150サイクル目に設計容量の50%を下回る。これに対し、本発明電池A1、A2は充放電初期より設計容量のほぼ100%が得られるだけでなく、さらに200サイクル経過後も若干の容量低下が見られるが、設計容量の80%以上の容量が保持されることが分かった。
【0039】
この原因として、以下の要因が考えられる。まず、セパレータ中のゲル電解質が、前記化2で示される構造を持つ3官能アクリレートモノマーを重合させたポリマーを用いたものである。すなわち、ポリマー骨格が電解液との親和性が高いエチレンオキサイド構造およびプロピレンオキサイド構造を有し、3次元網目構造を持っているため、電解液と容易にゲル化し、かつ、電池反応の進行に充分な電解液を保持することができる上、機械的強度に優れたゲル電解質である。そのため、充放電時にリチウムイオンおよび電解液の移動が繰り返し起こっても、セパレータ中に十分なリチウムイオンおよび電解液が保持され、安定した電池性能が得られるだけでなく、漏液などの危険性もない。
【0040】
これに加えて、本発明電池A1、A2では、上記と同じく、セパレータ中に含まれるリチウムイオン濃度が電極中のリチウムイオン濃度より高いため、電極とゲル電解質間のリチウムイオンの移動がスムーズである。そのため、本発明電池A1、A2では、充放電サイクル進行後もセパレータ中に十分なリチウムイオンおよび電解液が保持され、サイクル進行による容量の低下が抑制されるものと考えられる。
【0041】
なお、本実施例においては、セパレータだけでなく、電極中の電解質にもゲル電解質を用いたが、本発明は電極中の電解質の形態を規制するものではない。従って、正極および負極のいずれか一方、あるいは両方ともが電極中の電解質に液状電解質を用いた場合にも、セパレータ中の電解質がゲル電解質である場合には、本発明の効果は有効に得ることができる。
【0042】
【発明の効果】
上記したとおり本発明によれば、特殊な製造工程などを必要としなくても初期容量およびハイレート充放電性能、サイクル寿命に優れたリチウム電池を提供することができるものであり、その工業的価値は大である。
【図面の簡単な説明】
【図1】本発明のリチウム電池の断面図である。
【図2】本発明電池A1〜A5および比較電池B1、B2について、セパレータのゲル電解質のリチウムイオン伝導度の温度依存性を示した図である。
【図3】本発明電池A1〜A5および比較電池B1、B2について、各種電流値で放電を行ったときの放電電流と放電容量の関係を示した図である。
【図4】本発明電池A1、A2および比較電池B1について、充放電サイクル試験を行ったときのサイクル数と放電容量の関係を示した図である。
【符号の説明】
1 正極合剤
2 負極合剤
3 正極集電体
4 負極集電体
5 セパレータ
6 アルミラミネートフィルム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium battery, and more particularly to improvement of a gel electrolyte used for a lithium battery separator.
[0002]
[Prior art]
In recent years, portable devices such as mobile phones, PHS, and small personal computers have been remarkably reduced in size and weight with the progress of electronics technology, and batteries as power sources used in these devices have also been reduced in size and weight. Has come to be required.
[0003]
One of the batteries that can be expected for such applications is a lithium battery. In addition to lithium primary batteries that have already been put into practical use, research on practical use, higher capacity, and longer life of lithium secondary batteries is also available. Is underway.
[0004]
All of the above-described various lithium batteries are mainly cylindrical or rectangular. On the other hand, a thin primary battery is put into practical use by a manufacturing method using a solid electrolyte and applying a printing technique. By applying such technology, various research and development have been conducted for lithium secondary batteries and lithium ion secondary batteries in order to commercialize thin batteries using solid or gel electrolytes. Yes.
[0005]
In the case of a cylindrical or prismatic lithium secondary battery, it is manufactured through a process of injecting a liquid electrolyte after inserting a pole group consisting of a positive electrode, a negative electrode, and a separator into a cylindrical or prismatic battery case. . On the other hand, in the solid electrolyte lithium secondary battery, the positive electrode and the negative electrode are made to face each other through a solid or gel electrolyte and then packed. However, such a solid electrolyte battery has a drawback that it has a high rate charge / discharge performance and a short cycle life as compared with a cylindrical or prismatic battery.
[0006]
The following factors can be cited as this cause. That is, in the case of a cylindrical or rectangular battery, since a liquid electrolyte is injected, the lithium ion conductivity in the electrode and the separator is generally said to be a level required for battery operation, which is said to be 1 × 10 −3 S / cm. It is easy to secure orders. In contrast, in the case of a solid electrolyte battery, since the electrolyte is solid, the lithium ion conductivity has to be lower than that of the liquid system, and an organic solvent is added to form a gel to improve the ionic conductivity. Even with a gel electrolyte, it is generally difficult to ensure the order of 1 × 10 −3 S / cm. Therefore, there was a drawback that charge / discharge performance was inferior.
[0007]
Furthermore, in the case of a cylindrical or rectangular battery, the interface resistance is relatively low because the interface between the electrode / separator is a solid-liquid interface. On the other hand, in the case of a solid electrolyte battery, the interface between the electrodes / separators is a contact between solids, and thus the interface resistance has to be higher than that of a cylindrical or rectangular battery. Therefore, the movement of lithium ions between the electrode / separator is hindered, and there is a drawback that high rate charge / discharge performance and cycle life are short.
[0008]
Therefore, as a gel electrolyte with improved lithium ion conductivity, a gel electrolyte in which polyethylene oxide is used as a polymer skeleton and an electrolytic solution composed of a lithium salt and an organic solvent is added to the gel electrolyte has been most widely studied. Polyethylene oxide having lithium ion conductivity while being solid is used for the polymer skeleton, and by defining the mixing ratio with a lithium salt or an organic solvent, 1 × 10 −3 S / cm, which is comparable to a liquid electrolyte to date. Lithium ion conductivity using this gel electrolyte has almost reached practical level.
[0009]
[Problems to be solved by the invention]
However, lithium batteries using polyethylene oxide as described above show sufficient battery performance during low-rate discharge, but still lack improvement in lithium ion conductivity and reduction in electrode / electrolyte interface resistance during high-rate discharge. However, there is a problem that it is difficult to maintain the battery performance at a sufficient level.
[0010]
The present invention has been made in view of the above problems, and maintains the ionic conductivity of the gel electrolyte in the separator on the order of 1 × 10 −3 S / cm without requiring a special manufacturing process. By providing a smooth movement of lithium ions between the electrolyte and the gel electrolyte, the battery performance can be maintained at a sufficient level even during high-rate discharge, and a lithium battery capable of obtaining a long-life and stable battery performance can be provided. It is intended.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a lithium and a positive electrode and a negative electrode each including at least an electrode active material, a binder, and an electrolyte, with a separator including a gel electrolyte including a polymer, a lithium salt, and an organic solvent. In the battery, the gel electrolyte composition in the separator is different from the electrolyte composition of at least one of the positive electrode and the negative electrode, and the concentration of lithium salt contained in the separator is at least one of the positive electrode and the negative electrode. It is characterized by being higher than the concentration of lithium salt contained in.
[0013]
In particular , the lithium salt concentration contained in the separator is 0.7 to 2.5 mol with respect to 1 liter of the organic solvent constituting the electrolyte in the separator, and is contained in at least one of the positive electrode and the negative electrode. It is desirable that the lithium salt concentration is 0.5 to 1.5 mol with respect to 1 liter of the organic solvent constituting the electrolyte in the electrode.
[0014]
In the present invention, the gel electrolyte contained in the separator includes a lithium salt, an organic solvent, and a polymer mainly having a structure having a high affinity for an electrolytic solution obtained by dissolving a lithium salt in an organic solvent. It is characterized by comprising.
[0015]
Furthermore, the gel electrolyte contained in the separator may be obtained by curing a mixture of a lithium salt, an organic solvent, and a monomer having two or more polymerizable functional groups in the molecular chain. desirable.
[0016]
[Action]
According to the present invention, the following effects can be expected. First, the gel electrolyte composition in the separator is different from the electrolyte composition of at least one of the positive electrode and the negative electrode, and the lithium salt concentration contained in the separator is included in at least one of the positive electrode and the negative electrode. By making the concentration higher than the lithium salt concentration, the lithium ion transfer between the electrode and the gel electrolyte is added as the driving force for the movement of lithium ions between the electrode and the gel electrolyte during charging and discharging, as well as the transfer due to concentration diffusion. Smooth movement can be realized.
[0018]
In particular , the lithium salt concentration contained in the separator is 0.7 to 2.5 mol with respect to 1 liter of organic solvent constituting the electrolyte in the separator, and is contained in at least one of the positive electrode and the negative electrode. lithium salt concentration, Ri by the defining of the organic 1 liter of the solvent constituting the electrolyte in the electrode such that 0.5 to 1.5 moles, it is possible to obtain the same effect as described above.
[0019]
Further , the gel electrolyte contained in the separator is composed of a lithium salt, an organic solvent, and a polymer mainly having a structure having a high affinity for an electrolytic solution obtained by dissolving the lithium salt in the organic solvent. As a result, the polymer skeleton easily gels with the electrolytic solution, and the electrolytic solution sufficient for the progress of the battery reaction can be retained. As a result, not only stable battery performance is obtained, but there is no danger of leakage. Further , the gel electrolyte contained in the separator is obtained by curing a mixture of a lithium salt, an organic solvent, and a monomer having two or more polymerizable functional groups in the molecular chain, Since the monomer is crosslinked and cured to form a gel, the gel electrolyte has a three-dimensional network structure. As a result, a gel electrolyte excellent in mechanical strength can be obtained without impairing lithium ion conductivity and liquid retention.
[0020]
Therefore, the present invention can provide a lithium battery that is excellent in reliability and excellent in initial capacity, high-rate charge / discharge performance, cycle life, and the like because the above-mentioned action can be obtained synergistically. is there.
[0021]
【Example】
Hereinafter, details of the present invention will be described based on examples.
[0022]
FIG. 1 shows a cross-sectional view of the lithium battery of the present invention. In FIG. 1, reference numeral 1 denotes a positive electrode mixture mainly composed of lithium cobalt oxide, which is a positive electrode active material, and is applied on a positive electrode current collector 3 made of an aluminum foil. Reference numeral 2 denotes a negative electrode mixture mainly composed of carbon, which is a negative electrode active material, and is applied on a negative electrode current collector 4 made of copper foil. The positive electrode mixture 1 and the negative electrode mixture 2 are laminated via a separator 5 made of a gel electrolyte. Furthermore, the pole group laminated in this way is covered with an aluminum laminate film 6, and the four sides are sealed by thermal welding to form a lithium battery.
[0023]
Next, a method for manufacturing the lithium battery having the above configuration will be described. First, the positive electrode mixture 1 was obtained as follows. First, the positive electrode current collector 3 was prepared by mixing lithium cobaltate as a positive electrode active material and acetylene black as a conductive agent and further mixing a N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder. After apply | coating on a certain aluminum foil, it dried and obtained the positive electrode active material sheet | seat by pressing so that mixture thickness might be set to 0.1 mm. Next, an electrolyte solution was prepared by mixing an acrylate monomer having a structure represented by Chemical Formula 1 with an electrolyte obtained by dissolving 1 mol of LiBF 4 in 1 liter of γ-butyrolactone.
[0024]
[Chemical 1]
Figure 0004054925
[0025]
The positive electrode active material sheet was immersed in this and impregnated with an electrolyte solution. Subsequently, the positive electrode active material sheet was taken out from the electrolyte solution, and the monomer was polymerized by electron beam irradiation to form a polymer. The positive electrode mixture 1 was obtained by the above process. The negative electrode mixture 2 was obtained by the same method as the positive electrode mixture 1 except that carbon as a negative electrode active material was used and a copper foil was used for the negative electrode current collector 4.
[0026]
On the other hand, the separator 5 was obtained as follows. First, a trifunctional acrylate monomer having a structure represented by Chemical Formula 2 is mixed with an electrolytic solution in which 2 mol of lithium salt LiBF 4 is dissolved in 1 liter of γ-butyrolactone as an organic solvent. After coating, the monomer was polymerized by electron beam irradiation to form a polymer, and a gel electrolyte was obtained. The separator 5 was obtained by the above process.
[0027]
[Chemical 2]
Figure 0004054925
[0028]
A lithium battery having a capacity of 10 mAh produced by the above raw materials and production method was designated as a battery A1 of the present invention.
