JPH07296816A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07296816A
JPH07296816A JP6092596A JP9259694A JPH07296816A JP H07296816 A JPH07296816 A JP H07296816A JP 6092596 A JP6092596 A JP 6092596A JP 9259694 A JP9259694 A JP 9259694A JP H07296816 A JPH07296816 A JP H07296816A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
secondary battery
binder
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6092596A
Other languages
Japanese (ja)
Inventor
Seiichi Ikuyama
清一 生山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6092596A priority Critical patent/JPH07296816A/en
Publication of JPH07296816A publication Critical patent/JPH07296816A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance a charge and discharge cycle characteristic by using a polymer, which is composed chiefly of vinylidene fluoride crosslinked by the irradiation of an electron beam, as a binder which is contained in an anode mix and/or a cathode mix. CONSTITUTION:An anode comprises an anode active material held within an anode collector by a binder, and a cathode comprises a cathode active material held within a cathode collector by the binder. A polymer composed chiefly of vinylidene fluoride is used as the binder, and electron ray crosslinks are formed in the binder by the irradiation of an electron beam. The polymer contains a 70mol% or more vinylidene fluoride monomer and has an average degree of polymerization of 100-5000. Therefore, the active materials are so strongly held on the collector surfaces that they hardly peel off during repeated charging and discharging, resulting in an enhanced charge and discharge cycle characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特に電極合剤に含有されるバインダーの改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a binder contained in an electrode mixture.

【0002】[0002]

【従来の技術】近年、ビデオカメラやラジオカセット等
のポータブル機器の普及に伴い、使い捨てである一次電
池に代わって、繰り返し使用できる二次電池に対する需
要が高まっている。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras and radio cassettes, there is an increasing demand for rechargeable secondary batteries instead of disposable primary batteries.

【0003】現在使用されている二次電池のほとんど
は、アルカリ電解液を用いたニッケルカドミウム電池で
ある。しかし、この電池は、電圧が低く、エネルギー密
度を向上させることが困難である。また、自己放電率が
高いという欠点もある。
Most of the secondary batteries currently in use are nickel-cadmium batteries using an alkaline electrolyte. However, this battery has a low voltage and it is difficult to improve the energy density. There is also a drawback that the self-discharge rate is high.

【0004】そこで、負極にリチウム等の軽金属を使用
する非水電解液二次電池の検討がなされている。この非
水電解液二次電池は、高エネルギー密度を有し、自己放
電も少なく、軽量という長所も有している。しかし、こ
のリチウム等を負極に用いる非水電解液二次電池は、充
放電を繰り返すと、負極から金属リチウム等がデンドラ
イト状に結晶成長して正極に接触し、この結果、内部短
絡が生じるという可能性があり、実用化が困難である。
Therefore, a non-aqueous electrolyte secondary battery using a light metal such as lithium for the negative electrode has been studied. This non-aqueous electrolyte secondary battery has the advantages of high energy density, low self-discharge, and light weight. However, in a non-aqueous electrolyte secondary battery using this lithium or the like as a negative electrode, when charge and discharge are repeated, metallic lithium or the like crystallizes in a dendrite form from the negative electrode and contacts the positive electrode, resulting in an internal short circuit. There is a possibility that it is difficult to put into practical use.

【0005】このため、リチウム等を他の金属と合金化
し、この合金を負極に使用するようにした非水電解液二
次電池も提案されている。しかし、この電池では、充放
電を繰り返すと、この負極を構成する合金が微粒子化す
るという問題を有しており、やはり実用化は困難であ
る。
Therefore, a non-aqueous electrolyte secondary battery has been proposed in which lithium or the like is alloyed with another metal and this alloy is used for the negative electrode. However, this battery has a problem that the alloy forming the negative electrode becomes fine particles when the charge and discharge are repeated, and it is also difficult to put it into practical use.

【0006】そこで、さらに、コークス等の炭素質材料
を負極活物質として使用する非水電解液二次電池が提案
されている。この非水電解液二次電池は、リチウムイオ
ンの炭素層間へのドープ/脱ドープを負極反応に利用す
るものであり、金属リチウム,リチウム合金を負極活物
質として使用する場合のような金属リチウムの析出,合
金の微粒子化が生じない。したがって、良好なサイクル
特性が得られる。そして、正極活物質として、例えばL
x MO2 (Mは1種類または1種類より多い遷移金属
を表し、0.05>x>1.10である。)で表される
リチウム遷移金属複合酸化物を用いると、電池容量が向
上して、エネルギー密度の高い非水電解液二次電池を得
ることができる。
Therefore, a non-aqueous electrolyte secondary battery using a carbonaceous material such as coke as a negative electrode active material has been proposed. This non-aqueous electrolyte secondary battery utilizes doping / dedoping of lithium ions into the carbon layer in the negative electrode reaction, and does not use metallic lithium or lithium alloy as a negative electrode active material. No precipitation or alloy atomization occurs. Therefore, good cycle characteristics can be obtained. Then, as the positive electrode active material, for example, L
The battery capacity is improved by using the lithium-transition metal composite oxide represented by i x MO 2 (M represents one kind or more than one kind of transition metal, and 0.05>x> 1.10.). Thus, a non-aqueous electrolyte secondary battery with high energy density can be obtained.

