JP4264209B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4264209B2
JP4264209B2 JP2001357229A JP2001357229A JP4264209B2 JP 4264209 B2 JP4264209 B2 JP 4264209B2 JP 2001357229 A JP2001357229 A JP 2001357229A JP 2001357229 A JP2001357229 A JP 2001357229A JP 4264209 B2 JP4264209 B2 JP 4264209B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte
battery
carboxy
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357229A
Other languages
Japanese (ja)
Other versions
JP2003157834A (en
Inventor
朋仁 岡本
Original Assignee
三洋ジーエスソフトエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋ジーエスソフトエナジー株式会社 filed Critical 三洋ジーエスソフトエナジー株式会社
Priority to JP2001357229A priority Critical patent/JP4264209B2/en
Publication of JP2003157834A publication Critical patent/JP2003157834A/en
Application granted granted Critical
Publication of JP4264209B2 publication Critical patent/JP4264209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は充放電サイクル性能に優れた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、電子技術の進歩により携帯電話、ノートパソコン、ビデオカメラ等の電子機器の高性能化、小型化軽量化が進み、これら電子機器に使用できる高エネルギー密度の電池を求める要求が非常に強くなっている。このような要求を満たす代表的な電池は、リチウムを負極活物質として用いた非水電解質二次電池である。
【0003】
非水電解質二次電池は、例えば、リチウムイオンを吸蔵放出する炭素材料が集電体に保持されてなる負極板、リチウムコバルト複合酸化物のようなリチウムイオンを吸蔵放出するリチウム複合酸化物が集電体に保持されてなる正極板、非プロトン性の有機溶媒にLiClO、LiPF等のリチウム塩が溶解された電解液を保持するとともに負極板と正極板との間に介在されて両極の短絡を防止するセパレータとからなっている。
【0004】
そして、これら正極板及び負極板は、薄いシートないし箔状に成形され、これらがセパレータを介して順に積層又は渦巻き状に巻回されて発電要素とされ、この発電要素が、ステンレス、ニッケルメッキを施した鉄、又はアルミニウム製等の金属缶または、ラミネートフィルムからなる電池容器に収納された後、電解液が注液され、密封されて電池として組み立てられる。
【0005】
ところで、一般に電池にはその使用条件に応じて種々の性能が求められるが、この中の一つに充放電サイクル特性がある。これは特に上記のような二次電池において重要な性能であって、通常、放電容量が所定の容量にまで低下するのに充放電を何回繰り返すことができるかを測定することによって評価される。
【0006】
【発明が解決しようとする課題】
非水電解質二次電池の負極は、1サイクル目の充電時において負極活物質表面上に電解液の還元分解により生成した安定な被膜を形成するために、2サイクル目以降には充電時における電解液の分解はほとんど起こらなくなる。
【0007】
しかし、何度も充放電を重ねて活物質粒子が膨張収縮を繰り返すとともに、活物質粒子自体も崩壊しはじめて、被膜を形成していない活性な表面が現れることにより、再び充電時に電解液が分解しはじめる。このように、充電時における電解液の分解を繰り返して負極合材中での電解液の量が少なくなると、負極でのリチウムイオンの移動がしにくくなる。さらに、正負極間でのリチウムイオンの移動が不十分となり、電池が容量劣化を起こしはじめる。
【0008】
従来から非水電解質二次電池の負極のバインダーには、ポリフッ化ビニリデンやスチレン・ブタジエン共重合体やカルボキシ変性スチレン・ブタジエン共重合体などラテックスとカルボキシメチルセルロースなど混合物などが用いられている。しかし、これらをバインダーに用いた負極では、負極合材の電解液の保持性が悪いために、負極合材中の電解液が早期に枯渇しやすい。そのために上記のような容量劣化が起こりやすくなる。
【0009】
また、特開平10−106540号では、合材中の活物質と電解液との間に充分な量のリチウムイオンを透過させるために、導電性基体上に、網目状に活物質粒子を接着するバインダーと高分子固体電解質とにより結着した合剤膜をしてなるシート状電極を用いるとしている。
【0010】
しかしこの技術では、正極と負極両方にバインダーと高分子固体電解質を用いることから、充電時における電解液の分解の寄与が小さい正極にも電解液が保持されやすくなる分、負極に充分な電解液量が保持されないために、充放電を重ねると上記と同様に、早期に負極合材中の電解液が枯渇して上記と同様に容量劣化が起こりやすくなる。
【0011】
そこで、本発明においては、負極合材中に電解液が保持しやすくして、負極合材中の電解液が早期に枯渇することを防ぐことにより、充放電サイクル特性に優れた非水電解質二次電池を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
請求項1の発明は、正極と負極と非水電解液とを備えた非水電解質二次電池において、前記負極に備えた負極合材層は活物質とカルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質を含み、負極合材層におけるカルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計含有量3〜7wt%であり、カルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計重量に対するカルボキシ変性スチレン・ブタジエン共重合体重量の比が30〜95wt%とすることを特徴とする。
【0013】
請求項1の発明によれば、負極合材で早期に電解液が枯渇することを防ぐことができ、その結果、充放電サイクル特性に優れた非水電解質二次電池を得ることができる。
【0014】
【本発明の実施の形態】
本発明は、正極と負極と非水電解液とを備えた非水電解質二次電池において、前記負極に備えた負極合材層は活物質とカルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質を含み、負極合材層におけるカルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計含有量3〜7wt%であり、カルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計重量に対するカルボキシ変性スチレン・ブタジエン共重合体重量の比が30〜95wt%とすることを特徴とするものである。
【0015】
充放電を繰り返す際に、充電時に電解液の還元分解が繰り返されて、負極合材中で電解液が減少した場合でも、高分子固体電解質を負極合材中に含むことにより、負極合材中に電解液が保持されやすいために、負極合材で早期に電解液が枯渇することを防ぐことができる。これにより、充放電サイクル特性に優れた非水電解質二次電池を提供することが可能となる。
【0016】
また本発明は、負極合材層におけるカルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計含有量3〜7wt%とする。カルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計含有量wt%未満では、電極を作成するためのスラリー化が困難になり、さらに、電極集電体に対する合材の接着性が劣る。また、カルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計含有量が7wt%を越えると、負極での内部抵抗が増大するために、電池の高率放電特性や低温放電特性に悪影響を及ぼすために好ましくない。
【0017】
さらに本発明は、カルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計重量に対するカルボキシ変性スチレン・ブタジエン共重合体重量の比が30〜95wt%とする。カルボキシ変性スチレン・ブタジエン共重合体が30wt%未満では、電極集電体に対する合材の接着性が劣り、また、カルボキシ変性スチレン・ブタジエン共重合体が95wt%を越えると、負極合材層中に含まれる高分子固体電解質量が少なくなって、負極合材中の電解液保持能力が劣るようになる。したがって、カルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計重量に対するカルボキシ変性スチレン・ブタジエン共重合体重量の比が30〜95wt%から外れた場合には、充放電サイクル特性が劣るようになる。
【0018】
さらに本発明において、バインダーとしては、網目状に活物質粒子を覆うように接着するもの、さらに集電体である金属箔との接着するものが望ましく、カルボキシ変性スチレン・ブタジエン共重合体を用いる
【0019】
本発明は、負極合材中に電解液が保持されやすくすることにより、負極合材で早期に電解液が枯渇することを防ぐものである。したがって、電解液を保持しやすい高分子固体電解質は、正極と負極両方に含ませてもよいが、その場合には
正極にも電解液が保持されやすくなり、その影響で負極に充分な電解液量が保持されなくなる。そのため、本発明においては、高分子固体電解質は負極合材層中にのみ含まれていることが好ましい。
【0020】
高分子固体電解質としては、炭酸エステル系を主とした電解液溶媒になじみやすいものであり、これらの電解液溶媒を含有したゲル電解質での状態で10−4S・cm−1のオーダーを示すものが、リチウムイオンの伝導の点から望ましい。具体的には、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリロニトリル、ポリエチレングリコール、ポリエチレンオキサイドのイソシアネート架橋体、ポリプロピレンオキサイドのイソシアネート架橋体、エチレンオキサイドとプロピレンオキサイドとの共重合体などがあり、好ましくはポリエチレンオキサイド、ポリアクリロニトリル、ポリエチレングリコールである。
【0021】
本発明の非水電解質二次電池で使用する負極活物質としては、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe、WO、MoO、SiO、CuO等の金属酸化物、グラファイト、カーボン等の炭素質材料、Li(LiN)等の窒化リチウム、もしくは金属リチウム、又はこれらの混合物を用いてもよい。
【0022】
本発明の非水電解質二次電池に用いる電解液の有機溶媒には、特に制限はなく、例えばエーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類等を用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系化合物が好ましい。
【0023】
これらの例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、アニソール、モノグライム、4−メチル−2−ペンタノン、酢酸エチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジクロロエタン、γ−ブチロラクトン、ジメトキシエタン、メチルフォルメイト、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3−メチル−スルホラン、リン酸トリメチル、リン酸トリエチル及びこれらの混合溶媒等を挙げることができるが、必ずしもこれらに限定されるものではない。さらに、好ましくは環状カーボネート類及び環状エステル類である。もっとも好ましくは、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートのうち、1種又は2種以上した混合物の有機溶媒である。
【0024】
また、本発明の非水電解質二次電池に用いる電解質塩としては特に制限はないが、LiClO、LiBF、LiAsF、CFSOLi、LiPF、LiI、LiAlCl等及びそれらの混合物が挙げられる。さらに、LiBF、LiPFのうち、1種又は2種を混合物したリチウム塩が好ましい。
【0025】
また、上記電解質には補助的に固体のイオン導伝性ポリマー電解質を用いることもできる。この場合、非水電解質二次電池の構成としては、正極、負極およびセパレータと有機又は無機の固体電解質と上記非水電解液との組み合わせ、又は正極、負極およびセパレータとしての有機又は無機の固体電解質膜と上記非水電解液との組み合わせがあげられる。
【0026】
また、セパレータ(隔離体)としては、ポリエチレンやポリプロピレン等の絶縁性のポリオレフィン微多孔膜や、高分子固体電解質、高分子固体電解質に電解液を含有させたゲル状電解質等も使用できる。
【0027】
さらに、高分子固体電解質として有孔性高分子固体電解質膜を使用する場合、高分子中に含有させる電解液と、細孔中に含有させる電解液とが異なっていてもよい。また、有孔性高分子固体電解質膜は、極板の内部および表面、および活物質自身を被覆する形で存在するものも含まれる。
【0028】
これらのポリオレフィン微多孔膜や、高分子固体電解質等を使用した場合には、軽量で柔軟性があり、巻回極板に使用する場合に有利である。さらに、高分子固体電解質以外にも、無機固体電解質あるいは有機高分子固体電解質と無機固体電解質との混合材料などを使用することができる。
【0029】
本発明の負極と組み合わされる正極の活物質としては、組成式LiMO、Li(ただしM は一種類以上の遷移金属、0≦x≦1、0≦y≦2 )で表される複合酸化物、トンネル構造または層状構造の金属カルコゲン化物または金属酸化物を用いることができる。その具体例としては、LiCoO、LiCoNi1−x、LiMn 、LiMn 、MnO、FeO、V、V13、TiO、TiS等が挙げられる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマー等が挙げられる。さらに、無機化合物、有機化合物を問わず、上記各種活物質を混合して用いてもよい。
【0030】
また、正極に用いる導電助剤としては、アセレンブラックなどのカーボンブラック、あるいは、鱗片状、塊状、繊維状などの黒鉛材料などのものを用いることができる。
【0031】
さらに、正極に用いるポリマーバインダーとしては、耐酸化性があり網目状に活物質粒子を覆うように接着するものが望ましい。具体的には、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレン共重合体などフッ化ビニリデン系の共重合体、テトラフルオロエチレンとカルボキシメチルセルロースなどのセルロース系の増粘剤とを併用したもの等を挙げることができるが、必ずしもこれらに限定されるものではない。
【0032】
また、電池の形状は特に限定されるものではなく、本発明は、角形、楕円形、コイン形、ボタン形、シート形電池等の様々な形状の非水電解質二次電池に適用可能である。
【0033】
【実施例】
以下、本発明を適用した具体的な実施例について説明するが、本発明は本実施例により何ら限定されるものではなく、その主旨を変更しない範囲において適宜変更して実施することが可能である。
【0034】
この実施例では、高分子固体電解質を含む電極の種類、負極合材層におけるバインダーと高分子固体電解質の合計含有量、バインダーと高分子固体電解質の混合比、バインダーの種類、高分子固体電解質の種類を変えて、合計22種類の非水電解質二次電池を作製し、各電池の特性を比較した。各電池に共通部分をつぎに示す。
【0035】
本発明に用いた角形非水電解質二次電池の概略断面を図1に示す。図1において、1は角形非水電解質二次電池、2は巻回型発電要素、3は正極、4は負極、5はセパレータ、6は電池ケース、7は電池蓋、8は安全弁、9は正極端子、10正極リードである。
【0036】
本発明の角形非水電解質二次電池は、アルミニウム集電体に正極活物質を塗布してなる正極3と、銅集電体に負極活物質を塗布してなる負極4と非水電解液を注入したセパレータ5を介して巻回した巻回型発電要素2を電池ケース(厚み5mm)6に収納してなるものである。電池ケース6に安全弁8を設けた電池蓋7をレーザー溶接することによって取り付けられ、正極端子9は正極リード10を介して正極3と接続され、負極4は電池ケース6の内壁と接触により接続されている。
【0037】
正極は次のようにして作製した。活物質のLiCoO90wt%と、導電材のアセチレンブラック4wt%と、バインダーとのポリフッ化ビニリデン(PVdF)6wt%とを混合して正極合材とし、N−メチル−2−ピロリドンに分散させることによりスラリーを調製した。このスラリーを厚さ20μmアルミ集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成型することにより正極を作製し、これを正極P1とした。
【0038】
また、活物質のLiCoO90wt%と、導電材のアセチレンブラック4t%と、バインダーとしてのPVdFと高分子固体電解質としてのポリエチレンオキサイド(PEO)との1:1混合物6wt%とを混合して正極合材とし、N−メチル−2−ピロリドンに分散させることによりスラリーを調製した。このスラリーを厚さ20μmアルミ集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成型することにより正極を作製し、これを正極P2とした。
【0039】
負極は次のようにして作製した。活物質の黒鉛粉末95wt%とバインダーのカルボキシ変性スチレン・ブタジエン共重合体(CSBR)5wt%とを混合し、水を加えて負極スラリーを調整した。厚さ10μmの銅集電体にロールコーターを用いて、送り速度0.50m/min、乾燥温度125℃、送風量10.0m/secの条件で、負極スラリーを両面に各200m塗布し、膜厚200〜240μmの塗工膜を得た。ロールプレスで圧縮成型することにより負極を作製し、これを負極N1とした。
【0040】
また、活物質の黒鉛粉末とバインダーと高分子固体電解質とを混合し、水を加えて負極スラリーを調整した。厚さ10μmの銅集電体にロールコーターを用いて、送り速度0.50m/min、乾燥温度125℃、送風量10.0m/secの条件で、負極スラリーを両面に各200m塗布し、膜厚200〜240μmの塗工膜を得た。ロールプレスで圧縮成型することにより負極を作製し、これを負極N2とした。
【0041】
セパレータには、厚さ25μm程度の微多孔性ポリエチレンフィルムを用いた。また、電解液は、1MのLiPFをエチレンカーボネート及びエチルメチルカーボネートの混合溶媒(容積比1:2)に溶解した非水電解液を使用した。
【0042】
以上のようにして作製した角形非水電解質二次電池について、以下の条件において、25℃で充放電サイクル試験をおこなった。充電は、700mA定電流で4.20Vまで、さらに4.20V定電圧で、合計2.5時間行い、放電は700mA定電流で終止電圧2.75Vまでおこなった。なお、充電後および放電後に各10分の休止時間を設けた。充放電サイクル数は500サイクルとし、1サイクル目、250サイクル目、および500サイクル目での放電容量を測定して、充放電サイクル特性を評価した。なお、1サイクル目放電容量に対する250サイクル目放電容量および500サイクル目放電容量の比を各サイクルにおける放電容量維持率(%)とした。
【0043】
高率放電特性の測定は、充放電サイクル試験と同様の条件で5サイクルの充放電をおこなった後、25℃において、6サイクル目の充放電を、700mA定電流で4.20Vまで、さらに4.20V定電圧で、合計2.5時間充電を行い、引き続いて1400mA定電流で終止電圧2.75Vまで放電を行った。そして、5サイクル目(700mA定電流放電)の放電容量に対する6サイクル目(1400mA定電流放電)の放電容量の比を高率/低率放電容量比(%)とした。
【0044】
低温放電特性の測定は、高率放電特性の測定が終わった電池を、充放電サイクル試験と同様の条件で5サイクルの充放電(7〜11サイクル)をおこなった後、25℃において、12サイクル目の充放電を、700mA定電流で4.20Vまで、さらに4.20V定電圧で、合計2.5時間充電を行い、引き続いて、0℃において、700mA定電流で終止電圧2.75Vまで放電を行った。そして、5サイクル目(25℃)の放電容量に対する12サイクル目(0℃)の放電容量の比を低温/室温放電容量比(%)とした。
【0045】
[実施例1]
まず、正極合材層および負極合材層に高分子電解質を含んだ場合の影響を比較した。なお、負極N2において、負極合材の混合比は、活物質の黒鉛粉末95wt%、バインダーと高分子固体電解質との合計5wt%とし、バインダーと高分子固体電解質の混合比(重量比)は50:50とした。また、バインダーとしてはカルボキシ変性スチレン・ブタジエン共重合体(CSBR)、高分子固体電解質としてはPEOを使用した。そして、正極P1、P2と負極N1、N2を組み合わせて、4種類の非水電解質二次電池を作製し、その特性を比較した。電池の内容および測定結果を表1に示した。
【0046】
【表1】

Figure 0004264209
【0047】
表1の結果から、容量維持率は、正極合材のみに高分子電解質を含んだ電池Bと、正極合材と負極合材共に高分子電解質を含まない電池Aとでは、ほぼ同程度であった。また、容量維持率は、負極合材に高分子電解質を含む電池Cおよび電池Dの方が、負極合材に高分子電解質を含まない電池Aや電池Bに比べて大きくなった。また、電池Cと電池Dの比較では、負極合材にのみ高分子電解質を含んだ電池Cの方が、容量維持率は大きくなることがわかった。
【0048】
[実施例2]
正極P1と負極P2とを組み合わせて、負極P2の負極合材層におけるバインダーと高分子固体電解質の合計含有量を1〜12wt%の範囲で変化させた7種類の非水電解質二次電池を作製し、その特性を比較した。ただし、電池Cは実施例1と同じ電池である。なお、バインダーとしてはCSBR、高分子固体電解質としてはPEOを使用し、バインダーと高分子固体電解質の混合比(重量比)は50:50で一定とした。電池の内容および測定結果を表2に示した。
【0049】
【表2】
Figure 0004264209
【0050】
表2から、負極合材中の、バインダーと高分子固体電解質の合計含有量が12wt%である電池Jでは、電池E、F、C、G、H、Iと比較して、高率/低率放電容量比および高温/室温放電容量比共に劣っていることがわかった。なお、電池Eの高率/低率放電容量比および高温/室温放電容量比は、電池F、C、G、H、Iとほぼ同程度の値であったが、負極を作製するためのスラリー化が困難になり、製造工程上大きな問題が生じた。また、電池F、C、G、H、Iの中では、バインダーと高分子固体電解質の合計含有量が3〜7wt%である電池F、C、Gの特性が、特に優れていることがわかった。
【0051】
[実施例3]
正極P1と負極P2とを組み合わせて、負極P2の負極合材層におけるバインダーと高分子固体電解質の合計含有量を5wt%と一定とし、バインダーと高分子固体電解質の混合比(重量比)を変化させた7種類の非水電解質二次電池を作製し、その特性を比較した。ただし、電池Cは実施例1と同じ電池である。なお、バインダーとしてはCSBR、高分子固体電解質としてはPEOを使用した。電池の内容および測定結果を表3に示した。
【0052】
【表3】
Figure 0004264209
【0053】
表3の結果から、バインダーと高分子固体電解質の混合比において、バインダー量が20wt%の電池Kおよび97wt%の電池Pの容量維持率は、電池L、C、M、N、Oと比較した場合、かなり劣っていることがわかった。そのため、バインダーと高分子固体電解質の混合比においては、バインダー量を30〜95wt%の範囲とすることにより、優れた容量維持率が得られることがわかった。
【0058】
【発明の効果】
本発明の非水電解質二次電池は、負極に備えた負極合剤層は活物質とカルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質を含み、負極合剤層におけるカルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計含有量3〜7wt%であり、カルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計重量に対するカルボキシ変性スチレン・ブタジエン共重合体重量の比が30〜95wt%とするものである。
【0059】
本発明によれば、高分子固体電解質を負極合材中に含むことにより、負極合材中に電解液が保持されやすいために、負極合材で早期に電解液が枯渇することを防ぐことができ、充放電サイクル特性に優れた非水電解質二次電池を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の角形非水電解質二次電池の縦断面を示す図。
【符号の説明】
1 角形非水電解質二次電池
2 巻回型発電要素
3 正極
4 負極
5 セパレータ
6 電池ケース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle performance.
[0002]
[Prior art]
In recent years, advances in electronic technology have led to higher performance, smaller size, and lighter electronic devices such as mobile phones, notebook computers, and video cameras, and the demand for high energy density batteries that can be used in these electronic devices has become very strong. ing. A typical battery that satisfies such a requirement is a nonaqueous electrolyte secondary battery using lithium as a negative electrode active material.
[0003]
Nonaqueous electrolyte secondary batteries include, for example, a negative electrode plate in which a carbon material that occludes and releases lithium ions is held by a current collector, and a lithium composite oxide that occludes and releases lithium ions, such as a lithium cobalt composite oxide. A positive electrode plate held by an electric body, an electrolyte solution in which a lithium salt such as LiClO 4 and LiPF 6 is dissolved in an aprotic organic solvent, and is interposed between the negative electrode plate and the positive electrode plate to It consists of a separator that prevents short circuit.
[0004]
The positive electrode plate and the negative electrode plate are formed into a thin sheet or foil, and these are sequentially laminated or spirally wound through a separator to form a power generation element. The power generation element is made of stainless steel or nickel plating. After being accommodated in a metal can made of iron or aluminum or a battery container made of a laminate film, an electrolytic solution is injected, sealed, and assembled as a battery.
[0005]
By the way, in general, a battery is required to have various performances according to its use conditions, and one of them has charge / discharge cycle characteristics. This is an important performance particularly in the secondary battery as described above, and is usually evaluated by measuring how many times charging and discharging can be repeated when the discharge capacity is reduced to a predetermined capacity. .
[0006]
[Problems to be solved by the invention]
Since the negative electrode of the non-aqueous electrolyte secondary battery forms a stable film formed by reductive decomposition of the electrolytic solution on the surface of the negative electrode active material at the time of charging in the first cycle, Almost no liquid decomposition occurs.
[0007]
However, the active material particles repeat expansion and contraction repeatedly after repeated charging and discharging, and the active material particles themselves start to collapse, and an active surface not forming a film appears, so that the electrolyte is decomposed again during charging. Start to do. As described above, when the electrolytic solution is repeatedly decomposed during charging and the amount of the electrolytic solution in the negative electrode mixture decreases, it becomes difficult for lithium ions to move in the negative electrode. Furthermore, the movement of lithium ions between the positive and negative electrodes becomes insufficient, and the battery begins to deteriorate in capacity.
[0008]
Conventionally, as a binder for a negative electrode of a non-aqueous electrolyte secondary battery, a mixture such as a latex such as polyvinylidene fluoride, a styrene / butadiene copolymer, a carboxy-modified styrene / butadiene copolymer, and carboxymethylcellulose has been used. However, in the negative electrode using these as a binder, the electrolyte solution in the negative electrode mixture is poor in retention, so that the electrolyte solution in the negative electrode mixture is easily depleted at an early stage. Therefore, the capacity deterioration as described above is likely to occur.
[0009]
In JP-A-10-106540, active material particles are bonded in a mesh form on a conductive substrate in order to allow a sufficient amount of lithium ions to pass between the active material in the mixture and the electrolytic solution. A sheet-like electrode made of a mixture film bound by a binder and a polymer solid electrolyte is used.
[0010]
However, in this technique, since a binder and a solid polymer electrolyte are used for both the positive electrode and the negative electrode, a sufficient amount of electrolyte solution is sufficient for the negative electrode because the electrolyte solution is easily retained even in the positive electrode, which has a small contribution to the decomposition of the electrolyte during charging. Since the amount is not maintained, repeated charging and discharging causes the electrolyte solution in the negative electrode mixture to be depleted at an early stage and the capacity deterioration is likely to occur as described above.
[0011]
Therefore, in the present invention, the electrolyte solution is easily retained in the negative electrode mixture, and the electrolyte solution in the negative electrode mixture is prevented from being depleted at an early stage. The object is to provide a secondary battery.
[0012]
[Means for Solving the Problems]
The invention of claim 1 is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the negative electrode mixture layer provided on the negative electrode comprises an active material, a carboxy-modified styrene-butadiene copolymer , The total content of the carboxy-modified styrene / butadiene copolymer and the polymer solid electrolyte in the negative electrode mixture layer is 3 to 7 wt%, including the molecular solid electrolyte, and the carboxy-modified styrene / butadiene copolymer and the polymer solid electrolyte. carboxy-modified styrene-butadiene copolymer weight ratio which is characterized in that the 30~95Wt% of the total weight of the.
[0013]
According to the first aspect of the invention, it is possible to prevent the electrolyte solution from being exhausted at an early stage by the negative electrode mixture, and as a result, it is possible to obtain a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics.
[0014]
[Embodiments of the Invention]
The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the negative electrode composite layer provided in the negative electrode comprises an active material, a carboxy-modified styrene / butadiene copolymer, and a polymer solid electrolyte. The total content of the carboxy-modified styrene / butadiene copolymer and the polymer solid electrolyte in the negative electrode mixture layer is 3 to 7 wt%, and the total weight of the carboxy-modified styrene / butadiene copolymer and the polymer solid electrolyte carboxy-modified styrene-butadiene copolymer weight ratio of relative is characterized in that the 30~95wt%.
[0015]
Even when charge / discharge is repeated, reductive decomposition of the electrolyte solution is repeated at the time of charging, and even when the electrolyte solution decreases in the negative electrode mixture, a polymer solid electrolyte is contained in the negative electrode mixture, Therefore, it is possible to prevent the electrolyte solution from being depleted early in the negative electrode mixture. Thereby, it is possible to provide a nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.
[0016]
In the present invention, the total content of the carboxy-modified styrene / butadiene copolymer and the polymer solid electrolyte in the negative electrode mixture layer is 3 to 7 wt%. When the total content of the carboxy-modified styrene / butadiene copolymer and the polymer solid electrolyte is less than 3 wt%, it becomes difficult to form a slurry for forming an electrode, and the adhesion of the composite material to the electrode current collector is difficult. Inferior. Also, if the total content of the carboxy-modified styrene / butadiene copolymer and the solid polymer electrolyte exceeds 7 wt%, the internal resistance at the negative electrode increases, which adversely affects the high rate discharge characteristics and low temperature discharge characteristics of the battery. Is not preferable.
[0017]
The invention further carboxy-modified styrene-butadiene copolymer weight ratio of to the total weight of carboxy-modified styrene-butadiene copolymer and polymer solid electrolyte is to 30~95wt%. If the carboxy-modified styrene / butadiene copolymer is less than 30 wt%, the adhesion of the mixture to the electrode current collector is poor, and if the carboxy-modified styrene / butadiene copolymer exceeds 95 wt%, The polymer solid electrolytic mass contained becomes small, and the electrolyte solution holding ability in the negative electrode mixture becomes inferior. Therefore, when the carboxy-modified styrene-butadiene copolymer weight ratio of to the total weight of carboxy-modified styrene-butadiene copolymer and polymer solid electrolyte is out 30~95Wt%, as charge-discharge cycle characteristics are poor Become.
[0018]
Furthermore, in the present invention, as the binder, which adheres so as to cover the active material particles in a mesh shape, further rather is desirable that bonding between the metal foil as a current collector, a carboxy-modified styrene-butadiene copolymer Use .
[0019]
The present invention prevents the electrolyte solution from being quickly depleted by the negative electrode mixture by facilitating the retention of the electrolyte in the negative electrode mixture. Therefore, the solid polymer electrolyte that easily holds the electrolytic solution may be included in both the positive electrode and the negative electrode, but in that case, the electrolytic solution is also easily held in the positive electrode. The amount will not be retained. Therefore, in the present invention, it is preferable that the polymer solid electrolyte is contained only in the negative electrode mixture layer.
[0020]
As a polymer solid electrolyte, it is easy to be familiar with an electrolyte solvent mainly composed of a carbonate ester, and shows an order of 10 −4 S · cm −1 in a state of a gel electrolyte containing these electrolyte solvents. It is desirable from the viewpoint of lithium ion conduction. Specific examples include polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyethylene glycol, an isocyanate cross-linked product of polyethylene oxide, an isocyanate cross-linked product of polypropylene oxide, a copolymer of ethylene oxide and propylene oxide, preferably polyethylene oxide, Polyacrylonitrile and polyethylene glycol.
[0021]
As the negative electrode active material used in the nonaqueous electrolyte secondary battery of the present invention, an alloy of lithium, such as Al, Si, Pb, Sn, Zn, Cd, LiFe 2 O 3 , WO 2 , MoO 2 , SiO, CuO A metal oxide such as graphite, a carbonaceous material such as graphite or carbon, lithium nitride such as Li 5 (Li 3 N), metal lithium, or a mixture thereof may be used.
[0022]
There are no particular restrictions on the organic solvent of the electrolyte used in the non-aqueous electrolyte secondary battery of the present invention. For example, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, halogenated hydrocarbons. , Esters, carbonates, nitro compounds, phosphate ester compounds, sulfolane hydrocarbons, etc. can be used, among these ethers, ketones, esters, lactones, halogenated hydrocarbons , Carbonates and sulfolane compounds are preferred.
[0023]
Examples of these are tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, 4-methyl-2-pentanone, ethyl acetate, methyl acetate, methyl propionate, ethyl propionate, 1,2-dichloroethane. Γ-butyrolactone, dimethoxyethane, methyl formate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, phosphorus Examples thereof include trimethyl acid, triethyl phosphate, and mixed solvents thereof, but are not necessarily limited thereto. Furthermore, cyclic carbonates and cyclic esters are preferred. Most preferably, the organic solvent is a mixture of one or more of ethylene carbonate, propylene carbonate, ethyl methyl carbonate, and diethyl carbonate.
[0024]
The electrolyte salt used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but LiClO 4 , LiBF 4 , LiAsF 6 , CF 3 SO 3 Li, LiPF 6 , LiI, LiAlCl 4 and the like and mixtures thereof. Is mentioned. Furthermore, a lithium salt obtained by mixing one or two of LiBF 4 and LiPF 6 is preferable.
[0025]
In addition, a solid ion-conducting polymer electrolyte can be used as an auxiliary material for the electrolyte. In this case, the configuration of the non-aqueous electrolyte secondary battery includes a combination of a positive electrode, a negative electrode and a separator, an organic or inorganic solid electrolyte and the non-aqueous electrolyte, or an organic or inorganic solid electrolyte as the positive electrode, the negative electrode and the separator. A combination of the membrane and the non-aqueous electrolyte solution can be mentioned.
[0026]
In addition, as the separator (separator), an insulating polyolefin microporous film such as polyethylene or polypropylene, a polymer solid electrolyte, a gel electrolyte in which an electrolyte is contained in a polymer solid electrolyte, or the like can be used.
[0027]
Furthermore, when a porous polymer solid electrolyte membrane is used as the polymer solid electrolyte, the electrolyte solution contained in the polymer and the electrolyte solution contained in the pores may be different. In addition, the porous polymer solid electrolyte membrane includes those present in a form covering the inside and the surface of the electrode plate and the active material itself.
[0028]
When these polyolefin microporous membranes, polymer solid electrolytes, and the like are used, they are lightweight and flexible, and are advantageous when used for a wound electrode plate. Furthermore, in addition to the polymer solid electrolyte, an inorganic solid electrolyte or a mixed material of an organic polymer solid electrolyte and an inorganic solid electrolyte can be used.
[0029]
As the active material of the positive electrode combined with the negative electrode of the present invention, composition formula Li x MO 2 , Li y M 2 O 4 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2) Or a metal chalcogenide or metal oxide having a tunnel structure or a layered structure. Specific examples thereof include LiCoO 2 , LiCo x Ni 1-x O 2 , LiMn 2 O 2 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS. 2 etc. are mentioned. Examples of the organic compound include conductive polymers such as polyaniline. Furthermore, the above various active materials may be mixed and used regardless of whether they are inorganic compounds or organic compounds.
[0030]
Moreover, as a conductive support agent used for a positive electrode, things, such as carbon black, such as an acerene black, or graphite materials, such as a scale shape, a lump shape, and a fiber shape, can be used.
[0031]
Furthermore, the polymer binder used for the positive electrode is preferably one that has oxidation resistance and adheres so as to cover the active material particles in a mesh form. Specifically, polyvinylidene fluoride, vinylidene fluoride copolymers such as vinylidene fluoride and hexafluoropropylene copolymer, and those using cellulose thickeners such as tetrafluoroethylene and carboxymethyl cellulose in combination. Although it can mention, it is not necessarily limited to these.
[0032]
Further, the shape of the battery is not particularly limited, and the present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a square, an ellipse, a coin, a button, and a sheet.
[0033]
【Example】
Hereinafter, specific examples to which the present invention is applied will be described. However, the present invention is not limited to the examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .
[0034]
In this example, the type of the electrode including the polymer solid electrolyte, the total content of the binder and the polymer solid electrolyte in the negative electrode mixture layer, the mixing ratio of the binder and the polymer solid electrolyte, the type of the binder, the polymer solid electrolyte A total of 22 types of nonaqueous electrolyte secondary batteries were produced by changing the types, and the characteristics of the batteries were compared. The parts common to each battery are shown below.
[0035]
FIG. 1 shows a schematic cross section of the prismatic nonaqueous electrolyte secondary battery used in the present invention. In FIG. 1, 1 is a square nonaqueous electrolyte secondary battery, 2 is a wound-type power generation element, 3 is a positive electrode, 4 is a negative electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 is a safety valve, 9 is The positive terminal and the 10 positive lead.
[0036]
The rectangular non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode 3 formed by applying a positive electrode active material to an aluminum current collector, a negative electrode 4 formed by applying a negative electrode active material to a copper current collector, and a non-aqueous electrolyte. The wound power generation element 2 wound through the injected separator 5 is housed in a battery case (thickness 5 mm). A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the positive electrode terminal 9 is connected to the positive electrode 3 via the positive electrode lead 10, and the negative electrode 4 is connected to the inner wall of the battery case 6 by contact. ing.
[0037]
The positive electrode was produced as follows. 90 wt% of active material LiCoO 2, 4 wt% of conductive material acetylene black, and 6 wt% of polyvinylidene fluoride (PVdF) as a binder are mixed to form a positive electrode mixture and dispersed in N-methyl-2-pyrrolidone. A slurry was prepared. The slurry was uniformly applied to a 20 μm thick aluminum current collector, dried, and then compression molded with a roll press to produce a positive electrode, which was designated as positive electrode P1.
[0038]
Also, a positive electrode was prepared by mixing 90 wt% of active material LiCoO 2 , 4 t% of acetylene black as a conductive material, 6 wt% of a 1: 1 mixture of PVdF as a binder and polyethylene oxide (PEO) as a polymer solid electrolyte. A slurry was prepared by dispersing in N-methyl-2-pyrrolidone as a composite material. This slurry was uniformly applied to a 20 μm thick aluminum current collector, dried, and then compression molded with a roll press to produce a positive electrode, which was designated as positive electrode P2.
[0039]
The negative electrode was produced as follows. An active material graphite powder 95 wt% and a binder carboxy-modified styrene / butadiene copolymer (CSBR) 5 wt% were mixed, and water was added to prepare a negative electrode slurry. Using a roll coater on a copper collector with a thickness of 10 μm, a negative electrode slurry was applied to both sides at a feed rate of 0.50 m / min, a drying temperature of 125 ° C., and an air flow rate of 10.0 m / sec. A coating film having a thickness of 200 to 240 μm was obtained. A negative electrode was produced by compression molding with a roll press, and this was designated as negative electrode N1.
[0040]
Moreover, the graphite powder of an active material, a binder, and a polymer solid electrolyte were mixed, and water was added to prepare a negative electrode slurry. Using a roll coater on a copper collector with a thickness of 10 μm, a negative electrode slurry was applied to both sides at a feed rate of 0.50 m / min, a drying temperature of 125 ° C., and an air flow rate of 10.0 m / sec. A coating film having a thickness of 200 to 240 μm was obtained. A negative electrode was produced by compression molding with a roll press, and this was designated as negative electrode N2.
[0041]
As the separator, a microporous polyethylene film having a thickness of about 25 μm was used. Further, the electrolyte, a mixed solvent of LiPF 6 in 1M ethylene carbonate and ethyl methyl carbonate (volume ratio 1: 2) was used was a non-aqueous electrolyte dissolved.
[0042]
The square nonaqueous electrolyte secondary battery produced as described above was subjected to a charge / discharge cycle test at 25 ° C. under the following conditions. Charging was performed at a constant current of 700 mA up to 4.20 V, and further at a constant voltage of 4.20 V for a total of 2.5 hours, and discharging was performed at a constant current of 700 mA to a final voltage of 2.75 V. In addition, a rest period of 10 minutes was provided after charging and after discharging. The number of charge / discharge cycles was 500, and the discharge capacities at the first, 250th, and 500th cycles were measured to evaluate the charge / discharge cycle characteristics. The ratio of the 250th cycle discharge capacity and the 500th cycle discharge capacity to the first cycle discharge capacity was defined as the discharge capacity retention rate (%) in each cycle.
[0043]
The high-rate discharge characteristics were measured by charging and discharging 5 cycles under the same conditions as in the charge and discharge cycle test, and then charging and discharging the 6th cycle at 25 ° C. up to 4.20 V at a constant current of 700 mA. The battery was charged at a constant voltage of 20 V for a total of 2.5 hours, and subsequently discharged to a final voltage of 2.75 V at a constant current of 1400 mA. The ratio of the discharge capacity at the sixth cycle (1400 mA constant current discharge) to the discharge capacity at the fifth cycle (700 mA constant current discharge) was defined as a high rate / low rate discharge capacity ratio (%).
[0044]
The low-temperature discharge characteristics were measured after 5 cycles of charge and discharge (7 to 11 cycles) were performed under the same conditions as in the charge and discharge cycle test for the batteries for which the measurement of high rate discharge characteristics was completed, and then 12 cycles at 25 ° C. Charge and discharge the eyes to 4.20 V at a constant current of 700 mA, and further charge at a constant voltage of 4.20 V for a total of 2.5 hours, and subsequently discharge at 0 ° C. to a final voltage of 2.75 V at a constant current of 700 mA. Went. The ratio of the discharge capacity at the 12th cycle (0 ° C.) to the discharge capacity at the 5th cycle (25 ° C.) was defined as the low temperature / room temperature discharge capacity ratio (%).
[0045]
[Example 1]
First, the effects when a polymer electrolyte was included in the positive electrode mixture layer and the negative electrode mixture layer were compared. In the negative electrode N2, the mixing ratio of the negative electrode mixture is 95 wt% of the active material graphite powder and the total of the binder and the solid polymer electrolyte is 5 wt%, and the mixing ratio (weight ratio) of the binder and the solid polymer electrolyte is 50. : 50. Further, carboxy-modified styrene / butadiene copolymer (CSBR) was used as the binder, and PEO was used as the polymer solid electrolyte. Then, positive electrodes P1 and P2 and negative electrodes N1 and N2 were combined to produce four types of nonaqueous electrolyte secondary batteries and their characteristics were compared. The contents and measurement results of the battery are shown in Table 1.
[0046]
[Table 1]
Figure 0004264209
[0047]
From the results shown in Table 1, the capacity retention rate is approximately the same in the battery B containing the polymer electrolyte only in the positive electrode mixture and in the battery A containing neither the positive electrode mixture nor the negative electrode mixture. It was. In addition, the capacity retention ratio of the battery C and the battery D including the polymer electrolyte in the negative electrode mixture was larger than those of the battery A and the battery B in which the negative electrode mixture did not include the polymer electrolyte. Further, in the comparison between the battery C and the battery D, it was found that the battery C containing the polymer electrolyte only in the negative electrode mixture has a higher capacity retention rate.
[0048]
[Example 2]
By combining the positive electrode P1 and the negative electrode P2, seven types of non-aqueous electrolyte secondary batteries in which the total content of the binder and the polymer solid electrolyte in the negative electrode mixture layer of the negative electrode P2 was changed in the range of 1 to 12 wt% were produced. The characteristics were compared. However, the battery C is the same battery as in Example 1. Note that CSBR was used as the binder, PEO was used as the polymer solid electrolyte, and the mixing ratio (weight ratio) between the binder and the polymer solid electrolyte was fixed at 50:50. The contents and measurement results of the battery are shown in Table 2.
[0049]
[Table 2]
Figure 0004264209
[0050]
From Table 2, in the battery J in which the total content of the binder and the polymer solid electrolyte in the negative electrode mixture is 12 wt%, compared with the batteries E, F, C, G, H, and I, a high rate / low It was found that both the rate discharge capacity ratio and the high temperature / room temperature discharge capacity ratio were inferior. The high rate / low rate discharge capacity ratio and high temperature / room temperature discharge capacity ratio of the battery E were substantially the same values as those of the batteries F, C, G, H, and I, but the slurry for producing the negative electrode As a result, it became difficult to achieve the manufacturing process, resulting in a serious problem in the manufacturing process. In addition, among the batteries F, C, G, H, and I, it is found that the characteristics of the batteries F, C, and G in which the total content of the binder and the solid polymer electrolyte is 3 to 7 wt% are particularly excellent. It was.
[0051]
[Example 3]
By combining the positive electrode P1 and the negative electrode P2, the total content of the binder and the solid polymer electrolyte in the negative electrode mixture layer of the negative electrode P2 is kept constant at 5 wt%, and the mixing ratio (weight ratio) of the binder and the solid polymer electrolyte is changed. Seven types of non-aqueous electrolyte secondary batteries were prepared and their characteristics were compared. However, the battery C is the same battery as in Example 1. In addition, CSBR was used as the binder, and PEO was used as the polymer solid electrolyte. The contents and measurement results of the battery are shown in Table 3.
[0052]
[Table 3]
Figure 0004264209
[0053]
From the results of Table 3, the capacity retention rates of the battery K with a binder amount of 20 wt% and the battery P with a weight of 97 wt% were compared with those of the batteries L, C, M, N, and O in the mixing ratio of the binder and the solid polymer electrolyte. The case turned out to be quite inferior. Therefore, in the mixing ratio of the binder and the polymer solid electrolyte, it was found that an excellent capacity retention ratio can be obtained by setting the binder amount in the range of 30 to 95 wt%.
[0058]
【The invention's effect】
The non-aqueous electrolyte secondary battery of the present invention, the negative electrode mixture layer with the negative electrode comprises an active material and a carboxy-modified styrene-butadiene copolymer and a polymer solid electrolyte, carboxy-modified styrene-butadiene copolymer in the negative electrode mixture layer the total content of the polymer and the solid polymer electrolyte is 3 to 7 wt%, carboxy-modified styrene-butadiene copolymer weight ratio of to the total weight of carboxy-modified styrene-butadiene copolymer and a polymer solid electrolyte 30 ˜95 wt%.
[0059]
According to the present invention, by including the polymer solid electrolyte in the negative electrode mixture, the electrolyte solution is easily held in the negative electrode mixture, so that it is possible to prevent the electrolyte solution from being depleted early in the negative electrode mixture. It is possible to obtain a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics.
[Brief description of the drawings]
FIG. 1 is a view showing a longitudinal section of a prismatic nonaqueous electrolyte secondary battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Square nonaqueous electrolyte secondary battery 2 Winding type power generation element 3 Positive electrode 4 Negative electrode 5 Separator 6 Battery case

Claims (1)

正極と負極と非水電解液とを備えた非水電解質二次電池において、前記負極に備えた負極合材層は活物質とカルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質を含み、負極合材層におけるカルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計含有量3〜7wt%であり、カルボキシ変性スチレン・ブタジエン共重合体と高分子固体電解質の合計重量に対するカルボキシ変性スチレン・ブタジエン共重合体重量の比が30〜95wt%とすることを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, the negative electrode mixture layer provided in the negative electrode includes an active material, a carboxy-modified styrene / butadiene copolymer, and a polymer solid electrolyte. The total content of the carboxy-modified styrene / butadiene copolymer and the polymer solid electrolyte in the composite layer is 3 to 7 wt%, and the carboxy-modified styrene relative to the total weight of the carboxy -modified styrene / butadiene copolymer and the polymer solid electrolyte. - a non-aqueous electrolyte secondary battery the ratio of the butadiene copolymer weight, characterized in that the 30~95wt%.
JP2001357229A 2001-11-22 2001-11-22 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4264209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357229A JP4264209B2 (en) 2001-11-22 2001-11-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357229A JP4264209B2 (en) 2001-11-22 2001-11-22 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003157834A JP2003157834A (en) 2003-05-30
JP4264209B2 true JP4264209B2 (en) 2009-05-13

Family

ID=19168603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357229A Expired - Fee Related JP4264209B2 (en) 2001-11-22 2001-11-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4264209B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612768B (en) * 2009-11-18 2014-08-06 丰田自动车株式会社 Manufacturing method of battery electrodes
JP2014232567A (en) * 2011-09-21 2014-12-11 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6010309B2 (en) * 2012-02-29 2016-10-19 積水化学工業株式会社 Lithium ion secondary battery
CN117461164A (en) * 2021-06-21 2024-01-26 松下知识产权经营株式会社 Composite active material particle and battery using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298960B2 (en) * 1993-01-27 2002-07-08 株式会社ユアサコーポレーション Battery
JPH09213369A (en) * 1996-01-31 1997-08-15 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JP4534266B2 (en) * 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4412778B2 (en) * 1999-01-20 2010-02-10 三洋電機株式会社 Polymer electrolyte battery

Also Published As

Publication number Publication date
JP2003157834A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
TWI458154B (en) Lithium secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
JPH09259929A (en) Lithium secondary cell
JP3885227B2 (en) Non-aqueous secondary battery
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2003115324A (en) Nonaqueous electrolyte battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP4180335B2 (en) Non-aqueous electrolyte battery
JP2002237331A (en) Lithium secondary battery
JP3968772B2 (en) Non-aqueous electrolyte battery
JP4979049B2 (en) Non-aqueous secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2007172878A (en) Battery and its manufacturing method
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4264209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees