JP2002042888A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002042888A
JP2002042888A JP2000220969A JP2000220969A JP2002042888A JP 2002042888 A JP2002042888 A JP 2002042888A JP 2000220969 A JP2000220969 A JP 2000220969A JP 2000220969 A JP2000220969 A JP 2000220969A JP 2002042888 A JP2002042888 A JP 2002042888A
Authority
JP
Japan
Prior art keywords
conductive material
positive electrode
material layer
current collector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000220969A
Other languages
Japanese (ja)
Inventor
Yuichi Ito
裕一 伊藤
Masaki Kitamura
雅紀 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
GS Melcotec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, GS Melcotec Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000220969A priority Critical patent/JP2002042888A/en
Publication of JP2002042888A publication Critical patent/JP2002042888A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having excellent adhesion of a conductive material layer to a metallic current collector, excellent current collecting performance of a positive electrode mix layer and excellent high-rate discharge performance. SOLUTION: In this nonaqueous electrolyte secondary battery, a conductive material layer including conductive material and a binder is provided between a positive electrode mix and a metallic current collector, and the binder contains carboxymethyl cellulose.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、携帯用無線電話、携帯用パソコ
ン、携帯用ビデオカメラ等の電子機器が開発され、各種
電子機器が携帯可能な程度に小型化されている。それに
伴って、内蔵される電池としても、高エネルギー密度を
有し、且つ軽量なものが採用されている。
2. Description of the Related Art In recent years, electronic devices such as a portable radio telephone, a portable personal computer, and a portable video camera have been developed, and various electronic devices have been reduced in size to be portable. Along with this, a battery having a high energy density and a light weight is also adopted as a built-in battery.

【0003】そのような要求を満たす典型的な電池は、
特にリチウム金属やリチウム合金等の活物質、又はリチ
ウムイオンをホスト物質である炭素に吸蔵させたリチウ
ムインターカレーション化合物を負極材料とし、LiC
lO4、LiPF6等のリチウム塩を溶解した非プロトン
性の有機溶媒を電解液とする非水電解質二次電池であ
る。なお、ここでホスト物質とは、リチウムイオンを吸
蔵及び放出できる物質をいう。
A typical battery that meets such requirements is:
Particularly, an active material such as lithium metal or lithium alloy, or a lithium intercalation compound in which lithium ions are occluded in carbon as a host material is used as a negative electrode material, and LiC
This is a non-aqueous electrolyte secondary battery using an aprotic organic solvent in which a lithium salt such as 10 4 or LiPF 6 is dissolved as an electrolyte. Note that a host substance here refers to a substance that can occlude and release lithium ions.

【0004】この非水電解質二次電池は、リチウムコバ
ルト複合酸化物のようにリチウムイオンと可逆的に電気
化学反応をする正極活物質を、その支持体である正極集
電体の両面あるいは片面に保持してなる正極板、上記の
負極材料をその支持体である負極集電体の両面あるいは
片面に保持してなる負極板、電解液を保持するとともに
正極板と負極板との間に介在して両極板の短絡を防止す
るセパレータからなっている。
In this nonaqueous electrolyte secondary battery, a positive electrode active material that reversibly electrochemically reacts with lithium ions, such as a lithium-cobalt composite oxide, is coated on both sides or one side of a positive electrode current collector as a support. The positive electrode plate that holds the negative electrode material, the negative electrode plate that holds the negative electrode material on both or one side of the negative electrode current collector that is the support, and the electrolytic solution that is held between the positive electrode plate and the negative electrode plate. And a separator for preventing a short circuit between the two electrode plates.

【0005】前記の正極板の集電体は、集電体と正極合
材層との間の密着性および集電性を向上させるために、
導電材、ポリフッ化ビニリデン等からなる結着剤、N−
メチル−2−ピロリドン等の有機溶媒とを混合してなる
導電材ペーストを金属製の集電体の表面に、塗布、乾燥
して導電材層を設ける。その上から、正極活物質、ポリ
フッ化ビニリデン等からなる結着剤、N−メチル−2−
ピロリドン等の有機溶媒とを混合してなる正極合材ペー
ストを塗布、乾燥して、金属集電体と正極合材との間に
導電材層を持つ正極板を作成する。
[0005] The current collector of the positive electrode plate is used to improve the adhesion between the current collector and the positive electrode mixture layer and the current collecting property.
A conductive material, a binder made of polyvinylidene fluoride, etc., N-
A conductive material paste obtained by mixing an organic solvent such as methyl-2-pyrrolidone is applied to the surface of a metal current collector and dried to form a conductive material layer. From above, a positive electrode active material, a binder made of polyvinylidene fluoride or the like, N-methyl-2-
A positive electrode mixture paste obtained by mixing an organic solvent such as pyrrolidone or the like is applied and dried to form a positive electrode plate having a conductive material layer between the metal current collector and the positive electrode mixture.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記の
導電材ペーストのポリフッ化ビニリデン等からなる結着
剤は、導電材層の上から塗布する正極合材ペーストに含
まれるN−メチル−2−ピロリドン等の有機溶媒に可溶
であるため、正極合材ペーストの塗布時に、導電材層に
含まれるポリフッ化ビニリデン等からなる結着剤が、正
極合材ペーストに再度溶解するため、導電材層の金属製
集電体との密着性および集電性が不十分となるために、
正極合材層の集電性能が不十分となり、電池の高率放電
性能が低下するという問題があった。
However, the above-mentioned binder composed of polyvinylidene fluoride or the like of the conductive material paste is prepared from N-methyl-2-pyrrolidone contained in the positive electrode mixture paste applied from above the conductive material layer. Since it is soluble in an organic solvent such as, when the positive electrode mixture paste is applied, the binder composed of polyvinylidene fluoride and the like contained in the conductive material layer is dissolved again in the positive electrode mixture paste, so that the conductive material layer Due to insufficient adhesion and current collection with the metal current collector,
There has been a problem that the current collection performance of the positive electrode mixture layer becomes insufficient, and the high-rate discharge performance of the battery decreases.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたもので、非水電解質二次電池にお
いて、正極合剤と金属製集電体との間に、導電材と結着
剤を含む導電材層を備え、結着剤がカルボキシメチルセ
ルロースを含むことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. In a non-aqueous electrolyte secondary battery, a conductive material is provided between a positive electrode mixture and a metal current collector. A conductive material layer containing a binder is provided, and the binder contains carboxymethyl cellulose.

【0008】また本発明は、上記非水電解質二次電池に
おいて、導電材層の合計重量に対するカルボキシメチル
セルロースの添加量が0.5〜5wt%であることを特
徴とする。
Further, the present invention is characterized in that in the above nonaqueous electrolyte secondary battery, the amount of carboxymethylcellulose added is 0.5 to 5% by weight based on the total weight of the conductive material layer.

【0009】さらに本発明は、上記非水電解質二次電池
において、導電材が炭素材料であることを特徴とし、特
にこの炭素材料がグラファイトであることを特徴とす
る。
Further, the present invention is characterized in that, in the above nonaqueous electrolyte secondary battery, the conductive material is a carbon material, and in particular, the carbon material is graphite.

【0010】また本発明は、上記非水電解質二次電池に
おいて、導電材層の厚みが1μm〜5μmであることを
特徴とする。
Further, the present invention is characterized in that in the above nonaqueous electrolyte secondary battery, the thickness of the conductive material layer is 1 μm to 5 μm.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0012】本発明の非水系電解質二次電池(以下、
「本発明電池」と称する。)は、少なくとも正極板、負
極板、非水電解質などから構成され、正極合剤と金属製
集電体との間に、導電材と結着剤を含む導電材層を備
え、結着剤がカルボキシメチルセルロースを含むことを
特徴とする。
The non-aqueous electrolyte secondary battery of the present invention (hereinafter referred to as
It is referred to as "battery of the present invention". ) Comprises at least a positive electrode plate, a negative electrode plate, a non-aqueous electrolyte, etc., and comprises a conductive material layer containing a conductive material and a binder between the positive electrode mixture and the metal current collector, wherein the binder is It is characterized by containing carboxymethylcellulose.

【0013】この導電材層は、導電材、カルボキシメチ
ルセルロース(CMC)、カルボキシメチルセルロース
(CMC)を溶解する水からなる導電材ペーストを、金
属製集電体上に塗布、乾燥したものである。
The conductive material layer is obtained by applying a conductive material paste made of a conductive material, carboxymethylcellulose (CMC), and water in which carboxymethylcellulose (CMC) is dissolved, onto a metal current collector, and drying the paste.

【0014】金属製集電体には、金属箔、エキスパンド
メタル、パンチングメタル、これらの複合物等を用いる
ことができるが、特にこれらの集電体に限定されるもの
ではない。
As the metal current collector, a metal foil, an expanded metal, a punching metal, a composite thereof, or the like can be used, but the present invention is not particularly limited to these current collectors.

【0015】なお、カルボキシメチルセルロース(CM
C)は通常ナトリウム塩であるが、その他にもアンモニ
ウム塩やリチウム塩があり、本発明では、これらのすべ
ての塩を、単独でまたは混合して使用することができ
る。
Note that carboxymethylcellulose (CM
C) is usually a sodium salt, but there are also ammonium salts and lithium salts. In the present invention, all of these salts can be used alone or in combination.

【0016】一般に、正極合剤ペーストの溶媒として
は、N−メチル−2−ピロリドン等の有機溶媒が用いら
れている。このため、前記の導電材層の結着剤として、
有機溶媒に不溶であるカルボキシメチルセルロースを用
いる事により、導電材層中の結着剤が正極合材ペースト
中のN−メチル−2−ピロリドンなどの有機溶媒に溶解
して、導電材層が金属製集電体から剥離することが防止
され、金属製集電体と導電材層との間の密着性が良好な
正極板が得られ、この正極板を用いることにより高率放
電性能に優れた非水電解質二次電池を提供することがで
きる。
Generally, an organic solvent such as N-methyl-2-pyrrolidone is used as a solvent for the positive electrode mixture paste. Therefore, as a binder for the conductive material layer,
By using carboxymethyl cellulose which is insoluble in an organic solvent, the binder in the conductive material layer is dissolved in an organic solvent such as N-methyl-2-pyrrolidone in the positive electrode mixture paste, and the conductive material layer is made of metal. Separation from the current collector is prevented, and a positive electrode plate having good adhesion between the metal current collector and the conductive material layer is obtained. By using this positive electrode plate, a non-electrode having excellent high-rate discharge performance is obtained. A water electrolyte secondary battery can be provided.

【0017】さらに、導電材層の合計重量に対するカル
ボキシメチルセルロースの添加量が0.5〜5wt%で
ある場合には、さらに高率放電性能に優れた電池を提供
する事ができる。その理由として、カルボキシメチルセ
ルロースの含有量が0.5wt%よりも少ない場合に
は、導電材層と金属製集電体の間の密着性が不十分であ
り、反対に、カルボキシメチルセルロースの含有量が5
wt%よりも多い場合には、絶縁体であるカルボキシメ
チルセルロースの導電材層中に占める割合が多くなりす
ぎて、集電性が大きく低下する。そのため、カルボキシ
メチルセルロースの添加量は0.5〜5wt%が望まし
い。
Further, when the amount of carboxymethylcellulose added is 0.5 to 5% by weight based on the total weight of the conductive material layer, a battery having more excellent high-rate discharge performance can be provided. If the content of carboxymethylcellulose is less than 0.5 wt%, the adhesion between the conductive material layer and the metal current collector is insufficient, and conversely, the content of carboxymethylcellulose is low. 5
If the content is more than wt%, the ratio of carboxymethylcellulose, which is an insulator, in the conductive material layer becomes too large, and the current collecting property is greatly reduced. Therefore, the addition amount of carboxymethylcellulose is desirably 0.5 to 5 wt%.

【0018】さらに、前記の導電材としては炭素材料が
望ましい。その理由として、金属粒子などの導電材を用
いると、導電材層中の金属粒子と結着剤との密着性が劣
っており、また、電池の充放電に伴う金属粒子の溶解析
出反応による充放電高率の低下などが生じる恐れがある
のに対して、炭素材料では、箔との密着性および電子伝
導電性が良好でありながら、溶解析出反応などが起きな
い事が上げられる。
Further, the conductive material is preferably a carbon material. The reason is that when a conductive material such as metal particles is used, the adhesion between the metal particles in the conductive material layer and the binder is inferior, and the charging and discharging of the metal particles due to the dissolution and deposition of the battery accompanying charging and discharging of the battery is performed. On the other hand, a carbon material may have a good adhesion to a foil and good electron conductivity, but may not cause a dissolution / precipitation reaction or the like, while a high discharge rate may be reduced.

【0019】さらに、前記の導電材として用いる炭素材
料としては、電子伝導性の高いグラファイトを用いるの
が望ましく、さらに鱗片状のグラファイトの場合には、
グラファイトの面と箔の面とが平行方向に配向する事か
ら、金属製集電体との密着性がさらに良好となる点で望
ましい。
Further, as the carbon material used as the conductive material, it is desirable to use graphite having high electron conductivity. In the case of flake graphite,
Since the graphite surface and the foil surface are oriented in a parallel direction, it is desirable in that the adhesion to the metal current collector is further improved.

【0020】さらに前記の導電材層の厚みは1μm〜5
μmであることが望ましい。なお、集電体の両面に導電
材層および正極合剤層を備える場合には、この導電材層
の厚みは片面の厚みを示すものとする。
Further, the thickness of the conductive material layer is 1 μm to 5 μm.
μm is desirable. When the current collector is provided with a conductive material layer and a positive electrode material mixture layer on both surfaces, the thickness of the conductive material layer indicates the thickness of one surface.

【0021】導電材層の厚みが1μm〜5μmであるこ
とが好ましい理由として、導電材層の厚みが1μmより
も小さい場合には、正極合材層と導電材層との導電材層
の厚みが5μmよりも大きい場合には、正極板に占める
導電材層の厚みが大きすぎるために、正極活物質合材の
量が少なくなり、電池のエネルギー密度が低下する事が
挙げられる。
The reason why the thickness of the conductive material layer is preferably 1 μm to 5 μm is that when the thickness of the conductive material layer is smaller than 1 μm, the thickness of the conductive material layer between the positive electrode mixture layer and the conductive material layer is reduced. When it is larger than 5 μm, the thickness of the conductive material layer occupying the positive electrode plate is too large, so that the amount of the positive electrode active material mixture is reduced and the energy density of the battery is reduced.

【0022】金属製集電体への導電材層の塗布は、金属
製集電体上に、グラビア印刷により行なった。そのほか
にも、コンマロール方式による塗布、オフセット印刷、
グラビア印刷、導電材ペースト中への金属製集電体の含
浸等によっても行うことができるが、特にこれらの塗布
方法に限定されるものではない。
The conductive material layer was applied to the metal current collector by gravure printing on the metal current collector. In addition, comma roll coating, offset printing,
It can also be performed by gravure printing, impregnation of a metal current collector in a conductive material paste, or the like, but is not particularly limited to these coating methods.

【0023】なお、本発明の非水電解質二次電池に使用
する、正極材料たるリチウムを吸蔵放出可能な化合物と
しては、無機化合物としては、組成式LixMO2、ま
たはLiyM24(ただしM は遷移金属、0≦x≦
1、0≦y≦2 )で表される複合酸化物、トンネル状
の空孔を有する酸化物、層状構造の金属カルコゲン化物
を用いることができる。その具体例としては、LiCo
2 、LiNiO2、LiMn24 、Li2Mn24
MnO2、FeO2、V25、V613、TiO2、TiS
2等が挙げられる。また、有機化合物としては、例えば
ポリアニリン等の導電性ポリマー等が挙げられる。さら
に、無機化合物、有機化合物を問わず、上記各種活物質
を混合して用いてもよい。
[0023] Incidentally, for use in non-aqueous electrolyte secondary battery of the present invention, as the positive electrode material serving as capable of absorbing and desorbing lithium compounds, as the inorganic compound, composition formula LixMO 2, or LiyM 2 O 4 (wherein M is Transition metal, 0 ≦ x ≦
1, 0 ≦ y ≦ 2), oxides having tunnel-like vacancies, and metal chalcogenides having a layered structure can be used. As a specific example, LiCo
O 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 ,
MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS
And the like. Examples of the organic compound include a conductive polymer such as polyaniline. Further, the above-mentioned various active materials may be mixed and used regardless of an inorganic compound or an organic compound.

【0024】さらに、負極材料たる化合物としては、A
l、Si、Pb、Sn、Zn、Cd等とリチウムとの合
金、LiFe23、WO2、MoO2等の遷移金属酸化
物、グラファイト、カーボン等の炭素質材料、Li
5(Li3N)等の窒化リチウム、もしくは金属リチウム
箔、又はこれらの混合物を用いてもよい。
Further, as a compound as a negative electrode material, A
alloys of lithium with l, Si, Pb, Sn, Zn, Cd, etc., transition metal oxides such as LiFe 2 O 3 , WO 2 , MoO 2 , graphite, carbonaceous materials such as carbon, Li
Lithium nitride such as 5 (Li 3 N), or metallic lithium foil, or a mixture thereof may be used.

【0025】また、本発明になる非水電解質電池に使用
する電解液溶媒としては、エチレンカーボネート、プロ
ピレンカーボネート、ジメチルカーボネート、ジエチル
カーボネート、γ−ブチロラクトン、スルホラン、ジメ
チルスルホキシド、アセトニトリル、ジメチルホルムア
ミド、ジメチルアセトアミド、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、テトラヒドロフラン、
2−メチルテトラヒドロフラン、ジオキソラン、メチル
アセテート等の極性溶媒、もしくはこれらの混合物を用
いてもよい。
The electrolyte solvent used for the nonaqueous electrolyte battery according to the present invention includes ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide. , 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran,
A polar solvent such as 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof may be used.

【0026】また、有機溶媒に溶解するリチウム塩とし
ては、LiPF6、LiClO4、LiBF4、LiAs
2、LiCF3CO2、LiCF3SO3、LiN(SO2
CF32、LiN(SO2CF2CF32、LiN(CO
CF32およびLiN(COCF2CF32などの塩も
しくはこれらの混合物を用いてもよい。
Lithium salts dissolved in an organic solvent include LiPF 6 , LiClO 4 , LiBF 4 , LiAs
F 2 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2
CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (CO
Salts such as CF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or mixtures thereof may be used.

【0027】また、本発明になる非水電解質電池の隔離
体としては、絶縁性のポリエチレン微多孔膜に電解液を
含浸したものや、高分子固体電解質、高分子固体電解質
に電解液を含有させたゲル状電解質等も使用できる。ま
た、絶縁性の微多孔膜と高分子固体電解質等を組み合わ
せて使用してもよい。さらに、高分子固体電解質として
有孔性高分子固体電解質膜を使用する場合、高分子中に
含有させる電解液と、細孔中に含有させる電解液とが異
なっていてもよい。
The separator of the non-aqueous electrolyte battery according to the present invention may be a material obtained by impregnating an electrolytic solution in an insulating polyethylene microporous membrane, a solid polymer electrolyte, or a solid polymer electrolyte containing an electrolytic solution. A gel electrolyte or the like can also be used. Further, an insulating microporous film and a solid polymer electrolyte may be used in combination. Furthermore, when a porous solid polymer electrolyte membrane is used as the solid polymer electrolyte, the electrolyte contained in the polymer and the electrolyte contained in the pores may be different.

【0028】また、電池の形状は特に限定されるもので
はなく、本発明は、角形、楕円形、コイン形、ボタン
形、ペーパー形電池等の様々な形状の非水電解質二次電
池に適用可能である。
The shape of the battery is not particularly limited, and the present invention is applicable to non-aqueous electrolyte secondary batteries having various shapes such as a square, an ellipse, a coin, a button, and a paper battery. It is.

【0029】[0029]

【実施例】以下、本発明を適用した具体的な実施例につ
いて説明するが、本発明は本実施例により何ら限定され
るものではなく、その主旨を変更しない範囲において適
宜変更して実施することが可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments to which the present invention is applied will be described. However, the present invention is not limited to the embodiments, and may be carried out by appropriately changing the scope of the present invention. Is possible.

【0030】[実施例1]図1は本例に用いた角形非水
電解質二次電池の概略断面図である。
Example 1 FIG. 1 is a schematic sectional view of a prismatic nonaqueous electrolyte secondary battery used in this example.