【0007】[0007]

【発明が解決しようとする課題】ところで、上述のよう
な非水電解液二次電池において、例えば炭素質材料を負
極活物質として負極を構成する場合、炭素質材料を粉末
化し、粉末状の炭素質材料をバインダーとともに溶剤に
分散させて負極合剤塗料を調製し、これを負極集電体に
塗布する。これにより、負極活物質がバインダーによっ
て負極集電体表面に保持されたかたちの負極が形成され
る。同様に、例えばリチウム遷移金属複合酸化物を正極
活物質として正極を構成する場合にも、これを粉末化
し、粉末状のリチウム遷移金属複合酸化物をバインダー
とともに溶剤に分散させて正極合剤塗料を調製し、これ
を正極集電体に塗布する。これにより、正極活物質がバ
インダーによって正極集電体表面に保持されたかたちの
正極が形成される。
In the non-aqueous electrolyte secondary battery as described above, for example, when a negative electrode is formed by using a carbonaceous material as a negative electrode active material, the carbonaceous material is powdered to obtain powdery carbon. A high-quality material is dispersed in a solvent together with a binder to prepare a negative electrode mixture coating material, which is applied to the negative electrode current collector. As a result, the negative electrode is formed such that the negative electrode active material is held on the surface of the negative electrode current collector by the binder. Similarly, for example, when a positive electrode is formed by using a lithium transition metal composite oxide as a positive electrode active material, this is powdered and the powdery lithium transition metal composite oxide is dispersed in a solvent together with a binder to form a positive electrode mixture paint. It is prepared and applied to a positive electrode current collector. As a result, the positive electrode is formed such that the positive electrode active material is held on the surface of the positive electrode current collector by the binder.

【0008】従来、このように活物質を集電体に保持す
る電極用バインダーとしては、耐有機溶媒性に優れるこ
とからポリフッ化ビニリデンが用いられている。
Conventionally, polyvinylidene fluoride has been used as an electrode binder for holding the active material on the current collector because of its excellent organic solvent resistance.

【0009】本発明は、このポリフッ化ビニリデンの特
長を残しつつ、電極集電体に対する密着力,電極活物質
の保持力をより一層向上させることを目的とし、これに
よって、サイクル特性に優れた非水電解液二次電池の提
供を目的とする。
The object of the present invention is to further improve the adhesion to the electrode current collector and the retention of the electrode active material, while maintaining the characteristics of polyvinylidene fluoride, and thereby the non-excellent cycle characteristics It is intended to provide a water electrolyte secondary battery.

【0010】[0010]

【課題を解決するための手段】本発明の非水電解液二次
電池は、上述の課題を解決し上記目的を達成するため、
負極活物質とバインダーよりなる負極合剤が負極集電体
に保持されてなる負極と、正極活物質と導電剤とバイン
ダーよりなる正極合剤が正極集電体に保持されてなる正
極と、非水電解液を具備してなる非水電解液二次電池に
おいて、上記負極合剤及び/又は正極合剤に含有される
バインダーは、フッ化ビニリデンを主成分としたポリマ
ーであり、かつ、電子線照射によって電子線架橋されて
いることを特徴とする。
The non-aqueous electrolyte secondary battery of the present invention is intended to solve the above problems and achieve the above objects.
A negative electrode in which a negative electrode mixture composed of a negative electrode active material and a binder is held by a negative electrode current collector, and a positive electrode in which a positive electrode mixture composed of a positive electrode active material, a conductive agent and a binder is held by a positive electrode current collector, In a non-aqueous electrolyte secondary battery comprising a water electrolyte, the binder contained in the negative electrode mixture and / or the positive electrode mixture is a polymer containing vinylidene fluoride as a main component, and an electron beam. It is characterized in that it is electron beam crosslinked by irradiation.