[0029]
Moreover, the electrolyte solution used for the positive electrode mixture 1 and the negative electrode mixture 2 and the electrolyte solution used for the separator 5 are those shown in Table 1, and other conditions are the same as those of the battery A1 of the present invention, and the capacity is 10 mAh. Lithium batteries were prepared and used as the present invention batteries A2 to A5 and comparative batteries B1 and B2.
[0030]
[Table 1]
Figure 0004054925
[0031]
Incidentally, the electrolyte concentration indicates the concentration of LiBF 4, respectively γ- butyrolactone in 1 liter.
[0032]
First, the temperature dependence of the lithium ion conductivity of the gel electrolyte of the separator used in the present invention batteries A1 to A5 and comparative batteries B1 and B2 is shown in FIG. The X axis in FIG. 2 is obtained by multiplying the reciprocal of absolute temperature by 1000. The second axis of the X axis displays the Celsius temperature at each measurement point.
[0033]
From FIG. 2, the lithium ion conductivity of the separator gel electrolyte used in the batteries A1 to A5 of the present invention and the comparative batteries B1 and B2 are all maintained at the order of 1 × 10 −3 S / cm at least around 20 ° C. It was also found that the temperature dependence was not so great even at low temperatures. Therefore, it is expected that any of the present invention batteries A1 to A5 and comparative batteries B1 and B2 using these electrolytes will have a performance close to the design capacity at least at the initial capacity at room temperature and low rate charge / discharge.
[0034]
Next, these invention batteries A1 to A5 and comparative batteries B1 and B2 are discharged at various current values, and the relationship between the discharge current and the discharge capacity obtained as a result is shown in FIG. The test conditions were that the battery was charged at a current of 1 mA (equivalent to 0.1 CmA) at a temperature of 20 ° C. to a final voltage of 4.2 V, and then discharged at various currents to a final voltage of 2.7 V. The discharge capacity was The percentage obtained when the capacity obtained when discharging at a current of 1 mA is taken as 100 is shown. In all of the batteries A1 to A5 of the present invention and the comparative batteries B1 and B2, the discharge capacity at a discharge current of 1 mA was approximately 95 to 100% of the designed capacity.
[0035]
From FIG. 3, at a discharge current of 5 mA, the comparative battery B2 can only obtain a discharge capacity of about 30% of the discharge capacity at the discharge current of 1 mA, and the comparative battery B1 also has a discharge capacity of about 50% of the discharge capacity at the discharge current of 1 mA. On the other hand, it was found that the present invention batteries A1 to A5 can obtain a discharge capacity of 85 to 90% of the designed capacity even at a discharge current of 5 mA.
[0036]
The following factors can be considered as the cause. First, in comparative batteries B1 and B2, since the gel electrolyte composition in the separator and the gel electrolyte composition in the positive electrode and the negative electrode are the same, the driving force for the movement of lithium ions between the electrode and the gel electrolyte during charging / discharging is Only charge transfer and negligible concentration diffusion. For this reason, especially at the time of high-rate discharge, the movement of lithium ions becomes rate-limiting at the interface between the electrode and the gel electrolyte, and the influence of the shortage of lithium ions on the positive electrode side appears so that a sufficient discharge capacity cannot be obtained. On the other hand, in this invention battery A1-A5, since the lithium ion concentration contained in a separator is higher than the lithium ion concentration in an electrode, as a driving force of the movement of the lithium ion between the electrode and gel electrolyte in charge / discharge, In addition to movement, movement by concentration diffusion is added. Therefore, smooth movement of lithium ions between the electrode and the gel electrolyte can be realized, and the lithium ions on the positive electrode side are sufficiently supplied even during high-rate discharge, so that a sufficient discharge capacity can be obtained.
[0037]
Furthermore, a charge / discharge cycle test was conducted on A1 and A2 of these batteries of the present invention and B1 of a comparative battery, and the relationship between the number of cycles and the discharge capacity obtained as a result is shown in FIG. The test condition was that the battery was charged to a final voltage of 4.2 V with a current of 1 mA at a temperature of 20 ° C., and then discharged to a final voltage of 2.7 V with a current of 1 mA. The percentage is shown as 100.
