JP2000323126A - Nonaqueous electrolyte secondary battery and its charging method - Google Patents

Nonaqueous electrolyte secondary battery and its charging method

Info

Publication number
JP2000323126A
JP2000323126A JP11136275A JP13627599A JP2000323126A JP 2000323126 A JP2000323126 A JP 2000323126A JP 11136275 A JP11136275 A JP 11136275A JP 13627599 A JP13627599 A JP 13627599A JP 2000323126 A JP2000323126 A JP 2000323126A
Authority
JP
Japan
Prior art keywords
negative electrode
mixture layer
lithium
polymer electrolyte
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11136275A
Other languages
Japanese (ja)
Inventor
Takeshi Usumi
羽隅  毅
Hideo Yasuda
安田  秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11136275A priority Critical patent/JP2000323126A/en
Publication of JP2000323126A publication Critical patent/JP2000323126A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance discharge capacity and energy density by providing a Li ion conductive porous high polymer electrolyte in a negative electrode mix layer containing a carbon material and having a specific porosity and by including Li in the pores of the electrolyte in a charged state. SOLUTION: The porosity of a negative electrode mix layer is set to 10-50%. Thereby, the safety and the cycle characteristic of this battery are improved. The safety is further improved by setting the volume ratio of a Li ion conductive porous high polymer electrolyte within the pore parts of the negative electrode mix layer to 0.01-0.6. The weight of a positive electrode active material and the weight of a carbon material of a negative electrode are preferably determined so as to satisfy the following relationship: (the reversible capacity of the positive electrode)/(the reversible capacity of the negative electrode + the irreversible capacity of the negative electrode)>1. Thereby, Li is deposited on the negative electrode so that high capacity and high energy density can be accomplished. At that time, the electrically deposited Li is received in the pores inside the negative electrode mix layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
およびその充電方法に関する。
The present invention relates to a non-aqueous electrolyte secondary battery and a method for charging the same.

【0002】[0002]

【従来の技術】非水系の電解質を使用し、負極に金属リ
チウムを使用する非水電解質二次電池(以下二次電池)
は、3〔V〕以上の高電圧系電池とすることが可能であ
るため、高エネルギー密度化が可能であるが、充電時に
金属リチウムのデンドライト析出によって短絡が発生し
やすく、サイクル寿命が短いという欠点がある。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using a non-aqueous electrolyte and lithium metal as a negative electrode (hereinafter referred to as a secondary battery)
Can be a high-voltage battery of 3 [V] or more, so that high energy density can be achieved. However, short-circuiting is likely to occur due to dendrite deposition of metallic lithium during charging, and the cycle life is short. There are drawbacks.

【0003】そのために、金属リチウムのかわりに、金
属リチウムのデンドライトが析出しにくいグラファイト
やカーボン等の炭素材料を使用し、正極にコバルト酸リ
チウムを使用し、セパレータとしてシャットダウン機能
を備えた樹脂膜を使用した、いわゆるリチウムイオン電
池が実用化されている。
For this purpose, a resin film having a shutdown function as a separator using a carbon material such as graphite or carbon, in which dendrites of the metal lithium are unlikely to be deposited, using lithium cobalt oxide as a positive electrode, instead of lithium metal, is used. The so-called lithium-ion batteries used have been put to practical use.

【0004】リチウムイオン電池では、充電時に正極活
物質中からリチウムイオンが電解液中に溶け出し、電解
液中のリチウムイオンが負極活物質である炭素材料に吸
蔵される。放電では逆の反応がおこる。例えば、コバル
ト酸リチウム(LiCoO2)正極活物質において、Li
CoO2からCoO2+e-+Li+となる反応に基づく理
論容量は274〔mAh/g〕であるが、この材料を1
00%まで充電すると電位が貴になり、また、可逆性が
低下するため、実際の電池では充電の上限電圧を4.1
〜4.2〔V〕とすることで可逆性の高い領域、すなわ
ち可逆容量(コバルト酸リチウムの場合、理論容量の半
分程度)で使用されている。また、過充電による金属リ
チウムの析出を避けるために、正極に対して過剰な量の
炭素材料を備えた負極が用いられる。つまり、従来の電
池においては正極の活物質がLi 0.5CoO2まで充電
し、リチウムがそのまま負極に吸臓された場合でも、炭
素材料の理論容量の70〜80%(Lia6、a<0.
70)になるよう正・負極の量を調整している。ここ
で、炭素材料の理論容量とは、例えば黒鉛の場合、Cか
らLiC6まで充電したときの容量であり、372〔mA
h/g〕である。
In a lithium ion battery, the positive electrode is activated during charging.
Lithium ions dissolve into the electrolyte from the substance,
Lithium ions in the solution are absorbed by the carbon material that is the negative electrode active material.
Is stored. The opposite reaction occurs in discharge. For example, Kovar
Lithium tomate (LiCoO)Two) In the positive electrode active material, Li
CoOTwoFrom CoOTwo+ E-+ Li+Based on the reaction
The theoretical capacity is 274 [mAh / g].
When charged to 00%, the potential becomes noble, and the reversibility
Therefore, in an actual battery, the upper limit voltage of charging is set to 4.1.
Up to 4.2 [V], a highly reversible region, that is,
Reversible capacity (half of theoretical capacity for lithium cobaltate)
Minutes). In addition, metal damage due to overcharging
In order to avoid the deposition of lithium, an excessive amount of
A negative electrode including a carbon material is used. In other words, conventional
In the pond, the active material of the positive electrode is Li 0.5CoOTwoCharge until
Even if lithium is sucked into the negative electrode as it is,
70-80% of the theoretical capacity of the raw material (LiaC6, A <0.
The amounts of the positive and negative electrodes are adjusted so as to satisfy 70). here
The theoretical capacity of a carbon material is, for example, in the case of graphite, C
La LiC6Capacity when charged to 372 mA
h / g].

【0005】[0005]

【発明が解決しようとする課題】このため、リチウムイ
オン電池においては、通常の使用状態では、負極に金属
リチウムは析出しにくく、短絡が生じず、安全性の高い
電池が得られる。しかしながら、炭素材料の利用率を制
限したため、負極のエネルギー密度は低くなり、そのた
め放電容量の大きい、エネルギー密度のより高い電池を
製作することはできないという問題があった。
For this reason, in a lithium ion battery, in a normal use condition, metallic lithium hardly precipitates on the negative electrode, a short circuit does not occur, and a highly safe battery can be obtained. However, since the utilization rate of the carbon material is limited, the energy density of the negative electrode is low, and there is a problem that a battery having a large discharge capacity and a high energy density cannot be manufactured.

【0006】[0006]

【課題を解決するための手段】本発明は、非水電解質二
次電池において、炭素材料を含みかつ空孔度が10%以
上、50%以下の負極合剤層中にリチウムイオン導電性
有孔性高分子電解質を備え、充電状態において負極合剤
層中のリチウムイオン導電性有孔性高分子電解質の空孔
内に金属リチウムが存在させることで、上記問題を解決
するものである。
According to the present invention, there is provided a nonaqueous electrolyte secondary battery comprising a negative electrode mixture layer containing a carbon material and having a porosity of 10% or more and 50% or less. The above problem is solved by providing a conductive polymer electrolyte and allowing metallic lithium to be present in pores of the lithium ion conductive porous polymer electrolyte in the negative electrode mixture layer in a charged state.

【0007】なおここで「充電状態」とは、正極活物質
が可逆なリチウムを放出した状態である。
[0007] Here, the "charged state" is a state in which the positive electrode active material has released reversible lithium.

【0008】また本発明は、金属リチウムの析出電位ま
で負極を充電することを特徴とする。
Further, the present invention is characterized in that the negative electrode is charged up to the deposition potential of metallic lithium.