【0011】非水電解液二次電池において、負極は負極
活物質がバインダーによって負極集電体に保持されるこ
とで構成され、正極は正極活物質がバインダーによって
正極集電体に保持されることで構成される。
In the non-aqueous electrolyte secondary battery, the negative electrode is formed by holding the negative electrode active material on the negative electrode current collector by the binder, and the positive electrode is held on the positive electrode current collector by the binder. Composed of.

【0012】本発明では、電池のサイクル特性の改善を
図るために、上記負極活物質、正極活物質をそれぞれ集
電体に保持するバインダーとして、フッ化ビニリデンを
主成分としたポリマーを使用し、かつ、このポリマーに
電子線照射によって電子線架橋を形成することとする。
In the present invention, in order to improve the cycle characteristics of the battery, a polymer containing vinylidene fluoride as a main component is used as a binder for holding each of the negative electrode active material and the positive electrode active material on a current collector. In addition, electron beam cross-linking is formed in this polymer by electron beam irradiation.

【0013】バインダーとしてポリフッ化ビニリデンを
主成分とするポリマーを用い、これに電子線架橋を形成
した正極、負極では、活物質が集電体表面に強固に保持
され、充放電の繰り返し際して活物質が剥がれ落ちるこ
とがほとんどなく、良好な充放電サイクル特性を発揮す
る。
In a positive electrode or a negative electrode in which a polymer containing polyvinylidene fluoride as a main component is used as a binder and electron beam cross-linking is formed on the polymer, the active material is firmly held on the surface of the current collector, and when repeating charging and discharging. The active material hardly peels off, and exhibits excellent charge / discharge cycle characteristics.

【0014】フッ化ビニリデンを主成分としたポリマー
とは、ポリフッ化ビニリデン或いはフッ化ビニリデンと
第2、第3成分のモノマーユニットの共重合体である。
但し、この場合、ポリフッ化ビニリデンの耐有機溶媒性
等の特長を維持するために、フッ化ビニリデンモンマー
ユニットの含有量が少なくとも70mol%以上になる
ようにモノマー構成を設定する必要がある。
The polymer containing vinylidene fluoride as a main component is polyvinylidene fluoride or a copolymer of vinylidene fluoride and monomer units of the second and third components.
However, in this case, in order to maintain the characteristics of polyvinylidene fluoride such as resistance to organic solvents, it is necessary to set the monomer composition so that the content of the vinylidene fluoride monmer unit is at least 70 mol% or more.

【0015】また、このフッ化ビニリデンを主成分とし
たポリマーの平均重合度は、100〜5000とするこ
とが好ましい。この重合度が、100未満であるとサイ
クル特性が著しく劣化し、5000を超えると電極合剤
塗料のチキソ性が非常に大きくなり、電極集電体に塗布
するのが困難である。
The average degree of polymerization of the polymer containing vinylidene fluoride as a main component is preferably 100 to 5,000. If this degree of polymerization is less than 100, the cycle characteristics will be significantly deteriorated, and if it exceeds 5,000, the thixotropy of the electrode mixture coating material will be extremely large, making it difficult to apply it to the electrode current collector.

【0016】フッ化ビニリデンを主成分としたポリマー
への電子線架橋は、例えば、活物質、ポリマー、及び各
種添加剤を有機溶媒に溶解してなる電極合剤塗料を集電
体に塗布、乾燥して電極塗膜を形成し、この形成された
電極塗膜に電子線を照射することで行われる。
For electron beam cross-linking to a polymer containing vinylidene fluoride as a main component, for example, an electrode mixture paint prepared by dissolving an active material, a polymer and various additives in an organic solvent is applied to a current collector and dried. Then, an electrode coating film is formed, and the formed electrode coating film is irradiated with an electron beam.

【0017】この電子線の照射量は、5〜100Mra
dであることが好ましい。5Mrad未満だと架橋が進
まずサイクル特性が向上しない。逆に、100Mrad
より大きいとかえって分解が進みサイクル特性が劣化す
る。
The dose of this electron beam is 5 to 100 Mra.
It is preferably d. If it is less than 5 Mrad, crosslinking does not proceed and cycle characteristics are not improved. Conversely, 100 Mrad
If it is larger than the above range, decomposition progresses and cycle characteristics deteriorate.

【0018】以上のような架橋形成ポリマーによって保
持される負極活物質,正極活物質としては、この種の非
水電解液二次電池において通常用いられているものがい
ずれも使用可能である。
As the negative electrode active material and the positive electrode active material retained by the above-mentioned cross-linking polymer, any of those usually used in this type of non-aqueous electrolyte secondary battery can be used.

