JPH11120992A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH11120992A
JPH11120992A JP9291733A JP29173397A JPH11120992A JP H11120992 A JPH11120992 A JP H11120992A JP 9291733 A JP9291733 A JP 9291733A JP 29173397 A JP29173397 A JP 29173397A JP H11120992 A JPH11120992 A JP H11120992A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
secondary battery
aqueous electrolyte
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9291733A
Other languages
Japanese (ja)
Inventor
Tomohiro Inoue
智博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP9291733A priority Critical patent/JPH11120992A/en
Publication of JPH11120992A publication Critical patent/JPH11120992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the initial charging/discharging efficiency and cycle characteristic of a nonaqueous electrolyte secondary battery having a carbon negative electrode capable of storing/discharging lithium. SOLUTION: A coating layer made of an ionic conductive polymer, a water- soluble polymer, or alkaline metal salt is formed on the surface of a carbon negative electrode, the wettability between the carbon negative electrode and a nonaqueous electrolyte layer is improved, the decomposition of the nonaqueous electrolyte layer is suppressed, and the deposition of the decomposition product of the nonaqueous electrolyte layer on the surface of the negative electrode is suppressed. Even if the carbon negative electrode is made of a graphite carbon material and propylene carbonate is contained in the nonaqueous electrolyte layer in particular, the decomposition of this solvent on the surface of graphite is suppressed, and a good cycle characteristic is attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
に関し、特に炭素負極の性能改善を通じた初期充放電効
率とサイクル特性の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to an improvement in initial charge / discharge efficiency and cycle characteristics by improving the performance of a carbon anode.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、薄型化、軽量
化の進歩は目覚ましいものがあり、とりわけOA分野に
おいては、デスクトップ型からラップトップ型、ノート
ブック型へと小型軽量化が進行している。加えて、電子
手帳、電子スチルカメラ等の新しい小型電子機器の分野
も出現し、さらには従来のハードディスク、フロッピー
ディスクの小型化に加えて新しいメモリ媒体であるメモ
リカードの開発も進められている。このような電子機器
の小型化、薄型化、軽量化の波の中で、これらの電力を
支える二次電池にも高性能化が要求されており、鉛蓄電
池やニッケル・カドミウム電池に関わる高エネルギー密
度電池としてリチウム二次電池の開発が急速に進められ
てきた。
2. Description of the Related Art In recent years, there has been remarkable progress in miniaturization, thinning, and weight reduction of electronic devices. In particular, in the OA field, miniaturization has been progressing from desktop type to laptop type and notebook type. ing. In addition, the field of new small electronic devices such as electronic notebooks and electronic still cameras has emerged, and furthermore, in addition to the miniaturization of conventional hard disks and floppy disks, the development of memory cards, which are new memory media, has been promoted. In the wave of downsizing, thinning, and weight reduction of such electronic devices, high performance is also required for secondary batteries that support such electric power, and high energy related to lead-acid batteries and nickel-cadmium batteries is required. The development of lithium secondary batteries as density batteries has been rapidly advanced.

【0003】リチウム二次電池の正極活物質としては、
これまでに金属リチウムの他、TiS2 ,MoS2 ,C
2 6 ,FeS2 ,NbS2 ,ZrS2 ,VSe2
の遷移金属カルコゲン化合物、あるいはV2 5 ,Mn
2 , CoO2 等の遷移金属酸化物が数多く研究されて
いる。さらに最近では、4V程度の高い放電電圧が得ら
れ、高エネルギー化が期待できる正極活物質として、一
般式LiMO2 (Mは金属原子)で表される層状の複合
酸化物や、一般式LiM2 4 で表されるスピネル構造
の複合酸化物が提案されている。前者にはリチウム・コ
バルト酸化物(LiCoO2 )やリチウム・ニッケル酸
化物(LiNiO2 )があり、後者にはリチウム・マン
ガン酸化物(LiMn2 4 )がある。
As a positive electrode active material of a lithium secondary battery,
Until now, TiS 2 , MoS 2 , C
transition metal chalcogen compounds such as o 2 S 6 , FeS 2 , NbS 2 , ZrS 2 , VSe 2 or V 2 O 5 , Mn
Many transition metal oxides such as O 2 and CoO 2 have been studied. More recently, as a positive electrode active material capable of obtaining a high discharge voltage of about 4 V and achieving high energy, a layered composite oxide represented by a general formula LiMO 2 (M is a metal atom), a general formula LiM 2 A composite oxide having a spinel structure represented by O 4 has been proposed. The former includes lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ), and the latter includes lithium manganese oxide (LiMn 2 O 4 ).

【0004】一方の負極活物質としては、開発当初は金
属リチウムやリチウム合金について数多くの提案がなさ
れた。しかし、金属リチウムには高起電力が得られ、軽
量で高密度化も容易である反面、放電(リチウム析出)
と充電(リチウム溶出)とが繰り返されるうちに負極表
面の特定部位にリチウムの樹状突起(デンドライド)が
形成され、これがセパレータを突き抜けることによる正
極との短絡が起こり易いという短所があった。リチウム
合金については、上述のような短絡の問題は緩和された
ものの、二次電池として実用上満足し得る容量を達成す
るには至らなかった。
[0004] On the other hand, as the negative electrode active material, many proposals have been made on lithium metal and lithium alloy at the beginning of development. However, high electromotive force can be obtained from lithium metal, and it is lightweight and easy to increase the density, but discharge (lithium deposition)
While the charging and recharging (lithium elution) are repeated, dendrites of lithium are formed at specific sites on the surface of the negative electrode, and short-circuiting with the positive electrode due to the penetration of the dendrites easily occurs. As for the lithium alloy, the problem of short circuit as described above has been alleviated, but it has not been possible to achieve a practically satisfactory capacity as a secondary battery.

【0005】これらのリチウム金属系の負極に代わり、
リチウムイオンを可逆的に吸蔵/放出でき、安全性の高
い炭素材を用いた炭素負極が提案され、現状で実用化さ
れているリチウム二次電池の負極の主流となっている。
上記炭素負極は、sp2 炭素原子で構成された6員環が
連なる網目状分子層の層間でリチウムをゲストとして吸
蔵/放出する、可逆性に優れたホスト機能を果たす。完
全な黒鉛構造に比べて結晶性の低い炭素材の中には、層
間以外にもリチウムを収容できるサイトを持ち、黒鉛の
理論容量密度よりも高い容量密度を示すものも知られて
いる。
[0005] Instead of these lithium metal-based negative electrodes,
A carbon negative electrode using a highly safe carbon material capable of reversibly occluding / releasing lithium ions has been proposed, and has become a mainstream of the negative electrode of a lithium secondary battery that is currently in practical use.
The carbon anode has a highly reversible host function of absorbing / releasing lithium as a guest between layers of a mesh-like molecular layer in which 6-membered rings composed of sp 2 carbon atoms are connected. Some carbon materials having low crystallinity as compared to a perfect graphite structure have sites capable of accommodating lithium in addition to between layers, and exhibit a capacity density higher than the theoretical capacity density of graphite.

【0006】リチウムの収容力や吸蔵/放出の可逆性
は、結晶性、配向性、細孔の構造、粒度、比表面積等の
特性により異なり、これらの特性は原料、熱処理温度、
粉砕処理等の製造条件の影響を大きく受ける。このた
め、従来より様々な原料と製造方法による炭素材が提案
されている。たとえば、特開平2−66856号公報に
はフルフリルアルコール樹脂を1100℃で燃焼した導
電性炭素材、特開昭61−277515号公報には芳香
族ポリイミドを不活性雰囲気下、2000℃以上の温度
で熱処理して得られた導電性炭素材、特開平4−115
457号公報には易黒鉛性球状炭素を黒鉛化した炭素材
がそれぞれ開示されている。さらに、特開昭61−77
275号公報ではフェノール系高分子を熱処理したポリ
アセン構造の絶縁性、あるいは半導体性の炭素材を電極
に用いた二次電池が開示されている。
[0006] The capacity of lithium and the reversibility of occlusion / release vary depending on characteristics such as crystallinity, orientation, pore structure, particle size, and specific surface area.
It is greatly affected by manufacturing conditions such as pulverization. For this reason, carbon materials using various raw materials and manufacturing methods have been conventionally proposed. For example, Japanese Unexamined Patent Publication (Kokai) No. 2-66656 discloses a conductive carbon material obtained by burning a furfuryl alcohol resin at 1100 ° C., and Japanese Unexamined Patent Publication (Kokai) No. 61-277515 discloses an aromatic polyimide in an inert atmosphere at a temperature of 2000 ° C. Conductive carbon material obtained by heat treatment in
No. 457 discloses carbon materials obtained by graphitizing graphitizable spherical carbon. Further, JP-A-61-77
Japanese Patent Publication No. 275 discloses a secondary battery in which an insulating or semiconductive carbon material having a polyacene structure obtained by heat-treating a phenolic polymer is used for an electrode.

【0007】[0007]

【発明が解決しようとする課題】しかし、上述のような
炭素材からなる炭素負極の一般的な問題点として、初充
電時に負極表面で溶媒が分解されたり、あるいは負極の
内部にリチウムがトラップされることにより、初期充放
電効率の低下やサイクル特性の劣化を招くことが挙げら
れる。特に、プロピレンカーボネートは有用な溶媒であ
るにもかかわらず、炭素負極の表面で還元分解されてし
まうために、リチウムの吸蔵/放出を円滑に進行させる
ことが困難であり、このことが上記溶媒と黒鉛系炭素負
極との併用を阻む原因となっていた。また、炭素材に対
するリチウムの吸蔵/放出速度が大きいことは、大電流
下での電池容量を増大させる上で好ましい要件である
が、特に吸蔵速度が十分に大きくないと、急速充電時に
金属リチウムが炭素負極の表面に析出してしまい、サイ
クル寿命や安全性に支障をきたすおそれが大きい。そこ
で本発明は、初期充放電効率が高く、さらにサイクル特
性の優れた炭素負極を用いた非水電解質二次電池を提供
することを目的とする。
However, a general problem of the carbon anode made of the carbon material as described above is that a solvent is decomposed on the surface of the anode at the time of initial charging, or lithium is trapped inside the anode. This leads to a reduction in initial charge / discharge efficiency and a deterioration in cycle characteristics. In particular, although propylene carbonate is a useful solvent, it is reductively decomposed on the surface of the carbon negative electrode, so that it is difficult to smoothly proceed with the occlusion / release of lithium. This has been a cause of preventing the combined use with a graphite-based carbon anode. In addition, a high lithium insertion / desorption rate with respect to the carbon material is a preferable requirement for increasing the battery capacity under a large current. However, unless the occlusion rate is sufficiently high, metallic lithium may be lost during rapid charging. It is likely to be deposited on the surface of the carbon negative electrode and impair the cycle life and safety. Therefore, an object of the present invention is to provide a nonaqueous electrolyte secondary battery using a carbon anode having high initial charge / discharge efficiency and excellent cycle characteristics.

【0008】[0008]

【課題を解決するための手段】本発明者は、上述の目的
を達成するために検討を行った結果、リチウムを吸蔵/
放出可能な炭素負極の表面にある種の被覆層を設けるこ
とによって、初期充放電効率が高く、またサイクル特性
に優れる非水電解質二次電池が得られることを見出し、
本発明を提案するに至ったものである。上記被覆層は、
炭素負極と非水電解質層との濡れ性向上、非水電解質層
の分解抑制、または非水電解質層の構成成分の分解生成
物の負極表面上への堆積抑制等の機能を果たすことによ
り、初期充放電効率の向上、サイクル特性の向上に寄与
する。
Means for Solving the Problems The present inventor has conducted studies to achieve the above-mentioned object, and as a result, has found that lithium has been absorbed / removed.
By providing a certain coating layer on the surface of the releasable carbon negative electrode, it was found that a non-aqueous electrolyte secondary battery having high initial charge / discharge efficiency and excellent cycle characteristics was obtained.
The present invention has been proposed. The coating layer,
By performing functions such as improving the wettability between the carbon anode and the nonaqueous electrolyte layer, suppressing the decomposition of the nonaqueous electrolyte layer, or suppressing the deposition of decomposition products of the components of the nonaqueous electrolyte layer on the negative electrode surface, It contributes to improvement of charge / discharge efficiency and cycle characteristics.

