JP2002015720A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002015720A
JP2002015720A JP2000198859A JP2000198859A JP2002015720A JP 2002015720 A JP2002015720 A JP 2002015720A JP 2000198859 A JP2000198859 A JP 2000198859A JP 2000198859 A JP2000198859 A JP 2000198859A JP 2002015720 A JP2002015720 A JP 2002015720A
Authority
JP
Japan
Prior art keywords
molecular weight
porosity
polyethylene
separator
microporous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000198859A
Other languages
Japanese (ja)
Inventor
Koyo Watari
亘  幸洋
Tetsuya Murai
村井  哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000198859A priority Critical patent/JP2002015720A/en
Publication of JP2002015720A publication Critical patent/JP2002015720A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cycle life performance at high temperature as well as performance under normal temperature environment. SOLUTION: The nonaqueous electrolyte secondary battery utilizes a laminated separator of two or more layers combining an ultrahigh molecular weight polyethylene fine porous film with a million or more weight average molecular weight and a high porosity polyethylene fine porous film with 45% or more porosity and is structured by arranging the ultrahigh molecular weight polyethylene fine porous film layer or a positive electrode plate side and the high porosity polyethylene fine porous film layer at a negative electrode plate side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、特に、高温サイクル寿命性能および生産性に優れた
非水電解質二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery excellent in high-temperature cycle life performance and productivity.

【0002】[0002]

【従来の技術】近年、携帯電話、携帯用パソコン等の電
子機器の小型軽量化・高機能化に伴い、内蔵される電池
としても、高エネルギー密度を有し、かつ軽量なものが
採用されている。そのような要求を満たす典型的な電池
は、特にリチウム金属やリチウム合金等の活物質、また
はリチウムイオンをホスト物質(ここで、ホスト物質と
はリチウムイオンを吸蔵・放出できる物質をいう)であ
る炭素に吸蔵させたリチウムインターカレーション化合
物を負極とし、LiClO4、LiPF6等のリチウム塩
を溶解した非プロトン性の有機溶媒を電解液とし、正極
と負極との間に設置するセパレータには、有機溶媒に不
溶であり、かつ電解質や電極活物質に対して安定なポリ
オレフィン系材料を微多孔質膜や不織布に加工したもの
を用いた非水電解質二次電池である。
2. Description of the Related Art In recent years, as electronic devices such as mobile phones and portable personal computers have become smaller, lighter, and more sophisticated, lightweight batteries having a high energy density have been adopted as built-in batteries. I have. A typical battery that satisfies such requirements is an active material such as lithium metal or lithium alloy, or a host material containing lithium ions (here, the host material refers to a material capable of inserting and extracting lithium ions). A lithium intercalation compound occluded in carbon is used as a negative electrode, an aprotic organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used as an electrolytic solution, and a separator provided between the positive electrode and the negative electrode includes: A non-aqueous electrolyte secondary battery using a polyolefin-based material which is insoluble in an organic solvent and stable to an electrolyte or an electrode active material and is processed into a microporous film or nonwoven fabric.

【0003】特に、リチウムコバルト複合酸化物、リチ
ウムニッケル複合酸化物およびスピネル型リチウムマン
ガン酸化物などは、4V(vs.Li/Li+)以上の
極めて貴な電位で充放電を行えるため、正極に用いるこ
とにより高い放電電圧を有する電池を実現できる。
In particular, lithium-cobalt composite oxide, lithium-nickel composite oxide, spinel-type lithium manganese oxide and the like can be charged and discharged at an extremely noble potential of 4 V (vs. Li / Li + ) or more. By using this, a battery having a high discharge voltage can be realized.

【0004】[0004]

【発明が解決しようとする課題】最近では、非水電解質
二次電池が、常温環境下のみならず、低温から高温まで
の各種の環境下で使用される電子機器に採用されること
が多くなってきている。特に、ノート型パソコンにおい
ては、中央演算装置の高速化に伴い、パソコン内部の温
度が高くなり、内蔵された非水電解質二次電池が高温環
境下で長時間使用される。このようなことから、非水電
解質二次電池の特性の中でも、高温環境下での電池特性
が重要となってきている。
In recent years, non-aqueous electrolyte secondary batteries have been increasingly used in electronic equipment used not only in a normal temperature environment but also in various environments from a low temperature to a high temperature. Is coming. In particular, in a notebook personal computer, the temperature inside the personal computer increases as the speed of the central processing unit increases, and the built-in non-aqueous electrolyte secondary battery is used for a long time in a high-temperature environment. For this reason, among the characteristics of the non-aqueous electrolyte secondary battery, battery characteristics in a high-temperature environment are becoming important.

【0005】しかしながら、従来の非水電解質二次電池
は、常温環境下では、非常に優れた性能を示すものの、
高温でのサイクル寿命性能に関しては、必ずしも充分で
はないということが明らかとなってきた。本願発明は、
高温でのサイクル寿命性能を改善しようとするものであ
る。
[0005] However, the conventional non-aqueous electrolyte secondary battery shows very excellent performance under a normal temperature environment,
It has become clear that the cycle life performance at high temperatures is not always sufficient. The present invention is
It is intended to improve cycle life performance at high temperatures.

【0006】[0006]

【課題を解決するための手段】上記の高温におけるサイ
クル寿命性能低下の問題は、セパレータの正極に対向す
る面での酸化劣化と、負極に対向する面での電解液分解
生成物の目詰まりおよびこれに伴う拡散抵抗の上昇によ
るものと考えられ、それらに耐え得る性能をセパレータ
に付与することが必要である。本願発明者らは、上記課
題を解決するために、鋭意研究を重ねた結果、特定構成
のセパレータを用い、正極と負極の間に特定の位置関係
で配置することにより、高温サイクル特性に優れる電池
が得られ、かつ生産性をも向上させ得ることを見い出
し、本願発明をなすに至ったものである。
SUMMARY OF THE INVENTION The above-mentioned problems of deterioration in cycle life performance at high temperatures include oxidation deterioration on the surface of the separator facing the positive electrode, clogging of electrolytic decomposition products on the surface of the separator facing the negative electrode, and the like. This is thought to be due to an increase in diffusion resistance accompanying this, and it is necessary to provide the separator with performance that can withstand them. The inventors of the present application have conducted intensive studies in order to solve the above-described problems, and as a result, by using a separator having a specific configuration and disposing it in a specific positional relationship between a positive electrode and a negative electrode, a battery having excellent high-temperature cycle characteristics is provided. Have been found and productivity can be improved, and the present invention has been accomplished.

【0007】すなわち、本願発明は、重量平均分子量が
100万以上の超高分子量ポリエチレン微多孔質膜と、
空孔率が45%以上の高空孔率ポリエチレン微多孔質膜
を、組み合わせてなる二層以上の積層セパレータを用
い、かつ正極板側に超高分子量ポリエチレン微多孔質膜
層を、負極板側に高空孔率ポリエチレン微多孔質膜層を
当接して配することを特徴とする非水電解質二次電池で
ある。
That is, the present invention provides a microporous ultrahigh molecular weight polyethylene membrane having a weight average molecular weight of 1,000,000 or more,
A porosity of 45% or more, a high porosity polyethylene microporous membrane is used, and two or more laminated separators are used in combination, and an ultrahigh molecular weight polyethylene microporous membrane layer is provided on the positive electrode plate side and a negative electrode plate side is provided. A non-aqueous electrolyte secondary battery characterized in that a high porosity polyethylene microporous membrane layer is disposed in contact therewith.

【0008】そして、超高分子量ポリエチレン微多孔質
膜としては、重量平均分子量が100万以上250万以
下のポリエチレンからなり、空孔率が35%以上60%
以下の微多孔質膜を用いるのが好適であり、さらに、高
空孔率ポリエチレン微多孔質膜としては、重量平均分子
量が20万以上250万以下のポリエチレンからなり、
空孔率が45%以上80%以下の微多孔質膜を用いるの
が好適である。
[0008] The ultra-high molecular weight polyethylene microporous membrane is made of polyethylene having a weight average molecular weight of 1,000,000 to 2.5,000,000 and a porosity of 35% to 60%.
It is preferable to use the following microporous membrane, further, as a high porosity polyethylene microporous membrane, the weight average molecular weight is composed of polyethylene of 200,000 or more and 2.5 million or less,
It is preferable to use a microporous film having a porosity of 45% or more and 80% or less.

【0009】ポリエチレン微多孔膜の重量平均分子量が
上記の範囲を越えて小さいと、セパレータの耐酸化性や
機械的強度が低下して実用に耐えなくなり、また、上記
の範囲を越えて大きいと、粘性が大きく流動性が小さく
なるため、成膜すること自体が困難となる。したがっ
て、超高分子量ポリエチレン微多孔質膜層ならびに高空
孔率ポリエチレン微多孔質膜層として、それぞれ上記の
分子量の範囲にあるものを用いることが肝要である。ま
た、ポリエチレン微多孔膜の空孔率は、セパレータの電
解液保持性、機械的強度を決定付ける重要な因子とな
る。空孔率が上記の範囲を越えて小さいと、保持液量が
減り、拡散抵抗が大きくなるため、電池性能上、実用に
適さないものとなり、また、上記の範囲を越えて大きい
と、機械的強度が低く、成膜時ならびに電池製造時の生
産性が低下する。したがって、超高分子量ポリエチレン
微多孔質膜層ならびに高空孔率ポリエチレン微多孔質膜
層として、それぞれ上記の空孔率範囲にあるものを用い
ることが肝要である。
If the weight average molecular weight of the polyethylene microporous membrane is smaller than the above range, the oxidation resistance and mechanical strength of the separator will be reduced and the separator will not be suitable for practical use. Since the viscosity is high and the fluidity is low, it is difficult to form a film. Therefore, it is important to use the ultra-high molecular weight polyethylene microporous membrane layer and the high porosity polyethylene microporous membrane layer each having the above-mentioned molecular weight. In addition, the porosity of the microporous polyethylene membrane is an important factor that determines the electrolyte retention and mechanical strength of the separator. If the porosity is small beyond the above range, the amount of retentate decreases and the diffusion resistance becomes large, so that the battery performance becomes unsuitable for practical use. The strength is low, and the productivity at the time of film formation and at the time of battery production decreases. Therefore, it is important to use the ultra-high molecular weight polyethylene microporous membrane layer and the high porosity polyethylene microporous membrane layer each having the above porosity range.

【0010】なお、上記の超高分子量ポリエチレン微多
孔質膜層と高空孔率ポリエチレン微多孔質膜層が2層以
上積層されてなるセパレータにおいて、正極側では耐酸
化性が重視され、負極側では電解液保持性、耐目詰まり
性が重視されることから、それに対応して、超高分子量
ポリエチレン微多孔質膜層の重量平均分子量は高空孔率
ポリエチレン微多孔質膜層よりも大きく、また、高空孔
率ポリエチレン微多孔質膜層の空孔率は超高分子量ポリ
エチレン微多孔質膜層よりも大きく設定されることにな
る。
In the separator comprising two or more ultra-high molecular weight polyethylene microporous membrane layers and high porosity polyethylene microporous membrane layers, oxidation resistance is regarded as important on the positive electrode side, and on the negative electrode side. Since electrolyte retention and clogging resistance are emphasized, correspondingly, the weight average molecular weight of the ultrahigh molecular weight polyethylene microporous membrane layer is larger than that of the high porosity polyethylene microporous membrane layer, The porosity of the high porosity polyethylene microporous membrane layer is set to be larger than that of the ultrahigh molecular weight polyethylene microporous membrane layer.

【0011】また、空孔率を余り高く設定すると、通
常、突き刺し強度に代表されるセパレータの機械的強度
が低くなり、電池製造時にセパレータの破膜や変形によ
り製品不良が発生する。本発明では、超高分子量ポリエ
チレン微多孔質層に十分な機械的強度を有する多孔質膜
を配しているため、高空孔率ポリエチレン微多孔質層の
空孔率を80%という高い値まで設定することができ、
しかも積層セパレータ全体としての強度を十分確保でき
るため、製品不良の発生を招くことも無い。
On the other hand, if the porosity is set too high, the mechanical strength of the separator, typically puncture strength, is lowered, and the separator is ruptured or deformed at the time of battery production, resulting in defective products. In the present invention, the porosity of the high porosity polyethylene microporous layer is set to a high value of 80% because the microporous ultrahigh molecular weight polyethylene layer is provided with a porous membrane having sufficient mechanical strength. Can be
In addition, since the strength of the entire laminated separator can be sufficiently secured, the occurrence of product defects does not occur.

【0012】[0012]

【発明の実施の形態】以下、本願発明の実施の形態につ
いて説明する。本願発明において用いられる積層セパレ
ータは、超高分子量と空孔率の異なるそれぞれのポリエ
チレン微多孔膜を成形した後に、圧着・接着等の方法に
より張り合わせることによって成形することができる。
Embodiments of the present invention will be described below. The laminated separator used in the present invention can be formed by forming microporous polyethylene membranes having different ultra-high molecular weights and porosity and then bonding them by a method such as pressure bonding and adhesion.

【0013】ポリエチレンとしては、高密度、中密度、
低密度の各種分岐ポリエチレン、線状ポリエチレン、高
分子量及び超高分子量ポリエチレンなど、何れのポリエ
チレンも使用できる。また、適宜、各種の可塑剤、酸化
防止剤、難燃剤などの添加剤を、適量含有したものでも
良い。
As polyethylene, high density, medium density,
Any polyethylene, such as various types of low-density branched polyethylene, linear polyethylene, high molecular weight and ultrahigh molecular weight polyethylene, can be used. In addition, those containing appropriate amounts of additives such as various plasticizers, antioxidants, and flame retardants may be used.

【0014】本願発明にかかる、非水電解質二次電池を
製造する場合には、上記のようにして成形されるセパレ
ータを用い、重量平均分子量が100万以上の超高分子
量ポリエチレン微多孔質層を正極板側に、空孔率が45
%以上の高空孔率ポリエチレン微多孔質層を負極板側に
配し、通常の方法により製造すれば良い。
When manufacturing the non-aqueous electrolyte secondary battery according to the present invention, a microporous ultrahigh molecular weight polyethylene layer having a weight average molecular weight of 1,000,000 or more is used by using the separator formed as described above. The porosity is 45 on the positive electrode plate side.
% Or more of a high porosity polyethylene microporous layer is disposed on the negative electrode plate side, and may be manufactured by a usual method.

【0015】正極板は、正極活物質を用いて構成される
が、例えば、リチウム二次電池を作製する場合に正極活
物質としては、リチウムを吸蔵放出可能な化合物であ
る、組成式LixMO2、またはLiy24(ただしM
は遷移金属、0≦x≦1、0≦y≦2 )で表される、
複合酸化物、トンネル状の空孔を有する酸化物、層状構
造の金属カルコゲン化物を用いることができる。その具
体例としては、LiCoO2 、LiNiO2、LiMn2
4 、Li2Mn24 、MnO2、FeO2、V25、V
613、TiO2、TiS2等がある。また、ポリアニリ
ン等の導電性ポリマー等の有機化合物を用いることもで
き、さらに、これらを混合して用いてもよい。また、粒
状の活物質を用いる場合には、例えば、活物質粒子と導
電助剤と結着剤とからなる合剤をアルミニウム等の金属
集電体上に形成することで作製できる。
[0015] positive electrode plate is constituted by using a positive electrode active material, for example, as the positive electrode active material in the case of manufacturing a lithium secondary battery, is capable of absorbing and desorbing lithium compound, composition formula Li x MO 2 or Li y M 2 O 4 (where M
Is a transition metal, represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 2),
A composite oxide, an oxide having tunnel-like holes, and a metal chalcogenide having a layered structure can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , and LiMn 2
O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V
6 O 13 , TiO 2 , TiS 2 and the like. Further, an organic compound such as a conductive polymer such as polyaniline can be used, and these may be used as a mixture. When a granular active material is used, it can be produced, for example, by forming a mixture of active material particles, a conductive additive, and a binder on a metal current collector such as aluminum.

【0016】負極板は、負極活物質を用いて構成される
が、例えば、リチウム二次電池を作製する場合に負極活
物質としては、Al、Si、Pb、Sn、Zn、Cd等
とリチウムとの合金、LiFe23、WO2、MoO2
の遷移金属酸化物、グラファイト、カーボン等の炭素質
材料、Li5(Li3N)等の窒化リチウム、もしくは金
属リチウム箔、又はこれらの混合物を用いてもよい。ま
た、粒状の炭素質材料を用いる場合には、例えば、活物
質粒子と結着剤とからなる合剤を銅等の金属集電体上に
形成することで作製できる。
The negative electrode plate is formed using a negative electrode active material. For example, when a lithium secondary battery is manufactured, the negative electrode active material includes Al, Si, Pb, Sn, Zn, Cd, and the like. Alloys, transition metal oxides such as LiFe 2 O 3 , WO 2 and MoO 2 , carbonaceous materials such as graphite and carbon, lithium nitride such as Li 5 (Li 3 N), or metallic lithium foil, or a mixture thereof May be used. When a granular carbonaceous material is used, it can be produced, for example, by forming a mixture of active material particles and a binder on a metal current collector such as copper.

【0017】電解質としては、無機固体電解質、ポリマ
ー固体電解質、電解液等を用いることができるが、非水
電解液リチウム二次電池を作製する場合、電解液溶媒と
して、例えば、エチレンカーボネート、プロピレンカー
ボネート、ジメチルカーボネート、ジエチルカーボネー
ト、γ−ブチロラクトン、スルホラン、ジメチルスルホ
キシド、アセトニトリル、ジメチルホルムアミド、ジメ
チルアセトアミド、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、テトラヒドロフラン、2−メチル
テトラヒドロフラン、ジオキソラン、メチルアセテート
等の極性溶媒、もしくはこれらの混合物が使用できる。
As the electrolyte, an inorganic solid electrolyte, a polymer solid electrolyte, an electrolytic solution and the like can be used. When a non-aqueous electrolyte lithium secondary battery is manufactured, for example, ethylene carbonate, propylene carbonate is used as the electrolytic solvent. Dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2
Polar solvents such as diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, or mixtures thereof;

【0018】また、これらの電解液溶媒に溶解させるリ
チウム塩としては、LiPF6、LiClO4、LiBF
4、LiAsF6、LiCF3CO2、LiCF3SO3、L
iN(SO2CF32、LiN(SO2CF2CF32
LiN(COCF32およびLiN(COCF2CF3
2などの塩もしくはこれらの混合物が使用できる。
Lithium salts dissolved in these electrolyte solvents include LiPF 6 , LiClO 4 , LiBF
4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , L
iN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 ,
LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 )
Salts such as 2 , or mixtures thereof, can be used.

【0019】また、電池の形状は、特に限定されるもの
ではなく、本願発明は、角形、円筒形、長円筒形、コイ
ン形、ボタン形、シート形電池等の様々な形状の非水電
解質二次電池に適用可能である。
The shape of the battery is not particularly limited, and the present invention is applicable to non-aqueous electrolyte batteries having various shapes such as a square, cylindrical, long cylindrical, coin, button, and sheet batteries. Applicable to secondary batteries.

【0020】[0020]

【実施例】以下、本願発明を適用した具体的な実施例に
ついて説明するが、本願発明は、本実施例により、何ら
限定されるものではなく、その主旨を変更しない範囲に
おいて、適宜変更して実施することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments to which the present invention is applied will be described. However, the present invention is not limited to the present embodiments at all, and may be appropriately changed within a scope not changing the gist of the present invention. Can be implemented.

【0021】(実施例1)図1は、本実施例の角形非水
電解質二次電池の構成断面図である。
(Embodiment 1) FIG. 1 is a sectional view showing the configuration of a prismatic nonaqueous electrolyte secondary battery according to this embodiment.

【0022】本実施例1の角形非水電解質二次電池1
は、アルミニウム集電体にリチウムイオンを吸蔵・放出
する物質を構成要素とする正極合剤を塗布してなる正極
3と、銅集電体にリチウムイオンを吸蔵・放出する物質
を構成要素とする負極合剤を塗布してなる負極4とがセ
パレータ5を介して巻回された扁平状電極群2と、電解
質塩を含有した非水電解液とを電池ケース6に収納して
なるものである。
The prismatic nonaqueous electrolyte secondary battery 1 of the first embodiment
Are composed of a positive electrode 3 formed by applying a positive electrode mixture containing a substance capable of absorbing and releasing lithium ions to an aluminum current collector, and a substance capable of absorbing and releasing lithium ions to a copper current collector. A flat electrode group 2 in which a negative electrode 4 coated with a negative electrode mixture is wound via a separator 5 and a nonaqueous electrolyte containing an electrolyte salt are housed in a battery case 6. .

【0023】電池ケース6には、安全弁8を設けた電池
蓋がレーザー溶接によって取り付けられ、正極端子9は
正極リード10を介して正極3と接続され、負極4は電
池ケース6の内壁と接触により電気的に接続されてい
る。
A battery lid provided with a safety valve 8 is attached to the battery case 6 by laser welding, a positive electrode terminal 9 is connected to the positive electrode 3 via a positive electrode lead 10, and the negative electrode 4 is brought into contact with the inner wall of the battery case 6. It is electrically connected.

【0024】正極合剤は、活物質のLiCoO2:90
重量%と、導電助剤のアセチレンブラック5重量%と、
結着剤のポリフッ化ビニリデン5重量%とを混合した上
で、N−メチル−2−ピロリドンを適宜加えて分散さ
せ、スラリーを調製した。このスラリーを厚さ20μm
のアルミニウム集電体に均一に塗布、乾燥させた後、ロ
ールプレスで圧縮成型することにより正極3を作製し
た。
The positive electrode mixture was made of LiCoO 2 : 90 as an active material.
% By weight, and 5% by weight of acetylene black as a conductive additive,
After mixing with 5% by weight of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone was appropriately added and dispersed to prepare a slurry. This slurry has a thickness of 20 μm.
After uniformly applying and drying the aluminum current collector of Example 1, the positive electrode 3 was produced by compression molding with a roll press.

【0025】負極合剤は、リチウムイオンを吸蔵放出す
る炭素材料90重量%と、ポリフッ化ビニリデン10重
量%とを混合した上で、N−メチル−2−ピロリドンを
適宜加えて分散させ、スラリーを調製した。このスラリ
ーを厚さ10μmの銅集電体に均一に塗布、乾燥させた
後、ロールプレスで圧縮成型することにより負極4を作
製した。
The negative electrode mixture is prepared by mixing 90% by weight of a carbon material that absorbs and releases lithium ions and 10% by weight of polyvinylidene fluoride, and then appropriately adding N-methyl-2-pyrrolidone to disperse the mixture. Prepared. The slurry was uniformly applied to a 10 μm-thick copper current collector, dried, and then compression-molded by a roll press to produce a negative electrode 4.

【0026】電解液は、エチレンカーボネート(EC)
/ジエチルカーボネート(DEC)=1/1(vol/
vol)からなる溶媒中に、LiPF6:1molを溶
解したものである。セパレータ5は、延伸法により多孔
化した、重量分子量約150万、空孔率40%のポリエ
チレン微多孔質膜1枚、および重量平均分子量約100
万、空孔率50%の微多孔質膜1枚を、ロールプレスを
用いて積層圧着したものを用い、正極板側に重量平均分
子量が約150万の微多孔質膜層が、負極板側に重量平
均分子量約100万の微多孔質膜層が配するように巻回
した。なお、このセパレータの膜厚は25μmで、突き
刺し強度は650gであった。上述のような構成、手順
により、設計容量600mAhの本願発明電池を作製し
た。
The electrolyte is ethylene carbonate (EC)
/ Diethyl carbonate (DEC) = 1/1 (vol /
vol.) in which 1 mol of LiPF 6 is dissolved. The separator 5 is made of a polyethylene microporous membrane having a weight molecular weight of about 1.5 million and a porosity of 40%, made porous by a stretching method, and a weight average molecular weight of about 100.
One microporous membrane having a porosity of 50% is laminated and pressed using a roll press, and a microporous membrane layer having a weight average molecular weight of about 1.5 million is provided on the positive electrode plate side. Was wound so that a microporous membrane layer having a weight average molecular weight of about 1,000,000 was disposed. The thickness of this separator was 25 μm, and the piercing strength was 650 g. According to the above-described configuration and procedure, a battery of the present invention having a design capacity of 600 mAh was manufactured.

【0027】(実施例2)正極板側に、重量平均分子量
約200万のポリエチレン微多孔質膜層を配したほか
は、実施例1と全く同様に電池を作製した。なお、この
セパレータの膜厚は25μmで、突き刺し強度は680
gであった。
(Example 2) A battery was produced in exactly the same manner as in Example 1 except that a polyethylene microporous membrane layer having a weight average molecular weight of about 2,000,000 was disposed on the positive electrode plate side. The thickness of the separator was 25 μm, and the piercing strength was 680.
g.

【0028】(実施例3)正極板側に、重量平均分子量
約100万のポリエチレン微多孔質膜層を配したほか
は、実施例1と全く同様に電池を作製した。なお、この
セパレータの膜厚は25μmで、突き刺し強度は630
gであった。
Example 3 A battery was produced in exactly the same manner as in Example 1 except that a polyethylene microporous membrane layer having a weight average molecular weight of about 1,000,000 was disposed on the positive electrode plate side. The thickness of this separator was 25 μm, and the piercing strength was 630.
g.

【0029】(実施例4)負極板側に、空孔率を45%
のポリエチレン微多孔質膜層を配したほかは、実施例1
と全く同様に電池を作製した。なお、このセパレータの
膜厚は25μmで、突き刺し強度は660gであった。
Example 4 The porosity was 45% on the negative electrode plate side.
Example 1 except that a polyethylene microporous membrane layer of
A battery was produced in exactly the same manner as in Example 1. The thickness of this separator was 25 μm, and the piercing strength was 660 g.

【0030】(実施例5)負極板側に、重量平均分子量
約70万のポリエチレン微多孔質膜層を配したほかは、
実施例1と全く同様に電池を作製した。なお、このセパ
レータの膜厚は25μmで、突き刺し強度は640gで
あった。
Example 5 A microporous polyethylene membrane having a weight average molecular weight of about 700,000 was disposed on the negative electrode plate side.
A battery was manufactured in exactly the same manner as in Example 1. The thickness of this separator was 25 μm, and the piercing strength was 640 g.

【0031】(比較例1)正極板側に、重量平均分子量
約70万のポリエチレン微多孔質膜層を配したほかは、
実施例1と全く同様に電池を作製した。なお、このセパ
レータの膜厚は25μmで、突き刺し強度は530gで
あった。
Comparative Example 1 A microporous polyethylene layer having a weight average molecular weight of about 700,000 was disposed on the positive electrode plate side.
A battery was manufactured in exactly the same manner as in Example 1. The thickness of this separator was 25 μm, and the piercing strength was 530 g.

【0032】(比較例2)正極板側に、重量平均分子量
約70万のポリエチレン微多孔質膜層を、負極板側に、
空孔率を40%のポリエチレン微多孔質膜層を配したほ
かは、実施例1と全く同様に電池を作製した。なお、こ
のセパレータの膜厚は25μmで、突き刺し強度は55
0gであった。
Comparative Example 2 A polyethylene microporous membrane layer having a weight average molecular weight of about 700,000 was provided on the positive electrode plate side, and a polyethylene microporous film layer was provided on the negative electrode plate side.
A battery was produced in exactly the same manner as in Example 1, except that a polyethylene microporous membrane layer having a porosity of 40% was provided. The thickness of the separator was 25 μm, and the piercing strength was 55 μm.
It was 0 g.

【0033】(比較例3)負極板側に、空孔率40%の
ポリエチレン微多孔膜層を配したほかは、実施例1と全
く同様に電池を作製した。なお、このセパレータの膜厚
は、25μmで、突き刺し強度は、670gであった。
Comparative Example 3 A battery was produced in exactly the same manner as in Example 1, except that a polyethylene microporous membrane layer having a porosity of 40% was provided on the negative electrode plate side. The thickness of the separator was 25 μm, and the piercing strength was 670 g.

【0034】(比較例4)ポリエチレンの重量平均分子
量約150万、空孔率50%のポリエチレン単層からな
るセパレータを用いたほかは、実施例1と全く同様に電
池を作製した。なお、このセパレータの膜厚は25μm
で、突き刺し強度は320gであった。
Comparative Example 4 A battery was produced in exactly the same manner as in Example 1, except that a separator composed of a single layer of polyethylene having a weight average molecular weight of polyethylene of about 1.5 million and a porosity of 50% was used. The thickness of this separator was 25 μm.
And the piercing strength was 320 g.

【0035】(比較例5)ポリエチレンの重量平均分子
量が約70万であり、空孔率が40%であるポリエチレ
ン単層セパレータを用いた他は、実施例1と全く同様に
電池を作製した。また、このセパレータの膜厚は、25
μmで、突き刺し強度は、560gであった。
Comparative Example 5 A battery was manufactured in exactly the same manner as in Example 1, except that a polyethylene single-layer separator having a weight average molecular weight of polyethylene of about 700,000 and a porosity of 40% was used. The thickness of this separator is 25
In μm, the piercing strength was 560 g.

【0036】実施例ならびに比較例の電池に用いたセパ
レータの構成を表1に示す。
Table 1 shows the structures of the separators used in the batteries of Examples and Comparative Examples.

【0037】[0037]

【表1】 [Table 1]

【0038】(比較試験)高温サイクル寿命試験:上記
の電池を、温度45℃の雰囲気下において、1CAの電
流で4.2Vまで定電圧・定電流で3時間充電し、その
後、1CAの定電流で放電する充放電サイクルを300
回繰り返した。そして、1サイクル目の放電容量に対す
る300サイクル目の放電容量の割合を求め、1サイク
ル目の放電容量に対して80%以上の容量を保持してい
るものを良好とした。
(Comparative test) High temperature cycle life test: The above-mentioned battery was charged at a constant current and a constant current of 3 V at a current of 1 CA to 4.2 V in an atmosphere of a temperature of 45 ° C., and then at a constant current of 1 CA. 300 charge / discharge cycles
Repeated times. Then, the ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle was determined, and those having a capacity of 80% or more of the discharge capacity at the first cycle were evaluated as good.

【0039】製造不良率の調査:セパレータを介して正
極と負極とを巻回して作製した扁平状電極群を電池ケー
スに挿入し、250V、50MΩの絶縁抵抗計を用いて
絶縁検査を行い、絶縁不良の発生率を調査した。
Investigation of defective manufacturing rate: A flat electrode group produced by winding a positive electrode and a negative electrode through a separator is inserted into a battery case, and an insulation test is performed using a 250 V, 50 MΩ insulation resistance meter. The incidence of defects was investigated.

【0040】実施例および比較例の電池についての高温
サイクル寿命試験および製造不良率の調査結果を表2に
示す。
Table 2 shows the results of the high-temperature cycle life test and the production failure rate of the batteries of Examples and Comparative Examples.

【0041】[0041]

【表2】 [Table 2]

【0042】高温サイクル寿命試験においては、セパレ
ータの正極板側が強い酸化雰囲気下におかれるが、実施
例1から3に示すように、高温サイクル寿命性能が向上
した。これは、分子量の大きなポリエチレン微多孔質膜
層を正極板側に配したことにより、セパレータの酸化に
よる劣化が抑制され、さらに、負極板側に空孔率の大き
なポリエチレン微多孔質膜層を配したことにより、セパ
レータの電解液保持性が維持され、微多孔質膜の電解液
分解生成物による目詰まりを抑制できたことから、内部
抵抗の上昇を招くこともなく、放電性能の低下が抑制さ
れたためと考えられる。また、この効果は、実施例1と
4の比較から、セパレータの負極側の空孔率が高いほ
ど、特に顕著に現れることがわかった。さらに、実施例
1と5の比較から、高温サイクル性能、および工程中で
の破膜等による不良率は、負極板側に配するポリエチレ
ン微多孔質膜層の分子量には、依存しないことがわかっ
た。
In the high temperature cycle life test, the positive electrode plate side of the separator was placed in a strong oxidizing atmosphere, but as shown in Examples 1 to 3, the high temperature cycle life performance was improved. This is because deterioration of the separator due to oxidation is suppressed by disposing a polyethylene microporous membrane layer having a large molecular weight on the positive electrode plate side, and further, a polyethylene microporous membrane layer having a large porosity is arranged on the negative electrode plate side. As a result, the electrolyte retention of the separator was maintained, and clogging of the microporous membrane due to the decomposition product of the electrolyte was suppressed, thereby preventing a decrease in discharge performance without increasing internal resistance. It is thought that it was done. Further, from a comparison between Examples 1 and 4, it was found that this effect was particularly prominent as the porosity on the negative electrode side of the separator was higher. Further, from the comparison between Examples 1 and 5, it was found that the high-temperature cycle performance and the failure rate due to film breakage during the process did not depend on the molecular weight of the polyethylene microporous membrane layer disposed on the negative electrode plate side. Was.

【0043】一方、比較例1、2及び5では、正極板側
に配したポリエチレン微多孔質膜層の分子量が小さいた
め、充放電サイクル中にセパレータの酸化による劣化が
進行し、サイクル寿命性能が低下したものと考えられ
る。特に比較例2及び5では、負極板側に配したポリエ
チレン微多孔質膜層の空孔率も小さいため、性能の低下
が著しかったものと考えられる。
On the other hand, in Comparative Examples 1, 2, and 5, since the polyethylene microporous membrane layer disposed on the positive electrode plate side has a small molecular weight, deterioration due to oxidation of the separator proceeds during a charge / discharge cycle, and the cycle life performance is reduced. It is considered to have decreased. In particular, in Comparative Examples 2 and 5, the porosity of the polyethylene microporous membrane layer disposed on the negative electrode plate side was also small, so it is considered that the performance was significantly reduced.

【0044】比較例3では、正極板側に配したポリエチ
レン微多孔質膜層の分子量が大きいため、正極側での劣
化は生じないが、負極板側に配したポリエチレン微多孔
質膜層の空孔率が小さいため、充放電サイクルの進行に
伴い、微多孔質膜の目詰まりが生じ、サイクル性能が低
下したものと考えられる。
In Comparative Example 3, although the polyethylene microporous membrane layer disposed on the positive electrode plate side has a large molecular weight, no deterioration occurs on the positive electrode side, but the polyethylene microporous membrane layer disposed on the negative electrode plate side has no empty space. It is considered that the microporous film was clogged with the progress of the charge / discharge cycle due to the small porosity, and the cycle performance was reduced.

【0045】比較例4では、分子量が大きいポリエチレ
ン微多孔質膜単層からなるセパレータを用いており、か
つその空孔率も大きいため、微多孔質膜の劣化や目詰ま
り等は生じず、サイクル寿命性能は、優れていた。しか
し、空孔率が大きいため、機械的強度(突き刺し強度)
が小さく、電池生産時において、セパレータの破膜等に
よる絶縁不良が発生し、生産性が低下した。
In Comparative Example 4, a separator composed of a single layer of a polyethylene microporous membrane having a large molecular weight was used, and its porosity was large, so that deterioration and clogging of the microporous membrane did not occur. Lifetime performance was excellent. However, due to the high porosity, mechanical strength (piercing strength)
In the production of batteries, poor insulation occurred due to a separator rupture or the like, resulting in reduced productivity.

【0046】以上の結果より、ポリエチレンの重量平均
分子量が100万以上250万以下である超高分子量ポ
リエチレン微多孔質膜と、ポリエチレンの重量平均分子
量が20万以上250万以下であり、空孔率が45%以
上であるポリエチレン微多孔質膜を、組み合わせてなる
二層以上の積層セパレータを用い、かつ正極板側に超高
分子量ポリエチレン微多孔質膜層を、負極板側に高空孔
率ポリエチレン微多孔質膜層を配することにより、生産
性に優れ、かつ高温サイクル寿命性能に優れた電池を提
供することが可能であることがわかった。
From the above results, the ultra-high molecular weight polyethylene microporous membrane in which the polyethylene has a weight average molecular weight of 1,000,000 to 2.5 million, the polyethylene has a weight average molecular weight of 200,000 to 2.5 million and the porosity Of a microporous polyethylene membrane having a porosity of 45% or more, using a laminated separator of two or more layers, an ultrahigh molecular weight polyethylene microporous membrane layer on the positive electrode plate side, and a high porosity polyethylene microporous film layer on the negative electrode plate side. By arranging the porous membrane layer, it was found that it was possible to provide a battery having excellent productivity and excellent high-temperature cycle life performance.

【0047】[0047]

【発明の効果】本発明によれば、高温サイクル寿命性能
及び生産性に優れる電池を作製することができ、高温下
で使用される電子機器の高性能化を測ることが可能とな
る。
According to the present invention, a battery excellent in high-temperature cycle life performance and productivity can be manufactured, and it is possible to measure the high performance of electronic equipment used at high temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の角形非水電解質二次電池の構成断面
図である。
FIG. 1 is a configuration sectional view of a prismatic nonaqueous electrolyte secondary battery of the present embodiment.

【符号の説明】[Explanation of symbols]

1…非水電解質二次電池 2…電極群 3…正極 4…負極 5…セパレータ 6…電池ケース 7…蓋 8…安全弁 9…正極端子 10…正極リード DESCRIPTION OF SYMBOLS 1 ... Non-aqueous electrolyte secondary battery 2 ... Electrode group 3 ... Positive electrode 4 ... Negative electrode 5 ... Separator 6 ... Battery case 7 ... Lid 8 ... Safety valve 9 ... Positive electrode terminal 10 ... Positive electrode lead

フロントページの続き Fターム(参考) 5H021 AA06 CC04 EE04 HH02 HH07 HH10 5H029 AJ05 AK02 AK03 AL01 AL02 AL06 AL12 AM03 AM04 AM05 AM07 BJ02 BJ14 Continued on front page F-term (reference) 5H021 AA06 CC04 EE04 HH02 HH07 HH10 5H029 AJ05 AK02 AK03 AL01 AL02 AL06 AL12 AM03 AM04 AM05 AM07 BJ02 BJ14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、セパレータと、非水電
解質を備えた非水電解質二次電池において、前記セパレ
ータとして、重量平均分子量が100万以上の超高分子
量ポリエチレン微多孔質膜と、空孔率が45%以上の高
空孔率ポリエチレン微多孔質膜とを二層以上組み合わせ
てなるセパレータを用い、正極板側に超高分子量ポリエ
チレン微多孔質膜層が、負極板側に高空孔率ポリエチレ
ン微多孔質膜層が当接するよう配したことを特徴とする
非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein, as the separator, a microporous ultrahigh molecular weight polyethylene membrane having a weight average molecular weight of 1,000,000 or more; A separator comprising a combination of two or more layers of a high porosity polyethylene microporous membrane having a porosity of 45% or more is used. An ultrahigh molecular weight polyethylene microporous membrane layer is provided on the positive electrode plate side, and a high porosity is provided on the negative electrode plate side. A non-aqueous electrolyte secondary battery, wherein a polyethylene microporous membrane layer is disposed in contact with the non-aqueous electrolyte secondary battery.
【請求項2】 前記超高分子量ポリエチレン微多孔質膜
として、重量平均分子量が100万以上250万以下の
ポリエチレンからなり、空孔率が35%以上60%以下
の微多孔質膜を用いたことを特徴とする請求項1記載の
非水電解質二次電池。
2. A microporous ultrahigh molecular weight polyethylene microporous membrane comprising polyethylene having a weight average molecular weight of 1,000,000 to 2.5,000,000 and a porosity of 35% to 60%. The non-aqueous electrolyte secondary battery according to claim 1, wherein:
【請求項3】 高空孔率ポリエチレン微多孔質膜とし
て、重量平均分子量が20万以上250万以下のポリエ
チレンからなり、空孔率が45%以上80%以下の微多
孔質膜を用いたことを特徴とする請求項1または2記載
の非水電解質二次電池。
3. A high-porosity polyethylene microporous membrane comprising a polyethylene having a weight-average molecular weight of 200,000 to 2.5 million and a porosity of 45% to 80%. The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein:
JP2000198859A 2000-06-30 2000-06-30 Nonaqueous electrolyte secondary battery Pending JP2002015720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198859A JP2002015720A (en) 2000-06-30 2000-06-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198859A JP2002015720A (en) 2000-06-30 2000-06-30 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002015720A true JP2002015720A (en) 2002-01-18

Family

ID=18696957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198859A Pending JP2002015720A (en) 2000-06-30 2000-06-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002015720A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242506A (en) * 2006-03-10 2007-09-20 Litcel Kk Lithium ion cell, and its manufacturing method and manufacturing equipment
JP2008123861A (en) * 2006-11-13 2008-05-29 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2008243684A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Lithium secondary battery
JP2008270160A (en) * 2007-03-28 2008-11-06 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JP2009211949A (en) * 2008-03-04 2009-09-17 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2012199252A (en) * 2012-07-13 2012-10-18 Nissan Motor Co Ltd Separator for battery, and battery comprising the same
JP2013016523A (en) * 2012-10-25 2013-01-24 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
US8940428B2 (en) 2006-03-21 2015-01-27 Samsung Sdi Co., Ltd. Separator, a lithium rechargeable battery using the same and a method of manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242506A (en) * 2006-03-10 2007-09-20 Litcel Kk Lithium ion cell, and its manufacturing method and manufacturing equipment
US8940428B2 (en) 2006-03-21 2015-01-27 Samsung Sdi Co., Ltd. Separator, a lithium rechargeable battery using the same and a method of manufacture thereof
JP2008123861A (en) * 2006-11-13 2008-05-29 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2008243684A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Lithium secondary battery
JP2008270160A (en) * 2007-03-28 2008-11-06 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JP2009211949A (en) * 2008-03-04 2009-09-17 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2012199252A (en) * 2012-07-13 2012-10-18 Nissan Motor Co Ltd Separator for battery, and battery comprising the same
JP2013016523A (en) * 2012-10-25 2013-01-24 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4626105B2 (en) Lithium ion secondary battery
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
JP4752574B2 (en) Negative electrode and secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
US20070082261A1 (en) Lithium rechargeable battery
KR20100094363A (en) Nonaqueous electrolyte secondary battery
KR20060106622A (en) Negative electrode for non-aqueous secondary battery
JP2004296256A (en) Nonaqueous electrolyte secondary battery
JP4366723B2 (en) Non-aqueous electrolyte secondary battery
JP2001006747A (en) Nonaqueous electrolyte secondary battery
JP3885227B2 (en) Non-aqueous secondary battery
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
JP4081833B2 (en) Sealed non-aqueous electrolyte secondary battery
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
JP2002279956A (en) Nonaqueous electrolyte battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
JP2002237331A (en) Lithium secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
US11881584B2 (en) Negative electrode active material, preparation method thereof, negative electrode and secondary battery both including same
JP4560851B2 (en) Method for producing solid electrolyte battery
JP3722462B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP2002203551A (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213