[0038]
As shown in FIG. 4, the present invention batteries A1 and A2 and the comparative battery B1 have almost 95 to 100% of the designed capacity at the initial stage of charge and discharge. It can be seen that it works well. However, the capacity of the comparative battery B1 gradually decreases after a cycle, and falls below 50% of the designed capacity at the 150th cycle. On the other hand, the batteries A1 and A2 of the present invention not only obtain almost 100% of the design capacity from the initial stage of charge / discharge, but also show a slight decrease in capacity after 200 cycles, but more than 80% of the design capacity. It was found that capacity was retained.
[0039]
The following factors can be considered as the cause. First, the gel electrolyte in the separator uses a polymer obtained by polymerizing a trifunctional acrylate monomer having the structure shown in Chemical Formula 2 above. In other words, the polymer skeleton has an ethylene oxide structure and a propylene oxide structure that have a high affinity with the electrolytic solution, and has a three-dimensional network structure, so it easily gels with the electrolytic solution and is sufficient for the progress of the battery reaction. It is a gel electrolyte that can hold a simple electrolyte and has excellent mechanical strength. Therefore, even if lithium ions and electrolyte move repeatedly during charge and discharge, sufficient lithium ions and electrolyte are retained in the separator, and not only stable battery performance is obtained but also dangers such as leakage. Absent.
[0040]
In addition, in the batteries A1 and A2 of the present invention, the lithium ion concentration contained in the separator is higher than the lithium ion concentration in the electrode as described above, so that the lithium ions move smoothly between the electrode and the gel electrolyte. . Therefore, in the batteries A1 and A2 of the present invention, it is considered that sufficient lithium ions and an electrolytic solution are retained in the separator even after the charge / discharge cycle progresses, and the capacity decrease due to the cycle progress is suppressed.
[0041]
In this embodiment, the gel electrolyte is used not only for the separator but also for the electrolyte in the electrode. However, the present invention does not restrict the form of the electrolyte in the electrode. Therefore, even when one or both of the positive electrode and the negative electrode use a liquid electrolyte as the electrolyte in the electrode, the effect of the present invention can be effectively obtained when the electrolyte in the separator is a gel electrolyte. Can do.
[0042]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a lithium battery excellent in initial capacity and high-rate charge / discharge performance and cycle life without requiring a special manufacturing process, and its industrial value is It ’s big.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a lithium battery of the present invention.
FIG. 2 is a graph showing the temperature dependence of lithium ion conductivity of a gel electrolyte of a separator for inventive batteries A1 to A5 and comparative batteries B1 and B2.
FIG. 3 is a graph showing the relationship between the discharge current and the discharge capacity when discharging is performed at various current values for the batteries A1 to A5 of the present invention and the comparative batteries B1 and B2.
FIG. 4 is a graph showing the relationship between the number of cycles and the discharge capacity when a charge / discharge cycle test is performed for the batteries A1 and A2 of the present invention and the comparative battery B1.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Negative electrode mixture 3 Positive electrode collector 4 Negative electrode collector 5 Separator 6 Aluminum laminate film

Claims (3)