【0019】負極活物質としては、リチウムをドープ/
脱ドープ可能な炭素材料が用いられ、例えばポリアセチ
レン、ポリピロール等の導電性ポリマー、あるいはコー
クス、ポリマー炭、カーボン・ファイバー等の他、単位
体積当りのエネルギー密度が大きい点から、熱分解炭素
類、コークス類(石油コークス、ピッチコークス、石炭
コークス等)、カーボンブラック(アセチレンブラック
等)、ガラス状炭素、有機高分子材料焼成体(有機高分
子材料を500℃以上の適当な温度で不活性ガス気流
中、あるいは真空中で焼成したもの)、炭素繊維等が好
ましい。
The negative electrode active material is doped with lithium /
A carbon material that can be dedoped is used. For example, in addition to conductive polymers such as polyacetylene and polypyrrole, coke, polymer carbon, carbon fiber, etc., pyrolytic carbons and coke because of their large energy density per unit volume. Class (petroleum coke, pitch coke, coal coke, etc.), carbon black (acetylene black, etc.), glassy carbon, organic polymer material fired body (organic polymer material in an inert gas stream at an appropriate temperature of 500 ° C. or higher) , Or those fired in vacuum), carbon fibers, etc. are preferred.

【0020】一方、正極活物質としては、二酸化マンガ
ン、五酸化バナジウムのような遷移金属酸化物や、硫化
鉄、硫化チタンのような遷移金属カルコゲン化物、さら
にはこれらとリチウムとの複合化合物などを用いること
ができる。特に、高電圧、高エネルギー密度が得られ、
サイクル特性にも優れることから、リチウム・コバルト
複合酸化物やリチウム・コバルト・ニッケル複合酸化物
が望ましい。
On the other hand, examples of the positive electrode active material include transition metal oxides such as manganese dioxide and vanadium pentoxide, transition metal chalcogenides such as iron sulfide and titanium sulfide, and composite compounds of these with lithium. Can be used. In particular, high voltage and high energy density are obtained,
Lithium-cobalt composite oxide and lithium-cobalt-nickel composite oxide are preferable because they have excellent cycle characteristics.

【0021】電解液に用いる有機溶媒としては、特に限
定されるものではないが、プロピレンカーボネート、エ
チレンカーボネート、ブチレンカーボネート、γブチル
ラクトン、1,2−ジメトキシエタン、1,2−ジエト
キシエタン、テトラヒドロフラン、2−メチルテトラヒ
ドロフラン、1,3−ジオキソラン、4−メチル−1,
3−ジオキソラン、ジグライム類、トリグライム類、ス
ルホラン、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピ
ル等の単独もしくは二種以上の混合溶媒が使用できる。
The organic solvent used in the electrolytic solution is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyl lactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran. , 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,
A single solvent or a mixture of two or more kinds of 3-dioxolane, diglymes, triglymes, sulfolane, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used.

【0022】電解質も従来より公知のものがいずれも使
用でき、LiClO4 、LiAsF 6 、LiPF6 、L
iBF4 、LiB(C6 H5 )4 、LiCl、LiB
r、CH3 SO3 Li、CF3 SO3 Li等が用いられ
る。
Any known electrolyte may be used as the electrolyte.
Can be used, LiClOFour, LiAsF 6, LiPF6, L
iBF4, LiB (C6 H5) 4, LiCl, LiB
r, CH3SO3Li, CF3SO3Li or the like is used
It

【0023】[0023]

【作用】本発明の非水電解液二次電池では、負極活物
質、正極活物質を電極集電体に保持するバインダーとし
て、少なくともフッ化ビニリデンを主成分としたポリマ
ーを使用し、かつ、このポリマーに電子線照射によって
電子線架橋を形成する。このようにして電子線架橋が形
成されたポリマーは、ポリフッ化ビニリデンの電極用バ
インダーとしての優れた特性を維持したまま活物質保持
力が架橋構造によって高められている。したがって、こ
のようなバインダーを用いる正極、負極では、活物質が
集電体表面に強固に保持され、充放電の繰り返しに伴っ
た容量劣化が小さく、良好な充放電サイクル特性を発揮
する。
In the non-aqueous electrolyte secondary battery of the present invention, a polymer containing at least vinylidene fluoride as a main component is used as a binder for holding the negative electrode active material and the positive electrode active material on the electrode current collector, and Electron beam crosslinks are formed in the polymer by electron beam irradiation. In the polymer in which electron beam cross-linking is formed in this manner, the active material holding power is enhanced by the cross-linking structure while maintaining excellent properties of polyvinylidene fluoride as a binder for electrodes. Therefore, in the positive electrode and the negative electrode using such a binder, the active material is firmly held on the surface of the current collector, the capacity deterioration due to repeated charging / discharging is small, and good charge / discharge cycle characteristics are exhibited.

【0024】[0024]

【実施例】本発明の好適な実施例について実験結果に基
づいて説明する。以下の実験例1〜実験例10で用いた
フッ化ビニリデン(ポリマーA〜ポリマーE)のモノマ
ー構成を表1に示す。なお、この表1において、VdF
は、ビニリデンフロライドを、HFPは、ヘキサフロオ
ロプロピレンを示す。
EXAMPLES Preferred examples of the present invention will be described based on experimental results. Table 1 shows the monomer constitution of vinylidene fluoride (polymer A to polymer E) used in the following experimental examples 1 to 10. In Table 1, VdF
Indicates vinylidene fluoride, and HFP indicates hexafluoropropylene.

【0025】[0025]

【表1】 [Table 1]

【0026】実験例1 まず、負極1を次のようにして作製した。下記の塗料組
成に準じて各塗料成分を秤りとり、ボールミルにて10
時間混合した。 負極合剤塗料組成 カーボン(比表面積;8m2 /g) 60重量部 ポリマーA 5重量部 N−メチル−2−ピロリドン 35重量部
Experimental Example 1 First, the negative electrode 1 was manufactured as follows. Weigh each paint component according to the paint composition below and use a ball mill to make 10
Mixed for hours. Negative electrode mixture coating composition Carbon (specific surface area; 8 m 2 / g) 60 parts by weight Polymer A 5 parts by weight N-methyl-2-pyrrolidone 35 parts by weight

【0027】この負極合剤塗料を負極集電体となる厚さ
10μmの銅箔の両面に塗布厚100μmで塗布し、帯
状負極を作製した。
This negative electrode mixture coating material was applied on both surfaces of a copper foil having a thickness of 10 μm to serve as a negative electrode current collector with a coating thickness of 100 μm to prepare a strip-shaped negative electrode.

【0028】次に、正極2を次のようにして作製した。Next, the positive electrode 2 was produced as follows.

【0029】下記の塗料組成に準じて各塗料成分を秤り
とり、ボールミルにて10時間混合した。 正極合剤塗料組成 LiCoO2(比表面積;0.35m2 /g)60重量部 カーボン(比表面積;220m2 /g) 5重量部 ポリマーA 5重量部 N−メチル−2−ピロリドン 30重量部
Each paint component was weighed according to the following paint composition and mixed in a ball mill for 10 hours. Positive electrode mixture coating composition LiCoO 2 (specific surface area; 0.35 m 2 / g) 60 parts by weight carbon (specific surface area; 220 m 2 / g) 5 parts by weight Polymer A 5 parts by weight N-methyl-2-pyrrolidone 30 parts by weight

【0030】この正極合剤塗料を正極集電体となる厚さ
20μmのアルミ箔の両面に塗布厚100μmで塗布
し、帯状正極を作製した。なお、負極合剤塗料、正極合
剤塗料に混合したバインダーは、平均重合度が1000
になるように共重合して得られたポリマーAである。
This positive electrode mixture coating material was applied on both sides of an aluminum foil having a thickness of 20 μm to be a positive electrode current collector with a coating thickness of 100 μm to produce a strip positive electrode. The average degree of polymerization of the binder mixed with the negative electrode mixture paint and the positive electrode mixture paint was 1,000.
Is a polymer A obtained by copolymerization so that

【0031】次に、これら帯状負極、帯状正極に、電子
線照射機で、その照射エネルギー(加速電圧)200k
V、電子線照射量50Mradの条件にて電子線照射し
た。その後、これらの帯状正極、帯状負極をセパレータ
ー3となる厚さ25μmのポリプロピレン製フィルムを
介して、積層し、多数回巻回きし、外径18mmの渦巻
き型電極体を作製した。なお、上記電子線照射機は、米
国ESI社(本社/ボストン)製のもので、その仕様を
表2に示す。
Next, these belt-shaped negative electrodes and belt-shaped positive electrodes were irradiated with an electron beam irradiator at an irradiation energy (accelerating voltage) of 200 k.
The electron beam irradiation was performed under the conditions of V and electron beam irradiation amount of 50 Mrad. Then, these strip-shaped positive electrodes and strip-shaped negative electrodes were laminated with a 25 μm-thick polypropylene film serving as the separator 3 and wound many times to produce a spirally wound electrode body having an outer diameter of 18 mm. The electron beam irradiator is manufactured by ESI (Headquarters / Boston) in the United States, and its specifications are shown in Table 2.

【0032】[0032]

【表2】 [Table 2]

【0033】そして、この渦巻電極体をニッケルメッキ
が施された鉄製電池缶5に収納し、この渦巻電極体の上
下に絶縁板4を設置した。そして、アルミニウム製正極
リード12を正極集電体から導出して電池蓋7に溶接
し、ニッケル製負極リード11を負極集電体から導出し
て電池缶5に溶接した。
Then, the spiral electrode body was housed in a nickel-plated iron battery can 5, and insulating plates 4 were placed above and below the spiral electrode body. Then, the aluminum positive electrode lead 12 was led out from the positive electrode current collector and welded to the battery lid 7, and the nickel negative electrode lead 11 was led out from the negative electrode current collector and welded to the battery can 5.

【0034】この渦巻型電極体が収納された電池缶5の
なかに、炭酸エチレンと炭酸ジエチルが体積比1:1で
混合された混合溶媒にLiPF6 を1mol/1なる濃
度で溶解した電解液を注入した。そして、電流遮断機構
を有する安全弁装置8、電池蓋7を電池缶5にアスファ
ルトで表面を塗布した絶縁封口ガスケット6を介してか
しめることで固定し、直径18mm、高さ65mmの円
筒型の非水電解液二次電池を作成した。
An electrolytic solution prepared by dissolving LiPF 6 at a concentration of 1 mol / 1 in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was placed in a battery can 5 containing this spiral type electrode body. Was injected. Then, the safety valve device 8 having a current cutoff mechanism and the battery lid 7 are fixed to the battery can 5 by caulking with an insulating sealing gasket 6 whose surface is coated with asphalt, and are fixed to a cylindrical non-shaped cylinder having a diameter of 18 mm and a height of 65 mm. A water electrolyte secondary battery was created.

【0035】実験例2〜実験例10 ポリマーAの代わりに表3に示すポリマーを用いること
以外は、実験例1と同様にして電池を作製した。
Experimental Example 2 to Experimental Example 10 A battery was prepared in the same manner as in Experimental Example 1 except that the polymer shown in Table 3 was used instead of the polymer A.

【0036】以上のようにして作製された非水電解液二
次電池について、室温下、最大充電電圧4.2V,充電
電流1Aの条件で充電を2.5時間行い、6.2Ωの定
抵抗で放電を行うといった充放電サイクルを繰り返し行
って放電容量の変化を観測し、放電容量が初期容量の5
0%まで低下するサイクル数(50%容量サイクル数)
を調べた。その結果を用いたポリマー種と併せて表3に
示す。
The non-aqueous electrolyte secondary battery produced as described above was charged at room temperature under the conditions of maximum charging voltage 4.2V and charging current 1A for 2.5 hours to obtain a constant resistance of 6.2Ω. The change of discharge capacity was observed by repeating the charge and discharge cycle such as discharging at 5 ℃, and the discharge capacity was 5% of the initial capacity.
Number of cycles down to 0% (50% capacity number of cycles)
I checked. The results are shown in Table 3 together with the polymer species used.

【0037】[0037]

【表3】 [Table 3]

【0038】表3のうち、特に実験例1〜実験例5の非
水電解液二次電池は、電子線照射を行わなかった実験例
10の電池に比べて、50%容量サイクル数が、いずれ
も大きい値を示した。このことから、電極のバインダー
としてフッ化ビニリデンデンを主成分としたポリマーを
使用し、このポリマーを電子線照射によって電子線架橋
することは、電池の充放電サイクル特性の改善に有効で
あることがわかる。
In Table 3, in particular, the non-aqueous electrolyte secondary batteries of Experimental Examples 1 to 5 had a 50% capacity cycle number as compared with the battery of Experimental Example 10 which was not subjected to electron beam irradiation. Also showed a large value. From this, it is effective to use a polymer containing vinylidene fluoride as a main component as a binder of an electrode and to cross-link the polymer by electron beam irradiation by electron beam irradiation is effective in improving charge-discharge cycle characteristics of a battery. Recognize.

【0039】しかし、ポリフッ化ビニリデンの平均重合
度が50のポリマーの実験例6の電池では、50%容量
サイクル数が425と小さく、一方、平均重合度が60
00のポリマーの比較例2の電池では、塗料が増粘し塗
料の塗布が不可能であった。このことから、ポリフッ化
ビニリデンの平均重合度は、100〜5000が適当で
あることがわかる。
However, in the battery of Experimental Example 6 in which the average polymerization degree of polyvinylidene fluoride was 50, the 50% capacity cycle number was as small as 425, while the average polymerization degree was 60.
In the battery of Comparative Example 2 of polymer No. 00, the paint was so viscous that application of the paint was impossible. From this, it is understood that the average degree of polymerization of polyvinylidene fluoride is suitably 100 to 5000.

