JP2002033132A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2002033132A
JP2002033132A JP2000215534A JP2000215534A JP2002033132A JP 2002033132 A JP2002033132 A JP 2002033132A JP 2000215534 A JP2000215534 A JP 2000215534A JP 2000215534 A JP2000215534 A JP 2000215534A JP 2002033132 A JP2002033132 A JP 2002033132A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous secondary
polymer
electrolyte
polymer powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000215534A
Other languages
Japanese (ja)
Inventor
Toru Yamamoto
徹 山本
Nobuo Eda
信夫 江田
Hiroshi Sato
廣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000215534A priority Critical patent/JP2002033132A/en
Publication of JP2002033132A publication Critical patent/JP2002033132A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery having safety during high temperature storage while the energy density is kept high. SOLUTION: Firing during high temperature storage in the charged state can be restrained by mixing high molecular powder having endoergic peak from 100 deg.C to 150 deg.C both inclusive in differential thermal analysis with a positive electrode and/or a negative and/or an electrolyte by 0.1 wt.% to 4 wt.% for the positive and negative electrodes, 1 wt.% to 10 wt.% for the electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高エネルギー密度
で信頼性や安全性に優れた非水系二次電池を提供するも
のである。
The present invention relates to a non-aqueous secondary battery having a high energy density and excellent reliability and safety.

【0002】[0002]

【従来の技術】近年、ポータブル機器やコードレス機器
の発展に伴い、その電源である電池には長時間駆動を実
現させるために、より一層の高エネルギ−密度が要求さ
れる。この要求に対して負極に炭素材料、正極にコバル
ト酸リチウム、電解液として非水系溶媒にLi塩を溶か
したものを用いたLiイオン二次電池が多く使用されて
いる。
2. Description of the Related Art In recent years, with the development of portable equipment and cordless equipment, a battery as a power source thereof is required to have a higher energy density in order to realize long-time operation. In response to this demand, a Li-ion secondary battery using a carbon material for the negative electrode, lithium cobaltate for the positive electrode, and a solution in which a Li salt is dissolved in a non-aqueous solvent as an electrolytic solution is often used.

【0003】一方、携帯電話やノート型パソコンでは軽
量、薄型化への要求も強く、高分子ゲル電解質を用いた
ポリマー電池が注目を集めている。電解質として高分子
ゲル電解質を用いることで液漏れの心配がなく、電槽容
器にアルミニウムを中間の一層にもった樹脂のラミネー
トフィルムのようなソフトケースが使え、軽量で薄型の
非水系二次電池が可能となる。
On the other hand, there is a strong demand for lighter and thinner portable telephones and notebook personal computers, and polymer batteries using a polymer gel electrolyte have attracted attention. The use of a polymer gel electrolyte as the electrolyte eliminates the risk of liquid leakage, and allows the battery case to use a soft case such as a resin laminated film with aluminum in the middle layer, and is a lightweight and thin non-aqueous secondary battery. Becomes possible.

【0004】[0004]

【発明が解決しようとする課題】しかし、これら非水系
二次電池においてはエネルギー密度が高い反面、信頼性
や安全性に課題を有する。とりわけ150℃のような高
温での充電状態保存試験(UL−94)や連続過充電な
どの安全性試験において発火の危険性を有している。
However, these non-aqueous secondary batteries have high energy density but have problems in reliability and safety. In particular, there is a danger of ignition in a charge state storage test (UL-94) at a high temperature such as 150 ° C. or a safety test such as continuous overcharge.

【0005】これに対して正極に安全性の高いLiMn
24を用いたり、電解液に添加剤を加えたり、高温でメ
ルトダウンするセパレータを用いるなどの対策が考案さ
れてきた。これらは、例えば特開平5−205744号
公報、特開平11−329492号公報あるいは特開平
11−322989号公報等に記載されている。
On the other hand, a highly safe LiMn is used for the positive electrode.
Countermeasures have been devised, such as using 2 O 4 , adding an additive to the electrolyte, or using a separator that melts at a high temperature. These are described in, for example, JP-A-5-205744, JP-A-11-329492, and JP-A-11-32289.

【0006】しかし、正極にLiMn24を用いた場
合、放電電位が放電半ばから3V程度に下がり、電池電
圧は2段になって低下する。このためエネルギー密度が
現行LiCoO2に比べて低下する。また、電解液にク
ラウンエーテルのような添加剤を添加する場合は、少量
添加では効果が少なく、多量添加では活物質表面に過度
の安定皮膜を形成するため放電容量の低下や高率放電特
性の低下をもたらす。
However, when LiMn 2 O 4 is used for the positive electrode, the discharge potential drops from mid-discharge to about 3 V, and the battery voltage drops in two stages. For this reason, the energy density is lower than that of the current LiCoO 2 . In addition, when an additive such as crown ether is added to the electrolyte, the effect is small when added in a small amount, and when added in a large amount, an excessively stable film is formed on the surface of the active material. Causes a decline.

【0007】一方、多層構造などで高温メルトダウンが
可能なセパレータにおいては、均一膜の製造が困難で、
薄い部分があれば高温時に、その部分で短絡を起こし、
かえって発火する場合があるなど、各々に課題を有して
いる。
On the other hand, in a separator capable of high-temperature meltdown with a multilayer structure, it is difficult to produce a uniform film.
If there is a thin part, it will cause a short circuit at high temperature,
Each has its own problems, such as firing on the contrary.

【0008】[0008]

【課題を解決するための手段】上述の課題解決のため鋭
意検討した結果、正極と、リチウムを活物質とする負極
と、リチウム塩及び非水系溶媒を主成分とする電解質と
を備える非水系二次電池であって、前記正極及び/ある
いは負極及び/あるいは電解質に示差熱分析において、
100℃以上150℃以下に吸熱ピークが存在する高分
子粉末を混合することにより充電状態での高温保存時の
発火を抑制できることがわかった。吸熱ピークとしては
高分子粉末が軟化する場合とガラス転移を起こす場合、
さらには溶媒に溶ける際に出現する。いずれの場合も発
火抑制効果が認められた。
As a result of intensive studies to solve the above-mentioned problems, a non-aqueous secondary battery comprising a positive electrode, a negative electrode containing lithium as an active material, and an electrolyte containing a lithium salt and a non-aqueous solvent as main components has been obtained. A secondary battery, wherein the positive electrode and / or the negative electrode and / or the electrolyte are subjected to differential thermal analysis,
It has been found that by mixing a polymer powder having an endothermic peak at 100 ° C. or higher and 150 ° C. or lower, ignition during high temperature storage in a charged state can be suppressed. As the endothermic peak, when the polymer powder softens and when glass transition occurs,
Furthermore, it appears when it is dissolved in a solvent. In each case, the effect of suppressing ignition was observed.

【0009】高分子粉末としてはポリエチレン(P
E)、ポリアクリロニトリル(PAN)、塩化ビニル−
アクリロニトリル共重合体、酢酸ビニル−アクリロニト
リル共重合体、ポリメチレン、ポリブテン−1、ポリ−
5−メチルヘキセン、ポリデカメチレンテレフタレー
ト、ポリビニルイソブチルエーテル、ポリエチレン−
2,6−ナフタレートが適していた。
As the polymer powder, polyethylene (P
E), polyacrylonitrile (PAN), vinyl chloride-
Acrylonitrile copolymer, vinyl acetate-acrylonitrile copolymer, polymethylene, polybutene-1, poly-
5-methylhexene, polydecamethylene terephthalate, polyvinyl isobutyl ether, polyethylene
2,6-Naphthalate was suitable.

【0010】また、高分子粉末の添加量としては、正極
あるいは負極に対して0.1wt%以上4wt%以下、
電解質に対しては1wt%以上10wt%以下が、また
高分子粉末の平均粒径としては0.05μm以上5μm以
下(好ましくは0.1μm以上1μm以下)が発火抑制効
果と放電容量低下との兼ね合いにおいて有効であった。
但し、この添加量は電解質の場合、溶媒とリチウム塩を
除いた部材に対する比率を表すものである。
The amount of the polymer powder to be added is 0.1 wt% or more and 4 wt% or less with respect to the positive electrode or the negative electrode.
1 wt% or more and 10 wt% or less with respect to the electrolyte, and the average particle size of the polymer powder is 0.05 μm or more and 5 μm or less (preferably 0.1 μm or more and 1 μm or less). Was effective.
However, in the case of an electrolyte, this addition amount indicates the ratio to the member excluding the solvent and the lithium salt.

【0011】電解質としては微多孔性フィルムからなる
セパレーターと電解液との組み合わせ以外に高分子ゲル
タイプのものでも良い。高分子ゲルとしては電解液にゲ
ル形成高分子を溶解させた物理架橋タイプの高分子ゲ
ル、熱硬化反応等でモノマーあるいはオリゴマーを架橋
・ゲル化した化学架橋タイプの高分子ゲルが用いられ
る。
As the electrolyte, a polymer gel type electrolyte may be used in addition to the combination of the separator composed of the microporous film and the electrolyte. As the polymer gel, a physically cross-linked polymer gel in which a gel-forming polymer is dissolved in an electrolytic solution, or a chemically cross-linked polymer gel in which a monomer or oligomer is cross-linked and gelled by a thermosetting reaction or the like is used.

【0012】高分子ゲル電解質の場合は高率放電特性の
点でイオンタイプのものにやや劣るが、安全性の面では
優れている。正極及び/あるいは負極中及び/あるいは
電解質中に高分子ゲルを有している電池においては高分
子粉末を添加することで安全性はより大幅に向上した。
The polymer gel electrolyte is slightly inferior to the ionic type in terms of high rate discharge characteristics, but is excellent in terms of safety. In a battery having a polymer gel in the positive electrode and / or the negative electrode and / or the electrolyte, the safety was significantly improved by adding the polymer powder.

【0013】ゲル形成の高分子としてはポリエーテル
系、ポリフッ化ビニリデン系、ポリアクリレート系ある
いはポリメタクリレート系からなる群のうち少なくとも
1種類で構成されることが望ましい。
The gel-forming polymer is preferably composed of at least one selected from the group consisting of polyethers, polyvinylidene fluorides, polyacrylates and polymethacrylates.

【0014】本発明におけるリチウムを活物質とする負
極としては、リチウムを吸蔵放出可能な合金、酸化物、
炭素材料が例示される。この合金としてはリチウム−ア
ルミニウム合金、Ti−Sn合金、Fe−Sn合金など
が、リチウムを吸蔵放出可能な酸化物としては酸化鉄、
酸化錫、酸化ニオビウム、酸化チタンなどが、また炭素
材料としてはコークス、黒鉛、有機物焼成体などが、そ
れぞれ例示される。
In the present invention, the negative electrode using lithium as an active material includes alloys, oxides, and the like capable of inserting and extracting lithium.
An example is a carbon material. As this alloy, lithium-aluminum alloy, Ti-Sn alloy, Fe-Sn alloy, etc., and as an oxide capable of inserting and extracting lithium, iron oxide,
Examples include tin oxide, niobium oxide, and titanium oxide, and examples of the carbon material include coke, graphite, and a fired organic material.

【0015】本発明における正極の活物質としてはマン
ガン、コバルト、ニッケル、バナジウム及びニオブから
からなる群より選ばれた少なくとも1種の金属を含有す
る金属酸化物などが挙げられる。
The active material of the positive electrode in the present invention includes a metal oxide containing at least one metal selected from the group consisting of manganese, cobalt, nickel, vanadium and niobium.

【0016】本発明における電解液は、リチウム塩を非
水系溶媒(非プロトン系有機溶媒)に溶かしたもので構
成されており、リチウム塩としては過塩素酸リチウム
(LiClO4)、トリフルオロメタンスルホン酸リチ
ウム(LiCF3SO3)、六フッ化リン酸リチウム(L
iPF6)、四フッ化ホウ酸リチウム(LiBF4)、六
フッ化ヒ酸リチウム(LiAsF6)、六フッ化アンチ
モン酸リチウム(LiSbF6)、リチウムトリフルオ
ロメタンスルホン酸イミド〔LiN(CF3SO22
が例示される。
The electrolyte in the present invention is composed of a lithium salt dissolved in a non-aqueous solvent (aprotic organic solvent). Examples of the lithium salt include lithium perchlorate (LiClO 4 ) and trifluoromethanesulfonic acid. Lithium (LiCF 3 SO 3 ), lithium hexafluorophosphate (L
iPF 6), lithium tetrafluoroborate (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6), lithium trifluoromethanesulfonate imide [LiN (CF 3 SO 2 2 )
Is exemplified.

【0017】非水系溶媒としては、エチレンカーボネー
ト(EC)、プロピレンカーボネート(PC)、ジエチ
ルカーボネート(DEC)、ブチレンカーボネート(B
C)、γ−ブチロラクトン(γ−BL)、スルホラン
(SL)、1,2-ジメトキシエタン(DME)、1,
2−ジエトキシエタン(DEE)、エトキシメトキシエ
タン(EMC)、1,3−ジオキソラン(DOXL)、
4−メチル−1,3−ジオキソラン(4M−DOXL)
などが例示される。
Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), and butylene carbonate (B
C), γ-butyrolactone (γ-BL), sulfolane (SL), 1,2-dimethoxyethane (DME), 1,
2-diethoxyethane (DEE), ethoxymethoxyethane (EMC), 1,3-dioxolan (DOXL),
4-methyl-1,3-dioxolane (4M-DOXL)
And the like.

【0018】[0018]

【発明の実施の形態】以上のように正極あるいは/及び
負極あるいは/及び電解質に示差熱分析で100℃以上
150℃以下に吸熱ピークを有する高分子粉末を少量添
加することで、電池が高温に曝された際、電池の温度上
昇を一旦抑えることができる。さらに、高分子粉末が溶
解する場合は電極間の短絡を防ぐこともできる。150
℃充電状態での保存試験における発火現象は電池の温度
が100℃から150℃に上がる間に起こる。鋭意検討
した結果、100℃から150℃間での電池の昇温速度
を遅らせることで、電池の安全性が大幅に向上すること
がわかった。高分子粉末の平均粒径は0.05μm以上
5μm以下(好ましくは0.1μm以上1μm以下)のも
のが分散性に優れ、有効であった。特に、ポリアクリロ
ニトリル添加では、過充電状態でのデンドライトの生成
抑制効果も高く、大幅な信頼性の確保が可能となった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, by adding a small amount of a polymer powder having an endothermic peak at 100 ° C. or more and 150 ° C. or less by differential thermal analysis to the positive electrode or / and / or the negative electrode or / and the electrolyte, the battery can be heated to a high temperature. When exposed, the temperature rise of the battery can be once suppressed. Further, when the polymer powder is dissolved, a short circuit between the electrodes can be prevented. 150
The ignition phenomenon in the storage test in a charged state at ° C occurs while the temperature of the battery rises from 100 ° C to 150 ° C. As a result of intensive studies, it was found that the safety of the battery was significantly improved by delaying the rate of temperature rise of the battery between 100 ° C and 150 ° C. Polymer powder having an average particle diameter of 0.05 μm or more and 5 μm or less (preferably 0.1 μm or more and 1 μm or less) was excellent in dispersibility and was effective. In particular, by adding polyacrylonitrile, the effect of suppressing the generation of dendrites in an overcharged state was high, and it was possible to secure a great reliability.

【0019】以下に本発明の実施例を示す。電池特性評
価は円筒型電池を組んで行った。
An embodiment of the present invention will be described below. The battery characteristics were evaluated by assembling a cylindrical battery.

【0020】(実施例1)本発明を実施例に基づいてさ
らに詳細に説明するが、本発明は下記実施例に限定され
るものではない。正極活物質としては100メッシュ以
下に分級したLiCoO2を用い、この正極活物質10
0gに対して導電剤としてアセチレンブラック(AB)
粉末を10g、結着剤としてポリ4フッ化エチレン(P
TFE)ディスパージョン6g、さらに平均粒径1μm
のPAN粉末2gを充分混合した後、n−メチル−2−
ピロリドン(NMP)を適量加え、十分混合しペースト
状にし、アルミニウムの芯材(膜厚25μm)に塗布
し、乾燥、圧延して膜厚200μmの正極を得た。
(Embodiment 1) The present invention will be described in more detail based on embodiments, but the present invention is not limited to the following embodiments. LiCoO 2 classified to 100 mesh or less was used as the positive electrode active material.
Acetylene black (AB) as a conductive agent for 0 g
10 g of powder and polytetrafluoroethylene (P
TFE) 6 g of dispersion and 1 μm in average particle size
After sufficiently mixing 2 g of PAN powder, n-methyl-2-
An appropriate amount of pyrrolidone (NMP) was added, mixed well to form a paste, applied to an aluminum core material (25 μm in thickness), dried and rolled to obtain a 200 μm-thick positive electrode.

【0021】負極としては人造黒鉛粉末(活物質)10
0gに対して導電剤としてのAB粉末15g、結着剤と
してのスチレンブタジエンゴム(SBR)8g、前記P
AN粉末3gをよく混合し、水を分散溶媒に用いてペ−
スト状としたものを銅の芯材に塗布し、その後、100
℃で乾燥、圧延し負極(膜厚250μm)とした。
As the negative electrode, artificial graphite powder (active material) 10
0 g, 15 g of AB powder as a conductive agent, 8 g of styrene butadiene rubber (SBR) as a binder,
3 g of AN powder are mixed well, and water is used as a dispersion solvent.
The coated material is applied to a copper core material and then
It dried and rolled at ℃, and it was set as the negative electrode (250 micrometers in film thickness).

【0022】超音波溶接で正極芯材のアルミニウムにア
ルミニウムからなる正極リードを、同様に負極芯材の銅
に、銅の負極リードを超音波溶接で接合した。正極と負
極間に両極板より幅の広い帯状の多孔性ポリエチレン製
のセパレータを配して全体を渦巻状に捲回して構成し
た。さらに、上記電極体の上下それぞれにポリプロピレ
ン製の絶縁板を配して電槽に挿入し、そこに非水系電解
液として、1モル/lのLiPF6を溶解したECとD
MEの等比体積混合溶液を電解液として注液した。その
後、真空含浸し、封口板を挿入し、機械的かしめを行い
密閉して円筒型電池(設計容量900mAh)とした。
A positive electrode lead made of aluminum was connected to aluminum of the positive electrode core material by ultrasonic welding, and a copper negative electrode lead was similarly bonded to copper of the negative electrode core material by ultrasonic welding. A band-shaped porous polyethylene separator wider than the two electrode plates was disposed between the positive electrode and the negative electrode, and the whole was spirally wound. Furthermore, an insulating plate made of polypropylene is arranged on each of the upper and lower sides of the electrode body, and inserted into a battery case. EC and D in which 1 mol / l of LiPF 6 is dissolved as a non-aqueous electrolytic solution are placed therein.
An equal volume mixed solution of ME was injected as an electrolyte. Thereafter, vacuum impregnation was performed, a sealing plate was inserted, mechanical caulking was performed, and sealing was performed to obtain a cylindrical battery (design capacity: 900 mAh).

【0023】この様にして作製した円筒型電池は試験温
度20℃、充電電流0.2C(1Cは1時間率電流)
で、電池電圧が4.2Vまで定電流充電を行い、その後
4.2Vで定電圧充電(定電流定電圧CCCV充電)を
行った。1回目の放電は0.2Cの電流で電池電圧3.
0Vまで行い、2回目は同一充電条件で、放電のみ2C
の電流で行った。2回目の2C放電容量を1回目の0.
2C放電容量で割り100を掛けた値を高率放電比とし
た。この比が100に近いほど高率放電に優れることに
なる。3回目以降は1回目と同一条件で充放電を繰り返
した。1サイクル目に対する100サイクル目の放電容
量比をサイクル維持率とした。この比も100に近いほ
どサイクル特性が良好なことを示す。100サイクルの
充放電を行った電池を充電した後、150℃2時間の高
温保存試験にかけ、発火試験を行った。
The cylindrical battery thus manufactured was tested at a test temperature of 20 ° C. and a charging current of 0.2 C (1 C is a one-hour rate current).
Then, constant current charging was performed until the battery voltage reached 4.2 V, and then constant voltage charging (constant current constant voltage CCCV charging) was performed at 4.2 V. The first discharge was at a current of 0.2 C and a battery voltage of 3.
0V, the second time under the same charge condition, only discharge 2C
The current was measured. The second 2C discharge capacity was changed to the first 0C discharge capacity.
The value obtained by dividing by the 2C discharge capacity and multiplying by 100 was defined as the high rate discharge ratio. The closer this ratio is to 100, the better the high-rate discharge is. After the third time, charging and discharging were repeated under the same conditions as the first time. The discharge capacity ratio at the 100th cycle relative to the first cycle was defined as the cycle retention rate. The closer this ratio is to 100, the better the cycle characteristics. After charging the battery which had been charged and discharged for 100 cycles, it was subjected to a high-temperature storage test at 150 ° C. for 2 hours, and an ignition test was performed.