【0009】さらに本発明は、正極合剤層の表面または
/および空孔中にリチウムイオン導電性有孔性高分子電
解質を備えることを特徴とする。
Further, the present invention is characterized in that a lithium ion conductive porous polymer electrolyte is provided on the surface or / and in the pores of the positive electrode mixture layer.

【0010】また本発明は、リチウムイオン導電性有孔
性高分子電解質が、負極合剤層の空孔体積の0.1%以
上、60%以下を占めることを特徴とする。
The present invention is also characterized in that the lithium ion conductive porous polymer electrolyte occupies 0.1% or more and 60% or less of the pore volume of the negative electrode mixture layer.

【0011】さらに本発明は、正極活物質と負極活物質
がつぎの関係を満たすことを特徴とする。 (正極活物質の可逆容量〔mAh〕)/(炭素材料の可
逆容量〔mAh〕+炭素材料の不可逆容量〔mAh〕)
>1 また本発明は、充電方法において、間欠充電することを
特徴とする。
Further, the present invention is characterized in that the positive electrode active material and the negative electrode active material satisfy the following relationship. (Reversible capacity of positive electrode active material [mAh]) / (Reversible capacity of carbon material [mAh] + Irreversible capacity of carbon material [mAh])
> 1 Further, the present invention is characterized in that in the charging method, intermittent charging is performed.

【0012】[0012]

【発明の実施の形態】つぎに、本発明の実施形態を、図
面を参照して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0013】本発明になる非水電解質二次電池は、炭素
材料を含みかつ空孔度が10%以上、50%以下の負極
合剤層中にリチウムイオン導電性有孔性高分子電解質を
備え、充電状態において負極合剤層中にリチウムイオン
導電性有孔性高分子電解質の空孔内に金属リチウムが存
在することを特徴とする。
The non-aqueous electrolyte secondary battery according to the present invention comprises a lithium ion conductive porous polymer electrolyte in a negative electrode mixture layer containing a carbon material and having a porosity of 10% or more and 50% or less. In the charged state, lithium metal is present in pores of the lithium ion conductive porous polymer electrolyte in the negative electrode mixture layer.

【0014】本発明になる非水電解質二次電池の負極合
剤層は、負極活物質とバインダーとを含む固体部分と、
負極合剤層の空孔部分とからなり、負極合剤層の空孔部
分には電解液で膨潤したリチウムイオン導電性有孔性高
分子電解質を備えている。そこで、この負極合剤層が、
金属リチウムをどれほど析出できるかの理論計算をおこ
なった。各部分の体積と理論容量の関係を図1を用いて
説明する。
The negative electrode mixture layer of the nonaqueous electrolyte secondary battery according to the present invention comprises a solid portion containing a negative electrode active material and a binder,
The negative electrode mixture layer has pores, and the pores of the negative electrode mixture layer are provided with a lithium ion conductive porous polymer electrolyte swollen with an electrolytic solution. Therefore, this negative electrode mixture layer
Theoretical calculation of how much metallic lithium can be deposited was performed. The relationship between the volume of each part and the theoretical capacity will be described with reference to FIG.

【0015】なお、電池の使用状態では、有孔性高分子
電解質は電解液で膨潤しており、有孔性高分子電解質の
孔部分も電解液で満たされているが、金属リチウムが析
出できる空所としては、負極合剤層の負極活物質、バイ
ンダー、および電解液で膨潤した有孔性高分子電解質の
高分子部分を合計した全固体部分以外の空孔とした。す
なわち、電解液で満たされている有孔性高分子電解質の
空孔部分にもリチウムが析出できるものとした。
In the use state of the battery, the porous polymer electrolyte is swollen with the electrolyte and the pores of the porous polymer electrolyte are filled with the electrolyte, but lithium metal can be deposited. The vacancies were vacancies other than all solid portions obtained by summing the negative electrode active material of the negative electrode mixture layer, the binder, and the polymer portion of the porous polymer electrolyte swollen with the electrolytic solution. That is, lithium was able to precipitate also in the pores of the porous polymer electrolyte filled with the electrolytic solution.

【0016】ただし、各記号は次のように定義する。However, each symbol is defined as follows.

【0017】V:負極合剤層の全体積/〔cc〕 1−x:負極合剤層の固体部分の体積比率、ただし0.
1≦x≦0.5 x:負極合剤層の空孔部分の体積比率(したがって、負
極合剤層の多孔度は100x%となる) (1−x)V:負極合剤層の固体部分の体積/〔cc〕 xV:負極合剤層の空孔部分の体積/〔cc〕 a:負極合剤層の固体部分のうち、炭素材料の体積比
率、ただし0<a≦1 1−a:負極合剤層の固体部分のうち、バインダーの体
積比率 a(1−x)V:負極合剤層の炭素材料の体積/〔c
c〕 (1−a)(1−x)V:負極合剤層のバインダーの体
積/〔cc〕 b:負極合剤層の空孔部分のうち、有孔性高分子電解質
の体積比率、ただし0<b<1 1−b:負極合剤層の空孔部分のうち、有孔性高分子電
解質が存在しない空孔の体積比率 bxV:負極合剤層の空孔部分のうち、有孔性高分子電
解質の体積/cc (1−b)xV:負極合剤層の空孔部分のうち、有孔性
高分子電解質が存在しない空孔の体積/〔cc〕 c:負極合剤層の空孔部分に存在する有孔性高分子電解
質の、高分子の体積比率、ただし0.01<c<0.6 1−c:負極合剤層の空孔部分に存在する有孔性高分子
電解質の、空孔部分の体積比率 xb(1−c)V:負極合剤層の空孔部分に存在する有
孔性高分子電解質の、高分子の体積/〔cc〕 xbcV:負極合剤層の空孔部分に存在する有孔性高分
子電解質の、孔部分の体積/〔cc〕 (1+bc)xV:負極合剤層の空孔部分の合計体積/
〔cc〕 y:負極の理論容量/〔mAh〕 yLi:負極合剤層の空孔部分に析出したリチウムの理論
容量/〔mAh〕 yC:炭素材料の理論容量/〔mAh〕 また、炭素材料の単位体積当たりの理論容量は800
〔mAh/cc〕、リチウムの単位体積当たりの理論容
量は2062〔mAh/cc〕とする。
V: Total volume of negative electrode mixture layer / [cc] 1-x: Volume ratio of solid portion of negative electrode mixture layer, but 0.1%
1 ≦ x ≦ 0.5 x: volume ratio of pore portion of negative electrode mixture layer (therefore, porosity of negative electrode mixture layer is 100 ×%) (1-x) V: solid portion of negative electrode mixture layer X / volume of void portion of negative electrode mixture layer / [cc] a: Volume ratio of carbon material in solid portion of negative electrode mixture layer, provided that 0 <a ≦ 11-a: Volume ratio of binder in solid portion of negative electrode mixture layer a (1-x) V: volume of carbon material of negative electrode mixture layer / [c
c] (1-a) (1-x) V: Volume of binder in negative electrode mixture layer / [cc] b: Volume ratio of porous polymer electrolyte among pores of negative electrode mixture layer, 0 <b <11-b: Volume ratio of pores in which no porous polymer electrolyte is present among pores of negative electrode mixture layer bxV: Porous of pores of negative electrode mixture layer Volume of polymer electrolyte / cc (1-b) xV: Volume of pores where no porous polymer electrolyte is present / [cc] among pores of negative electrode mixture layer c: Vacancy of negative electrode mixture layer The volume ratio of the polymer of the porous polymer electrolyte present in the pore portion, where 0.01 <c <0.6 1-c: the porous polymer electrolyte present in the pore portion of the negative electrode mixture layer Xb (1-c) V: volume of polymer / [cc] xbc of the porous polymer electrolyte present in the pores of the negative electrode mixture layer : A porous polymer electrolyte present vacancy part of the negative electrode mixture layer, the hole portion of the volume / [cc] (1 + bc) xV: Total pore portion of the negative electrode mixture layer volume /
[Cc] y: Theoretical capacity of negative electrode / [mAh] y Li : Theoretical capacity of lithium deposited in pores of the negative electrode mixture layer / [mAh] y C : Theoretical capacity of carbon material / [mAh] The theoretical capacity per unit volume of the material is 800
[MAh / cc], and the theoretical capacity per unit volume of lithium is 2062 [mAh / cc].

【0018】図1は、負極合剤層の固体部分の体積比率
(x)と負極の理論容量(y)の関係を示したものであ
る。
FIG. 1 shows the relationship between the volume ratio (x) of the solid portion of the negative electrode mixture layer and the theoretical capacity (y) of the negative electrode.

【0019】図1において、直線ABは炭素材料の理論
容量(yC)を示し、y=−800axV+800aV
で表わされる。A点では(x=1すなわち負極合剤層が
空所のみの場合)、炭素材料の体積は0〔cc〕となる
ので、理論容量は0〔mAh〕となり、B点では(x=
0すなわち負極合剤層の空孔がない場合)、炭素材料の
体積はaVccとなるので、理論容量は800aV〔m
Ah〕となる。すなわち、直線ABは、炭素材料にリチ
ウムがインターカレートすることにより充電がおこなわ
れる充電量の上限を示している。図1において、ABC
で囲まれた領域が炭素材料の理論容量による部分であ
り、負極合剤層の固体部分の比率xと負極合剤層の固体
部分のうちの炭素材料の体積比率aによって変化する。
In FIG. 1, a straight line AB indicates the theoretical capacity (y C ) of the carbon material, and y = −800axV + 800aV.
Is represented by At point A (x = 1, that is, when the negative electrode mixture layer is only empty), the volume of the carbon material is 0 [cc], so the theoretical capacity is 0 [mAh], and at point B (x =
0, ie, when there are no pores in the negative electrode mixture layer), the volume of the carbon material is aVcc, and the theoretical capacity is 800 aV [m
Ah]. That is, the straight line AB indicates the upper limit of the charge amount at which charging is performed by intercalating lithium into the carbon material. In FIG. 1, ABC
The region surrounded by is the portion based on the theoretical capacity of the carbon material, and varies depending on the ratio x of the solid portion of the negative electrode mixture layer and the volume ratio a of the carbon material in the solid portion of the negative electrode mixture layer.

【0020】また、図1において、斜線部1と斜線部2
の合計で表わされる、炭素材料の理論容量(yC)とリ
チウムの理論容量との合計理論容量(ymax)は、ymax
=2062(1−cb)xV−800axV+800a
Vで表わされる。
In FIG. 1, a hatched portion 1 and a hatched portion 2
Represented by the sum of the total theoretical capacity of the theoretical capacity (y C) and the theoretical capacity of the lithium of the carbon material (y max) is, y max
= 2062 (1-cb) xV-800axV + 800a
It is represented by V.

【0021】図1において、ABEで囲まれた領域は、
負極合剤層の空孔部分のうち、有孔性高分子電解質が存
在しない空孔部分にリチウムが析出した場合の、リチウ
ムの理論容量を示す。点Eは、負極合剤層の空孔部分の
うち、有孔性高分子電解質の体積比率bによって変化
し、b=0すなわち有孔性高分子電解質が存在しない場
合にはDと一致し、b=1すなわち負極合剤層の空孔部
分がすべて有孔性高分子電解質で充填されている場合に
はAと一致する。
In FIG. 1, the area surrounded by ABE is
The theoretical capacity of lithium in the case where lithium is deposited in the void portion where the porous polymer electrolyte does not exist among the void portions of the negative electrode mixture layer is shown. The point E changes depending on the volume ratio b of the porous polymer electrolyte among the pores of the negative electrode mixture layer, and matches B = 0 when b = 0, that is, when the porous polymer electrolyte does not exist, When b = 1, that is, when all the vacancies in the negative electrode mixture layer are filled with the porous polymer electrolyte, the value matches A.

【0022】また、図1において、EBDで囲まれた領
域は、負極合剤層の空孔部分に存在する有孔性高分子固
体電解質を示す。このうち、EBFで囲まれた領域は有
孔性高分子固体電解質の高分子部分であり、FBDで囲
まれた領域は有孔性高分子固体電解質の孔の部分であ
る。点Fの位置は負極合剤層の空孔部分に存在する有孔
性高分子電解質の、高分子の体積比率cによって変化
し、例えばc=0.01の場合にはF1となり、またc
=0.6の場合にはF2となる。
In FIG. 1, the region surrounded by the EBD indicates the porous solid polymer electrolyte present in the pores of the negative electrode mixture layer. Of these, the region surrounded by EBF is the polymer portion of the porous solid polymer electrolyte, and the region surrounded by FBD is the pore portion of the porous solid polymer electrolyte. The position of the point F changes depending on the volume ratio c of the polymer of the porous polymer electrolyte present in the pores of the negative electrode mixture layer. For example, when c = 0.01, the point becomes F1, and c
In the case of = 0.6, it becomes F2.

【0023】本発明になる非水電解質二次電池において
は、リチウムが析出できる領域は図1に斜線で示した部
分である。すなわち、直線x=0.1、直線x=0.
5、直線AB、直線EBで囲まれた領域、すなわちGH
LKで囲まれた領域(負極合剤層の空孔部分で、有孔性
高分子電解質が存在しない空所1)と、直線x=0.
1、直線x=0.5、直線AB、直線DBで囲まれた領
域、すなわちIJNMで囲まれた領域(有孔性高分子電
解質の孔の部分2)である。この領域内を使用すること
により、従来の金属リチウム二次電池よりも容量を増大
させることができ、リチウムイオン二次電池より容量を
増大できる。
In the non-aqueous electrolyte secondary battery according to the present invention, the region where lithium can be deposited is the portion shown by hatching in FIG. That is, straight line x = 0.1, straight line x = 0.
5, the region surrounded by the straight line AB and the straight line EB, ie, GH
A region surrounded by LK (a void portion of the negative electrode mixture layer where no porous polymer electrolyte is present) and a straight line x = 0.
1, a region surrounded by a straight line x = 0.5, a straight line AB, and a straight line DB, that is, a region surrounded by IJNM (porous portion 2 of a porous polymer electrolyte). By using this region, the capacity can be increased as compared with the conventional metal lithium secondary battery, and the capacity can be increased as compared with the lithium ion secondary battery.

【0024】なお、負極合剤層の多孔度(いいかえる
と、負極合剤層の空孔部分の体積比率)を変えて様々な
実験をした結果、負極合剤層の多孔度を10%以上、5
0%以下とした時、優れた安全性とサイクル特性を示す
ことがわかった。また、多孔度が20%以上、40%以
下のとき、サイクル特性ならびに安全性がさらに優れて
おり、加えて高率放電特性も優れていることがわかっ
た。
Various experiments were conducted by changing the porosity of the negative electrode mixture layer (in other words, the volume ratio of the pores in the negative electrode mixture layer). As a result, the porosity of the negative electrode mixture layer was 10% or more. 5
It was found that when the content was 0% or less, excellent safety and cycle characteristics were exhibited. When the porosity was 20% or more and 40% or less, it was found that the cycle characteristics and the safety were further excellent, and in addition, the high rate discharge characteristics were also excellent.

【0025】これは、グラファイト間の結合が強固で電
気電導性が十分あったためであり、かつ負極内に有孔性
高分子電解質が十分に存在することから、充放電に必要
なリチウムイオンの拡散が容易におこなわれたためであ
る。
This is because the bond between the graphites was strong and the electric conductivity was sufficient, and the porous polymer electrolyte was sufficiently present in the negative electrode. Was performed easily.