【0040】また、ポリマーAを使用して50Mrad
電子線放射した実験例1の電池では、50%容量サイク
ル数が980と極めて大きい値を示したが、同じポリマ
ーAを使用しても、10Mrad電子線放射した実験例
4の電池では、50%容量サイクル数が875とやや小
さくなり、一方、100Mrad電子線放射した実験例
5の電池でも、50%容量サイクル数が823とやや小
さくなった。また、同じポリマーAを使用して、5Mr
ad電子線放射した実験例8の電池では、50%容量サ
イクル数が513で更に小さく、又、150Mrad電
子線放射した実験例9の電池では、50%容量サイクル
数が437と更に小さい。このことから、電子線照射量
は、5〜100Mradが適当であることがわかる。
Also, using Polymer A, 50 Mrad
The battery of Experimental Example 1 irradiated with an electron beam showed a very large value of 980 with a 50% capacity cycle number. However, even if the same polymer A was used, the battery of Experimental Example 4 irradiated with 10 Mrad electron beam was 50%. The number of capacity cycles was 875, which was slightly small. On the other hand, the 50% capacity cycle number was 823, which was slightly small, in the battery of Experimental Example 5 which emitted 100 Mrad electron beam. Also, using the same polymer A, 5Mr
The battery of Experimental Example 8 which emitted ad electron beam had a smaller 50% capacity cycle number of 513, and the battery of Experimental Example 9 which emitted 150 Mrad electron beam had a smaller 50% capacity cycle number of 437. From this, it is understood that the electron beam irradiation amount is suitably 5 to 100 Mrad.

【0041】[0041]

【発明の効果】本発明では、負極活物質とバインダーよ
りなる負極合剤が負極集電体に保持されてなる負極と、
正極活物質と導電剤とバインダーよりなる正極合剤が正
極集電体に保持されてなる正極と、非水電解液を具備し
てなる非水電解液二次電池において、上記負極合剤及び
/又は正極合剤に含有されるバインダーは、フッ化ビニ
リデンを主成分としたポリマーであり、かつ、そのポリ
マーに電子線照射によって電子線架橋を形成するので、
充放電サイクルの繰り返しに際して活物質が集電体から
剥がれ落ちることがほとんどなく、良好な充放電サイク
ル特性を発揮する非水電解液二次電池が得られる。
According to the present invention, a negative electrode in which a negative electrode mixture composed of a negative electrode active material and a binder is held by a negative electrode current collector,
A non-aqueous electrolyte secondary battery comprising a positive electrode in which a positive electrode mixture composed of a positive electrode active material, a conductive agent and a binder is held by a positive electrode current collector, and a non-aqueous electrolyte secondary battery comprising: Or, the binder contained in the positive electrode mixture is a polymer containing vinylidene fluoride as a main component, and electron beam cross-linking is formed on the polymer, so that
It is possible to obtain a non-aqueous electrolyte secondary battery exhibiting excellent charge / discharge cycle characteristics, in which the active material hardly peels off from the current collector during repeated charge / discharge cycles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した非水電解液二次電池の構成を
示す概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing the configuration of a non-aqueous electrolyte secondary battery to which the present invention has been applied.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 3 セパレータ 4 絶縁板 5 電池缶 6 絶縁封口ガスケット 7 電池蓋 8 安全弁装置 1 Negative electrode 2 Positive electrode 3 Separator 4 Insulating plate 5 Battery can 6 Insulation sealing gasket 7 Battery lid 8 Safety valve device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質とバインダーよりなる負極合
剤が負極集電体に保持されてなる負極と、正極活物質と
導電剤とバインダーよりなる正極合剤が正極集電体に保
持されてなる正極と、非水電解液を具備してなる非水電
解液二次電池において、 上記負極合剤及び/又は正極合剤に含有されるバインダ
ーは、フッ化ビニリデンを主成分としたポリマーであ
り、かつ、電子線照射によって電子線架橋されているこ
とを特徴とする非水電解液二次電池。
1. A negative electrode formed by holding a negative electrode mixture composed of a negative electrode active material and a binder on a negative electrode current collector, and a positive electrode mixture formed of a positive electrode active material, a conductive agent and a binder held on a positive electrode current collector. In a non-aqueous electrolyte secondary battery comprising a positive electrode and a non-aqueous electrolyte solution, the binder contained in the negative electrode mixture and / or the positive electrode mixture is a polymer containing vinylidene fluoride as a main component. And a non-aqueous electrolyte secondary battery, which is cross-linked by electron beam irradiation.
【請求項2】 負極活物質がリチウムのドープ・脱ドー
プが可能な炭素質材料であり、正極活物質がリチウム遷
移金属複合酸化物であることを特徴とする請求項1記載
の非水電解液二次電池。
2. The non-aqueous electrolyte solution according to claim 1, wherein the negative electrode active material is a carbonaceous material capable of being doped and dedoped with lithium, and the positive electrode active material is a lithium-transition metal composite oxide. Secondary battery.
【請求項3】 フッ化ビニリデンを主成分としたポリマ
ーは、フッ化ビニリデンモノマーを70モル%以上含有
する共重合体であることを特徴とする請求項1又は請求
項2記載の非水電解液二次電池。
3. The non-aqueous electrolyte solution according to claim 1, wherein the polymer containing vinylidene fluoride as a main component is a copolymer containing 70 mol% or more of vinylidene fluoride monomer. Secondary battery.
【請求項4】 フッ化ビニリデンを主成分としたポリマ
ーは、平均重合度が100〜5000であることを特徴
とする請求項3記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein the polymer containing vinylidene fluoride as a main component has an average degree of polymerization of 100 to 5,000.
【請求項5】 フッ化ビニリデンを主成分としたポリマ
ーと活物質よりなる電極塗膜に電子線を照射することで
前記フッ化ビニリデンに電子線架橋が形成され、その電
極塗膜に照射する電子線照射量が5〜100Mradで
あることを特徴とする請求項4記載の非水電解液二次電
池。
5. An electron beam cross-link is formed on the vinylidene fluoride by irradiating the electrode coating film made of a polymer containing vinylidene fluoride as a main component and an active material with an electron beam, and the electron irradiating the electrode coating film. The non-aqueous electrolyte secondary battery according to claim 4, wherein the radiation dose is 5 to 100 Mrad.
JP6092596A 1994-04-28 1994-04-28 Nonaqueous electrolyte secondary battery Withdrawn JPH07296816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092596A JPH07296816A (en) 1994-04-28 1994-04-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092596A JPH07296816A (en) 1994-04-28 1994-04-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07296816A true JPH07296816A (en) 1995-11-10

Family

ID=14058839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092596A Withdrawn JPH07296816A (en) 1994-04-28 1994-04-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07296816A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1166949A (en) * 1997-08-18 1999-03-09 Kureha Chem Ind Co Ltd Gel solid electrolyte forming high polymer matrix, solid electrolyte and battery
KR100458582B1 (en) * 2002-07-23 2004-12-03 삼성에스디아이 주식회사 Electrode for lithium sulfur batteries comprising curable binder and lithium sulfur batteries comprising the same
JP2006216371A (en) * 2005-02-03 2006-08-17 Sony Corp Anode and battery
JP2006310008A (en) * 2005-04-27 2006-11-09 Nec Tokin Corp Lithium ion secondary cell and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1166949A (en) * 1997-08-18 1999-03-09 Kureha Chem Ind Co Ltd Gel solid electrolyte forming high polymer matrix, solid electrolyte and battery
KR100458582B1 (en) * 2002-07-23 2004-12-03 삼성에스디아이 주식회사 Electrode for lithium sulfur batteries comprising curable binder and lithium sulfur batteries comprising the same
JP2006216371A (en) * 2005-02-03 2006-08-17 Sony Corp Anode and battery
JP2006310008A (en) * 2005-04-27 2006-11-09 Nec Tokin Corp Lithium ion secondary cell and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4752574B2 (en) Negative electrode and secondary battery
US9508984B2 (en) Coin-type lithium secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP7282925B2 (en) Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
US7767350B2 (en) Nonaqueous electrolyte battery
JPH10233217A (en) Binder for nonaqueous electrolyte secondary cell and battery electrode mix using it
KR20190124519A (en) Solid electrolyte battery and battery module including the same
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JP3229635B2 (en) Lithium secondary battery
JP2003007342A (en) Manufacturing method of secondary nonaqueous battery
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
JPH10255844A (en) Nonaqueous electrolyte secondary battery
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH04329269A (en) Nonaqueous electrolyte secondary battery
JPH07201315A (en) Nonaqueous electrolyte secondary battery
JPH07296815A (en) Nonaqueous electrolyte secondary battery
JP2000149992A (en) Gel electrolyte battery
JPH07296816A (en) Nonaqueous electrolyte secondary battery
KR20190088333A (en) Electrode for solid electrolyte battery and solid electrolyte battery including the same
JPH0922732A (en) Polymer electrolyte secondary battery
JP2000077099A (en) Battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP2000200609A (en) Nonaqueous secondary battery
JP2002033132A (en) Nonaqueous secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703