【0009】[0009]

【発明の実施の形態】本発明において炭素負極の表面に
設けられる被覆層については、リチウムの移動を妨げな
いこと、および電解液に対して安定かつ不溶であること
が必要であるが、これらの要件を満たす限りにおいてそ
の構成材料や作製方法は特に限定されるものではない。
ただし、実用上特に好適な材料としては、イオン伝導性
高分子、水溶性高分子、あるいはアルカリ金属塩,アル
カリ金属酸化物,アルカリ金属水酸化物の少なくともい
ずれかを挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a coating layer provided on the surface of a carbon negative electrode is required not to hinder the movement of lithium and to be stable and insoluble in an electrolytic solution. The constituent material and the manufacturing method are not particularly limited as long as the requirements are satisfied.
However, particularly suitable materials for practical use include ion-conductive polymers, water-soluble polymers, and at least one of alkali metal salts, alkali metal oxides, and alkali metal hydroxides.

【0010】上記イオン伝導性高分子としては、高分子
固体電解質の製造に通常用いられているようなポリエチ
レンオキサイド、ポリプロピレンオキサイド、ポリフッ
化ビニリデン、ポリアクリロニトリルなどのポリマーマ
トリクスが例示され、これらに必要に応じて電解質塩を
溶解した複合体を炭素負極の表面に塗布する等の方法で
被覆層を形成することができる。あるいは、フッ化ビニ
ル、オクタメチルテトラシロキサン、ヘキサメチルジシ
ロキサン、ヘキサメチルシクロシロキサンなどをプラズ
マ重合で成膜し、被覆層とすることもできる。
Examples of the ion-conductive polymer include polymer matrices such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, and polyacrylonitrile, which are commonly used in the production of solid polymer electrolytes. Accordingly, a coating layer can be formed by, for example, applying a composite in which an electrolyte salt is dissolved to the surface of a carbon negative electrode. Alternatively, a coating layer may be formed by forming a film of vinyl fluoride, octamethyltetrasiloxane, hexamethyldisiloxane, hexamethylcyclosiloxane, or the like by plasma polymerization.

【0011】上記水溶性高分子としては、ポリビニルア
ルコール、ポリエチレンオキサイド、ポリプロピレンオ
キサイド、ポリビニルピロリドン、スチレン−無水マレ
イン酸共重合体の加水分解物またはその水溶性塩、メチ
ルセルロース、カルボキシメチルセルロース、ヒドロキ
シエチルセルロースまたはこれらの水溶性塩、ポリアク
リル酸またはその水溶性塩などが挙げられる。実用上特
に好適なものはポリビニルアルコールであり、重合度が
高く、けん化度の高いものほど良い。これらの水溶性高
分子は単独、または2種類以上を混合して用いる。水溶
性塩としては、リチウム塩、ナトリウム塩、アンモニウ
ム塩、アミン塩などが挙げられるが、リチウム塩が特に
好ましい。被覆層を形成するには、これら水溶性高分子
を水やアルコールなどの極性溶媒に溶解させた塗料を炭
素負極の表面に塗布する。さらに、アルカリ金属塩、ア
ルカリ金属酸化物、アルカリ金属水酸化物を用いる場合
には、これらを溶解した水溶液を炭素負極の表面に塗布
する方法、これらのターゲットをスパッタリングする等
の方法で被覆層を形成する。
Examples of the water-soluble polymer include polyvinyl alcohol, polyethylene oxide, polypropylene oxide, polyvinylpyrrolidone, a hydrolyzate of a styrene-maleic anhydride copolymer or a water-soluble salt thereof, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose or these. And polyacrylic acid or a water-soluble salt thereof. Particularly preferred in practical use is polyvinyl alcohol, and the higher the degree of polymerization and the higher the degree of saponification, the better. These water-soluble polymers are used alone or in combination of two or more. Examples of the water-soluble salt include a lithium salt, a sodium salt, an ammonium salt, and an amine salt, and a lithium salt is particularly preferable. In order to form the coating layer, a coating solution in which these water-soluble polymers are dissolved in a polar solvent such as water or alcohol is applied to the surface of the carbon negative electrode. Further, when using an alkali metal salt, an alkali metal oxide, or an alkali metal hydroxide, a method of applying an aqueous solution in which these are dissolved to the surface of the carbon negative electrode, or a method of sputtering these targets, is used to form the coating layer. Form.

【0012】本発明で形成される被覆層の厚さは、上記
のいずれの材料を用いる場合にも、0.1〜50μmと
することが好ましい。0.1μmよりも薄い場合には被
覆層としての機能、すなわち炭素負極と電解質層との濡
れ性向上、電解質層の分解抑制、または電解質層の構成
成分の分解生成物の負極表面上への堆積抑制等の機能を
十分に果たすことができず、また50μmよりも厚い場
合にはリチウムの移動が妨げられたり、充放電密度が低
下するおそれが大きい。より好ましい膜厚の範囲は、
0.5〜10μmである。
[0012] The thickness of the coating layer formed in the present invention is preferably 0.1 to 50 µm when any of the above materials is used. When it is thinner than 0.1 μm, it functions as a coating layer, that is, improves wettability between the carbon anode and the electrolyte layer, suppresses decomposition of the electrolyte layer, or deposits decomposition products of components of the electrolyte layer on the surface of the negative electrode. In the case where functions such as suppression cannot be sufficiently performed, and when the thickness is larger than 50 μm, movement of lithium is hindered and charge / discharge density is likely to be reduced. A more preferable range of the film thickness is:
0.5 to 10 μm.

【0013】本発明の炭素負極の負極活物質として含ま
れる炭素材は、コークス,ピッチ,合成高分子,天然高
分子等の材料を還元雰囲気下、500〜3000℃で焼
成して得られる従来公知の炭素材や天然黒鉛である。中
でも、天然黒鉛,人造黒鉛,黒鉛化メソカーボンマイク
ロビーズ(MCMB),黒鉛化メソフェーズピッチ系炭
素繊維,黒鉛ウィスカ等の黒鉛質の炭素材や、ホウ素を
含有する炭素材が特に好適である。これらの炭素材のc
軸方向の面間隔d002 は3.35〜3.40Åである。
下限の数値3.35Åは、完全な黒鉛構造におけるc軸
方向のc軸方向の面間隔d002 に相当し、黒鉛構造内に
リチウムが最大限にドープされた層間化合物LiC6
理論容量密度は、372mAh/gである。c軸方向の
面間隔d002 が3.40Å以下の炭素材は、黒鉛構造の
発達した炭素材と言えるが、従来このような炭素材は、
非水電解質の溶媒として多用されるプロピレンカーボネ
ートとの併用が困難であった。しかし、本発明では炭素
負極の表面に被覆層を設けるため、プロピレンカーボネ
ートとの併用にも何ら問題が生じない。
The carbon material contained as the negative electrode active material of the carbon negative electrode according to the present invention is a conventionally known carbon material obtained by firing materials such as coke, pitch, synthetic polymer, and natural polymer at 500 to 3000 ° C. in a reducing atmosphere. Carbon material and natural graphite. Among them, graphitic carbon materials such as natural graphite, artificial graphite, graphitized mesocarbon microbeads (MCMB), graphitized mesophase pitch-based carbon fibers, graphite whiskers, and carbon materials containing boron are particularly preferable. C of these carbon materials
The axial distance d 002 is 3.35 to 3.40 °.
The lower limit of the numerical 3.35Å is complete corresponds to the plane spacing d 002 of the c-axis direction of the c-axis direction of the graphite structure, the theoretical capacity density of intercalation compound LiC 6 lithium in the graphite structure is doped maximum , 372 mAh / g. A carbon material having a surface distance d 002 of 3.40 ° or less in the c-axis direction can be said to be a carbon material having a developed graphite structure.
It has been difficult to use propylene carbonate, which is frequently used as a solvent for the non-aqueous electrolyte, in combination. However, in the present invention, since the coating layer is provided on the surface of the carbon negative electrode, no problem occurs even when used in combination with propylene carbonate.

【0014】本発明では、炭素材は2種類以上を混合し
て炭素負極を構成することも有効である。これにより、
集電体上への接着性、電池容量、充放電特性等を所望の
特性に応じて最適化することが可能である。複数の炭素
材は、平均粒径が互いに異なっていてもよい。表面積の
増大による初期の電池容量の増大を見込む観点からは、
活物質の平均粒径は一般には小さい方がよい。ただし、
あまり小さすぎると、充放電サイクルを経るうちに電池
容量が低下したり、炭素負極製造用の負極塗料を調製す
る際の分散性が低下したり、また非水電解質層との接触
面積が増大しすぎて非水溶媒が分解され易くなるといっ
た不都合が生ずる。したがって、平均粒径の下限はおお
よそ1μm程度である。一方、平均粒径があまり大きく
ても負極塗料中での分散性が低下したり、形成される活
物質層が脆くなる等の成膜特性上の問題が生ずる。した
がって、平均粒径の上限はおおよそ50μmである。よ
り好ましい平均粒径の範囲は3〜20μmである。
In the present invention, it is also effective to form a carbon anode by mixing two or more kinds of carbon materials. This allows
Adhesion on the current collector, battery capacity, charge / discharge characteristics, and the like can be optimized according to desired characteristics. The plurality of carbon materials may have different average particle sizes. From the perspective of increasing the initial battery capacity due to the increase in surface area,
Generally, the smaller the average particle size of the active material, the better. However,
If it is too small, the battery capacity will decrease during the charge / discharge cycle, or the dispersibility of the negative electrode paint for preparing the carbon negative electrode will decrease, and the contact area with the non-aqueous electrolyte layer will increase. The disadvantage is that the non-aqueous solvent is easily decomposed. Therefore, the lower limit of the average particle size is about 1 μm. On the other hand, if the average particle size is too large, problems in film forming characteristics such as a decrease in dispersibility in the negative electrode paint and a brittle active material layer to be formed arise. Therefore, the upper limit of the average particle size is approximately 50 μm. A more preferable range of the average particle size is 3 to 20 μm.

【0015】炭素負極は、シート状に成形することがで
きる。このときの負極の作製方法としては、たとえば炭
素材を適当なバインダと共に分散させた分散液を用いて
湿式抄紙法で集電体上に直接に炭素材シートを形成して
乾燥させる方法、別の支持体上で湿式抄紙法により形成
した炭素材シートを集電体上に圧着する方法、あるいは
炭素材とバインダを含む負極用塗料を集電体上に塗布し
て乾燥させる方法がある。上記バインダとしては、負極
活物質の特性を阻害しないことを前提とした上で、耐電
解液性が優れ、電極膜を維持するための機械的強度が強
いものが求められる。たとえば、テフロン、ポリエチレ
ン、ニトリルゴム、ポリブタジエン、ブチルゴム、ポリ
スチレン、スチレン−ブタジエンゴム、ニトロセルロー
ス、シアノエチルセルロース、ポリアクリロニトリル、
ポリフッ化ビニル、ポリ酢酸ビニル、ポリフッ化ビニリ
デン、ポリエチレン、ポリスチレン、ポリプロピレン、
ポリテトラフルオロエチレン、ポリメチルメタクリレー
ト、ポリクロロプレン、ポリビニルピリジンなどが挙げ
られる。
The carbon anode can be formed into a sheet. Examples of a method for producing the negative electrode at this time include a method in which a carbon material sheet is directly formed on a current collector by a wet papermaking method using a dispersion liquid in which a carbon material is dispersed together with a suitable binder, followed by drying. There is a method of pressing a carbon material sheet formed on a support by a wet papermaking method onto a current collector, or a method of applying a negative electrode coating material containing a carbon material and a binder on the current collector and drying it. The binder is required to have excellent resistance to an electrolytic solution and strong mechanical strength for maintaining an electrode film on the premise that the characteristics of the negative electrode active material are not impaired. For example, Teflon, polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene-butadiene rubber, nitrocellulose, cyanoethylcellulose, polyacrylonitrile,
Polyvinyl fluoride, polyvinyl acetate, polyvinylidene fluoride, polyethylene, polystyrene, polypropylene,
Examples include polytetrafluoroethylene, polymethyl methacrylate, polychloroprene, polyvinyl pyridine and the like.

【0016】上記集電体としては、たとえば銅、ステン
レス鋼、金、白金、ニッケル、アルミニウム、モリブデ
ン、チタン等の金属をシート、箔、網、パンチングメタ
ル、エキスパンドメタル等の形態に成形したもの、ある
いはこれらの金属をめっき、蒸着、混練等の方法により
複合させた繊維からなる網や不織布が挙げられる。これ
らは、後述の正極の集電体としても同様に使用できる。
なかでも銅、アルミニウム、およびステンレス鋼は電気
伝導度、化学的安定性、電気化学的安定性、経済性、加
工性等の観点から有利であり、さらに軽量性、電気化学
的安定性の観点から銅とアルミニウムが特に好ましい。
As the current collector, for example, a metal such as copper, stainless steel, gold, platinum, nickel, aluminum, molybdenum, titanium or the like, formed into a sheet, foil, mesh, punched metal, expanded metal or the like, Alternatively, a mesh or nonwoven fabric made of a fiber obtained by compounding these metals by plating, vapor deposition, kneading, or the like may be used. These can be similarly used as a positive electrode current collector described later.
Among them, copper, aluminum, and stainless steel are advantageous from the viewpoint of electrical conductivity, chemical stability, electrochemical stability, economy, workability, etc., and further, from the viewpoint of lightness and electrochemical stability. Copper and aluminum are particularly preferred.

【0017】上記集電体の表面は粗面化してあることが
一層好ましい。粗面化を施すことにより、活物質層との
接触面積が大きくなると共に、密着性も向上し、電池と
してのインピーダンスを下げる効果が期待できる。活物
質塗料を用いる電極作製においては、粗面化処理を施す
ことにより活物質と集電体の密着性を大きく向上させる
ことができる。粗面化処理の方法としては、エメリー紙
を用いる研磨、ブラスト処理、化学的あるいは電気化学
的エッチングが挙げられる。ステンレス鋼集電体の粗面
化にはブラスト処理が好適であるが、アルミニウム集電
体についてはエッチング処理が最適である。これは、ア
ルミニウムは柔らかい金属であるために、ブラスト処理
では粗面化が行われる以前に集電体そのものが変形して
しまうからである。エッチング処理であれば、アルミニ
ウム集電体の変形や大幅な強度低下を招くことなく、μ
mのオーダーで表面を効果的に粗面化することが可能で
ある。
More preferably, the surface of the current collector is roughened. By performing the surface roughening, the contact area with the active material layer is increased, the adhesion is improved, and an effect of lowering the impedance as a battery can be expected. In the preparation of an electrode using an active material paint, the adhesion between the active material and the current collector can be significantly improved by performing a surface roughening treatment. Examples of the surface roughening method include polishing using emery paper, blasting, and chemical or electrochemical etching. Blasting is suitable for roughening the surface of the stainless steel current collector, but etching is most suitable for the aluminum current collector. This is because, because aluminum is a soft metal, the current collector itself is deformed before roughening is performed in blasting. If it is an etching treatment, the μ can be obtained without causing deformation or a significant decrease in strength of the aluminum current collector.
The surface can be effectively roughened on the order of m.

【0018】一方、本発明の非水電解質二次電池の正極
を構成する正極活物質としては、TiS2 ,MoS2
Co2 6 ,FeS2 ,NbS2 ,ZrS2 ,VSe2
等の遷移金属カルコゲン化合物、V2 5 ,MnO2
CoO2 等の遷移金属酸化物、LiCoO2 ,LiNi
2 ,LiFeO2 ,LiMn2 4 等のリチウム含有
複合酸化物、あるいはこれらリチウム含有複合酸化物中
のCo,Ni,Fe,Mnの一部をさらに他の元素Xで
置き換えたLiCoXO2 、LiNiXO2 ,LiFe
XO2 ,LiMn2 XO4 等を挙げることができる。な
かでも、リチウム含有複合酸化物は高電位、高エネルギ
ーが得られることから近年の正極活物質の主流となって
おり、炭酸塩,水酸化物,硝酸塩等の出発原料を高温焼
成して合成されたものが用いられている。さらに、これ
らの活物質は数種類を複合化して用いてもよい。
On the other hand, as the positive electrode active material constituting the positive electrode of the non-aqueous electrolyte secondary battery of the present invention, TiS 2 , MoS 2 ,
Co 2 S 6 , FeS 2 , NbS 2 , ZrS 2 , VSe 2
Transition metal chalcogen compounds such as V 2 O 5 , MnO 2 ,
Transition metal oxides such as CoO 2 , LiCoO 2 , LiNi
LiCoXO 2 , LiNiXO in which a lithium-containing composite oxide such as O 2 , LiFeO 2 , LiMn 2 O 4 , or Co, Ni, Fe, Mn in these lithium-containing composite oxides is partially replaced by another element X 2 , LiFe
XO 2 , LiMn 2 XO 4 and the like can be mentioned. Among these, lithium-containing composite oxides have become the mainstream of recent positive electrode active materials because of their high potential and high energy, and are synthesized by firing high-temperature starting materials such as carbonates, hydroxides, and nitrates. Is used. Further, these active materials may be used in combination of several types.

【0019】これらの正極活物質を用いて正極を作製す
るには、該正極活物質をジメチルホルムアミド、N−メ
チルピロリドン、テトラヒドロフランなどの溶媒中で必
要に応じて添加されるバインダ、導電剤等の添加剤と共
に混合・分散させて高濃度の正極用塗料を調製し、この
正極用塗料を集電体上に塗布した後、乾燥させるのが最
も一般的である。この場合の正極活物質の分散は、ロー
ルミル、ボールミル、バレンミル等の装置を用いて行
う。また、正極用塗料の塗布は、ワイヤバーやブレード
コータを用いて行ったり、あるいはスプレー法により行
う。
In order to prepare a positive electrode using these positive electrode active materials, the positive electrode active material is added to a solvent such as dimethylformamide, N-methylpyrrolidone, tetrahydrofuran or the like, if necessary, with a binder, a conductive agent and the like. It is most common to mix and disperse with the additives to prepare a high-concentration positive electrode paint, apply the positive-electrode paint on the current collector, and then dry it. In this case, the dispersion of the positive electrode active material is performed using a device such as a roll mill, a ball mill, and a valence mill. The application of the positive electrode paint is performed using a wire bar or a blade coater, or by a spray method.

【0020】上記バインダとしては、炭素負極の作製時
に用いたものと同様のものを適宜選択して使用すること
ができる。また、上記導電剤については、構成された電
池系内において化学変化を起こさない電子伝導性材料で
あればいかなる材料でもよく、天然黒鉛、人造黒鉛等の
通常用いられている材料を用いることができる。
As the above-mentioned binder, the same binder as that used at the time of producing the carbon anode can be appropriately selected and used. Further, as the conductive agent, any material may be used as long as it is an electron conductive material that does not cause a chemical change in the configured battery system, and a commonly used material such as natural graphite and artificial graphite can be used. .

【0021】本発明の非水電解質二次電池に使用される
非水電解質層は、有機溶媒に電解質塩を溶解させた電解
質溶液を含むものであっても、あるいは固体電解質から
なるものであってもよい。上記電解質溶液の調製に用い
られる電解質塩は、通常用いられるものであれば特に制
限されないが、リチウム二次電池に関してはLiClO
4 ,LiAsF6,LiPF6 ,LiBF4 ,LiB
r,LiCF3 SO3 ,LiN(CF3 SO2 2 ,L
iC(CF3 SO2 3 等のリチウム塩を例示すること
ができる。電解質の濃度は、使用する電極や有機溶媒に
もよるが、おおよそ0.1〜10mol/lとする。
The non-aqueous electrolyte layer used in the non-aqueous electrolyte secondary battery of the present invention may contain an electrolyte solution obtained by dissolving an electrolyte salt in an organic solvent, or may comprise a solid electrolyte. Is also good. The electrolyte salt used for preparing the electrolyte solution is not particularly limited as long as it is a commonly used electrolyte salt.
4, LiAsF 6, LiPF 6, LiBF 4, LiB
r, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , L
Examples thereof include lithium salts such as iC (CF 3 SO 2 ) 3 . The concentration of the electrolyte is about 0.1 to 10 mol / l, depending on the electrode and the organic solvent used.

【0022】有機溶媒としては、たとえばフラン系溶媒
(テトラヒドロフラン、2−メチルテトラヒドロフラン
等); エーテル系溶媒(メチラール、1,2−ジメト
キシエタン、1,2−ジエトキシエタン、1−エトキシ
−2−ジメトキシエタン、アルコキシポリアルキレンエ
ーテル等); アミド系溶媒(N−メチルホルムアミ
ド、N−エチルホルムアミド、N,N−ジメチルホルム
アミド、N−メチルアセトアミド、N−エチルアセトア
ミド、N−メチルピロリジノン等); ニトリル系溶媒
(アセトニトリル、ベンゾニトリル、3−メトキシプロ
ピオニトリル等); スルホラン系溶媒(スルホラン、
テトラメチレンスルホラン、ジメチルスルホキシスルホ
ラン等); 鎖状炭酸エステル系溶媒(ジメチルカーボ
ネート、ジエチルカーボネート、メチルエチルカーボネ
−ト、メチルイソプロピルカーボネート等); 環状炭
酸エステル系溶媒(エチレンカーボネート、プロピレン
カーボネート、ブチレンカーボネート等); ラクトン
系溶媒(γ−ブチロラクトン、γ−バレロラクトン、δ
−バレロラクトン、3−メチル−1,3−オキサゾリジ
ン−2−オン等); アルコール系溶媒(エチレングリ
コール、プロピレングリコール、グリセリン、メチルセ
ロソルブ、1,2−ブタンジオール、1,3−ブタンジ
オール、1,4−ブタンジオール、ジグリセリン、ポリ
オキシアルキレングリコール、シクロヘキサンジオー
ル、キシレングリコール等); リン酸およびリン酸エ
ステル系溶媒(正リン酸、メタリン酸、ピロリン酸、ポ
リリン酸、亜リン酸、トリメチルリン酸等); 2−イ
ミダゾリジノン系溶媒(1,3−ジメチル−2−イミダ
ゾリジノン等); ピロリドン系溶媒; 1,4−ジオ
キサン; ジオキソラン; ジクロロエタンを単独ある
いは混合して用いる。なかでも、プロピレンカーボネー
トは比誘電率が高く、室温で液体であり、電池の低温特
性を改善できることから有用な溶媒であるが、黒鉛系の
炭素負極との接触により還元的に分解され、負極表面に
炭酸リチウム等の固体を析出させる問題があり、従来は
黒鉛系の炭素負極と併用することが難しかった。本発明
では炭素負極の表面が被覆層で覆われるためにかかる併
用が可能となり、高性能のリチウム二次電池を提供する
ことが可能となる。
Examples of the organic solvent include furan solvents (tetrahydrofuran, 2-methyltetrahydrofuran, etc.); ether solvents (methylal, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1-ethoxy-2-dimethoxy) Amide solvents (N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N-methylacetamide, N-ethylacetamide, N-methylpyrrolidinone, etc.); nitrile solvents (Acetonitrile, benzonitrile, 3-methoxypropionitrile, etc.); sulfolane solvents (sulfolane,
Chain carbonate-based solvents (dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl isopropyl carbonate, etc.); Cyclic carbonate-based solvents (ethylene carbonate, propylene carbonate, butylene) Lactone solvents (γ-butyrolactone, γ-valerolactone, δ)
-Valerolactone, 3-methyl-1,3-oxazolidine-2-one, etc.); alcohol solvents (ethylene glycol, propylene glycol, glycerin, methyl cellosolve, 1,2-butanediol, 1,3-butanediol, 1 , 4-butanediol, diglycerin, polyoxyalkylene glycol, cyclohexanediol, xylene glycol, etc.) Phosphoric acid and phosphate ester solvents (normal phosphoric acid, metaphosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, trimethylphosphorus) 2-imidazolidinone-based solvent (1,3-dimethyl-2-imidazolidinone, etc.); pyrrolidone-based solvent; 1,4-dioxane; dioxolane; dichloroethane alone or as a mixture. Among them, propylene carbonate is a useful solvent because it has a high relative dielectric constant, is liquid at room temperature, and can improve the low-temperature characteristics of batteries, but is reductively decomposed by contact with a graphite-based carbon anode, and the surface of the anode is reduced. However, there has been a problem that a solid such as lithium carbonate is precipitated, and it has been conventionally difficult to use it together with a graphite-based carbon anode. In the present invention, since the surface of the carbon negative electrode is covered with the coating layer, such a combination is possible, and a high-performance lithium secondary battery can be provided.

【0023】また、本発明において非水電解質層を高分
子固体電解質層を用いて構成すれば、電解液の偏りや漏
液やガス発生がなく、変形に強く信頼性の高い非水電解
質二次電池を作製することができる。固体電解質の材料
としては、ポリエチレンオキサイド、ポリプロピレンオ
キサイド、ポリフッ化ビニリデン、ポリアクリロニトリ
ル等の高分子材料をマトリクスとし、前述の電解質塩を
このマトリクス中に溶解させた複合体、あるいはこれら
のゲル架橋体、低分子量ポリエチレンオキサイドやクラ
ウンエーテルなどのイオン解離基をポリマー主鎖にグラ
フトさせたもの、あるいは高分子量重合体に前述の電解
質溶液を含有させたゲル状体が挙げられる。
In the present invention, when the non-aqueous electrolyte layer is constituted by using a solid polymer electrolyte layer, the non-aqueous electrolyte secondary layer which is resistant to deformation and free from deformation, leakage or gas generation of the electrolyte, and which is highly reliable. A battery can be manufactured. As a material of the solid electrolyte, a polymer material such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, and polyacrylonitrile is used as a matrix, and a complex in which the above-described electrolyte salt is dissolved in the matrix, or a gel cross-linked body thereof, Examples thereof include those obtained by grafting an ion-dissociating group such as low-molecular-weight polyethylene oxide and crown ether onto the polymer main chain, and gel-like bodies obtained by adding the above-mentioned electrolyte solution to a high-molecular-weight polymer.

【0024】本発明の電池においてはセパレーターを使
用することもできる。セパレーターとしては、電解質層
のイオン移動に対して低抵抗であり、且つ電解質の保持
性に優れたものが用いられる。たとえば、ガラス、ポリ
エステル、テフロン、ポリフロン、ポリプロピレン等の
繊維を単独あるいは組み合わせて作製される不織布や織
布が例示される。このセパレータを、対極と負極との間
に挟んだ巻回体や積層体を用いて、円筒型、コイン型、
ガム型、扁平型等の様々な形態の非水電解質二次電池を
作製することができるが、この形態は特に限定されるも
のではない。なお、固体電解質を用いる場合、固体電解
質自身がセパレータも兼ねることができれば、セパレー
タは特に使用しなくてもよい。
In the battery of the present invention, a separator may be used. As the separator, a separator that has low resistance to ion migration of the electrolyte layer and has excellent electrolyte retention is used. For example, nonwoven fabrics and woven fabrics made of fibers such as glass, polyester, Teflon, polyflon, and polypropylene alone or in combination are exemplified. This separator, using a wound body and a laminate sandwiched between the counter electrode and the negative electrode, cylindrical, coin type,
Various types of nonaqueous electrolyte secondary batteries such as a gum type and a flat type can be manufactured, but this type is not particularly limited. When a solid electrolyte is used, the separator need not be particularly used as long as the solid electrolyte itself can also serve as the separator.

【0025】[0025]

【実施例】以下、本発明の具体的な実施例について説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0026】実施例1 本実施例では、天然黒鉛を負極活物質とする炭素負極の
表面を、イオン伝導性高分子であるポリフッ化ビニリデ
ンの塗膜からなる被覆層で覆い、対極にはLi板、非水
電解質層としてはLiPF6 をエチレンカーボネート/
プロピレンカーボネート/ジメチルカーボネート混合溶
媒に溶解させた溶液層をそれぞれ用い、評価用のボタン
型二次電池を構成した。
Example 1 In this example, the surface of a carbon negative electrode using natural graphite as a negative electrode active material was covered with a coating layer made of a coating film of polyvinylidene fluoride as an ion-conductive polymer, and a Li plate was used as a counter electrode. For the non-aqueous electrolyte layer, LiPF 6 is made of ethylene carbonate /
A button type secondary battery for evaluation was constructed using each of the solution layers dissolved in a propylene carbonate / dimethyl carbonate mixed solvent.

【0027】まず、集電体であるCu箔上に負極用塗料
を塗布して炭素負極を作製した。負極用塗料は、次のよ
うにして調製した。すなわち、4−ビニルピリジンと2
−ヒドロキシエチルメタクリレートを1:3のモル比で
重合させた共重合体100重量部と、ヘキサメチレンジ
イソシアネート−メチルエチルケトン(MEK)オキシ
ムブロック(住友バイエルウレタン社製; 商品名BL
3175)5重量部とを混合し、バインダ樹脂組成物を
調製した。このバインダ樹脂組成物の3重量部をN−メ
チルピロリドン67重量部に溶解し、天然黒鉛(d002
=3.355Å)30重量部を加え、ロールミルを用い
て不活性雰囲気下で混合分散させ、負極用塗料を調製し
た。上記負極用塗料を、大気中でワイヤバーを用いて厚
さ20μmのCu箔上に塗布し、130℃で20分間乾
燥させ、ロールプレスを経て膜厚60μmの負極活物質
層を有する全体厚さ80μmの炭素負極を作製した。続
いて、この炭素負極の表面に被覆層を形成した。すなわ
ち、ポリフッ化ビニリデンを濃度5%となるようにN−
メチルピロリドンに溶解した溶液をドクターブレードを
用いて炭素負極の表面に塗布し、塗膜を乾燥させて厚さ
3.5μmの被覆層を形成した。
First, a negative electrode paint was applied on a Cu foil as a current collector to prepare a carbon negative electrode. The coating material for the negative electrode was prepared as follows. That is, 4-vinylpyridine and 2
-Hydroxyethyl methacrylate in a molar ratio of 1: 3, 100 parts by weight of a copolymer, and hexamethylene diisocyanate-methyl ethyl ketone (MEK) oxime block (Sumitomo Bayer Urethane Co .; trade name BL)
3175) was mixed with 5 parts by weight to prepare a binder resin composition. 3 parts by weight of this binder resin composition was dissolved in 67 parts by weight of N-methylpyrrolidone, and natural graphite ( d002
= 3.355%), and 30 parts by weight were added and mixed and dispersed under an inert atmosphere using a roll mill to prepare a negative electrode coating material. The negative electrode paint is applied on a 20 μm-thick Cu foil using a wire bar in the air, dried at 130 ° C. for 20 minutes, and roll-pressed to a total thickness of 80 μm having a 60 μm-thick negative electrode active material layer. Was prepared. Subsequently, a coating layer was formed on the surface of the carbon negative electrode. In other words, N-vinylidene fluoride was added to N-
The solution dissolved in methylpyrrolidone was applied to the surface of the carbon negative electrode using a doctor blade, and the coating film was dried to form a coating layer having a thickness of 3.5 μm.

【0028】次に、上記の炭素負極を用いて評価用のボ
タン型二次電池を組み立てた。対極にはLi板を用い
た。非水電解質層には、エチレンカーボネート/プロピ
レンカーボネート/ジメチルカーボネートの2:5:3
(体積比)混合溶媒にLiPF6 を2.0mol/lの
濃度に溶解した電解質溶液をポリプロピレン多孔質体か
らなるセパレータに含浸させたものを用いた。このセパ
レータを挟んで上記の対極と負極とを積層し、評価用の
ボタン型二次電池とした。
Next, a button-type secondary battery for evaluation was assembled using the carbon anode. A Li plate was used as a counter electrode. The non-aqueous electrolyte layer has a ratio of 2: 5: 3 of ethylene carbonate / propylene carbonate / dimethyl carbonate.
(Volume ratio) An electrolyte solution obtained by dissolving LiPF 6 at a concentration of 2.0 mol / l in a mixed solvent was used by impregnating a separator made of porous polypropylene with a separator. The above counter electrode and the negative electrode were laminated with the separator interposed therebetween to obtain a button-type secondary battery for evaluation.

【0029】実施例2 本実施例では、ホウ素(B)添加石油ピッチコークス焼
成物を負極活物質とする炭素負極の表面を、イオン伝導
性高分子であるフッ化ビニルのプラズマ重合膜からなる
被覆層で覆い、対極にはLi板、非水電解質層としては
LiN(CF3SO2 2 をプロピレンカーボネート/
ジメチルカーボネート混合溶媒に溶解させた溶液層をそ
れぞれ用い、評価用のボタン型二次電池を構成した。
Example 2 In this example, the surface of a carbon negative electrode using a fired product of petroleum pitch coke containing boron (B) as a negative electrode active material was coated with a plasma polymerized film of vinyl fluoride, an ion conductive polymer. A Li plate as a counter electrode and LiN (CF 3 SO 2 ) 2 as propylene carbonate /
A button type secondary battery for evaluation was constructed using each of the solution layers dissolved in a dimethyl carbonate mixed solvent.

【0030】まず、集電体であるCu箔上に負極用塗料
を塗布して炭素負極を作製した。負極用塗料は、次のよ
うにして調製した。すなわち、バインダであるポリフッ
化ビニリデン3重量部をN−メチルピロリドン(NM
P)62重量部に溶解し、さらにホウ素を4.5%含有
した石油ピッチコークスの2500℃焼成物(d002
3.356Å)35重量部を加え、ロールミルを用いて
不活性雰囲気下で混合分散させ、負極用塗料とした。上
記負極用塗料を、大気中でワイヤバーを用いて厚さ20
μmのCu箔上に塗布し、120℃で20分間乾燥さ
せ、ロールプレスを経て膜厚60μmの負極活物質層を
有する全体厚さ80μmの炭素負極を作製した。続い
て、この炭素負極の表面にフッ化ビニルのプラズマ重合
膜を被覆層として形成した。すなわち、通常のプラズマ
CVD装置を用い、フッ化ビニル流量=10cm3
分、圧力=0.5Torr、RF周波数=10MHz、
RF放電出力=20Wの条件で、厚さ0.7μmの被覆
層を形成した。
First, a negative electrode paint was applied on a Cu foil as a current collector to prepare a carbon negative electrode. The coating material for the negative electrode was prepared as follows. That is, 3 parts by weight of polyvinylidene fluoride as a binder was added to N-methylpyrrolidone (NM
P) Dissolved in 62 parts by weight and calcined at 2500 ° C. of petroleum pitch coke containing 4.5% boron (d 002 =
3.356 °) 35 parts by weight were added and mixed and dispersed in a roll mill under an inert atmosphere to obtain a negative electrode paint. The above negative electrode paint is coated with a wire bar in the atmosphere to a thickness of 20 mm.
It was applied on a μm Cu foil, dried at 120 ° C. for 20 minutes, and roll-pressed to produce a carbon negative electrode having a total thickness of 80 μm and a negative electrode active material layer having a thickness of 60 μm. Subsequently, a plasma polymerized film of vinyl fluoride was formed as a coating layer on the surface of the carbon negative electrode. That is, the flow rate of vinyl fluoride = 10 cm 3 /
Min, pressure = 0.5 Torr, RF frequency = 10 MHz,
Under the condition of RF discharge output = 20 W, a coating layer having a thickness of 0.7 μm was formed.

【0031】次に、上記の炭素負極を用いて評価用のボ
タン型二次電池を組み立てた。対極にはLi板を用い
た。非水電解質層には、プロピレンカーボネート/ジメ
チルカーボネートの5:5(体積比)混合溶媒にLiN
(CF3 SO2 2 を2.0mol/lの濃度に溶解し
た電解質溶液をポリプロピレン多孔質体からなるセパレ
ータに含浸させたものを用いた。評価用のボタン型二次
電池の組み立ては、実施例1と同様に行った。
Next, a button-type secondary battery for evaluation was assembled using the carbon anode. A Li plate was used as a counter electrode. For the non-aqueous electrolyte layer, a propylene carbonate / dimethyl carbonate (5: 5 (volume ratio)) mixed solvent of LiN was used.
An electrolyte solution in which (CF 3 SO 2 ) 2 was dissolved at a concentration of 2.0 mol / l was used by impregnating a separator made of porous polypropylene with a separator. Assembling of the button type secondary battery for evaluation was performed in the same manner as in Example 1.

【0032】実施例3 本実施例では、ホウ素(B)添加石油ピッチコークス焼
成物を負極活物質とする炭素負極の表面を、水溶性高分
子であるポリビニルアルコール(PVA)の塗膜からな
る被覆層で覆い、対極にはLi板、非水電解質層として
はLiN(CF3 SO2 2 をプロピレンカーボネート
/ジメチルカーボネート混合溶媒に溶解させた溶液層を
それぞれ用い、評価用のボタン型二次電池を構成した。
Example 3 In this example, the surface of a carbon negative electrode using a calcined petroleum pitch coke containing boron (B) as a negative electrode active material was coated with a coating film of polyvinyl alcohol (PVA), a water-soluble polymer. A button-type secondary battery for evaluation is used, using a Li plate as a counter electrode, and a solution layer in which LiN (CF 3 SO 2 ) 2 is dissolved in a propylene carbonate / dimethyl carbonate mixed solvent as a nonaqueous electrolyte layer. Was configured.

【0033】まず、集電体であるCu箔上に実施例2で
上述した負極用塗料を塗布して炭素負極を作製した。続
いて、この炭素負極の表面に被覆層を形成した。すなわ
ち、PVA(重合度1700、けん化度99.3mol
%以上)2.5重量部を純水80重量部に加熱溶解した
溶液を、ドクターブレードを用いて炭素負極の表面に塗
布し、塗膜を乾燥させて厚さ2.5μmの被覆層を形成
した。対極、非水電解質層、評価用のボタン型二次電池
の組み立てについては、実施例2と同じとした。
First, the negative electrode coating material described in Example 2 was applied on a Cu foil as a current collector to produce a carbon negative electrode. Subsequently, a coating layer was formed on the surface of the carbon negative electrode. That is, PVA (degree of polymerization 1700, degree of saponification 99.3 mol)
% Solution) A solution obtained by heating and dissolving 2.5 parts by weight in 80 parts by weight of pure water is applied to the surface of a carbon negative electrode using a doctor blade, and the coating film is dried to form a coating layer having a thickness of 2.5 μm. did. The assembly of the counter electrode, the nonaqueous electrolyte layer, and the button-type secondary battery for evaluation was the same as in Example 2.

【0034】実施例4 本実施例では、メソカーボンマイクロビーズ焼成物を負
極活物質とする炭素負極の表面を、水溶性高分子である
ポリビニルアルコール(PVA)の塗膜からなる被覆層
で覆い、対極にはLi板、非水電解質層としてはLiP
6 をエチレンカーボネート/プロピレンカーボネート
/ジメチルカーボネト混合溶媒に溶解させた溶液層をそ
れぞれ用い、評価用のボタン型二次電池を構成した。
Example 4 In this example, the surface of a carbon negative electrode using a baked product of mesocarbon microbeads as a negative electrode active material was covered with a coating layer made of a coating film of polyvinyl alcohol (PVA) as a water-soluble polymer. Li plate for counter electrode, LiP for non-aqueous electrolyte layer
A button type secondary battery for evaluation was constructed using each solution layer in which F 6 was dissolved in a mixed solvent of ethylene carbonate / propylene carbonate / dimethyl carbonate.

【0035】まず、集電体であるCu箔上に負極用塗料
を塗布して炭素負極を作製した。負極用塗料は、次のよ
うにして調製した。すなわち、バインダであるポリフッ
化ビニリデン3重量部をN−メチルピロリドン67重量
部に溶解し、さらにメソカーボンマイクロビーズの28
00℃焼成品(d002 =3.380Å)30重量部を加
え、ロールミルを用いて不活性雰囲気下で混合分散さ
せ、負極用塗料とした。上記負極用塗料を、大気中でワ
イヤバーを用いて厚さ20μmのCu箔上に塗布し、1
20℃で20分間乾燥させ、ロールプレスを経て膜厚6
0μmの負極活物質層を有する全体厚さ80μmの炭素
負極を作製した。
First, a negative electrode paint was applied on a Cu foil as a current collector to prepare a carbon negative electrode. The coating material for the negative electrode was prepared as follows. That is, 3 parts by weight of polyvinylidene fluoride as a binder is dissolved in 67 parts by weight of N-methylpyrrolidone, and 28 parts of mesocarbon microbeads are further dissolved.
30 parts by weight of a product baked at 00 ° C. (d 002 = 3.380 °) was added and mixed and dispersed under an inert atmosphere using a roll mill to obtain a coating for a negative electrode. The above negative electrode paint was applied on a Cu foil having a thickness of 20 μm using a wire bar in the air.
After drying at 20 ° C. for 20 minutes, a film thickness of 6
A carbon negative electrode having a total thickness of 80 μm and a negative electrode active material layer of 0 μm was prepared.

【0036】続いて、この炭素負極の表面に被覆層を形
成した。すなわち、PVA(重合度2000、けん化度
98〜99mol%以上)2.5重量部を純水80重量
部に加熱溶解した溶液を、ドクターブレードを用いて炭
素負極の表面に塗布し、塗膜を乾燥させて厚さ2.5μ
mの被覆層を形成した。対極、非水電解質層、評価用の
ボタン型二次電池の組み立てについては、実施例1と同
じとした。
Subsequently, a coating layer was formed on the surface of the carbon negative electrode. That is, a solution obtained by heating and dissolving 2.5 parts by weight of PVA (polymerization degree: 2,000, saponification degree: 98 to 99 mol% or more) in 80 parts by weight of pure water is applied to the surface of the carbon anode using a doctor blade, and the coating film is formed. Dry to thickness 2.5μ
m of coating layers were formed. The assembly of the counter electrode, the non-aqueous electrolyte layer, and the button type secondary battery for evaluation was the same as in Example 1.

【0037】実施例5 本実施例では、天然黒鉛とホウ素(B)添加石油ピッチ
コークス焼成物との混合物を負極活物質とする炭素負極
の表面を、水溶性高分子であるポリビニルアルコールの
塗膜からなる被覆層で覆い、対極にはLi板、非水電解
質層としてはLiPF6 をエチレンカーボネート/プロ
ピレンカーボネート/ジメチルカーボネート混合溶媒に
溶解させた溶液層をそれぞれ用い、評価用のボタン型二
次電池を構成した。
Example 5 In this example, the surface of a carbon negative electrode using a mixture of natural graphite and calcined petroleum pitch coke containing boron (B) as a negative electrode active material was coated with a water-soluble polymer polyvinyl alcohol coating film. Button layer type secondary battery for evaluation using a Li plate as a counter electrode and a solution layer in which LiPF 6 is dissolved in a mixed solvent of ethylene carbonate / propylene carbonate / dimethyl carbonate as a non-aqueous electrolyte layer. Was configured.

【0038】まず、集電体であるCu箔上に負極用塗料
を塗布して炭素負極を作製した。負極用塗料は、次のよ
うにして調製した。すなわち、バインダであるポリフッ
化ビニリデン3重量部をN−メチルピロリドン67重量
部に溶解し、天然黒鉛(d002 =3.355Å)15重
量部とホウ素を4.5%含有した石油ピッチコークスの
2500℃焼成物(d002 =3.356Å)15重量部
とを加え、ロールミルを用いて不活性雰囲気下で混合分
散させ、負極用塗料とした。上記負極用塗料を、大気中
でワイヤバーを用いて厚さ20μmのCu箔上に塗布
し、120℃で10分間乾燥させ、ロールプレスを経て
膜厚60μmの負極活物質層を有する全体厚さ80μm
の炭素負極を作製した。対極、非水電解質層、評価用の
ボタン型二次電池の組み立てについては、実施例1と同
じとした。
First, a negative electrode paint was applied on a Cu foil as a current collector to prepare a carbon negative electrode. The coating material for the negative electrode was prepared as follows. That is, 3 parts by weight of polyvinylidene fluoride as a binder is dissolved in 67 parts by weight of N-methylpyrrolidone, and 2500 parts of petroleum pitch coke containing 15 parts by weight of natural graphite (d 002 = 3.355 °) and 4.5% of boron. C. and 15 parts by weight of a calcined product (d 002 = 3.356 °) were added and mixed and dispersed under an inert atmosphere using a roll mill to obtain a paint for a negative electrode. The above negative electrode paint is applied on a 20 μm thick Cu foil using a wire bar in the air, dried at 120 ° C. for 10 minutes, and passed through a roll press to form a 60 μm thick negative electrode active material layer having a total thickness of 80 μm.
Was prepared. The assembly of the counter electrode, the non-aqueous electrolyte layer, and the button type secondary battery for evaluation was the same as in Example 1.

【0039】実施例6 本実施例では、ポリイミド焼成物を負極活物質とする炭
素負極の表面を、水溶性高分子であるヒドロキシエチル
セルロースの塗膜からなる被覆層で覆い、対極にはLi
板、非水電解質層としてはLiN(CF3 SO2 2
プロピレンカーボネート/ジエチルカーボネート混合溶
媒に溶解させた溶液層をそれぞれ用い、評価用のボタン
型二次電池を構成した。
Example 6 In this example, the surface of a carbon negative electrode using a polyimide fired product as a negative electrode active material was covered with a coating layer composed of a coating film of hydroxyethyl cellulose, which is a water-soluble polymer.
As the plate and the nonaqueous electrolyte layer, a solution layer in which LiN (CF 3 SO 2 ) 2 was dissolved in a mixed solvent of propylene carbonate / diethyl carbonate was used, respectively, to construct a button type secondary battery for evaluation.

【0040】まず、集電体であるCu箔上に負極用塗料
を塗布して炭素負極を作製した。負極用塗料は、次のよ
うにして調製した。すなわち、バインダであるポリフッ
化ビニリデン3重量部をN−メチルピロリドン62重量
部に溶解し、ポリイミドの1000℃焼成品(d002
3.750Å)35重量部を加え、ロールミルを用いて
不活性雰囲気下で混合分散させ、負極用塗料とした。上
記負極用塗料を、大気中でワイヤバーを用いて厚さ20
μmのCu箔上に塗布し、120℃で20分間乾燥さ
せ、ロールプレスを経て膜厚60μmの負極活物質層を
有する全体厚さ80μmの炭素負極を作製した。続い
て、この炭素負極の表面に被覆層を形成した。すなわ
ち、ヒドロキシエチルセルロース2.0重量部を純水8
0重量部に加熱溶解した溶液を、ドクターブレードを用
いて炭素負極の表面に塗布し、塗膜を乾燥させて厚さ
1.5μmの被覆層を形成した。
First, a negative electrode paint was applied on a Cu foil as a current collector to prepare a carbon negative electrode. The coating material for the negative electrode was prepared as follows. That is, 3 parts by weight of polyvinylidene fluoride as a binder is dissolved in 62 parts by weight of N-methylpyrrolidone, and a polyimide baked product at 1000 ° C. (d 002 =
3.750 °) 35 parts by weight were added and mixed and dispersed under an inert atmosphere using a roll mill to obtain a negative electrode paint. The above negative electrode paint is coated with a wire bar in the atmosphere to a thickness of 20 mm.
It was applied on a μm Cu foil, dried at 120 ° C. for 20 minutes, and roll-pressed to produce a carbon negative electrode having a total thickness of 80 μm and a negative electrode active material layer having a thickness of 60 μm. Subsequently, a coating layer was formed on the surface of the carbon negative electrode. That is, 2.0 parts by weight of hydroxyethyl cellulose was added to pure water 8
The solution heated and dissolved in 0 parts by weight was applied to the surface of the carbon negative electrode using a doctor blade, and the coating film was dried to form a coating layer having a thickness of 1.5 μm.

【0041】次に、上記の炭素負極を用いて評価用のボ
タン型二次電池を組み立てた。対極にはLi板を用い
た。非水電解質層には、プロピレンカーボネート/ジエ
チルカーボネートの4:6(体積比)混合溶媒にLiN
(CF3 SO2 2 を2.0mol/lの濃度に溶解し
た電解質溶液をポリプロピレン多孔質体からなるセパレ
ータに含浸させたものを用いた。評価用のボタン型二次
電池の組み立ては、実施例1と同様に行った。
Next, a button-type secondary battery for evaluation was assembled using the above carbon negative electrode. A Li plate was used as a counter electrode. In the non-aqueous electrolyte layer, LiN in a 4: 6 (volume ratio) mixed solvent of propylene carbonate / diethyl carbonate was used.
An electrolyte solution in which (CF 3 SO 2 ) 2 was dissolved at a concentration of 2.0 mol / l was used by impregnating a separator made of porous polypropylene with a separator. Assembling of the button type secondary battery for evaluation was performed in the same manner as in Example 1.

【0042】実施例7 本実施例では、フリュードコークス焼成物を負極活物質
とする炭素負極の表面を、炭酸リチウム(Li2
3 )のスパッタリング被膜からなる被覆層で覆い、対
極にはLi板、非水電解質層としてはLiPF6 をエチ
レンカーボネート/プロピレンカーボネート/ジメチル
カーボネート混合溶媒に溶解させた溶液層をそれぞれ用
い、評価用のボタン型二次電池を構成した。
Example 7 In this example, the surface of a carbon anode using a calcined fluid coke as an anode active material was treated with lithium carbonate (Li 2 C).
O 3 ) was covered with a coating layer composed of a sputtering film, a Li plate was used as a counter electrode, and a solution layer in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate / propylene carbonate / dimethyl carbonate was used as a nonaqueous electrolyte layer. Button type secondary battery was constructed.

【0043】まず、集電体であるCu箔上に負極用塗料
を塗布して炭素負極を作製した。負極用塗料は、次のよ
うにして調製した。すなわち、バインダであるポリフッ
化ビニリデン2重量部をN−メチルピロリドン58重量
部に溶解し、フリュードコークスの2500℃焼成品
(d002 =3.370Å)40重量部を加え、ロールミ
ルを用いて不活性雰囲気下で混合分散させ、負極用塗料
とした。上記負極用塗料を、大気中でワイヤバーを用い
て厚さ20μmのCu箔上に塗布し、120℃で20分
間乾燥させ、ロールプレスを経て膜厚60μmの負極活
物質層を有する全体厚さ80μmの炭素負極を作製し
た。続いて、この炭素負極の表面に被覆層を形成した。
すなわち、RFスパッタリング装置とLiCO3 ターゲ
ットを使用し、Arガス流量=20cm3 /分、圧力=
0.02Torr、RF周波数=10MHz、RF放電
出力=50Wの条件で、厚さ0.5μmの被覆層を形成
した。対極、非水電解質層、評価用のボタン型二次電池
の組み立てについては、実施例1と同じとした。
First, a negative electrode paint was applied on a Cu foil as a current collector to prepare a carbon negative electrode. The coating material for the negative electrode was prepared as follows. That is, 2 parts by weight of polyvinylidene fluoride as a binder was dissolved in 58 parts by weight of N-methylpyrrolidone, and 40 parts by weight of a calcined product of Fluid Coke at 2500 ° C. (d 002 = 3.370 °) was added. The mixture was mixed and dispersed under an atmosphere to obtain a negative electrode paint. The negative electrode paint was applied on a 20 μm thick Cu foil using a wire bar in the air, dried at 120 ° C. for 20 minutes, and roll-pressed to a total thickness of 80 μm having a 60 μm-thick negative electrode active material layer. Was prepared. Subsequently, a coating layer was formed on the surface of the carbon negative electrode.
That is, using an RF sputtering apparatus and a LiCO 3 target, Ar gas flow rate = 20 cm 3 / min, pressure =
A coating layer having a thickness of 0.5 μm was formed under the conditions of 0.02 Torr, RF frequency = 10 MHz, and RF discharge output = 50 W. The assembly of the counter electrode, the non-aqueous electrolyte layer, and the button type secondary battery for evaluation was the same as in Example 1.

【0044】実施例8 本実施例では、ホウ素(B)添加石油ピッチコークス焼
成物を負極活物質とする炭素負極の表面を、ポリビニル
アルコール(PVA)の塗膜からなる被覆層で覆い、正
極活物質にはリチウム・コバルト複合酸化物(LiCo
2 )、非水電解質層としてはLiPF6 を含む高分子
固体電解質層をそれぞれ用い、リチウム・イオン二次電
池を構成した。
Example 8 In this example, the surface of a carbon negative electrode using a calcined product of petroleum pitch coke containing boron (B) as a negative electrode active material was covered with a coating layer made of a coating film of polyvinyl alcohol (PVA). Materials include lithium-cobalt composite oxide (LiCo
O 2 ) and a polymer solid electrolyte layer containing LiPF 6 as the non-aqueous electrolyte layer were used to form a lithium ion secondary battery.

【0045】まず、集電体であるCu箔上に実施例2で
上述した負極用塗料を塗布して炭素負極を作製し、続い
てこの炭素負極の表面に実施例3で上述したPVAの溶
液を塗布することにより被覆層を形成した。次に、正極
を作製するにあたり、正極活物質であるLiCoO2
合成した。すなわち、炭酸リチウム(Li2 CO3 )と
炭酸コバルト(CoCO3 )とを1:2のモル比で混合
し、空気中で900℃,5時間の焼成を行ってLiCo
2を得た。正極用塗料は、次のようにして調製した。
すなわち、バインダであるポリフッ化ビニリデン3重量
部をN−メチルピロリドン80重量部に溶解し、上記の
LiCoO2 を91重量部、さらに導電性黒鉛を6重量
部加え、ロールミルを用いて不活性雰囲気下で混合分散
させた。得られた正極用塗料を、大気中にてドクターブ
レードを用いて厚さ20μmのAl箔上に塗布し、12
0℃で20分間乾燥させ、ロールプレスを経て膜厚60
μmの正極活物質層を有する全体厚さ80μmの正極を
作製した。
First, the negative electrode coating material described in Example 2 was applied on a Cu foil as a current collector to produce a carbon negative electrode. Subsequently, the PVA solution described in Example 3 was applied to the surface of the carbon negative electrode. Was applied to form a coating layer. Next, when producing a positive electrode, LiCoO 2 as a positive electrode active material was synthesized. That is, lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) are mixed at a molar ratio of 1: 2, and calcined in air at 900 ° C. for 5 hours to form LiCo.
To give the O 2. The paint for the positive electrode was prepared as follows.
That is, 3 parts by weight of polyvinylidene fluoride as a binder is dissolved in 80 parts by weight of N-methylpyrrolidone, 91 parts by weight of the above LiCoO 2 and 6 parts by weight of conductive graphite are added, and the mixture is rolled under an inert atmosphere using a roll mill. Was mixed and dispersed. The obtained coating material for a positive electrode was applied on an Al foil having a thickness of 20 μm using a doctor blade in the air to obtain 12 μm.
After drying at 0 ° C. for 20 minutes, a film thickness of 60
A positive electrode having an overall thickness of 80 μm and a positive electrode active material layer of μm was produced.

【0046】次に、高分子固体電解質層を光重合法によ
り形成した。まず、20重量部のLiPF6 と、70重
量部のエチレンカーボネート/プロピレンカーボネート
/ジメチルカーボネートの2:5:3(体積比)混合溶
媒とを混合し、電解質溶液を調製した。この電解液にポ
リオキシエチレンアクリレート12.8重量部、トリメ
チルプロパンアクリレート0.2重量部、ベンゾインイ
ソプロピルエーテル0.02重量部を添加し、光重合性
高分子溶液を調製した。この光重合性高分子溶液を上記
の正極と負極とに含浸させ、高圧水銀灯の光を照射して
電解質溶液を固化させた。このようにして得られた積層
固体の発電要素部に均一に圧力を加えつつ3辺を熱封止
し、残る1辺を減圧したで封止してリチウムイオン二次
電池を作製した。
Next, a polymer solid electrolyte layer was formed by a photopolymerization method. First, 20 parts by weight of LiPF 6 and 70 parts by weight of a mixed solvent of ethylene carbonate / propylene carbonate / dimethyl carbonate (2: 5: 3 (volume ratio)) were mixed to prepare an electrolyte solution. 12.8 parts by weight of polyoxyethylene acrylate, 0.2 parts by weight of trimethylpropane acrylate, and 0.02 parts by weight of benzoin isopropyl ether were added to this electrolyte to prepare a photopolymerizable polymer solution. This photopolymerizable polymer solution was impregnated into the above-described positive electrode and negative electrode, and irradiated with light from a high-pressure mercury lamp to solidify the electrolyte solution. Three sides were heat-sealed while uniformly applying pressure to the thus-obtained solid-state power generating element part, and the remaining one side was sealed under reduced pressure to produce a lithium ion secondary battery.

【0047】比較例1 天然黒鉛を負極活物質とする炭素負極の表面にポリフッ
化ビニリデンからなる被覆層を形成しなかった以外は、
実施例1と同様に評価用のボタン型二次電池を作製し
た。
COMPARATIVE EXAMPLE 1 Except that a coating layer made of polyvinylidene fluoride was not formed on the surface of a carbon negative electrode using natural graphite as a negative electrode active material,
A button type secondary battery for evaluation was produced in the same manner as in Example 1.

【0048】比較例2 ホウ素(B)添加石油ピッチコークス焼成物を負極活物
質とする炭素負極の表面にフッ化ビニルからなる被覆層
を形成しなかった以外は、実施例2と同様に評価用のボ
タン型二次電池を作製した。
[0048] Except for not formed Comparative Example 2 boron (B) added coating layer made of vinyl fluoride on the surface of the carbon anode to petroleum pitch coke fired product active material, for evaluation in the same manner as in Example 2 Was manufactured.

【0049】比較例3 メソカーボンマイクロビーズを負極活物質とする炭素負
極の表面にPVAからなる被覆層を形成しなかった以外
は、実施例4と同様に評価用のボタン型二次電池を作製
した。
Comparative Example 3 A button-type secondary battery for evaluation was prepared in the same manner as in Example 4 except that a coating layer made of PVA was not formed on the surface of a carbon anode using mesocarbon microbeads as an anode active material. did.

【0050】比較例4 天然黒鉛とホウ素(B)添加石油ピッチコークス焼成物
の混合物を負極活物質とする炭素負極の表面にPVAか
らなる被覆層を形成しなかった以外は、実施例5と同様
に評価用のボタン型二次電池を作製した。
Comparative Example 4 The same as Example 5 except that a coating layer made of PVA was not formed on the surface of a carbon negative electrode using a mixture of natural graphite and calcined petroleum pitch coke containing boron (B) as a negative electrode active material. A button-type secondary battery for evaluation was prepared.

【0051】比較例5 ポリイミド焼成物を負極活物質とする炭素負極の表面に
ヒドロキシエチルセルロースからなる被覆層を形成しな
かった以外は、実施例6と同様に評価用のボタン型二次
電池を作製した。
Comparative Example 5 A button-type secondary battery for evaluation was prepared in the same manner as in Example 6, except that a coating layer made of hydroxyethylcellulose was not formed on the surface of a carbon negative electrode using a polyimide fired product as a negative electrode active material. did.

【0052】比較例6 フリュードコークス焼成物を負極活物質とする炭素負極
の表面に炭酸リチウムからなる被覆層を形成しなかった
以外は、実施例7と同様に評価用のボタン型二次電池を
作製した。
Comparative Example 6 A button-type secondary battery for evaluation was prepared in the same manner as in Example 7, except that a coating layer made of lithium carbonate was not formed on the surface of a carbon anode using a calcined product of fluid coke as an anode active material. Produced.

【0053】比較例7 ホウ素(B)添加石油ピッチコークス焼成物を負極活物
質とする炭素負極の表面にフッ化ビニルからなる被覆層
を形成しなかった以外は、実施例8と同様にリチウムイ
オン二次電池を作製した。
Comparative Example 7 Lithium ion was obtained in the same manner as in Example 8 except that a coating layer made of vinyl fluoride was not formed on the surface of a carbon anode using a fired product of petroleum pitch coke containing boron (B) as an anode active material. A secondary battery was manufactured.

【0054】ここで、実施例1〜8および比較例1〜7
で作製された各電池について、充放電サイクル試験を行
った。試験には充放電測定装置(東洋システム社製;T
OSCAT3000U型)を用いた。測定条件は、電池
の種類により下記の条件A〜Cを使い分けた。 〔条件B〕電流密度1.0mA/cm2 で電池電圧0Vまで定電流定電圧充電 10分間休止 電流密度1.0mA/cm2 で電池電圧1.0Vまで定電流放電 10分間休止 〔条件B〕電流密度1.5mA/cm2 で電池電圧0Vまで定電流定電圧充電 10分間休止 電流密度1.5mA/cm2 で電池電圧1.0Vまで定電流放電 10分間休止 〔条件C〕電流密度1.0mA/cm2 で電池電圧4.2Vまで定電流定電圧充 電 10分間休止 電流密度1.0mA/cm2 で電池電圧3.0Vまで定電流放電 10分間休止 実施例1〜7の結果を〔表1〕、比較例1〜6の結果を
〔表2〕、また実施例8と比較例7の結果を〔表3〕に
それぞれまとめた。
Here, Examples 1 to 8 and Comparative Examples 1 to 7
A charge / discharge cycle test was performed on each of the batteries prepared in the above. For the test, a charge / discharge measurement device (Toyo System Co., Ltd .; T
OSCAT3000U type) was used. The following conditions A to C were used as measurement conditions depending on the type of battery. [Condition B] Constant current constant voltage charging at a current density of 1.0 mA / cm 2 to a battery voltage of 0 V for 10 minutes Pause at a current density of 1.0 mA / cm 2 at a constant voltage discharge of a battery voltage of 1.0 V for 10 minutes [Condition B] current density 1.5 mA / cm 2 and until the battery voltage 0V constant current constant voltage charge for 10 minutes quiescent current density 1.5 mA / cm 2 at a constant current discharge quiescent for 10 minutes until the battery voltage 1.0V [Requirement C] current density 1. Constant current constant voltage charging to battery voltage 4.2 V at 0 mA / cm 2 Pause for 10 minutes Constant current discharge to battery voltage 3.0 V at current density of 1.0 mA / cm 2 Pause for 10 minutes Pausing the results of Examples 1 to 7 [Table 1], the results of Comparative Examples 1 to 6 are summarized in [Table 2], and the results of Example 8 and Comparative Example 7 are summarized in [Table 3].

【0055】実施例1〜7および比較例1〜6は対極に
Li板を用いており、電池系内に過剰のLiが存在して
いる。したがって、〔表1〕および〔表2〕に示した放
電容量密度(mAh/g)は負極の性能の指標となるも
のである。〔表1〕および〔表2〕には、初回充放電効
率(%)、および初期と200サイクル後の放電容量密
度を一覧表形式で示した。これに対し、実施例8と比較
例7では炭素負極と高分子固体電解質とリチウム含有複
合酸化物を正極活物質とする正極とを用いているため、
実電池に近い形態で性能評価が行われている。したがっ
て、〔表3〕に示した放電容量(mAh)は電池全体の
性能の指標となるものである。〔表3〕には、初期と2
00サイクル後の放電容量を一覧表形式で示した。
In Examples 1 to 7 and Comparative Examples 1 to 6, a Li plate was used as a counter electrode, and excessive Li was present in the battery system. Therefore, the discharge capacity densities (mAh / g) shown in [Table 1] and [Table 2] are indicators of the performance of the negative electrode. [Table 1] and [Table 2] show the initial charge / discharge efficiency (%) and the discharge capacity density at the initial stage and after 200 cycles in the form of a list. On the other hand, in Example 8 and Comparative Example 7, a carbon anode, a solid polymer electrolyte, and a cathode using a lithium-containing composite oxide as a cathode active material were used.
Performance evaluation is performed in a form close to an actual battery. Therefore, the discharge capacity (mAh) shown in [Table 3] is an index of the performance of the whole battery. [Table 3] shows the initial and 2
The discharge capacity after 00 cycles is shown in a table format.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【表3】 [Table 3]

【0059】実施例1〜7および比較例1〜6の結果を
みると、炭素負極の表面に被覆層を持たない比較例の各
電池は、初回の放電容量密度に関しては実施例の各電池
とほとんど変わらない。しかし、200サイクル後の放
電容量密度をみると、実施例の各電池が初期の値の80
%台後半から90%台前半の値を保っているのに対し、
比較例の各電池は70%台から80%台前半の値にとど
まった。初回充放電効率も、比較例の各電池は実施例の
各電池に比べて5〜12%低かった。したがって、炭素
負極の表面に被覆層を設けた本発明の電池は、いずれも
電解質層にプロピレンカーボネートが含まれるにもかか
わらず、初期充放電効率およびサイクル特性が改善され
たものであることがわかった。これは、被覆層が炭素負
極と電解質層との濡れ性の向上、電解質層の分解抑制、
電解質層の分解生成物の負極表面上への堆積抑制に寄与
したためである。
Looking at the results of Examples 1 to 7 and Comparative Examples 1 to 6, the batteries of the comparative example having no coating layer on the surface of the carbon negative electrode were different from the batteries of the example in the initial discharge capacity density. Almost the same. However, looking at the discharge capacity density after 200 cycles, each of the batteries of the example had an initial value of 80%.
While maintaining the value in the high 90% range to the low 90% range,
The values of the batteries of the comparative examples were in the range of 70% to the early half of the 80% range. The initial charge / discharge efficiency of each battery of the comparative example was 5 to 12% lower than that of each battery of the example. Therefore, it was found that the batteries of the present invention in which the coating layer was provided on the surface of the carbon negative electrode had improved initial charge / discharge efficiency and cycle characteristics even though propylene carbonate was contained in the electrolyte layer. Was. This is because the coating layer improves the wettability between the carbon anode and the electrolyte layer, suppresses decomposition of the electrolyte layer,
This is because it contributed to the suppression of the deposition of decomposition products of the electrolyte layer on the negative electrode surface.

【0060】次に、実施例8と比較例7とを比べると、
比較例7では200サイクル後の放電容量が初期の値の
約72%に低下したのに対し、実施例8では初期の値の
約85%が維持されていた。したがって、実電池に近い
評価においても、本発明の電池が優れたサイクル特性を
有していることが実証された。
Next, when comparing Example 8 with Comparative Example 7,
In Comparative Example 7, the discharge capacity after 200 cycles was reduced to about 72% of the initial value, whereas in Example 8, about 85% of the initial value was maintained. Therefore, even in an evaluation close to an actual battery, it was demonstrated that the battery of the present invention had excellent cycle characteristics.

【0061】以上、本発明を8例の実施例にもとづいて
説明したが、本発明はこれらの実施例に何ら限定される
ものではない。たとえば、上述の各実施例では評価用の
ボタン型二次電池およびリチウムイオン二次電池を作製
したが、本発明はこれら以外の非水電解質二次電池に広
く適用できるものである。この他、形成する被覆層の種
類や形成方法、負極活物質や対極活物質や非水電解質の
材料選択、負極用塗料の組成や調製条件、作製される電
池の形態等の細部については、本発明の趣旨を逸脱しな
い範囲で適宜選択、変更、組合せが可能である。
As described above, the present invention has been described based on the eight embodiments, but the present invention is not limited to these embodiments. For example, in the above-described embodiments, a button type secondary battery and a lithium ion secondary battery for evaluation were manufactured, but the present invention can be widely applied to other non-aqueous electrolyte secondary batteries. Other details such as the type and formation method of the coating layer to be formed, selection of materials for the negative electrode active material, the counter electrode active material, and the non-aqueous electrolyte, the composition and preparation conditions of the negative electrode paint, and the form of the battery to be produced are described in this book. Selection, modification, and combination can be appropriately made without departing from the spirit of the invention.

【0062】[0062]

【発明の効果】以上の説明からも明らかなように、本発
明では炭素負極の表面に被覆層を設けることにより、リ
チウムの吸蔵/放出の可逆性や安全性に優れるといった
炭素負極のメリットはそのままに、初期充放電効率とサ
イクル特性の改善された非水電解質二次電池を提供する
ことが可能となる。被覆層はイオン伝導性高分子、水溶
性高分子、アルカリ金属化合物のいずれを用いて形成さ
れた場合にも、電池特性の改善に寄与する。上記炭素負
極に負極活物資として含まれる炭素材のc軸方向の面間
隔d002 を3.40Åに規定すること、および炭素材を
2種類以上組み合わせることは、いずれも初期充放電効
率とサイクル特性の改善に有効である。また、本発明に
よりプロピレンカーボネートとこれを分解させ易い黒鉛
系の炭素負極が併用可能とされたことは、優れた電池性
能を達成するための材料選択の自由度が広がることから
産業上の意義が大きい。上記の炭素負極は高分子固体電
解質とのマッチングにも優れており、高分子固体電解質
を用いることによる容量低下を何らきたすことなく、高
い放電容量を有する非水電解質二次電池を提供すること
が可能となる。
As is clear from the above description, in the present invention, by providing a coating layer on the surface of the carbon negative electrode, the merits of the carbon negative electrode such as excellent reversibility of lithium insertion / removal and excellent safety can be maintained. In addition, it is possible to provide a nonaqueous electrolyte secondary battery having improved initial charge / discharge efficiency and cycle characteristics. The coating layer contributes to improvement of battery characteristics even when formed using any of an ion-conductive polymer, a water-soluble polymer, and an alkali metal compound. Specifying the surface distance d 002 in the c-axis direction of the carbon material contained in the carbon negative electrode as a negative electrode active material in the c-axis direction at 3.40 ° and combining two or more types of carbon materials are both initial charging and discharging efficiencies and cycle characteristics. It is effective for improvement. In addition, the fact that propylene carbonate and a graphite-based carbon anode which can easily decompose it can be used in combination according to the present invention has industrial significance because the degree of freedom of material selection for achieving excellent battery performance is expanded. large. The carbon negative electrode is also excellent in matching with the polymer solid electrolyte, and can provide a non-aqueous electrolyte secondary battery having a high discharge capacity without causing any capacity reduction by using the polymer solid electrolyte. It becomes possible.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも正極と、非水電解質層と、リ
チウムを吸蔵/放出可能な炭素負極を備えた非水電解質
二次電池であって、 前記炭素負極の表面に被覆層が設けられていることを特
徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery including at least a positive electrode, a non-aqueous electrolyte layer, and a carbon negative electrode capable of inserting and extracting lithium, wherein a coating layer is provided on a surface of the carbon negative electrode. Non-aqueous electrolyte secondary battery characterized by the above-mentioned.
【請求項2】 前記被覆層がイオン伝導性高分子からな
ることを特徴とする請求項1記載の非水電解質二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the coating layer is made of an ion conductive polymer.
【請求項3】 前記被覆層が水溶性高分子からなること
を特徴とする請求項1記載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein said coating layer is made of a water-soluble polymer.
【請求項4】 前記被覆層がアルカリ金属塩、アルカリ
金属酸化物、アルカリ金属水酸化物の少なくともいずれ
かからなることを特徴とする請求項1記載の非水電解質
二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein said coating layer is made of at least one of an alkali metal salt, an alkali metal oxide and an alkali metal hydroxide.
【請求項5】 前記炭素負極に負極活物質として含まれ
る炭素材のc軸方向の面間隔d002 が3.40Å以下で
あることを特徴とする請求項1記載の非水電解質二次電
池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon material contained as the negative electrode active material in the carbon negative electrode has a surface distance d 002 in the c-axis direction of 3.40 ° or less.
【請求項6】 前記炭素負極が2種類以上の炭素材から
構成されることを特徴とする請求項1記載の非水電解質
二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein said carbon anode is composed of two or more carbon materials.
【請求項7】 前記非水電解質層にプロピレンカーボネ
ートが含まれることを特徴とする請求項1記載の非水電
解質二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte layer contains propylene carbonate.
【請求項8】 前記非水電解質層が高分子固体電解質層
であることを特徴とする請求項1記載の非水電解質二次
電池。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte layer is a solid polymer electrolyte layer.
JP9291733A 1997-10-08 1997-10-08 Nonaqueous electrolyte secondary battery Pending JPH11120992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9291733A JPH11120992A (en) 1997-10-08 1997-10-08 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9291733A JPH11120992A (en) 1997-10-08 1997-10-08 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH11120992A true JPH11120992A (en) 1999-04-30

Family

ID=17772705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9291733A Pending JPH11120992A (en) 1997-10-08 1997-10-08 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH11120992A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015162A (en) * 1999-06-29 2001-01-19 Sony Corp Solid electrolyte battery
WO2002067272A1 (en) * 2001-02-23 2002-08-29 Nippon Oil Corporation Ionically conducting sheet
JP2003016833A (en) * 2001-06-27 2003-01-17 Nippon Oil Corp Solid electrolyte
KR100413816B1 (en) * 2001-10-16 2004-01-03 학교법인 한양학원 Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
KR100420024B1 (en) * 2001-10-17 2004-02-25 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
KR100542184B1 (en) * 2001-07-19 2006-01-10 삼성에스디아이 주식회사 An active material for a battery and a method of preparing the same
WO2006008930A1 (en) * 2004-07-20 2006-01-26 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP2006066141A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Secondary battery
JP2007220376A (en) * 2006-02-14 2007-08-30 Nippon Soda Co Ltd Electrode protection membrane
JP2009076433A (en) * 2007-08-30 2009-04-09 Sony Corp Negative electrode and its manufacturing method, secondary battery and its manufacturing method
JP2009277659A (en) * 2009-07-08 2009-11-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2010131401A1 (en) * 2009-05-14 2010-11-18 パナソニック株式会社 Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011165970A (en) * 2010-02-10 2011-08-25 Toyota Central R&D Labs Inc Energy storage device
JP2012079493A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Electrode for lithium-ion secondary battery and lithium-ion secondary battery
WO2013088622A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Lithium-ion secondary battery
JP2013143375A (en) * 2012-01-06 2013-07-22 National Taiwan Univ Of Science & Technology Anode protector of lithium-ion battery and method for producing the same
WO2013122115A1 (en) 2012-02-14 2013-08-22 三菱化学株式会社 Negative-electrode active material for non-aqueous secondary battery, and negative electrode and non-aqueous secondary battery using said active material
WO2013122114A1 (en) 2012-02-14 2013-08-22 三菱化学株式会社 Negative-electrode active material for non-aqueous secondary battery, and negative electrode and non-aqueous secondary battery using said active material
US8993156B2 (en) 2011-08-31 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Carbon-based negative electrode material and secondary battery including negative electrode material
JP2016225137A (en) * 2015-05-29 2016-12-28 株式会社Gsユアサ Power storage element
WO2019071070A1 (en) 2017-10-05 2019-04-11 Arch Chemicals, Inc. Quaternary ammonium etidronates
JP2019061901A (en) * 2017-09-27 2019-04-18 トヨタ自動車株式会社 Metal negative electrode secondary battery and manufacturing method thereof
JP2020024811A (en) * 2018-08-06 2020-02-13 トヨタ自動車株式会社 Manufacturing method of separator-integrated electrode and separator-integrated electrode
WO2021193838A1 (en) * 2020-03-26 2021-09-30 パナソニックIpマネジメント株式会社 Negative electrode for electrochemical device, and electrochemical device
WO2022210745A1 (en) 2021-03-30 2022-10-06 三菱ケミカル株式会社 Coated carbon material, negative electrode and secondary battery
KR20230156759A (en) 2021-04-13 2023-11-14 미쯔비시 케미컬 주식회사 Covered carbon materials, negative electrodes and secondary batteries
EP4293072A2 (en) 2018-01-20 2023-12-20 Smart Material Printing B.V. Mechanochemical process for the production of persistent organic pollutants and other organohalogen compounds free valuables from waste of plastics and plastic laminates

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015162A (en) * 1999-06-29 2001-01-19 Sony Corp Solid electrolyte battery
WO2002067272A1 (en) * 2001-02-23 2002-08-29 Nippon Oil Corporation Ionically conducting sheet
JP2003016833A (en) * 2001-06-27 2003-01-17 Nippon Oil Corp Solid electrolyte
KR100542184B1 (en) * 2001-07-19 2006-01-10 삼성에스디아이 주식회사 An active material for a battery and a method of preparing the same
KR100413816B1 (en) * 2001-10-16 2004-01-03 학교법인 한양학원 Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
US7285358B2 (en) 2001-10-17 2007-10-23 Samsung Sdi Co., Ltd. Negative active material for lithium rechargeable batteries and method of fabricating same
KR100420024B1 (en) * 2001-10-17 2004-02-25 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
KR100863167B1 (en) * 2004-07-20 2008-10-13 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
WO2006008930A1 (en) * 2004-07-20 2006-01-26 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP2006066141A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Secondary battery
JP2007220376A (en) * 2006-02-14 2007-08-30 Nippon Soda Co Ltd Electrode protection membrane
JP2009076433A (en) * 2007-08-30 2009-04-09 Sony Corp Negative electrode and its manufacturing method, secondary battery and its manufacturing method
WO2010131401A1 (en) * 2009-05-14 2010-11-18 パナソニック株式会社 Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2009277659A (en) * 2009-07-08 2009-11-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2011165970A (en) * 2010-02-10 2011-08-25 Toyota Central R&D Labs Inc Energy storage device
JP2012079493A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Electrode for lithium-ion secondary battery and lithium-ion secondary battery
US8993156B2 (en) 2011-08-31 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Carbon-based negative electrode material and secondary battery including negative electrode material
WO2013088622A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Lithium-ion secondary battery
US8808901B2 (en) 2012-01-06 2014-08-19 National Taiwan University Of Science And Technology Anode protector of lithium-ion battery and method for fabricating the same
JP2013143375A (en) * 2012-01-06 2013-07-22 National Taiwan Univ Of Science & Technology Anode protector of lithium-ion battery and method for producing the same
WO2013122115A1 (en) 2012-02-14 2013-08-22 三菱化学株式会社 Negative-electrode active material for non-aqueous secondary battery, and negative electrode and non-aqueous secondary battery using said active material
KR20140135697A (en) 2012-02-14 2014-11-26 미쓰비시 가가꾸 가부시키가이샤 Negative-electrode active material for non-aqueous secondary battery, and negative electrode and non-aqueous secondary battery using said active material
WO2013122114A1 (en) 2012-02-14 2013-08-22 三菱化学株式会社 Negative-electrode active material for non-aqueous secondary battery, and negative electrode and non-aqueous secondary battery using said active material
KR20140135696A (en) 2012-02-14 2014-11-26 미쓰비시 가가꾸 가부시키가이샤 Negative-electrode active material for non-aqueous secondary battery, and negative electrode and non-aqueous secondary battery using said active material
US11075385B2 (en) 2012-02-14 2021-07-27 Mitsubishi Chemical Corporation Negative electrode active material for nonaqueous secondary battery, and negative electrode and nonaqueous secondary battery using the same
JP2016225137A (en) * 2015-05-29 2016-12-28 株式会社Gsユアサ Power storage element
JP2021166198A (en) * 2017-09-27 2021-10-14 トヨタ自動車株式会社 Metal negative electrode secondary battery
JP2019061901A (en) * 2017-09-27 2019-04-18 トヨタ自動車株式会社 Metal negative electrode secondary battery and manufacturing method thereof
US10873087B2 (en) 2017-09-27 2020-12-22 Toyota Jidosha Kabushiki Kaisha Metal negative electrode secondary battery and method of manufacturing same
WO2019071070A1 (en) 2017-10-05 2019-04-11 Arch Chemicals, Inc. Quaternary ammonium etidronates
EP4293072A2 (en) 2018-01-20 2023-12-20 Smart Material Printing B.V. Mechanochemical process for the production of persistent organic pollutants and other organohalogen compounds free valuables from waste of plastics and plastic laminates
JP2020024811A (en) * 2018-08-06 2020-02-13 トヨタ自動車株式会社 Manufacturing method of separator-integrated electrode and separator-integrated electrode
WO2021193838A1 (en) * 2020-03-26 2021-09-30 パナソニックIpマネジメント株式会社 Negative electrode for electrochemical device, and electrochemical device
WO2022210745A1 (en) 2021-03-30 2022-10-06 三菱ケミカル株式会社 Coated carbon material, negative electrode and secondary battery
KR20230160881A (en) 2021-03-30 2023-11-24 미쯔비시 케미컬 주식회사 Covered carbon materials, negative electrodes and secondary batteries
KR20230156759A (en) 2021-04-13 2023-11-14 미쯔비시 케미컬 주식회사 Covered carbon materials, negative electrodes and secondary batteries

Similar Documents

Publication Publication Date Title
JPH11120992A (en) Nonaqueous electrolyte secondary battery
JPH1197027A (en) Nonaqueous electrolyte secondary cell
JPH1173947A (en) Electrode for battery and its manufacture
JP2001110447A (en) Lithium secondary battery
JP4201308B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
JP2007273259A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP3512549B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JPH1167215A (en) Nonaqueous electrolyte secondary battery
JPH1167216A (en) Nonaqueous electrolyte secondary battery
JPH1167211A (en) Nonaqueous electrolyte secondary battery
JP4152279B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JP5172089B2 (en) Method for producing negative electrode for lithium ion secondary battery
JPH10188993A (en) Non-aqueous electrolyte secondary battery
JP2000200624A (en) Nonaqueous electrolyte secondary battery
JP4979049B2 (en) Non-aqueous secondary battery
JP2002175807A (en) Nonaqueous electrolyte secondary battery
JP2004047487A (en) Cathode for lithium secondary battery and lithium secondary battery using the same
JP3316111B2 (en) Manufacturing method of lithium secondary battery
JPH09320599A (en) Nonaqueous electrolyte secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2000323126A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2005243448A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040407