【0026】本発明になる非水電解質電池においては、
正極合剤層の孔中や表面にリチウムイオン導電性有孔性
高分子電解質を備えることにより、電池の特性をいっそ
う改善することが可能である。また、金属リチウムの析
出電位まで負極を充電することにより、電池の容量をさ
らに増大させることができる。
In the nonaqueous electrolyte battery according to the present invention,
By providing the lithium ion conductive porous polymer electrolyte in the pores or on the surface of the positive electrode mixture layer, it is possible to further improve the characteristics of the battery. Also, by charging the negative electrode to the deposition potential of metallic lithium, the capacity of the battery can be further increased.

【0027】さらに、負極合剤層の空孔部分のうち、有
孔性高分子電解質の体積比率は、0.01から0.6の
時、電池の安全性向上に有効であり、0.02から0.
2の時、より有効であり、より好ましくは0.05から
0.13の時であった。
Further, when the volume ratio of the porous polymer electrolyte in the pores of the negative electrode mixture layer is from 0.01 to 0.6, it is effective for improving the safety of the battery. To 0.
A time of 2 was more effective, more preferably a time of 0.05 to 0.13.

【0028】本発明になる非水電解質電池においては、
正極活物質の重量と負極の炭素材料の重量を、次の式を
満たすように決定した。 (正極の可逆容量〔mAh〕)/(負極の可逆容量〔m
Ah〕+負極の不可逆容量〔mAh〕)>1 ここで、正極の可逆容量は充放電可能な領域の容量であ
るだけでなく、サイクル特性の良好な領域での容量であ
る。これは正極活物質中のすべてのリチウムを放出しよ
うとする場合、正極活物質は構造的に不安定的となり、
可逆性が低下しサイクルに伴う容量の低下がおこる。そ
のため可逆性が高く、かつ実用的な電流がとりだせる領
域(可逆容量)で正極活物質を使用することが好まし
い。
In the nonaqueous electrolyte battery according to the present invention,
The weight of the positive electrode active material and the weight of the carbon material of the negative electrode were determined so as to satisfy the following equation. (Reversible capacity of positive electrode [mAh]) / (Reversible capacity of negative electrode [m
Ah] + irreversible capacity of the negative electrode [mAh])> 1 Here, the reversible capacity of the positive electrode is not only a capacity in a chargeable / dischargeable area but also a capacity in a good cycle characteristic area. This means that when trying to release all the lithium in the cathode active material, the cathode active material becomes structurally unstable,
The reversibility decreases and the capacity decreases with the cycle. Therefore, it is preferable to use the positive electrode active material in a region (reversible capacity) where reversibility is high and a practical current can be obtained.

【0029】次に炭素材料の理論的な可逆容量とは、C
からLiC6まで充電した時の容量であり、372〔mA
h/g〕である。また、不可逆反応は炭素材料の状態に
より多少変化すると考えられるが、ここでは炭素材料の
不可逆容量として示している。この値は、電池組立直後
の第一サイクルの充電電気量と第二サイクルの充電電気
量との差で表すことができる。ただし、第一サイクルの
充電後には電池電圧2.75〔V〕まで放電率0.1C
以下の定電流で放電しなければならない。
Next, the theoretical reversible capacity of the carbon material is C
To LiC 6 from 372 [mA]
h / g]. Although the irreversible reaction is considered to slightly change depending on the state of the carbon material, it is shown here as the irreversible capacity of the carbon material. This value can be represented by the difference between the amount of charge in the first cycle immediately after the battery is assembled and the amount of charge in the second cycle. However, after charging in the first cycle, the discharge rate was 0.1 C up to a battery voltage of 2.75 [V].
It must be discharged with the following constant current.

【0030】上記の式によって決定される正極と負極と
を備える電池は、負極において金属リチウムが析出する
ことで、従来の電池と比較して、高容量・高エネルギー
密度を達成する。しかしながら金属リチウムの電析はデ
ンドライトとなりやすいため、短絡やサイクルに伴う容
量低下が生じるので、金属リチウムの電析を、負極合剤
層の内部の孔に納まるようにすると、短絡の発生を抑え
られ、また、金属リチウムの脱離を低減できるためサイ
クル寿命特性を向上できる。
A battery provided with a positive electrode and a negative electrode determined by the above formula achieves higher capacity and higher energy density than conventional batteries by depositing metallic lithium on the negative electrode. However, since the deposition of metallic lithium tends to become dendrites, the capacity is reduced due to short-circuiting and cycling. In addition, since the desorption of metallic lithium can be reduced, cycle life characteristics can be improved.

【0031】負極合剤層の内部の孔にリチウムを電析さ
せるには、定電流による充電をおこなう第一段階と間欠
充電をおこう第二段階との、二つの段階を持つ充電法が
良い。この第一段階は炭素中へインターカレートさせる
充電に相当し、第二段階はリチウムの電析充電に相当す
る。第二段階のリチウムの電析充電においては間欠充電
をおこなうのが好ましい。ここで、間欠充電とは、充電
期間と休止期間と交互に繰りかえす充電法である。この
休止期間には放電期間を含むことができる。つまり、休
止期間での停電もしくは放電により、負極におけるデン
ドライトを抑制でき、電極内でリチウムイオンの拡散を
促進することにより、電極中で比較的均一に金属リチウ
ムを析出できるものである。
In order to deposit lithium in the pores inside the negative electrode mixture layer, a charging method having two stages, a first stage for performing charging with a constant current and a second stage for intermittent charging, is preferable. . The first stage corresponds to charging for intercalating into carbon, and the second stage corresponds to electrodeposition charging of lithium. In the second stage of depositing lithium, intermittent charging is preferably performed. Here, the intermittent charging is a charging method in which a charging period and a pause period are alternately repeated. This pause period can include a discharge period. In other words, dendrites in the negative electrode can be suppressed by a power outage or discharge during the idle period, and diffusion of lithium ions in the electrode can be promoted, so that metal lithium can be deposited relatively uniformly in the electrode.

【0032】負極合剤層の孔中に有孔性高分子電解質を
形成する方法は以下の通りである。電解液で膨潤する高
分子を有機溶媒に溶解し、高分子ペーストを作成し、こ
の高分子ペーストを負極合剤層に含浸したのち、高分子
と相溶性がなく、かつ前記の有機溶媒と相溶性のある液
体で高分子溶液中の有機溶媒を抽出した。このことによ
り電極の孔の部分ならびに電極表面に有孔性高分子を充
填できた。ここで有機溶媒と相溶性のある液体として、
水を使用することができる。
The method for forming a porous polymer electrolyte in the pores of the negative electrode mixture layer is as follows. The polymer swelling in the electrolytic solution is dissolved in an organic solvent to prepare a polymer paste, and the polymer paste is impregnated into the negative electrode mixture layer. The polymer paste is not compatible with the polymer and is not compatible with the organic solvent. The organic solvent in the polymer solution was extracted with a soluble liquid. This allowed the porous polymer to fill the pores of the electrode and the electrode surface. Here, as a liquid compatible with the organic solvent,
Water can be used.

【0033】なお、負極合剤層の表面には有孔性高分子
電解質が存在してもよいが、充電時にリチウムデンドラ
イトが生成し易くなるため、過剰に存在しないほうが好
ましいと考えられる。
Although a porous polymer electrolyte may be present on the surface of the negative electrode mixture layer, lithium dendrite is likely to be generated during charging.

【0034】また、有孔性高分子電解質の形成は正極に
対しても適用可能であり、安全性を向上させるためには
正極に対してもおこなうことが好ましい。有孔性高分子
は電解液により膨潤することで、リチウムイオン導電性
有孔性高分子となり、従来の固体電解質より高率での充
放電特性に優れた高い性能を示すことができる。
The formation of the porous polymer electrolyte is applicable to the positive electrode, and is preferably performed also for the positive electrode in order to improve safety. The porous polymer becomes a lithium ion conductive porous polymer by swelling with the electrolytic solution, and can exhibit high performance excellent in charge / discharge characteristics at a higher rate than a conventional solid electrolyte.

【0035】これに加えて、活物質近傍の遊離の電解液
を減らすことができるため、安全性を向上できる。これ
らの正負極は従来のセパレータを組み合わせて、電池エ
レメントを形成することができるが、従来のセパレータ
は、その材質自体はイオン伝導性ならびに電子伝導性が
乏しく、リチウムイオンの移動を阻害する働きを示す。
そこで従来のセパレータの代わりにリチウムイオン導電
性有孔性高分子からなるセパレータを使用することが好
ましい。
In addition, the amount of free electrolyte near the active material can be reduced, so that safety can be improved. These positive and negative electrodes can be combined with a conventional separator to form a battery element.However, the conventional separator itself has poor ion conductivity and electron conductivity, and acts to inhibit the movement of lithium ions. Show.
Therefore, it is preferable to use a separator made of a lithium ion conductive porous polymer instead of the conventional separator.

【0036】この有孔性リチウムイオン導電性高分子セ
パレータは、前記の高分子ペーストを板ガラスの上に膜
状に塗布したのち、板ガラスとペーストとを水中に投
じ、有機溶媒を抽出することで作製できる。このリチウ
ムイオン導電性有孔性高分子セパレータと前記の正負極
とを組み合わせて電池エレメントを作製し、電解液を加
えた場合、リチウムイオン導電性有孔性高分子は正負極
活物質間に存在するといえる。この正負極活物質間と
は、電極の孔内、電極の表面ならびに正・負極間を含
む。
This porous lithium ion conductive polymer separator is produced by applying the above-mentioned polymer paste in the form of a film on a sheet glass, then pouring the sheet glass and the paste into water and extracting an organic solvent. it can. When a battery element is prepared by combining the lithium ion conductive porous polymer separator with the positive and negative electrodes and an electrolyte is added, the lithium ion conductive porous polymer exists between the positive and negative electrode active materials. I can say that. The term “between the positive and negative electrode active materials” includes the inside of the hole of the electrode, the surface of the electrode, and between the positive and negative electrodes.

【0037】また、従来の電池では正極・負極間にポリ
エチレンやポリプロピレン製の微多孔膜をセパレータと
して使用しているが、本発明による電池では正極・負極
間に多孔性高分子電解質がセパレータの代わりとなるこ
とができるため、十分な厚さの多孔性高分子電解質があ
るならば、従来の電子伝導性のないセパレータを必要と
しない電池を作製可能である。
In the conventional battery, a microporous film made of polyethylene or polypropylene is used as a separator between the positive electrode and the negative electrode. However, in the battery according to the present invention, a porous polymer electrolyte is used between the positive electrode and the negative electrode instead of the separator. Therefore, if a porous polymer electrolyte having a sufficient thickness is provided, a battery that does not require a conventional separator having no electronic conductivity can be manufactured.

【0038】多孔性高分子電解質も従来のセパレータと
同様に温度の上昇によりシャットダウン機構が作動する
と考えられる。多孔性高分子電解質はある温度まで上昇
するとイオン電導性が低下するため、電池の安全化に寄
与することが様々な実験をおこなった結果、明らかにな
った。また、従来のセパレータは、それ自身がイオン導
電性が無い絶縁体でありイオン伝導の抵抗要因となる
が、多孔性高分子電解質はイオン導電性に優れているた
め、高率放電特性に優れた電池が製作可能である。
It is considered that the shutdown mechanism of the porous polymer electrolyte is activated by an increase in temperature, similarly to the conventional separator. As a result of various experiments, it has been clarified that the ionic conductivity of the porous polymer electrolyte decreases when the temperature rises to a certain temperature, which contributes to the safety of the battery. In addition, the conventional separator itself is an insulator having no ionic conductivity and causes resistance to ionic conduction.However, since the porous polymer electrolyte has excellent ionic conductivity, it has excellent high-rate discharge characteristics. Batteries can be manufactured.

【0039】以上のことから、従来の炭素材料の利用率
が理論容量の70%程度であったものを、本発明によ
り、利用率を向上させた電池設計が可能となる。つま
り、従来の電池設計を改め、負極の炭素材料の削減し、
正極活物質を増量させ、そして多孔性高分子電解質を使
用することにより、金属リチウムの電析が可能となる。
この金属リチウムが放電に関与する分が容量増加に寄与
する。また間欠充電法を組み合わせることにより、金属
リチウムの放電に寄与する割合が増加し、より好ましい
結果が得られる。
From the above, it is possible to design a battery in which the utilization rate of the conventional carbon material is about 70% of the theoretical capacity and the utilization rate is improved by the present invention. In other words, the conventional battery design was revised, the carbon material of the negative electrode was reduced,
By increasing the amount of the positive electrode active material and using a porous polymer electrolyte, electrodeposition of lithium metal becomes possible.
The portion of the metallic lithium involved in the discharge contributes to an increase in capacity. In addition, by combining the intermittent charging method, the ratio contributing to the discharge of metallic lithium increases, and more favorable results can be obtained.

【0040】電極の表面および孔中に充填する有孔性高
分子としては、ポリビニリデンフルオライド(PVd
F)、ポリエチレンオキシド、ポリプロピレンオキシド
等のポリエーテル、ポリアクリロニトリル、ポリビニリ
デンフルオライド、ポリ塩化ビニリデン、ポリメチルメ
タクリレート、ポリメチルアクリレート、ポリビニルア
ルコール、ポリメタクリロニトリル、ポリビニルアセテ
ート、ポリビニルピロリドン、ポリエチレンイミン、ポ
リブタジエン、ポリスチレン、ポリイソプレン及びこれ
らの誘導体を単独で、あるいは混合して用いてもよい。
また、上記高分子を構成する各種モノマーを共重合させ
た高分子を用いてもよい。
As the porous polymer to be filled into the surface of the electrode and into the pores, polyvinylidene fluoride (PVd)
F), polyethylene oxide, polyether such as polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethylene imine, Polybutadiene, polystyrene, polyisoprene and derivatives thereof may be used alone or in combination.
Further, a polymer obtained by copolymerizing various monomers constituting the above polymer may be used.

【0041】有孔性高分子の作製には、水、リン酸や酢
酸、塩酸、硝酸等の酸性水溶液、水酸化リチウム、水酸
化ナトリウム等のアルカリ性水溶液、エタノールやメタ
ノール等のアルコール類、もしくはこれらのアルコール
と水との混合溶液を用いてもよい。
For preparing the porous polymer, water, an acidic aqueous solution such as phosphoric acid, acetic acid, hydrochloric acid, or nitric acid; an alkaline aqueous solution such as lithium hydroxide or sodium hydroxide; an alcohol such as ethanol or methanol; A mixed solution of alcohol and water may be used.

【0042】非水系電解液の溶媒としては、エチレンカ
ーボネート、プロピレンカーボネート、ジメチルカーボ
ネート、ジエチルカーボネート、メチルエチルカーボネ
ート、γ−ブチロラクトン、スルホラン、ジメチルスル
ホキシド、アセトニトリル、ジメチルホルムアミド、ジ
メチルアセトアミド、1、2−ジメトキシエタン、1、
2−ジエトキシエタン、テトラヒドロフラン、2−メチ
ルテトラヒドロフラン、ジオキソラン、メチルアセテー
ト等の極性溶媒及びこれらの混合物を用いてもよい。
As the solvent of the non-aqueous electrolyte, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxy Ethane, 1,
Polar solvents such as 2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, and methyl acetate, and mixtures thereof may be used.

【0043】非水系電解液の溶媒に溶解するリチウム塩
としては、LiPF6、LiBF4、LiAsF6、LiCl
4、LiSCN、LiI、LiCF3SO3、LiCl、Li
Br、LiCF3CO2等のリチウム塩及びこれらの混合
物を用いてもよい。
Examples of the lithium salt dissolved in the solvent of the non-aqueous electrolyte include LiPF 6 , LiBF 4 , LiAsF 6 , and LiCl.
O 4 , LiSCN, LiI, LiCF 3 SO 3 , LiCl, Li
Lithium salts such as Br and LiCF 3 CO 2 and mixtures thereof may be used.

