JP2001357854A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2001357854A
JP2001357854A JP2000176417A JP2000176417A JP2001357854A JP 2001357854 A JP2001357854 A JP 2001357854A JP 2000176417 A JP2000176417 A JP 2000176417A JP 2000176417 A JP2000176417 A JP 2000176417A JP 2001357854 A JP2001357854 A JP 2001357854A
Authority
JP
Japan
Prior art keywords
battery
current collector
secondary battery
conductive layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000176417A
Other languages
Japanese (ja)
Inventor
Makoto Tsutsue
誠 筒江
Hajime Konishi
始 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000176417A priority Critical patent/JP2001357854A/en
Publication of JP2001357854A publication Critical patent/JP2001357854A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery having an excellent safety function in overcharge and excellent in adhesion to a collector and an active material without causing the degradation of volume energy density and the increase of cost. SOLUTION: This battery is composed by using the collector having a positive temperature coefficient resistor function that increases its resistance value when exceeding a predetermined temperature and by covering the collector with a conductive layer comprising a crystalline thermoplastic resin, a conductive agent and a binder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水系二次電池に関
するもので、詳しくは過充電時の安全機能および活物質
層との結着性機能を有する集電体を備えた非水系二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery provided with a current collector having a safety function at the time of overcharge and a binding function with an active material layer. It is about.

【0002】[0002]

【従来の技術】携帯電話やノートパソコンなどの情報端
末は、小型、軽量、薄型化の傾向が年々強くなってお
り、その電源である電池においても小型、軽量、薄型化
の要望が強まっている。こうした時流の中で、特にリチ
ウムイオン二次電池は、従来の鉛蓄電池、ニッケルカド
ミウム電池、ニッケル水素電池等の水溶液系二次電池と
比較して大きなエネルギー密度が得られるため注目され
ている。
2. Description of the Related Art Information terminals such as portable telephones and notebook personal computers are becoming smaller, lighter and thinner year by year, and there is an increasing demand for smaller, lighter and thinner batteries as power sources. . Under these circumstances, lithium-ion secondary batteries have attracted attention because they can obtain a higher energy density than aqueous secondary batteries such as conventional lead-acid batteries, nickel-cadmium batteries, and nickel-metal hydride batteries.

【0003】しかし、リチウムイオン二次電池は、集電
体上に活物質層を塗着、乾燥、圧延、所定寸法に切断し
た後、渦巻き状に捲回または積層したりする組立工程に
おいて、活物質の集電体からの剥離や脱落に伴う集電性
能の低下が課題となっている。この課題に対し、例えば
特開昭63−121265号公報には、集電体上に導電
性フィラーと結着剤からなる導電性塗膜を形成すること
が、特開平4−14756号公報、特開平11−329
448号公報には、集電体表面を粗面化することが開示
されている。
[0003] However, in a lithium-ion secondary battery, an active material layer is applied to a current collector, dried, rolled, cut into a predetermined size, and then wound or laminated in a spiral shape. The problem is that the current collecting performance is reduced due to the separation and dropping of the substance from the current collector. To cope with this problem, for example, JP-A-63-112265 discloses that a conductive coating film composed of a conductive filler and a binder is formed on a current collector. Kaihei 11-329
No. 448 discloses that the surface of the current collector is roughened.

【0004】一方、薄型化の方法としては、電解質を保
持するセパレータ材料にポリマーを用いたリチウムポリ
マー二次電池が、特表平8−507407号公報に開示
されており、ポリマーとしてフッ化ビニリデン(VD
F)とヘキサフルオロプロピレン(HFP)の共重合体
P(VDF−HFP)を用い、ポリマーと正極、負極を
熱融着により一体化させることを特徴としている。
On the other hand, as a method for reducing the thickness, a lithium polymer secondary battery using a polymer as a separator material for holding an electrolyte is disclosed in Japanese Patent Application Laid-Open No. Hei 8-507407. VD
Using a copolymer P (VDF-HFP) of F) and hexafluoropropylene (HFP), the polymer, the positive electrode, and the negative electrode are integrated by heat fusion.

【0005】しかしながら、このリチウムポリマー二次
電池は正極および負極に電池容量に寄与しない多量のポ
リマーを含有しているため、リチウムイオン二次電池と
比較して電池容量が低い。このためリチウムポリマー二
次電池の容量を高めるには、一体化が可能な範囲で極板
中のポリマー量を低減する必要があるが、ポリマー量を
低減すると活物質層と集電体との結着性が低下し接触抵
抗が増大するという課題が生じる。この課題に対して、
例えば、USP5554459号公報に、集電体表面の
絶縁化物を除去し、付着性の導電性ポリマー組成で結着
した金属集電体を用いる方法や、ポリマーであるP(V
DF−HFP)に導電性物質を加えたものを集電体表面
の絶縁化物を除去した後、被覆する方法が開示されてい
る。
However, this lithium polymer secondary battery contains a large amount of polymer that does not contribute to the battery capacity in the positive electrode and the negative electrode, and thus has a lower battery capacity than the lithium ion secondary battery. For this reason, in order to increase the capacity of the lithium polymer secondary battery, it is necessary to reduce the amount of polymer in the electrode plate as far as integration is possible, but if the amount of polymer is reduced, the connection between the active material layer and the current collector is reduced. There is a problem that the adhesiveness is reduced and the contact resistance is increased. For this challenge,
For example, US Pat. No. 5,554,459 discloses a method using a metal current collector in which an insulating material on the current collector surface is removed and bonded with an adhesive conductive polymer composition, or a polymer P (V
A method is disclosed in which a material obtained by adding a conductive substance to DF-HFP is coated after removing the insulating material on the current collector surface.

【0006】このように電池の性能が向上し高エネルギ
ー密度化が進むと、これに伴って電池の安全性の確保が
大きな課題となり、例えば正温度係数抵抗体(以下、P
TC素子という)等の安全部品を電池に取り付けること
で、異常発熱や過電流によって、PTC素子の抵抗が急
激に上昇し、回路を実質的に切断することにより、電池
の安全を確保している。
[0006] As the performance of the battery is improved and the energy density is increased in this way, it is important to ensure the safety of the battery. For example, a positive temperature coefficient resistor (hereinafter referred to as P
By attaching a safety component such as a TC element) to the battery, the resistance of the PTC element rapidly rises due to abnormal heat generation or overcurrent, and the circuit is substantially cut off, thereby ensuring the safety of the battery. .

【0007】[0007]

【発明が解決しようとする課題】しかし、このような安
全部品の電池への取り付けは、熱の遅延による応答不良
を招いたり、安全部品の重量およびスペース分だけ、電
池パックとしてのエネルギー密度の低下を招くだけでな
く、材料コストの増大を招く。
However, the mounting of such a safety component to a battery causes a poor response due to a delay in heat, or lowers the energy density of the battery pack by the weight and space of the safety component. Not only inviting but also increasing the material cost.

【0008】そこで、特開平11−329503号公報
には、正極、負極、非水電解液のいずれかに正温度係数
抵抗体(以下、PTC)の特性を持たせることが開示さ
れている。しかしながら、これらにPTC特性を付与す
るには、電池容量に寄与しない多量の添加物を加える必
要があり、エネルギー密度が低下し好ましくない。
Therefore, Japanese Patent Application Laid-Open No. H11-329503 discloses that any one of a positive electrode, a negative electrode, and a non-aqueous electrolyte has the characteristics of a positive temperature coefficient resistor (hereinafter, PTC). However, in order to impart PTC characteristics to these, it is necessary to add a large amount of additives that do not contribute to the battery capacity, and the energy density is undesirably reduced.

【0009】一方、特開平10−241665号公報に
は、集電体にPTC特性を有する電子伝導性材料を接合
する方法も記載されているが、電子伝導性材料の厚みが
50μmと厚い為に、電池全体としてのエネルギー密度
が低下し好ましくない。
On the other hand, Japanese Patent Application Laid-Open No. Hei 10-241665 also discloses a method of bonding an electron conductive material having PTC characteristics to a current collector, but since the thickness of the electron conductive material is as large as 50 μm. However, the energy density of the entire battery is undesirably reduced.

【0010】そこで、本発明はエネルギー密度の低下や
コスト増加を伴うことなく、このような非水系二次電池
の安全機能及び集電体と活物質層との結着性に優れた高
性能な非水系二次電池を提供することを主たる目的とす
る。
Therefore, the present invention provides a high-performance non-aqueous secondary battery having a high safety function and excellent binding properties between the current collector and the active material layer without lowering the energy density or increasing the cost. A main object is to provide a non-aqueous secondary battery.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めの本発明は、正極と、負極と、非水電解液からなる非
水系二次電池において、前記正極および/または負極の
集電体が、温度上昇に伴って抵抗値が増大する正温度係
数抵抗体(PTC素子)としての機能を有する結晶性熱
可塑性樹脂に加え、導電剤及び結着剤を含む導電層にて
被覆されてなり、この導電層の厚さを0.1μm〜5.
0μmに設定した非水系二次電池を提供するものであ
る。さらに好ましくは結晶性熱可塑性樹脂、導電剤及び
結着剤からなる導電層にて被覆された集電体の抵抗値が
100Ωcm以上に上昇する正温度係数抵抗体を有する
非水系二次電池である。
According to the present invention, there is provided a non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the current collector of the positive electrode and / or the negative electrode is provided. Is coated with a conductive layer containing a conductive agent and a binder in addition to a crystalline thermoplastic resin having a function as a positive temperature coefficient resistor (PTC element) whose resistance value increases with an increase in temperature. The thickness of this conductive layer is from 0.1 μm to 5.
It is intended to provide a non-aqueous secondary battery set to 0 μm. More preferably, a non-aqueous secondary battery having a positive temperature coefficient resistor in which the resistance of a current collector coated with a conductive layer composed of a crystalline thermoplastic resin, a conductive agent and a binder increases to 100 Ωcm or more. .

【0012】電池内の温度が、結晶性熱可塑性樹脂の融
点を超えると、結晶性熱可塑性樹脂が体積膨張して、導
電層中に分散している導電剤同士の接触を引き剥がすた
めに導電性が低下する。その結果、電池を過充電した時
の発熱により、電池内部温度が結晶性熱可塑性樹脂の融
点に達した時、導電性塗膜の抵抗が急上昇し、集電体と
活物質層の間の電流が遮断される。
When the temperature in the battery exceeds the melting point of the crystalline thermoplastic resin, the crystalline thermoplastic resin expands in volume, and the conductive agent dispersed in the conductive layer is separated from the conductive agent. Is reduced. As a result, when the battery internal temperature reaches the melting point of the crystalline thermoplastic resin due to the heat generated when the battery is overcharged, the resistance of the conductive coating film rapidly increases, and the current between the current collector and the active material layer increases. Is shut off.

【0013】また、導電剤と結着剤を有しているので、
活物質層の集電体からの剥離や脱落防止機能も有してお
り、特に正極、負極に電解液を吸収保持するポリマーを
用いたリチウムポリマー電池の場合には効果的である。
In addition, since it has a conductive agent and a binder,
It also has a function of preventing the active material layer from peeling off or falling off from the current collector, and is particularly effective in the case of a lithium polymer battery using a polymer that absorbs and retains an electrolytic solution for the positive electrode and the negative electrode.

【0014】以上のように、本発明に係る非水系二次電
池によれば、正極および/または負極の集電体が正温度
係数抵抗体機能を有することで、電池の発熱時に集電体
部の抵抗が増大し、電流を遮断することで、電池の破裂
や発火を回避することができるとともに、活物質層との
結着性機能にも優れている。
As described above, according to the non-aqueous secondary battery of the present invention, since the current collectors of the positive electrode and / or the negative electrode have a positive temperature coefficient resistor function, the current collector portion is generated when the battery generates heat. By increasing the resistance of the battery and interrupting the current, the battery can be prevented from being ruptured or ignited, and has an excellent function of binding to the active material layer.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】なお、以下では、本発明の非水系二次電池
の実施の形態の一例としてリチウムポリマー電池を取り
上げるが、リチウムポリマー電池以外の非水系二次電池
にも適用可能である。
In the following, a lithium polymer battery will be described as an example of an embodiment of the nonaqueous secondary battery of the present invention, but the present invention is also applicable to nonaqueous secondary batteries other than the lithium polymer battery.

【0017】図1、図2、図3はそれぞれ本発明の非水
系二次電池に用いられる正極の断面図、負極の断面図、
構成断面図である。正極1は、正極活物質層4と正極活
物質層に埋設した正極集電体5から構成される。負極2
も同様に負極活物質層7と負極活物質層に埋設した負極
集電体8から構成される。ポリマー電解質3は、正極板
と負極板との間に配設され、熱溶着法により正極、負極
と一体化され、図3に示すような構成断面図になる。
1, 2 and 3 are a sectional view of a positive electrode and a sectional view of a negative electrode, respectively, used in the non-aqueous secondary battery of the present invention.
FIG. The positive electrode 1 includes a positive electrode active material layer 4 and a positive electrode current collector 5 embedded in the positive electrode active material layer. Negative electrode 2
Similarly, a negative electrode active material layer 7 and a negative electrode current collector 8 embedded in the negative electrode active material layer are also provided. The polymer electrolyte 3 is provided between the positive electrode plate and the negative electrode plate, and is integrated with the positive electrode and the negative electrode by a heat welding method, to obtain a configuration sectional view as shown in FIG.

【0018】正極集電体5はアルミニウム製の箔、パン
チングメタルおよびエキスパンドメタルからなり、表面
にはアセチレンブラックに代表されるカーボンブラック
またはグラファイト等の炭素系導電剤と結着剤であるポ
リフッ化ビニリデン(PVDF)およびポリエチレン樹
脂やポリプロピレン樹脂等の正温度係数抵抗体機能を有
する結晶性熱可塑性ポリオレフィン樹脂からなる導電層
6が塗布されている。
The positive electrode current collector 5 is made of aluminum foil, punched metal and expanded metal, and has on its surface a carbon-based conductive agent such as carbon black or graphite represented by acetylene black and polyvinylidene fluoride as a binder. A conductive layer 6 made of (PVDF) and a crystalline thermoplastic polyolefin resin having a positive temperature coefficient resistor function such as a polyethylene resin or a polypropylene resin is applied.

【0019】負極集電体8は銅あるいはニッケル製の
箔、パンチングメタルおよびエキスパンドメタルからな
り、表面にはアセチレンブラックに代表されるカーボン
ブラックまたはグラファイト等の炭素系導電剤と結着剤
であるポリフッ化ビニリデン(PVDF)、およびポリ
エチレン樹脂やポリプロピレン樹脂等の正温度係数抵抗
体機能を有する結晶性熱可塑性ポリオレフィン樹脂から
なる導電層9が塗布されている。
The negative electrode current collector 8 is made of copper or nickel foil, punched metal and expanded metal, and has a carbon conductive agent such as carbon black or graphite represented by acetylene black on the surface and a polyolefin as a binder. A conductive layer 9 made of vinylidene fluoride (PVDF) and a crystalline thermoplastic polyolefin resin having a positive temperature coefficient resistor function such as a polyethylene resin or a polypropylene resin is applied.

【0020】前記導電層を集電体上に形成する方法とし
ては、例えばアセチレンブラックとポリエチレンをPV
DFのN−メチル−2−ピロリドン(NMP)溶液中に
分散させたものを集電体上に塗布した後、溶剤のNMP
を乾燥除去する。
As a method of forming the conductive layer on the current collector, for example, acetylene black and polyethylene
A dispersion of DF in an N-methyl-2-pyrrolidone (NMP) solution was applied on a current collector, and then NMP was used as a solvent.
Is removed by drying.

【0021】上記導電層では、結晶性熱可塑性樹脂と導
電剤が均一に分散しており、結着剤が塗膜の骨格を形成
し、導電剤が網目状に導電経路を形成している。ところ
が、上記結晶性熱可塑性樹脂は、その融点を超えると急
激に膨張する性質を有するもので、導電層の温度が、結
晶性熱可塑性樹脂の融点を超えると、導電性塗膜中に均
一に分散した結晶性熱可塑性樹脂が急激に体積膨張し
て、導電性塗膜中の導電性炭素粉末同士の電気的接触を
引き離し、導電経路が分断されるため、抵抗が急激に上
昇する性質を発現する。この性質により、電池の過充電
による発熱により、電池温度が結晶性熱可塑性樹脂の融
点を超えると、活物質層と集電体の間の抵抗が急上昇
し、電流が遮断されるようになる。
In the conductive layer, the crystalline thermoplastic resin and the conductive agent are uniformly dispersed, the binder forms the skeleton of the coating film, and the conductive agent forms a conductive path in a mesh. However, the above-mentioned crystalline thermoplastic resin has a property of rapidly expanding when its melting point is exceeded, and when the temperature of the conductive layer exceeds the melting point of the crystalline thermoplastic resin, it is uniformly distributed in the conductive coating film. The dispersed crystalline thermoplastic resin rapidly expands in volume and separates the electrical contact between the conductive carbon powders in the conductive coating, and the conductive path is cut off, exhibiting the property of a sudden rise in resistance. I do. Due to this property, when the battery temperature exceeds the melting point of the crystalline thermoplastic resin due to heat generated by overcharging of the battery, the resistance between the active material layer and the current collector rises rapidly, and the current is interrupted.

【0022】前記正極活物質層および負極活物質層は、
例えばアセトンなどの有機溶剤中に活物質、導電剤、ポ
リマー、可塑剤を混合してなるペーストを、前記導電層
を形成した集電体に直接塗工した後、溶剤を乾燥除去し
て作製する。また、前記ポリマー電解質は、アセトンな
どの有機溶剤中にポリマー、可塑剤を混合してなるペー
ストを、例えばポリエステル製のフィルム上に塗工した
後、溶剤を乾燥除去して作製する。
The positive electrode active material layer and the negative electrode active material layer are
For example, a paste obtained by mixing an active material, a conductive agent, a polymer, and a plasticizer in an organic solvent such as acetone is directly applied to the current collector on which the conductive layer is formed, and then the solvent is removed by drying. . The polymer electrolyte is prepared by applying a paste obtained by mixing a polymer and a plasticizer in an organic solvent such as acetone on a polyester film, for example, and then removing the solvent by drying.

【0023】ここで、正極合剤層に用いられる活物質と
してはLiMO2(M=Co、Ni、Mn)等のリチウ
ム含有金属酸化物や金属硫化物が挙げられる。ポリマー
としてはPVDF、あるいはポリフッ化ビニリデンとヘ
キサフルオロプロピレンの共重合体P(VDF−HF
P)が好ましく用いられる。また、導電剤としてはアセ
チレンブラック、グラファイト、炭素繊維等の炭素系導
電剤が挙げられる。
Here, examples of the active material used for the positive electrode mixture layer include lithium-containing metal oxides such as LiMO 2 (M = Co, Ni, Mn) and metal sulfides. As the polymer, PVDF or a copolymer P of polyvinylidene fluoride and hexafluoropropylene (VDF-HF
P) is preferably used. Examples of the conductive agent include carbon-based conductive agents such as acetylene black, graphite, and carbon fiber.

【0024】一方、負極合剤層に用いられる活物質とし
ては、リチウムを吸蔵放出可能なグラファイト、カーボ
ンブラック、活性炭等の炭素材料や、リチウム金属、リ
チウム合金等が挙げられる。ポリマーとしては、PVD
F、あるいはP(VDF−HFP)が好ましく用いられ
る。また、導電剤としてはアセチレンブラック、グラフ
ァイト、炭素繊維等の炭素系導電剤が挙げられる。
On the other hand, examples of the active material used for the negative electrode material mixture layer include carbon materials such as graphite, carbon black, and activated carbon capable of inserting and extracting lithium, lithium metal, and lithium alloy. As the polymer, PVD
F or P (VDF-HFP) is preferably used. Examples of the conductive agent include carbon-based conductive agents such as acetylene black, graphite, and carbon fiber.

【0025】上述した正極、負極、セパレータを積層一
体化した構成電池を、キシレン中に浸漬し、可塑剤のD
BPを抽出除去し、キシレンを乾燥した後、非水電解液
を注入し、電池を作製する。
The above-described battery in which the positive electrode, the negative electrode, and the separator are laminated and integrated is immersed in xylene, and a plasticizer D
After extracting and removing BP and drying xylene, a non-aqueous electrolyte is injected to prepare a battery.

【0026】ここで、本発明の非水系二次電池に用いら
れる非水電解液は、電解質を非水溶媒中に溶解したもの
である。電解質としては、例えば、LiClO4、Li
BF4、LiPF6等のリチウム塩が用いられる。一方、
非水溶媒としては、例えばプロピレンカーボネート、エ
チレンカーボネート、エチルメチルカーボネート、ジエ
チルカーボネート、ジメチルカーボネート、ビニレンカ
ーボネート等の非水溶媒を単独および数種類混合したも
のが用いられる。
Here, the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention is a solution in which an electrolyte is dissolved in a non-aqueous solvent. Examples of the electrolyte include LiClO 4 , Li
Lithium salts such as BF 4 and LiPF 6 are used. on the other hand,
As the non-aqueous solvent, for example, one or a mixture of several non-aqueous solvents such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, and vinylene carbonate are used.

【0027】なお、本発明の非水系二次電池は、上述の
正極、負極、セパレータ、非水電解液を適宜組み合わせ
て構成されるもので、電池自体の形状は、シート状、円
筒型、角型、コイン型、ボタン型等任意の形状に適用で
きる。
The non-aqueous secondary battery of the present invention is constituted by appropriately combining the above-described positive electrode, negative electrode, separator and non-aqueous electrolyte. The shape of the battery itself is sheet-like, cylindrical, rectangular, It can be applied to any shape such as a mold, a coin, and a button.

【0028】[0028]

【実施例】本発明を実施例、比較例を用いて更に詳しく
説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0029】(実施例1)ポリフッ化ビニリデン(PV
DF)のN−メチル−2−ピロリドン(NMP)溶液
(固形分量13%)270gに融点が110℃の結晶性
ポリエチレン樹脂35gとアセチレンブラックの炭素系
導電剤30gを加え、プラネタリーミキサーで混練し、
さらにNMPを440g加えて希釈し導電性ペーストを
調整する。このペーストをガラス板上に塗布、乾燥し導
電層を形成したところ、体積抵抗率は0.15Ωcmで
あった。
(Example 1) Polyvinylidene fluoride (PV
To 270 g of a solution of DF) in N-methyl-2-pyrrolidone (NMP) (solid content: 13%), 35 g of a crystalline polyethylene resin having a melting point of 110 ° C. and 30 g of a carbon-based conductive agent of acetylene black were added and kneaded with a planetary mixer. ,
Further, 440 g of NMP is added and diluted to prepare a conductive paste. This paste was applied on a glass plate and dried to form a conductive layer, and the volume resistivity was 0.15 Ωcm.

【0030】(実施例2)実施例1で調整した導電性ペ
ーストをダイコーターあるいはグラビアコーターでアル
ミニウム製および銅製のエキスパンドメタルの両面に均
一に塗布、乾燥し、厚さ0.5μmの導電層を被覆形成
させた集電体を作製した。一方、フッ化ビニリデンとヘ
キサフルオロプロピレンの共重合体P(VDF−HF
P)710gをアセトン11300gに溶解した溶液
と、コバルト酸リチウム10000g、アセチレンブラ
ック530g、フタル酸ジブチル(DBP)1100g
を混合して正極用ペーストを調整し、これを前記導電層
を被覆形成したアルミニウム集電体の両面にダイコータ
ーで塗布、乾燥した後、ロールプレスで圧延し正極板を
作製する。同様にP(VDF−HFP)350gをアセ
トン3210gに溶解した溶液と、球状黒鉛2450
g、炭素繊維200g、DBP540gを混合して負極
用ペーストを調整し、これを前記導電層を被覆形成した
銅集電体の両面にダイコーターで塗布、乾燥した後、ロ
ールプレスで圧延し負極板を作製する。また、P(VD
F−HFP)280gをアセトン1440gに溶解し、
DBP280gを添加した混合溶液を調整し、これをポ
リエステルフィルム上にダイコーターで塗工しポリマー
電解質シートを作製する。これら、正極、負極、電解質
シートを図3に示すように積層し、加熱ローラーに通し
て一体化し構成電池を作製する。
Example 2 The conductive paste prepared in Example 1 was uniformly applied to both surfaces of an aluminum or copper expanded metal using a die coater or a gravure coater and dried to form a conductive layer having a thickness of 0.5 μm. A coated current collector was produced. On the other hand, a copolymer P of vinylidene fluoride and hexafluoropropylene (VDF-HF
P) A solution obtained by dissolving 710 g in acetone (11300 g), lithium cobaltate (10000 g), acetylene black (530 g), dibutyl phthalate (DBP) (1100 g)
Is mixed to prepare a positive electrode paste, which is applied to both surfaces of an aluminum current collector coated with the conductive layer by a die coater, dried, and then rolled by a roll press to produce a positive electrode plate. Similarly, a solution prepared by dissolving 350 g of P (VDF-HFP) in 3210 g of acetone and 2450 g of spherical graphite
g, 200 g of carbon fiber, and 540 g of DBP to prepare a paste for a negative electrode. The paste was coated on both surfaces of a copper current collector coated with the conductive layer with a die coater, dried, and then rolled by a roll press to form a negative electrode plate. Is prepared. Also, P (VD
280 g of F-HFP) was dissolved in 1440 g of acetone,
A mixed solution to which 280 g of DBP was added was prepared, and this was coated on a polyester film by a die coater to prepare a polymer electrolyte sheet. The positive electrode, the negative electrode, and the electrolyte sheet are laminated as shown in FIG. 3 and passed through a heating roller to be integrated to produce a constituent battery.

【0031】上記の一体化した構成電池をキシレン中に
浸漬し、DBPを抽出除去し、真空乾燥の後、電解液を
含浸し、アルミニウム製ラミネートフィルム袋に挿入、
封口し、公称容量500mAhの本発明の電池を得た。
ここで、電解液はLiPF6をエチレンカーボネートと
エチルメチルカーボネートの混合溶液に溶解したものを
用いた。
The above integrated battery was immersed in xylene to extract and remove DBP, dried in vacuum, impregnated with an electrolyte, and inserted into an aluminum laminated film bag.
The battery was sealed and a battery of the present invention having a nominal capacity of 500 mAh was obtained.
Here, the electrolyte used was one in which LiPF 6 was dissolved in a mixed solution of ethylene carbonate and ethyl methyl carbonate.

【0032】(実施例3)実施例2と同様にして、厚さ
5.0μmの導電性被覆の集電体を有する実施例3の電
池を作製した。
(Example 3) In the same manner as in Example 2, a battery of Example 3 having a current collector with a conductive coating having a thickness of 5.0 µm was produced.

【0033】(比較例1)ポリフッ化ビニリデン(PV
DF)のN−メチル−2−ピロリドン(NMP)溶液
(固形分量13%)540gにアセチレンブラック、グ
ラファイト等の炭素系導電剤30gを加え、プラネタリ
ーミキサーで混練し、さらにNMPを220g加えて希
釈し導電性ペーストを調整する。このペーストをドクタ
ーブレードでガラス板上に塗布、乾燥し導電層を形成し
たところ、体積抵抗率が0.13Ωcmであった。
Comparative Example 1 Polyvinylidene fluoride (PV
To 540 g of a solution of DF) in N-methyl-2-pyrrolidone (NMP) (solid content: 13%), 30 g of a carbon-based conductive agent such as acetylene black or graphite is added, kneaded with a planetary mixer, and further diluted with 220 g of NMP. And adjust the conductive paste. This paste was applied on a glass plate with a doctor blade and dried to form a conductive layer, and the volume resistivity was 0.13 Ωcm.

【0034】(比較例2)比較例1で調整した導電性ペ
ーストを用いた以外は、実施例2と同様にして、厚さ
0.5μmの導電性被覆の集電体を有する比較例2の電
池を作製した。
(Comparative Example 2) In the same manner as in Example 2 except that the conductive paste prepared in Comparative Example 1 was used, Comparative Example 2 having a conductive coating current collector having a thickness of 0.5 μm was used. A battery was manufactured.

【0035】(比較例3)比較例2の電池に、正温度係
数抵抗体機能を有する安全部品を直列に接続し、これを
アルミニウム製ラミネート袋の外部にテープで固定し、
比較例3の電池とした。
(Comparative Example 3) A safety component having a positive temperature coefficient resistor function was connected in series to the battery of Comparative Example 2, and this was fixed to the outside of an aluminum laminate bag with tape.
The battery of Comparative Example 3 was obtained.

【0036】(比較例4)実施例2と同様にして、厚さ
25μmの導電性被覆の集電体を有する比較例4の電池
を作製した。
Comparative Example 4 In the same manner as in Example 2, a battery of Comparative Example 4 having a current-carrying current collector having a thickness of 25 μm was produced.

【0037】(正温度係数抵抗体機能の評価)実施例1
および比較例1で作製した導電層塗膜の体積抵抗率の温
度依存性を、4探針法を用いて測定した結果を図4に示
す。図4より明らかなように、比較例1の導電層は温度
上昇に伴い、僅かに体積抵抗率が低下する傾向を示す一
方、本発明の導電層は100℃以上で急激な抵抗上昇を
示し、100Ωcm以上に上昇することが分かる。
(Evaluation of Positive Temperature Coefficient Resistor Function) Embodiment 1
FIG. 4 shows the results obtained by measuring the temperature dependency of the volume resistivity of the conductive layer coating film produced in Comparative Example 1 using a four-point probe method. As is clear from FIG. 4, the conductive layer of Comparative Example 1 shows a tendency that the volume resistivity slightly decreases with an increase in temperature, while the conductive layer of the present invention shows a sharp increase in resistance at 100 ° C. or higher. It can be seen that it rises to 100 Ωcm or more.

【0038】(集電体と活物質層との結着性)実施例
2、実施例3、比較例2、比較例3および比較例4の正
極板の単位面積あたりの活物質重量を塗着乾燥直後に測
定し、ロールプレス、切断、打ち抜き等の加工をし、電
池に組立てる直前にさらに測定し、下記の式により活物
質脱落率を求めた。 活物質脱落率(%)=(塗着乾燥後活物質質量−組立て
前活物質質量)/塗着乾燥後活物質質量×100
(Binding property between current collector and active material layer) The weight of the active material per unit area of the positive electrode plates of Examples 2, 3, Comparative Example 2, Comparative Example 3, and Comparative Example 4 was applied. Measured immediately after drying, processed by roll pressing, cutting, punching, etc., and further measured immediately before assembling into a battery, and the active material shedding rate was determined by the following equation. Active material detachment rate (%) = (weight of active material after coating / drying−weight of active material before assembly) / weight of active material after coating / drying × 100

【0039】実施例2、実施例3および比較例4におけ
る正極板の活物質の脱落はほとんど起こらなかったが、
比較例2、比較例3の場合には、切断、打ち抜き時に端
面での脱落が認められた。
The active material of the positive electrode plate in Examples 2, 3 and Comparative Example 4 hardly fell off.
In the case of Comparative Example 2 and Comparative Example 3, falling off at the end face was observed at the time of cutting and punching.

【0040】(電池のエネルギー密度評価)実施例2、
実施例3、比較例2、比較例3および比較例4の電池の
体積エネルギー密度(Wh/l)を求めた。実施例2の
体積エネルギー密度を100とした時の相対比較を表1
に示す。
(Evaluation of Energy Density of Battery) Example 2
The volume energy densities (Wh / l) of the batteries of Example 3, Comparative Example 2, Comparative Example 3 and Comparative Example 4 were determined. Table 1 shows a relative comparison when the volume energy density of Example 2 was set to 100.
Shown in

【0041】(電池の安全性評価)実施例2、実施例
3、比較例2、比較例3および比較例4の電池をそれぞ
れ10個ずつ用意し、750mA(1.5CmA)の一
定電流で過充電試験を行い、発煙および発火した電池の
数を表1に示す。
(Evaluation of Battery Safety) Ten batteries each of Example 2, Example 3, Comparative Example 2, Comparative Example 3, and Comparative Example 4 were prepared, and the batteries were operated at a constant current of 750 mA (1.5 CmA). The charge test was performed, and the number of smoked and ignited batteries is shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】表1より、集電体上に最適な厚さの正温度
係数抵抗体機能を持った導電層を有する実施例2及び実
施例3の電池は、正温度係数抵抗体機能をもたない比較
例2の電池と比較して、過充電時の発煙および発火がお
こらなかった。これは、過充電電流により電池の内部抵
抗で発生したジュール熱、および活物質自体の発熱によ
り電池温度が急激に上昇した時に、図4の結果が示すよ
うに導電層の抵抗が急上昇することにより、活物質と集
電体の間を流れる電流が遮断され、充電が停止したため
であると考えられる。一方、比較例2の電池は、過充電
により電池温度が上昇しても電流が流れつづけるために
電池の発熱は収まらず、発熱により電解質シートが溶融
し正極と負極が短絡した結果、発煙および発火したもの
と考えられる。
From Table 1, it can be seen that the batteries of Examples 2 and 3 each having a conductive layer having a positive temperature coefficient resistor function having an optimum thickness on the current collector had the positive temperature coefficient resistor function. Compared to the battery of Comparative Example 2, no smoke or ignition occurred during overcharge. This is because the resistance of the conductive layer rapidly rises as shown in the result of FIG. 4 when the battery temperature suddenly rises due to Joule heat generated by the internal resistance of the battery due to the overcharge current and the heat generated by the active material itself. This is probably because the current flowing between the active material and the current collector was interrupted, and charging was stopped. On the other hand, in the battery of Comparative Example 2, the current continued to flow even when the battery temperature was increased due to overcharging, and thus the heat generation of the battery did not stop. As a result, the electrolyte sheet melted due to the heat generation, and the positive electrode and the negative electrode were short-circuited. It is thought that it was done.

【0044】そして、比較例4の電池は、集電体上に正
温度係数抵抗体機能を持った導電層を有するが、厚みを
厚くしても電池の破裂や発火に対する応答性は変わらな
い上、導電層の厚みが厚いとエネルギー密度が低下する
ため好ましくない。
The battery of Comparative Example 4 has a conductive layer having a function of a positive temperature coefficient resistor on the current collector. However, even if the thickness is increased, the responsiveness to rupture and ignition of the battery does not change. On the other hand, if the thickness of the conductive layer is large, the energy density decreases, which is not preferable.

【0045】また、実施例2の結果は比較例3と同様に
安全性に優れることを示しており、集電体上に正温度係
数抵抗体機能をもたせることで、電池の外部に正温度係
数抵抗体機能を有する安全部品を接続したのと同様の効
果がもたらされることが分かった。
Further, the result of Example 2 shows that the safety is excellent as in Comparative Example 3. By providing the positive temperature coefficient resistor function on the current collector, the positive temperature coefficient It has been found that the same effect as when a safety component having a resistor function is connected is obtained.

【0046】[0046]

【発明の効果】以上説明したように、本発明は、正極と
負極と非水電解質からなる非水系二次電池において、前
記正極および/または負極の集電体が、所定温度を超え
ると抵抗が大きくなる正温度係数抵抗体機能を有する結
晶性熱可塑性樹脂と導電剤及び結着剤からなる0.1μ
m〜5.0μmの導電層で被覆することで、電池の過充
電時の発熱によって集電体部の抵抗が増大し、電流を遮
断することで電池の破裂や発火を回避することができ
る。これにより、エネルギー密度の低下やコスト増加を
伴うことなく安全性だけでなく、結着性にも優れた高性
能な非水系二次電池を提供することができる。
As described above, the present invention relates to a non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the resistance of the current collector of the positive electrode and / or the negative electrode exceeds a predetermined temperature. 0.1 μm consisting of a crystalline thermoplastic resin having a positive temperature coefficient resistor function, a conductive agent and a binder
By coating with a conductive layer having a thickness of m to 5.0 μm, the resistance of the current collector increases due to heat generated during overcharging of the battery, and the current can be cut off to prevent the battery from bursting or firing. This makes it possible to provide a high-performance non-aqueous secondary battery which is excellent not only in safety but also in binding properties without lowering energy density or increasing costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水二次電池用正極板の断面図FIG. 1 is a cross-sectional view of a positive electrode plate for a non-aqueous secondary battery of the present invention.

【図2】本発明の非水二次電池用負極板の断面図FIG. 2 is a cross-sectional view of a negative electrode plate for a non-aqueous secondary battery of the present invention.

【図3】構成後の電池の断面図FIG. 3 is a cross-sectional view of the battery after configuration.

【図4】導電層の体積抵抗率の温度依存性を示す特性図FIG. 4 is a characteristic diagram showing the temperature dependence of the volume resistivity of the conductive layer.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極活物質層 5 正極集電体 6 導電層 7 負極活物質層 8 負極集電体 9 導電層 Reference Signs List 1 positive electrode 2 negative electrode 3 separator 4 positive electrode active material layer 5 positive electrode current collector 6 conductive layer 7 negative electrode active material layer 8 negative electrode current collector 9 conductive layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA03 BB08 DD00 DD05 DD06 EE10 HH03 HH08 HH10 5H029 AJ01 AJ12 AK03 AL06 AM03 AM05 AM07 CJ22 DJ07 DJ12 EJ12 HJ04 HJ14 HJ20 5H050 AA01 AA15 BA17 CA08 CB07 CB12 DA04 DA09 EA23 EA24 GA22 HA14 HA17  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) HA17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、非水電解液から基本構成さ
れる非水系二次電池であって、前記正極および/または
負極の集電体が、温度上昇と共に抵抗値が増加する正温
度係数抵抗体の機能を有する結晶性熱可塑性樹脂、導電
剤及び結着剤を含む導電層にて被覆されてなり、前記導
電層の厚さが0.1μm〜5.0μmであることを特徴
とする非水系二次電池。
1. A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the current collector of the positive electrode and / or the negative electrode has a positive temperature coefficient whose resistance increases with an increase in temperature. It is covered with a conductive layer containing a crystalline thermoplastic resin having a function of a resistor, a conductive agent and a binder, and the conductive layer has a thickness of 0.1 μm to 5.0 μm. Non-aqueous secondary battery.
【請求項2】 結晶性熱可塑性樹脂は、融点が100℃
〜120℃にあるオレフィン系樹脂であり、前記導電層
にて被覆された集電体の体積抵抗率が所定温度を超える
と100Ωcm以上になる請求項1記載の非水系二次電
池。
2. The crystalline thermoplastic resin has a melting point of 100 ° C.
2. The non-aqueous secondary battery according to claim 1, wherein the current collector coated with the conductive layer has a volume resistivity of 100 Ωcm or more when the current collector is an olefin resin at −120 ° C. and exceeds a predetermined temperature.
【請求項3】 結着剤がポリフッ化ビニリデン樹脂であ
る請求項1記載の非水系二次電池。
3. The non-aqueous secondary battery according to claim 1, wherein the binder is a polyvinylidene fluoride resin.
JP2000176417A 2000-06-13 2000-06-13 Nonaqueous secondary battery Pending JP2001357854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176417A JP2001357854A (en) 2000-06-13 2000-06-13 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000176417A JP2001357854A (en) 2000-06-13 2000-06-13 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2001357854A true JP2001357854A (en) 2001-12-26

Family

ID=18678145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176417A Pending JP2001357854A (en) 2000-06-13 2000-06-13 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2001357854A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059641A (en) * 2004-08-19 2006-03-02 Nissan Motor Co Ltd Electrode for secondary battery and secondary battery using it
JP2006509334A (en) * 2002-12-06 2006-03-16 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Method for producing coated expanded metal and use of the metal as a conductor in an electrochemical device
WO2009031555A1 (en) * 2007-09-05 2009-03-12 Zenzo Hashimoto Low-resistance cell collector
JP2009522719A (en) * 2006-01-03 2009-06-11 エルジー・ケム・リミテッド Electrochemical device with improved safety
WO2010137415A1 (en) * 2009-05-28 2010-12-02 日産自動車株式会社 Negative electrode for lithium ion secondary battery and battery using same
WO2012096189A1 (en) * 2011-01-14 2012-07-19 昭和電工株式会社 Current collector
JP2012156109A (en) * 2011-01-28 2012-08-16 Hitachi Chem Co Ltd Conductive base paint for lithium ion battery
WO2013151046A1 (en) 2012-04-04 2013-10-10 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
WO2013172256A1 (en) 2012-05-15 2013-11-21 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
WO2013172257A1 (en) 2012-05-15 2013-11-21 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
WO2014010681A1 (en) 2012-07-13 2014-01-16 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component
WO2014010708A1 (en) 2012-07-13 2014-01-16 古河電気工業株式会社 Current collector, electrode, secondary cell, and capacitor
CN103620819A (en) * 2011-06-23 2014-03-05 索尔维特殊聚合物意大利有限公司 Process for manufacturing battery components
WO2014046112A1 (en) 2012-09-21 2014-03-27 古河スカイ株式会社 Current collector, electrode structure, and electricity storage component
WO2014050653A1 (en) 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
WO2014077367A1 (en) 2012-11-19 2014-05-22 株式会社Uacj Collector, electrode structure body, and electrical storage component
WO2014077366A1 (en) 2012-11-19 2014-05-22 株式会社Uacj Collector, electrode structure, electricity storage component, and composition for collectors
WO2014077384A1 (en) 2012-11-19 2014-05-22 古河電気工業株式会社 Collector, electrode, secondary cell, and capacitor
WO2014157405A1 (en) 2013-03-29 2014-10-02 株式会社Uacj Collector, electrode structure, battery and capacitor
WO2016093095A1 (en) * 2014-12-08 2016-06-16 日立化成株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
KR20160073298A (en) * 2014-12-16 2016-06-24 주식회사 엘지화학 Manufacturing Method for Electrode for Secondary Battery Including PTC Material and Electrode Manufactured by the Same
CN106410268A (en) * 2016-12-12 2017-02-15 江西迪比科股份有限公司 Multi-coating intelligent high-safety polymer lithium ion secondary battery
CN106531971A (en) * 2016-12-12 2017-03-22 上海航天电源技术有限责任公司 Intelligent high-safety lithium-on battery with polymer skeleton
CN106981663A (en) * 2016-01-18 2017-07-25 丰田自动车株式会社 The manufacture method of collector and the manufacture method of solid state battery
JP2017130283A (en) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 All-solid battery
JP2017191721A (en) * 2016-04-14 2017-10-19 トヨタ自動車株式会社 Current collector, battery, and manufacturing methods thereof
JP2018010848A (en) * 2016-06-30 2018-01-18 トヨタ自動車株式会社 battery
KR20180080851A (en) * 2017-01-05 2018-07-13 주식회사 엘지화학 Electrode for Secondary Battery with Improved Safety Property Under Unusual Condition Such as High Temperature or Short-Circuit
JP2018181524A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 Laminate battery
WO2019066065A1 (en) * 2017-09-29 2019-04-04 株式会社Gsユアサ Electrode and power storage element
CN110291669A (en) * 2017-02-10 2019-09-27 三井化学株式会社 Collector, electrode and non-aqueous electrolyte secondary battery
WO2020032475A1 (en) * 2018-08-10 2020-02-13 주식회사 엘지화학 Anode for lithium metal battery, manufacturing method therefor, lithium metal battery including same
US10626264B2 (en) 2015-03-30 2020-04-21 Toyo Ink Sc Holdings Co., Ltd. Conductive composition, current collector with base layer for electric storage device, electrode for electric storage device, and electric storage device
CN111164802A (en) * 2018-08-10 2020-05-15 株式会社Lg化学 Negative electrode for lithium metal battery, method for producing the same, and lithium metal battery comprising the same
WO2020226412A1 (en) 2019-05-08 2020-11-12 주식회사 엘지화학 All-solid-state battery comprising composite electrode
CN115000414A (en) * 2022-06-15 2022-09-02 欣旺达惠州动力新能源有限公司 Current collector and preparation method and application thereof
WO2023052879A1 (en) * 2021-09-30 2023-04-06 Medtronic, Inc. Resistive current collector coating
WO2024103887A1 (en) * 2022-11-15 2024-05-23 欣旺达动力科技股份有限公司 Electrode sheet, secondary battery, and electric device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220755A (en) * 1994-02-07 1995-08-18 Tdk Corp Layer built lithium secondary battery
WO1999067835A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220755A (en) * 1994-02-07 1995-08-18 Tdk Corp Layer built lithium secondary battery
WO1999067835A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509334A (en) * 2002-12-06 2006-03-16 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Method for producing coated expanded metal and use of the metal as a conductor in an electrochemical device
KR101084883B1 (en) * 2002-12-06 2011-11-17 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. Method for producing drawn coated metals and use of said metals in the form of a current differenciator for electrochemical components
JP2006059641A (en) * 2004-08-19 2006-03-02 Nissan Motor Co Ltd Electrode for secondary battery and secondary battery using it
JP2009522719A (en) * 2006-01-03 2009-06-11 エルジー・ケム・リミテッド Electrochemical device with improved safety
WO2009031555A1 (en) * 2007-09-05 2009-03-12 Zenzo Hashimoto Low-resistance cell collector
WO2010137415A1 (en) * 2009-05-28 2010-12-02 日産自動車株式会社 Negative electrode for lithium ion secondary battery and battery using same
US8927149B2 (en) 2009-05-28 2015-01-06 Nissan Motor Co., Ltd. Negative electrode for lithium ion secondary battery and battery using same
JP2013219055A (en) * 2009-05-28 2013-10-24 Nissan Motor Co Ltd Anode for lithium-ion secondary battery and battery using the same
JPWO2012096189A1 (en) * 2011-01-14 2014-06-09 昭和電工株式会社 Current collector
WO2012096189A1 (en) * 2011-01-14 2012-07-19 昭和電工株式会社 Current collector
CN102971897A (en) * 2011-01-14 2013-03-13 昭和电工株式会社 Current collector
JP2012156109A (en) * 2011-01-28 2012-08-16 Hitachi Chem Co Ltd Conductive base paint for lithium ion battery
US10256498B2 (en) 2011-06-23 2019-04-09 Solvay Specialty Polymers Italy S.P.A. Process for manufacturing battery components
JP2014520378A (en) * 2011-06-23 2014-08-21 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Method for manufacturing battery components
CN103620819A (en) * 2011-06-23 2014-03-05 索尔维特殊聚合物意大利有限公司 Process for manufacturing battery components
WO2013151046A1 (en) 2012-04-04 2013-10-10 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
US9786919B2 (en) 2012-05-15 2017-10-10 Uacj Corporation Current collector, electrode structure, nonaqueous electrolyte battery and electrical storage device, and method for producing current collector
US9508994B2 (en) 2012-05-15 2016-11-29 Uacj Corporation Current collector, electrode structure, nonaqueous electrolyte battery and electrical storage device, and method for producing current collector
WO2013172257A1 (en) 2012-05-15 2013-11-21 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
WO2013172256A1 (en) 2012-05-15 2013-11-21 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
CN104254940A (en) * 2012-05-15 2014-12-31 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
WO2014010681A1 (en) 2012-07-13 2014-01-16 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte cell, and electricity storage component
US9741498B2 (en) 2012-07-13 2017-08-22 Furukawa Electric Co., Ltd. Current collector, electrode, secondary battery and capacitor
WO2014010708A1 (en) 2012-07-13 2014-01-16 古河電気工業株式会社 Current collector, electrode, secondary cell, and capacitor
WO2014046112A1 (en) 2012-09-21 2014-03-27 古河スカイ株式会社 Current collector, electrode structure, and electricity storage component
EP2899783A4 (en) * 2012-09-21 2016-06-01 Uacj Corp Current collector, electrode structure, and electricity storage component
WO2014050653A1 (en) 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
WO2014077367A1 (en) 2012-11-19 2014-05-22 株式会社Uacj Collector, electrode structure body, and electrical storage component
WO2014077384A1 (en) 2012-11-19 2014-05-22 古河電気工業株式会社 Collector, electrode, secondary cell, and capacitor
WO2014077366A1 (en) 2012-11-19 2014-05-22 株式会社Uacj Collector, electrode structure, electricity storage component, and composition for collectors
WO2014157405A1 (en) 2013-03-29 2014-10-02 株式会社Uacj Collector, electrode structure, battery and capacitor
WO2016093095A1 (en) * 2014-12-08 2016-06-16 日立化成株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
US10944126B2 (en) 2014-12-08 2021-03-09 Showa Denko Materials Co., Ltd. Positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JPWO2016093095A1 (en) * 2014-12-08 2017-07-27 日立化成株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
KR20160073298A (en) * 2014-12-16 2016-06-24 주식회사 엘지화학 Manufacturing Method for Electrode for Secondary Battery Including PTC Material and Electrode Manufactured by the Same
KR101709569B1 (en) * 2014-12-16 2017-02-23 주식회사 엘지화학 Manufacturing Method for Electrode for Secondary Battery Including PTC Material and Electrode Manufactured by the Same
US10608289B2 (en) 2014-12-16 2020-03-31 Lg Chem, Ltd. Method of manufacturing secondary battery electrode containing PTC material and electrode manufactured thereby
US10626264B2 (en) 2015-03-30 2020-04-21 Toyo Ink Sc Holdings Co., Ltd. Conductive composition, current collector with base layer for electric storage device, electrode for electric storage device, and electric storage device
CN106981663A (en) * 2016-01-18 2017-07-25 丰田自动车株式会社 The manufacture method of collector and the manufacture method of solid state battery
US10249880B2 (en) 2016-01-18 2019-04-02 Toyota Jidosha Kabushikia Kaisha Method for manufacturing current collector and method for manufacturing solid battery
CN106981663B (en) * 2016-01-18 2020-04-17 丰田自动车株式会社 Method for manufacturing current collector and method for manufacturing solid battery
JP2017130283A (en) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 All-solid battery
US20170301921A1 (en) * 2016-04-14 2017-10-19 Toyota Jidosha Kabushiki Kaisha Current collector, battery and methods for producing the same
JP2017191721A (en) * 2016-04-14 2017-10-19 トヨタ自動車株式会社 Current collector, battery, and manufacturing methods thereof
US11258069B2 (en) 2016-04-14 2022-02-22 Toyota Jidosha Kabushiki Kaisha Current collector, battery and methods for producing the same
JP2018010848A (en) * 2016-06-30 2018-01-18 トヨタ自動車株式会社 battery
CN106531971A (en) * 2016-12-12 2017-03-22 上海航天电源技术有限责任公司 Intelligent high-safety lithium-on battery with polymer skeleton
CN106410268A (en) * 2016-12-12 2017-02-15 江西迪比科股份有限公司 Multi-coating intelligent high-safety polymer lithium ion secondary battery
KR102254327B1 (en) 2017-01-05 2021-05-21 주식회사 엘지화학 Electrode for Secondary Battery with Improved Safety Property Under Unusual Condition Such as High Temperature or Short-Circuit
KR20180080851A (en) * 2017-01-05 2018-07-13 주식회사 엘지화학 Electrode for Secondary Battery with Improved Safety Property Under Unusual Condition Such as High Temperature or Short-Circuit
CN110291669A (en) * 2017-02-10 2019-09-27 三井化学株式会社 Collector, electrode and non-aqueous electrolyte secondary battery
CN110291669B (en) * 2017-02-10 2023-01-13 三井化学株式会社 Collector, electrode, and nonaqueous electrolyte secondary battery
JP2018181524A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 Laminate battery
JP7387437B2 (en) 2017-09-29 2023-11-28 株式会社Gsユアサ Electrodes and storage elements
JPWO2019066065A1 (en) * 2017-09-29 2020-12-03 株式会社Gsユアサ Electrodes and power storage elements
WO2019066065A1 (en) * 2017-09-29 2019-04-04 株式会社Gsユアサ Electrode and power storage element
CN111164802A (en) * 2018-08-10 2020-05-15 株式会社Lg化学 Negative electrode for lithium metal battery, method for producing the same, and lithium metal battery comprising the same
KR20220019006A (en) * 2018-08-10 2022-02-15 주식회사 엘지에너지솔루션 Anode for lithium metal battery, manufacturing method of the same, lithium metal battery including the same
US11522172B2 (en) 2018-08-10 2022-12-06 Lg Energy Solution, Ltd. Negative electrode for lithium metal battery, manufacturing method of the same, and lithium metal battery including the same
KR102475181B1 (en) 2018-08-10 2022-12-07 주식회사 엘지에너지솔루션 Anode for lithium metal battery, manufacturing method of the same, lithium metal battery including the same
WO2020032475A1 (en) * 2018-08-10 2020-02-13 주식회사 엘지화학 Anode for lithium metal battery, manufacturing method therefor, lithium metal battery including same
KR20200129382A (en) 2019-05-08 2020-11-18 주식회사 엘지화학 All Solid-State Battery Comprising Composite Electrode
WO2020226412A1 (en) 2019-05-08 2020-11-12 주식회사 엘지화학 All-solid-state battery comprising composite electrode
WO2023052879A1 (en) * 2021-09-30 2023-04-06 Medtronic, Inc. Resistive current collector coating
CN115000414A (en) * 2022-06-15 2022-09-02 欣旺达惠州动力新能源有限公司 Current collector and preparation method and application thereof
WO2024103887A1 (en) * 2022-11-15 2024-05-23 欣旺达动力科技股份有限公司 Electrode sheet, secondary battery, and electric device

Similar Documents

Publication Publication Date Title
JP2001357854A (en) Nonaqueous secondary battery
JP3677975B2 (en) Electrode and battery using the same
US20080248375A1 (en) Lithium secondary batteries
JPH11345630A (en) Lithium secondary battery
WO2010125755A1 (en) Assembled sealing body and battery using same
JPWO2009144919A1 (en) Cylindrical non-aqueous electrolyte secondary battery
JP2010118175A (en) Secondary battery
JPH07249405A (en) Battery
JP2000188115A (en) Thin type battery
JPH10199574A (en) Nonaqueous electrolyte battery
JP3811353B2 (en) Lithium ion secondary battery
JP4382557B2 (en) Non-aqueous secondary battery
JP4518850B2 (en) Secondary battery electrode plate, method for producing the same, and secondary battery using the electrode plate
JP2005093078A (en) Nonaqueous electrolyte secondary battery
JP2004152580A (en) Secondary battery with temperature protection element unit and secondary battery pack
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP2000164206A (en) Nonaqueous electrolyte secondary battery for assembled battery
JP2005347222A (en) Electrolyte liquid and battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2005063680A (en) Battery equipped with spiral electrode group
EP2140514B1 (en) Lithium secondary batteries
WO2012014255A1 (en) Lithium ion secondary battery
JP2006313736A (en) Non-aqueous electrolyte secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JP2003288946A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301