【0024】結果を(表1)に示す。比較として前記実
施例において正負極からPAN粉末を除いた電池(比較
例1)を作製したが、初期放電容量、高率放電特性及び
サイクル特性はほぼ同等であった。しかし、本実施例の
電池では150℃の高温保存試験で発火しなかったが、
比較例1の電池では昇温途中で発火した。
The results are shown in (Table 1). As a comparison, a battery (Comparative Example 1) was prepared in which the PAN powder was removed from the positive and negative electrodes in the above Examples, but the initial discharge capacity, high-rate discharge characteristics, and cycle characteristics were almost the same. However, the battery of this example did not ignite in the high-temperature storage test at 150 ° C.
The battery of Comparative Example 1 ignited during the heating.

【0025】[0025]

【表1】 [Table 1]

【0026】(実施例2〜5)実施例1においてPAN
粉末を各種高分子粉末に置き換え、電池を作製した。こ
の電池の結果を表1に示す。また、表1には比較のため
示差熱分析において100℃以上150℃以下に吸熱ピ
ークが存在しない高分子粉末を用い、実施例1と同様に
添加した電池(比較例2−5)の特性も示す。
(Examples 2 to 5)
The powder was replaced with various polymer powders to produce a battery. Table 1 shows the results of the battery. Table 1 also shows, for comparison, the characteristics of a battery (Comparative Example 2-5) in which a polymer powder having no endothermic peak at 100 ° C or higher and 150 ° C or lower in differential thermal analysis was added in the same manner as in Example 1. Show.

【0027】吸熱ピークを100℃以上150℃以下に
有する高分子粉末において発火抑制効果の大きいことが
わかった。吸熱ピークが100℃より低い高分子粉末で
はセパレータが融解する以前に、吸熱が起こり、発火抑
制に効果がなかった。一方、吸熱ピークが150℃より
高いものでは、発火が起こる範囲に吸熱ピークがないた
め、効果がなかったものと考えられる。
It has been found that the polymer powder having an endothermic peak at 100 ° C. or more and 150 ° C. or less has a large ignition suppressing effect. In the case of a polymer powder having an endothermic peak lower than 100 ° C., an endotherm occurred before the separator was melted, and there was no effect in suppressing ignition. On the other hand, if the endothermic peak is higher than 150 ° C., there is no endothermic peak in the range in which ignition occurs, and thus it is considered that there was no effect.

【0028】(実施例6〜8)実施例1と同様に正極活
物質としては100メッシュ以下に分級したLiCoO
2を用い、この正極活物質100gに対して導電剤とし
てAB粉末を10g、結着剤としてPTFE6gを加
え、充分混合した後、NMPを適量加え、良く混合しペ
ースト状にし、アルミニウムの芯材(膜厚25μm)に
塗布し、乾燥、圧延して実施例1と同様の膜厚200μ
mの正極を得た。
(Examples 6 to 8) As in Example 1, the positive electrode active material was LiCoOO classified to 100 mesh or less.
2 , 10 g of AB powder as a conductive agent and 6 g of PTFE as a binder were added to 100 g of the positive electrode active material, mixed well, NMP was added in an appropriate amount, mixed well to form a paste, and an aluminum core material ( 25 μm), dried and rolled, and the same 200 μm thickness as in Example 1.
m of the positive electrode were obtained.

【0029】負極としては人造黒鉛粉末(活物質)10
0gに対して導電剤としてのAB粉末15g、結着剤と
してのSBR8g、さらに前記PAN粉末を各種重量で
添加、よく混合し、水を分散溶媒に用いてペ−スト状と
したものを銅の芯材に塗布した。その後、100℃で乾
燥、圧延し実施例1と同様に負極(膜厚250μm)と
し、円筒型電池を作製した。
As the negative electrode, artificial graphite powder (active material) 10
15 g of AB powder as a conductive agent, 8 g of SBR as a binder, and various weights of the above-mentioned PAN powder with respect to 0 g, mixed well, and made a paste using water as a dispersing solvent. It was applied to the core material. Thereafter, the resultant was dried and rolled at 100 ° C. to obtain a negative electrode (250 μm in thickness) in the same manner as in Example 1 to produce a cylindrical battery.

【0030】電池特性を(表1)に示すが、PAN添加
量が0.1wt%以上4wt%以下において発火現象は
見られなかった。0.1wt%より添加量が低い場合
(比較例6)は発火し、4wt%を越す場合(比較例
7)では初期放電容量が大幅に低下した。このことより
PAN粉末の添加量としては0.1wt%以上4wt%
以下が有効であることがわかった。これはPAN粉末以
外の吸熱ピークが100℃以上150℃以下の高分子粉
末についても同様であり、正極にのみ添加した場合や両
極に添加した場合においても同様であった。
The battery characteristics are shown in Table 1. No ignition phenomenon was observed when the amount of PAN added was 0.1 wt% or more and 4 wt% or less. When the addition amount was lower than 0.1 wt% (Comparative Example 6), ignition occurred, and when the addition amount exceeded 4 wt% (Comparative Example 7), the initial discharge capacity was significantly reduced. From this, the addition amount of PAN powder is 0.1 wt% or more and 4 wt%.
The following proved to be effective: The same applies to polymer powders having an endothermic peak of 100 ° C. or more and 150 ° C. or less other than PAN powder, and the same applies to the case where they are added only to the positive electrode or the case where they are added to both electrodes.

【0031】(実施例9〜11)実施例1と同様に正極
活物質としては100メッシュ以下に分級したLiCo
2を用い、この正極活物質100gに対して導電剤と
してAB粉末を10g、結着剤としてPTFE6gを加
え、さらに各種粒径のPE粉末を2g添加、NMPを適
量加え、十分混合しペースト状にし、アルミニウムの芯
材(膜厚25μm)に塗布し、乾燥、圧延して実施例1
と同様の膜厚200μmの正極を得た。
(Examples 9 to 11) As in Example 1, the cathode active material was LiCo classified to 100 mesh or less.
Using O 2 , 10 g of AB powder as a conductive agent and 6 g of PTFE as a binder were added to 100 g of the positive electrode active material, 2 g of PE powder of various particle diameters were added, an appropriate amount of NMP was added, and the mixture was thoroughly mixed into a paste. Example 1 was applied to an aluminum core material (film thickness 25 μm), dried and rolled.
A positive electrode having the same film thickness of 200 μm was obtained.