【0044】正極材料たるリチウムを吸蔵放出可能な化
合物としては、無機化合物としては、組成式LiB
2、またはLiC24(ただし、Mは遷移金属、0≦
B≦1.0≦C≦2)で表される、複合酸化物、トンネ
ル状の孔を有する酸化物、層状構造の金属カルコゲン化
物を用いることができる。その具体例としては、LiC
oO2、LiNiO2、NiOOHLi、LiMn24、Li
2Mn24、MnO2、FeO2、V25、V613、Ti
2、TiS2等が挙げられる。また、有機化合物として
は、例えばポリアニリン等の導電性高分子等が挙げられ
る。さらに、無機化合物、有機化合物を問わず、上記各
種活物質を混合して用いてもよい負極活物質に使用する
炭素材料としては、グラファイト、易黒鉛化性炭素、難
黒鉛化性炭素、低温焼成炭素、黒鉛化MCMB、黒鉛化
メソフェーズピッチ系炭素、天然黒鉛等の炭素材料を用
いてもよい。また、これらの混合物を使用してもよい。
さらに炭素材料に加えてリチウムと合金を形成する元素
を負極に添加しても良い。
[0044] The positive electrode material serving as a lithium as capable of absorbing and releasing compounds, as the inorganic compound, composition formula Li B M
O 2 or Li C M 2 O 4 (where M is a transition metal, 0 ≦
B ≦ 1.0 ≦ C ≦ 2), a composite oxide, an oxide having tunnel holes, and a metal chalcogenide having a layered structure can be used. As a specific example, LiC
oO 2 , LiNiO 2 , NiOOHLi, LiMn 2 O 4 , Li
2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , Ti
O 2 and TiS 2 are mentioned. Examples of the organic compound include a conductive polymer such as polyaniline. Further, regardless of the inorganic compound or the organic compound, the above-mentioned various active materials may be used as a mixture. The carbon material used for the negative electrode active material may be graphite, graphitizable carbon, non-graphitizable carbon, and low-temperature firing. Carbon materials such as carbon, graphitized MCMB, graphitized mesophase pitch-based carbon, and natural graphite may be used. Moreover, you may use these mixtures.
Further, in addition to the carbon material, an element which forms an alloy with lithium may be added to the negative electrode.

【0045】電池ケースの材料としては、、アルミニウ
ム、マグネシウム、チタン、鉄等の金属ケースを用いて
も良く、また、アルミ合金、チタン合金等の金属合金ケ
ースでも良い。さらに、アルミニウム箔と樹脂膜を併用
したケースでも良い。この樹脂膜として、具体的にはポ
リプロリレン、ポリエチレン、フッ素樹脂等があり、電
解液により膨潤しにくく、さらに反応しにくいものであ
ればあらゆる樹脂膜が使用できる。
As a material of the battery case, a metal case such as aluminum, magnesium, titanium, iron or the like may be used, or a metal alloy case such as aluminum alloy or titanium alloy may be used. Further, a case using both an aluminum foil and a resin film may be used. Specific examples of the resin film include polyprolylene, polyethylene, and fluororesin, and any resin film can be used as long as it does not easily swell with an electrolytic solution and does not easily react.

【0046】[0046]

【実施例】以下、本発明の好適な実施例を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0047】[実施例1]下記の手順にしたがって、非
水電解質二次電池(A)と(B)とを製作した。
Example 1 Non-aqueous electrolyte secondary batteries (A) and (B) were manufactured according to the following procedure.

【0048】はじめに、本発明による電池(A)を製作
した。正極は、コバルト酸リチウム42.5wt%、ア
セチレンブラック3wt%、ポリビニリデンフルオライ
ド(PVdF)4.5wt%、n−メチルピロリドン
(NMP)50.0wt%を混合したものを、幅100
〔mm〕、長さ550〔mm〕、厚さ10〔μm〕のア
ルミニウム薄膜の両面に塗布し、150〔℃〕で乾燥し
てNMPを蒸発させて製作した。この正極をプレスして
電極の厚さを370〔μm〕から180〔μm〕まで薄
くし、幅20〔mm〕、長さ550〔mm〕のサイズに
切断した。
First, a battery (A) according to the present invention was manufactured. The positive electrode was prepared by mixing 42.5 wt% of lithium cobaltate, 3 wt% of acetylene black, 4.5 wt% of polyvinylidene fluoride (PVdF), and 50.0 wt% of n-methylpyrrolidone (NMP) with a width of 100%.
[Mm], a length of 550 [mm] and a thickness of 10 [μm] were applied to both surfaces of an aluminum thin film, dried at 150 [° C] and evaporated to produce NMP. The positive electrode was pressed to reduce the thickness of the electrode from 370 [μm] to 180 [μm], and was cut into a size having a width of 20 [mm] and a length of 550 [mm].

【0049】負極は、グラファイト36wt%、PVd
F4wt%、NMP60wt%を混合した活物質ペース
トを幅80〔mm〕、長さ550〔mm〕、厚さ10
〔μm〕の銅箔の両面に塗布し、150〔℃〕で乾燥し
てNMPを蒸発させて製作した。
The negative electrode was made of 36% by weight of graphite, PVd
F4 wt% and NMP60 wt% mixed active material paste with width 80 [mm], length 550 [mm], thickness 10
It was applied to both sides of a [μm] copper foil, dried at 150 ° C. and evaporated to produce NMP.

【0050】続いて負極に有孔性高分子含浸処理を行っ
た。ポリアクリロニトリル(PAN)10wt%とNM
P90wt%とを混合した高分子溶液を塗布して2分間
放置し、負極合剤層の空孔中に高分子溶液を浸透させた
後、水に浸漬してNMPを抽出し、電極孔中のPANを
多孔化する。この負極を100〔℃〕で25分間乾燥
し、水を除去した。この負極をプレスして、厚みを13
0〔μm〕にした後、再度有孔性高分子含浸処理し、電
極の厚さを165〔μm〕とした後、幅20〔mm〕、
長さ550〔mm〕のサイズに切断した。
Subsequently, the negative electrode was impregnated with a porous polymer. 10% by weight of polyacrylonitrile (PAN) and NM
A polymer solution mixed with 90% by weight of P was applied and allowed to stand for 2 minutes. After allowing the polymer solution to penetrate into the pores of the negative electrode mixture layer, it was immersed in water to extract NMP, and the The PAN is made porous. This negative electrode was dried at 100 ° C. for 25 minutes to remove water. Press this negative electrode to a thickness of 13
0 [μm], the porous polymer impregnated again, the electrode thickness was 165 [μm], width 20 [mm],
It was cut to a size of 550 [mm] in length.

【0051】上記正極には電池電圧4.15〔V〕まで
充電したときの充電電気量が500mAhとなる活物質
量が含まれており、負極中のグラファイトにはLiC6
で充電した時の電気量が400〔mAh〕となるように
塗布量を調節した。
The positive electrode contains an amount of active material that gives a charge of 500 mAh when charged to a battery voltage of 4.15 [V], and the graphite in the negative electrode contains electricity when charged to LiC 6. The coating amount was adjusted so that the amount became 400 [mAh].

【0052】これらの正・負極を組み合わせてエレメン
トを作製後、高さ45〔mm〕、幅23〔mm〕、厚さ
6〔mm〕のステンレスケースに挿入した。さらに、体
積比1:1のエチレンカーボネートとジメチルカーボネ
ートとの混合溶媒に1mol/lのLiPF6を溶解させ
た電解液を注入して、本発明による公称容量450〔m
Ah〕の電池(A)を製作した。ここで、正極の充電電
気量が500〔mAh〕であり、公称容量が450〔m
Ah〕であるが、この差、約50〔mAh〕は負極活物
質で生じる不可逆容量である。
After the element was prepared by combining these positive and negative electrodes, the element was inserted into a stainless case having a height of 45 mm, a width of 23 mm, and a thickness of 6 mm. Further, an electrolytic solution in which 1 mol / l of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 1 was injected, and a nominal capacity of 450 [m
Ah] of the battery (A). Here, the amount of charge of the positive electrode is 500 [mAh], and the nominal capacity is 450 [m
Ah], and this difference, about 50 [mAh], is the irreversible capacity generated in the negative electrode active material.

【0053】次に比較例として電池(B)を製作した。
正極は電池(A)と同一のものを使用した。負極は多孔
性高分子含浸処理をおこなわず製作した。つまり、グラ
ファイト36wt%、PVdF4wt%、NMP60w
t%を混合した活物質ペーストを幅80〔mm〕、長さ
550〔mm〕、厚さ10〔μm〕の銅箔に塗布し、1
50℃で乾燥してNMPを蒸発させたのちに厚さ140
〔μm〕にプレスしたのち、幅20〔mm〕、長さ55
0〔mm〕のサイズに切断して負極とした。
Next, a battery (B) was manufactured as a comparative example.
The positive electrode used was the same as the battery (A). The negative electrode was manufactured without performing the porous polymer impregnation treatment. That is, graphite 36wt%, PVdF4wt%, NMP60w
The active material paste mixed with t% is applied to a copper foil having a width of 80 [mm], a length of 550 [mm], and a thickness of 10 [μm].
After drying at 50 ° C. to evaporate the NMP,
[Μm], width 20 [mm], length 55
The negative electrode was cut into a size of 0 [mm].

【0054】これらの正・負極と、厚さ25〔μm〕、
幅20〔mm〕のポリエチレンセパレータとを組み合わ
せてエレメントを作製後、高さ45〔mm〕、幅23
〔mm〕、厚さ6〔mm〕のステンレスケースに挿入し
た。さらに、体積比1:1のエチレンカーボネートとジ
メチルカーボネートとの混合溶媒に1〔mol/l〕の
LiPF6を溶解した電解液を注入して、公称容量450
〔mAh〕の電池(B)を製作した。
These positive and negative electrodes, a thickness of 25 [μm],
After producing an element by combining with a polyethylene separator having a width of 20 [mm], a height of 45 [mm] and a width of 23 are prepared.
[Mm] and a thickness of 6 [mm]. Further, an electrolytic solution in which 1 mol / l of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 1 was injected, and a nominal capacity of 450 mol.
[MAh] A battery (B) was manufactured.

【0055】電池(A)は、負極合剤層の空孔中に有孔
性高分子電解質を備えたもので、以下の充電方法を採用
した。炭素材料のインターカレート領域において、45
0〔mA〕(1C相当)の電流で定電流充電した。この
後、金属リチウム析出領域において間欠充電をおこなっ
た。この間欠充電では、充電電流225〔mA〕(0.
5C相当)で2秒の充電期間と、停電(2秒)放電(1秒)
停電(2秒)で構成される休止期間と放電期間との組み合
わせとを交互に繰り返すものである。放電期間における
放電電流は100〔mA〕とした。間欠充電により正極
活物質の充電電気量が設計値に達した時、充電終了し
た。
The battery (A) was provided with a porous polymer electrolyte in the pores of the negative electrode mixture layer, and employed the following charging method. In the intercalating region of the carbon material, 45
The battery was charged at a constant current of 0 [mA] (corresponding to 1 C). Thereafter, intermittent charging was performed in the metal lithium deposition region. In this intermittent charging, the charging current is 225 [mA] (0.
5 seconds), 2 seconds charging period, blackout (2 seconds), discharging (1 second)
A combination of a pause period and a discharge period constituted by a power outage (2 seconds) is alternately repeated. The discharge current during the discharge period was 100 [mA]. When the amount of charge of the positive electrode active material reached the designed value due to intermittent charging, charging was completed.

【0056】電池(B)は、負極合剤層の空孔中に有孔
性高分子電解質を含まず、ポリエチレンセパレータを備
えている。また、充電は従来と同じ定電流/定電圧充電
をおこなった。図2には充放電サイクルを繰り返した電
池(A)と(B)の、サイクル数と放電容量の関係を示
した。図2から、負極合剤層の空孔中に有孔性高分子電
解質を備えた電池(A)では、電池のサイクル特性が向
上することがわかる。
The battery (B) does not contain a porous polymer electrolyte in the pores of the negative electrode mixture layer, and has a polyethylene separator. The charging was performed at the same constant current / constant voltage as before. FIG. 2 shows the relationship between the number of cycles and the discharge capacity of the batteries (A) and (B) having repeated charge / discharge cycles. FIG. 2 shows that the battery (A) having the porous polymer electrolyte in the pores of the negative electrode mixture layer has improved battery cycle characteristics.

【0057】この理由としては、有孔性高分子電解質が
金属リチウムのデンドライト化と金属リチウムの脱離と
を抑えたためであること、ならびに電流の集中がおこり
にくくなったこと、金属リチウムが比較的均一に析出し
たため可逆性が向上したことが考えられる。
The reason for this is that the porous polymer electrolyte suppresses the dendrite conversion of metallic lithium and the elimination of metallic lithium, the fact that the concentration of electric current is less likely to occur, and the relatively low concentration of metallic lithium. It is considered that the reversibility was improved due to the uniform precipitation.

【0058】次に電圧4.15Vまで充電した電池
(A)、(B)を短絡試験した。外部短絡試験では、抵
抗(200A/50mV)を介して電池を短絡させた。内
部短絡試験では、木板上に横置きした電池の中央部に、
直径2.5〔mm〕、長さ70〔mm〕の釘を貫通させ
た。それぞれ、試験(1)は電池を室温の状態で短絡さ
せ、試験(2)は電池を60℃に加熱してから短絡させ
た。短絡試験はそれぞれの試験条件について、各5個づ
つ行った。試験結果を表1に示した。
Next, batteries (A) and (B) charged to a voltage of 4.15 V were subjected to a short-circuit test. In the external short-circuit test, the battery was short-circuited via a resistor (200 A / 50 mV). In the internal short-circuit test, the center of the battery placed horizontally on a wooden board
A nail having a diameter of 2.5 [mm] and a length of 70 [mm] was penetrated. In each test (1), the battery was short-circuited at room temperature, and in test (2), the battery was heated to 60 ° C. and then short-circuited. Five short-circuit tests were performed for each of the test conditions. The test results are shown in Table 1.

【0059】[0059]

【表1】 [Table 1]

【0060】表1の結果、本発明による電池(A)は全
く破裂が起こらず、安全性が高いことがわかった。これ
に対し、従来の電池(B)は特に60℃での危険性が高
い。これは金属リチウムがデンドライト状に析出したた
めと考えられる。これに対して電池(A)ではデンドラ
イトの析出が抑えられたため、安全性が向上したと考え
られる。
As a result of Table 1, it was found that the battery (A) according to the present invention did not rupture at all and was highly safe. On the other hand, the conventional battery (B) is particularly dangerous at 60 ° C. This is probably because metallic lithium was precipitated in a dendrite shape. On the other hand, in the battery (A), the precipitation of dendrite was suppressed, and it is considered that the safety was improved.

【0061】[0061]

【発明の効果】本発明による非水電解質二次電池は、従
来のリチウムイオン電池よりも金属リチウムを充放電に
関与させる分だけ高容量となる。また、負極合剤層の空
孔内に多孔性高分子電解質を存在させることによって、
リチウムのデンドライトの生成を抑制し、安全性を向上
させることができる。さらに、金属リチウムの可逆性を
向上させ、電池のサイクル特性を大幅に向上させること
ができる。
As described above, the nonaqueous electrolyte secondary battery according to the present invention has a higher capacity than the conventional lithium ion battery by the amount of lithium metal involved in charge and discharge. Further, by allowing the porous polymer electrolyte to be present in the pores of the negative electrode mixture layer,
The generation of lithium dendrite can be suppressed, and safety can be improved. Further, the reversibility of metallic lithium can be improved, and the cycle characteristics of the battery can be significantly improved.