電極活物質と結着剤と電解質とを少なくとも含む正極および負極を、ポリマーとリチウム塩と有機溶媒からなるゲル電解質を含むセパレータを介して対向させたリチウム電池において、前記セパレータ中のゲル電解質組成と、前記正極および負極の内少なくとも一方の電解質組成とが異なるものであって、 前記セパレータ中に含まれるリチウム塩濃度が、セパレータ中の電解質を構成する有機溶媒1リットルに対して1.0〜2.5モルであり、前記正極および負極の内少なくとも一方に含まれるリチウム塩濃度が、電極中の電解質を構成する有機溶媒1リットルに対して0.7〜1.5モルであり、かつ、前記セパレータ中に含まれるリチウム塩濃度が、前記正極および負極の内少なくとも一方に含まれるリチウム塩濃度より高いことを特徴とするリチウム電池。In a lithium battery in which a positive electrode and a negative electrode including at least an electrode active material, a binder, and an electrolyte are opposed to each other through a separator including a gel electrolyte composed of a polymer, a lithium salt, and an organic solvent, the gel electrolyte composition in the separator , said at least one of the electrolyte composition of the positive and negative electrodes are different and are a lithium salt concentration in the separator, the organic 1 liter of the solvent constituting the electrolyte in the separator 1.0 to 2 The lithium salt concentration contained in at least one of the positive electrode and the negative electrode is 0.7 to 1.5 mol with respect to 1 liter of the organic solvent constituting the electrolyte in the electrode, and The lithium salt concentration contained in the separator is higher than the lithium salt concentration contained in at least one of the positive electrode and the negative electrode. Lithium battery to be. 前記セパレータ中に含まれるゲル電解質が、リチウム塩と、有機溶媒と、リチウム塩を有機溶媒に溶解してなる電解液に対して親和性が高い構造を主に有するポリマーとからなることを特徴とする請求項記載のリチウム電池。The gel electrolyte contained in the separator is composed of a lithium salt, an organic solvent, and a polymer mainly having a structure having a high affinity for an electrolytic solution obtained by dissolving a lithium salt in an organic solvent. The lithium battery according to claim 1 . 前記セパレータ中に含まれるゲル電解質が、リチウム塩と、有機溶媒と、重合性官能基を分子鎖中に2個以上有するモノマーとの混合物を、硬化させることにより得られるものであることを特徴とする請求項1又は2記載のリチウム電池。The gel electrolyte contained in the separator is obtained by curing a mixture of a lithium salt, an organic solvent, and a monomer having two or more polymerizable functional groups in the molecular chain. The lithium battery according to claim 1 or 2 .
JP27357498A 1998-09-28 1998-09-28 Lithium battery Expired - Fee Related JP4054925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27357498A JP4054925B2 (en) 1998-09-28 1998-09-28 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27357498A JP4054925B2 (en) 1998-09-28 1998-09-28 Lithium battery

Publications (2)

Publication Number Publication Date
JP2000106212A JP2000106212A (en) 2000-04-11
JP4054925B2 true JP4054925B2 (en) 2008-03-05

Family

ID=17529708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27357498A Expired - Fee Related JP4054925B2 (en) 1998-09-28 1998-09-28 Lithium battery

Country Status (1)

Country Link
JP (1) JP4054925B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454610C (en) * 2002-06-19 2009-01-21 夏普株式会社 Lithium polymer secondary battery and process for producing the same
JP4967215B2 (en) * 2003-09-01 2012-07-04 ソニー株式会社 Nonaqueous electrolyte secondary battery
FR2866154B1 (en) * 2004-02-10 2014-02-21 Batscap Sa PROCESS FOR PRODUCING AN ELECTROCHEMICAL DEVICE

Also Published As

Publication number Publication date
JP2000106212A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
US9318771B2 (en) Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte
KR100281589B1 (en) Blended Polymer Gel Electrolytes
KR20190113605A (en) Hybrid solid electrolyte membrane for all solid state secondary battery and all solid state secondary battery comprising the same
CN109346767A (en) A kind of solid polymer electrolyte and its application in lithium metal battery
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
Chen et al. Gel electrolyte for lithium-ion batteries
JP4412808B2 (en) Lithium polymer secondary battery
JP4418138B2 (en) Gel-like polymer electrolyte, lithium battery employing the same, and method for producing the same
CN110611120A (en) Single-ion conductor polymer all-solid-state electrolyte and lithium secondary battery comprising same
JP2002008730A (en) Lithium secondary battery
JP2003331838A (en) Lithium secondary battery
JP4161437B2 (en) Lithium battery
JP4054925B2 (en) Lithium battery
JP5553169B2 (en) Lithium ion secondary battery
JP2003068364A (en) Secondary battery
JP4379966B2 (en) Lithium battery
JP3700736B2 (en) Manufacturing method of thin lithium battery
JP2001028266A (en) Battery electrode containing surface modifying component, battery, and manufacture thereof
CN112599874A (en) Electrochemical pretreatment method for improving performance of quasi-solid lithium ion battery
JP3512082B2 (en) Thin lithium battery and method of manufacturing the same
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JPH1197026A (en) Electrode for li cell
JP2004071244A (en) Nonaqueous electrolyte battery
JP4669980B2 (en) Thin lithium secondary battery
JP3928167B2 (en) Method for manufacturing electrode plate for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees