JP2003007342A - Manufacturing method of secondary nonaqueous battery - Google Patents

Manufacturing method of secondary nonaqueous battery

Info

Publication number
JP2003007342A
JP2003007342A JP2001190562A JP2001190562A JP2003007342A JP 2003007342 A JP2003007342 A JP 2003007342A JP 2001190562 A JP2001190562 A JP 2001190562A JP 2001190562 A JP2001190562 A JP 2001190562A JP 2003007342 A JP2003007342 A JP 2003007342A
Authority
JP
Japan
Prior art keywords
silicon
negative electrode
battery
cycle
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001190562A
Other languages
Japanese (ja)
Other versions
JP4911835B2 (en
Inventor
Eiyo Ka
永姚 夏
Tokuji Ueda
上田  篤司
Shigeo Aoyama
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001190562A priority Critical patent/JP4911835B2/en
Publication of JP2003007342A publication Critical patent/JP2003007342A/en
Application granted granted Critical
Publication of JP4911835B2 publication Critical patent/JP4911835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary nonaqueous battery, which has a large capacity and superior cycle characteristics. SOLUTION: The secondary nonaqueous battery having a negative electrode activator made of a complex material is manufactured, the complex material composed of silicon, silicon compound, or silicon and conductive material, After assembled, the secondary battery is charged at first until a crystalline silicon phase in the negative electrode activator disappears. The secondary battery is further charged once or more in such a way that the potential of the negative electrode becomes higher than that of metal lithium by more than 100 mV at the end of charge. When the conductive material is made of carbon, it is preferable that the complex material composed of silicon and conductive material should be a complex material made by covering part or the whole of the surface of silicon grains or silicon compound grains with carbon. When the conductive material is metal, it is preferable that the complex material composed of silicon and conductive material should be a complex material made by alloying metal with silicon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池の製
造方法に関し、さらに詳しくは、電池組立後に特定の充
電工程を経て非水二次電池を製造することを特徴とする
非水二次電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-aqueous secondary battery, and more particularly, to a non-aqueous secondary battery characterized by manufacturing a non-aqueous secondary battery through a specific charging process after battery assembly. The present invention relates to a method of manufacturing a secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される非水二次
電池は、高容量で、かつ高電圧、高エネルギー密度であ
ることから、その発展に対して大きな期待が寄せられて
いる。
2. Description of the Related Art Non-aqueous secondary batteries typified by lithium secondary batteries have high capacity, high voltage, and high energy density, and therefore, there are great expectations for their development.

【0003】この非水二次電池では、有機溶媒にリチウ
ム塩を溶解させた有機溶媒系の電解液が用いられ、負極
活物質としてリチウムまたはリチウム合金が用いられて
きたが、これらの負極活物質を用いた場合、高容量化は
期待できるが、充電時のリチウムのデンドライト成長に
より内部短絡を起こしやすく、また、析出したデンドラ
イ状リチウムは比表面積が大きいため反応性が高く、そ
の表面で電解液中の溶媒と反応して電子伝導性を欠いた
界面皮膜を形成して、電池の内部抵抗が高くなり、充放
電効率を低下させる原因となっている。その結果、電池
特性が低下し、また、安全性が低下するという問題があ
った。
In this non-aqueous secondary battery, an organic solvent-based electrolytic solution in which a lithium salt is dissolved in an organic solvent is used, and lithium or a lithium alloy has been used as a negative electrode active material. When using, the capacity can be expected to increase, but an internal short circuit is likely to occur due to the dendrite growth of lithium during charging, and the deposited dendrite-like lithium has a high specific surface area and is highly reactive. It reacts with the solvent inside to form an interfacial film lacking electron conductivity, increasing the internal resistance of the battery and causing a decrease in charge / discharge efficiency. As a result, there are problems that the battery characteristics are deteriorated and the safety is deteriorated.

【0004】そこで、リチウムやリチウム合金に代え
て、リチウムイオンをドープ・脱ドープすることが可能
なコークスやガラス状炭素などの非晶質炭素や、天然ま
たは人造の黒鉛などの炭素材料を負極活物質として用い
ることが提案されている(例えば、特開平1−2043
61号公報、特開平2−66856号公報、特開平4−
24831号公報、特開平5−17669号公報な
ど)。しかしながら、非晶質、結晶質のいずれの炭素材
料を用いた場合においても、単位体積当たりの容量が充
分ではなく、さらなる性能の向上が望まれている。
Therefore, in place of lithium or a lithium alloy, amorphous carbon such as coke or glassy carbon that can be doped or dedoped with lithium ions, or a carbon material such as natural or artificial graphite is used as the negative electrode active material. It has been proposed to use it as a substance (for example, Japanese Patent Laid-Open No. 1-2043).
61, Japanese Patent Application Laid-Open No. 2-66856, and Japanese Patent Application Laid-Open No. 4-
No. 24831, JP-A-5-17669, etc.). However, the capacity per unit volume is insufficient regardless of whether an amorphous or crystalline carbon material is used, and further improvement in performance is desired.

【0005】そこで、単位体積当たりの容量を大きくす
るため、ケイ素またはその化合物を負極活物質として用
いる試みがなされている。例えば、特開平7−2960
2号公報には、Lix Si(0≦x≦5)を負極活物質
として用いた非水系二次電池が開示されている。
Therefore, in order to increase the capacity per unit volume, attempts have been made to use silicon or its compounds as the negative electrode active material. For example, JP-A-7-2960
No. 2 gazette discloses a non-aqueous secondary battery using Li x Si (0 ≦ x ≦ 5) as a negative electrode active material.

【0006】しかしながら、上記のような炭素より高容
量の金属系負極材料は、充放電を繰り返すと、膨張収縮
により微粉末化して負極の膨潤や電解液の不必要な吸収
を引き起し、特性が劣化するという問題があった。そこ
で、上記の問題を解決するため、特開平2000−21
5887公報には、ケイ素粒子の表面を炭素で被覆する
ことにより、炭素層が負極の膨張を抑制することが報告
されている。また、同特許では、ケイ素含有負極を用い
た電池の充電方法において、負極の最終充電電圧は30
〜100mVに規制されていた。
However, the above-mentioned metal-based negative electrode material having a capacity higher than that of carbon, when repeatedly charged and discharged, becomes fine powder due to expansion and contraction, causing swelling of the negative electrode and unnecessary absorption of the electrolytic solution. There was a problem of deterioration. Therefore, in order to solve the above problem, Japanese Patent Laid-Open No. 2000-21
5887 discloses that the carbon layer suppresses the expansion of the negative electrode by coating the surface of the silicon particles with carbon. Further, in the patent, in a battery charging method using a silicon-containing negative electrode, the final charging voltage of the negative electrode is 30.
It was regulated to -100 mV.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記方
法によっても実用に耐えるサイクル特性を得ることは困
難であった。その理由は以下のように考えられる。
However, it has been difficult to obtain practical cycle characteristics even by the above method. The reason is considered as follows.

【0008】ケイ素は、その結晶学的な単位格子(立方
晶、空間群Fd−3m)に8個のケイ素原子を含んでい
る。格子定数a=0.5431nmから換算して、単位
格子体積は0.1592nm3 であり、ケイ素原子1個
の占める体積(単位格子体積を単位格子中のケイ素原子
数で除した値)は0.0199nm3 である。ケイ素負
極を100mV以下まで充電する(リチウムを含有させ
る)と、リチウムを多く含む化合物Li15Si4 やLi
22Si15を生じ、容量は約4000mAh/gに相当す
るが、体積膨張率が極めて大きくなる。例えば、Li21
Si15の結晶学的な単位格子(立方晶、空間群F−43
m)には83個のケイ素原子が含まれている。その格子
定数a=1.8750nmから換算して、単位格子体積
は6.5918nm3 であり、ケイ素原子1個あたりの
体積は0.079nm3 である。この値は単体ケイ素の
3.95倍であり、材料は極めて大きく膨張してしま
う。このように充電時と放電時の体積差が非常に大きい
ため、材料に大きな歪みが生じ、亀裂が発生して粒子が
微細化するものと考えられる。さらに、この微細化した
粒子間に空間が生じ、電子伝導ネットワークが分断さ
れ、電気化学的な反応に関与できない部分が増加し、充
放電容量が低下するものと考えられる。
Silicon contains eight silicon atoms in its crystallographic unit cell (cubic crystal, space group Fd-3m). Converted from the lattice constant a = 0.5431 nm, the unit lattice volume is 0.1592 nm 3 , and the volume occupied by one silicon atom (the value obtained by dividing the unit lattice volume by the number of silicon atoms in the unit lattice) is 0. It is 0199 nm 3 . When the silicon negative electrode is charged to 100 mV or less (containing lithium), a lithium-rich compound Li 15 Si 4 or Li
22 Si 15 is produced, and the capacity corresponds to about 4000 mAh / g, but the volume expansion coefficient becomes extremely large. For example, Li 21
Si 15 crystallographic unit cell (cubic, space group F-43
m) contains 83 silicon atoms. Converted from the lattice constant a = 1.750 nm, the unit lattice volume is 6.5918 nm 3 , and the volume per silicon atom is 0.079 nm 3 . This value is 3.95 times that of elemental silicon, and the material expands extremely greatly. Since the volume difference between charging and discharging is extremely large as described above, it is considered that a large strain is generated in the material, cracks are generated, and the particles are miniaturized. Further, it is considered that a space is generated between the finely divided particles, the electron conduction network is divided, the portion that cannot participate in the electrochemical reaction increases, and the charge / discharge capacity decreases.

【0009】本発明は、上記のような従来技術の問題点
を解決し、高容量で、かつサイクル特性が優れた非水二
次電池を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a non-aqueous secondary battery having a high capacity and excellent cycle characteristics.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、ケイ素、ケイ素化合物またはケイ素と導
電性物質とからなる複合材料を負極活物質とする非水二
次電池の製造にあたり、その組立後の電池を化成するた
めの充電に際し、1回目の充電では、負極活物質中のケ
イ素がリチウムと反応してケイ素とリチウムとの合金に
なり、負極活物質中の結晶質のケイ素相が消失するまで
充電し、2回目以後の充電では、負極の電位が金属リチ
ウムに対して100mVより高い電位、すなわち、サイ
クリックボルタンダングラムまたは充放電の微分曲線
(対照極:金属リチウム)において、高い電位側から第
2陰極ピークが始まる前の電位で終止するように充電す
るものである。
In order to solve the above problems, the present invention provides a non-aqueous secondary battery having a negative electrode active material of silicon, a silicon compound or a composite material of silicon and a conductive material. During charging for forming the assembled battery, in the first charge, silicon in the negative electrode active material reacts with lithium to form an alloy of silicon and lithium, and the crystalline silicon phase in the negative electrode active material. Is charged until the battery disappears, and in the second and subsequent charges, the potential of the negative electrode is higher than 100 mV with respect to metallic lithium, that is, in the cyclic voltatan gram or the differential curve of charging and discharging (control electrode: metallic lithium). , Charging from the high potential side to end at the potential before the second cathode peak starts.

【0011】すなわち、本発明では、上記1回目の充電
で、負極活物質中のケイ素相がリチウムケイ素合金Li
x Si(2≦x≦4)になるまで充電を行い、2回目以
降の充電では、充電の最終化合物をLi2 SiからLi
21Si8 までの範囲内のものにし、それによって、ケイ
素の膨張率を約半分に抑え、サイクル特性を大幅に向上
できるようにしたのである。
That is, in the present invention, the silicon phase in the negative electrode active material is the lithium silicon alloy Li after the first charging.
The battery is charged until x Si (2 ≦ x ≦ 4) is reached, and in the second and subsequent charges, the final compound to be charged is changed from Li 2 Si to Li.
The range is up to 21 Si 8 , which allows the expansion coefficient of silicon to be reduced to about half and the cycle characteristics to be greatly improved.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。本発明におけるケイ素化合物として
は、例えば、酸化ケイ素などを用いることができる。そ
して、ケイ素と導電性物質とからなる複合材料は、ケイ
素と導電性物質とが複合化したものであればいずれも用
いることができる。それらのうち代表的なものについて
例示すると、導電性物質としては、炭素またはニッケ
ル、銅、スズ、アルミニウムなどの金属を用いることが
でき、導電性物質が炭素の場合、ケイ素と導電性物質と
からなる複合材料としては、ケイ素またはケイ素化合物
の粒子の表面の一部または全部を炭素で被覆することに
よって複合化したものが挙げられる。また、上記のよう
なケイ素またはケイ素化合物の粒子の表面の被覆にあた
っては、例えば、各種樹脂、タールまたはピッチなどの
炭素前駆体を用い、ケイ素またはケイ素化合物の粒子の
表面に被覆した後、焼成して上記炭素前駆体を炭素に変
換してもよい。そして、導電性物質がニッケル、銅、ス
ズ、アルミニウムなどの金属の場合、ケイ素と金属とか
らなる複合材料としてはケイ素と金属との合金が挙げら
れ、その合金としては、ケイ素と金属との固溶体、ケイ
素と金属との金属間化合物のいずれであってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. As the silicon compound in the present invention, for example, silicon oxide can be used. As the composite material composed of silicon and a conductive substance, any composite material of silicon and a conductive substance can be used. To exemplify a typical one of them, carbon or a metal such as nickel, copper, tin, or aluminum can be used as the conductive substance, and when the conductive substance is carbon, it can be composed of silicon and the conductive substance. Examples of the composite material include a composite material obtained by coating a part or all of the surface of particles of silicon or a silicon compound with carbon. Further, in coating the surface of the particles of silicon or silicon compound as described above, for example, various resins, using a carbon precursor such as tar or pitch, after coating the surface of the particles of silicon or silicon compound, followed by firing. The carbon precursor may be converted into carbon. When the conductive substance is a metal such as nickel, copper, tin, or aluminum, the composite material of silicon and metal includes an alloy of silicon and metal, and the alloy includes a solid solution of silicon and metal. Any of the intermetallic compounds of silicon and metal may be used.

【0013】上記のようなケイ素と導電性物質とからな
る複合材料中におけるケイ素の量は、製造しようとする
電池の容量に応じて決定すればよく、特に限定されるこ
とはないものの、5〜80重量%が好ましい。
The amount of silicon in the composite material composed of silicon and a conductive substance as described above may be determined according to the capacity of the battery to be produced and is not particularly limited, but may be 5 to 5. 80% by weight is preferred.

【0014】上記ケイ素またはケイ素化合物の粒子の表
面を炭素で被覆するにあたって、その被覆は、上記ケイ
素またはケイ素化合物の粒子の表面の一部または全部に
行われていればよい。すなわち、炭素による被覆がケイ
素またはケイ素化合物の粒子の表面の全体について行わ
れている方が好ましいが、その表面を被覆する炭素が負
極の膨張を抑制さえすれば、その一部に対してのみ行わ
れていてもよい。
When coating the surface of the silicon or silicon compound particles with carbon, the coating may be carried out on a part or the whole of the surface of the silicon or silicon compound particles. That is, it is preferable that the coating with carbon is performed on the entire surface of the particles of silicon or a silicon compound, but if the carbon coating the surface suppresses the expansion of the negative electrode, the coating is performed only on a part thereof. You may be told.

【0015】上記ケイ素、ケイ素化合物またはケイ素と
導電性物質とからなる複合材料を負極活物質として用い
た非水二次電池を組み立てた後、その組立後の電池を化
成するための充電に際し、1回目の充電は負極活物質中
の結晶質のケイ素相が消失するまで行うが、その充電方
法としては、特に限定されることはないものの、定電流
充電または定電流充電と定電圧充電とを組み合わせた方
法で行うことが好ましい。例えば、設定電圧(E)に達
するまでは、充電を一定の電流値(I)で充電する定電
流充電領域と、前記設定電圧(E)に達した後、設定電
圧(E)で定電圧充電する定電圧充電領域とを組み合わ
せて充電を行う方法が好ましい。その際、充電電流密度
は小さい方が好ましい。1回目の充電は負極活物質中の
結晶質のケイ素相が消失し、ケイ素がリチウムとケイ素
との合金Lix Si(2≦x≦4)になるまで充電す
る。この1回目の充電の最終化合物としてはLix Si
(2≦x≦2.625)が好ましい。すなわち、Li2
Siよりリチウム量が少ない場合は、負極活物質が充分
に利用されず容量が低くなり、Li21Si8 よりリチウ
ム量が多い場合は、膨張率が大きくなり、サイクル特性
が低下するおそれがある。
After assembling a non-aqueous secondary battery using the above-mentioned silicon, a silicon compound or a composite material comprising silicon and a conductive material as a negative electrode active material, the battery after the assembly is charged to form 1 The second charging is performed until the crystalline silicon phase in the negative electrode active material disappears, but the charging method is not particularly limited, but constant current charging or a combination of constant current charging and constant voltage charging is used. It is preferable to carry out the above method. For example, until the set voltage (E) is reached, a constant current charging region where charging is performed at a constant current value (I), and after reaching the set voltage (E), a constant voltage charging is performed at the set voltage (E). It is preferable that the charging is performed in combination with the constant voltage charging region. At that time, it is preferable that the charging current density is small. The first charge is performed until the crystalline silicon phase in the negative electrode active material disappears and silicon becomes an alloy Li x Si (2 ≦ x ≦ 4) of lithium and silicon. Li x Si is the final compound for this first charge.
(2 ≦ x ≦ 2.625) is preferable. That is, Li 2
When the amount of lithium is smaller than that of Si, the negative electrode active material is not fully utilized and the capacity becomes low. When the amount of lithium is larger than that of Li 21 Si 8 , the expansion coefficient becomes large and the cycle characteristics may be deteriorated.

【0016】2回目以後の充電では、充電終止電圧を1
00mVより高い電圧に規制する。すなわち、充放電の
微分曲線(対照極:金属リチウム)において、高い電位
側から第2陰極ピークが始める前の電位までで充電を終
了する。この充電を終止する電位としては150〜25
0mV、つまり、負極の電位が金属リチウムに対して1
50〜250mVで充電を終止することが好ましい。
In the second and subsequent charging, the charge end voltage is set to 1
Regulate to a voltage higher than 00 mV. That is, in the charge / discharge differential curve (control electrode: metallic lithium), charging is completed from the high potential side to the potential before the second cathode peak starts. The potential to terminate this charging is 150 to 25
0 mV, that is, the potential of the negative electrode is 1 with respect to metallic lithium
It is preferable to terminate the charging at 50 to 250 mV.

【0017】本発明において負極用の導電助剤は、用い
る負極活物質の種類によって、その必要性が異なる。例
えば、負極活物質がケイ素やケイ素化合物の場合は導電
助剤が必要であるが、負極活物質がケイ素と導電性物質
とからなる複合材料の場合はそれ自体で導電性を有して
いるので必ずしも導電助剤を必要としないものの、この
複合材料を用いる場合でも、負極に充分な導電性を持た
せるためには導電助剤を用いることが好ましい。このよ
うな目的で使用する導電助剤としては、電子伝導性を有
し、構成される非水二次電池において、化学変化を起こ
さない電子伝導性材料であれば特に限定されることなく
各種のものを用い得るが、例えば、天然黒鉛(鱗片状黒
鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、ア
セチレンブラック、ケッチェンブラック、炭素繊維、金
属粉(銅、ニッケル、アルミニウム、銀などの金属の
粉)、金属繊維、ポリフェニレン誘導体(特開昭59−
20971号公報)などの導電性物質の1種または2種
以上を用いることが好ましい。
In the present invention, the necessity of the conductive auxiliary agent for the negative electrode varies depending on the kind of the negative electrode active material used. For example, when the negative electrode active material is silicon or a silicon compound, a conductive auxiliary agent is necessary, but when the negative electrode active material is a composite material composed of silicon and a conductive material, it has conductivity by itself. Although a conductive auxiliary agent is not always required, it is preferable to use a conductive auxiliary agent in order to make the negative electrode have sufficient conductivity even when using this composite material. The conductive auxiliary agent used for such a purpose is not particularly limited as long as it is an electron conductive material that has electronic conductivity and does not cause a chemical change in the constituted non-aqueous secondary battery. For example, natural graphite (scaly graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder (metals such as copper, nickel, aluminum and silver) can be used. Powder), metal fiber, polyphenylene derivative (JP-A-59-
It is preferable to use one kind or two or more kinds of conductive substances such as 20971).

【0018】本発明において負極用の結着剤は、熱可塑
性樹脂、熱硬化性樹脂のいずれであってもよい。そし
て、この負極用の結着剤の具体例としては、例えば、で
んぷん、ポリビニルアルコール、カルボキシメチルセル
ロース、ヒドロキシプロピルセルロース、再生セルロー
ス、ジアセチルセルロース、ポリビニルクロリド、ポリ
ビニルピロリドン、テトラフルオロエチレン、ポリフッ
化ビニリデン、ポリエチレン、ポリプロピレン、エチレ
ン−プロピレン−ジエンターポリマー(EPDM)、ス
ルホン化EPDM、スチレンブタジエンゴム、ブタジエ
ンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオ
キシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有する
ポリマーなどやそれらの変成体の1種または2種以上を
用いることができる。
In the present invention, the binder for the negative electrode may be either a thermoplastic resin or a thermosetting resin. Then, specific examples of the binder for the negative electrode include, for example, starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinylpyrrolidone, tetrafluoroethylene, polyvinylidene fluoride, polyethylene. , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, butadiene rubber, polybutadiene, fluororubber, polysaccharides such as polyethylene oxide, thermoplastic resins, polymers having rubber elasticity, and the like. One kind or two or more kinds of modified forms can be used.

【0019】本発明において正極活物質としては、特に
限定されることはなく各種のものを用いることができる
が、特にLix CoO2 、Lix NiO2 、Lix Mn
2、Lix Coy Ni1-y 2 、Lix Coy 1-y
z 、Lix Ni1-y y z 、Lix Mn2 4 、L
x Mn2-y y 4 (ここで、M=Mg、Mn、F
e、Co、Ni、Cu、Zn、Al、Crのうち少なく
とも1種であり、x、y、zはそれぞれ、0≦x≦1.
1,0<y<1.0,2.0≦z≦2.2である)など
のリチウム含有遷移金属酸化物が好適に用いられる。
In the present invention, as the positive electrode active material,
There is no limitation and various types can be used.
But especially LixCoO2, LixNiO2, LixMn
O2, LixCoyNi1-yO2, LixCoyM1-y
Oz, LixNi1-yMyO z, LixMn2OFour, L
ixMn2-yMyOFour(Where M = Mg, Mn, F
e, Co, Ni, Cu, Zn, Al, Cr
1 and x, y, and z are 0 ≦ x ≦ 1.
1,0 <y <1.0, 2.0 ≦ z ≦ 2.2) etc.
The lithium-containing transition metal oxide of is preferably used.

【0020】本発明において正極用の導電助剤として
は、用いる正極活物質の充放電電位において、化学変化
を起こさない電子伝導性材料であれば特に限定されるこ
となく各種のものを用い得るが、例えば、天然黒鉛(鱗
片状黒鉛など)、人造黒鉛などのグラファイト類、アセ
チレンブラック、ケッチェンブラック、チャンネルブラ
ック、ファーネスブラック、ランプブラック、サーマル
ブラックなどのカーボンブラック類、炭素繊維、金属繊
維などの導電性繊維類などの1種または2種以上を用い
ることができる。これらの導電助剤の中でも、特に人造
黒鉛、アセチレンブラックなどが好ましい。
In the present invention, the conductive additive for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change at the charge / discharge potential of the positive electrode active material used, but various ones can be used. , For example, natural graphite (scaly graphite etc.), graphite such as artificial graphite, carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, carbon fiber, metal fiber, etc. One kind or two or more kinds of conductive fibers can be used. Among these conductive aids, artificial graphite and acetylene black are particularly preferable.

【0021】本発明に用いる正極用の結着剤は、熱可塑
性樹脂、熱硬化性樹脂のいずれであってもよい。そし
て、この正極用の結着剤としては、例えば、ポリエチレ
ン、ポリプロピレン、ポリテトラフルオロエチレン(P
TFE)、ポリフッ化ビニリデン(PVdF)、スチレ
ンブタジエンゴム、テトラフルオロエチレン−ヘキサフ
ルオロエチレン共重合体、テトラフルオロエチレン−ヘ
キサフルオロプロピレン共重合体(FEP)、テトラフ
ルオロエチレン−パーフルオロアルキルビニルエーテル
共重合体(PFA)、フッ化ビニリデン−ヘキサフルオ
ロプロピレン共重合体、フッ化ビニリデン−クロロトリ
フルオロエチレン共重合体、エチレン−テトラフルオロ
エチレン共重合体(ETFE樹脂)などの1種または2
種以上が用られる。また、これらの中でも特にポリフッ
化ビニリデン、ポリテトラフルオロエチレンなどが好ま
しい。
The binder for the positive electrode used in the present invention may be either a thermoplastic resin or a thermosetting resin. And, as the binder for this positive electrode, for example, polyethylene, polypropylene, polytetrafluoroethylene (P
TFE), polyvinylidene fluoride (PVdF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), etc.
More than one seed is used. Among these, polyvinylidene fluoride and polytetrafluoroethylene are particularly preferable.

【0022】本発明において非水電解質としては、液状
電解質(電解液)、上記液状電解質をゲル化したゲル状
電解質のいずれも用いることができるが、通常、電解液
と呼ばれる液状電解質を用いることが多いことから、以
下、この液状電解質を電解液という表現でその構成につ
いて詳しく説明する。
As the non-aqueous electrolyte in the present invention, either a liquid electrolyte (electrolyte solution) or a gel electrolyte obtained by gelating the above liquid electrolyte can be used. Usually, a liquid electrolyte called an electrolyte solution is used. Since there are many, the liquid electrolyte will be described in detail below as an electrolyte.

【0023】電解液は、有機溶媒などの非水溶媒と、そ
の溶媒に溶解するリチウム塩などの電解質塩とから構成
される。つまり、電解液は非水溶媒に電解質塩を溶解さ
せることによって調製される。上記有機溶媒としては、
例えば、プロピレンカーボネート、エチレンカーボネー
ト、ブチレンカーボネート、ジメチルカーボネート、ジ
エチルカーボネート、メチルエチルカーボネート、γ−
ブチロラクトン、1,2−ジメトキシエタン、テトラヒ
ドロフラン、2−メチルテトラヒドロフラン、ジメチル
スルホキシド、1,3−ジオキソラン、ホルムアミド、
ジメチルホルムアミド、ジオキソラン、アセトニトリ
ル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリ
エステル、トリメトキシメタン、ジオキソラン誘導体、
スルホラン、3−メチル−2−オキサゾリジノン、プロ
ピレンカーボネート誘導体、テトラヒドロフラン誘導
体、ジエチルエーテル、1,3−プロパンサルトンなど
の非プロトン性有機溶媒の少なくとも1種が用いられ、
電解質塩としては、例えば、LiClO4 、LiB
4 、LiPF6 、LiCF3 SO3 、LiCF3 CO
2 、LiAsF6 、LiSbF6 、LiB10Cl10、低
級脂肪族カルボン酸リチウム、LiAlCl4 、LiC
l、LiBr、LiI、クロロボランリチウム、四フェ
ニルホウ酸リチウムなどの1種または2種以上が用いら
れる。電解液中における電解質塩の濃度は、特に限定さ
れることはないが、0.2〜3.0mol/l程度が好
ましい。
The electrolytic solution is composed of a non-aqueous solvent such as an organic solvent and an electrolyte salt such as a lithium salt dissolved in the solvent. That is, the electrolytic solution is prepared by dissolving the electrolyte salt in the non-aqueous solvent. As the organic solvent,
For example, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-
Butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide,
Dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative,
At least one kind of aprotic organic solvent such as sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, and 1,3-propane sultone is used,
Examples of the electrolyte salt include LiClO 4 , LiB
F 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO
2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiAlCl 4 , LiC
One, two or more of 1, 1, LiBr, LiI, lithium chloroborane, lithium tetraphenylborate and the like are used. The concentration of the electrolyte salt in the electrolytic solution is not particularly limited, but is preferably about 0.2 to 3.0 mol / l.

【0024】ゲル状電解質は、上記電解液をゲル化剤に
よってゲル化したものに相当するが、そのゲル化にあた
っては、例えば、ポリフッ化ビニリデン、ポリエチレン
オキサイド、ポリアクリロニトリルなどの直鎖状ポリマ
ーまたはそれらのコポリマー、紫外線、電子線、可視光
線、遠赤外線などの活性光線の照射により重合する多官
能モノマー(例えば、ペンタエリスリトールテトラアク
リレート、ジトリメチロールプロパンテトラアクリレー
ト、エトキシ化ペンタエリスリトールテトラアクリレー
ト、ジペンタエリスリトールヒドロキシペンタアクリレ
ート、ジペンタエリスリトールヘキサアクリレートなど
の四官能以上のアクリレートおよび上記アクリレートと
同様の四官能以上のメタクリレートなど)などを重合し
たポリマーなどが用いられる。
The gel electrolyte corresponds to a gel of the above-mentioned electrolytic solution with a gelling agent. For the gelation, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or the like. , A polyfunctional monomer that is polymerized by irradiation with actinic rays such as ultraviolet rays, electron rays, visible rays, and far infrared rays (for example, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hydroxy). Polymers obtained by polymerizing tetra-functional or higher acrylates such as pentaacrylate and dipentaerythritol hexaacrylate, and tetra-functional or higher methacrylates similar to the above acrylates, etc. It is needed.

【0025】電池の形状は、特に特定のものに限定され
ることはなく、例えば、コイン形、ボタン形、シート
形、積層形、円筒形、扁平形、角形など、いずれの形状
をも採り得ることができ、また、小型のもののみなら
ず、電気自動車などに用いられるような大型のものにも
適用することができる。
The shape of the battery is not particularly limited, and may be any shape such as coin shape, button shape, sheet shape, laminated shape, cylindrical shape, flat shape, and prismatic shape. In addition, it can be applied not only to small-sized ones but also large-sized ones used in electric vehicles and the like.

【0026】[0026]

【実施例】以下、実施例により本発明をより具体的に説
明する。ただし、本発明はそれらの実施例に限定される
ものではない。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to those examples.

【0027】実施例1 平均粒径10μmのケイ素粒子90重量部に対し、炭素
粉末5重量部とポリフッ化ビニリデン5重量部を添加し
て混合し、これらを脱水したN−メチル−2−ピロリド
ンに分散させて負極合剤含有ぺーストを調製し、その負
極合剤含有ぺーストを銅箔からなる負極集電体上に塗布
し、乾燥した後、圧延して電極を作製した。これを切り
取って、直径16mmの円板状にし、その円板状の電極
を真空で24時間乾燥した。
Example 1 To 90 parts by weight of silicon particles having an average particle size of 10 μm, 5 parts by weight of carbon powder and 5 parts by weight of polyvinylidene fluoride were added and mixed, and these were added to dehydrated N-methyl-2-pyrrolidone. A negative electrode mixture-containing paste was prepared by dispersion, and the negative electrode mixture-containing paste was applied onto a negative electrode current collector made of copper foil, dried and then rolled to prepare an electrode. This was cut into a disk shape having a diameter of 16 mm, and the disk electrode was dried under vacuum for 24 hours.

【0028】上記円板状の電極を金属リチウムと組み合
わせて用い、コイン形のモデルセルを組み立てた。電解
液は、プロピレンカーボネートとジメチルカーボネート
との混合溶媒(体積比1:1)にLiPF6 を1mol
/l溶解したものを用いた。上記セルの充放電方法は以
下のように行った。1回目の充電は電流密度0.5mA
/cm2 の定電流で60mVになるまで充電し、60m
Vに達した後は、電流密度が定電流充電時の1/10に
なるまで定電圧充電を行った。この充電はケイ素をLi
2.3 Siにするのに相当する。放電はすべて電流密度
0.5mA/cm 2 の定電流で行い放電終止電圧は2.
0Vとした。2回目(2サイクル目)以後の充電は、電
流密度0.5mA/cm2 の定電流で行い充電終止電圧
は150mV(実施例1−1)と250mV(実施例1
−2)とした。すなわち、図1に示す充放電の微分曲線
(対照極:金属リチウム)で高い電位側から、第2陰極
ピークが始まる前の電位までで充電を終止することにし
た。そして、充放電は50サイクルまで行い、2サイク
ル目と50サイクル目の放電容量を測定した。なお、図
1の縦軸はdQ/dEであるが、このdQ/dEは電池
電圧(E)に対する電池容量(Q)の微分であり、横軸
の電圧は負極の金属リチウムに対する電位を示してい
る。
The above disk-shaped electrode is combined with lithium metal.
Used together, a coin-shaped model cell was assembled. electrolytic
Liquid is propylene carbonate and dimethyl carbonate
LiPF in a mixed solvent with (volume ratio 1: 1)61 mol
/ L dissolved was used. The charging / discharging method of the above cell is as follows.
I went as below. The first charge has a current density of 0.5 mA
/ Cm260m with constant current of 60mV
After reaching V, the current density becomes 1/10 of the constant current charge.
Constant voltage charging was performed until. This charge is silicon
2.3This is equivalent to making Si. All discharges are current density
0.5 mA / cm 2The discharge end voltage is 2.
It was set to 0V. Charging after the second time (second cycle) is
Flow density 0.5 mA / cm2Performed with constant current of end-of-charge voltage
Is 150 mV (Example 1-1) and 250 mV (Example 1)
-2). That is, the charge / discharge differential curve shown in FIG.
(Control electrode: metallic lithium) From the higher potential side, the second cathode
We decided to stop charging at the potential before the peak started.
It was And charge and discharge is performed up to 50 cycles and 2 cycles
The discharge capacity at the second and 50th cycles was measured. Note that the figure
The vertical axis of 1 is dQ / dE, which is dQ / dE
It is the differential of the battery capacity (Q) with respect to the voltage (E), and the horizontal axis
Indicates the potential of the negative electrode with respect to metallic lithium.
It

【0029】比較例1 2サイクル目以後の充電終止電圧を80mVに設定した
以外は、実施例1と同様にセルの組み立ておよび充放電
を行った。
Comparative Example 1 Assembling and charging / discharging of the cell were performed in the same manner as in Example 1 except that the end-of-charge voltage after the second cycle was set to 80 mV.

【0030】上記実施例1および比較例1のセルにおけ
る負極の性能評価結果を表1に示す。表1中に示す放電
容量はケイ素1gあたりで算出したものである。また、
これは以後の放電容量を示す表においても同様である。
そして、50サイクル目の容量保持率は50サイクル目
の放電容量を2サイクル目の放電容量で割り、それに1
00を掛けることによって算出した。つまり、容量保持
率は次の式に基づいて求めた。
Table 1 shows the performance evaluation results of the negative electrode in the cells of Example 1 and Comparative Example 1 described above. The discharge capacities shown in Table 1 are calculated per 1 g of silicon. Also,
This is the same in the following tables showing discharge capacities.
The capacity retention rate at the 50th cycle is calculated by dividing the discharge capacity at the 50th cycle by the discharge capacity at the second cycle, and
It was calculated by multiplying by 00. That is, the capacity retention rate was obtained based on the following formula.

【0031】[0031]

【表1】 [Table 1]

【0032】表1に示すように、実施例1−1〜1−2
は、50サイクル目においても、70%以上の高い容量
保持率を有していて、サイクル特性が優れていたが、比
較例1は、50サイクル目の容量保持率が著しく低く、
サイクル特性が劣っていた。
As shown in Table 1, Examples 1-1 and 1-2
Had a high capacity retention of 70% or more even at the 50th cycle, and had excellent cycle characteristics, but Comparative Example 1 had a significantly low capacity retention at the 50th cycle.
The cycle characteristics were inferior.

【0033】実施例2 実施例1におけるケイ素粒子に代えて、平均粒径0.1
μmのケイ素粒子の表面を炭素で被覆した平均粒径15
μmのケイ素−炭素複合材料(ケイ素と炭素とからなる
複合材料で、この複合材料中におけるケイ素の含有量は
60重量%である)を負極活物質として用いた以外は、
実施例1と同様にセルの組み立ておよび充放電を行って
放電容量と50サイクル目の容量保持率を求めた。その
結果を表2に示す。
Example 2 Instead of the silicon particles in Example 1, an average particle size of 0.1
Average particle size of silicon coated with carbon on the surface of 15 μm
A silicon-carbon composite material (composite material composed of silicon and carbon, the content of silicon in which is 60% by weight) having a thickness of μm was used as the negative electrode active material.
The cell was assembled and charged / discharged in the same manner as in Example 1 to determine the discharge capacity and the capacity retention rate at the 50th cycle. The results are shown in Table 2.

【0034】比較例2 2サイクル目以後の充電終止電圧を80mVに設定した
以外は、実施例2と同様にセルの組み立ておよび充放電
を行って放電容量と50サイクル目の放電保持率を求め
た。その結果を表2に示す。
Comparative Example 2 A cell was assembled and charged / discharged in the same manner as in Example 2 except that the end-of-charge voltage after the second cycle was set to 80 mV, and the discharge capacity and the discharge retention rate at the 50th cycle were obtained. . The results are shown in Table 2.

【0035】[0035]

【表2】 [Table 2]

【0036】表2に示すように、実施例2−1〜2−2
は、50サイクル目においても、90%以上の高い容量
保持率を有していて、サイクル特性が優れていたが、比
較例2は、50サイクル目の容量保持率が25%と低
く、サイクル特性が劣っていた。
As shown in Table 2, Examples 2-1 to 2-2
Had a high capacity retention rate of 90% or more even at the 50th cycle and had excellent cycle characteristics, but Comparative Example 2 had a low capacity retention rate at the 50th cycle of 25% and had a good cycle characteristic. Was inferior.

【0037】実施例3 ケイ素粒子に代えて、ケイ素とアルミニウムとの固溶体
(ケイ素とアルミニウムとからなる複合材料の一種であ
って、この固溶体中におけるケイ素の含有量は80重量
%である)を負極活物質として用いた以外は、実施例1
と同様にセルの組み立ておよび充放電を行って放電容量
と50サイクル目の容量保持率を求めた。その結果を表
3に示す。
Example 3 Instead of silicon particles, a solid solution of silicon and aluminum (a kind of composite material composed of silicon and aluminum, and the content of silicon in this solid solution is 80% by weight) is used as a negative electrode. Example 1 except that it was used as the active material
The cell was assembled and charged / discharged in the same manner as in 1. to determine the discharge capacity and the capacity retention rate at the 50th cycle. The results are shown in Table 3.

【0038】比較例3 2サイクル目以後の充電終止電圧を80mVに設定した
以外は、実施例3と同様にセルの組み立ておよび充放電
を行って放電容量と50サイクル目の容量保持率を求め
た。その結果を表3に示す。
Comparative Example 3 A cell was assembled and charged / discharged in the same manner as in Example 3 except that the end-of-charge voltage after the second cycle was set to 80 mV, and the discharge capacity and the capacity retention rate at the 50th cycle were obtained. . The results are shown in Table 3.

【0039】[0039]

【表3】 [Table 3]

【0040】表3に示すように、実施例3−1〜3−2
は、50サイクル目においても、82%以上の高い容量
保持率を有していて、サイクル特性が優れていたが、比
較例3は、50サイクル目の容量保持率が6%と非常に
低く、サイクル特性が劣っていた。
As shown in Table 3, Examples 3-1 to 3-2
Had a high capacity retention rate of 82% or more even at the 50th cycle and had excellent cycle characteristics, but Comparative Example 3 had a very low capacity retention rate at the 50th cycle of 6%, The cycle characteristics were inferior.

【0041】実施例4 実施例2のケイ素−炭素複合材料を負極活物質として用
い、LiCoO2 を正極活物質として用いて、直径18
mm、高さ65mmの円筒形非水二次電池を組み立て
た。そして、組立後の電池の充電は800mA(約1/
3C)の定電流充電(CC)と定電圧充電(CV)とを
組み合わせて行った。充電の終止は定電圧領域(E)で
充電電流値が80mAに到達した時点とした。1回目の
充電終止電圧は4.25Vに設定した。この4.25V
という充電終止電圧は金属リチウムに対して負極の充電
終止電圧が50mVに相当する。そして、放電は800
mAの定電流で放電終止電圧は2.5Vに設定した。2
回目(2サイクル目)以後の充電は、800mAの定電
流充電で行い、その充電終止電圧は4.15V(実施例
4−1)と4.1V(実施例4−2)と4.05V(実
施例4−3)に設定した。これらは、負極の金属リチウ
ムに対する電位では、それぞれ、150mV(実施例4
−1)と200V(実施例4−2)と250mV(実施
例4−3)に相当する。そして、充放電は100サイク
ルまで行い、2サイクル目と100サイクル目の放電容
量を測定し、それらの放電容量から100サイクル目の
容量保持率を次の式に基いて算出した。
Example 4 Using the silicon-carbon composite material of Example 2 as the negative electrode active material and LiCoO 2 as the positive electrode active material, the diameter of 18
A cylindrical non-aqueous secondary battery having a size of 65 mm and a height of 65 mm was assembled. The battery charge after assembly is 800mA (approx. 1 /
3C) constant current charging (CC) and constant voltage charging (CV) were performed in combination. The charging was stopped at the time when the charging current value reached 80 mA in the constant voltage region (E). The first charge cutoff voltage was set to 4.25V. This 4.25V
The charge end voltage of the negative electrode corresponds to 50 mV with respect to metallic lithium. And the discharge is 800
The discharge end voltage was set to 2.5 V with a constant current of mA. Two
Charging after the second time (second cycle) is performed by constant current charging of 800 mA, and the charge end voltages thereof are 4.15 V (Example 4-1), 4.1 V (Example 4-2) and 4.05 V ( It was set to Example 4-3). These have a potential of 150 mV (Example 4
-1) and 200 V (Example 4-2) and 250 mV (Example 4-3). Then, charging and discharging were performed up to 100 cycles, the discharge capacities at the second cycle and the 100th cycle were measured, and the capacity retention rate at the 100th cycle was calculated from the discharge capacities based on the following formula.

【0042】充電終止電圧が4.15Vの場合の充放電
曲線を図2に示す。図2に示すように、この電池は、放
電容量が2500mAhであり、平均作動電圧が3.5
Vであった。
FIG. 2 shows a charge / discharge curve when the end-of-charge voltage is 4.15V. As shown in FIG. 2, this battery has a discharge capacity of 2500 mAh and an average operating voltage of 3.5.
It was V.

【0043】ここで、上記円筒形非水二次電池の負極、
正極、電解液の構成や電池構造について詳細に説明す
る。まず、実施例2のケイ素−炭素複合材料90重量部
に対し、炭素粉末5重量部とポリフッ化ビニリデン5重
量部を混合した。ただし、混合は、上記ポリフッ化ビニ
リデンをN−メチル−2−ピロリドンにあらかじめ溶解
しておき、このポリフッ化ビニリデンのN−メチル−2
−ピロリドン溶液にケイ素−炭素複合材料と炭素粉末を
加えて混合分散してスラリー状の負極合剤含有ぺースト
を調製した。この負極合剤含有ぺーストを厚さ15μm
の銅箔からなる負極集電体上に所定量均一に塗布し、乾
燥して負極合剤層を形成した。同様に、上記銅箔からな
る負極集電体の裏面にも上記負極合剤含有ぺーストを所
定量均一に塗布し、乾燥して負極合剤層を形成した後、
圧延処理し、その後、所定の大きさの帯状に切断して負
極を得た。
Here, the negative electrode of the cylindrical non-aqueous secondary battery,
The configurations of the positive electrode and the electrolytic solution and the battery structure will be described in detail. First, 5 parts by weight of carbon powder and 5 parts by weight of polyvinylidene fluoride were mixed with 90 parts by weight of the silicon-carbon composite material of Example 2. However, for the mixing, the polyvinylidene fluoride is dissolved in N-methyl-2-pyrrolidone in advance, and N-methyl-2 of this polyvinylidene fluoride is mixed.
A silicon-carbon composite material and carbon powder were added to the pyrrolidone solution, and mixed and dispersed to prepare a slurry-containing negative electrode mixture-containing paste. The paste containing the negative electrode mixture has a thickness of 15 μm.
A predetermined amount was uniformly applied onto the negative electrode current collector made of the copper foil and dried to form a negative electrode mixture layer. Similarly, a predetermined amount of the negative electrode mixture-containing paste is evenly applied to the back surface of the negative electrode current collector made of the copper foil, and dried to form a negative electrode mixture layer,
It was rolled and then cut into strips of a predetermined size to obtain a negative electrode.

【0044】また、LiCoO2 92重量部に対して、
アセチレンブラックを3重量部とポリフッ化ビニリデン
を5重量部添加して混合した。ただし、混合は、上記ポ
リフッ化ビニリデンをN−メチル−2−ピロリドンにあ
らかじめ溶解しておき、そのポリフッ化ビニリデンのN
−メチル−2−ピロリドン溶液にLiCoO2 とアセチ
レンブラックを加えて、充分に混合、分散して正極合剤
含有ぺーストを調製した。この正極合剤含有ぺーストを
厚さ20μmのアルミニウム箔からなる正極集電体上に
所定量均一に塗布し、乾燥して正極合剤層を形成した。
同様に、上記アルミニウム箔からなる正極集電体の裏面
にも上記正極合剤含有ぺーストを所定量均一に塗布し、
乾燥して正極合剤層を形成した後、圧延処理し、その
後、所定の大きさの帯状に切断して正極を得た。
Further, with respect to 92 parts by weight of LiCoO 2 ,
3 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride were added and mixed. However, in the mixing, the polyvinylidene fluoride is dissolved in N-methyl-2-pyrrolidone in advance, and the polyvinylidene fluoride N
LiCoO 2 and acetylene black were added to the methyl-2-pyrrolidone solution, and the mixture was thoroughly mixed and dispersed to prepare a paste containing a positive electrode mixture. A predetermined amount of this positive electrode mixture-containing paste was uniformly applied onto a positive electrode current collector made of an aluminum foil having a thickness of 20 μm and dried to form a positive electrode mixture layer.
Similarly, the positive electrode mixture-containing paste is applied evenly on the back surface of the positive electrode current collector made of the aluminum foil in a predetermined amount,
After being dried to form a positive electrode mixture layer, it was rolled and then cut into strips of a predetermined size to obtain a positive electrode.

【0045】上記のように作製した帯状正極と帯状負極
との間に厚さ25μmの微孔性ポリエチレンフィルムか
らなるセパレータを配置し、渦巻状に巻回して、渦巻状
電極体とした後、有底円筒状の電池ケース内に挿入し、
正極リード体および負極リード体の溶接を行った。
A separator made of a microporous polyethylene film having a thickness of 25 μm is arranged between the strip-shaped positive electrode and the strip-shaped negative electrode produced as described above, and the spirally wound electrode body is formed by spirally winding the separator. Insert in the bottom cylindrical battery case,
The positive electrode lead body and the negative electrode lead body were welded.

【0046】その後、電池ケース内に1mol/l L
iPF6 /EC/DEC(体積比1:2からなる電解液
〔すなわち、エチレンカーボネート(EC)とジエチル
カーボネート(DEC)との体積比1:2の混合溶媒に
LiPF6 を1mol/l溶解させてなる非水電解液〕
を注入した。
Then, 1 mol / l L was placed in the battery case.
iPF 6 / EC / DEC (electrolyte solution having a volume ratio of 1: 2 [that is, 1 mol / l of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 2) Non-aqueous electrolyte]
Was injected.

【0047】ついで、上記電池ケースの開口部を常法に
したがって封口し、図3に示す構造で外径18mm、高
さ65mmの円筒形非水二次電池を作製した。
Then, the opening of the battery case was sealed according to a conventional method, and a cylindrical non-aqueous secondary battery having an outer diameter of 18 mm and a height of 65 mm was manufactured with the structure shown in FIG.

【0048】ここで、図3に示す電池について説明する
と、1は前記の正極で、2は前記の負極である。ただ
し、図3では、繁雑化を避けるため、正極1や負極2の
作製にあたって使用した集電体としての金属箔などは図
示していない。そして、これらの正極1と負極2はセパ
レータ3を介して渦巻状に巻回され、渦巻状電極体とし
て上記特定の電解液からなる電解質4と共に電池ケース
5内に収容されている。
The battery shown in FIG. 3 will be described below. 1 is the positive electrode and 2 is the negative electrode. However, in order to avoid complication, FIG. 3 does not show a metal foil or the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2. The positive electrode 1 and the negative electrode 2 are spirally wound via the separator 3 and housed in the battery case 5 as a spiral electrode body together with the electrolyte 4 made of the specific electrolytic solution.

【0049】電池ケース5はステンレス鋼製で、その底
部には上記渦巻状電極体の挿入に先立って、ポリプロピ
レンからなる絶縁板6が配置されている。封口板7は、
アルミニウム製で円板状をしていて、その中央部に薄肉
部7aを設け、かつ上記薄肉部7aの周囲に電池内圧を
防爆弁9に作用させるための圧力導入口7bとしての孔
が設けられている。そして、この薄肉部7aの上面に防
爆弁9の突出部9aが溶接され、溶接部分11を構成し
ている。なお、上記の封口板7に設けた薄肉部7aや防
爆弁9の突出部9aなどは、図面上での理解がしやすい
ように、切断面のみを図示しており、切断面後方の輪郭
線は図示を省略している。また、封口板7の薄肉部7a
と防爆弁9の突出部9aとの溶接部分11も、図面上で
の理解が容易なように、実際よりは誇張した状態に図示
している。
The battery case 5 is made of stainless steel, and an insulating plate 6 made of polypropylene is arranged on the bottom of the battery case 5 prior to the insertion of the spiral electrode body. The sealing plate 7 is
It is made of aluminum and has a disk shape, and a thin portion 7a is provided in the center thereof, and a hole as a pressure introducing port 7b for causing the internal pressure of the battery to act on the explosion-proof valve 9 is provided around the thin portion 7a. ing. The protruding portion 9a of the explosion-proof valve 9 is welded to the upper surface of the thin portion 7a to form the welded portion 11. The thin portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are shown only on the cut surface for easy understanding in the drawings, and the contour line behind the cut surface is shown. Are not shown. In addition, the thin portion 7a of the sealing plate 7
The welded portion 11 of the explosion-proof valve 9 and the protruding portion 9a of the explosion-proof valve 9 is also shown in an exaggerated state from the actual state for easy understanding in the drawings.

【0050】端子板8は、圧延鋼製で表面にニッケルメ
ッキが施され、周縁部が鍔状になった帽子状をしてお
り、この端子板8にはガス排出口8aが設けられる。防
爆弁9は、アルミニウム製で円板状をしており、その中
央部には発電要素側(図3では、下側)に先端部を有す
る突出部9aが設けられ、かつ薄肉部9bが設けられ、
上記突出部9aの下面が、前記したように、封口板7の
薄肉部7aの上面に溶接され、溶接部分11を構成して
いる。絶縁パッキング10は、ポリプロピレン製で環状
をしており、封口板7の周縁部の上部に配置され、その
上部に防爆弁9が配置していて、封口板7と防爆弁9と
を絶縁するとともに、両者の間から液状の電解質が漏れ
ないように両者の間隙を封止している。環状ガスケット
12はポリプロピレン製で、リード体13はアルミニウ
ム製で、前記封口板7と正極1とを接続し、電極積層体
の上部には絶縁体14が配置され、負極2と電池ケース
5の底部とはニッケル製のリード体15で接続されてい
る。
The terminal plate 8 is made of rolled steel, has a nickel-plated surface, and has a cap-like shape with a brim-shaped peripheral portion. The terminal plate 8 is provided with a gas outlet 8a. The explosion-proof valve 9 is made of aluminum and has a disk shape. A protrusion 9a having a tip is provided on the power generating element side (lower side in FIG. 3) in the center thereof, and a thin portion 9b is provided. The
The lower surface of the protruding portion 9a is welded to the upper surface of the thin portion 7a of the sealing plate 7 to form the welded portion 11 as described above. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is arranged above the peripheral edge of the sealing plate 7, and the explosion proof valve 9 is arranged on the upper part thereof to insulate the sealing plate 7 and the explosion proof valve 9 from each other. The gap between the two is sealed so that the liquid electrolyte does not leak from between the two. The annular gasket 12 is made of polypropylene, the lead body 13 is made of aluminum, the sealing plate 7 and the positive electrode 1 are connected, the insulator 14 is arranged on the upper part of the electrode stack, and the negative electrode 2 and the bottom part of the battery case 5 are arranged. And are connected by a lead body 15 made of nickel.

【0051】この電池においては、封口板7の薄肉部7
aと防爆弁9の突出部9aとが溶接部分11で接触し、
防爆弁9の周縁部と端子板8の周縁部とが接触し、正極
1と封口板7とは正極側のリード体13で接続されてい
るので、通常の状態では、正極1と端子板8とはリード
体13、封口板7、防爆弁9およびそれらの溶接部分1
1によって電気的接続が得られ、電路として正常に機能
する。
In this battery, the thin portion 7 of the sealing plate 7
a and the projection 9a of the explosion-proof valve 9 contact at the welded portion 11,
Since the peripheral portion of the explosion-proof valve 9 and the peripheral portion of the terminal plate 8 are in contact with each other and the positive electrode 1 and the sealing plate 7 are connected by the lead body 13 on the positive electrode side, in a normal state, the positive electrode 1 and the terminal plate 8 are connected. Is the lead body 13, the sealing plate 7, the explosion-proof valve 9 and their welded parts 1
1 provides an electrical connection and functions normally as an electric circuit.

【0052】そして、電池が高温にさらされたり、過充
電によって発熱するなど、電池に異常事態が起こり、電
池内部にガスが発生して電池の内圧が上昇した場合に
は、その内圧上昇により、防爆弁9の中央部が内圧方向
(図3では、上側の方向)に変形し、それに伴って溶接
部分11で一体化されている封口板7の薄肉部7aに剪
断力が働いて該薄肉部7aが破断するか、または防爆弁
9の突出部9aと封口板7の薄肉部7aとの溶接部分1
1が剥離した後、この防爆弁9に設けられている薄肉部
9bが開裂してガスを端子板8のガス排出口8aから電
池外部に排出させて電池の破裂を防止することができる
ように設計されている。
When an abnormal situation occurs in the battery, such as the battery being exposed to high temperature or generating heat due to overcharging, gas is generated inside the battery and the internal pressure of the battery rises. The central portion of the explosion-proof valve 9 is deformed in the internal pressure direction (upward direction in FIG. 3), and the shearing force acts on the thin portion 7a of the sealing plate 7 that is integrated at the welded portion 11 accordingly, and the thin portion 7a is broken, or a welded portion 1 between the protruding portion 9a of the explosion-proof valve 9 and the thin portion 7a of the sealing plate 7
After 1 is peeled off, the thin-walled portion 9b provided in the explosion-proof valve 9 is split and gas is discharged from the gas discharge port 8a of the terminal plate 8 to the outside of the battery to prevent the battery from bursting. Is designed.

【0053】比較例4 2回目(2サイクル目)以後の充電終止電圧を4.22
V(これは負極の金属リチウムに対する電位では80m
Vに相当する)に設定した以外は、実施例4と同様に電
池の組み立ておよび充放電を行って放電容量と100サ
イクル目の容量保持率を求めた。
Comparative Example 4 The charge end voltage after the second time (second cycle) was 4.22.
V (This is 80m at the potential against the metallic lithium of the negative electrode.
The battery was assembled and charged / discharged in the same manner as in Example 4 except that the discharge capacity and the capacity retention ratio at the 100th cycle were obtained.

【0054】上記実施例4−1〜4−3および比較例4
の電池の2サイクル目および100サイクル目の放電容
量と100サイクル目の容量保持率を表4に示す。な
お、表4においては、電池の充放電終止電圧に併せて負
極の金属リチウムに対する電位を括弧(カッコ)書きで
示している。
Examples 4-1 to 4-3 and Comparative Example 4
Table 4 shows the discharge capacities at the second cycle and the 100th cycle and the capacity retention rate at the 100th cycle of the battery. In addition, in Table 4, the potential of the negative electrode with respect to metallic lithium is shown in parentheses together with the charge / discharge end voltage of the battery.

【0055】[0055]

【表4】 [Table 4]

【0056】表4に示すように、実施例4−1〜4−3
は、100サイクル目においても、90%以上の高い容
量保持率を有していて、サイクル特性が優れていたが、
負極に同じ材料を用いていても、2サイクル目以後の充
電終止電圧が負極の金属リチウムに対する電位で80m
Vと低い比較例4は、100サイクル目の容量保持率が
14%と非常に低く、サイクル特性が劣っていた。
As shown in Table 4, Examples 4-1 to 4-3
Had a high capacity retention rate of 90% or more even at the 100th cycle, and had excellent cycle characteristics.
Even if the same material is used for the negative electrode, the end-of-charge voltage after the second cycle is 80 m at the potential with respect to the metallic lithium of the negative electrode.
In Comparative Example 4 having a low V, the capacity retention at the 100th cycle was as low as 14%, and the cycle characteristics were inferior.

【0057】実施例5 LiCoO2 に代えて、LiNiO2 を正極活物質とし
て用いた以外は、実施例4と同様に電池の組み立ておよ
び充放電を行って放電容量と100サイクル目の容量保
持率を求めた。なお、この実施例5における第2回目
(2サイクル目)以後の充電終止電圧は実施例4と同様
に4.15V(実施例5−1)と4.1V(実施例5−
2)と4.05V(実施例5−3)(これらは、負極の
金属リチウムに対する電位では、それぞれ、150m
V、200mV、250mVに相当する)であった。こ
の実施例5の電池の2サイクル目および100サイクル
目の放電容量と100サイクル目の容量保持率を表5に
示す。
Example 5 A battery was assembled and charged / discharged in the same manner as in Example 4 except that LiNiO 2 was used as the positive electrode active material instead of LiCoO 2 , and the discharge capacity and the capacity retention ratio at the 100th cycle were measured. I asked. In addition, the charge end voltage after the second time (second cycle) in Example 5 is 4.15V (Example 5-1) and 4.1V (Example 5-) as in Example 4.
2) and 4.05 V (Example 5-3) (these are 150 m at the potential with respect to metallic lithium of the negative electrode, respectively).
V, 200 mV, and 250 mV). Table 5 shows the discharge capacities at the second cycle and the 100th cycle and the capacity retention rate at the 100th cycle of the battery of Example 5.

【0058】比較例5 2回目(2サイクル目)以後の充電終止電圧を4.22
V(これは負極の金属リチウムに対する電位では80m
Vに相当する)に設定した以外は、実施例5と同様に電
池の組み立ておよび充放電を行って放電容量と100サ
イクル目の容量保持率を求めた。その結果を表5に示
す。
Comparative Example 5 The charge end voltage after the second time (second cycle) was 4.22.
V (This is 80m at the potential against the metallic lithium of the negative electrode.
The battery was assembled and charged and discharged in the same manner as in Example 5 except that the discharge capacity and the capacity retention ratio at the 100th cycle were obtained. The results are shown in Table 5.

【0059】[0059]

【表5】 [Table 5]

【0060】表5に示すように、実施例5−1〜5−3
は、100サイクル目においても:82%以上の高い容
量保持率を有していて、サイクル特性が優れていたが、
比較例5は、100サイクル目の容量保持率が10%と
低く、サイクル特性が劣っていた。
As shown in Table 5, Examples 5-1 to 5-3
Had a high capacity retention rate of 82% or more even at the 100th cycle and had excellent cycle characteristics.
In Comparative Example 5, the capacity retention at the 100th cycle was as low as 10%, and the cycle characteristics were inferior.

【0061】実施例6 LiCoO2 に代えて、LiMn2 4 を正極活物質と
して用いた以外は、実施例4と同様に電池の組み立てお
よび充放電を行って放電容量と100サイクル目の容量
保持率を求めた。なお、この実施例6における第2回目
(2サイクル目)以後の充電終止電圧は、実施例4と同
様に、4.15V(実施例6−1)と4.1V(実施例
6−2)と4.05V(実施例6−3)(これらは、負
極の金属リチウムに対する電位では、それぞれ、150
mV、200mV、250mVに相当する)であった。
この実施例6の電池の2サイクル目および100サイク
ル目の放電容量と100サイクル目の容量保持率を表6
に示す。
Example 6 A battery was assembled and charged / discharged in the same manner as in Example 4 except that LiMn 2 O 4 was used as the positive electrode active material instead of LiCoO 2 , and the discharge capacity and the capacity retention at the 100th cycle were maintained. I asked for the rate. In addition, the charge end voltage after the second time (second cycle) in Example 6 is 4.15V (Example 6-1) and 4.1V (Example 6-2) as in Example 4. And 4.05 V (Example 6-3).
mV, 200 mV, and 250 mV).
The discharge capacity at the second cycle and the 100th cycle and the capacity retention rate at the 100th cycle of the battery of this Example 6 are shown in Table 6.
Shown in.

【0062】比較例6 2回目(2サイクル目)以後の充電終止電圧も4.22
V(これは負極の金属リチウムに対する電位では80m
Vに相当する)に設定した以外は、実施例6と同様に、
電池の組み立ておよび充放電を行って放電容量と100
サイクル目の容量保持率を求めた。その結果を表6に示
す。
Comparative Example 6 The end-of-charge voltage after the second time (second cycle) was also 4.22.
V (This is 80m at the potential against the metallic lithium of the negative electrode.
(Corresponding to V) except that it is set to
Assemble and charge the battery to obtain the discharge capacity of 100
The capacity retention rate at the cycle was calculated. The results are shown in Table 6.

【0063】[0063]

【表6】 [Table 6]

【0064】表6に示すように、実施例6−1〜6−3
は、100サイクル目においても、87%以上の高い容
量保持率を有していて、サイクル特性が優れていたが、
比較例6は、100サイクル目の容量保持率が41%と
低く、サイクル特性が劣っていた。また、上記の表4〜
6に示すように、実施例4〜6は、直径18mm、高さ
65mmの円筒形電池で、2サイクル目に2000mA
h以上の容量を有していて、いずれも高容量であった。
As shown in Table 6, Examples 6-1 to 6-3
Had a high capacity retention rate of 87% or more even at the 100th cycle, and had excellent cycle characteristics.
In Comparative Example 6, the capacity retention at the 100th cycle was as low as 41%, and the cycle characteristics were inferior. Also, from Table 4 above
As shown in FIG. 6, Examples 4 to 6 are cylindrical batteries having a diameter of 18 mm and a height of 65 mm, and 2000 mA at the second cycle.
It had a capacity of h or more, and all had a high capacity.

【0065】[0065]

【発明の効果】以上説明したように、本発明では、高容
量で、かつ充放電サイクル特性が優れた非水二次電池を
提供することができた。
As described above, according to the present invention, a non-aqueous secondary battery having a high capacity and excellent charge / discharge cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】充放電の微分曲線(対照極:金属リチウム)を
示す図である。
FIG. 1 is a diagram showing a charge / discharge differential curve (reference electrode: metallic lithium).

【図2】実施例4の電池の2サイクル目以後の充電終止
電圧を4.15V(これは負極の金属リチウムに対する
電位では150mVに相当する)にしたときの充放電曲
線を示す図である。
FIG. 2 is a diagram showing a charge-discharge curve when the end-of-charge voltage after the second cycle of the battery of Example 4 was set to 4.15 V (this corresponds to 150 mV in potential with respect to metallic lithium of the negative electrode).

【図3】本発明に係る非水二次電池の一例を模式的に示
す断面図である。
FIG. 3 is a sectional view schematically showing an example of a non-aqueous secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 Negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青山 茂夫 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 4K018 BA20 BC21 BD04 KA38 5H029 AJ03 AJ05 AK02 AL01 AL06 AL11 AM02 AM07 BJ02 BJ14 HJ18 5H050 AA02 AA07 BA15 CA02 CB01 CB11 FA18 HA13 HA18    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigeo Aoyama             Hitachima, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F-term (reference) 4K018 BA20 BC21 BD04 KA38                 5H029 AJ03 AJ05 AK02 AL01 AL06                       AL11 AM02 AM07 BJ02 BJ14                       HJ18                 5H050 AA02 AA07 BA15 CA02 CB01                       CB11 FA18 HA13 HA18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素、ケイ素化合物またはケイ素と導
電性物質とからなる複合材料を負極活物質とする非水二
次電池の製造にあたり、組立後の電池を負極の電位が金
属リチウムに対して100mVより高い電位で終止する
ように充電することを特徴とする非水二次電池の製造方
法。
1. When manufacturing a non-aqueous secondary battery using silicon, a silicon compound or a composite material of silicon and a conductive material as a negative electrode active material, the assembled battery has a negative electrode potential of 100 mV against metallic lithium. A method for producing a non-aqueous secondary battery, which comprises charging so as to terminate at a higher potential.
【請求項2】 ケイ素、ケイ素化合物またはケイ素と導
電性物質とからなる複合材料を負極活物質とする非水二
次電池の製造にあたり、組立後の電池を、1回目の充電
では、負極活物質中の結晶質のケイ素相が消失するまで
充電し、2回目以後の充電では、負極の電位が金属リチ
ウムに対して100mVより高い電位で終止するように
充電することを特徴とする非水二次電池の製造方法。
2. In manufacturing a non-aqueous secondary battery using silicon, a silicon compound or a composite material composed of silicon and a conductive material as a negative electrode active material, the assembled battery is charged with the negative electrode active material at the first charge. The non-aqueous secondary battery is characterized in that it is charged until the crystalline silicon phase therein disappears, and in the second and subsequent charges, the negative electrode is charged so as to terminate at a potential higher than 100 mV with respect to metallic lithium. Battery manufacturing method.
【請求項3】 導電性物質が炭素であって、ケイ素と導
電性物質とからなる複合材料がケイ素粒子またはケイ素
化合物粒子の表面の一部または全部を炭素で被覆して複
合化したものであることを特徴とする請求項1または2
記載の非水二次電池の製造方法。
3. The conductive material is carbon, and the composite material composed of silicon and the conductive material is a composite material in which a part or all of the surface of silicon particles or silicon compound particles is coated with carbon. Claim 1 or 2 characterized by the above.
A method for producing the non-aqueous secondary battery described.
【請求項4】 導電性物質が金属であって、ケイ素と導
電性物質とからなる複合材料がケイ素と金属とを合金化
して複合化したものであることを特徴とする請求項1ま
たは2記載の非水二次電池の製造方法。
4. The conductive material is a metal, and the composite material composed of silicon and a conductive material is a composite material obtained by alloying silicon and a metal. Non-aqueous secondary battery manufacturing method of.
JP2001190562A 2001-06-25 2001-06-25 Non-aqueous secondary battery manufacturing method and charging method Expired - Lifetime JP4911835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190562A JP4911835B2 (en) 2001-06-25 2001-06-25 Non-aqueous secondary battery manufacturing method and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190562A JP4911835B2 (en) 2001-06-25 2001-06-25 Non-aqueous secondary battery manufacturing method and charging method

Publications (2)

Publication Number Publication Date
JP2003007342A true JP2003007342A (en) 2003-01-10
JP4911835B2 JP4911835B2 (en) 2012-04-04

Family

ID=19029313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190562A Expired - Lifetime JP4911835B2 (en) 2001-06-25 2001-06-25 Non-aqueous secondary battery manufacturing method and charging method

Country Status (1)

Country Link
JP (1) JP4911835B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512160A (en) * 2005-10-13 2009-03-19 スリーエム イノベイティブ プロパティズ カンパニー How to use electrochemical cells
JP2011029202A (en) * 2004-01-20 2011-02-10 Sony Corp Secondary battery, method of charging and discharging the same, and charge-discharge control device for the same
JP2012507114A (en) * 2008-10-24 2012-03-22 プリメット プレシジョン マテリアルズ, インコーポレイテッド Group IVA small particle compositions and related methods
WO2014199554A1 (en) * 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
US9029021B2 (en) 2004-01-20 2015-05-12 Sony Corporation Battery, method of charging and discharging the battery and charge-discharge control device for the battery
WO2016052643A1 (en) * 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Powder for conductive fillers
JP2016072192A (en) * 2014-10-02 2016-05-09 山陽特殊製鋼株式会社 Powder for electrical conductive filler
JP2016110773A (en) * 2014-12-04 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler
JP2016207446A (en) * 2015-04-22 2016-12-08 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, nonaqueous electrolyte secondary battery using the same, and method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
CN107925072A (en) * 2015-08-12 2018-04-17 瓦克化学股份公司 Anode material for the silicon-containing particles of lithium ion battery
CN108028364A (en) * 2016-08-02 2018-05-11 瓦克化学股份公司 Lithium ion battery
CN110088949A (en) * 2017-02-07 2019-08-02 瓦克化学股份公司 Core-shell structure copolymer composite particles for lithium ion battery
CN116505080A (en) * 2023-06-20 2023-07-28 深圳海辰储能控制技术有限公司 Nonaqueous electrolyte and secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997746B1 (en) * 2015-09-24 2019-07-08 삼성전자주식회사 Battery pack and method of controlling charging and dischraging of the battery pack
KR20190042733A (en) 2016-10-05 2019-04-24 와커 헤미 아게 Lithium-ion battery
JP7119895B2 (en) 2018-10-24 2022-08-17 トヨタ自動車株式会社 Negative electrode active material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729602A (en) * 1993-07-13 1995-01-31 Seiko Instr Inc Non-aqueous electrolyte secondary battery and manufacture thereof
JPH10125309A (en) * 1996-10-16 1998-05-15 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2000003731A (en) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000030703A (en) * 1997-06-03 2000-01-28 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2000188132A (en) * 1998-12-22 2000-07-04 Gs Melcotec Kk Nonaqueous electrode secondary battery
JP2000215887A (en) * 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2001102052A (en) * 1999-10-01 2001-04-13 Matsushita Electric Ind Co Ltd Secondary cell of non-aqueous electrolyte
JP2001351686A (en) * 2000-06-06 2001-12-21 Toyota Central Res & Dev Lab Inc Treatment method to improve low temperature characteristics of lithium secondary cell
JP2002280080A (en) * 2001-03-16 2002-09-27 Sony Corp Method of charging secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729602A (en) * 1993-07-13 1995-01-31 Seiko Instr Inc Non-aqueous electrolyte secondary battery and manufacture thereof
JPH10125309A (en) * 1996-10-16 1998-05-15 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2000030703A (en) * 1997-06-03 2000-01-28 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2000003731A (en) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000188132A (en) * 1998-12-22 2000-07-04 Gs Melcotec Kk Nonaqueous electrode secondary battery
JP2000215887A (en) * 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2001102052A (en) * 1999-10-01 2001-04-13 Matsushita Electric Ind Co Ltd Secondary cell of non-aqueous electrolyte
JP2001351686A (en) * 2000-06-06 2001-12-21 Toyota Central Res & Dev Lab Inc Treatment method to improve low temperature characteristics of lithium secondary cell
JP2002280080A (en) * 2001-03-16 2002-09-27 Sony Corp Method of charging secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029202A (en) * 2004-01-20 2011-02-10 Sony Corp Secondary battery, method of charging and discharging the same, and charge-discharge control device for the same
US9029021B2 (en) 2004-01-20 2015-05-12 Sony Corporation Battery, method of charging and discharging the battery and charge-discharge control device for the battery
JP2009512160A (en) * 2005-10-13 2009-03-19 スリーエム イノベイティブ プロパティズ カンパニー How to use electrochemical cells
KR101369095B1 (en) * 2005-10-13 2014-02-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Method of using an electrochemical cell
JP2012507114A (en) * 2008-10-24 2012-03-22 プリメット プレシジョン マテリアルズ, インコーポレイテッド Group IVA small particle compositions and related methods
WO2014199554A1 (en) * 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
JP2015002036A (en) * 2013-06-14 2015-01-05 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, manufacturing method thereof, nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2016072192A (en) * 2014-10-02 2016-05-09 山陽特殊製鋼株式会社 Powder for electrical conductive filler
WO2016052643A1 (en) * 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Powder for conductive fillers
JP2016110773A (en) * 2014-12-04 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler
JP2016207446A (en) * 2015-04-22 2016-12-08 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, nonaqueous electrolyte secondary battery using the same, and method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
CN107925072A (en) * 2015-08-12 2018-04-17 瓦克化学股份公司 Anode material for the silicon-containing particles of lithium ion battery
US10777807B2 (en) 2015-08-12 2020-09-15 Wacker Chemie Ag Silicon particle-containing anode materials for lithium ion batteries
CN107925072B (en) * 2015-08-12 2021-05-07 瓦克化学股份公司 Anode material containing silicon particles for lithium ion batteries
CN108028364A (en) * 2016-08-02 2018-05-11 瓦克化学股份公司 Lithium ion battery
US20180269524A1 (en) * 2016-08-02 2018-09-20 Wacker Chemie Ag Lithium ion batteries
CN110088949A (en) * 2017-02-07 2019-08-02 瓦克化学股份公司 Core-shell structure copolymer composite particles for lithium ion battery
CN116505080A (en) * 2023-06-20 2023-07-28 深圳海辰储能控制技术有限公司 Nonaqueous electrolyte and secondary battery
CN116505080B (en) * 2023-06-20 2024-01-30 深圳海辰储能控制技术有限公司 Nonaqueous electrolyte and secondary battery

Also Published As

Publication number Publication date
JP4911835B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
CN110970602B (en) Positive active material, positive pole piece and electrochemical device
JP4794893B2 (en) Non-aqueous electrolyte secondary battery
JP3059832B2 (en) Lithium secondary battery
US7682746B2 (en) Negative electrode for non-aqueous secondary battery
EP2234190A1 (en) Nonaqueous electrolyte secondary battery
CN111602274A (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP4911835B2 (en) Non-aqueous secondary battery manufacturing method and charging method
US20110250505A1 (en) Non-aqueous electrolyte secondary battery
JP3229635B2 (en) Lithium secondary battery
JP3771846B2 (en) Non-aqueous secondary battery and charging method thereof
US20070048596A1 (en) Lithium ion secondary battery
WO2019142744A1 (en) Non-aqueous electrolyte secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR20190073777A (en) Graphite composite, method for preparing the same, and negative electrode material and lithium secondary battery comprising the same
JP2001351624A (en) Non-aqueous secondary battery and method for using it
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery
JP2005019149A (en) Lithium secondary battery
JP3191614B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP7507849B2 (en) Battery system, method of use thereof, and battery pack including same
JP4795509B2 (en) Non-aqueous electrolyte battery
CN115117425A (en) Lithium ion secondary battery and preparation method and application thereof
JP2002110251A (en) Lithium ion secondary battery
KR101783316B1 (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same
JPH11111293A (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4911835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term