【0062】これに加えて間欠充電法をとることによ
り、金属リチウムの放電に寄与する割合が増加し、電池
の高容量化が達成できる。本発明により、金属リチウム
を利用した高容量の負極を作製することができ、従来の
電池よりも高容量の電池製作が可能となった。また多孔
性高分子電解質を使用することで、従来の孔のない固体
電解質を使用したものよりも高率での放電が可能とな
り、高性能の電池が製作できる。
In addition to this, by employing the intermittent charging method, the rate of contribution to the discharge of metallic lithium increases, and the capacity of the battery can be increased. According to the present invention, a high-capacity negative electrode using metallic lithium can be manufactured, and a higher-capacity battery than a conventional battery can be manufactured. In addition, by using a porous polymer electrolyte, discharge at a higher rate becomes possible than in the case of using a conventional solid electrolyte having no pores, and a high-performance battery can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】負極合剤層の各部分の体積と理論容量の関係を
示す図。
FIG. 1 is a view showing the relationship between the volume of each part of a negative electrode mixture layer and the theoretical capacity.

【図2】電池(A)と(B)の、サイクル数と放電容量
の関係を示した図。
FIG. 2 is a diagram showing the relationship between the number of cycles and the discharge capacity of batteries (A) and (B).

【符号の説明】[Explanation of symbols]

1 負極合剤層の空孔部分で、有孔性高分子電解質が存
在しない空孔 2 有孔性高分子電解質の孔の部分
1 pores in the negative electrode mixture layer where no porous polymer electrolyte is present 2 pores in the porous polymer electrolyte

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H014 AA02 BB11 EE02 EE05 EE08 EE10 HH01 HH02 HH04 5H029 AJ03 AK03 AL06 AL07 AL08 AM03 AM04 AM05 AM07 AM16 CJ16 HJ09 HJ19  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H014 AA02 BB11 EE02 EE05 EE08 EE10 HH01 HH02 HH04 5H029 AJ03 AK03 AL06 AL07 AL08 AM03 AM04 AM05 AM07 AM16 CJ16 HJ09 HJ19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料を含みかつ空孔度が10%以
上、50%以下の負極合剤層中にリチウムイオン導電性
有孔性高分子電解質を備え、充電状態において負極合剤
層中のリチウムイオン導電性有孔性高分子電解質の空孔
内に金属リチウムが存在することを特徴とする非水電解
質二次電池。
1. A negative electrode mixture layer containing a carbon material and having a porosity of 10% or more and 50% or less, comprising a lithium ion conductive porous polymer electrolyte, A non-aqueous electrolyte secondary battery comprising lithium metal in pores of a lithium ion conductive porous polymer electrolyte.
【請求項2】 金属リチウムの析出電位まで負極を充電
することを特徴とする請求項1記載の非水電解質二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is charged to a deposition potential of metallic lithium.
【請求項3】 正極合剤層の表面または/および空孔中
にリチウムイオン導電性有孔性高分子電解質を備えるこ
とを特徴とする請求項1または2記載の非水電解質二次
電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein a lithium ion conductive porous polymer electrolyte is provided on the surface and / or in the pores of the positive electrode mixture layer.
【請求項4】 リチウムイオン導電性有孔性高分子電解
質が、負極合剤層の空孔体積の0.1%以上、60%以
下を占めることを特徴とする請求項1〜3記載の非水電
解質二次電池。
4. The non-porous lithium ion conductive porous polymer electrolyte as claimed in claim 1, wherein the pore volume of the negative electrode mixture layer is 0.1% or more and 60% or less. Water electrolyte secondary battery.
【請求項5】 正極活物質と負極活物質がつぎの関係を
満たすことを特徴とする請求項1〜4記載の非水電解質
二次電池。(正極活物質の可逆容量〔mAh〕)/(炭
素材料の可逆容量〔mAh〕+炭素材料の不可逆容量
〔mAh〕)>1
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material and the negative electrode active material satisfy the following relationship. (Reversible capacity [mAh] of positive electrode active material) / (reversible capacity [mAh] of carbon material + irreversible capacity [mAh] of carbon material)> 1
【請求項6】 間欠充電することを特徴とする請求項1
〜5記載の非水電解質二次電池の充電方法。
6. The battery according to claim 1, wherein the battery is intermittently charged.
6. The method for charging a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5.
JP11136275A 1999-05-17 1999-05-17 Nonaqueous electrolyte secondary battery and its charging method Pending JP2000323126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11136275A JP2000323126A (en) 1999-05-17 1999-05-17 Nonaqueous electrolyte secondary battery and its charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11136275A JP2000323126A (en) 1999-05-17 1999-05-17 Nonaqueous electrolyte secondary battery and its charging method

Publications (1)

Publication Number Publication Date
JP2000323126A true JP2000323126A (en) 2000-11-24

Family

ID=15171395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11136275A Pending JP2000323126A (en) 1999-05-17 1999-05-17 Nonaqueous electrolyte secondary battery and its charging method

Country Status (1)

Country Link
JP (1) JP2000323126A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005008812A1 (en) * 2003-07-17 2006-09-07 株式会社ユアサコーポレーション Positive electrode active material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
JP2010150801A (en) * 2008-12-25 2010-07-08 Misawa Homes Co Ltd Structure of edge of eaves
US7807294B2 (en) * 2004-10-21 2010-10-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2012146553A (en) * 2011-01-13 2012-08-02 Idemitsu Kosan Co Ltd Negative electrode member for lithium ion battery, and negative electrode
JP2020149824A (en) * 2019-03-12 2020-09-17 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005008812A1 (en) * 2003-07-17 2006-09-07 株式会社ユアサコーポレーション Positive electrode active material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
US8153295B2 (en) 2003-07-17 2012-04-10 Gs Yuasa International Ltd. Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
US7807294B2 (en) * 2004-10-21 2010-10-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
JP4615339B2 (en) * 2005-03-16 2011-01-19 独立行政法人科学技術振興機構 Porous solid electrode and all-solid lithium secondary battery using the same
JP2010150801A (en) * 2008-12-25 2010-07-08 Misawa Homes Co Ltd Structure of edge of eaves
JP2012146553A (en) * 2011-01-13 2012-08-02 Idemitsu Kosan Co Ltd Negative electrode member for lithium ion battery, and negative electrode
JP2020149824A (en) * 2019-03-12 2020-09-17 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing the same
JP7096184B2 (en) 2019-03-12 2022-07-05 トヨタ自動車株式会社 Lithium-ion secondary battery and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5209964B2 (en) Lithium secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
CN100583541C (en) Battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP2008311164A (en) Nonaqueous electrolyte secondary battery and manufacturing method of electrode for nonaqueous electrolyte secondary battery
JP2009245808A (en) Lithium ion secondary battery, and power source for electric vehicle
JPH09147913A (en) Nonaqueous electrolyte battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JP2005071678A (en) Battery
JP2009064715A (en) Positive electrode and lithium secondary battery using the same
JP3244389B2 (en) Lithium secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2005294028A (en) Lithium secondary battery
JP4656710B2 (en) Non-aqueous electrolyte secondary battery
JP3172445B2 (en) Non-aqueous electrolyte battery
JP2000323126A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2002203556A (en) Non-aqueous electrolyte secondary battery
JP2002175807A (en) Nonaqueous electrolyte secondary battery
JP2001196094A (en) Non-aqueous electrolytic secondary battery
JP2000215910A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using it
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213