【0032】負極としては人造黒鉛粉末(活物質)10
0gに対して導電剤としてのAB粉末15g、結着剤と
してのSBR8gを添加し、水を分散溶媒に用いて良く
混合し、ペ−スト状としたものを銅の芯材に塗布し、そ
の後、100℃で乾燥、圧延し実施例1と同様に負極
(膜厚250μm)とし、円筒型電池を作製した。
As the negative electrode, artificial graphite powder (active material) 10
15 g of AB powder as a conductive agent and 8 g of SBR as a binder are added to 0 g, and water is used as a dispersion solvent, mixed well, and the paste is applied to a copper core material. After drying and rolling at 100 ° C., a negative electrode (film thickness 250 μm) was obtained in the same manner as in Example 1 to produce a cylindrical battery.

【0033】この電池特性も(表1)に示すが、PE粉
末の平均粒径が5μmより大きいもの(比較例9)や
0.05μmより小さいもの(比較例8)では150℃
2時間の高温保存時に発火現象を起こした。一方、平均
粒径が0.05μm以上5μm以下のPE粉末を用いた場
合において発火現象は見られなかった。この原因として
は、平均粒径が5μmを越えると、負極活物質を囲む効
果が薄れ、これによって昇温時の発熱反応を抑えきれな
いものと思われる。一方、平均粒径が0.05μmより
小さい場合は、二次凝集体を作り分散性が大幅に低下す
るためと考えられる。
The battery characteristics are also shown in Table 1. If the average particle diameter of the PE powder is larger than 5 μm (Comparative Example 9) or smaller than 0.05 μm (Comparative Example 8), the temperature is 150 ° C.
An ignition phenomenon occurred during high-temperature storage for 2 hours. On the other hand, no ignition phenomenon was observed when PE powder having an average particle size of 0.05 μm or more and 5 μm or less was used. It is considered that the reason for this is that if the average particle size exceeds 5 μm, the effect of surrounding the negative electrode active material is weakened, whereby the exothermic reaction at the time of temperature rise cannot be suppressed. On the other hand, when the average particle size is smaller than 0.05 μm, it is considered that secondary aggregates are formed and the dispersibility is significantly reduced.

【0034】この平均粒径の影響は各種高分子粉末にお
いても、また正極にのみ添加した場合や両極に添加した
場合においても、同様であった。
The effect of the average particle size was the same in the case of various polymer powders, and also in the case where it was added only to the positive electrode or the case where it was added to both electrodes.

【0035】(実施例12)正極活物質としてLiCo
285g、導電材としてAB粉末5g、結着材として
PTFE5gを混合し、これに適当量のNMPを加えペ
ーストとした後、実施例1と同様にアルミニウム箔上に
塗布、乾燥、圧延して正極(膜厚200μm)を作製し
た。
Example 12 LiCo as a positive electrode active material
After mixing 85 g of O 2 , 5 g of AB powder as a conductive material, and 5 g of PTFE as a binder, and adding an appropriate amount of NMP to form a paste, the mixture was applied to an aluminum foil in the same manner as in Example 1, dried, and rolled. A positive electrode (thickness: 200 μm) was produced.

【0036】負極としては銅箔上に高結晶性炭素(グラ
ファイト)85gとAB粉末3gとPTFE12gを混
合し、これに適当量のNMPを加えペーストとした後、
塗布、乾燥、圧延して負極(膜厚250μm)を作製し
た。
As a negative electrode, 85 g of highly crystalline carbon (graphite), 3 g of AB powder and 12 g of PTFE were mixed on a copper foil, and an appropriate amount of NMP was added thereto to form a paste.
A negative electrode (250 μm in thickness) was prepared by coating, drying and rolling.

【0037】電解質としてはポリフッ化ビニリデン系ポ
リマーであるPVDFと六フッ化プロピレン(HFP)
共重合体(HFP比10%)80gをジブチルフタレー
ト(DBP)60gとアセトン200gに溶かした溶液
中にアエロジル20gと平均粒径1μmのポリエチレン
−2,6−ナフタレート粉末8gを加え、良く混合しペ
ーストを作製した。次にポリエチレンテレフタレート
(PET)製のフィルム状に塗布し、乾燥(アセトン除
去)後、ジエチルエーテル(DEE)でDBPを除去
し、高分子多孔膜(膜厚30μm)を作製した。
As electrolytes, polyvinylidene fluoride polymer PVDF and propylene hexafluoride (HFP)
In a solution prepared by dissolving 80 g of the copolymer (HFP ratio: 10%) in 60 g of dibutyl phthalate (DBP) and 200 g of acetone, 20 g of Aerosil and 8 g of polyethylene-2,6-naphthalate powder having an average particle diameter of 1 μm were added, and mixed well. Was prepared. Next, it was coated on a polyethylene terephthalate (PET) film, dried (acetone removed), and then the DBP was removed with diethyl ether (DEE) to produce a polymer porous membrane (thickness: 30 μm).

【0038】負極と正極の間に上記高分子多孔膜を介し
て、実施例1と同様の円筒型セルを構成した。電解液と
してEC60g、PC30g、LiBF410gを適当
量注液、真空含浸後、60℃2日間エージングし、高分
子多孔膜をゲル化させた。その後、密閉し、円筒型電池
を作製した。
A cylindrical cell similar to that of Example 1 was formed between the negative electrode and the positive electrode with the above-described polymer porous membrane interposed therebetween. Appropriate amounts of 60 g of EC, 30 g of PC, and 10 g of LiBF 4 were injected as electrolytes and impregnated in vacuum, followed by aging at 60 ° C. for 2 days to gel the polymer porous membrane. Thereafter, the container was sealed to produce a cylindrical battery.

【0039】この電池特性を(表2)に示すが、ポリエ
チレン−2,6−ナフタレート粉末無添加のもの(比較
例10)に比べて、電池特性はほぼ同等であった。しか
し、発火確率は本実施例では10個中0個で全数発火し
なかったが、本比較例においては10個中2個が発火し
た。このことよりポリエチレン−2,6−ナフタレート
粉末を添加することで高温保存特性が向上することがわ
かった。
The battery characteristics are shown in Table 2. The battery characteristics were almost the same as those obtained without the polyethylene-2,6-naphthalate powder (Comparative Example 10). However, in the present example, the firing probability was 0 out of 10 and not 100%, but in the present comparative example, 2 out of 10 fired. From this, it was found that the addition of polyethylene-2,6-naphthalate powder improved the high-temperature storage characteristics.

【0040】[0040]

【表2】 [Table 2]

【0041】(実施例13、14)実施例12において
ポリエチレン−2,6−ナフタレート粉末を各種添加量
で添加した電池を作製した。この電池の結果を表2に示
す。ポリエチレン−2,6−ナフタレート添加量が1w
t%以上10wt%以下において発火現象の確率が10
個中0個となった。1wt%より添加量が低い場合(比
較例11)では10個中5個が発火し、10wt%を越
す場合(比較例12)では、発火現象は見られなかった
が、初期放電容量及び高率放電比が大幅に低下した。こ
のことより電解質へのポリエチレン−2,6−ナフタレ
ート粉末の添加量としては1wt%以上10wt%以下
が有効であることがわかった。この範囲は他の高分子粉
末を添加した場合でも同じであった。
(Examples 13 and 14) Batteries were prepared in the same manner as in Example 12 except that polyethylene-2,6-naphthalate powder was added in various amounts. Table 2 shows the results of the battery. 1w polyethylene-2,6-naphthalate added
In the range of t% to 10% by weight, the probability of the ignition phenomenon is 10
It became 0 out of pieces. When the addition amount was lower than 1 wt% (Comparative Example 11), 5 out of 10 ignited, and when the addition amount exceeded 10 wt% (Comparative Example 12), no ignition phenomenon was observed, but the initial discharge capacity and the high rate The discharge ratio dropped significantly. From this, it was found that the amount of the polyethylene-2,6-naphthalate powder to be added to the electrolyte was 1 wt% or more and 10 wt% or less. This range was the same even when other polymer powders were added.

【0042】(実施例15)実施例12と同じ正極及び
負極を用い、ポリエチレン製不織布(膜厚30μm)を
介して、実施例1と同様の円筒型セルを構成した。電解
液としてEC40g、DEC50g、LiPF610g
に平均粒径0.1μmのポリメチレン粉末1.0gを加
え、さらに単官能性モノマーとしてメチルジエチレング
リコールアクリレート10g、多官能性モノマーとして
エチレンオキサイド変性トリメチロールプロパントリア
クリレート(分子量428)1g、熱重合開始剤として
ビス(4―t―ブチルシクロヘキシル)パーオキシジカ
ーボネート0.03gを添加して混合溶解し、熱重合性
電解液を調製した。この電解液を適当量注液、真空含浸
後、80℃4時間かけて熱重合を行い、ゲル化(ポリア
クリレート系高分子ゲル)させ、その後密閉し円筒型電
池を作製した。この電池において前記ゲル電解質(ポリ
メチレン粉末を含む)は正極及び負極中にも存在してい
た。
Example 15 Using the same positive electrode and negative electrode as in Example 12, a cylindrical cell similar to that of Example 1 was formed via a nonwoven fabric made of polyethylene (thickness: 30 μm). EC 40 g, DEC 50 g, LiPF 6 10 g as electrolyte
1.0 g of polymethylene powder having an average particle diameter of 0.1 μm, 10 g of methyldiethylene glycol acrylate as a monofunctional monomer, 1 g of ethylene oxide-modified trimethylolpropane triacrylate (molecular weight 428) as a polyfunctional monomer, and a thermal polymerization initiator And 0.03 g of bis (4-t-butylcyclohexyl) peroxydicarbonate was added and mixed and dissolved to prepare a thermopolymerizable electrolyte. After injection of an appropriate amount of this electrolytic solution and vacuum impregnation, thermal polymerization was carried out at 80 ° C. for 4 hours to cause gelation (polyacrylate polymer gel), followed by sealing to produce a cylindrical battery. In this battery, the gel electrolyte (including polymethylene powder) was also present in the positive and negative electrodes.

【0043】電池特性を(表2)に示すが、本実施例の
高温保存試験での発火確率は10個中0個で全数発火し
なかった。
The battery characteristics are shown in (Table 2). In the high-temperature storage test of this example, the firing probability was 0 out of 10 batteries, and all the batteries did not fire.

【0044】(実施例16)実施例12と同じ正極用
い、負極として実施例1と同じPAN粉末を含有したも
のを用いた。電解質としては、エチレンオキシドとプロ
ピレンオキシドのコポリマー3官能アクリル酸エステル
(分子量:9000)40gとγ−BL60gとLiC
3SO310gと平均粒径0.1μmのポリデカメチレ
ンテレフタレート2gを混合し溶解させたものをキャス
ト成膜したのち電子線を照射することによってポリエー
テル系高分子ゲル電解質(膜厚30μm)を形成した。
Example 16 The same positive electrode as in Example 12 was used, and the negative electrode containing the same PAN powder as in Example 1 was used. As the electrolyte, 40 g of trifunctional acrylate (molecular weight: 9000) copolymer of ethylene oxide and propylene oxide, 60 g of γ-BL and LiC
A mixture of 10 g of F 3 SO 3 and 2 g of polydecamethylene terephthalate having an average particle size of 0.1 μm dissolved therein is cast into a film, and then irradiated with an electron beam to obtain a polyether polymer gel electrolyte (thickness: 30 μm). Was formed.

【0045】正極と負極に真空含浸法でLiCF3SO3
を1モル/l溶かしたγ−BLを極板の空隙に注入し
た。これら極板の間に上記高分子ゲルを介して、実施例
1と同様の円筒型電池を作製した。
LiCF 3 SO 3 was applied to the positive and negative electrodes by vacuum impregnation.
Was dissolved in 1 mol / l and injected into the space of the electrode plate. A cylindrical battery similar to that of Example 1 was produced with the polymer gel interposed between these electrode plates.

【0046】電池特性を表2に示すが、本実施例の15
0℃高温保存試験での発火確率は10個中0個で全数発
火しなかった。
Table 2 shows the battery characteristics.
The probability of ignition in the 0 ° C. high-temperature storage test was 0 out of 10 and not all of them ignited.

【0047】(実施例17)実施例1と同じPAN粉末
を含有した正極と、実施例12と同じ負極を用い、微多
孔性ポリエチレンセパレータ(膜厚30μm)を介し
て、実施例1と同様の円筒型セルを構成した。電解液と
してEC40g、DEC50g、LiPF610gに平
均粒径4μmのポリブテン−1粉末1.2gを加え、さ
らに単官能性モノマーとしてメチルジエチレングリコー
ルメタクリレート10g、多官能性モノマーとしてエチ
レンオキサイド変性トリメチロールプロパントリメタク
リレート1g、熱重合開始剤としてビス(4―t―ブチ
ルシクロヘキシル)パーオキシジカーボネート0.05
gを添加して混合溶解し、熱重合性電解液を調製した。
この電解液を適当量注液、真空含浸後、80℃4時間か
けて熱重合を行い、ゲル化(ポリメタクリレート系高分
子ゲル)させ、その後密閉し円筒型電池を作製した。ゲ
ル電解質は正極及び負極中にも存在したが、ポリブテン
−1粉末は粒径が大きいため、極板内部に入ることはな
かった。
(Example 17) Using the same positive electrode containing the same PAN powder as in Example 1 and the same negative electrode as in Example 12, the same procedure as in Example 1 was carried out via a microporous polyethylene separator (thickness: 30 μm). A cylindrical cell was constructed. To 40 g of EC, 50 g of DEC, and 10 g of LiPF 6 were added 1.2 g of polybutene-1 powder having an average particle size of 4 μm, and 10 g of methyldiethylene glycol methacrylate as a monofunctional monomer, and ethylene oxide-modified trimethylolpropane trimethacrylate as a polyfunctional monomer. 1 g, bis (4-tert-butylcyclohexyl) peroxydicarbonate 0.05 as a thermal polymerization initiator
g was added and mixed and dissolved to prepare a thermopolymerizable electrolytic solution.
After injection of an appropriate amount of this electrolytic solution and vacuum impregnation, thermal polymerization was performed at 80 ° C. for 4 hours to gel (polymethacrylate polymer gel), and then sealed to produce a cylindrical battery. Although the gel electrolyte was also present in the positive electrode and the negative electrode, the polybutene-1 powder did not enter the inside of the electrode plate because of its large particle size.

