JP5082198B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP5082198B2
JP5082198B2 JP2005067186A JP2005067186A JP5082198B2 JP 5082198 B2 JP5082198 B2 JP 5082198B2 JP 2005067186 A JP2005067186 A JP 2005067186A JP 2005067186 A JP2005067186 A JP 2005067186A JP 5082198 B2 JP5082198 B2 JP 5082198B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium ion
ion secondary
nitroxyl radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005067186A
Other languages
Japanese (ja)
Other versions
JP2006252917A (en
Inventor
謙太郎 中原
正明 松宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2005067186A priority Critical patent/JP5082198B2/en
Publication of JP2006252917A publication Critical patent/JP2006252917A/en
Application granted granted Critical
Publication of JP5082198B2 publication Critical patent/JP5082198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、過充電しても安全なリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery that is safe even when overcharged.

近年、ラップトップ型コンピューター、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。しかしながら、リチウムイオン二次電池は、過充電時に熱暴走して発熱、発火する恐れがあるため、その安全対策が求められている。リチウムイオン二次電池における過充電防止対策としては、電子回路によるシャットダウン機構、過充電時のガス発生を利用した機械的電流遮断機構、セパレータの融解を利用したシャットダウン機構、電解液添加剤の化学反応機構等を利用することが提案されている。中でも、電解液添加剤を利用する方法は、低コストで大きな効果の得られる方法として注目されている。   In recent years, lithium ion secondary batteries have been put into practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. However, a lithium ion secondary battery is likely to generate heat and ignite due to thermal runaway at the time of overcharging. Therefore, safety measures are required. Measures to prevent overcharge in lithium ion secondary batteries include electronic circuit shutdown mechanism, mechanical current interruption mechanism using gas generation during overcharge, shutdown mechanism using separator melting, chemical reaction of electrolyte additive It has been proposed to use a mechanism or the like. Among them, a method using an electrolytic solution additive has attracted attention as a method that can obtain a great effect at a low cost.

例えば、特許文献1および特許文献2に記載されている非水電解液電池では、電解液中にベンゼン系有機化合物を添加し、そのレドックスシャトル機構によって過充電時の安全性を高めている。また、特許文献3に記載されている非水電解液電池では、希土類元素と電子供与性ポリピリジン配位子化合物を添加し、過充電時の安全性を高めている。   For example, in the non-aqueous electrolyte batteries described in Patent Document 1 and Patent Document 2, a benzene-based organic compound is added to the electrolyte, and the redox shuttle mechanism increases safety during overcharge. Moreover, in the non-aqueous electrolyte battery described in Patent Document 3, a rare earth element and an electron donating polypyridine ligand compound are added to improve safety during overcharge.

一方、ニトロキシルラジカル化合物は、リチウムイオン二次電池の特性向上のため、電解液に添加されて用いられることがある。例えば、特許文献4および特許文献5においては、正極活物質としてコバルト酸リチウムやマンガン酸リチウムを用いたリチウムイオン二次電池のサイクル特性を向上させるため、微量のニトロキシルラジカル化合物が電解液中に添加されている。
特開2000−156243号公報 特開平7−302614号公報 特許第3259436号明細書 特開2001−283920号公報 特開2000−268861号公報
On the other hand, the nitroxyl radical compound may be used by being added to an electrolytic solution in order to improve the characteristics of the lithium ion secondary battery. For example, in Patent Document 4 and Patent Document 5, in order to improve the cycle characteristics of a lithium ion secondary battery using lithium cobaltate or lithium manganate as the positive electrode active material, a small amount of nitroxyl radical compound is contained in the electrolyte. It has been added.
JP 2000-156243 A JP-A-7-302614 Japanese Patent No. 3259436 JP 2001-283920 A JP 2000-268861 A

これら特許文献1〜3に開示された電解液添加剤は、リチウムイオン二次電池の過充電防止対策として多少の効果がある。しかし、レドックスシャトル機構における酸化体の安定性が低いため、長時間の過充電に対しては効果が小さく、やがて電圧の上昇を引き起こしてしまう。   These electrolytic solution additives disclosed in Patent Documents 1 to 3 have some effects as measures for preventing overcharge of lithium ion secondary batteries. However, since the stability of the oxidant in the redox shuttle mechanism is low, the effect is small with respect to long-time overcharge, and eventually the voltage is increased.

一方、特許文献4及び5に開示されたリチウムイオン二次電池中のニトロキシルラジカル化合物がサイクル特性を向上させるのは、主に以下のような理由によるものと考えられる。すなわち、充放電を繰り返すと電解液である有機溶媒RH(炭化水素基)の一部が下記式(a)の反応を起こす。
RH → R・ + H・ (a)
(ただし、R・は電気化学反応により生じたラジカル分子)
ここで、電解液中にニトロキシルラジカル化合物が存在すると上記のR・とニトロキシルラジカル化合物との間でラジカル同士の反応(下記式(b)の反応)が起こり、それ以上溶媒分子の分解が起こらず長期間、電解液が安定して存在することによるものである。
R・ + A・ → RA (b)
(ただし、A・はニトロキシルラジカル化合物)
しかしながら、特許文献4及び5のリチウムイオン二次電池では、主にサイクル特性を向上させるにすぎず、過充電防止といった観点からの検討は十分に行われていなかった。すなわち、これらの二次電池では過充電時に正極から過剰なリチウムが抽出され、これに対応して負極ではリチウムが過剰に挿入され、両電極の熱的安定性が劣化して余分なエネルギーによる発熱や発火が起こってしまう。
On the other hand, it is considered that the nitroxyl radical compound in the lithium ion secondary battery disclosed in Patent Documents 4 and 5 improves the cycle characteristics mainly for the following reasons. That is, when charge and discharge are repeated, a part of the organic solvent RH (hydrocarbon group) that is an electrolytic solution causes the reaction of the following formula (a).
RH → R ・ + H ・ (a)
(However, R. is a radical molecule generated by an electrochemical reaction.)
Here, when a nitroxyl radical compound is present in the electrolytic solution, a reaction between the radicals (reaction of the following formula (b)) occurs between the above R · and the nitroxyl radical compound, and the solvent molecules are further decomposed. This is due to the stable presence of the electrolyte over a long period of time.
R ・ + A ・ → RA (b)
(However, A. is a nitroxyl radical compound)
However, in the lithium ion secondary batteries of Patent Documents 4 and 5, only the cycle characteristics are mainly improved, and studies from the viewpoint of preventing overcharge have not been sufficiently performed. That is, in these secondary batteries, excess lithium is extracted from the positive electrode during overcharging, and in response to this, excessive lithium is inserted in the negative electrode, which deteriorates the thermal stability of both electrodes and generates heat due to excess energy. Or fire.

そこで、本発明者は過充電に対する安全性向上のため鋭意検討を行い、電解液中にニトロキシルラジカル化合物を添加し、下記式(9)で表されるレドックスシャトル機構により余分に生じたエネルギーをうまく逃がすことができれば、長時間の過充電時にも発熱、発火が起こらないことが分かった。   Therefore, the present inventor has intensively studied for improving safety against overcharge, adding a nitroxyl radical compound to the electrolytic solution, and using the redox shuttle mechanism represented by the following formula (9) to generate excess energy. It was found that if it was able to escape well, it would not generate heat or ignite even during a long overcharge.

Figure 0005082198
Figure 0005082198

また、レドックスシャトル機構を生じさせるためには正極活物質として、ニトロキシルラジカル化合物よりも卑な酸化還元電位を有する化合物を用いる必要があることも判明した。   It has also been found that in order to generate the redox shuttle mechanism, it is necessary to use a compound having a lower redox potential than the nitroxyl radical compound as the positive electrode active material.

そこで、本発明の目的は正極活物質としてニトロキシルラジカル化合物よりも卑な酸化還元電位を有する化合物を用い、電解液中に添加したニトロキシルラジカル化合物の酸化還元反応を利用したレドックスシャトル機構を用いることにより、長時間の過充電に対して有効な安全性の高いリチウムイオン二次電池を提供することにある。   Therefore, an object of the present invention is to use a compound having a lower redox potential than the nitroxyl radical compound as the positive electrode active material, and to use a redox shuttle mechanism utilizing the redox reaction of the nitroxyl radical compound added to the electrolytic solution. Accordingly, an object of the present invention is to provide a highly safe lithium ion secondary battery that is effective against long-time overcharge.

上記課題を解決するため本発明は以下の構成を有することを特徴とする。すなわち、本発明は、少なくとも正極と、負極と、電解液とを有するリチウムイオン二次電池において、
該電解液がニトロキシルラジカル化合物を含み、
該正極が、正極活物質として該ニトロキシルラジカル化合物よりも卑な酸化還元電位を有する化合物を含むことを特徴とするリチウムイオン二次電池に関する。
In order to solve the above-described problems, the present invention has the following configuration. That is, the present invention provides a lithium ion secondary battery having at least a positive electrode, a negative electrode, and an electrolyte solution.
The electrolyte contains a nitroxyl radical compound;
The present invention relates to a lithium ion secondary battery, characterized in that the positive electrode contains a compound having a lower redox potential than the nitroxyl radical compound as a positive electrode active material.

本発明は更に、前記正極活物質が、LiFePO4であることが好ましい。 In the present invention, it is further preferable that the positive electrode active material is LiFePO 4 .

更に本発明は、前記ニトロキシルラジカル化合物が、下記式(1)〜(6)で示されるニトロキシルラジカル化合物のうちの少なくとも1種であることが好ましい。   Furthermore, in the present invention, the nitroxyl radical compound is preferably at least one of nitroxyl radical compounds represented by the following formulas (1) to (6).

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

更に本発明は、前記電解液中のニトロキシルラジカル化合物の濃度が、0.1mol/l以上であることが好ましい。
更に本発明は、前記ニトロキシルラジカル化合物の少なくとも一部は、下記式(7)及び(8)で示されるN−オキソアンモニウム塩の少なくとも1種を、前記電解液中に添加することにより生じたものであることが好ましい。
Furthermore, in the present invention, the concentration of the nitroxyl radical compound in the electrolytic solution is preferably 0.1 mol / l or more.
Furthermore, in the present invention, at least a part of the nitroxyl radical compound is produced by adding at least one N-oxoammonium salt represented by the following formulas (7) and (8) to the electrolytic solution. It is preferable.

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

[作用]
本発明において、正極活物質はニトロキシルラジカル化合物よりも卑な酸化還元電位を有するため、通常の使用条件下ではニトロキシルラジカル化合物は電池の作動に何ら悪影響を及ぼさない。しかし、過充電時には、ニトロキシルラジカル化合物(II)は、正極上で酸化されオキソアンモニウムカチオン(I)となり、生成したオキソアンモニウムカチオンは負極上でニトロキシルラジカル化合物(II)へと還元される。この酸化還元反応は下記式(9)で示される。このレドックスシャトル機構により、リチウムイオン二次電池は過充電時における余分なエネルギーを逃がすことができ、発熱、発火を抑えることができる。また、このレドックス反応における酸化体(I)(オキソアンモニウムカチオン)および還元体(II)(ニトロキシルラジカル化合物)はいずれも安定性の高い材料であるため、長時間にわたって繰り返し過充電防止添加剤として動作することができる。
[Action]
In the present invention, since the positive electrode active material has a lower redox potential than the nitroxyl radical compound, the nitroxyl radical compound has no adverse effect on the operation of the battery under normal use conditions. However, during overcharge, the nitroxyl radical compound (II) is oxidized on the positive electrode to become an oxoammonium cation (I), and the generated oxoammonium cation is reduced to the nitroxyl radical compound (II) on the negative electrode. This oxidation-reduction reaction is represented by the following formula (9). With this redox shuttle mechanism, the lithium ion secondary battery can release excess energy during overcharge and suppress heat generation and ignition. In addition, since the oxidant (I) (oxoammonium cation) and the reductant (II) (nitroxyl radical compound) in this redox reaction are both highly stable materials, they can be used as an overcharge prevention additive repeatedly over a long period of time. Can work.

Figure 0005082198
Figure 0005082198

尚、ニトロキシルラジカル化合物の酸化還元電位は、リチウム金属比で3.6V付近であるため、層状構造のコバルト酸リチウム(LiCoO2)やニッケル酸リチウム(LiNiO2)、スピネル構造のマンガン酸リチウム(LiMn24)等のニトロキシルラジカル化合物よりも貴な酸化還元電位を有する正極活物質を用いた4V級リチウムイオン二次電池では、正極活物質が充電される前に、上記式(9)のようにニトロキシルラジカル化合物(II)が正極上で酸化されてオキソアンモニウムカチオン(I)となる反応が起こりエネルギーを逃がしてしまう。このため、一般的にこれらの正極活物質を用いた二次電池は、安定して動作することができない。 Since the oxidation-reduction potential of the nitroxyl radical compound is around 3.6 V in terms of lithium metal ratio, lithium cobaltate (LiCoO 2 ) having a layered structure, lithium nickelate (LiNiO 2 ), lithium manganate having a spinel structure ( In a 4V class lithium ion secondary battery using a positive electrode active material having a redox potential more noble than a nitroxyl radical compound such as LiMn 2 O 4 ), the above formula (9) is applied before the positive electrode active material is charged. As described above, a reaction in which the nitroxyl radical compound (II) is oxidized on the positive electrode to become an oxoammonium cation (I) occurs, and energy is released. For this reason, the secondary battery using these positive electrode active materials cannot generally operate | move stably.

本発明の効果は、ニトロキシルラジカル化合物を添加した電解液と、正極活物質としてニトロキシルラジカル化合物よりも卑な酸化還元電位を有する化合物を含む正極と、を用いることによって、長時間の過充電に対して安全性の高いリチウムイオン二次電池を提供することができる。   The effect of the present invention is that long-time overcharge is achieved by using an electrolytic solution to which a nitroxyl radical compound is added and a positive electrode containing a compound having a lower redox potential than the nitroxyl radical compound as a positive electrode active material. In contrast, a lithium ion secondary battery with high safety can be provided.

[電池の構造]
次に、本発明の実施の形態について図面を参照して詳細に説明する。図1には、本発明の第1の実施の形態としてリチウムイオン二次電池の概観図が示されている。本発明によるリチウムイオン二次電池は、例えば図1に示すような構成を有している。図に示されたリチウムイオン二次電池は負極3と正極5とを電解液を含むセパレータ4を介して重ね合わせた構成を有することを特徴としている。
[Battery structure]
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an overview of a lithium ion secondary battery as a first embodiment of the present invention. The lithium ion secondary battery by this invention has a structure as shown, for example in FIG. The lithium ion secondary battery shown in the figure is characterized by having a configuration in which a negative electrode 3 and a positive electrode 5 are superposed via a separator 4 containing an electrolytic solution.

第1の実施の形態における正極活物質としては、導電性を高めるために粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)を使用することが好ましい。 As the positive electrode active material in the first embodiment, it is preferable to use lithium iron phosphate (LiFePO 4 ) whose particle surfaces are coated with carbon in order to enhance conductivity.

図1の二次電池においては炭素の被覆率は燐酸鉄リチウムに対する重量比で15%であり、正極の組成は、活物質/導電性付与剤/結着剤=80/15/5(重量比)とした。導電性付与剤としてはケッチェンブラックを使用し、結着剤としてはポリフッ化ビニリデンを用いた。正極の厚みは80ミクロンであった。   In the secondary battery of FIG. 1, the carbon coverage is 15% by weight with respect to lithium iron phosphate, and the composition of the positive electrode is active material / conductivity imparting agent / binder = 80/15/5 (weight ratio). ). Ketjen black was used as the conductivity-imparting agent, and polyvinylidene fluoride was used as the binder. The thickness of the positive electrode was 80 microns.

一方、負極活物質には黒鉛を使用した。負極の組成は黒鉛/導電性付与剤/結着剤=90/1/9(重量比)とした。導電性付与剤としてはケッチェンブラックを使用し、結着剤としてはポリフッ化ビニリデンを用いた。負極の厚みは40ミクロンであった。電解液としては、下記式(1)で示される2,2,6,6−テトラメチルピペリジン−1−オキシル(TEMPO)を添加したエチレンカーボネート(EC)、ジエチルカーボネート(DEC)の混合溶媒を用いた。電解液中のTEMPOの添加濃度は0.5mol/lであり、ECとDECの混合比はEC/DEC=3/7(体積比)とした。支持塩には1.0mol/lの六フッ化燐酸リチウム(LiPF6)を用いた。 On the other hand, graphite was used as the negative electrode active material. The composition of the negative electrode was graphite / conductivity imparting agent / binder = 90/1/9 (weight ratio). Ketjen black was used as the conductivity-imparting agent, and polyvinylidene fluoride was used as the binder. The thickness of the negative electrode was 40 microns. As the electrolytic solution, a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) to which 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) represented by the following formula (1) is added is used. It was. The addition concentration of TEMPO in the electrolytic solution was 0.5 mol / l, and the mixing ratio of EC and DEC was EC / DEC = 3/7 (volume ratio). As the supporting salt, 1.0 mol / l lithium hexafluorophosphate (LiPF 6 ) was used.

Figure 0005082198
Figure 0005082198

[電池の製法]
次に図1を参照して、第1の実施形態のリチウムイオン二次電池の製造方法を説明する。粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP(N−メチル−2−ピロリドン) 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。
[Battery manufacturing method]
Next, with reference to FIG. 1, the manufacturing method of the lithium ion secondary battery of 1st Embodiment is demonstrated. 80 g of lithium iron phosphate (LiFePO 4 ) whose surface is coated with carbon, 15 g of ketjen black and 5 g of polyvinylidene fluoride are measured, and 200 g of solvent NMP (N-methyl-2-pyrrolidone) is added and stirred well to obtain a slurry. Was made. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode.

次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。また、1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、0.5mol/lのTEMPOを溶解させ電解液を得た。 Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. Moreover, 0.5 mol / l of TEMPO was dissolved in an EC / DEC mixed solvent containing 1.0 mol / l of LiPF 6 to obtain an electrolytic solution.

更に、正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。   Further, the positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery.

[他の実施形態]
上記実施の形態において、コイン型であった蓄電デバイスの形状を、従来公知の形状にすることができる。リチウムイオン二次電池の形状の例としては、電極の積層体あるいは巻回体を、金属ケース、樹脂ケース、あるいはラミネートフィルム等によって封止したものが挙げられる。また外観としては、円筒型、角型、コイン型、およびシート型等が挙げられる。
[Other Embodiments]
In the above-described embodiment, the shape of the power storage device that is a coin type can be changed to a conventionally known shape. As an example of the shape of the lithium ion secondary battery, there may be mentioned a case where an electrode laminate or a wound body is sealed with a metal case, a resin case, a laminate film or the like. Examples of the appearance include a cylindrical shape, a square shape, a coin shape, and a sheet shape.

[正極活物質]
上記実施の形態において用いられる正極活物質としては、ニトロキシルラジカル化合物よりも卑な酸化還元電位を有する化合物でなければならない。このような正極活物質を用いると、通常の電池の使用条件下ではニトロキシルラジカル化合物は電池の作動に何ら悪影響を及ぼさないが、過充電時には余分に発生したエネルギーを逃がして安全性を高めることができる。
[Positive electrode active material]
The positive electrode active material used in the above embodiment must be a compound having a lower redox potential than the nitroxyl radical compound. When such a positive electrode active material is used, the nitroxyl radical compound does not adversely affect the operation of the battery under normal battery usage conditions, but it increases safety by releasing excess energy generated during overcharge. Can do.

これらの条件を満たす(ニトロキシルラジカル化合物よりも卑な酸化還元電位を有する)正極活物質としては、例えば、燐酸鉄リチウム(LiFePO4)、層状マンガン酸リチウム(LiMnO2)、スピネル構造のマンガン酸リチウム(Li4Mn512)、低結晶性ニッケル置換マンガン酸リチウム(Li[Mn1.5Ni0.524)等が挙げられる。好ましくは、燐酸鉄リチウム(LiFePO4)を用いるのが良い。LiFePO4は酸化還元電位がリチウム金属比で3.4V程度とニトロキシルラジカル化合物よりも、かなり卑な酸化還元電位を持ち、その理論容量は約160mAh/gと大きい。このため、過充電時にレドックスシャトル機構によってより効果的にエネルギーを逃がすことができる。 Examples of the positive electrode active material satisfying these conditions (having a lower redox potential than the nitroxyl radical compound) include, for example, lithium iron phosphate (LiFePO 4 ), layered lithium manganate (LiMnO 2 ), spinel manganic acid Examples thereof include lithium (Li 4 Mn 5 O 12 ) and low crystalline nickel-substituted lithium manganate (Li [Mn 1.5 Ni 0.5 ] 2 O 4 ). Preferably, lithium iron phosphate (LiFePO 4 ) is used. LiFePO 4 has an oxidation-reduction potential of about 3.4 V as a lithium metal ratio, which is considerably lower than that of a nitroxyl radical compound, and its theoretical capacity is as large as about 160 mAh / g. For this reason, energy can be released more effectively by the redox shuttle mechanism during overcharge.

上記実施形態においては、導電性を高めるために燐酸鉄リチウムの表面を炭素材料で被覆した活物質を用いたが、その被覆率は任意に調整することができる。質量基準で燐酸鉄リチウムに対して1%の重量比であれば十分に効果があり、より電極の抵抗を下げるためには5%以上、特に15%以上であることも好ましい。ただし大きな容量を得るために、炭素による被覆を行わないで、燐酸鉄リチウムをそのまま用いることもできる。   In the above-described embodiment, an active material in which the surface of lithium iron phosphate is coated with a carbon material is used in order to increase conductivity, but the coverage can be arbitrarily adjusted. A weight ratio of 1% with respect to lithium iron phosphate on a mass basis is sufficiently effective, and in order to further reduce the resistance of the electrode, it is preferably 5% or more, particularly preferably 15% or more. However, in order to obtain a large capacity, lithium iron phosphate can be used as it is without coating with carbon.

この炭素材料としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等の天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維等が挙げられる。これらは1種又は2種以上で用いることができる。この燐酸鉄リチウム(LiFePO4)の炭素被覆は従来から公知の方法で行うことができ例えば、燐酸鉄リチウム前駆体と炭素材料または焼成により炭素材料を生成する有機化合物等を混合、必要に応じて粉砕した後、焼成することによって製造することができる。焼成温度は500〜700℃が好ましく、550〜650℃がより好ましい。 Examples of the carbon material include graphite such as natural graphite and artificial graphite such as scaly graphite, scaly graphite and earthy graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. And carbon blacks such as carbon fiber and the like. These can be used alone or in combination of two or more. This carbon coating of lithium iron phosphate (LiFePO 4 ) can be performed by a conventionally known method. For example, a lithium iron phosphate precursor and a carbon material or an organic compound that forms a carbon material by firing are mixed, if necessary. After being pulverized, it can be produced by firing. The firing temperature is preferably 500 to 700 ° C, more preferably 550 to 650 ° C.

なお、層状マンガン酸リチウム(LiMnO2)、スピネル構造のマンガン酸リチウム(Li4Mn512)、低結晶性ニッケル置換マンガン酸リチウム(Li[Mn1.5Ni0.524)は十分な導電性を有しているので、特に表面処理をしなくても良い。 In addition, layered lithium manganate (LiMnO 2 ), lithium manganate having a spinel structure (Li 4 Mn 5 O 12 ), and low crystalline nickel-substituted lithium manganate (Li [Mn 1.5 Ni 0.5 ] 2 O 4 ) are sufficiently conductive. Therefore, the surface treatment is not particularly required.

上記実施の形態において、80質量%であった正極中における正極活物質の含有率は任意に調整することができる。正極重量全体に対して30質量%以上であれば十分に容量が得られ、さらに、できるだけ大きな容量を得たい場合には50質量%以上、特に70質量%以上であることも好ましい。   In the said embodiment, the content rate of the positive electrode active material in the positive electrode which was 80 mass% can be adjusted arbitrarily. If it is 30% by mass or more with respect to the total weight of the positive electrode, a sufficient capacity can be obtained, and if it is desired to obtain as large a capacity as possible, it is also preferable that it is 50% by mass or more, particularly 70% by mass or more.

[その他の電池の構成物]
上記実施の形態において、ケッチェンブラックを主成分としていた正極の導電性付与剤を、従来公知の導電性付与剤材料に置き換えてリチウムイオン二次電池を構成することができる。従来公知の導電性付与剤としては、例えば、カーボンブラックやアセチレンブラック、ファーネスブラック、金属粉末等が挙げられる。
[Other battery components]
In the above embodiment, the lithium ion secondary battery can be configured by replacing the conductivity imparting agent of the positive electrode mainly composed of ketjen black with a conventionally known conductivity imparting material. Examples of conventionally known conductivity imparting agents include carbon black, acetylene black, furnace black, and metal powder.

上記実施の形態において、ポリフッ化ビニリデンを用いていた正極の結着剤を、従来公知の結着剤に置き換えてリチウムイオン二次電池を構成することができる。従来公知の結着剤としては、例えば、ポリテトラフルオロエチレン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリアクリロニトリル等が挙げられる。   In the above embodiment, the lithium ion secondary battery can be configured by replacing the binder of the positive electrode, which has used polyvinylidene fluoride, with a conventionally known binder. Examples of conventionally known binders include polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, polyacrylonitrile and the like.

上記実施の形態において、黒鉛を用いていた負極の活物質を、従来公知の負極活物質に置き換えてリチウムイオン二次電池を構成することができる。従来公知の負極活物質としては、例えば、活性炭やハードカーボン等の炭素材料、リチウム金属、リチウム合金、リチウムイオン吸蔵炭素、その他各種の金属単体や合金等が挙げられる。   In the above embodiment, the negative electrode active material using graphite can be replaced with a conventionally known negative electrode active material to constitute a lithium ion secondary battery. Examples of conventionally known negative electrode active materials include carbon materials such as activated carbon and hard carbon, lithium metal, lithium alloy, lithium ion occlusion carbon, and various other simple metals and alloys.

上記実施の形態において、ケッチェンブラックを主成分としていた負極の導電性付与剤を、従来公知の導電性付与剤材料に置き換えてリチウムイオン二次電池を構成することができる。従来公知の導電性付与剤としては、例えば、カーボンブラックやアセチレンブラック、ファーネスブラック、金属粉末等が挙げられる。   In the above embodiment, the lithium ion secondary battery can be configured by replacing the conductivity imparting agent of the negative electrode mainly composed of ketjen black with a conventionally known conductivity imparting material. Examples of conventionally known conductivity imparting agents include carbon black, acetylene black, furnace black, and metal powder.

上記実施の形態において、ポリフッ化ビニリデンを用いていた負極の結着剤を、従来公知の結着剤に置き換えてリチウムイオン二次電池を構成することができる。従来公知の結着剤としては、例えば、ポリテトラフルオロエチレン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリアクリロニトリル等が挙げられる。   In the above embodiment, the lithium ion secondary battery can be configured by replacing the binder of the negative electrode using polyvinylidene fluoride with a conventionally known binder. Examples of conventionally known binders include polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, polyacrylonitrile and the like.

上記実施の形態において、ステンレスを用いていた正極用金属集電体の材質を、従来公知の材質に置き換えてリチウムイオン二次電池を構成することができる。従来公知の正極用金属集電体の材質としては、例えば、ニッケルやアルミニウム、銅、金、銀、チタン、アルミニウム合金等の材質が挙げられる。また、形状としては、箔や平板、メッシュ状のものを用いることができる。上記実施の形態において、ステンレスを用いていた負極用金属集電体の材質を、従来公知の材質に置き換えてリチウムイオン二次電池を構成することができる。従来公知の負極用金属集電体の材質としては、例えば、ニッケルやアルミニウム、銅、金、銀、チタン、アルミニウム合金等の材質が挙げられる。また、形状としては、箔や平板、メッシュ状のものを用いることができる。   In the above embodiment, the material of the positive electrode metal current collector using stainless steel can be replaced with a conventionally known material to constitute a lithium ion secondary battery. Examples of conventionally known materials for positive electrode metal current collectors include materials such as nickel, aluminum, copper, gold, silver, titanium, and aluminum alloys. Moreover, as a shape, a foil, a flat plate, or a mesh shape can be used. In the above embodiment, the material of the negative electrode metal current collector using stainless steel can be replaced with a conventionally known material to constitute a lithium ion secondary battery. Examples of conventionally known materials for the negative electrode metal current collector include nickel, aluminum, copper, gold, silver, titanium, and aluminum alloys. Moreover, as a shape, a foil, a flat plate, or a mesh shape can be used.

上記実施の形態において、1mol/lのLiPF6電解質塩を含むEC/DEC混合溶液を使用していた電解質を、従来公知の電解質に置き換えてリチウムイオン二次電池を構成することができる。電解質は、負極3と正極5との間の荷電担体輸送を行うものであり、一般には室温で10-5〜10-1S/cmの電解質イオン伝導性を有している。従来公知の電解質としては、例えば電解質塩を溶剤に溶解した電解液を利用することができる。このような溶剤としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等の有機溶媒、もしくは硫酸水溶液や水などが挙げられる。本発明ではこれらの溶剤を単独もしくは2種類以上混合して用いることもできる。 In the above embodiment, the lithium ion secondary battery can be configured by replacing the electrolyte that used the EC / DEC mixed solution containing 1 mol / l LiPF 6 electrolyte salt with a conventionally known electrolyte. The electrolyte performs charge carrier transport between the negative electrode 3 and the positive electrode 5, and generally has an electrolyte ion conductivity of 10 −5 to 10 −1 S / cm at room temperature. As a conventionally well-known electrolyte, the electrolyte solution which melt | dissolved electrolyte salt in the solvent can be utilized, for example. Examples of such solvents include organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, and N-methyl-2-pyrrolidone. A solvent, a sulfuric acid aqueous solution, water, etc. are mentioned. In the present invention, these solvents may be used alone or in combination of two or more.

また、電解質塩としては、例えばLiPF6、LiClO4、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiC(CF3SO23、LiC(C25SO23等のリチウム塩が挙げられる。上記実施の形態において、1mol/lとした電解質塩の濃度は特に限定されない。また、本発明に用いられる電解質としては固体電解質を用いても良い。これら固体電解質のうち、有機固体電解質材料としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等のフッ化ビニリデン系重合体や、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体等のアクリルニトリル系重合体、さらにポリエチレンオキサイドなどが挙げられる。これらの高分子材料は、電解液を含ませてゲル状にして用いても、また高分子物質のみをそのまま用いても良い。一方、無機固体電解質としては、CaF2、AgI、LiF、βアルミナ、リチウム含有ガラス素材等が挙げられる。 Examples of the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. And lithium salts such as LiC (C 2 F 5 SO 2 ) 3 . In the above embodiment, the concentration of the electrolyte salt at 1 mol / l is not particularly limited. Moreover, you may use a solid electrolyte as an electrolyte used for this invention. Among these solid electrolytes, organic solid electrolyte materials include polyvinylidene fluoride polymers such as polyvinylidene fluoride and vinylidene fluoride-hexafluoropropylene copolymers, acrylonitrile-methyl methacrylate copolymers, and acrylonitrile-methyl acrylate copolymers. Examples thereof include acrylonitrile polymers such as polymers, and polyethylene oxide. These polymer materials may be used in the form of a gel containing an electrolytic solution, or only the polymer material may be used as it is. On the other hand, examples of the inorganic solid electrolyte include CaF 2 , AgI, LiF, β-alumina, and a lithium-containing glass material.

[ニトロキシルラジカル化合物]
ニトロキシルラジカル化合物としては、上記式(1)で示される化合物以外に下記式(2)で示される2,2,5,5−テトラメチルピロリジン−1−オキシル(PROXYL)や下記式(3)で示される2,2,5,5−テトラメチル−3−ピロリン−1−オキシル、下記式(4)で示されるジブチルニトロキシル、下記式(5)で示される2−p−ニトロフェニル−4,4,5,5−テトラメチルイミダゾール−1−オキシル−3−オキサイド、下記式(6)で示される4,4‘−ビス(2−フェニル−2−プロピル)ジフェニルニトロキシルやこれらの誘導体などが挙げられる。これらのニトロキシルラジカル化合物は、単独で又は複数種を組み合わせて用いることができる。
[Nitroxyl radical compound]
As the nitroxyl radical compound, in addition to the compound represented by the above formula (1), 2,2,5,5-tetramethylpyrrolidine-1-oxyl (PROXYL) represented by the following formula (2) and the following formula (3) 2,2,5,5-tetramethyl-3-pyrroline-1-oxyl represented by the following formula, dibutylnitroxyl represented by the following formula (4), 2-p-nitrophenyl-4 represented by the following formula (5) , 4,5,5-tetramethylimidazole-1-oxyl-3-oxide, 4,4′-bis (2-phenyl-2-propyl) diphenylnitroxyl represented by the following formula (6), and derivatives thereof Is mentioned. These nitroxyl radical compounds can be used alone or in combination.

上記実施の形態において0.5mol/lとしたニトロキシルラジカル化合物の添加濃度は特に限定されない。ただし十分な過充電防止効果を持たせるためには0.05mol/l以上が好ましく、0.1mol/l以上がより好ましく、0.2mol/l以上であることが更に好ましい。   The concentration of the nitroxyl radical compound added at 0.5 mol / l in the above embodiment is not particularly limited. However, in order to have a sufficient overcharge preventing effect, it is preferably 0.05 mol / l or more, more preferably 0.1 mol / l or more, and further preferably 0.2 mol / l or more.

また、これらニトロキシルラジカル化合物の酸化体に相当する(電解液中でニトロキシルラジカル化合物となる)N−オキソアンモニウム塩を、予め電解液に添加して用いることができる。この場合、電解液中へのN−オキソアンモニウム塩の添加量としては電解液1Lに対して0.3mol以上となることが好ましく、0.4mol以上となることがより好ましく、0.5mol以上となることが更に好ましい。電解液中でのN−オキソアンモニウム塩のニトロキシルラジカル化合物への転換率を考慮すると、これらの添加量とすることによってより効果的に過充電時の安全性を保つことができる。   Further, an N-oxoammonium salt corresponding to an oxidant of these nitroxyl radical compounds (which becomes a nitroxyl radical compound in the electrolyte) can be added to the electrolyte in advance. In this case, the amount of N-oxoammonium salt added to the electrolytic solution is preferably 0.3 mol or more, more preferably 0.4 mol or more, and more preferably 0.5 mol or more with respect to 1 L of the electrolytic solution. More preferably. Considering the conversion rate of the N-oxoammonium salt into the nitroxyl radical compound in the electrolytic solution, it is possible to more effectively maintain safety during overcharge by using these addition amounts.

また、電解液中へはニトロキシルラジカル化合物とN−オキソアンモニウム塩とを混合したものを添加することもできる。これらN−オキソアンモニウム塩の例としては、例えば下記式(7)で示される、N−オキソ−2,2,6,6−テトラメチルピペリジニウムヘキサフルオロホスフェートや、化学式(8)で示されるN−オキソ−2,2,5,5−テトラメチルピロリジニウムテトラフルオロボレート等が挙げられる。これら塩の対アニオンとしては、特に限定されないが、PF6 -やBF4 -などとすることができる。 Moreover, what mixed the nitroxyl radical compound and N-oxoammonium salt can also be added in electrolyte solution. Examples of these N-oxoammonium salts include N-oxo-2,2,6,6-tetramethylpiperidinium hexafluorophosphate represented by the following formula (7) and chemical formula (8). N-oxo-2,2,5,5-tetramethylpyrrolidinium tetrafluoroborate and the like can be mentioned. The counter anion of these salts is not particularly limited, and may be PF 6 or BF 4 .

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

これらのニトロキシルラジカル化合物を用いることにより、過充電時に発生する余分なエネルギーを逃がして、長時間の過充電時にも発熱、発火の発生を防止することができる。すなわち、従来の電池では過充電時に正極からリチウムイオンが過剰に放出され、負極にリチウムイオンが過剰に吸蔵されると両電極の熱的安定性が劣化し、過充電により余分に生じたエネルギーによる発熱や発火が起こる場合があった。また、リチウム金属が析出しセパレータを貫通して正極に達しショートしたり、正極から過度に放出されたリチウムイオンが電解液と反応しやすくなって溶媒分解及びこれに伴う分解ガスの発生により電池内圧や温度が上昇して電池が破裂する恐れがあった。そこで、本発明のニトロキシルラジカル化合物はレドックスッシャトル機構により安定した電荷の移動を行うため、上記負極における過剰なリチウムイオンの吸蔵や正極における過剰なリチウムイオンの放出が起こらない。また、過充電により生じたエネルギーを効果的に逃がすことができ、発熱や発火が起こらず、電池のショートや破裂を防止することができる。   By using these nitroxyl radical compounds, excess energy generated at the time of overcharging can be released, and heat generation and ignition can be prevented even at the time of long-time overcharging. In other words, in conventional batteries, excessive lithium ions are released from the positive electrode during overcharge, and if lithium ions are excessively stored in the negative electrode, the thermal stability of both electrodes deteriorates, resulting from excess energy generated by overcharge. There were cases where fever and ignition occurred. In addition, lithium metal deposits, penetrates the separator, reaches the positive electrode and is short-circuited, or lithium ions excessively released from the positive electrode are liable to react with the electrolytic solution, causing solvent decomposition and generation of decomposition gas accompanying this, resulting in internal pressure of the battery. There was a risk that the battery would explode due to the temperature rising. Therefore, since the nitroxyl radical compound of the present invention performs stable charge transfer by the redox shuttle mechanism, excessive lithium ion occlusion in the negative electrode and excessive lithium ion release in the positive electrode do not occur. In addition, energy generated by overcharging can be effectively released, heat generation and ignition do not occur, and battery short-circuiting and explosion can be prevented.

次に具体的な実施例を用いて、実施の形態の製造方法を説明する。   Next, the manufacturing method of the embodiment will be described using specific examples.

<実施例1>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、下記式(1)で示されるTEMPOを溶解させ電解液を得た。TEMPOの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表1に示す。
<Example 1>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. TEMPO represented by the following formula (1) was dissolved in an EC / DEC mixed solvent containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of TEMPO was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 1 shows the materials used for the battery.

Figure 0005082198
Figure 0005082198

<実施例2>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、下記式(2)で示されるPROXYLを溶解させ電解液を得た。PROXYLの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表1に示す。
<Example 2>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. PROXYL represented by the following formula (2) was dissolved in an EC / DEC mixed solvent containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of PROXYL was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 1 shows the materials used for the battery.

Figure 0005082198
Figure 0005082198

<実施例3>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、下記式(3)で示される2,2,5,5−テトラメチル−3−ピロリン−1−オキシルを溶解させ電解液を得た。2,2,5,5−テトラメチル−3−ピロリン−1−オキシルの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表1に示す。
<Example 3>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. An electrolytic solution in which 2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl represented by the following formula (3) is dissolved in an EC / DEC mixed solvent containing 1.0 mol / l LiPF 6 Got. The concentration of 2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 1 shows the materials used for the battery.

Figure 0005082198
Figure 0005082198

<実施例4>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、下記式(4)で示されるジブチルニトロキシルを溶解させ電解液を得た。ジブチルニトロキシルの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表1に示す。
<Example 4>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. Dibutyl nitroxyl represented by the following formula (4) was dissolved in an EC / DEC mixed solvent containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of dibutyl nitroxyl was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 1 shows the materials used for the battery.

Figure 0005082198
Figure 0005082198

<実施例5>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、下記式(5)で示される2−p−ニトロフェニル−4,4,5,5−テトラメチルイミダゾール−1−オキシル−3−オキサイドを溶解させ電解液を得た。2−p−ニトロフェニル−4,4,5,5−テトラメチルイミダゾール−1−オキシル−3−オキサイドの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表1に示す。
<Example 5>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. 2-p-nitrophenyl-4,4,5,5-tetramethylimidazole-1-oxyl represented by the following formula (5) with respect to a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 3-oxide was dissolved to obtain an electrolytic solution. The concentration of 2-p-nitrophenyl-4,4,5,5-tetramethylimidazole-1-oxyl-3-oxide was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 1 shows the materials used for the battery.

Figure 0005082198
Figure 0005082198

<実施例6>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、下記式(6)で示される4,4‘−ビス(2−フェニル−2−プロピル)ジフェニルニトロキシルを溶解させ電解液を得た。4,4‘−ビス(2−フェニル−2−プロピル)ジフェニルニトロキシルの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表1に示す。
<Example 6>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. 4,4′-bis (2-phenyl-2-propyl) diphenylnitroxyl represented by the following formula (6) is dissolved in an EC / DEC mixed solvent containing 1.0 mol / l LiPF 6 , and an electrolytic solution. Got. The concentration of 4,4′-bis (2-phenyl-2-propyl) diphenylnitroxyl was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 1 shows the materials used for the battery.

Figure 0005082198
Figure 0005082198

<実施例7>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対しTEMPOを溶解させて電解液を得た。TEMPOの濃度は0.05mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表1に示す。
<Example 7>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. TEMPO was dissolved in a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of TEMPO was 0.05 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 1 shows the materials used for the battery.

<実施例8>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対しTEMPOを溶解させて電解液を得た。TEMPOの濃度は0.1mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表1に示す。
<Example 8>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. TEMPO was dissolved in a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of TEMPO was 0.1 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 1 shows the materials used for the battery.

<実施例9>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対しTEMPOを溶解させて電解液を得た。TEMPOの濃度は0.3mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表1に示す。
<Example 9>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. TEMPO was dissolved in a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of TEMPO was 0.3 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 1 shows the materials used for the battery.

<実施例10>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。0.7mol/lのLiPF6を含むEC/DECの混合溶媒に対し、下記式(7)で示されるN−オキソ−2,2,6,6−テトラメチルピペリジニウムヘキサフルオロホスフェートを溶解させ電解液を得た。N−オキソ−2,2,6,6−テトラメチルピペリジニウムヘキサフルオロホスフェートの濃度は0.3mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表2に示す。
<Example 10>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. N-oxo-2,2,6,6-tetramethylpiperidinium hexafluorophosphate represented by the following formula (7) was dissolved in a mixed solvent of EC / DEC containing 0.7 mol / l LiPF 6. An electrolytic solution was obtained. The concentration of N-oxo-2,2,6,6-tetramethylpiperidinium hexafluorophosphate was 0.3 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 2 shows the materials used for the battery.

Figure 0005082198
Figure 0005082198

<実施例11>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。0.3mol/lのLiPF6を含むEC/DECの混合溶媒に対し、N−オキソ−2,2,6,6−テトラメチルピペリジニウムヘキサフルオロホスフェートを溶解させ電解液を得た。N−オキソ−2,2,6,6−テトラメチルピペリジニウムヘキサフルオロホスフェートの濃度は0.6mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表2に示す。
<Example 11>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. N-oxo-2,2,6,6-tetramethylpiperidinium hexafluorophosphate was dissolved in an EC / DEC mixed solvent containing 0.3 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of N-oxo-2,2,6,6-tetramethylpiperidinium hexafluorophosphate was 0.6 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 2 shows the materials used for the battery.

<実施例12>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。0.7mol/lのLiBF4を含むEC/DECの混合溶媒に対し、下記式(8)で示されるN−オキソ−2,2,5,5−テトラメチルピロリジニウムテトラフルオロボレートを溶解させ電解液を得た。N−オキソ−2,2,5,5−テトラメチルピロリジニウムテトラフルオロボレートの濃度は0.3mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表2に示す。
<Example 12>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. N-oxo-2,2,5,5-tetramethylpyrrolidinium tetrafluoroborate represented by the following formula (8) is dissolved in a mixed solvent of EC / DEC containing 0.7 mol / l LiBF 4. An electrolytic solution was obtained. The concentration of N-oxo-2,2,5,5-tetramethylpyrrolidinium tetrafluoroborate was 0.3 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 2 shows the materials used for the battery.

Figure 0005082198
Figure 0005082198

<実施例13>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。0.7mol/lのLiPF6を含むEC/DECの混合溶媒に対し、下記化学式(7)で示されるN−オキソ−2,2,6,6−テトラメチルピペリジニウムヘキサフルオロホスフェートおよびTEMPOを溶解させ電解液を得た。N−オキソ−2,2,6,6−テトラメチルピペリジニウムヘキサフルオロホスフェートの濃度は0.1mol/l、TEMPOの濃度は0.2mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表2に示す。
<Example 13>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. N-oxo-2,2,6,6-tetramethylpiperidinium hexafluorophosphate represented by the following chemical formula (7) and TEMPO are added to a mixed solvent of EC / DEC containing 0.7 mol / l LiPF 6. Dissolved to obtain an electrolytic solution. The concentration of N-oxo-2,2,6,6-tetramethylpiperidinium hexafluorophosphate was 0.1 mol / l, and the concentration of TEMPO was 0.2 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 2 shows the materials used for the battery.

<実施例14>
粒子の表面を炭素で被覆しない燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、TEMPOを溶解させ電解液を得た。TEMPOの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表2に示す。
<Example 14>
80 g of lithium iron phosphate (LiFePO 4 ) whose surface is not coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. TEMPO was dissolved in a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of TEMPO was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 2 shows the materials used for the battery.

<実施例15>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、ハードカーボン粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、TEMPOを溶解させ電解液を得た。TEMPOの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表2に示す。
<Example 15>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of hard carbon particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. TEMPO was dissolved in a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of TEMPO was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 2 shows the materials used for the battery.

<実施例16>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、リチウム金属90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、TEMPOを溶解させ電解液を得た。TEMPOの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらにその上からリチウム金属負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表2に示す。
<Example 16>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of lithium metal, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. TEMPO was dissolved in a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of TEMPO was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a lithium metal negative electrode was laminated thereon, and a negative electrode current collector covered with insulating packing was superposed. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 2 shows the materials used for the battery.

<実施例17>
層状構造を有するマンガン酸リチウム(LiMnO2)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、リチウム金属粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、TEMPOを溶解させ電解液を得た。TEMPOの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表2に示す。
<Example 17>
80 g of lithium manganate (LiMnO 2 ) having a layered structure, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of lithium metal particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. TEMPO was dissolved in a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of TEMPO was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 2 shows the materials used for the battery.

<実施例18>
スピネル構造のマンガン酸リチウム(Li4Mn512)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、リチウム金属粒子90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。1.0mol/lのLiPF6を含むEC/DECの混合溶媒に対し、TEMPOを溶解させ電解液を得た。TEMPOの濃度は0.5mol/lとした。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらに直径12mmの円形に打ち抜いた負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表2に示す。
<Example 18>
80 g of lithium manganate (Li 4 Mn 5 O 12 ) having a spinel structure, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of a solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of lithium metal particles, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. TEMPO was dissolved in a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 to obtain an electrolytic solution. The concentration of TEMPO was 0.5 mol / l. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a negative electrode punched into a circle having a diameter of 12 mm was stacked, and a negative electrode current collector covered with insulating packing was stacked. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 2 shows the materials used for the battery.

<比較例1>
粒子の表面を炭素で被覆した燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。電解液としては1.0mol/lのLiPF6を含むEC/DECの混合溶媒をそのまま用いた。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらにその上からリチウム金属負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 1>
80 g of lithium iron phosphate (LiFePO 4 ) whose particle surfaces were coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. As an electrolytic solution, a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 was used as it was. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a lithium metal negative electrode was laminated thereon, and a negative electrode current collector covered with insulating packing was superposed. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 3 shows materials used for the battery.

<比較例2>
粒子の表面を炭素で被覆しない燐酸鉄リチウム(LiFePO4)80gとケッチェンブラック15g、ポリフッ化ビニリデン5gを測り採り、溶剤NMP 200gを加えてよく攪拌してスラリーを作製した。作製したスラリーをアルミ箔上に塗布し、乾燥させて正極を得た。次に、黒鉛90gとケッチェンブラック1g、ポリフッ化ビニリデン9gとを測り採り、NMP 100gを加えてよく攪拌しスラリーを作製した。作製したスラリーを銅箔上に塗布し、乾燥させて負極を得た。電解液としては1.0mol/lのLiPF6を含むEC/DECの混合溶媒をそのまま用いた。正極を直径12mmの円形に打ち抜き、用意した電解液を含浸させて、正極用金属集電体上に置き、その上に同じく電解液を含浸させた多孔質フィルムセパレータを積層した。さらにその上からリチウム金属負極を積層し、絶縁パッキンで被覆された負極集電体を重ね合わせた。こうして作られた積層体を、かしめ機によって圧力を加えて封止し、コイン型のリチウムイオン二次電池を得た。電池に用いた材料を表3に示す。
<Comparative example 2>
80 g of lithium iron phosphate (LiFePO 4 ) whose surface is not coated with carbon, 15 g of ketjen black, and 5 g of polyvinylidene fluoride were measured, and 200 g of solvent NMP was added and stirred well to prepare a slurry. The prepared slurry was applied on an aluminum foil and dried to obtain a positive electrode. Next, 90 g of graphite, 1 g of ketjen black, and 9 g of polyvinylidene fluoride were measured, and 100 g of NMP was added and stirred well to prepare a slurry. The prepared slurry was applied onto a copper foil and dried to obtain a negative electrode. As an electrolytic solution, a mixed solvent of EC / DEC containing 1.0 mol / l LiPF 6 was used as it was. The positive electrode was punched into a circle having a diameter of 12 mm, impregnated with the prepared electrolyte, placed on the positive electrode metal current collector, and a porous film separator impregnated with the electrolyte was laminated thereon. Further, a lithium metal negative electrode was laminated thereon, and a negative electrode current collector covered with insulating packing was superposed. The laminate thus produced was sealed by applying pressure with a caulking machine to obtain a coin-type lithium ion secondary battery. Table 3 shows materials used for the battery.

<比較例3>
負極活物質としてハードカーボンを用いた以外は比較例1と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 3>
A secondary battery was obtained in the same manner as in Comparative Example 1 except that hard carbon was used as the negative electrode active material. Table 3 shows materials used for the battery.

<比較例4>
負極活物質としてリチウム金属を用いた以外は比較例1と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative example 4>
A secondary battery was obtained in the same manner as in Comparative Example 1 except that lithium metal was used as the negative electrode active material. Table 3 shows materials used for the battery.

<比較例5>
正極活物質としてLiMn24を用いた以外は実施例1と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 5>
A secondary battery was obtained in the same manner as in Example 1 except that LiMn 2 O 4 was used as the positive electrode active material. Table 3 shows materials used for the battery.

<比較例6>
正極活物質としてLiMn24を用いた以外は実施例2と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 6>
A secondary battery was obtained in the same manner as in Example 2 except that LiMn 2 O 4 was used as the positive electrode active material. Table 3 shows materials used for the battery.

<比較例7>
正極活物質としてLiCoO2を用いた以外は実施例1と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 7>
A secondary battery was obtained in the same manner as in Example 1 except that LiCoO 2 was used as the positive electrode active material. Table 3 shows materials used for the battery.

<比較例8>
正極活物質としてLiCoO2を用いた以外は実施例2と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 8>
A secondary battery was obtained in the same manner as in Example 2 except that LiCoO 2 was used as the positive electrode active material. Table 3 shows materials used for the battery.

<比較例9>
正極活物質としてLiNiO2を用いた以外は実施例1と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 9>
A secondary battery was obtained in the same manner as in Example 1 except that LiNiO 2 was used as the positive electrode active material. Table 3 shows materials used for the battery.

<比較例10>
正極活物質としてLiNiO2を用いた以外は実施例2と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 10>
A secondary battery was obtained in the same manner as in Example 2 except that LiNiO 2 was used as the positive electrode active material. Table 3 shows materials used for the battery.

<比較例11>
正極活物質としてLiCo1/3Ni1/3Mn1/32を用いた以外は実施例1と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 11>
A secondary battery was obtained in the same manner as in Example 1 except that LiCo 1/3 Ni 1/3 Mn 1/3 O 2 was used as the positive electrode active material. Table 3 shows materials used for the battery.

<比較例12>
正極活物質としてLiCo1/3Ni1/3Mn1/32を用いた以外は実施例2と同様にして二次電池を得た。電池に用いた材料を表3に示す。
<Comparative Example 12>
A secondary battery was obtained in the same manner as in Example 2 except that LiCo 1/3 Ni 1/3 Mn 1/3 O 2 was used as the positive electrode active material. Table 3 shows materials used for the battery.

<比較例13>
電解液中にニトロキシルラジカル化合物を添加しなかった以外は比較例5と同様にして二次電池を得た。電池に用いた材料を表4に示す。
<Comparative Example 13>
A secondary battery was obtained in the same manner as in Comparative Example 5 except that the nitroxyl radical compound was not added to the electrolytic solution. Table 4 shows materials used for the battery.

<比較例14>
電解液中にニトロキシルラジカル化合物を添加しなかった以外は比較例7と同様にして二次電池を得た。電池に用いた材料を表4に示す。
<Comparative example 14>
A secondary battery was obtained in the same manner as in Comparative Example 7 except that the nitroxyl radical compound was not added to the electrolytic solution. Table 4 shows materials used for the battery.

<比較例15>
電解液中にニトロキシルラジカル化合物を添加しなかった以外は比較例9と同様にして二次電池を得た。電池に用いた材料を表4に示す。
<Comparative Example 15>
A secondary battery was obtained in the same manner as in Comparative Example 9 except that the nitroxyl radical compound was not added to the electrolytic solution. Table 4 shows materials used for the battery.

<比較例16>
電解液中にニトロキシルラジカル化合物を添加しなかった以外は比較例11と同様にして二次電池を得た。電池に用いた材料を表4に示す。
<Comparative Example 16>
A secondary battery was obtained in the same manner as in Comparative Example 11 except that the nitroxyl radical compound was not added to the electrolytic solution. Table 4 shows materials used for the battery.

<比較例17>
電解液中にニトロキシルラジカル化合物を添加しなかった以外は実施例17と同様にして二次電池を得た。電池に用いた材料を表4に示す。
<Comparative Example 17>
A secondary battery was obtained in the same manner as in Example 17 except that the nitroxyl radical compound was not added to the electrolytic solution. Table 4 shows materials used for the battery.

<比較例18>
電解液中にニトロキシルラジカル化合物を添加しなかった以外は実施例18と同様にして二次電池を得た。電池に用いた材料を表4に示す。
<Comparative Example 18>
A secondary battery was obtained in the same manner as in Example 18 except that the nitroxyl radical compound was not added to the electrolytic solution. Table 4 shows materials used for the battery.

(試験結果)
本実施例1及び比較例1において作製したリチウムイオン電池に対し、0.20mAの定電流で充電を行った。0.20mAの電流は燐酸鉄リチウムの理論容量を160mAh/gとした場合の0.1Cに相当する電流値に相当する。その結果、実施例1で作製したリチウムイオン二次電池は、過充電しても電圧が3.4Vのまま上昇しないことが分かった。理論容量の6倍に相当する60時間の過充電を行っても、電圧は上昇せず、発熱は観測されなかった。一方、比較例1で作製したリチウムイオン二次電池は、約10時間後に電圧が上昇し始め、やがて発熱することが分かった。これらのセルの充電曲線を図2に示す。次に、本実施例1及び比較例1で作製したリチウムイオン二次電池の過充電を理論容量の7倍充電した時点で強制終了させ、0.18mAで放電を行った。その結果、実施例1で作成したリチウムイオン二次電池では、ほぼ理論容量値どおりの放電容量が得られることが分かった。実施例1および比較例1の放電曲線を図3に示す。以上の結果から、正極活物質として燐酸鉄リチウムを用いたリチウムイオン二次電池において、ニトロキシルラジカル化合物を添加した電解液を用いることによって、長時間の過充電に対して有効な安全性の高いリチウムイオン二次電池を提供することができることが確認された。
(Test results)
The lithium ion batteries produced in Example 1 and Comparative Example 1 were charged with a constant current of 0.20 mA. The current of 0.20 mA corresponds to a current value corresponding to 0.1 C when the theoretical capacity of lithium iron phosphate is 160 mAh / g. As a result, it was found that the voltage of the lithium ion secondary battery produced in Example 1 remained at 3.4 V even when overcharged. Even after 60 hours of overcharge corresponding to 6 times the theoretical capacity, the voltage did not rise and no heat generation was observed. On the other hand, it was found that the voltage of the lithium ion secondary battery produced in Comparative Example 1 began to increase after about 10 hours and eventually generated heat. The charge curves for these cells are shown in FIG. Next, the overcharge of the lithium ion secondary batteries produced in Example 1 and Comparative Example 1 was forcibly terminated at the time when the lithium ion secondary battery was charged seven times the theoretical capacity, and discharged at 0.18 mA. As a result, it was found that the lithium ion secondary battery produced in Example 1 can obtain a discharge capacity almost as the theoretical capacity value. The discharge curves of Example 1 and Comparative Example 1 are shown in FIG. From the above results, in a lithium ion secondary battery using lithium iron phosphate as a positive electrode active material, by using an electrolyte solution to which a nitroxyl radical compound is added, high safety effective against long-time overcharge is obtained. It was confirmed that a lithium ion secondary battery can be provided.

同様に実施例2〜6においても過充電防止効果が確認された。これらの結果から、式(2)〜(6)で示されるニトロキシルラジカル化合物でも同様の効果が確認されることが分かった。また実施例7〜9においても過充電防止効果が確認された。これらの結果から、電解液中における添加剤の濃度としては、少なくとも0.05mol/l〜0.5mol/lの範囲で、同様の効果が確認されることが分かった。しかし実施例7の場合には若干の電圧上昇が見られたことから、添加剤の濃度としては0.1mol/l以上であることが好ましいことが分かった。同様に実施例10〜12においても過充電防止効果が確認された。これらの結果から、ニトロキシルラジカルの酸化体であるN−オキソアンモニウム塩を予め添加することによっても、同様の効果が得られることが分かった。また実施例13においても同様の過充電防止効果が確認された。この結果から、ニトロキシルラジカルの酸化体であるN−オキソアンモニウム塩とニトロキシルラジカルとを混合させて添加した場合でも、同様の効果が得られることが分かった。実施例14においても同様の過充電防止効果が確認され、表面に炭素を被覆していない燐酸鉄リチウムを使用した場合でも、同様の効果が得られることが分かった。また、実施例15においても同様の過充電防止結果が確認され、ハードカーボン負極を用いた場合でも、同様の効果が得られることが分かった。実施例16においても同様の過充電防止効果が確認され、リチウム金属負極を用いた場合でも、同様の効果が得られることが分かった。実施例17および18においても過充電防止効果が得られた。これらの結果から、正極活物質としてニトロキシルラジカルの酸化還元電位よりも卑な酸化還元電位を有する化合物を用いれば、燐酸鉄リチウム以外の正極活物質でも、同様の結果が得られることが分かった。   Similarly, in Examples 2 to 6, the overcharge preventing effect was confirmed. From these results, it was found that the same effect was confirmed with the nitroxyl radical compounds represented by the formulas (2) to (6). Moreover, the overcharge prevention effect was confirmed also in Examples 7-9. From these results, it was found that the same effect was confirmed when the concentration of the additive in the electrolytic solution was in the range of at least 0.05 mol / l to 0.5 mol / l. However, in Example 7, since a slight voltage increase was observed, it was found that the concentration of the additive is preferably 0.1 mol / l or more. Similarly, in Examples 10 to 12, the overcharge prevention effect was confirmed. From these results, it was found that the same effect can be obtained by adding in advance an N-oxoammonium salt which is an oxidant of a nitroxyl radical. In Example 13, the same overcharge prevention effect was confirmed. From this result, it was found that the same effect can be obtained even when N-oxoammonium salt, which is an oxidant of nitroxyl radical, and nitroxyl radical are mixed and added. The same overcharge prevention effect was confirmed also in Example 14, and it was found that the same effect can be obtained even when lithium iron phosphate whose surface is not coated with carbon is used. Moreover, the same overcharge prevention result was confirmed also in Example 15, and even when a hard carbon negative electrode was used, it turned out that the same effect is acquired. The same overcharge prevention effect was confirmed also in Example 16, and it was found that the same effect was obtained even when a lithium metal negative electrode was used. In Examples 17 and 18, an overcharge preventing effect was also obtained. From these results, it was found that if a compound having a redox potential lower than that of the nitroxyl radical is used as the positive electrode active material, the same result can be obtained even with a positive electrode active material other than lithium iron phosphate. .

また、上記実施例1及び比較例1と同様の条件で比較例2〜4および比較例13〜18で製作したリチウムイオン二次電池について充電を行ったところ、各比較例においては以下に示す時間に電圧が上昇し始め、やがて発熱した。比較例2:9.5時間、比較例3:10時間、比較例4:10.5時間、比較例13:6時間、比較例14:7時間、比較例15:6.5時間、比較例16:7.5時間。比較例17:10時間、比較例18:8時間。また、70時間充電後に放電を行ったところ、図3の比較例1と同様、安定した放電特性を示さなかった。   In addition, when the lithium ion secondary batteries manufactured in Comparative Examples 2 to 4 and Comparative Examples 13 to 18 were charged under the same conditions as in Example 1 and Comparative Example 1, the times shown below in each Comparative Example were obtained. The voltage started to rise and eventually it generated heat. Comparative Example 2: 9.5 hours, Comparative Example 3: 10 hours, Comparative Example 4: 10.5 hours, Comparative Example 13: 6 hours, Comparative Example 14: 7 hours, Comparative Example 15: 6.5 hours, Comparative Example 16: 7.5 hours. Comparative Example 17: 10 hours, Comparative Example 18: 8 hours. Further, when the battery was discharged after 70 hours of charging, it did not show stable discharge characteristics as in Comparative Example 1 of FIG.

また、比較例5〜12で製作したリチウムイオン二次電池について充電を行ったところ、電圧の上昇は見られなかった。しかしながら70時間充電後に放電を行ったところ十分な容量が得られず、二次電池として動作しなかった。   Moreover, when the lithium ion secondary batteries manufactured in Comparative Examples 5 to 12 were charged, no increase in voltage was observed. However, when the battery was discharged after charging for 70 hours, a sufficient capacity was not obtained and the battery did not operate as a secondary battery.

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

Figure 0005082198
Figure 0005082198

本発明によるリチウムイオン二次電池は、過充電時にも高い安全性が保たれるので、使い易い二次電池として広く利用することができる。本発明の活用例としては、携帯電子機器用二次電池や、電気自動車用二次電池等が挙げられる。   The lithium ion secondary battery according to the present invention can be widely used as an easy-to-use secondary battery because high safety is maintained even during overcharge. Examples of utilization of the present invention include secondary batteries for portable electronic devices and secondary batteries for electric vehicles.

第1の実施の形態に挙げたリチウムイオン二次電池の構成を示す概観図である。1 is an overview diagram showing a configuration of a lithium ion secondary battery cited in the first embodiment. FIG. 実施例1および比較例1で作製したリチウムイオン二次電池の充電曲線である。2 is a charging curve of the lithium ion secondary battery produced in Example 1 and Comparative Example 1. FIG. 実施例1および比較例1で作製したリチウムイオン二次電池の放電曲線である。2 is a discharge curve of a lithium ion secondary battery produced in Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

1 負極用金属集電体
2 絶縁パッキン
3 負極
4 セパレータ
5 正極
6 正極用金属集電体
DESCRIPTION OF SYMBOLS 1 Metal collector for negative electrodes 2 Insulation packing 3 Negative electrode 4 Separator 5 Positive electrode 6 Metal collector for positive electrodes

Claims (7)

少なくとも正極と、負極と、電解液とを有するリチウムイオン二次電池において、
該電解液がニトロキシルラジカル化合物を含み、
該正極が、燐酸鉄リチウム、層状マンガン酸リチウム、スピネル構造のマンガン酸リチウム、又は低結晶性ニッケル置換マンガン酸リチウムを含む正極活物質を含み、
該リチウムイオン二次電池の過充電時において、該ニトロキシルラジカル化合物の酸化還元反応を利用したレドックスシャトル機構を生じる、
ことを特徴とするリチウムイオン二次電池。
In a lithium ion secondary battery having at least a positive electrode, a negative electrode, and an electrolyte solution,
The electrolyte contains a nitroxyl radical compound;
Positive electrode comprises lithium iron phosphate, lithium layered manganate, lithium manganate having a spinel structure, or the positive active material quality containing low crystalline nickel-substituted lithium manganese oxide,
When the lithium ion secondary battery is overcharged, a redox shuttle mechanism utilizing a redox reaction of the nitroxyl radical compound is generated.
The lithium ion secondary battery characterized by the above-mentioned.
少なくとも正極と、負極と、電解液とを有するリチウムイオン二次電池において、
該電解液がニトロキシルラジカル化合物を含み、
該正極が、正極活物質として該ニトロキシルラジカル化合物よりも卑な酸化還元電位を有する化合物を含み、
該負極が、炭素材料からなる負極活物質を含み、
該リチウムイオン二次電池の過充電時において、該ニトロキシルラジカル化合物の酸化還元反応を利用したレドックスシャトル機構を生じる、
ことを特徴とするリチウムイオン二次電池。
In a lithium ion secondary battery having at least a positive electrode, a negative electrode, and an electrolyte solution,
The electrolyte contains a nitroxyl radical compound;
The positive electrode includes a compound having a base redox potential as the positive electrode active material than the nitroxyl radical compound,
The negative electrode includes a negative electrode active material made of a carbon material,
When the lithium ion secondary battery is overcharged, a redox shuttle mechanism utilizing a redox reaction of the nitroxyl radical compound is generated.
The lithium ion secondary battery characterized by the above-mentioned.
少なくとも正極と、負極と、電解液とを有するリチウムイオン二次電池において、
該電解液がニトロキシルラジカル化合物を含み、
該正極が、燐酸鉄リチウムを含む正極活物質を含み、
該リチウムイオン二次電池の過充電時において、該ニトロキシルラジカル化合物の酸化還元反応を利用したレドックスシャトル機構を生じる、
ことを特徴とするリチウムイオン二次電池。
In a lithium ion secondary battery having at least a positive electrode, a negative electrode, and an electrolyte solution,
The electrolyte contains a nitroxyl radical compound;
Positive electrode comprises a positive electrode active material quality including lithium iron phosphate,
When the lithium ion secondary battery is overcharged, a redox shuttle mechanism utilizing a redox reaction of the nitroxyl radical compound is generated.
The lithium ion secondary battery characterized by the above-mentioned.
少なくとも正極と、負極と、電解液とを有するリチウムイオン二次電池において、
該電解液が、下記式(3)〜(6)で示されるニトロキシルラジカル化合物のうちの少なくとも1種と、下記式(7)及び(8)で示されるN−オキソアンモニウム塩の少なくとも1種を前記電解液中に添加することにより生じたニトロキシルラジカル化合物と、を含み、
該正極が、正極活物質として該ニトロキシルラジカル化合物よりも卑な酸化還元電位を有する化合物を含むことを特徴とするリチウムイオン二次電池。
Figure 0005082198
Figure 0005082198
In a lithium ion secondary battery having at least a positive electrode, a negative electrode, and an electrolyte solution,
The electrolytic solution is at least one of nitroxyl radical compounds represented by the following formulas (3) to (6) and at least one N-oxoammonium salt represented by the following formulas (7) and (8). anda nitroxyl radical compounds formed by adding before Symbol electrolyte in,
The lithium ion secondary battery, wherein the positive electrode includes a compound having a lower redox potential than the nitroxyl radical compound as a positive electrode active material.
Figure 0005082198
Figure 0005082198
少なくとも正極と、負極と、電解液とを有するリチウムイオン二次電池において、
該電解液が、下記式(2)〜(6)で示されるニトロキシルラジカル化合物のうちの少なくとも1種を含み、
該正極が、正極活物質として該ニトロキシルラジカル化合物よりも卑な酸化還元電位を有する化合物を含むことを特徴とするリチウムイオン二次電池。
Figure 0005082198
In a lithium ion secondary battery having at least a positive electrode, a negative electrode, and an electrolyte solution,
The electrolytic solution contains at least one of nitroxyl radical compounds represented by the following formulas (2) to (6),
The lithium ion secondary battery, wherein the positive electrode includes a compound having a lower redox potential than the nitroxyl radical compound as a positive electrode active material.
Figure 0005082198
前記ニトロキシルラジカル化合物の少なくとも一部は、下記式(8)で示されるN−オキソアンモニウム塩を、前記電解液中に添加することにより生じたものであることを特徴とする請求項に記載のリチウムイオン二次電池。
Figure 0005082198
At least a portion of said nitroxyl radical compound, according to claim 5, characterized in that the N- oxo ammonium salts represented by the following formula (8), caused by addition into the electrolyte Lithium ion secondary battery.
Figure 0005082198
前記電解液中のニトロキシルラジカル化合物の濃度が、0.1mol/l以上であることを特徴とする請求項1〜の何れか1項に記載のリチウムイオン二次電池。 The concentration of the nitroxyl radical compound in the electrolytic solution, the lithium ion secondary battery according to any one of claim 1 to 6, characterized in that 0.1 mol / l or more.
JP2005067186A 2005-03-10 2005-03-10 Lithium ion secondary battery Active JP5082198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067186A JP5082198B2 (en) 2005-03-10 2005-03-10 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067186A JP5082198B2 (en) 2005-03-10 2005-03-10 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006252917A JP2006252917A (en) 2006-09-21
JP5082198B2 true JP5082198B2 (en) 2012-11-28

Family

ID=37093185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067186A Active JP5082198B2 (en) 2005-03-10 2005-03-10 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5082198B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793566B2 (en) 2015-04-17 2017-10-17 Battelle Memorial Institute Aqueous electrolytes for redox flow battery systems

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615317B2 (en) * 2005-05-17 2009-11-10 3M Innovative Properties Company N-oxide redox shuttles for rechargeable lithium-ion cell
JP5360860B2 (en) * 2007-12-04 2013-12-04 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
JP5932220B2 (en) 2008-02-12 2016-06-08 スリーエム イノベイティブ プロパティズ カンパニー Redox shuttle for high voltage cathode
JP5704409B2 (en) * 2012-01-25 2015-04-22 トヨタ自動車株式会社 Sealed lithium secondary battery
CA2916948A1 (en) 2013-07-09 2015-01-15 Evonik Industries Ag Electroactive polymers, manufacturing process thereof, electrode and use thereof
JP6432113B2 (en) * 2014-11-18 2018-12-05 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium secondary battery
JP6720350B2 (en) 2016-06-02 2020-07-08 エボニック オペレーションズ ゲーエムベーハー Method for manufacturing electrode material
ES2795276T3 (en) 2016-09-06 2020-11-23 Evonik Operations Gmbh Procedure for enhanced oxidation of secondary amino groups

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4229510B2 (en) * 1999-02-15 2009-02-25 株式会社Adeka Flame retardant electrolyte and non-aqueous electrolyte secondary battery
US7358012B2 (en) * 2004-01-06 2008-04-15 Sion Power Corporation Electrolytes for lithium sulfur cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793566B2 (en) 2015-04-17 2017-10-17 Battelle Memorial Institute Aqueous electrolytes for redox flow battery systems

Also Published As

Publication number Publication date
JP2006252917A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4543085B2 (en) Additive for lithium secondary battery
JP5420614B2 (en) 4.35V or higher lithium secondary battery
CA2641152C (en) Lithium secondary battery using ionic liquid
JP5082198B2 (en) Lithium ion secondary battery
JP5070731B2 (en) Method for producing non-aqueous electrolyte battery
JP2007188861A (en) Battery
TW200301022A (en) Lithium ion secondary battery
JP5191931B2 (en) Lithium secondary battery using ionic liquid
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP2009026542A (en) Lithium secondary battery
WO2003021707A1 (en) Nonaqueous electrolyte
JP2000156224A (en) Nonaqueous electrolyte battery
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
KR100826084B1 (en) Additives for lithium secondarty battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
WO2013069643A1 (en) Nonaqueous electrolyte secondary battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
JP2000188132A (en) Nonaqueous electrode secondary battery
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JP4938923B2 (en) Secondary battery
JP4134556B2 (en) Nonaqueous electrolyte secondary battery
JP3402233B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5082198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3