【0031】図1において、1は非水電解質二次電池、
2は電極群、3は正極、4は負極、5はセパレータ、6
は電池ケース、7は蓋、8は安全弁、9は正極端子、1
0は正極リードである。
In FIG. 1, 1 is a non-aqueous electrolyte secondary battery,
2 is an electrode group, 3 is a positive electrode, 4 is a negative electrode, 5 is a separator, 6
Is a battery case, 7 is a lid, 8 is a safety valve, 9 is a positive electrode terminal, 1
0 is a positive electrode lead.

【0032】この角形非水電解質二次電池1は、正極集
電体としてのアルミニウム箔上に、導電材層を設け、こ
の導電材層上に、リチウムイオンを吸蔵・放出する物質
を含む正極合剤を塗布してなる正極3と、銅集電体にリ
チウムイオンを吸蔵・放出する物質を構成要素とする負
極合剤を塗布してなる負極4とが、セパレータ5を介し
て巻回された扁平状電極群2と、電解質塩を含有した非
水電解質とを電池ケース6に収納してなるものである。
In this prismatic nonaqueous electrolyte secondary battery 1, a conductive material layer is provided on an aluminum foil serving as a positive electrode current collector, and a positive electrode containing a material capable of occluding and releasing lithium ions is provided on the conductive material layer. A positive electrode 3 formed by applying an agent and a negative electrode 4 formed by applying a negative electrode mixture containing a substance capable of inserting and extracting lithium ions to a copper current collector are wound via a separator 5. The flat electrode group 2 and a nonaqueous electrolyte containing an electrolyte salt are housed in a battery case 6.

【0033】電池ケース6には、安全弁8を設けた電池
蓋がレーザー溶接によって取り付けられ、負極4は電池
ケース6の内壁と接触により電気的に接続され、正極端
子9は正極リード10を介して正極3と接続されてい
る。
A battery lid provided with a safety valve 8 is attached to the battery case 6 by laser welding, the negative electrode 4 is electrically connected to the inner wall of the battery case 6 by contact, and the positive terminal 9 is connected via a positive lead 10. It is connected to the positive electrode 3.

【0034】図2は実施例に用いた正極板の概略断面図
である。図2において、11はアルミニウム箔、12は
導電材層、13は正極合剤である。
FIG. 2 is a schematic sectional view of the positive electrode plate used in the embodiment. In FIG. 2, 11 is an aluminum foil, 12 is a conductive material layer, and 13 is a positive electrode mixture.

【0035】導電材層12は、導電材であるグラファイ
ト95wt%と、結着剤であるカルボキシメチルセルロ
ース(CMC)を5wt%とを混合し、精製水を適宜加
えて分散させて調整した導電材ペーストを、厚さ20μ
mの正極集電体としてのアルミニウム箔集電体11の両
面上に、グラビア印刷により均一に塗布し、乾燥させた
後、ロールプレスで圧縮成型して、導電材ペーストの厚
みが片面につき5μmとなるように作製した。
The conductive material layer 12 is made of a conductive material paste prepared by mixing 95% by weight of graphite as a conductive material and 5% by weight of carboxymethylcellulose (CMC) as a binder and appropriately adding purified water to disperse. With a thickness of 20μ
m, is uniformly coated on both sides of an aluminum foil current collector 11 as a positive electrode current collector by gravure printing, dried, and then compression-molded by a roll press, so that the thickness of the conductive material paste is 5 μm per side. It was manufactured so that it might become.

【0036】正極合剤13は、活物質のLiCoO2
7wt%と、導電材のアセチレンブラック5wt%と、
結着剤のポリフッ化ビニリデン(PVdF)8wt%と
を混合し、N−メチル−2−ピロリドンを適宜加えて分
散させ、正極合剤ペーストを調製した。このペースト
を、前記の正極集電体上に均一に塗布し、乾燥させた
後、ロールプレスで厚み180μmになるように圧縮成
型することにより正極3を作製した。
The positive electrode mixture 13 contains LiCoO 2 8 as an active material.
7% by weight, 5% by weight of acetylene black as a conductive material,
8 wt% of polyvinylidene fluoride (PVdF) as a binder was mixed, and N-methyl-2-pyrrolidone was appropriately added and dispersed to prepare a positive electrode mixture paste. This paste was uniformly applied on the above-mentioned positive electrode current collector, dried, and then compression-molded to a thickness of 180 μm by a roll press to produce a positive electrode 3.

【0037】負極合材は、リチウムイオンを吸蔵放出す
る炭素材料90wt%、ポリフッ化ビニリデン(PVd
F)10wt%を混合し、N−メチル−2−ピロリドン
を適宜加えて分散させ、負極合材ペーストを調製した。
このペーストを厚さ10μmの銅集電体に均一に塗布、
乾燥させた後、ロールプレスで厚み180μmになるよ
うに圧縮成型することにより負極4を作製した。
The negative electrode mixture was composed of 90% by weight of a carbon material capable of inserting and extracting lithium ions, and polyvinylidene fluoride (PVd).
F) 10 wt% was mixed and N-methyl-2-pyrrolidone was appropriately added and dispersed to prepare a negative electrode mixture paste.
This paste is uniformly applied to a 10 μm thick copper current collector,
After drying, the negative electrode 4 was produced by compression molding with a roll press to a thickness of 180 μm.

【0038】セパレータには、厚さ25μmの微多孔性
ポリエチレンフィルムを用いた。非水電解質としては、
エチレンカーボネート(EC)とエチルメチルカーボネ
ート(EMC)を体積比1:1の割合で混合し、電解質
塩としてLiPF6を1.0mol/l溶解した電解液
を使用した。
As the separator, a microporous polyethylene film having a thickness of 25 μm was used. As a non-aqueous electrolyte,
Ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 1 and an electrolytic solution in which LiPF 6 was dissolved at 1.0 mol / l as an electrolyte salt was used.

【0039】上述の構成要素および手順により、外形寸
法が高さ48mm、幅22mm、厚み8mmの実施例1
の電池を10個作製した。
According to the above-described components and procedures, the first embodiment having the external dimensions of 48 mm in height, 22 mm in width, and 8 mm in thickness was used.
10 batteries were produced.

【0040】[実施例2]実施例2として、導電材であ
るグラファイト99.5wt%と、結着剤であるカルボ
キシメチルセルロース(CMC)を0.5wt%とを混
合し、精製水を適宜加えて分散させ、導電材ペーストを
調整した。導電材ペースト以外は実施例1記載の構成要
素および手順で、実施例2の電池を10個作製した。
Example 2 In Example 2, 99.5 wt% of graphite as a conductive material and 0.5 wt% of carboxymethyl cellulose (CMC) as a binder were mixed, and purified water was added as appropriate. It was dispersed to prepare a conductive material paste. Except for the conductive material paste, ten batteries of Example 2 were produced using the components and procedures described in Example 1.

【0041】[実施例3]実施例3として、導電材であ
るカーボンブラック95wt%と、結着剤であるカルボ
キシメチルセルロース(CMC)を5wt%とを混合
し、精製水を適宜加えて分散させ、導電材ペーストを調
整した。導電材ペースト以外は実施例1記載の構成要素
および手順で、実施例3の電池を10個作製した。
Example 3 As Example 3, 95% by weight of carbon black as a conductive material and 5% by weight of carboxymethyl cellulose (CMC) as a binder were mixed, and purified water was appropriately added and dispersed. The conductive material paste was adjusted. Except for the conductive material paste, ten batteries of Example 3 were manufactured using the components and procedures described in Example 1.

【0042】[実施例4]実施例4として、導電材ペー
ストを、厚さ20μmのアルミニウム箔集電体の両面上
に均一に塗布し、乾燥させた後、ロールプレスで圧縮成
型し、厚みが片面につき1μmの導電材層を備えた正極
集電体を得た。導電材層の厚み以外は実施例1記載の構
成要素および手順で、実施例4の電池を10個作製し
た。
Example 4 As Example 4, a conductive material paste was uniformly applied on both sides of a 20-μm-thick aluminum foil current collector, dried, and then compression-molded by a roll press to obtain a thickness. A positive electrode current collector having a 1 μm conductive material layer on one side was obtained. Except for the thickness of the conductive material layer, ten components of Example 4 were manufactured using the components and procedures described in Example 1.

【0043】[実施例5]実施例5として、導電材であ
るステンレス製の微粒子95wt%と、結着剤であるカ
ルボキシメチルセルロース(CMC)を5wt%とを混
合し、精製水を適宜加えて分散させ、導電材ペーストを
調整した。導電材ペースト以外は実施例1記載の構成要
素および手順で、実施例5の電池を10個作製した。
Example 5 As Example 5, 95% by weight of stainless steel fine particles as a conductive material and 5% by weight of carboxymethylcellulose (CMC) as a binder were mixed, and purified water was appropriately added and dispersed. Then, the conductive material paste was adjusted. Except for the conductive material paste, ten batteries of Example 5 were manufactured using the components and procedures described in Example 1.

【0044】[比較例1]比較例1として、導電材であ
るグラファイト95wt%と、結着剤であるポリフッ化
ビニリデン(PVdF)5wt%とを混合し、N−メチ
ル−2−ピロリドンを適宜加えて分散させ、導電材ペー
ストを調整した。導電材ペースト以外は実施例1記載の
構成要素および手順で、比較例1の電池を10個作製し
た。
Comparative Example 1 As Comparative Example 1, 95% by weight of graphite as a conductive material and 5% by weight of polyvinylidene fluoride (PVdF) as a binder were mixed, and N-methyl-2-pyrrolidone was added as appropriate. And the conductive material paste was adjusted. Except for the conductive material paste, ten components of Comparative Example 1 were manufactured using the components and procedures described in Example 1.

【0045】[比較例2]比較例2として、導電材であ
るグラファイト95wt%と、結着剤であるポリメタク
リル酸メチル(PMMA)5wt%とを混合し、N−メ
チル−2−ピロリドンを適宜加えて分散させ、導電材ペ
ーストを調整した。導電材ペースト以外は実施例1記載
の構成要素および手順で、比較例2の電池を10個作製
した。
Comparative Example 2 As Comparative Example 2, 95% by weight of graphite as a conductive material and 5% by weight of polymethyl methacrylate (PMMA) as a binder were mixed, and N-methyl-2-pyrrolidone was appropriately added. In addition, it was dispersed to prepare a conductive material paste. Except for the conductive material paste, ten components of Comparative Example 2 were produced using the components and procedures described in Example 1.

【0046】[比較例3]比較例3として、導電材であ
るグラファイト90wt%と、結着剤であるカルボキシ
メチルセルロース(CMC)を10wt%とを混合し、
精製水を適宜加えて分散させ、導電材ペーストを調整し
た。導電材ペースト以外は実施例1記載の構成要素およ
び手順で、比較例3の電池を10個作製した。
Comparative Example 3 As Comparative Example 3, 90% by weight of graphite as a conductive material and 10% by weight of carboxymethyl cellulose (CMC) as a binder were mixed.
Purified water was appropriately added and dispersed to prepare a conductive material paste. Except for the conductive material paste, ten components of Comparative Example 3 were manufactured using the components and procedures described in Example 1.

【0047】[比較例4]比較例4として、導電材であ
るグラファイト99.9wt%と、結着剤であるカルボ
キシメチルセルロース(CMC)を0.1wt%とを混
合し、精製水を適宜加えて分散させ、導電材ペーストを
調整した。導電材ペースト以外は実施例1記載の構成要
素および手順で、比較例4の電池を10個作製した。
Comparative Example 4 As Comparative Example 4, 99.9% by weight of graphite as a conductive material and 0.1% by weight of carboxymethyl cellulose (CMC) as a binder were mixed, and purified water was added as appropriate. It was dispersed to prepare a conductive material paste. Except for the conductive material paste, ten components of Comparative Example 4 were produced using the components and procedures described in Example 1.

【0048】[比較例5]比較例5として、導電材ペー
ストを、厚さ20μmのアルミニウム箔集電体の両面上
に均一に塗布し、乾燥させた後、ロールプレスで圧縮成
型して、厚みが片面につき8μmの導電材層を備えた正
極集電体を得た。導電材層の厚み以外は実施例1記載の
構成要素および手順で、比較例5の電池を10個作製し
た。
Comparative Example 5 As Comparative Example 5, a conductive material paste was uniformly applied on both sides of a 20-μm-thick aluminum foil current collector, dried, and then compression-molded by a roll press to obtain a thickness. Obtained a positive electrode current collector provided with a conductive material layer of 8 μm on one side. Except for the thickness of the conductive material layer, ten components of Comparative Example 5 were produced using the components and procedures described in Example 1.

【0049】[比較例6]比較例6として、導電材ペー
ストを、厚さ20μmのアルミニウム箔集電体の両面上
に均一に塗布し、乾燥させた後、ロールプレスで圧縮成
型して、厚みが片面につき0.5μmの導電材層を備え
た正極集電体を得た。導電材層の厚み以外は実施例1記
載の構成要素および手順で、比較例6の電池を10個作
製した。
Comparative Example 6 As Comparative Example 6, a conductive material paste was uniformly applied on both sides of a 20 μm-thick aluminum foil current collector, dried, and then compression-molded by a roll press to obtain a thickness. Obtained a positive electrode current collector provided with a 0.5 μm conductive material layer on one side. Except for the thickness of the conductive material layer, ten components of Comparative Example 6 were produced using the components and procedures described in Example 1.

【0050】以上のように作製した実施例および比較例
の角形非水電解質二次電池について、正極合剤塗布後の
正極合剤層と金属製集電体との密着性、初期容量、高率
放電時の容量、高率放電時の容量比率について調査し
た。
With respect to the prismatic nonaqueous electrolyte secondary batteries of Examples and Comparative Examples produced as described above, the adhesion, the initial capacity, and the high efficiency of the positive electrode mixture layer and the metal current collector after the positive electrode mixture was applied. The capacity at the time of discharge and the capacity ratio at the time of high rate discharge were investigated.

【0051】正極合剤塗布後の正極合剤層と金属製集電
体との密着性については、正極合剤ペーストを塗布、乾
燥後に、正極合剤の表面に粘着テープを貼り付けた後に
粘着テープを剥がして、金属集電体からの正極合剤の剥
離の程度を観察した。
Regarding the adhesion between the positive electrode mixture layer and the metal current collector after applying the positive electrode mixture, the positive electrode mixture paste is applied, dried, and then adhered to the surface of the positive electrode mixture with an adhesive tape. The tape was peeled off, and the degree of peeling of the positive electrode mixture from the metal current collector was observed.

【0052】電池の初期容量については、充電電圧4.
20V、充電電流600mAの条件で3時間充電した
後、放電電流600mA、終止電圧2.75Vの条件
で、放電を行った時の放電容量を測定した。
Regarding the initial capacity of the battery, the charging voltage
After charging for 3 hours under the conditions of 20 V and a charging current of 600 mA, the discharge capacity was measured when discharging was performed under the conditions of a discharging current of 600 mA and a final voltage of 2.75 V.

【0053】高率放電性能については、放電電流を18
00mAとした以外は初期容量の測定と同じ条件にて測
定し、高率放電時の容量を求めた。
Regarding the high rate discharge performance, the discharge current was 18
The measurement was performed under the same conditions as the measurement of the initial capacity except that the current was set to 00 mA, and the capacity at the time of high-rate discharge was obtained.

【0054】また、高率放電時の容量比率は、各電池の
高率放電時(1800mA放電時)の容量を、それぞれ
の電池の初期容量(600mA放電時)にて除した時の
比率である。なお、表1において、CMCはカルボキシ
メチルセルロースを、PVdFはポリフッ化ビニリデン
を、またPMMAはポリメタクリル酸メチルを示す。
The capacity ratio at the time of high-rate discharge is a ratio obtained by dividing the capacity of each battery at the time of high-rate discharge (at the time of 1800 mA discharge) by the initial capacity of each battery (at the time of 600 mA discharge). . In Table 1, CMC indicates carboxymethyl cellulose, PVdF indicates polyvinylidene fluoride, and PMMA indicates polymethyl methacrylate.

【0055】実施例及び比較例の電池の概要を表1に示
す。
Table 1 shows an outline of the batteries of the examples and the comparative examples.

【0056】[0056]

【表1】 [Table 1]

【0057】また、正極合剤層と金属製集電体との密着
性、初期容量、高率放電時の容量、高率放電時の容量比
率の調査結果を表2に示す。
Table 2 shows the results of investigation on the adhesion between the positive electrode mixture layer and the metal current collector, the initial capacity, the capacity at high rate discharge, and the capacity ratio at high rate discharge.

【0058】[0058]

【表2】 [Table 2]

【0059】つぎに、これらの試験結果について述べ
る。まず、導電材層中の結着剤の種類の検討をおこなっ
た。表2より、導電材層の結着剤としてカルボキシメチ
ルセルロースを用いた実施例1の電池は、同結着剤にポ
リフッ化ビニリデンを用いた比較例1の電池、および同
結着剤にポリメタクリル酸メチルを用いた比較例2の電
池と比べて、導電材層と金属箔との密着性が良好であ
り、また、高率放電時の容量が大きく、高率放電性能に
優れていた。
Next, the results of these tests will be described. First, the type of the binder in the conductive material layer was examined. Table 2 shows that the battery of Example 1 using carboxymethylcellulose as the binder for the conductive material layer was the battery of Comparative Example 1 using polyvinylidene fluoride as the binder, and the polymethacrylic acid as the binder. Compared with the battery of Comparative Example 2 using methyl, the adhesion between the conductive material layer and the metal foil was good, the capacity at the time of high-rate discharge was large, and the high-rate discharge performance was excellent.

【0060】このことから、導電材層の結着剤に有機溶
媒に対して不溶であるカルボキシメチルセルロースを用
いる事で、導電材層の上から正極合剤ペーストを塗布し
た後においても、金属製集電体と導電材層との間の密着
性が良好な正極板を備える電池を作製できることがわか
った。
Therefore, by using carboxymethylcellulose, which is insoluble in an organic solvent, as the binder of the conductive material layer, even after the positive electrode mixture paste is applied from above the conductive material layer, the metal collection It was found that a battery provided with a positive electrode plate having good adhesion between the conductor and the conductive material layer could be manufactured.

【0061】つぎに、カルボキシメチルセルロース量の
上限および下限の検討をおこなった。表2より、導電材
層中のカルボキシメチルセルロースの添加量が10wt
%である比較例3の電池は、同添加量が5wt%である
実施例1の電池と比べて、高率放電時の容量が少なかっ
た。
Next, the upper and lower limits of the amount of carboxymethylcellulose were examined. According to Table 2, the amount of carboxymethylcellulose in the conductive material layer was 10 wt.
% Of the battery of Comparative Example 3 had a lower capacity at the time of high-rate discharge than the battery of Example 1 having the same addition amount of 5 wt%.

【0062】このことから、絶縁体であるカルボキシメ
チルセルロースの導電材層中に占める割合が多くなりす
ぎると、正極板の導電材層における集電性が低下するた
め、同添加量を5wt%以下に抑えることで、金属製集
電体と導電材層との間の集電性が良好で、高率放電性能
に優れた電池を作製できることがわかった。
From this fact, if the ratio of carboxymethylcellulose as the insulator in the conductive material layer is too large, the current collecting property in the conductive material layer of the positive electrode plate is reduced. It was found that by suppressing this, a battery having good current collection properties between the metal current collector and the conductive material layer and having excellent high-rate discharge performance could be produced.

【0063】さらに、表2より、導電材層中のカルボキ
シメチルセルロースの添加量が0.5wt%である実施
例2の電池は、同添加量が0.1wt%である比較例4
の電池と比べて、導電材層と金属箔との密着性が良好で
あり、また、高率放電時の容量が大きく、高率放電性能
に優れている。
Further, as shown in Table 2, the battery of Example 2 in which the addition amount of carboxymethylcellulose in the conductive material layer was 0.5 wt%, and Comparative Example 4 in which the addition amount of carboxymethyl cellulose was 0.1 wt%
As compared with the battery of the above, the adhesion between the conductive material layer and the metal foil is good, the capacity at the time of high-rate discharge is large, and the high-rate discharge performance is excellent.

【0064】このことから、導電材層の結着剤であるカ
ルボキシメチルセルロースの添加量を0.5wt%以上
にする事で、金属製集電体と導電材層との間の密着性が
良好な正極板を備える電池を作製できることがわかっ
た。
From the above, by setting the amount of carboxymethylcellulose, which is a binder for the conductive material layer, to be 0.5 wt% or more, good adhesion between the metal current collector and the conductive material layer can be obtained. It was found that a battery including a positive electrode plate could be manufactured.

【0065】つぎに、導電材の種類の検討をおこなっ
た。表2より、導電材層中の導電材がステンレス粒子で
ある実施例5の電池は、剥離試験結果が良好であり、高
率放電時の放電容量も大きく、高率放電性能にも優れて
いた。
Next, the type of conductive material was examined. According to Table 2, the battery of Example 5 in which the conductive material in the conductive material layer was stainless particles had good peeling test results, a large discharge capacity during high-rate discharge, and excellent high-rate discharge performance. .

【0066】さらに、導電材層中の導電材がカーボンブ
ラックである実施例3の電池は、導電材にステンレス粒
子を用いた実施例5の電池以上に良好な高率放電性能を
示した。さらに、導電材層中の導電材がグラファイトで
ある実施例1の電池は、導電材にカーボンブラックを用
いた実施例3の電池以上に、剥離試験結果が良好であ
り、高率放電時の放電容量も大きく、高率放電性能にも
優れていた。
Further, the battery of Example 3 in which the conductive material in the conductive material layer was carbon black exhibited better high-rate discharge performance than the battery of Example 5 using stainless steel particles as the conductive material. Furthermore, the battery of Example 1 in which the conductive material in the conductive material layer was graphite had better peel test results than the battery of Example 3 using carbon black as the conductive material, The capacity was large and the high rate discharge performance was excellent.

【0067】このことから、導電材層中の導電材にステ
ンレス粒子を用いると、金属製集電体と導電材層との間
の密着性が良好な正極板を備え、高率放電性能に優れた
電池を作製できることがわかった。
Thus, when stainless steel particles are used as the conductive material in the conductive material layer, a positive electrode plate having good adhesion between the metal current collector and the conductive material layer is provided, and high-rate discharge performance is excellent. It was found that a battery could be manufactured.

【0068】さらに、導電材をカーボンブラックのよう
な炭素材料とする事で、金属製集電体と導電材層との間
の密着性がより良好な正極板を備え、より高率放電性能
に優れた電池を作製できることがわかった。また、導電
材をグラファイトにする事で、金属製集電体と導電材層
との間の密着性がより良好な正極板を備え、より高率放
電性能に優れた電池を作製できることがわかった。
Further, by using a carbon material such as carbon black as the conductive material, a positive electrode plate having better adhesion between the metal current collector and the conductive material layer is provided, and higher discharge performance is achieved. It was found that an excellent battery could be manufactured. In addition, it was found that, by using graphite as the conductive material, it was possible to manufacture a battery having a positive electrode plate having better adhesion between the metal current collector and the conductive material layer and having a higher rate of discharge performance. .

【0069】つぎに、導電材の厚みの上限と下限の検討
をおこなった。表2より、導電材層の厚みが5μmであ
る実施例1の電池は、同厚みが8μmの比較例5の電池
と比べて、初期容量が大きいが、高率放電性能に大きな
差はなかった。このことから、導電材層の厚みを5μm
以下に抑えることで、高率放電性能に優れながら、初期
容量も大きな正極板を備える電池を作製できることがわ
かった。
Next, the upper and lower limits of the thickness of the conductive material were examined. According to Table 2, the battery of Example 1 in which the thickness of the conductive material layer was 5 μm had a larger initial capacity than the battery of Comparative Example 5 in which the thickness was 8 μm, but there was no significant difference in the high-rate discharge performance. . From this, the thickness of the conductive material layer was set to 5 μm
It was found that by controlling the content to be below, a battery including a positive electrode plate having a large initial capacity while having excellent high-rate discharge performance can be manufactured.

【0070】また、表2より、導電材層の厚みが1μm
である実施例4の電池は、同厚みが0.5μmの比較例
6の電池と比べて、初期容量は僅かに劣るものの、金属
製集電体と導電材層との間の密着性が良好で、高率放電
性能に優れていた。このことから、導電材層の厚みを
0.5μm以上にすることで、金属製集電体と導電材層
との間の密着性が良好で、高率放電性能に優れた正極板
を備える電池を作製できることがわかった。
From Table 2, it can be seen that the thickness of the conductive material layer is 1 μm.
The battery of Example 4 has a good adhesion between the metal current collector and the conductive material layer although the initial capacity is slightly inferior to the battery of Comparative Example 6 having the same thickness of 0.5 μm. And excellent high rate discharge performance. From this fact, by setting the thickness of the conductive material layer to 0.5 μm or more, a battery provided with a positive electrode plate having good adhesion between the metal current collector and the conductive material layer and having excellent high-rate discharge performance Can be produced.

【0071】本実施例および実験例では、正極の金属集
電体としてアルミニウム箔を用いたが、金属製集電体は
特にアルミニウム箔に限定するみのではない。
In this embodiment and the experimental example, an aluminum foil was used as the metal current collector of the positive electrode. However, the metal current collector is not particularly limited to the aluminum foil.

【0072】また、正極合剤ペーストの結着剤としてポ
リフッ化ビニリデンを用いたが、本発明は、正極合剤ペ
ーストの結着剤を、ポリフッ化ビニリデンに限定するも
のではない。
Although polyvinylidene fluoride is used as the binder for the positive electrode mixture paste, the present invention does not limit the binder of the positive electrode mixture paste to polyvinylidene fluoride.

【0073】[0073]

【発明の効果】以上の説明からも明らかなように、本発
明のように導電材層中にカルボキシメチルセルロースを
含むことにより、金属製集電体と導電材層との間の密着
性が良好な正極板を備え、高率放電性能に優れた電池を
作製できる。
As is clear from the above description, by including carboxymethylcellulose in the conductive material layer as in the present invention, good adhesion between the metal current collector and the conductive material layer can be obtained. A battery having a positive electrode plate and excellent in high-rate discharge performance can be manufactured.

【0074】さらに、導電材層において、導電材層の合
計重量に対するカルボキシメチルセルロースの添加量を
0.5〜5wt%とすることにより、正極合材層と金属
製の集電体との間の密着性がさらに良好な正極板を備
え、かつ、さらに高率放電性能に優れた電池を作製でき
る。
Further, the amount of carboxymethylcellulose added to the conductive material layer relative to the total weight of the conductive material layer is set to 0.5 to 5% by weight, so that the adhesion between the positive electrode mixture layer and the metal current collector is improved. It is possible to produce a battery having a positive electrode plate with even better performance and further excellent high-rate discharge performance.

【0075】また、前記の導電材層において、導電材と
して炭素材料を用いることにより、正極合材層と金属製
の集電体との間の密着性がさらに良好な正極板を備え、
かつ、さらに高率放電性能に優れた電池を作製でき、さ
らに、炭素材料としてグラファイトを用いることによ
り、正極合材層と金属製の集電体との間の密着性がさら
に良好な正極板を備え、かつ、さらに高率放電性能に優
れた電池を作製できる。
Further, in the conductive material layer, by using a carbon material as the conductive material, a positive electrode plate having more favorable adhesion between the positive electrode mixture layer and the metal current collector is provided.
In addition, it is possible to produce a battery having an excellent high-rate discharge performance, and further, by using graphite as a carbon material, a positive electrode plate having more favorable adhesion between the positive electrode mixture layer and the metal current collector can be obtained. It is possible to produce a battery having the same and further excellent high-rate discharge performance.

【0076】さらに、導電材層の厚みを1μm〜5μm
とする事により、正極合材層と金属製の集電体との間の
密着性がさらに良好な正極板を備え、さらに高率放電性
能に優れ、かつ、初期容量の大きい電池を作製できる。
Further, the thickness of the conductive material layer is set to 1 μm to 5 μm.
By so doing, it is possible to provide a positive electrode plate having more favorable adhesion between the positive electrode mixture layer and the metal current collector, to produce a battery having excellent high-rate discharge performance and a large initial capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の角形非水電解質二次電池の縦断面を示
す図。
FIG. 1 is a view showing a longitudinal section of a prismatic nonaqueous electrolyte secondary battery of the present invention.

【図2】本発明の正極板の断面を示す図。FIG. 2 is a diagram showing a cross section of a positive electrode plate of the present invention.

【符号の説明】[Explanation of symbols]

1 非水電解質二次電池 2 電極群 3 正極 4 負極 5 セパレータ 6 電池ケース 7 蓋 8 安全弁 9 正極端子 10 正極リード 11 アルミニウム箔 12 導電材層 13 正極合剤 DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Positive electrode 4 Negative electrode 5 Separator 6 Battery case 7 Lid 8 Safety valve 9 Positive electrode terminal 10 Positive electrode lead 11 Aluminum foil 12 Conductive material layer 13 Positive electrode mixture

フロントページの続き Fターム(参考) 5H029 AJ02 AK03 AK05 AK16 AK18 AL01 AL03 AL06 AL07 AL08 AL12 AL18 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ07 DJ08 EJ04 EJ11 HJ01 HJ04 5H050 AA02 BA16 BA17 CA05 CA08 CA09 CA11 CA20 CA22 CA29 CB01 CB03 CB07 CB08 CB09 CB12 CB29 DA02 DA04 DA10 DA11 EA08 EA09 EA21 FA05 HA01 HA04 Continued on the front page F term (reference) 5H029 AJ02 AK03 AK05 AK16 AK18 AL01 AL03 AL06 AL07 AL08 AL12 AL18 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ07 DJ08 EJ04 EJ11 HJ01 HJ04 5H050 AA02 BA16 BA17 CA05 CA08 CA09 CB CB CA22 CB CB09 CB12 CB29 DA02 DA04 DA10 DA11 EA08 EA09 EA21 FA05 HA01 HA04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極合剤と金属製集電体との間に、導電
材と結着剤を含む導電材層を備え、前記結着剤がカルボ
キシメチルセルロースを含むことを特徴とする非水電解
質二次電池。
1. A non-aqueous electrolyte comprising a conductive material layer containing a conductive material and a binder between a positive electrode mixture and a metal current collector, wherein the binder contains carboxymethyl cellulose. Rechargeable battery.
【請求項2】 導電材層の合計重量に対するカルボキシ
メチルセルロースの添加量が0.5〜5wt%であるこ
とを特徴とする請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of carboxymethylcellulose added is 0.5 to 5 wt% based on the total weight of the conductive material layer.
【請求項3】 導電材が炭素材料であることを特徴とす
る請求項1または2記載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive material is a carbon material.
【請求項4】 炭素材料がグラファイトであることを特
徴とする請求項3記載の非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein the carbon material is graphite.
【請求項5】 導電材層の厚みが1μm〜5μmである
ことを特徴とする請求項1、2、3または4記載の非水
電解質二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive material layer has a thickness of 1 μm to 5 μm.
JP2000220969A 2000-07-21 2000-07-21 Nonaqueous electrolyte secondary battery Pending JP2002042888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220969A JP2002042888A (en) 2000-07-21 2000-07-21 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220969A JP2002042888A (en) 2000-07-21 2000-07-21 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002042888A true JP2002042888A (en) 2002-02-08

Family

ID=18715476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220969A Pending JP2002042888A (en) 2000-07-21 2000-07-21 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002042888A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096189A1 (en) 2011-01-14 2012-07-19 昭和電工株式会社 Current collector
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same
CN104882629A (en) * 2014-02-27 2015-09-02 中国第一汽车股份有限公司 Secondary lithium ion battery adopting aluminum-plated, nickel-plated and copper-plated graphite cloth as current collector
US20150349326A1 (en) * 2014-05-28 2015-12-03 Gs Yuasa International Ltd. Energy storage device
WO2018168271A1 (en) * 2017-03-16 2018-09-20 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096189A1 (en) 2011-01-14 2012-07-19 昭和電工株式会社 Current collector
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same
JPWO2015046469A1 (en) * 2013-09-30 2017-03-09 日立化成株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
CN104882629A (en) * 2014-02-27 2015-09-02 中国第一汽车股份有限公司 Secondary lithium ion battery adopting aluminum-plated, nickel-plated and copper-plated graphite cloth as current collector
CN104882629B (en) * 2014-02-27 2018-04-06 中国第一汽车股份有限公司 Aluminize, the secondary lithium battery of nickel, copper Graphite cloth as collector
US20150349326A1 (en) * 2014-05-28 2015-12-03 Gs Yuasa International Ltd. Energy storage device
WO2018168271A1 (en) * 2017-03-16 2018-09-20 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JPWO2018168271A1 (en) * 2017-03-16 2020-01-16 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11201334B2 (en) 2017-03-16 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4049328B2 (en) Cathode for lithium secondary battery and lithium secondary battery including the same
JP4727784B2 (en) Lithium secondary battery
JP2004185862A (en) Lithium ion secondary battery and its manufacturing method
JP2000195517A (en) Lithium secondary battery
JPH1197027A (en) Nonaqueous electrolyte secondary cell
JPH11120992A (en) Nonaqueous electrolyte secondary battery
US6436572B1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery having the negative electrode
JPH1167216A (en) Nonaqueous electrolyte secondary battery
JP2003109596A (en) Electrode material and manufacturing method of the same, electrode and battery
JP2006172860A (en) Negative electrode for lithium secondary battery and its manufacturing method, and lithium secondary battery
JP2001052699A (en) Lithium secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP2002237331A (en) Lithium secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2002175807A (en) Nonaqueous electrolyte secondary battery
JP2002042888A (en) Nonaqueous electrolyte secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
JP2003317721A (en) Nonaqueous electrolyte secondary battery
JPH0696801A (en) Thin non-aqueous electrolyte battery
JP3448494B2 (en) Non-aqueous electrolyte secondary battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2003123765A (en) Nonaqueous electrolyte secondary battery
JP2002343437A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051108