【0048】電池特性を(表2)に示すが、本実施例の
高温保存試験での発火確率は10個中0個で全数発火し
なかった。
The battery characteristics are shown in (Table 2). In the high-temperature storage test of this example, the firing probability was 0 out of 10 batteries, and all the batteries did not fire.

【0049】正極及び/あるいは負極及び/あるいは電
解質に示差熱分析において100℃以上150℃以下に
吸熱ピークが存在する高分子粉末を混合することにより
充電状態での高保存発火を抑制できることがわかった。
高分子粉末としてはPE、PAN、塩化ビニル−アクリ
ロニトリル共重合体、酢酸ビニル−アクリロニトリル共
重合体、ポリメチレン、ポリブテン−1、ポリ−5−メ
チルヘキセン、ポリデカメチレンテレフタレート、ポリ
ビニルイソブチルエーテル、ポリエチレン−2,6−ナ
フタレートが適していたが、示差熱分析において100
℃以上150℃以下に吸熱ピークが存在する高分子粉末
であれば有効である。
It was found that high storage ignition in a charged state can be suppressed by mixing a polymer powder having an endothermic peak at 100 ° C. or more and 150 ° C. or less in differential thermal analysis with the positive electrode and / or the negative electrode and / or the electrolyte. .
Polymer powders include PE, PAN, vinyl chloride-acrylonitrile copolymer, vinyl acetate-acrylonitrile copolymer, polymethylene, polybutene-1, poly-5-methylhexene, polydecamethylene terephthalate, polyvinyl isobutyl ether, and polyethylene-2. , 6-naphthalate was suitable, but 100
It is effective if the polymer powder has an endothermic peak at not less than 150 ° C. and not more than 150 ° C.

【0050】また、高分子粉末の添加量としては正極あ
るいは負極に対しては0.1wt%以上4wt%以下、
電解質に対しては1wt%以上10wt%以下が、また
高分子粉末の平均粒径としては0.05μm以上5μm以
下(好ましくは0.1μm以上1μm以下)が発火抑制効
果と放電容量低下との兼ね合いにおいて有効であった。
また、電池を4.3Vで過充電試験を行った際、本発明
の高分子粉末を添加した電池は、無添加のものと比べ安
全性が高かった。
The amount of the polymer powder added is 0.1 wt% or more and 4 wt% or less for the positive electrode or the negative electrode.
1 wt% or more and 10 wt% or less with respect to the electrolyte, and the average particle size of the polymer powder is 0.05 μm or more and 5 μm or less (preferably 0.1 μm or more and 1 μm or less). Was effective.
In addition, when the battery was subjected to an overcharge test at 4.3 V, the battery to which the polymer powder of the present invention was added had higher safety than the battery without the addition.

【0051】[0051]

【発明の効果】正極あるいは/及び負極及び/あるいは
電解質に示差熱分析で100℃以上150℃以下に吸熱
ピークを有する高分子粉末を適量添加することで、電池
特性を低下させることなく、電池が高温に曝された際、
電池の温度上昇を一旦抑え、電池を安全に動作を停止
(放電反応を停止)することができ、高い安全性を確保
できる。
According to the present invention, by adding an appropriate amount of a polymer powder having an endothermic peak at 100 ° C. or more and 150 ° C. or less by differential thermal analysis to the positive electrode and / or the negative electrode and / or the electrolyte, the battery can be manufactured without deteriorating the battery characteristics. When exposed to high temperatures,
The temperature rise of the battery is once suppressed, and the operation of the battery can be safely stopped (discharge reaction stopped), and high safety can be secured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 廣 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ12 AK02 AK03 AL02 AL06 AL07 AL12 AM00 AM02 AM03 AM04 AM05 AM07 AM16 BJ27 DJ08 EJ12 EJ14 HJ01 HJ05 HJ14 5H050 AA15 BA17 CA03 CA04 CA05 CA08 CA09 CB02 CB07 CB08 CB12 DA09 EA23 EA26 EA28 HA01 HA05 HA14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Sato 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 5H029 AJ12 AK02 AK03 AL02 AL06 AL07 AL12 AM00 AM02 AM03 AM04 AM05 AM07 AM16 BJ27 DJ08 EJ12 EJ14 HJ01 HJ05 HJ14 5H050 AA15 BA17 CA03 CA04 CA05 CA08 CA09 CB02 CB07 CB08 CB12 DA09 EA23 EA26 EA28 HA01 HA05 HA14

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 正極と、リチウムを活物質とする負極
と、リチウム塩及び非水系溶媒を主成分とする電解質と
を備える非水系二次電池であって、前記正極中及び/あ
るいは負極中に示差熱分析において100℃以上150
℃以下に吸熱ピークが存在する高分子粉末を有すること
を特徴とする非水系二次電池。
1. A non-aqueous secondary battery comprising a positive electrode, a negative electrode using lithium as an active material, and an electrolyte mainly containing a lithium salt and a non-aqueous solvent, wherein the non-aqueous secondary battery includes: 100 ° C or more and 150 in differential thermal analysis
A non-aqueous secondary battery comprising a polymer powder having an endothermic peak at a temperature of not more than ° C.
【請求項2】 正極と、リチウムを活物質とする負極
と、リチウム塩及び非水系溶媒を主成分とする電解質と
を備える非水系二次電池であって、前記正極中及び/あ
るいは負極中、さらには電解質中に示差熱分析において
100℃以上150℃以下に吸熱ピークが存在する高分
子粉末を有することを特徴とする非水系二次電池。
2. A non-aqueous secondary battery comprising a positive electrode, a negative electrode using lithium as an active material, and an electrolyte mainly containing a lithium salt and a non-aqueous solvent, wherein the non-aqueous secondary battery comprises: Furthermore, a non-aqueous secondary battery comprising a polymer powder having an endothermic peak at 100 ° C. or higher and 150 ° C. or lower in a differential thermal analysis in an electrolyte.
【請求項3】 正極と、リチウムを活物質とする負極
と、リチウム塩及び非水系溶媒を主成分とする電解質と
を備える非水系二次電池であって、前記電解質中に示差
熱分析において100℃以上150℃以下に吸熱ピーク
が存在する高分子粉末を有することを特徴とする非水系
二次電池。
3. A non-aqueous secondary battery comprising a positive electrode, a negative electrode containing lithium as an active material, and an electrolyte containing a lithium salt and a non-aqueous solvent as main components. A non-aqueous secondary battery comprising a polymer powder having an endothermic peak at not less than 150 ° C. and not more than 150 ° C.
【請求項4】 請求項1及び請求項2記載の高分子粉末
が、ポリエチレン、ポリアクリロニトリル、塩化ビニル
−アクリロニトリル共重合体、酢酸ビニル−アクリロニ
トリル共重合体、ポリメチレン、ポリブテン−1、ポリ
−5−メチルヘキセン、ポリデカメチレンテレフタレー
ト、ポリビニルイソブチルエーテル、ポリエチレン−
2,6−ナフタレートからなる群のうちの少なくともひ
とつであることを特徴とする非水系二次電池。
4. The polymer powder according to claim 1, wherein the polymer powder is polyethylene, polyacrylonitrile, vinyl chloride-acrylonitrile copolymer, vinyl acetate-acrylonitrile copolymer, polymethylene, polybutene-1, poly-5-. Methylhexene, polydecamethylene terephthalate, polyvinyl isobutyl ether, polyethylene
A non-aqueous secondary battery, which is at least one member of the group consisting of 2,6-naphthalate.
【請求項5】 請求項1及び請求項2記載の正極中ある
いは負極中に前記高分子粉末を0.1wt%以上4wt
%以下添加したことを特徴とする非水系二次電池。
5. The polymer powder according to claim 1, wherein the polymer powder is contained in an amount of 0.1 wt% or more and 4 wt% or less.
% Of non-aqueous secondary battery.
【請求項6】 請求項2及び請求項3記載の電解質中に
前記高分子粉末を1wt%以上10wt%以下添加した
ことを特徴とする非水系二次電池。
6. A non-aqueous secondary battery, wherein the polymer powder is added to the electrolyte according to claim 2 in an amount of 1 wt% or more and 10 wt% or less.
【請求項7】 請求項1、請求項2及び請求項3のうち
のいずれかに記載の高分子粉末の平均粒径が0.05μ
m以上5μm以下であることを特徴とする非水系二次電
池。
7. The polymer powder according to claim 1, wherein the average particle diameter of the polymer powder is 0.05 μm.
A non-aqueous secondary battery having a length of not less than m and not more than 5 μm.
【請求項8】 請求項1、請求項2及び請求項3のうち
のいずれかに記載の電解質が高分子ゲルであることを特
徴とする非水系二次電池。
8. A non-aqueous secondary battery, wherein the electrolyte according to any one of claims 1, 2 and 3 is a polymer gel.
【請求項9】 請求項1、請求項2及び請求項3のうち
のいずれかに記載の正極及び/あるいは負極が高分子ゲ
ルを有していることを特徴とする非水系二次電池。
9. A non-aqueous secondary battery, wherein the positive electrode and / or the negative electrode according to any one of claims 1, 2 and 3 has a polymer gel.
【請求項10】 請求項8または請求項9記載の高分子
ゲルを形成する高分子がポリエーテル系、ポリフッ化ビ
ニリデン系、ポリアクリレート系およびポリメタクリレ
ート系からなる群のうち少なくとも1種類で構成されて
いることを特徴とする非水系二次電池。
10. The polymer forming the polymer gel according to claim 8 or 9, wherein the polymer is at least one selected from the group consisting of polyethers, polyvinylidene fluorides, polyacrylates and polymethacrylates. Non-aqueous secondary battery characterized by the following.
JP2000215534A 2000-07-17 2000-07-17 Nonaqueous secondary battery Pending JP2002033132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215534A JP2002033132A (en) 2000-07-17 2000-07-17 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215534A JP2002033132A (en) 2000-07-17 2000-07-17 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2002033132A true JP2002033132A (en) 2002-01-31

Family

ID=18710943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215534A Pending JP2002033132A (en) 2000-07-17 2000-07-17 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2002033132A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021534A (en) * 2006-07-13 2008-01-31 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
JP2010225541A (en) * 2009-03-25 2010-10-07 Tdk Corp Lithium ion secondary battery
WO2011058979A1 (en) * 2009-11-10 2011-05-19 トヨタ自動車株式会社 Lithium secondary battery
JP2014013659A (en) * 2012-07-03 2014-01-23 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2015115168A (en) * 2013-12-11 2015-06-22 日立化成株式会社 Electrode for lithium ion secondary batteries, and lithium ion secondary battery arranged by use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021534A (en) * 2006-07-13 2008-01-31 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
JP2010225541A (en) * 2009-03-25 2010-10-07 Tdk Corp Lithium ion secondary battery
WO2011058979A1 (en) * 2009-11-10 2011-05-19 トヨタ自動車株式会社 Lithium secondary battery
JP2014013659A (en) * 2012-07-03 2014-01-23 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2015115168A (en) * 2013-12-11 2015-06-22 日立化成株式会社 Electrode for lithium ion secondary batteries, and lithium ion secondary battery arranged by use thereof

Similar Documents

Publication Publication Date Title
JP5195499B2 (en) Nonaqueous electrolyte secondary battery
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JPWO2002054524A1 (en) Non-aqueous electrolyte secondary battery
JP2007538365A (en) Additive for lithium secondary battery
JP2000215884A (en) Positive electrode for nonaqueous electrolyte battery, its manufacture, nonaqueous electrolyte battery using the positive electrode, and manufacture of the battery
KR20010051629A (en) Non-aqueous Secondary Electrolyte Battery
JPH09171840A (en) Aromatic monomer series gas generating agent for protecting overcharge in nonaqueous lithium battery
KR100573109B1 (en) Organic electrolytic solution and lithium battery employing the same
JP5412843B2 (en) battery
JP5082198B2 (en) Lithium ion secondary battery
US20030148183A1 (en) Non-aqueous electrolyte battery
JP2009123474A (en) Nonaqueous electrolyte battery
JP2009134970A (en) Nonaqueous electrolytic battery
JP2009026542A (en) Lithium secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2002033132A (en) Nonaqueous secondary battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JPH11214036A (en) Polymer electrolyte separator, lithium secondary battery and manufacture thereof
JP4795509B2 (en) Non-aqueous electrolyte battery
JPH1140199A (en) Lithium secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP2001266890A (en) Nonaqueous electrolyte secondary battery and its manufacturing method