JP2003317721A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003317721A
JP2003317721A JP2002124077A JP2002124077A JP2003317721A JP 2003317721 A JP2003317721 A JP 2003317721A JP 2002124077 A JP2002124077 A JP 2002124077A JP 2002124077 A JP2002124077 A JP 2002124077A JP 2003317721 A JP2003317721 A JP 2003317721A
Authority
JP
Japan
Prior art keywords
positive electrode
binder
acrylonitrile
butadiene
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002124077A
Other languages
Japanese (ja)
Inventor
Tomohito Okamoto
朋仁 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002124077A priority Critical patent/JP2003317721A/en
Publication of JP2003317721A publication Critical patent/JP2003317721A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery having an excellent discharging performance at a low temperature, wherein falling of an active material is suppressed. <P>SOLUTION: In this nonaqueous secondary battery, a metallic compound capable of occluding and discharging an lithium ion is used as a positive electrode active material, and a mixture containing the particles of the positive electrode active material, a conductive agent, and a binder is formed as a mix layer on a metallic collector to compose a positive electrode. An acrylonitrile- butadien based copolymer having a weight average molecular weight of 30,000-50,000 is used as the binder. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により携帯電話、
ノートパソコン、ビデオカメラ等の電子機器の高性能
化、小型化軽量化が進み、これら電子機器に使用できる
高エネルギー密度の電池を求める要求が非常に強くなっ
ている。このような要求を満たす代表的な電池は、リチ
ウムが負極活物質として用いられたリチウム二次電池で
ある。
2. Description of the Related Art In recent years, due to advances in electronic technology, mobile phones,
As electronic devices such as laptop computers and video cameras have become higher in performance, smaller in size and lighter in weight, there has been a strong demand for batteries with high energy density that can be used in these electronic devices. A typical battery that meets such requirements is a lithium secondary battery in which lithium is used as a negative electrode active material.

【0003】リチウム二次電池は、例えば、リチウムイ
オンを吸蔵放出する炭素材料が集電体に保持されてなる
負極板、リチウムコバルト複合酸化物のようなリチウム
イオンを吸蔵放出するリチウム複合酸化物が集電体に保
持されてなる正極板、非プロトン性の有機溶媒にLiC
lO、LiPF等のリチウム塩が溶解された電解液
を保持するとともに負極板と正極板との間に介在されて
両極の短絡を防止するセパレータとからなっている。
Lithium secondary batteries include, for example, a negative electrode plate in which a carbon material that absorbs and releases lithium ions is held by a current collector, and a lithium composite oxide that absorbs and releases lithium ions such as a lithium cobalt composite oxide. A positive electrode plate held by a current collector, LiC in an aprotic organic solvent
It is composed of a separator that holds an electrolytic solution in which a lithium salt such as 10 4 or LiPF 6 is dissolved and that is interposed between the negative electrode plate and the positive electrode plate to prevent a short circuit between both electrodes.

【0004】そして、これら正極板及び負極板は、薄板
状に成形され、これらがセパレータを介して順に積層又
は円筒形状などに巻回されて発電要素とされ、この発電
要素が、ステンレス、ニッケルメッキを施した鉄、又は
アルミニウム製等の金属缶または、ラミネートフィルム
からなる電池容器に収納された後、電解液が注液され、
密封されて電池とされる。
The positive electrode plate and the negative electrode plate are formed into a thin plate shape, and these are sequentially laminated or wound into a cylindrical shape or the like via a separator to form a power generating element. The power generating element is plated with stainless steel or nickel. After being stored in a metal can made of iron, aluminum, or the like, or a battery container made of a laminated film, an electrolytic solution is injected,
The battery is hermetically sealed.

【0005】正極板や負極板は、活物質粒子と結着剤と
を含んでなる塗液を集電体上に塗工することで活物質合
材層を集電体に形成することで作製される。結着剤とし
ては、種々のものを用いることが可能で、例えば、ポリ
フッ化ビニリデンや、スチレンブタジエンゴム等が知ら
れており、ポリフッ化ビニリデンが用いられることが多
い。
The positive electrode plate and the negative electrode plate are produced by applying a coating liquid containing active material particles and a binder onto a current collector to form an active material mixture layer on the current collector. To be done. Various binders can be used, for example, polyvinylidene fluoride, styrene-butadiene rubber, etc. are known, and polyvinylidene fluoride is often used.

【0006】[0006]

【発明が解決しようとする課題】最近では、このような
リチウム二次電池において、以前にも増して高容量化へ
の動きが急速に進みつつある。特に携帯電話において
は、通常の通話だけではなく画像や音楽ファイルの送受
信に対応していることなど、今までにも増して多くの電
力消費量が必要とされる。そのために内蔵されたリチウ
ム二次電池を高容量化させることがさらに重要となって
きている。
Recently, in such a lithium secondary battery, the movement toward higher capacity is rapidly progressing more than ever before. In particular, mobile phones are required to consume much more power than ever, such as being able to send and receive images and music files as well as ordinary calls. Therefore, it has become more important to increase the capacity of the built-in lithium secondary battery.

【0007】従来からのリチウムイオン電池の正極に使
用されているポリフッ化ビニリデンは、耐酸化性に優れ
ているがアルミニウム箔などの金属集電体との接着性に
乏しいために、高容量化のために結着剤量を減らすと正
極合材が集電体から剥離して、それにより電池が短絡す
るなどの不都合が生じることがあった。さらに、ポリフ
ッ化ビニリデンは比較的結晶性の高い樹脂であり硬い性
質をもつ。そのために、ポリフッ化ビニリデンを用いた
正極合材は硬くなるために、特に電極を巻回して発電要
素を作製する際には、正極板が切断したりするという不
都合を生じることがあった。
Polyvinylidene fluoride used for the positive electrode of a conventional lithium ion battery is excellent in oxidation resistance but poor in adhesion to a metal current collector such as an aluminum foil, so that it has a high capacity. Therefore, when the amount of the binder is reduced, the positive electrode mixture may be separated from the current collector, which may cause inconvenience such as short circuit of the battery. Further, polyvinylidene fluoride is a resin having relatively high crystallinity and has a hard property. For this reason, the positive electrode mixture made of polyvinylidene fluoride becomes hard, which may cause a disadvantage that the positive electrode plate is cut especially when the electrode is wound to produce a power generating element.

【0008】また、ポリフッ化ビニリデンの接着性が乏
しいという問題を改善したものに、マレイン酸などのエ
チレン性不飽和ジカルボン酸等と共重合したポリフッ化
ビニリデンなども開発されているが、コバルト酸リチウ
ムなどのアルカリ性の金属化合物などでは、アルカリ分
の影響を受けてスラリーのゲル化を引き起こすために適
用できなかった。
[0008] In addition, polyvinylidene fluoride copolymerized with an ethylenically unsaturated dicarboxylic acid such as maleic acid has been developed to solve the problem of poor adhesion of polyvinylidene fluoride, but lithium cobalt oxide is also known. Alkaline metal compounds such as, for example, cannot be applied because they are affected by the alkali content and cause gelation of the slurry.

【0009】以上の問題に鑑み、本発明の課題は、活物
質粒子と結着剤とを含む混合物が合材層として集電体に
形成されてなる極板を備えた、リチウム二次電池に代表
される非水電解質二次電池において、合材中の結着剤量
を減らしても活物質の脱落を抑制して、さらに低温放電
性能にもすぐれた電池を提供することを目的とする。
In view of the above problems, an object of the present invention is to provide a lithium secondary battery including an electrode plate in which a mixture containing active material particles and a binder is formed as a mixture layer on a current collector. In a representative non-aqueous electrolyte secondary battery, it is an object of the present invention to provide a battery that suppresses the active material from falling off even if the amount of the binder in the mixture is reduced, and further has excellent low-temperature discharge performance.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に鋭意研究を重ねた結果、結着剤としてアクリロニトリ
ル・ブタジエン系共重合体を用いることにより、従来の
結着剤とくらべて合材中の結着剤量を減らすことがで
き、電池が高容量化できることを見いだした。そして、
さらに詳細に検討した結果、前記アクリロニトリル・ブ
タジエン系共重合体の重量平均分子量が接着性および低
温放電性能や高率放電性能に影響することを突き止め
た。また、前記アクリロニトリル・ブタジエン系共重合
体の正極合剤中における含有量が接着性および低温放電
性能や高率放電性能に影響することがわかった。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the use of an acrylonitrile-butadiene-based copolymer as a binder results in the formation of a composite material as compared with a conventional binder. It has been found that the amount of binder can be reduced and the capacity of the battery can be increased. And
As a result of further detailed investigation, it was found that the weight average molecular weight of the acrylonitrile / butadiene-based copolymer affects the adhesiveness and the low temperature discharge performance and the high rate discharge performance. It was also found that the content of the acrylonitrile / butadiene-based copolymer in the positive electrode mixture affects the adhesiveness, the low temperature discharge performance and the high rate discharge performance.

【0011】すなわち、前記課題を解決する、本発明の
非水電解質二次電池は、リチウムイオンを吸蔵放出でき
る金属化合物を正極活物質として、該正極活物質の粒子
と導電剤と結着剤とを含む混合物が合材層として金属集
電体に形成されてなる正極を備えた非水電解質二次電池
において、上記結着剤として重量平均分子量が30,0
00〜500,000であるアクリロニトリル・ブタジ
エン系共重合体が用いられていることを特徴とするもの
である。
That is, the non-aqueous electrolyte secondary battery of the present invention, which solves the above problems, uses a metal compound capable of inserting and extracting lithium ions as a positive electrode active material, and particles of the positive electrode active material, a conductive agent, and a binder. In a non-aqueous electrolyte secondary battery provided with a positive electrode in which a mixture containing is formed on a metal current collector as a mixture layer, the binder has a weight average molecular weight of 30,0.
It is characterized in that an acrylonitrile-butadiene-based copolymer having a content of 00 to 500,000 is used.

【0012】アクリロニトリル・ブタジエン系共重合体
を結着剤として正極に用いることにより、ポリフッ化ビ
ニリデンよりも接着性に優れるので、剥離を抑制でき
る。特に電極を巻回して発電要素を作製する際には、正
極板が切断するという不都合が抑制される。
By using an acrylonitrile / butadiene-based copolymer as a binder in the positive electrode, the adhesive property is superior to that of polyvinylidene fluoride, and peeling can be suppressed. In particular, when the power generation element is manufactured by winding the electrode, the disadvantage that the positive electrode plate is cut is suppressed.

【0013】前記アクリロニトリル・ブタジエン系共重
合体としては、例えば好適に用いることが出来るものと
して、アクリロニトリルとブタジエンとの共重合体、ブ
タジエンとイソプレンとアクリロニトリルとの共重合
体、アクリロニトリルとブタジエンとメタクリル酸メチ
ルとの共重合体、または、アクリル酸、イタコン酸、フ
マル酸、マレイン酸などのエチレン性不飽和ジカルボン
酸とアクリロニトリルとブタジエンおよびメタクリル酸
メチルとの共重合体などがあり、種々の共重合体を用い
ることができる。その中でも柔軟性と接着性の良好なエ
チレン性不飽和ジカルボン酸とアクリロニトリルとブタ
ジエンおよびメタクリル酸メチルとの共重合体が、電池
性能上特に好ましい。
As the acrylonitrile / butadiene-based copolymer, for example, those which can be preferably used include acrylonitrile / butadiene copolymers, butadiene / isoprene / acrylonitrile copolymers, acrylonitrile / butadiene / methacrylic acid copolymers. There are various copolymers such as copolymers with methyl, or copolymers of ethylenically unsaturated dicarboxylic acids such as acrylic acid, itaconic acid, fumaric acid and maleic acid, acrylonitrile, butadiene and methyl methacrylate. Can be used. Among them, a copolymer of an ethylenically unsaturated dicarboxylic acid, acrylonitrile, butadiene and methyl methacrylate, which has good flexibility and adhesiveness, is particularly preferable in terms of battery performance.

【0014】極板作製には、例えば、活物質、導電助剤
および結着剤となるポリマー材料、および溶剤を混ぜ合
わせてスラリー状にしたものをアルミニウム箔などの集
電体に塗工する。極板作製時のスラリーに十分な粘性を
得るため、前記アクリロニトリル・ブタジエン系共重合
体の重量平均分子量が、30,000以上のものを用い
ることが望ましい。また、重量平均分子量が大きいもの
では、ポリマー自体が活物質表面を覆うように接着しや
すくなるために、高率放電性能や低温放電性能に悪影響
を及ぼすことがある。そのために前記アクリロニトリル
・ブタジエン系共重合体の重量平均分子量は、500,
000以下にすることが望ましい。さらに、正極合材中
における前記アクリロニトリル・ブタジエン系共重合体
の含有量を0.5〜1.5重量%とすることが好まし
い。
To prepare the electrode plate, for example, an active material, a polymer material serving as a conductive aid and a binder, and a solvent are mixed to form a slurry, which is applied to a collector such as an aluminum foil. In order to obtain sufficient viscosity of the slurry at the time of producing the electrode plate, it is desirable to use the acrylonitrile / butadiene-based copolymer having a weight average molecular weight of 30,000 or more. Further, when the weight average molecular weight is large, the polymer itself easily adheres to cover the surface of the active material, which may adversely affect the high rate discharge performance and the low temperature discharge performance. Therefore, the acrylonitrile-butadiene-based copolymer has a weight average molecular weight of 500,
It is desirable to set it to 000 or less. Further, it is preferable that the content of the acrylonitrile / butadiene-based copolymer in the positive electrode mixture is 0.5 to 1.5% by weight.

【0015】また前記課題を解決する、本発明の非水電
解質二次電池は、リチウムイオンを吸蔵放出できる金属
化合物を正極活物質として、該正極活物質の粒子と導電
剤と結着剤とを含む混合物が合材層として金属集電体に
形成されてなる正極を備えた非水電解質二次電池におい
て、上記結着剤としてアクリロニトリル・ブタジエン系
共重合体が用いられ、正極合材中の前記アクリロニトリ
ル・ブタジエン系共重合体の含有量が0.5〜1.5重
量%であることを特徴とするものである。
Further, the non-aqueous electrolyte secondary battery of the present invention which solves the above-mentioned problems uses a metal compound capable of inserting and extracting lithium ions as a positive electrode active material, and particles of the positive electrode active material, a conductive agent and a binder. In a non-aqueous electrolyte secondary battery provided with a positive electrode formed by forming a mixture into a metal current collector as a mixture layer, an acrylonitrile-butadiene-based copolymer is used as the binder, The content of the acrylonitrile / butadiene-based copolymer is 0.5 to 1.5% by weight.

【0016】前記アクリロニトリル・ブタジエン系共重
合体の正極合材中の含有量が0.5重量%未満である
と、結着力が十分でないために、例えば極板を所定の空
孔率までつぶすときの極板合材と金属集電体との間のず
りに耐えられなくなり合材が集電体から剥離してしま
う。0.5重量%以上とすることにより、極板作製時の
スラリーが保持されるための、スラリー中に粘性をもた
せるために十分なポリマー量とすることができる。ま
た、極板合材と金属集電体との接着強度を確保すること
ができる。一方、極板合材中の結着剤量が多すぎると活
物質表面を覆うように接着する傾向が大きくなり、高率
放電性能や低温放電性能に悪影響を及ぼしてしまう。そ
のために前記アクリロニトリル・ブタジエン系共重合体
の正極合材中の含有量は、1.5重量%以下にすること
が望ましい。
When the content of the acrylonitrile-butadiene-based copolymer in the positive electrode mixture is less than 0.5% by weight, the binding force is insufficient. Since the electrode plate composite material and the metal current collector cannot withstand shearing, the composite material peels off from the current collector. When the amount is 0.5% by weight or more, the amount of the polymer can be sufficient to retain the slurry during the production of the electrode plate and to give the slurry viscosity. Further, it is possible to secure the adhesive strength between the electrode plate composite material and the metal current collector. On the other hand, when the amount of the binder in the electrode plate mixture is too large, the tendency to adhere to cover the surface of the active material increases, which adversely affects the high rate discharge performance and the low temperature discharge performance. Therefore, the content of the acrylonitrile / butadiene-based copolymer in the positive electrode mixture is preferably 1.5% by weight or less.

【0017】さらに、前記アクリロニトリル・ブタジエ
ン系共重合体の重量平均分子量を30,000〜50
0,000とし、正極合材中の含有量を0.5〜1.5
重量%とするのが好ましい。前記放電性能をさらに高め
ることができるからである。
Further, the weight average molecular weight of the acrylonitrile-butadiene copolymer is 30,000 to 50.
And the content in the positive electrode mixture is 0.5 to 1.5.
It is preferably set to wt%. This is because the discharge performance can be further enhanced.

【0018】[0018]

【発明の実施の形態】以下、非水電解質リチウム二次電
池についての実施形態を示しながら、本願発明について
さらに詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to embodiments of a non-aqueous electrolyte lithium secondary battery.

【0019】正極活物質としては、例えば、LiCoO
、LiNiO、LiCoxNi1−xO、LiM
、MnO、FeO、V、V
13、TiO等のトンネル構造または層状構造の
金属酸化物、オキシ水酸化ニッケル等の金属水酸化物、
TiS等の金属硫化物、ポリアニリン等の導電性ポリマ
ー等を用いることができ、これらは混合して用いること
もできる。
Examples of the positive electrode active material include LiCoO 2.
2 , LiNiO 2 , LiCoxNi1-xO 2 , LiM
n 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V
6 O 13 , a metal oxide having a tunnel structure or a layered structure such as TiO 2 , a metal hydroxide such as nickel oxyhydroxide,
A metal sulfide such as TiS or a conductive polymer such as polyaniline can be used, and these can also be mixed and used.

【0020】正極の結着剤としては、アクリロニトリル
とブタジエンとの共重合体、ブタジエンとイソプレンと
アクリロニトリルとの共重合体、アクリロニトリルとブ
タジエンとメタクリル酸メチルとの共重合体、または、
アクリル酸、イタコン酸、フマル酸、マレイン酸などの
エチレン性不飽和ジカルボン酸とアクリロニトリルとブ
タジエンおよびメタクリル酸メチルとの共重合体などが
あり、種々のアクリルニトリル・ブタジエン共重合体を
用いることができる。
As the binder for the positive electrode, a copolymer of acrylonitrile and butadiene, a copolymer of butadiene, isoprene and acrylonitrile, a copolymer of acrylonitrile, butadiene and methyl methacrylate, or
There are copolymers of ethylenically unsaturated dicarboxylic acids such as acrylic acid, itaconic acid, fumaric acid, and maleic acid, acrylonitrile, butadiene, and methyl methacrylate, and various acrylonitrile-butadiene copolymers can be used. .

【0021】負極活物質としては、例えば、Al、S
i、Pb、Sn、Zn、Cd等とリチウムとの合金、グ
ラファイト、カーボン等の炭素質材料、LiFe
、WO 、MoO、SiO、CuO、SnO等
の金属酸化物、Li(LiN)等のリチウム金属窒
化物、オキシ水酸化錫等の金属水酸化物、金属リチウム
等を用いることができ、これらは混合して用いることも
できる。
Examples of the negative electrode active material include Al and S
Alloys of i, Pb, Sn, Zn, Cd, etc. with lithium,
Lafite, carbonaceous materials such as carbon, LiFe
TwoOThree, WO Two, MoOTwo, SiO, CuO, SnO, etc.
Metal oxides of Li5(LiThreeN) and other lithium metal nitrides
Compounds, metal hydroxides such as tin oxyhydroxide, metal lithium
Etc. can be used, and these can be mixed and used.
it can.

【0022】負極の結着剤としては、ポリフッ化ビニリ
デンやフッ化ビニリデン系の共重合体、マレイン酸など
の不飽和カルボン酸エステル等と共重合したポリフッ化
ビニリデンやフッ化ビニリデン系の共重合体、スチレン
・ブタジエン共重合体、スチレン・ブタジエン・エチレ
ン・スチレン共重合体、アクリロニトリル・ブタジエン
共重合体やこれらのカルボキシ変性の共重合体、カルボ
キシメチルセルロース、あるいは、メチルセルロース、
ヒドロキシエチルセルロースなどのセルロース類、ポリ
アクリル酸などが挙げられ、これらの複合体を用いるこ
ともできる。
As the binder for the negative electrode, polyvinylidene fluoride or vinylidene fluoride copolymer, polyvinylidene fluoride copolymerized with unsaturated carboxylic acid ester such as maleic acid, or vinylidene fluoride copolymer , Styrene / butadiene copolymers, styrene / butadiene / ethylene / styrene copolymers, acrylonitrile / butadiene copolymers and their carboxy-modified copolymers, carboxymethyl cellulose, or methyl cellulose,
Examples thereof include celluloses such as hydroxyethyl cellulose, polyacrylic acid, and the like, and a complex thereof can also be used.

【0023】非水電解質としては、電解液または無機固
体電解質、ポリマー固体電解質等の固体電解質を使用す
ることができ、電解液を用いる場合には、電解液溶媒と
しては、エチレンカーボネート、プロピレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、γ
−ブチロラクトン、スルホラン、ジメチルスルホキシ
ド、アセトニトリル、ジメチルホルムアミド、ジメチル
アセトアミド、1,2−ジメトキシエタン、1,2−ジ
エトキシエタン、テトラヒドロフラン、2−メチルテト
ラヒドロフラン、ジオキソラン、メチルアセテート等の
極性溶媒、もしくはこれらの混合物を使用することがで
きる。
As the non-aqueous electrolyte, an electrolyte solution or a solid electrolyte such as an inorganic solid electrolyte or a polymer solid electrolyte can be used. When an electrolyte solution is used, the electrolyte solution solvent is ethylene carbonate, propylene carbonate, Dimethyl carbonate, diethyl carbonate, γ
-A polar solvent such as butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methylacetate, or the like. Mixtures can be used.

【0024】また、溶媒に溶解させるリチウム塩として
は、LiPF6、LiClO4、LiBF、LiAsF
、LiCFCO、 LiCF(CF、L
iCF(C、LiCFSO、LiN
(SOCF、LiN(SOCF
、LiN(COCFおよびLiN(CO
CFCFなどの塩もしくはこれらの混合物を用
いることが出来る。
The lithium salt to be dissolved in the solvent includes LiPF 6 , LiClO 4 , LiBF 4 , LiAsF.
6 , LiCF 3 CO 2 , LiCF 3 (CF 3 ) 3 , L
iCF 3 (C 2 F 5) 3, LiCF 3 SO 3, LiN
(SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 C
F 3 ) 2 , LiN (COCF 3 ) 2 and LiN (CO
A salt such as CF 2 CF 3 ) 2 or a mixture thereof can be used.

【0025】セパレータとしては、織布、不織布、合成
樹脂微多孔膜等を用いることが出来、特に、合成樹脂微
多孔膜を好適に用いることができる。中でもポリエチレ
ン及びポリプロピレン製微多孔膜、またはこれらを複合
した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、
膜強度、膜抵抗等の面で好適に用いられる。
As the separator, a woven cloth, a non-woven cloth, a synthetic resin microporous membrane or the like can be used, and particularly, a synthetic resin microporous membrane can be preferably used. Among them, polyethylene and polypropylene microporous film, or a polyolefin-based microporous film such as a composite microporous film, thickness,
It is preferably used in terms of film strength, film resistance and the like.

【0026】また、高分子固体電解質等の固体電解質を
用いることで、セパレータを兼ねさせることも可能で、
この場合、高分子固体電解質として有孔性高分子固体電
解質膜を使用する等して高分子固体電解質にさらに電解
液を含有させても良い。この場合、ゲル状の高分子固体
電解質を用いる場合には、ゲルを構成する電解液と、細
孔中等に含有されている電解液とは異なっていてもよ
い。また、合成樹脂微多孔膜と高分子固体電解質等を組
み合わせて使用してもよい。
Further, by using a solid electrolyte such as a polymer solid electrolyte, it is possible to serve also as a separator.
In this case, the solid polymer electrolyte may further contain an electrolytic solution, for example, by using a porous solid polymer electrolyte membrane as the solid polymer electrolyte. In this case, when a gel-like polymer solid electrolyte is used, the electrolytic solution forming the gel may be different from the electrolytic solution contained in the pores or the like. Further, a synthetic resin microporous membrane and a polymer solid electrolyte may be used in combination.

【0027】また、電池の形状は特に限定されるもので
はなく、本発明は、角形、楕円形、コイン形、ボタン
形、シート形電池等の様々な形状の非水電解質二次電池
に適用可能である。
The shape of the battery is not particularly limited, and the present invention can be applied to various shapes of non-aqueous electrolyte secondary batteries such as prismatic, elliptical, coin-shaped, button-shaped and sheet-shaped batteries. Is.

【0028】[0028]

【実施例】以下、本発明を適用した具体的な実施例につ
いて説明するが、本発明は本実施例により何ら限定され
るものではなく、その主旨を変更しない範囲において適
宜変更して実施することが可能である。
EXAMPLES Hereinafter, specific examples to which the present invention is applied will be described. However, the present invention is not limited to the examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0029】[実施例1]本発明に用いた角形非水電解
質二次電池の概略断面図を図1に示す。図1において非水
電解質二次電池1はアルミ集電体に正極活物質を塗布し
てなる正極3と、銅集電体に負極活物質を塗布してなる
負極4と非水電解液を注入したセパレータ5を介して巻
回した巻回型電極群2を電池ケース6に収納してなるも
のである。電池ケース6に安全弁8を設けた電池蓋7を
レーザー溶接することによって取り付けられ、正極端子
9は正極リード10を介して正極3と接続され、負極4
は電池ケース6の内壁と接触により接続されている。
[Example 1] Fig. 1 is a schematic sectional view of a prismatic non-aqueous electrolyte secondary battery used in the present invention. In FIG. 1, a non-aqueous electrolyte secondary battery 1 has a positive electrode 3 formed by coating a positive electrode active material on an aluminum current collector, a negative electrode 4 formed by coating a negative electrode active material on a copper current collector, and a non-aqueous electrolyte solution. The wound type electrode group 2 wound via the separator 5 is housed in a battery case 6. The battery cover 7 provided with the safety valve 8 is attached to the battery case 6 by laser welding, the positive electrode terminal 9 is connected to the positive electrode 3 through the positive electrode lead 10, and the negative electrode 4 is attached.
Are connected by contact with the inner wall of the battery case 6.

【0030】正極は、活物質のLiCoO、導電材の
アセチレンブラックと、結着剤として重量平均分子量が
120,000のイタコン酸とアクリロニトリルとブタ
ジエンおよびメタクリル酸メチルとの共重合体を重量比
で95.8:3:1.2の割合となるように混合して正
極合材とし、N−メチル−2−ピロリドンに分散させる
ことによりスラリーを調製した。このスラリーを厚さ2
0μmのアルミ集電体に均一に塗布して、乾燥させた後
に合材層の空孔率が両面とも25%となるように、ロー
ルプレスで圧縮成型することにより正極3を作製した。
The positive electrode comprises LiCoO 2 as an active material, acetylene black as a conductive material, and a copolymer of itaconic acid having a weight average molecular weight of 120,000, acrylonitrile, butadiene, and methyl methacrylate in a weight ratio as a binder. A slurry was prepared by mixing so as to have a ratio of 95.8: 3: 1.2 to obtain a positive electrode mixture and dispersing the mixture in N-methyl-2-pyrrolidone. This slurry has a thickness of 2
A positive electrode 3 was produced by uniformly applying it to a 0 μm aluminum current collector, drying it, and then compression molding with a roll press so that the porosity of the composite material layer was 25% on both sides.

【0031】負極板は、グラファイト(黒鉛)90重量
%と結着剤としてのポリフッ化ビニリデン10重量%と
を混合してなる混合物に、N−メチルピロリドンを加え
てペースト状に調製した後、これを厚さ15μmの銅箔
集電体両面に塗布、乾燥した後に、ロールプレスで18
0μmになるように圧縮成型することにより負極4を作
製した。セパレータ5には、厚さ25μm程度の微多孔
性ポリエチレンフィルム5を用いた。
The negative electrode plate was prepared by adding N-methylpyrrolidone to a mixture prepared by mixing 90% by weight of graphite and 10% by weight of polyvinylidene fluoride as a binder, and preparing a paste. Is applied to both sides of a copper foil current collector having a thickness of 15 μm, dried, and then rolled to 18
The negative electrode 4 was produced by compression molding so that the thickness was 0 μm. As the separator 5, a microporous polyethylene film 5 having a thickness of about 25 μm was used.

【0032】電解液は、1MのLiPFをエチレンカ
ーボネート及びエチルメチルカーボネートの混合溶媒
(容積比1:2)に溶解した電解液を含浸させ、上述の
構成要素および手順により、電池を作製した。
The electrolytic solution was impregnated with an electrolytic solution in which 1M LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and ethylmethyl carbonate (volume ratio 1: 2), and a battery was produced by the above-mentioned components and procedures.

【0033】[実施例2]正極の結着剤として重量平均
分子量が200,000のアクリロニトリルとブタジエ
ンおよびメタクリル酸メチルとの共重合体を用いること
以外は、実施例1と同様な手順で電池を作製した。
Example 2 A battery was prepared in the same procedure as in Example 1 except that a copolymer of acrylonitrile having a weight average molecular weight of 200,000, butadiene and methyl methacrylate was used as the binder for the positive electrode. It was made.

【0034】[実施例3]正極の結着剤として重量平均
分子量が350,000のアクリロニトリルとブタジエ
ンの共重合体を用いること以外は、実施例1と同様な手
順で電池を作製した。
Example 3 A battery was produced in the same procedure as in Example 1 except that a copolymer of acrylonitrile and butadiene having a weight average molecular weight of 350,000 was used as the binder for the positive electrode.

【0035】[実施例4]正極の結着剤として重量平均
分子量が350,000のイタコン酸とアクリロニトリ
ルとブタジエンとの共重合体を用いること以外は、実施
例1と同様な手順で電池を作製した。
Example 4 A battery was prepared in the same procedure as in Example 1 except that a copolymer of itaconic acid, acrylonitrile and butadiene having a weight average molecular weight of 350,000 was used as the binder for the positive electrode. did.

【0036】[実施例5]正極の結着剤として、重量平
均分子量が70,000のイタコン酸とアクリロニトリ
ルとブタジエンおよびメタクリル酸メチルとの共重合体
を用いること以外は、実施例1と同様な手順で電池を作
製した。
Example 5 The same as Example 1 except that a copolymer of itaconic acid having a weight average molecular weight of 70,000, acrylonitrile, butadiene and methyl methacrylate was used as the binder for the positive electrode. A battery was produced by the procedure.

【0037】[実施例6]正極の結着剤として、重量平
均分子量が30,000のイタコン酸とアクリロニトリ
ルとブタジエンおよびメタクリル酸メチルとの共重合体
を用いること以外は、実施例1と同様な手順で電池を作
製した。
Example 6 The same as Example 1 except that a copolymer of itaconic acid having a weight average molecular weight of 30,000, acrylonitrile, butadiene and methyl methacrylate was used as the binder for the positive electrode. A battery was produced by the procedure.

【0038】[比較例1]正極の結着剤として重量平均
分子量が15,000のイタコン酸とアクリロニトリル
とブタジエンおよびメタクリル酸メチルとの共重合体を
用いること以外は、実施例1と同様な手順で電池を作製
した。
[Comparative Example 1] The same procedure as in Example 1 except that a copolymer of itaconic acid, acrylonitrile, butadiene and methyl methacrylate having a weight average molecular weight of 15,000 was used as the binder for the positive electrode. Then, a battery was manufactured.

【0039】[実施例7]正極の結着剤として、重量平
均分子量が400,000のイタコン酸とアクリロニト
リルとブタジエンおよびメタクリル酸メチルとの共重合
体を用いること以外は、実施例1と同様な手順で電池を
作製した。
Example 7 The same as Example 1 except that a copolymer of itaconic acid, acrylonitrile, butadiene and methyl methacrylate having a weight average molecular weight of 400,000 was used as the binder for the positive electrode. A battery was produced by the procedure.

【0040】[実施例8]正極の結着剤として、重量平
均分子量が500,000のイタコン酸とアクリロニト
リルとブタジエンおよびメタクリル酸メチルとの共重合
体を用いること以外は、実施例1と同様な手順で電池を
作製した。
[Example 8] The same as Example 1 except that a copolymer of itaconic acid, acrylonitrile, butadiene and methyl methacrylate having a weight average molecular weight of 500,000 was used as the binder for the positive electrode. A battery was produced by the procedure.

【0041】[比較例2]正極の結着剤として重量平均
分子量が600,000のイタコン酸とアクリロニトリ
ルとブタジエンおよびメタクリル酸メチルとの共重合体
を用いること以外は、実施例1と同様な手順で電池を作
製した。
Comparative Example 2 Procedure similar to that of Example 1 except that a copolymer of itaconic acid having a weight average molecular weight of 600,000, acrylonitrile, butadiene and methyl methacrylate was used as the binder for the positive electrode. Then, a battery was manufactured.

【0042】[実施例9]活物質のLiCoO、導電
材のアセチレンブラックと、結着剤として重量平均分子
量が120,000のイタコン酸とアクリロニトリルと
ブタジエンおよびメタクリル酸メチルとの共重合体を重
量比で96.1:3:0.9の割合となるように混合し
たこと以外は、実施例1と同様な手順で電池を作製し
た。
[Example 9] LiCoO 2 as an active material, acetylene black as a conductive material, and a copolymer of itaconic acid having a weight average molecular weight of 120,000, acrylonitrile, butadiene, and methyl methacrylate as a binder were weighted. A battery was produced in the same procedure as in Example 1 except that the mixture was mixed at a ratio of 96.1: 3: 0.9.

【0043】[実施例10]活物質のLiCoO、導
電材のアセチレンブラックと、結着剤として重量平均分
子量が120,000のイタコン酸とアクリロニトリル
とブタジエンおよびメタクリル酸メチルとの共重合体を
重量比で96.5:3:0.5の割合となるように混合
したこと以外は、実施例1と同様な手順で電池を作製し
た。
[Example 10] LiCoO 2 as an active material, acetylene black as a conductive material, and a copolymer of itaconic acid having a weight average molecular weight of 120,000, acrylonitrile, butadiene, and methyl methacrylate as a binder were weighted. A battery was produced in the same procedure as in Example 1 except that the mixture was mixed at a ratio of 96.5: 3: 0.5.

【0044】[比較例3]活物質のLiCoO、導電
材のアセチレンブラックと、結着剤として重量平均分子
量が120,000のイタコン酸とアクリロニトリルと
ブタジエンおよびメタクリル酸メチルとの共重合体を重
量比で96.7:3:0.3の割合となるように混合し
たこと以外は、実施例1と同様な手順で電池を作製し
た。
COMPARATIVE EXAMPLE 3 LiCoO 2 as an active material, acetylene black as a conductive material, and a copolymer of itaconic acid having a weight average molecular weight of 120,000, acrylonitrile, butadiene, and methyl methacrylate as a binder were weighted. A battery was made in the same procedure as in Example 1 except that the mixture was carried out at a ratio of 96.7: 3: 0.3.

【0045】[実施例11]活物質のLiCoO、導
電材のアセチレンブラックと、結着剤として重量平均分
子量が120,000のイタコン酸とアクリロニトリル
とブタジエンおよびメタクリル酸メチルとの共重合体を
重量比で95.5:3:1.5の割合となるように混合
したこと以外は、実施例1と同様な手順で電池を作製し
た。
Example 11 LiCoO 2 as an active material, acetylene black as a conductive material, and a copolymer of itaconic acid having a weight average molecular weight of 120,000, acrylonitrile, butadiene, and methyl methacrylate as a binder were weighted. A battery was produced in the same procedure as in Example 1 except that the components were mixed at a ratio of 95.5: 3: 1.5.

【0046】[比較例4]活物質のLiCoO、導電
材のアセチレンブラックと、結着剤として重量平均分子
量が120,000のイタコン酸とアクリロニトリルと
ブタジエンおよびメタクリル酸メチルとの共重合体を重
量比で95.2:3:1.8の割合となるように混合し
たこと以外は、実施例1と同様な手順で電池を作製し
た。
Comparative Example 4 LiCoO 2 as an active material, acetylene black as a conductive material, and a copolymer of itaconic acid having a weight average molecular weight of 120,000, acrylonitrile, butadiene, and methyl methacrylate as a binder were weighted. A battery was made in the same procedure as in Example 1 except that the components were mixed at a ratio of 95.2: 3: 1.8.

【0047】[比較例5]LiCoO、アセチレンブ
ラック、および結着剤としてポリフッ化ビニリデンを重
量比で95:3:2の割合となるように混合した以外
は、実施例1と同様の手順で作製した。
Comparative Example 5 The same procedure as in Example 1 was repeated except that LiCoO 2 , acetylene black, and polyvinylidene fluoride as a binder were mixed in a weight ratio of 95: 3: 2. It was made.

【0048】[比較例6]LiCoO、アセチレンブ
ラック、および結着剤としてポリフッ化ビニリデンを重
量比で95.8:3:1.2の割合となるように混合し
たこと以外は、実施例1と同様な手順で作製した。
Comparative Example 6 Example 1 was repeated except that LiCoO 2 , acetylene black, and polyvinylidene fluoride as a binder were mixed in a weight ratio of 95.8: 3: 1.2. It was prepared by the same procedure.

【0049】(電池の評価)これらの実施例及び比較例
の角形非水電解質二次電池について、初期容量と、低温
時での放電容量を測定した。なお、初期容量は室温下に
おいて、充電電流600mA、充電電圧4.20Vの定
電流低電圧充電で2.5時間充電した後、放電電流60
0mA、終止電圧2.75Vの条件で放電を行ったとき
の放電容量を示す。
(Evaluation of Battery) Regarding the prismatic nonaqueous electrolyte secondary batteries of these Examples and Comparative Examples, the initial capacity and the discharge capacity at low temperature were measured. The initial capacity was room temperature, the charging current was 600 mA, the charging voltage was 4.20 V, and the constant current low voltage charging was 2.5 hours.
The discharge capacity when discharging under the conditions of 0 mA and a final voltage of 2.75 V is shown.

【0050】低温時における放電容量は、初期容量の調
査を終わった電池を、充電電流600mA、充電電圧
4.20Vの定電流低電圧充電で2.5時間室温下にお
いて充電した後、0℃にて3時間放置した後に、0℃に
おいて放電電流600mA、終止電圧2.75Vの条件
で放電を行ったときの放電容量を示す。さらに、室温に
おいて放電したときと放電容量比(0℃での放電容量÷
室温での放電容量)を算出して、低温放電特性を評価す
ることとした。
The discharge capacity at low temperature was set to 0 ° C. after charging the battery whose initial capacity had been examined by constant current low voltage charging with a charging current of 600 mA and a charging voltage of 4.20 V at room temperature for 2.5 hours. After being left for 3 hours, the discharge capacity when discharged at 0 ° C. under the conditions of a discharge current of 600 mA and a final voltage of 2.75 V is shown. Furthermore, the discharge capacity ratio at the time of discharge at room temperature (discharge capacity at 0 ° C ÷
The discharge capacity at room temperature) was calculated to evaluate the low temperature discharge characteristics.

【0051】実施例1〜11及び比較例1〜6における
初期容量及び0℃放電容量の結果を表1に示す。
Table 1 shows the results of the initial capacity and 0 ° C. discharge capacity in Examples 1 to 11 and Comparative Examples 1 to 6.

【0052】[0052]

【表1】 [Table 1]

【0053】実施例1〜11の電池は、従来の電池に比
べ、結着剤がかなり少ない含有量で、正極合材のアルミ
ニウム集電体への塗工が良好に行え、さらに極板を巻回
した際に前記合材の剥離のない良好な電極を作製するこ
とができた。初期放電容量、低温放電性能ともに良好で
あった。また、高率放電性能についても検討した結果、
良好な特性を示した。
The batteries of Examples 1 to 11 contained the binder in a considerably smaller amount than the conventional batteries, and were able to coat the positive electrode mixture material on the aluminum current collector satisfactorily. It was possible to produce a good electrode without peeling of the mixture when it was turned. Both the initial discharge capacity and the low temperature discharge performance were good. In addition, as a result of examining the high rate discharge performance,
It showed good characteristics.

【0054】比較例1の電池は、正極作製時のスラリー
の粘性が悪く、極板作製が困難であった。また、実施例
の各電池とくらべて初期放電容量が小さかった。
In the battery of Comparative Example 1, the viscosity of the slurry during the production of the positive electrode was poor and it was difficult to produce the electrode plate. Also, the initial discharge capacity was smaller than that of each battery of the example.

【0055】比較例2の電池は、0℃放電容量が低く、
低温放電性能がかなり低いものとなった。これはポリマ
ー自体が活物質表面を覆うように接着しやすくなるた
め、放電性能を低下させたものと考えられる。
The battery of Comparative Example 2 had a low discharge capacity at 0 ° C.,
The low temperature discharge performance was considerably low. It is considered that this is because the polymer itself easily adhered so as to cover the surface of the active material, and thus the discharge performance was deteriorated.

【0056】比較例3の電池は、実施例の各電池と比べ
て初期放電容量が小さかった。また、電池を解体する
と、正極板の極板合材と集電体とが剥離している部分が
みられた。特に最内周からはじめの正極板の曲率部で顕
著に認められた。このことから、放電容量が小さくなっ
たものと考えられる。
The battery of Comparative Example 3 had a smaller initial discharge capacity than the batteries of Examples. Further, when the battery was disassembled, a portion where the electrode plate mixture of the positive electrode plate and the current collector were separated was observed. Especially, it was noticeable in the curvature portion of the positive electrode plate from the innermost circumference. From this, it is considered that the discharge capacity has decreased.

【0057】比較例4の電池は、実施例の各電池と比べ
て初期放電容量が小さかった。さらに0℃放電容量はか
なり低いものとなり、低温放電性能の低下は著しかっ
た。極板合材中の結着剤量が所定の値を超えて大きくな
ると、活物質表面を覆うように接着する傾向が強く現
れ、放電性能を低下させたものと考えられる。
The battery of Comparative Example 4 had a smaller initial discharge capacity than the batteries of Examples. Furthermore, the 0 ° C. discharge capacity was considerably low, and the low-temperature discharge performance was significantly deteriorated. It is considered that when the amount of the binder in the electrode plate composite material exceeds a predetermined value and becomes large, there is a strong tendency to adhere so as to cover the surface of the active material, which deteriorates the discharge performance.

【0058】比較例5の電池は、実施例の各電池とくら
べて初期放電容量が小さかった。比較例5の電池を解体
すると、巻回して発電要素を作製したときに、正極板の
極板合材と集電体とが剥離している部分がみられた。特
に最内周からはじめの正極板の曲率部が切断しているこ
とがわかった。剥離した部分や切断した部分は充放電に
関与することがないことから、その分だけ放電容量が低
下したものと考えられる。
The battery of Comparative Example 5 had a smaller initial discharge capacity than the batteries of Examples. When the battery of Comparative Example 5 was disassembled, a part where the electrode plate composite material of the positive electrode plate and the current collector were separated was observed when the battery was wound to form a power generation element. In particular, it was found that the first curved portion of the positive electrode plate was cut from the innermost circumference. Since the peeled portion and the cut portion do not participate in charging / discharging, it is considered that the discharge capacity is reduced accordingly.

【0059】比較例6の電池は、比較例5とくらべても
初期放電容量がさらに小さかった。比較例6の電池を解
体すると、比較例5の電池と同様に、最内周からはじめ
の正極板の曲率部が切断していること、また、結着剤量
がすくないために極板合材と集電体とが剥離している部
分がみられた。これらのことから、放電容量が小さくな
ったものと考えられる。
The battery of Comparative Example 6 had a smaller initial discharge capacity than that of Comparative Example 5. When the battery of Comparative Example 6 was disassembled, like the battery of Comparative Example 5, the curvature part of the positive electrode plate was cut off from the innermost circumference, and the amount of the binder was small, so that the electrode plate mixture material was used. There was a part where the current collector and the current collector were separated. From these things, it is considered that the discharge capacity became smaller.

【0060】[0060]

【発明の効果】以上より、本願発明である非水電解質二
次電池において、結着剤としてアクリロニトリル・ブタ
ジエン系共重合体を用いて合材中の結着材量を減らすこ
とにより、電池を高容量化できる。そして、結着剤とし
てアクリロニトリル・ブタジエン系共重合体を用い、前
記共重合体の重量平均分子量を30,000〜500,
000とすることにより、電池製造時における正極板の
作製を容易にし、しかも高率放電性能および低温放電性
能を向上させることができる。また、前記共重合体の正
極合材中における含有量を0.5〜1.5重量%とする
ことにより、正極合材の剥離を抑制し、しかも高率放電
性能および低温放電性能を向上させることができる。
As described above, in the non-aqueous electrolyte secondary battery of the present invention, by using an acrylonitrile-butadiene-based copolymer as a binder to reduce the amount of the binder in the mixture, the battery can be improved. Capacity can be increased. Then, an acrylonitrile-butadiene-based copolymer is used as a binder, and the weight average molecular weight of the copolymer is 30,000 to 500,
When it is 000, the production of the positive electrode plate at the time of battery production can be facilitated, and the high rate discharge performance and the low temperature discharge performance can be improved. Further, by controlling the content of the above-mentioned copolymer in the positive electrode mixture to be 0.5 to 1.5% by weight, peeling of the positive electrode mixture is suppressed, and further, high rate discharge performance and low temperature discharge performance are improved. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる角形非水電解質二次電池の縦断
面略図。
FIG. 1 is a schematic vertical cross-sectional view of a prismatic non-aqueous electrolyte secondary battery according to the present invention.

【符号の説明】 1 非水電解質二次電池 2 発電要素 3 正極板 4 負極板 5 セパレータ 6 電池ケース 7 蓋 8 安全弁 9 正極端子 10 正極リード[Explanation of symbols] 1 Non-aqueous electrolyte secondary battery 2 power generation elements 3 Positive plate 4 Negative plate 5 separator 6 battery case 7 lid 8 safety valve 9 Positive terminal 10 Positive electrode lead

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AK02 AK03 AK05 AK16 AL02 AL03 AL06 AL12 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ08 EJ12 HJ02 HJ11 5H050 AA06 BA17 CA02 CA07 CA11 CA20 CB02 CB03 CB07 CB12 DA02 DA11 EA28 FA05 HA02 HA11    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H029 AJ02 AK02 AK03 AK05 AK16                       AL02 AL03 AL06 AL12 AM03                       AM04 AM05 AM07 BJ02 BJ14                       DJ08 EJ12 HJ02 HJ11                 5H050 AA06 BA17 CA02 CA07 CA11                       CA20 CB02 CB03 CB07 CB12                       DA02 DA11 EA28 FA05 HA02                       HA11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを吸蔵放出できる金属化合
物を正極活物質として、該正極活物質の粒子と導電剤と
結着剤とを含む混合物が合材層として金属集電体に形成
されてなる正極を備えた非水電解質二次電池において、
上記結着剤として重量平均分子量が30,000〜50
0,000であるアクリロニトリル・ブタジエン系共重
合体が用いられていることを特徴とする非水電解質二次
電池。
1. A metal current collector comprising a metal compound capable of occluding and releasing lithium ions as a positive electrode active material, and a mixture containing particles of the positive electrode active material, a conductive agent and a binder as a mixture layer formed on a metal current collector. In a non-aqueous electrolyte secondary battery provided with a positive electrode,
The binder has a weight average molecular weight of 30,000 to 50.
A non-aqueous electrolyte secondary battery characterized in that an acrylonitrile-butadiene-based copolymer of 20,000 is used.
【請求項2】リチウムイオンを吸蔵放出できる金属化合
物を正極活物質として、該正極活物質の粒子と導電剤と
結着剤とを含む混合物が合材層として金属集電体に形成
されてなる正極を備えた非水電解質二次電池において、
上記結着剤としてアクリロニトリル・ブタジエン系共重
合体が用いられ、正極合材中の前記アクリロニトリル・
ブタジエン系共重合体の含有量が0.5〜1.5重量%
であることを特徴とする非水電解質二次電池。
2. A metal current collector comprising a metal compound capable of occluding and releasing lithium ions as a positive electrode active material, and a mixture containing particles of the positive electrode active material, a conductive agent and a binder as a composite material layer formed on a metal current collector. In a non-aqueous electrolyte secondary battery provided with a positive electrode,
An acrylonitrile-butadiene-based copolymer is used as the binder, and the acrylonitrile-
Content of butadiene-based copolymer is 0.5 to 1.5% by weight
A non-aqueous electrolyte secondary battery characterized by:
JP2002124077A 2002-04-25 2002-04-25 Nonaqueous electrolyte secondary battery Pending JP2003317721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124077A JP2003317721A (en) 2002-04-25 2002-04-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002124077A JP2003317721A (en) 2002-04-25 2002-04-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003317721A true JP2003317721A (en) 2003-11-07

Family

ID=29539191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124077A Pending JP2003317721A (en) 2002-04-25 2002-04-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003317721A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122297A1 (en) * 2010-03-29 2011-10-06 日本ゼオン株式会社 Lithium-ion secondary battery
US8207702B2 (en) 2002-11-22 2012-06-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
WO2012091001A1 (en) * 2010-12-28 2012-07-05 日本ゼオン株式会社 Electrode binder composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2013206598A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Composite particle for secondary battery cathode, secondary battery cathode, and secondary battery
JP2015213049A (en) * 2014-04-16 2015-11-26 三菱レイヨン株式会社 Binder resin for secondary battery electrodes, slurry for secondary battery electrodes arranged by use thereof, secondary battery electrode, and secondary battery
US10431857B2 (en) 2002-11-22 2019-10-01 Milwaukee Electric Tool Corporation Lithium-based battery pack
US20220021006A1 (en) * 2020-07-20 2022-01-20 Hyundai Motor Company Electrode having high oxygen permeability for fuel cell and membrane-electrode assembly comprising same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11682910B2 (en) 2002-11-22 2023-06-20 Milwaukee Electric Tool Corporation Method of operating a lithium-based battery pack for a hand held power tool
US10566810B2 (en) 2002-11-22 2020-02-18 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US11837694B2 (en) 2002-11-22 2023-12-05 Milwaukee Electric Tool Corporation Lithium-based battery pack
US8269459B2 (en) 2002-11-22 2012-09-18 Milwaukee Electric Tool Corporation Lithium-based battery pack for a high current draw, hand held power tool
US10218194B2 (en) 2002-11-22 2019-02-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8450971B2 (en) 2002-11-22 2013-05-28 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US8207702B2 (en) 2002-11-22 2012-06-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10998586B2 (en) 2002-11-22 2021-05-04 Milwaukee Electric Tool Corporation Lithium-based battery pack including a balancing circuit
US9941718B2 (en) 2002-11-22 2018-04-10 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9018903B2 (en) 2002-11-22 2015-04-28 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10431857B2 (en) 2002-11-22 2019-10-01 Milwaukee Electric Tool Corporation Lithium-based battery pack
US10886762B2 (en) 2002-11-22 2021-01-05 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9673648B2 (en) 2002-11-22 2017-06-06 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US9379569B2 (en) 2002-11-22 2016-06-28 Milwaukee Electric Tool Corporation Lithium-battery pack for a hand held power tool
JP5626336B2 (en) * 2010-03-29 2014-11-19 日本ゼオン株式会社 Lithium ion secondary battery
WO2011122297A1 (en) * 2010-03-29 2011-10-06 日本ゼオン株式会社 Lithium-ion secondary battery
CN102859777B (en) * 2010-03-29 2015-08-26 日本瑞翁株式会社 Lithium rechargeable battery
CN102859777A (en) * 2010-03-29 2013-01-02 日本瑞翁株式会社 Lithium-ion secondary battery
US9257703B2 (en) 2010-12-28 2016-02-09 Zeon Corporation Electrode binder composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US9543585B2 (en) 2010-12-28 2017-01-10 Zeon Corporation Electrode binder composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5573966B2 (en) * 2010-12-28 2014-08-20 日本ゼオン株式会社 Non-aqueous electrolyte battery electrode binder composition, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
WO2012091001A1 (en) * 2010-12-28 2012-07-05 日本ゼオン株式会社 Electrode binder composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2013206598A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Composite particle for secondary battery cathode, secondary battery cathode, and secondary battery
JP2015213049A (en) * 2014-04-16 2015-11-26 三菱レイヨン株式会社 Binder resin for secondary battery electrodes, slurry for secondary battery electrodes arranged by use thereof, secondary battery electrode, and secondary battery
US20220021006A1 (en) * 2020-07-20 2022-01-20 Hyundai Motor Company Electrode having high oxygen permeability for fuel cell and membrane-electrode assembly comprising same

Similar Documents

Publication Publication Date Title
JP4667373B2 (en) Lithium ion secondary battery and its charge / discharge control system
KR100770518B1 (en) Lithium ion secondary battery
JP5426763B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
WO2006112243A1 (en) Rectangular lithium secondary battery
JP2005228706A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JPH1197027A (en) Nonaqueous electrolyte secondary cell
CN1363124A (en) Nonaqueous electrolyte secondary cell
JP3885227B2 (en) Non-aqueous secondary battery
JP2011034859A (en) Wound electrode body for battery, battery, and its manufacturing method
JP5066804B2 (en) Lithium ion secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2003317721A (en) Nonaqueous electrolyte secondary battery
JP3582823B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2002175807A (en) Nonaqueous electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
JP2000348729A (en) Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP2003123765A (en) Nonaqueous electrolyte secondary battery
JP2000195522A (en) Nonaqueous electrolyte seconday battery
JP2000323173A (en) Nonaqueous secondary battery
JP2002042888A (en) Nonaqueous electrolyte secondary battery
JP2002359003A (en) Nonaqueous electrolyte secondary battery